WO2007148401A1 - Rectification circuit and radio communication device using the same - Google Patents

Rectification circuit and radio communication device using the same Download PDF

Info

Publication number
WO2007148401A1
WO2007148401A1 PCT/JP2006/312530 JP2006312530W WO2007148401A1 WO 2007148401 A1 WO2007148401 A1 WO 2007148401A1 JP 2006312530 W JP2006312530 W JP 2006312530W WO 2007148401 A1 WO2007148401 A1 WO 2007148401A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
terminal
detection circuit
demodulation
detection
Prior art date
Application number
PCT/JP2006/312530
Other languages
French (fr)
Japanese (ja)
Inventor
Takashi Ogawa
Kumiko Takikawa
Satoshi Tanaka
Takashi Oshima
Minoru Ashizawa
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Priority to PCT/JP2006/312530 priority Critical patent/WO2007148401A1/en
Priority to JP2008522213A priority patent/JPWO2007148401A1/en
Publication of WO2007148401A1 publication Critical patent/WO2007148401A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/20Circuit arrangements or systems for wireless supply or distribution of electric power using microwaves or radio frequency waves
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/0701Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips at least one of the integrated circuit chips comprising an arrangement for power management
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/0723Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips the record carrier comprising an arrangement for non-contact communication, e.g. wireless communication circuits on transponder cards, non-contact smart cards or RFIDs
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/06Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider
    • H02M3/07Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider using capacitors charged and discharged alternately by semiconductor devices with control electrode, e.g. charge pumps

Definitions

  • the present invention relates to a rectifier circuit and a wireless communication device using the same, and more particularly to a wireless tag circuit of a wireless communication system that performs non-contact data communication.
  • This RFID circuit includes an antenna, a rectifier circuit, a modulation circuit, a node, a bypass filter, a regulator, a demodulation circuit, a sequencer, and a memory.
  • the rectifier circuit rectifies the AC voltage generated by electromagnetically inductively coupling the antenna coil of the RFID tag inside the reader / writer with a diode, converts it to DC, and stores the electric charge in a capacitor.
  • Non-Patent Document 1 a configuration example of a wireless tag different from such a circuit is shown in Non-Patent Document 1.
  • the RFID tag shown in Fig. 1 is ant (antenna), demodulator (demodulator), volute ⁇ (voltage multiplier;
  • the voltage multiplier also converts the AC voltage generated by electromagnetically inductively coupling the antenna with the antenna inside the reader / writer to DC, and the demodulator, Supplying power supply voltage to the modulator and control logic
  • the demodulator demodulates the pulse width modulation signal (PWM: £ ulse-Width Modulation) input from the antenna into a clock and signal (command, data) and outputs it to the control logic
  • the control logic analyzes the demodulator signal (command) and Then, the data stored in the IIPM is read and written to the IIPM, and the control logic generates the data required for the signal (command) and supplies it to the module.
  • the charge pump modulates the impedance of the antenna in response to the signal
  • Patent Document 1 JP-A-2005-92352
  • Non-Patent Document 1 "Fully Integrated Passive UHF RFID Transponder IC With 16.7- W Minimum RF Input Power", IEEE Journal of Solid—State Circuits, vol. 38, No. 10, Oct. 2003
  • wireless tags for automatic ticket gates, entrance / exit management of buildings and rooms, entrance management for exhibitions, collection management of luggage, etc.
  • Wireless data communication systems that perform non-contact data communication using electromagnetic induction are beginning to spread. This system consists of a wireless tag and a reader / writer device that is arranged in the vicinity to read and write data, and extending the communication distance between them is an issue. In addition, because it aims to manage a large number of people and things, it is required to reduce the cost and size of wireless tags.
  • the data communication device disclosed in Patent Document 1 is provided with means for suppressing the operation of the filter means to suppress power loss.
  • FIG. 16 corresponds to a circuit diagram of the non-contact type IC card shown in FIG. 5 of Patent Document 1.
  • the rectifier circuit 235 rectifies the AC voltage generated by the antenna coil 224 in the ANT (antenna) 223 of the wireless tag with the diode 242 and stores the electric charge in the capacitor 244.
  • the regulator 236 supplies a stable power supply voltage to the sequencer 239 while suppressing fluctuations in the DC voltage.
  • the demodulating circuit 238 receives the AC signal detected by the envelope detection by the diode 242 of the rectifying circuit 235, demodulates it through the high-pass filter F 237, and outputs the demodulated signal to the sequencer 239.
  • the sequencer 239 analyzes the signal of the demodulation circuit 238, and reads or writes data stored in the memory 240 according to the result.
  • the sequencer 239 generates the required data and supplies it to the modulation circuit 241.
  • the modulation circuit 241 includes an impedance 247 and a F ET248 force, and the FET 248 is switched in response to a signal from the sequencer 239, and the load of the impedance 247 on the antenna coil 224 is changed to perform modulation.
  • the rectifier circuit 235 corresponds to the magnitude of the input amplitude. Current flows through the resistor 243, and a voltage drop occurs in the rectifier circuit 235. For this reason, the power supply output supplied from the regulator 236 connected to the subsequent stage of the rectifier circuit 235 becomes a low voltage. In addition, the low voltage lost by the rectifier circuit 235 must be input to the high-pass filter F 237 and the demodulator 238 at the subsequent stage for demodulation, resulting in unstable operation. In order to prevent this, the wireless tag and the reader / writer device must be used at a very short distance so that the electromagnetic induction necessary for the wireless tag to obtain a desired power supply voltage and signal level is performed.
  • the wireless tag of Non-Patent Document 1 has a rectifier circuit diode and capacitors connected in multiple stages as a method for ensuring a desired power supply voltage and signal level.
  • the voltage multiplier is a voltage doubling circuit that connects diodes and capacitors in multiple stages and connects them to supply a high power supply voltage.
  • the demodulator is provided with the same rectifier circuit as the voltage multiplier in the previous stage to detect the envelope of the received signal, and the pulse width modulation signal (PWM: £ ulse-Width Modulation) in the subsequent circuit. The demodulator is demodulated.
  • the wireless tag having such a configuration, since a voltage multiplier, a demodulator, and a modulator are connected in parallel to the antenna, all the received power of the antenna is not input to the voltage multiplier and is converted into an AC-DC converter. Reduce efficiency! In other words, it is necessary to increase the minimum antenna input power when the output voltage of the voltage multiplier reaches a desired voltage for operating each internal circuit, which is one reason for reducing the communication distance between the reader / writer device and the RFID tag device. Become.
  • the voltage multiplier and part of the demodulator have redundant configurations that use the same circuit topology, which increases the circuit scale and hinders the miniaturization and low cost of wireless tags.
  • the problem to be solved by the present invention is to improve the AC-DC conversion efficiency of the rectifier circuit.
  • the output of the rectifier circuit can reach a desired voltage even when the antenna input power of the radio tag is small. It is an object of the present invention to provide a rectifier circuit capable of extending the communication distance of a writer device and a wireless communication device using the rectifier circuit.
  • An example of a representative one of the present invention is as follows. That is, the wireless communication of the present invention.
  • Rectifier circuit for communication devices, antenna power A rectifier circuit for wireless communication devices that rectifies received high-frequency signals to generate a DC voltage for power supply, and has multiple stages of detector circuits connected in cascade via connection terminals And an antenna signal input first terminal provided in each stage of the detector circuit constituting the rectifier circuit, and the first stage detector circuit and the final stage detector circuit of the rectifier circuit. And a terminal for connecting the demodulator circuit and an output terminal for the DC voltage for power supply provided in the detector circuit at the final stage of the rectifier circuit.
  • the demodulation circuit since the demodulation circuit is connected to the middle stage of the rectifier circuit, the antenna received power is not distributed to the demodulator circuit, and a decrease in the antenna received power input to the rectifier circuit can be prevented. For this reason, AC-DC conversion efficiency is improved. Therefore, a sufficient power supply voltage can be maintained, and when the present invention is applied to a wireless tag, the communication distance between the wireless tag and the reader / writer device can be extended.
  • the rectifier circuit 20 is a multi-stage circuit in which n detection circuits (22 to 25) having the same circuit configuration power are connected in cascade to the first stage force to the Nth stage.
  • 21 is a demodulation circuit.
  • the terminal of the rectifier circuit 20 is commonly connected to the terminal TN2 of each detector circuit, the terminal TN3 is connected to the terminal TN1 of the subsequent detector circuit, and the first detector terminal TN1 is connected to the grounded half-wave rectifier circuit. It has a configuration.
  • a circuit example is a half-wave rectifier circuit in which two diodes and two capacitors (CO, C1) are connected, as described in the frame of the first detection circuit (22).
  • Vin I —VD is held in the nth stage floating capacitor CO of the detection circuit.
  • Vin is the amplitude value of the input signal
  • Vf is the forward voltage drop of the diode, and is Schottky.
  • Noria diode is about 0.3 V.
  • Vin is added to the above DC voltage at terminal TN0, which is the component of the nth stage detection circuit, and (2n-l) (
  • —VI) is held in the capacitor C1 of the nth detection circuit, which is the output of the power supply voltage.
  • the limiter 28 is excessive, such as antenna When voltage is input, each circuit must be protected against damage caused by overvoltage. It is provided for the purpose of suppressing the power supply voltage to a predetermined level.
  • This rectifier circuit 20 has a circuit configuration in which an input signal of an antenna signal is received by the rectifier circuit from the antenna terminal TN2, and the input of the demodulator circuit 21 is connected to the output terminal TNB in the middle of the rectifier circuit.
  • the demodulator circuit 21 receives the rectified signal from the rectifier circuit 20, performs envelope detection, amplifies the signal to a predetermined signal level, and outputs a demodulated signal.
  • connection point TNB force between the n-1 stage detection circuit 24 and the nth detection circuit 25 is also connected to the demodulation circuit 21, and this connection point TNB is Output terminal of the number of stages of the detection circuit between the first stage and n stage (final stage) and the obtained terminal voltage exceeds the logic threshold required for demodulation (or connection of two diodes constituting the detection circuit) Set to point TNO).
  • the demodulation circuit is connected to the middle stage of the rectifier circuit, and the antenna reception power is not distributed to the demodulation circuit. Therefore, the rectifier circuit is not affected by the impedance of the demodulator circuit, and there is no reduction in AC-DC conversion efficiency. Therefore, a sufficient power supply voltage can be maintained, and the communication distance between the wireless tag and the reader / writer device can be extended.
  • FIG. 3 shows an example of a block circuit of a wireless tag to which the present invention is applied.
  • the wireless tag includes an antenna 130, a rectifier circuit 131, a demodulation circuit 132, a modulation circuit 133, a limiter 134, a logic control circuit 135, and a memory 136.
  • the thick line in the figure indicates the supply line for the power supply voltage generated by the rectifier circuit, and the others indicate the signal lines.
  • the wireless tag circuit in the region indicated by the broken line excluding the antenna is formed on a common substrate as a CMOS circuit, for example.
  • the characteristically related parts of the present invention are a rectifier circuit 131 and a demodulator circuit 132.
  • the rectifier circuit 131 is a rectifier circuit 20 having a configuration in which detector circuits as shown in FIG. 1 are cascaded in multiple stages, and a demodulator circuit 132 corresponding to the demodulator circuit 21 in FIG. It is.
  • the AC voltage generated when the antenna 130 is electromagnetically coupled to the antenna of the reader / writer (not shown) is converted to DC by the rectifier circuit 131, and this DC voltage is converted to the demodulator circuit 132.
  • the rectifier circuit 131 also outputs a rectified detection signal to the demodulation circuit 132 in the middle stage force of the multi-stage connection of the detection circuit.
  • the demodulation circuit 132 amplifies the detection signal, demodulates it into a signal including a clock and data, and outputs the signal to the logic control circuit 135.
  • the logic control circuit 135 analyzes the command included in the demodulated signal, and reads or writes the data stored in the memory 136 according to the result. Further, the logic control circuit 135 creates data required for the signal (command) and supplies it to the modulation circuit 133.
  • the modulation circuit 133 performs modulation by varying the impedance with respect to the antenna 130 in response to the control signal from the logic control circuit 135.
  • the limiter 134 is provided to suppress the power supply voltage to a predetermined level and to protect the RFID tag circuit 10 from the destructive force caused by the overvoltage even when an excessive voltage is input from the antenna 130.
  • FIG. 2 is a circuit diagram showing a first embodiment of the rectifier circuit 131 and the demodulator circuit 132 in the wireless tag as described above.
  • the circuit of this embodiment shows a specific circuit configuration of the rectifier circuit 20 and the demodulator circuit 21 in the block diagram of FIG.
  • the rectifier circuit 20 has a configuration in which the detection circuits of the first detection circuit 23, the second detection circuit 24, and the third detection circuit 25 are connected in three stages in cascade. Each detection circuit has the same circuit configuration. Since the signal input from the antenna to terminal TN2 has a modulated signal, the signal difference between when there is a signal and when there is no signal is large. For this reason, the capacitor C3 has a larger capacitance value than the capacitors Cl and C2 in order to suppress fluctuations in the power supply voltage when there is no signal.
  • Fig. 4 conceptually shows the state of boosting by the capacitors (Cl, C2, C3) of each detection circuit when there is a signal.
  • -Vf) is held by the capacitor C2, and in the terminal TN3 of the third detection circuit 25, Vc3 6 (
  • Capacitor C2 has a low load impedance due to resistor 26 and amplifier 27, and so discharges faster than capacitors Cl and C3, and a signal faithful to the modulation signal is input to demodulation circuit 27. This enables faithful demodulation while maintaining a stable power supply voltage for the modulation signal. Since only the rectifier circuit 20 is connected to the antenna terminal, a high power supply voltage can be obtained because the load impedance is higher than that of a conventional circuit configuration in which multiple circuits are connected to the antenna terminal. Reduces power consumption.
  • the voltage boosted by each detection circuit is held without being substantially affected by the demodulation circuit, and a stable high power supply voltage Vdd is held. That is, the rectifier circuit 20 holds a DC voltage Vdd of 6 (I Vin
  • Vdd DC voltage
  • -Vf a stable voltage of 1.6 V
  • the demodulator circuit 21 is composed of a resistor 26 and a limiter amplifier 27, and charges the capacitor C2 with the voltage level Vc2 of the received signal, discharges it, and detects the envelope by rectifying the detector circuit.
  • the rectifier circuit 20 has a three-stage configuration, but the actual number of stages is determined by the required power supply voltage and the allowable circuit scale.
  • the number of detector circuits connected to the demodulator circuit is selected so that it exceeds the logic threshold required for demodulation and lower than the final stage. In this example, if the power logic threshold level connected to the output of the detection circuit 24, which is the second stage, is exceeded, even if it is connected to the output terminal TN3 of the first stage, it does not matter.
  • FIG. 5 shows an example of the result of analyzing the power supply voltage and the demodulation operation by the circuit of FIG.
  • (A) is an antenna input
  • (B) is an enlarged view of the antenna input
  • (C) shows the output voltage of the final stage of the rectifier circuit, which is the power supply voltage
  • (D) shows the output signal of the demodulator circuit.
  • an ASK modulation signal that is low level with a width of several ⁇ sec in a period of several tens of ⁇ sec for a high-frequency signal of 2 GHz operating frequency band.
  • the waveform of the power supply voltage Vdd at the VDD terminal, which was input to the antenna and converted into a DC signal, and the waveform at the output terminal of the demodulator circuit were graphed.
  • the high-frequency signal is rectified and the DC power supply voltage Vdd is output.
  • the power supply voltage Vdd slightly fluctuates (decreases) during the period when the antenna input becomes low level
  • the fluctuation of the power supply voltage Vdd is very small compared to the absolute value of the power supply voltage Vdd.
  • the low level is detected every several tens of microseconds for several microseconds, and the high level is detected for other periods, demodulated according to the input signal, and the clock signal is also extracted accurately. The child is understood.
  • the demodulator circuit 21 is connected to the middle stage of the rectifier circuit 20, so that the load impedance to the antenna can be increased, and the reduction of the antenna received power input to the rectifier circuit can be prevented. For this reason, AC-DC conversion efficiency is improved. Therefore, a sufficient power supply voltage can be maintained for the circuit 10 of the wireless tag, the output of the rectifier circuit can reach the desired voltage even when the antenna input power is small, and the communication distance between the wireless tag and the reader / writer device can be extended. .
  • the rectification action necessary for the demodulation envelope detection is further performed by the rectifier circuit. Therefore, it is possible to share a part of the rectifier circuit and the demodulator circuit, which is effective in reducing the circuit size and cost.
  • a demodulating detector circuit 42 is provided in front of the demodulating circuit 43 to hold the DC voltage of the demodulating circuit, and the connection point is the connecting point of the two diodes of the detecting circuit (internal Terminal) What is taken from TNO is different.
  • the capacitor C3 of the detection circuit n-1 (40) can hold the voltage boosted by each detection circuit without being affected by the demodulation circuit 43 and supply the DC voltage Vdd. .
  • the power of the n-1 stage detector circuit and the power connected to the demodulator circuit should be selected so that they exceed the logical threshold required for demodulation.
  • a high-stage detector circuit is connected to the demodulator circuit (for example, the n-th stage)
  • the overvoltage boosted by the multi-stage detector circuit is applied to the demodulator circuit. It is better to avoid it as it may destroy the circuit.
  • the limiter 46 is provided for protecting each circuit as described above.
  • FIG. 7 shows an example of a specific circuit configuration of the block diagram shown in FIG.
  • the circuit configuration of the rectifier circuit 20 is the same three-stage cascade connection as the circuit configuration shown in FIG. 2, and a demodulating detector circuit 42 is newly provided between the rectifier circuit 20 and the demodulator circuit 43.
  • Connection point (internal terminal) of diodes D3 and D4 in one-stage detection circuit 40 Connect to detection circuit 42 for demodulation from TNO.
  • the demodulating detection circuit 42 includes a diode 44 and a capacitor 45, which detects with the diode 44 and holds the DC voltage input to the demodulation circuit 43 with the capacitor 45.
  • the demodulator circuit 43 has the same configuration as the demodulator circuit 21 described in FIG. 2, and performs the same demodulation operation.
  • the limiter 46 is provided for protecting each circuit as described above.
  • the demodulator circuit 43 is connected to the intermediate stage of the rectifier circuit 20 via the demodulator detection circuit 42, so that the load impedance to the antenna can be increased, and the antenna received power input to the rectifier circuit can be increased. Decrease can be prevented. Further, a stable DC voltage Vdd can be supplied without being affected by the demodulation circuit 43.
  • FIG. 1 differs from the block diagram shown in FIG. 1 in that a demodulating detector circuit 62 is provided in front of the demodulating circuit 63 and an antenna input signal is input to the demodulating detector circuit 62. By capturing the antenna input signal with this configuration, the detection voltage level for demodulation can be kept high.
  • the n-1 stage detector circuit is also connected to the demodulator circuit, but the connection point should be selected so that the number of detector circuit stages connected to the demodulator circuit exceeds the logic threshold required for demodulation. .
  • the limiter 68 is provided for protecting each circuit as described above.
  • FIG. 9 shows an example of a specific circuit configuration of the block diagram shown in FIG.
  • a demodulation circuit 62 is newly provided between the rectifier circuit 20 and the demodulation circuit 63, and the demodulation detection circuit 62 is connected to the connection point TN3 of the diodes D4 and D5 of the n-1 stage detection circuit 60 of the rectification circuit 20. .
  • each detection circuit 60 constituting the rectifier circuit 20 one end of the first capacitor CO is connected to the transmission / reception antenna terminal TN2 to serve as an input terminal for the high-frequency signal Vin.
  • the terminal is connected to the power sword of the first diode D3 and the anode of the second diode D4 at the connection point TN0, and the anode of the first diode D3 becomes the input terminal of the detection circuit, and the force of the second diode D4
  • the sword is connected to one end of the second capacitor C2 and serves as the output terminal TN3 of the detection circuit, and the other terminal of the second capacitor C2 is grounded.
  • the demodulating detection circuit 62 is composed of diodes 64 and 65 and capacitors 66 and 67. The detection is performed by the diodes 64 and 65, and the DC voltage input to the demodulation circuit is held by the capacitor 67.
  • the demodulating detector circuit 62 connected to the intermediate stage of the multistage detecting circuit is composed of two diodes 64 and 65 and two capacitors 66 and 67, and the first diode 64 node is Connected to the output terminal TN3 of the detector circuit in the middle stage, the force sword is connected to the second die.
  • the second terminal of the first capacitor is connected to the transmitting / receiving antenna end terminal TN2, the force sword of the second diode 65 is connected to the first terminal of the second capacitor 67, and the second terminal of the second capacitor The terminal is grounded.
  • the demodulation circuit 63 has the same configuration as the demodulation circuit 21 described in FIG. 2, and performs the same demodulation operation. That is, the demodulation circuit 63 also has an amplifier power to amplify the signal detected by the resistor and the rectifier circuit, and is connected to the first terminal of the second capacitor 67 of the demodulation detection circuit 62 different from the detection circuit 20 connected in multiple stages. One terminal of the resistor and the input terminal of the amplifier are connected, and the other terminal of the resistor and the other terminal of the amplifier are grounded.
  • the limiter 68 is provided for protecting each circuit as described above.
  • the demodulation circuit 63 is connected to the intermediate stage of the rectifier circuit 20 via the demodulation detector circuit 62, so that the load impedance to the antenna can be increased, and the antenna reception input to the rectifier circuit can be achieved. A reduction in power can be prevented.
  • the detection voltage level for demodulation can be kept high by taking the antenna input signal into the demodulation circuit 62 for demodulation.
  • FIG. 10 shows the concept of the fourth embodiment.
  • the block diagram shown in FIG. 1 has a configuration with half-wave rectification detection circuit power and supplies a positive voltage, but in the fourth embodiment, the configuration also has full-wave rectification circuit power with positive and negative voltages. Can supply different.
  • the detection circuit 71 in the first detection circuit unit 81 has the same configuration as the detection circuit 1 in FIG. 1, and the current flows through the diode and the capacitor C71 when the antenna force has a positive amplitude of the input high-frequency signal. Is charged with a positive charge.
  • the detection circuit 72 has a negative amplitude, a current flows through the diode and charges the capacitor C73 with a negative charge.
  • An intermediate stage of the rectifier circuit 80 having such a configuration power is connected to the demodulator circuit 82.
  • the demodulation circuit 82 inputs the signal rectified by the rectifier circuit 80 and performs envelope detection, and then amplifies the signal to a predetermined signal level and outputs a demodulated signal.
  • the n-1 stage detector circuit is also connected to the demodulator, but the connection point is not limited to this. In other words, the number of detection circuit stages connected to the demodulation circuit may be selected so as to exceed the logic threshold necessary for demodulation.
  • the limiter 87 is provided for protecting each circuit as described above.
  • FIG. 11 shows a specific circuit example of the block diagram shown in FIG.
  • the rectifier circuit is configured as a cascade connection of two stages, and portions 83 and 84 indicated by broken lines are the first-stage detection circuit and the final-stage detection circuit 84.
  • one terminal of the first capacitor C72 is connected to the first terminal TN3 of the transmission / reception antenna to serve as an input terminal for the high-frequency signal Vin.
  • the other terminal TN10 is connected to the power sword of the first diode D1 and the anode of the second diode D2, and the anode of the first diode D1 becomes the positive input terminal of the detection circuit, and the power of the second diode D2
  • the sword is connected to one terminal of the second capacitor C71 and becomes the positive output terminal TN4 of the parenthesis detection circuit, and the other terminal of the second capacitor C71 is grounded (TNI, TN2).
  • one terminal of the third capacitor C74 is connected to the second terminal of the antenna to become the input terminal TN3 of the high frequency signal Vin, and the other terminal of the third capacitor C74 is connected to the power sword of the third diode D6 and the second sword.
  • the anode of the fourth diode D5 is connected, and the anode of the third diode D6 is the negative input terminal TN5 of this detection circuit, and is further connected to one terminal of the fourth capacitor C73.
  • the negative output terminal of the circuit, and the other terminal of the fourth capacitor C73 is grounded.
  • the rectifier circuit 80 holds the DC voltage of 2 (
  • the output of the first stage of the rectifier circuit 80 is input to the demodulator circuit 82.
  • the demodulator circuit 82 is composed of a resistor 85 and a limiter amplifier 86, and depends on the voltage level of the received modulation signal.
  • the charge of capacitors C71 and C73 is charged and discharged, and the rectifying power of rectifier circuit 80 is also provided to detect the envelope.
  • the detected envelope is amplified by the limiter amplifier 86 of the demodulation circuit 82 and demodulated as a signal of a desired level.
  • the limiter 87 is provided for protecting each circuit as described above.
  • the actual number of rectifier circuits is determined by the required power supply voltage, the allowable circuit scale and cost.
  • the number of stages of the detection circuit to which the demodulation circuit is connected exceeds the logical threshold necessary for demodulation and is lower than the final stage. Select the number of stages.
  • a demodulating detector circuit 102 for holding the DC voltage of the demodulating circuit is provided in front of the demodulating circuit 103, and its connection is made. The difference is that the point is taken from the connection point TN11 of the two diodes of the detection circuit.
  • the capacitor C71 of the detection circuit n-1 can hold the voltage boosted by each detection circuit without being affected by the demodulation circuit and supply the power supply voltage.
  • the detection circuit power at the n-1 stage is also connected to the demodulation circuit, but the connection point should be selected so that the number of detection circuit stages to which the demodulation circuit is connected exceeds the logic threshold required for demodulation.
  • a high-level detector circuit is connected to the demodulator circuit (for example, the n-th stage)
  • the overvoltage boosted by the multi-stage detector circuit is applied to the demodulator circuit. It is better to avoid it as it can be destroyed.
  • a limiter is provided to protect each circuit as described above.
  • FIG. 13 shows an example of a specific circuit configuration of the block diagram shown in FIG.
  • the circuit configuration of the rectifier circuit 101 is the same two-stage cascade connection as the circuit configuration shown in FIG. 11.
  • a demodulating detector circuit 102 is newly provided between the rectifier circuit 101 and the demodulator circuit 103, and the rectifier circuit 101 has a diode configuration.
  • the connection point force between the nodes D1 and D2 is also connected to the detection circuit 102 for demodulation.
  • one terminal of the first capacitor C72 is connected to the transmission / reception amplifier. Connected to the first terminal TN3 of the tenor and becomes the input terminal for the high frequency signal Vin, and the other terminal TN11 of the first capacitor C72 is connected to the power sword of the first diode D3 and the anode of the second diode D4 The anode of the first diode D3 becomes the positive input terminal of the detection circuit, the force sword of the second diode D4 is connected to one terminal of the second capacitor C71, and the positive output of the parenthesis detection circuit Terminal TN4, the other terminal of the second capacitor C71 is grounded (TNI, TN2).
  • one terminal of the third capacitor C74 is connected to the second terminal of the antenna to become the input terminal TN3 of the high frequency signal Vin, and the other terminal of the third capacitor C74 is the power sword of the third diode D8.
  • the anode of the third diode D8 is the negative input terminal T N5 of the detection circuit, and the power sword of the fourth diode D7 is the fourth capacitor C73. It is connected to one terminal and becomes the negative output terminal of the detection circuit, and the other terminal of the fourth capacitor is grounded.
  • the demodulation detection circuit 102 includes a diode 104 and a capacitor 105.
  • the detection is performed by the diode 104, and the capacitor 105 holds a DC voltage input to the demodulation circuit.
  • the connection terminal TN10 of the first diode D1 and the second diode D2 of the detection circuit in the middle stage is connected to the anode of the diode 104 of the demodulation circuit for demodulation provided separately from the detection circuit connected in multiple stages.
  • the force sword is connected to the first terminal of the capacitor C105, and the second terminal of the capacitor is connected to the negative terminal.
  • the demodulator circuit 103 is an amplifier circuit that amplifies the signal detected by the resistor and the rectifier circuit. One terminal of the resistor and the input terminal of the amplifier are connected to the positive output terminal of the detector circuit, and the other resistor is connected. The terminal and the other terminal of the amplifier are connected to the negative terminal of the detection circuit.
  • the demodulation circuit 103 performs the same demodulation operation as the demodulation circuit 82 described in FIG.
  • the limiter 106 is provided for protecting each circuit as described above.
  • the demodulating circuit 123 is provided with a demodulating detection circuit 122, and an antenna input signal is input to the demodulating detecting circuit 122.
  • the detection voltage level for demodulation can be kept high.
  • the detection circuit power at the n-1 stage is also connected to the demodulation circuit, but the connection point should be selected so that the number of detection circuit stages connected to the demodulation circuit exceeds the logic threshold required for demodulation.
  • the demodulator circuit if a high-level detector circuit (for example, the n-th stage) is connected to the demodulator circuit, if a high voltage is input from the antenna, the overvoltage boosted by the multi-stage detector circuit is applied to the demodulator circuit. It is better to avoid it because it may destroy it.
  • the limiter is provided to protect each circuit as described above.
  • FIG. 15 shows an example of a specific circuit configuration of the block diagram shown in FIG.
  • a demodulation circuit 122 is newly provided between the rectification circuit 121 and the demodulation circuit 123, and the demodulation detection circuit 122 is connected from the connection point between the diodes D2 and D3 of the rectification circuit 121.
  • one terminal of the first capacitor C72 is connected to the first terminal TN3 of the transmission / reception antenna to serve as an input terminal for the high-frequency signal Vin, and the other terminal of the first capacitor C72.
  • TN 11 is connected to the power sword of the first diode D3 and the anode of the second diode D4, the anode of the first diode D3 is the positive input terminal of the detector circuit, and the power sword of the second diode D4 is It is connected to one terminal of the second capacitor C71 and becomes the positive output terminal TN4 of the parenthesis detection circuit, and the other terminal of the second capacitor C71 is grounded (TNI, TN2).
  • one terminal of the third capacitor C74 is connected to the second terminal of the antenna to become the input terminal TN3 of the high frequency signal Vin, and the other terminal of the third capacitor C74 is the power sword of the third diode D8.
  • the anode of the third diode D8 is the negative input terminal T N5 of the detection circuit, and the power sword of the fourth diode D7 is the fourth capacitor C3. It is connected to one terminal and becomes the negative output terminal of the detection circuit, and the other terminal of the fourth capacitor is grounded.
  • the demodulation detection circuit 122 connected in the middle of the detection circuits connected in multiple stages also includes diodes 124 and 125, capacitors C126 and C127, and is detected by the diodes 124 and 125 and demodulated by the capacitor C127. Holds the DC voltage input to the circuit. That is, the middle stage The connection terminal TN10 of the diodes D2 and D3 of the detection circuit in FIG. 3 is connected to the anode of the diode 124 of the detection circuit 122 for demodulation, and the force sword is connected to the first terminal of the capacitor C 127 via the diode 125. The second terminal of capacitor 127 is connected to the negative terminal. One terminal of the capacitor 126 is connected to the second terminal of the antenna and connected to the input terminal TN3 of the high frequency signal Vin, and the other terminal is connected between the two diodes 124 and 125.
  • the demodulator circuit 123 is composed of an amplifier circuit that amplifies the signal detected by the resistor and the rectifier circuit. One terminal of the resistor and the input terminal of the amplifier are connected to the positive output terminal of the detector circuit. The other terminal and the other terminal of the amplifier are connected to the negative terminal of the detection circuit.
  • the demodulating circuit 123 has the same configuration as the demodulating circuit 103 described with reference to FIG. 13 and performs the same demodulating action.
  • the limiter 128 is provided for protecting each circuit as described above.
  • the full-wave rectifier circuit system of the present embodiment also has the same effect as the embodiments described above. Industrial applicability
  • the present invention it is possible to supply a wireless tag with a small size, low cost, and long communication distance without increasing the circuit scale. As a result, when entering or leaving a building or room, it becomes easier to manage the entry and exit of people and objects even if they are far away from each other.
  • the interval between reader / writer devices can be increased.
  • the output level of the reader / writer can be reduced, and the reader / writer device can be reduced in size and power consumption can be reduced. In the case of deviation, a low-cost system can be provided.
  • FIG. 1 is a circuit block diagram showing a basic configuration of the present invention.
  • FIG. 2 is a specific circuit configuration diagram showing a first embodiment of the present invention.
  • FIG. 3 is a circuit block diagram of a wireless tag to which the present invention is applied.
  • FIG. 4 is an operation explanatory diagram of the first embodiment of the present invention.
  • FIG. 5 is a diagram showing an operation analysis result of the circuit according to the first example of the present invention.
  • FIG. 6 is a circuit block diagram showing a second embodiment of the present invention.
  • FIG. 7 is a specific circuit configuration diagram showing a second embodiment of the present invention.
  • FIG. 8 is a circuit block diagram showing a third embodiment of the present invention.
  • FIG. 9 is a specific circuit configuration diagram showing a third embodiment of the present invention.
  • FIG. 10 is a circuit block diagram showing a fourth embodiment of the present invention.
  • FIG. 11 is a specific circuit configuration diagram showing a fourth embodiment of the present invention.
  • FIG. 12 is a circuit block diagram showing a fifth embodiment of the present invention.
  • FIG. 13 is a specific circuit configuration diagram showing a fifth embodiment of the present invention.
  • FIG. 14 is a circuit block diagram showing a sixth embodiment of the present invention.
  • FIG. 15 is a specific circuit configuration diagram showing a sixth embodiment of the present invention.
  • FIG. 16 is a circuit diagram of a conventional non-contact type IC card.

Abstract

When a demodulation circuit is connected in parallel to the input of a radio tag multi-stage rectification circuit, the rectification circuit is affected by the impedance of the demodulation circuit to increase the minimum input power for generating a predetermined power voltage and the communication distance between a radio tag and a reader/writer device is shortened. In order to solve this problem, the demodulation circuit is connected at an intermediate stage of the multi-stage rectification circuit so as to reduce the affect of the impedance of the demodulation circuit and enable generation of a predetermined power supply voltage even if the communication distance between the radio tag and the reader/writer device is large and the input power to the radio tag is small.

Description

明 細 書  Specification
整流回路及びそれを用いた無線通信装置  Rectifier circuit and wireless communication device using the same
技術分野  Technical field
[0001] 本発明は、整流回路及びそれを用いた無線通信装置に係り、特に、非接触データ 通信を行う無線通信システムの無線タグ回路に関する。  TECHNICAL FIELD [0001] The present invention relates to a rectifier circuit and a wireless communication device using the same, and more particularly to a wireless tag circuit of a wireless communication system that performs non-contact data communication.
背景技術  Background art
[0002] 非接触データ通信を行う無線通信システムの無線タグ回路の例としては、例えば特 許文献 1に示されたものが知られている。この無線タグ回路は、アンテナ、整流回路、 変調回路、ノ、ィパスフィルタ、レギユレータ、復調回路、シーケンサ、メモリを備えてい る。この中で、整流回路は、無線タグのアンテナコイルがリーダライタ内部に有するァ ンテナコイルと電磁気的に誘導結合して発生した交流電圧をダイオードで整流して 直流に変換し電荷をコンデンサに蓄える。  As an example of a wireless tag circuit of a wireless communication system that performs non-contact data communication, for example, the one shown in Patent Document 1 is known. This RFID circuit includes an antenna, a rectifier circuit, a modulation circuit, a node, a bypass filter, a regulator, a demodulation circuit, a sequencer, and a memory. Among these, the rectifier circuit rectifies the AC voltage generated by electromagnetically inductively coupling the antenna coil of the RFID tag inside the reader / writer with a diode, converts it to DC, and stores the electric charge in a capacitor.
[0003] またこのような回路とは別の無線タグの構成例力 非特許文献 1に示されている。そ の図 1に示された無線タグは、 ant (アンテナ)、 demodulator (デモジュレータ)、ボルテ ~~ンマノレチプフィ Ύ ~~ (voltage multiplier;、 modulator (モンユレ ~~タ)、 control logic ( コントローノレロジック)、 EEPROM (ィーィーピーロム)、 charge pump (チャージポンプ) 力もなる。ボルテージマルチプライヤーは、アンテナがリーダライタ内部に有するアン テナと電磁気的に誘導結合して発生した交流電圧を直流に変換し、デモジュレータ 、モジユレータ、コントロールロジックに電源電圧を供給する。デモジュレータはアンテ ナから入力したパルス幅変調信号(PWM :£ulse-Width Modulation)をクロックと信号 (コマンド、データ)に復調してコントロールロジックに出力する。コントロールロジック はデモジュレータの信号 (コマンド)を解析し、その結果に応じてィーィ一ピーロムに 格納されているデータを読み出したり、ィーィ一ピーロムにデータを書き込む。また、 コントロールロジックは信号(コマンド)に対して要求されるデータを生成しモジユレ一 タに供給する。モジユレータはコントロールロジックからの信号に対応してアンテナ対 するインピーダンスを変動させて変調を行う。チャージポンプはボルテージマルチプ ライヤ一力 供給された電源電圧をィーィ一ピーロムの書き込みに必要な制御電圧 へ昇圧する。 Further, a configuration example of a wireless tag different from such a circuit is shown in Non-Patent Document 1. The RFID tag shown in Fig. 1 is ant (antenna), demodulator (demodulator), volute ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (voltage multiplier; The voltage multiplier also converts the AC voltage generated by electromagnetically inductively coupling the antenna with the antenna inside the reader / writer to DC, and the demodulator, Supplying power supply voltage to the modulator and control logic The demodulator demodulates the pulse width modulation signal (PWM: £ ulse-Width Modulation) input from the antenna into a clock and signal (command, data) and outputs it to the control logic The control logic analyzes the demodulator signal (command) and Then, the data stored in the IIPM is read and written to the IIPM, and the control logic generates the data required for the signal (command) and supplies it to the module. The charge pump modulates the impedance of the antenna in response to the signal from the control logic, and the charge pump uses the voltage multiplier as the control voltage required to write the power supply. Boost to.
[0004] 特許文献 1 :特開 2005-92352号公報  [0004] Patent Document 1: JP-A-2005-92352
非特許文献 1: "Fully Integrated Passive UHF RFID Transponder IC With 16.7- W Minimum RF Input Power", IEEE Journal of Solid— State Circuits, vol. 38, No.10, Oct. 2003  Non-Patent Document 1: "Fully Integrated Passive UHF RFID Transponder IC With 16.7- W Minimum RF Input Power", IEEE Journal of Solid—State Circuits, vol. 38, No. 10, Oct. 2003
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] 近年、駅自動改札、建物や部屋への入退出管理、展示会などの入場管理、荷物の 集荷管理などに非接触型の ICカード、無線タグ(以下まとめて無線タグをいう)など、 電磁誘導を利用して非接触データ通信を行う無線データ通信システムが普及し始め ている。このシステムは無線タグと、その近傍に配置されデータの書き込み読み出し を行うリーダライタ装置カゝら構成されており、両者の通信距離を延ばすことが課題の 一つとなっている。また、大量の人、物の管理を行うことを目的としているため、無線タ グの低コスト化、小型化も要求されている。  [0005] In recent years, non-contact IC cards, wireless tags (collectively referred to as wireless tags), etc. for automatic ticket gates, entrance / exit management of buildings and rooms, entrance management for exhibitions, collection management of luggage, etc. Wireless data communication systems that perform non-contact data communication using electromagnetic induction are beginning to spread. This system consists of a wireless tag and a reader / writer device that is arranged in the vicinity to read and write data, and extending the communication distance between them is an issue. In addition, because it aims to manage a large number of people and things, it is required to reduce the cost and size of wireless tags.
[0006] 特許文献 1に開示されたデータ通信装置は、フィルタ手段の動作を抑制する手段 を設けて電力損失を抑制して 、る。  [0006] The data communication device disclosed in Patent Document 1 is provided with means for suppressing the operation of the filter means to suppress power loss.
[0007] 図 16は、特許文献 1の図 5に示された非接触型の ICカードの回路図に相当する。  FIG. 16 corresponds to a circuit diagram of the non-contact type IC card shown in FIG. 5 of Patent Document 1.
整流回路 235は、無線タグの ANT (アンテナ) 223内のアンテナコイル 224が発生した 交流電圧を、ダイオード 242で整流し、電荷をコンデンサ 244に蓄える。レギユレータ 236では直流電圧の変動を抑制して安定した電源電圧をシーケンサ 239に供給す る。また復調回路 238は整流回路 235のダイオード 242で包絡線検波した交流信号 が入力、ハイパスフィルタ F 237を介して復調し、シーケンサ 239に出力する。シーケ ンサ 239は復調回路 238の信号を解析し、その結果に応じてメモリ 240に格納されて いるデータを読み出したり、メモリ 240に書き込む。また、シーケンサ 239は要求され るデータを生成し変調回路 241に供給する。変調回路 241はインピーダンス 247と F ET248力 成り、 FET248をシーケンサ 239からの信号に対応してスイッチングさせ、 アンテナコイル 224に対するインピーダンス 247の負荷を変動させて変調を行う。  The rectifier circuit 235 rectifies the AC voltage generated by the antenna coil 224 in the ANT (antenna) 223 of the wireless tag with the diode 242 and stores the electric charge in the capacitor 244. The regulator 236 supplies a stable power supply voltage to the sequencer 239 while suppressing fluctuations in the DC voltage. The demodulating circuit 238 receives the AC signal detected by the envelope detection by the diode 242 of the rectifying circuit 235, demodulates it through the high-pass filter F 237, and outputs the demodulated signal to the sequencer 239. The sequencer 239 analyzes the signal of the demodulation circuit 238, and reads or writes data stored in the memory 240 according to the result. The sequencer 239 generates the required data and supplies it to the modulation circuit 241. The modulation circuit 241 includes an impedance 247 and a F ET248 force, and the FET 248 is switched in response to a signal from the sequencer 239, and the load of the impedance 247 on the antenna coil 224 is changed to perform modulation.
[0008] 上記特許文献 1の無線タグにおいて、整流回路 235は入力する振幅の大きさに応 じた電流が抵抗 243に流れ、整流回路 235で電圧低下が生じる。このため整流回路 235の後段に接続されたレギユレータ 236から供給される電源出力は低い電圧にな る。また、整流回路 235で損失を受けた低い電圧によってハイパスフィルタ F 237、 及びその後段の復調回路 238に入力して復調をしなければならず、不安定な動作と なる。これを防ぐため、無線タグが所望の電源電圧、信号レベルを得るのに必要な電 磁誘導が行われるように、無線タグとリーダライタ装置は極めて短 ヽ距離で使われる 必要がある。 [0008] In the wireless tag disclosed in Patent Document 1, the rectifier circuit 235 corresponds to the magnitude of the input amplitude. Current flows through the resistor 243, and a voltage drop occurs in the rectifier circuit 235. For this reason, the power supply output supplied from the regulator 236 connected to the subsequent stage of the rectifier circuit 235 becomes a low voltage. In addition, the low voltage lost by the rectifier circuit 235 must be input to the high-pass filter F 237 and the demodulator 238 at the subsequent stage for demodulation, resulting in unstable operation. In order to prevent this, the wireless tag and the reader / writer device must be used at a very short distance so that the electromagnetic induction necessary for the wireless tag to obtain a desired power supply voltage and signal level is performed.
[0009] 一方、上記非特許文献 1の無線タグは、所望の電源電圧、信号レベルを確保する 手法として整流回路のダイオード、コンデンサを多段に接続している。非特許文献 1 の図 2にお 、てボルテージマルチプライヤーはダイオードとコンデンサを多段に積み 上げて接続し、高い電源電圧を供給する電圧倍増回路となっている。また、図 4にお いてデモジュレータはボルテージマルチプライヤーと同じ整流回路を前段に設けて 受信した信号の包絡線を検波し、後段の回路でパルス幅変調信号 (PWM :£ulse-W idth Modulation)の復調を行って 、る。  On the other hand, the wireless tag of Non-Patent Document 1 has a rectifier circuit diode and capacitors connected in multiple stages as a method for ensuring a desired power supply voltage and signal level. In Fig. 2 of Non-Patent Document 1, the voltage multiplier is a voltage doubling circuit that connects diodes and capacitors in multiple stages and connects them to supply a high power supply voltage. In Fig. 4, the demodulator is provided with the same rectifier circuit as the voltage multiplier in the previous stage to detect the envelope of the received signal, and the pulse width modulation signal (PWM: £ ulse-Width Modulation) in the subsequent circuit. The demodulator is demodulated.
[0010] このような構成の無線タグにおいて、アンテナに並列にボルテージマルチプライヤ 一、デモジュレータ、モジユレータが接続しているためにアンテナの受信電力は全て ボルテージマルチプライヤーに入力せず、交流一直流変換効率を低下させて!/ヽる。 すなわち、ボルテージマルチプライヤーの出力電圧が各内部回路を動作させるため の所望電圧に到達するときのアンテナ最小入力電力を増大させる必要があり、リーダ ライタ装置と無線タグ装置の通信距離を縮める一因となる。また、ボルテージマルチ プライヤーとデモジュレータの一部が同じ回路トポロジーを使った冗長な構成となつ ており、回路規模が増大し無線タグの小型化や低コストィ匕を妨げる一因となる。  [0010] In the wireless tag having such a configuration, since a voltage multiplier, a demodulator, and a modulator are connected in parallel to the antenna, all the received power of the antenna is not input to the voltage multiplier and is converted into an AC-DC converter. Reduce efficiency! In other words, it is necessary to increase the minimum antenna input power when the output voltage of the voltage multiplier reaches a desired voltage for operating each internal circuit, which is one reason for reducing the communication distance between the reader / writer device and the RFID tag device. Become. In addition, the voltage multiplier and part of the demodulator have redundant configurations that use the same circuit topology, which increases the circuit scale and hinders the miniaturization and low cost of wireless tags.
[0011] 本発明の解決課題は、整流回路の交流一直流変換効率を改善し、例えば無線タ グのアンテナ入力電力が小さくても整流回路の出力が所望電圧に到達でき、無線タ グとリーダライタ装置の通信距離を拡大できる整流回路及びそれを用いた無線通信 装置を提供することにある。  [0011] The problem to be solved by the present invention is to improve the AC-DC conversion efficiency of the rectifier circuit. For example, the output of the rectifier circuit can reach a desired voltage even when the antenna input power of the radio tag is small. It is an object of the present invention to provide a rectifier circuit capable of extending the communication distance of a writer device and a wireless communication device using the rectifier circuit.
課題を解決するための手段  Means for solving the problem
[0012] 本発明の代表的なものの一例を示せば以下の通りである。即ち、本発明の無線通 信装置用の整流回路、アンテナ力 受信した高周波信号を整流して電源用の直流 電圧を発生する無線通信装置用の整流回路であって、接続端子を介して縦列接続 された複数段の検波回路と、該整流回路を構成する各段の検波回路に設けられた アンテナ信号入力用の第一の端子と、該整流回路の第 1段の検波回路と最終段の 検波回路との間に設けられた復調回路接続用の端子と、該整流回路の最終段の検 波回路に設けられた前記電源供給用の直流電圧の出力端子とを備えて成る、ことを 特徴とする。 [0012] An example of a representative one of the present invention is as follows. That is, the wireless communication of the present invention. Rectifier circuit for communication devices, antenna power A rectifier circuit for wireless communication devices that rectifies received high-frequency signals to generate a DC voltage for power supply, and has multiple stages of detector circuits connected in cascade via connection terminals And an antenna signal input first terminal provided in each stage of the detector circuit constituting the rectifier circuit, and the first stage detector circuit and the final stage detector circuit of the rectifier circuit. And a terminal for connecting the demodulator circuit and an output terminal for the DC voltage for power supply provided in the detector circuit at the final stage of the rectifier circuit.
発明の効果  The invention's effect
[0013] 本発明によれば、整流回路の途中段に復調回路が接続されるため、アンテナ受信 電力が復調回路に分配されず、整流回路に入力するアンテナ受信電力の低下を防 止できる。このため、交流一直流変換効率が改善される。そのため、十分な電源電圧 が保持でき、本発明を無線タグに適用した場合、無線タグとリーダライタ装置間の通 信距離を延ばすことが出来る。  [0013] According to the present invention, since the demodulation circuit is connected to the middle stage of the rectifier circuit, the antenna received power is not distributed to the demodulator circuit, and a decrease in the antenna received power input to the rectifier circuit can be prevented. For this reason, AC-DC conversion efficiency is improved. Therefore, a sufficient power supply voltage can be maintained, and when the present invention is applied to a wireless tag, the communication distance between the wireless tag and the reader / writer device can be extended.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0014] まず、本発明の基本的な構成例について、図 1の回路ブロック図を用いて説明する 。図 1において、整流回路 20は、同じ回路構成力もなる検波回路(22〜25)がカスケ 一ドに第 1段力 第 N段までの n個接続された多段構成の回路である。 21は復調回 路である。整流回路 20のアンテナ端には、各検波回路の端子 TN2が共通に接続さ れ、端子 TN3が後段の検波回路の端子 TN1に接続され、初段の検波端子 TN1は 接地された半波整流回路の構成となっている。回路例としては第 1の検波回路(22) の枠内に記載のように、 2つのダイオードと 2つのコンデンサ(CO、 C1)が接続された 半波整流回路である。検波回路の n段目のフローティングコンデンサ COには(2n-l) (|Vin I —VDの直流電圧が保持される。 Vinは入力信号の振幅値、 Vfはダイオードの 順方向降下電圧でショットキーノリアダイオードで 0.3V程度である。 n段目の検波回 路の構成要素であるダイオード間の端子 TN0には上記直流電圧に Vinが付加され、 (2n-l) (|Vin | —Vi)+Vinとなる。最終的に電源電圧の出力である n個目の検波回路 のコンデンサ C1には、 2n(|Vin | —VI)の直流電圧が保持される。リミッタ 28は、アン テナカゝら過大電圧が入力した場合、各回路を過電圧による破壊力ゝら保護することを 目的に電源電圧を所定のレベルに抑えるために設けられて ヽる。 First, a basic configuration example of the present invention will be described using the circuit block diagram of FIG. In FIG. 1, the rectifier circuit 20 is a multi-stage circuit in which n detection circuits (22 to 25) having the same circuit configuration power are connected in cascade to the first stage force to the Nth stage. 21 is a demodulation circuit. The terminal of the rectifier circuit 20 is commonly connected to the terminal TN2 of each detector circuit, the terminal TN3 is connected to the terminal TN1 of the subsequent detector circuit, and the first detector terminal TN1 is connected to the grounded half-wave rectifier circuit. It has a configuration. A circuit example is a half-wave rectifier circuit in which two diodes and two capacitors (CO, C1) are connected, as described in the frame of the first detection circuit (22). The DC capacitor of (2n-l) (| Vin I —VD is held in the nth stage floating capacitor CO of the detection circuit. Vin is the amplitude value of the input signal, Vf is the forward voltage drop of the diode, and is Schottky. Noria diode is about 0.3 V. Vin is added to the above DC voltage at terminal TN0, which is the component of the nth stage detection circuit, and (2n-l) (| Vin | —Vi) + Finally, the DC voltage of 2n (| Vin | —VI) is held in the capacitor C1 of the nth detection circuit, which is the output of the power supply voltage.The limiter 28 is excessive, such as antenna When voltage is input, each circuit must be protected against damage caused by overvoltage. It is provided for the purpose of suppressing the power supply voltage to a predetermined level.
[0015] この整流回路 20において、アンテナ端 TN2からアンテナ信号の入力信号を整流 回路で受け、整流回路の途中段の出力端子 TNBに復調回路 21の入力を接続する 回路構成となっている。復調回路 21は、整流回路 20の整流された信号を入力して 包絡線検波を行ったのち所定の信号レベルに増幅し復調信号を出力する。  [0015] This rectifier circuit 20 has a circuit configuration in which an input signal of an antenna signal is received by the rectifier circuit from the antenna terminal TN2, and the input of the demodulator circuit 21 is connected to the output terminal TNB in the middle of the rectifier circuit. The demodulator circuit 21 receives the rectified signal from the rectifier circuit 20, performs envelope detection, amplifies the signal to a predetermined signal level, and outputs a demodulated signal.
[0016] なお、図 1では、 n-1段目の検波回路 24と n段目の検波回路 25の間の接続点 TN B力も復調回路 21に接続しているが、この接続点 TNBは、 1段目と n段 (最終段)目 の間で、かつ、得られる端子電圧が復調に必要な論理スレツショルドを越える検波回 路の段数の出力端子 (あるいは検波回路を構成する 2つのダイオードの接続点 TNO )に設定すればよい。  In FIG. 1, the connection point TNB force between the n-1 stage detection circuit 24 and the nth detection circuit 25 is also connected to the demodulation circuit 21, and this connection point TNB is Output terminal of the number of stages of the detection circuit between the first stage and n stage (final stage) and the obtained terminal voltage exceeds the logic threshold required for demodulation (or connection of two diodes constituting the detection circuit) Set to point TNO).
[0017] 図 1の回路ブロック図の構成によれば、復調回路は整流回路の途中段に接続され ており、アンテナ受信電力が復調回路には分配されない。そのため、整流回路が復 調回路のインピーダンスの影響を受けず、交流一直流変換効率の低下がない。その ため、十分な電源電圧が保持でき、無線タグとリーダライタ装置間の通信距離を延ば すことが出来る。  According to the configuration of the circuit block diagram of FIG. 1, the demodulation circuit is connected to the middle stage of the rectifier circuit, and the antenna reception power is not distributed to the demodulation circuit. Therefore, the rectifier circuit is not affected by the impedance of the demodulator circuit, and there is no reduction in AC-DC conversion efficiency. Therefore, a sufficient power supply voltage can be maintained, and the communication distance between the wireless tag and the reader / writer device can be extended.
実施例 1  Example 1
[0018] 次に、本発明を適用したより具体的な無線タグの回路の一実施例について、図 2な いし図 5で説明する。  Next, an example of a more specific wireless tag circuit to which the present invention is applied will be described with reference to FIG. 2 or FIG.
[0019] まず、図 3に本発明を適用した無線タグのブロック回路の一例を示す。無線タグは アンテナ 130、整流回路 131、復調回路 132、変調回路 133、リミッタ 134、論理制 御回路 135、メモリ 136を有している。図中の太い線は整流回路で生成された電源 電圧の供給ラインを示し、その他は信号線を示す。また、図 3において、アンテナを 除く破線で示した領域の無線タグの回路 10力 例えば CMOS回路として、共通の基 板上に形成される。  First, FIG. 3 shows an example of a block circuit of a wireless tag to which the present invention is applied. The wireless tag includes an antenna 130, a rectifier circuit 131, a demodulation circuit 132, a modulation circuit 133, a limiter 134, a logic control circuit 135, and a memory 136. The thick line in the figure indicates the supply line for the power supply voltage generated by the rectifier circuit, and the others indicate the signal lines. Further, in FIG. 3, the wireless tag circuit in the region indicated by the broken line excluding the antenna is formed on a common substrate as a CMOS circuit, for example.
[0020] ここで、本発明の特徴的に関係する部分は、整流回路 131と復調回路 132である。  Here, the characteristically related parts of the present invention are a rectifier circuit 131 and a demodulator circuit 132.
整流回路 131は、図 1で示すような検波回路が多段にカスケード接続された構成の 整流回路 20であり、その途中段に図 1の復調回路 21に相当する復調回路 132が接 続される構成である。 [0021] このような構成において、アンテナ 130がリーダライタ(図示せず)が有するアンテナ と電磁気的に結合して発生した交流電圧を整流回路 131で直流に変換し、この直流 電圧を復調回路 132、変調回路 133、及び論理制御回路 135に電源電圧として供 給する。それに加え、整流回路 131は、検波回路の多段接続の途中段力も復調回 路 132に整流後の検波信号を出力する。復調回路 132は、検波信号を増幅してクロ ックとデータを含んだ信号とに復調し、論理制御回路 135に出力する。論理制御回 路 135は復調信号に含まれるコマンドを解析し、その結果に応じてメモリ 136に格納 されているデータを読み出したり、書き込みを行う。また、論理制御回路 135は信号( コマンド)に対して要求されるデータを作成し変調回路 133に供給する。変調回路 13 3は論理制御回路 135からの制御信号に対応してアンテナ 130に対するインピーダ ンスを変動させて変調を行う。リミッタ 134は電源電圧を所定のレベルに抑え、アンテ ナ 130から過大電圧が入力しても無線タグ回路 10を過電圧による破壊力ゝら保護する ために設けられている。 The rectifier circuit 131 is a rectifier circuit 20 having a configuration in which detector circuits as shown in FIG. 1 are cascaded in multiple stages, and a demodulator circuit 132 corresponding to the demodulator circuit 21 in FIG. It is. In such a configuration, the AC voltage generated when the antenna 130 is electromagnetically coupled to the antenna of the reader / writer (not shown) is converted to DC by the rectifier circuit 131, and this DC voltage is converted to the demodulator circuit 132. , And supplied to the modulation circuit 133 and the logic control circuit 135 as a power supply voltage. In addition, the rectifier circuit 131 also outputs a rectified detection signal to the demodulation circuit 132 in the middle stage force of the multi-stage connection of the detection circuit. The demodulation circuit 132 amplifies the detection signal, demodulates it into a signal including a clock and data, and outputs the signal to the logic control circuit 135. The logic control circuit 135 analyzes the command included in the demodulated signal, and reads or writes the data stored in the memory 136 according to the result. Further, the logic control circuit 135 creates data required for the signal (command) and supplies it to the modulation circuit 133. The modulation circuit 133 performs modulation by varying the impedance with respect to the antenna 130 in response to the control signal from the logic control circuit 135. The limiter 134 is provided to suppress the power supply voltage to a predetermined level and to protect the RFID tag circuit 10 from the destructive force caused by the overvoltage even when an excessive voltage is input from the antenna 130.
[0022] 図 2に、上記のような無線タグにおける整流回路 131と復調回路 132の第一の実施 形態になる回路図を示す。この実施形態の回路は、図 1のブロック図の整流回路 20 及び復調回路 21の具体的な回路構成を示すものである。整流回路 20は、第 1の検 波回路 23、第 2の検波回路 24、第 3の検波回路 25の各検波回路を 3段カスケード接 続させた構成となっている。各検波回路は、同じ回路構成となっている。アンテナから 端子 TN2に入力される信号は変調信号を持っため有信号時と無信号時の信号振 差が大きい。このため、コンデンサ C3は無信号時の電源電圧変動を抑えるためコン デンサ Cl、 C2と比べて大きい容量値を選択する。  FIG. 2 is a circuit diagram showing a first embodiment of the rectifier circuit 131 and the demodulator circuit 132 in the wireless tag as described above. The circuit of this embodiment shows a specific circuit configuration of the rectifier circuit 20 and the demodulator circuit 21 in the block diagram of FIG. The rectifier circuit 20 has a configuration in which the detection circuits of the first detection circuit 23, the second detection circuit 24, and the third detection circuit 25 are connected in three stages in cascade. Each detection circuit has the same circuit configuration. Since the signal input from the antenna to terminal TN2 has a modulated signal, the signal difference between when there is a signal and when there is no signal is large. For this reason, the capacitor C3 has a larger capacitance value than the capacitors Cl and C2 in order to suppress fluctuations in the power supply voltage when there is no signal.
[0023] 有信号時の各検波回路のコンデンサ (Cl、 C2、 C3)による昇圧の様子を概念的に 示したのが図 4である。図 4に示すように、第 1の検波回路 23の端子 TN3には、 Vcl = 2 ( I Vinl-Vf)に昇圧された直流電圧がコンデンサ C1で保持され、第 2の検波回 路 24の端子 TN3には、 Vc2=4 ( | Vin|-Vf)に昇圧された直流電圧がコンデンサ C2 で保持され、第 3の検波回路 25の端子 TN3には、 Vc3 = 6 ( | Vin|-Vf)に昇圧され た直流電圧がコンデンサ C3で保持される。  [0023] Fig. 4 conceptually shows the state of boosting by the capacitors (Cl, C2, C3) of each detection circuit when there is a signal. As shown in Fig. 4, the DC voltage boosted to Vcl = 2 (I Vinl-Vf) is held by the capacitor C1 at the terminal TN3 of the first detection circuit 23, and the terminal of the second detection circuit 24 In TN3, the DC voltage boosted to Vc2 = 4 (| Vin | -Vf) is held by the capacitor C2, and in the terminal TN3 of the third detection circuit 25, Vc3 = 6 (| Vin | -Vf) The boosted DC voltage is held by capacitor C3.
[0024] アンテナ 130がリーダライタのアンテナと電磁気的に誘導結合して発生した交流電 圧は、各検波回路のダイオード (D2、 D4、 D6)で整流され直流に変換されて、電荷 が各検波回路の端子 TN3に接続されたコンデンサ (Cl、 C2、 C3)に蓄えられる。交 流電圧は変調された信号であり、振幅に幅がある。交流電圧の振幅が大きいときはコ ンデンサ(Cl、 C2、 C3)へ電荷がチャージされ、昇圧される。 [0024] AC power generated by electromagnetically inductively coupling the antenna 130 to the reader / writer antenna. The pressure is rectified by the diodes (D2, D4, D6) of each detector circuit and converted to direct current, and the charge is stored in capacitors (Cl, C2, C3) connected to the terminal TN3 of each detector circuit. The AC voltage is a modulated signal and has a wide amplitude. When the amplitude of the AC voltage is large, the capacitor (Cl, C2, C3) is charged and boosted.
[0025] 一方、振幅力 S小さいときは、ダイオード Dl、 D2、 D3、 D4、 D5、 D6が動作しないた めオフ状態となりダイオードによる整流動作は行われず、コンデンサ Cl、 C2、 C3は チャージしていた電荷をデイスチャージする。この時、コンデンサ C3は容量値が大き V、ため時間をかけてデイスチャージを行う。コンデンサ C1もダイオード D3などがオフ 状態のためコンデンサ C1から見た負荷インピーダンスは高いため、時間をかけてデ イスチャージを行う。コンデンサ C2は抵抗 26やアンプ 27などにより負荷インピーダン スが低いためコンデンサ Cl、 C3よりも早くディスチャージを行い、変調信号に忠実な 信号を復調回路 27に入力する。これにより変調信号に対し安定した電源電圧を維持 しつつ、忠実な復調が可能となる。アンテナ端子には整流回路 20のみが接続されて いるので、アンテナ端子に複数の回路が接続されたような従来の回路構成と比べて 負荷インピーダンスが高いため高い電源電圧を得ることができ、アンテナ受信電力の 低下を抑制できる。 [0025] On the other hand, when the amplitude force S is small, the diodes D1, D2, D3, D4, D5, and D6 do not operate, and the diodes are turned off and no rectification operation is performed by the diodes. The capacitors Cl, C2, and C3 are charged. Discharge the charged charge. At this time, the capacitor C3 has a large capacitance value V, so it takes a long time to discharge. Capacitor C1 also has a high load impedance as seen from capacitor C1 because diode D3 etc. are off. Capacitor C2 has a low load impedance due to resistor 26 and amplifier 27, and so discharges faster than capacitors Cl and C3, and a signal faithful to the modulation signal is input to demodulation circuit 27. This enables faithful demodulation while maintaining a stable power supply voltage for the modulation signal. Since only the rectifier circuit 20 is connected to the antenna terminal, a high power supply voltage can be obtained because the load impedance is higher than that of a conventional circuit configuration in which multiple circuits are connected to the antenna terminal. Reduces power consumption.
[0026] このように、本実施例によれば、各検波回路で昇圧された電圧を復調回路の影響 を実質的に受けずに保持して安定した高い電源電圧 Vddが保持される。すなわち、 整流回路 20は、最終段の出力端子 TN3に、 6 ( I Vin|-Vf)の直流電圧 Vdd、例えば 1. 6Vの安定した電圧を保持しており、この電源電圧 Vddが図 3に示した整流回路 1 31、復調回路 132、変調回路 133、論理制御回路 135等の各回路に供給される。  [0026] Thus, according to the present embodiment, the voltage boosted by each detection circuit is held without being substantially affected by the demodulation circuit, and a stable high power supply voltage Vdd is held. That is, the rectifier circuit 20 holds a DC voltage Vdd of 6 (I Vin | -Vf), for example, a stable voltage of 1.6 V, at the final output terminal TN3. The rectifier circuit 133, the demodulator circuit 132, the modulator circuit 133, the logic control circuit 135, and the like shown in FIG.
[0027] 一方、整流回路 20の 2段目の出力であるダイオード D4の力ソード、換言すると第 2 の検波回路 24の端子 TN3は、復調回路 21の端子 TM1に接続されている。復調回 路 21は、抵抗 26とリミッタアンプ 27から構成されており、受信する信号の電圧レベル Vc2によりコンデンサ C2の電荷をチャージ、デイスチャージして検波回路の整流作 用により包絡線を検波するために設けられて 、る。復調回路 21に入力される電圧レ ベル Vc2' (=Vc2)は直流電圧 Vddよりも低い電圧となる力 この Vc2'が復調に必 要な論理スレツショルドを越えていれば、復調動作にはなんら支障は無い。検波され た包絡線は、復調回路 21のアンプ 27で増幅され、所望のレベルの信号として復調さ れる。リミッタ 28は前述の通り各回路保護のために設けられて 、る。 On the other hand, the power sword of the diode D4 that is the second-stage output of the rectifier circuit 20, in other words, the terminal TN3 of the second detection circuit 24 is connected to the terminal TM1 of the demodulation circuit 21. The demodulator circuit 21 is composed of a resistor 26 and a limiter amplifier 27, and charges the capacitor C2 with the voltage level Vc2 of the received signal, discharges it, and detects the envelope by rectifying the detector circuit. Provided. The voltage level Vc2 '(= Vc2) input to the demodulator circuit 21 is a force that makes the voltage lower than the DC voltage Vdd.If this Vc2' exceeds the logic threshold required for demodulation, there is no problem with the demodulation operation. There is no. Detected The envelope is amplified by the amplifier 27 of the demodulation circuit 21 and demodulated as a signal of a desired level. As described above, the limiter 28 is provided for protecting each circuit.
[0028] ここでは整流回路 20を 3段構成としたが、実際の段数は必要な電源電圧、許容さ れる回路規模により決められる。復調回路が接続する検波回路の段数は復調に必要 な論理スレツショルドを越えるところでかつ、最終段より低い段数を選ぶ。本例では 2 段目である検波回路 24の出力に接続している力 論理スレツショルドレベルを超えて いれば 1段目の出力端子 TN3に接続しでもカゝまわない。  Here, the rectifier circuit 20 has a three-stage configuration, but the actual number of stages is determined by the required power supply voltage and the allowable circuit scale. The number of detector circuits connected to the demodulator circuit is selected so that it exceeds the logic threshold required for demodulation and lower than the final stage. In this example, if the power logic threshold level connected to the output of the detection circuit 24, which is the second stage, is exceeded, even if it is connected to the output terminal TN3 of the first stage, it does not matter.
[0029] 図 5に、図 2の回路による電源電圧と復調動作を解析した結果の一例を示す。図 5 の (A)はアンテナ入力、(B)はアンテナ入力(A)を拡大して示した図である。(C)は 電源電圧となる整流回路の最終段の出力電圧、 (D)は復調回路の出力信号を示し ている。  FIG. 5 shows an example of the result of analyzing the power supply voltage and the demodulation operation by the circuit of FIG. In Fig. 5, (A) is an antenna input, and (B) is an enlarged view of the antenna input (A). (C) shows the output voltage of the final stage of the rectifier circuit, which is the power supply voltage, and (D) shows the output signal of the demodulator circuit.
[0030] 解析の条件として、図 5の(B)に示したように、動作周波数 2GHz帯の高周波信号 に対し、数 10 μ secの周期において数 μ sec幅で Lowレベルとなる ASK変調信号を アンテナに入力し、直流信号に変換された VDD端子での電源電圧 Vddの波形と、復 調回路の出力端子での波形をグラフ化した。(C)に示したように、高周波の信号が整 流されて直流の電源電圧 Vddを出力している。電源電圧 Vddは、アンテナ入力が Lo wレベルになる区間で若干の変動(低下)がみられるものの、電源電圧 Vddの絶対値 に比べるとの変動はごく小さぐほぼ一定の電源電圧 Vddを得ることができる。また、( D)に示したように、数 10 μ sec毎に数 μ secの間は Lowレベル、それ以外では Highレ ベルが検出され、入力信号通りに復調され、クロック信号も正確に抽出されている様 子がわかる。  [0030] As a condition for analysis, as shown in FIG. 5B, an ASK modulation signal that is low level with a width of several μsec in a period of several tens of μsec for a high-frequency signal of 2 GHz operating frequency band. The waveform of the power supply voltage Vdd at the VDD terminal, which was input to the antenna and converted into a DC signal, and the waveform at the output terminal of the demodulator circuit were graphed. As shown in (C), the high-frequency signal is rectified and the DC power supply voltage Vdd is output. Although the power supply voltage Vdd slightly fluctuates (decreases) during the period when the antenna input becomes low level, the fluctuation of the power supply voltage Vdd is very small compared to the absolute value of the power supply voltage Vdd. Can do. Also, as shown in (D), the low level is detected every several tens of microseconds for several microseconds, and the high level is detected for other periods, demodulated according to the input signal, and the clock signal is also extracted accurately. The child is understood.
[0031] 本実施例によれば、整流回路 20の途中段に復調回路 21が接続されるため、アン テナに対する負荷インピーダンスを高くでき、整流回路に入力するアンテナ受信電力 の低下を防止できる。このため、交流一直流変換効率が改善される。そのため、無線 タグの回路 10に対して十分な電源電圧を保持でき、アンテナ入力電力が小さくても 整流回路出力が所望電圧に到達でき、無線タグとリーダライタ装置間の通信距離を 延ばすことが出来る。  [0031] According to the present embodiment, the demodulator circuit 21 is connected to the middle stage of the rectifier circuit 20, so that the load impedance to the antenna can be increased, and the reduction of the antenna received power input to the rectifier circuit can be prevented. For this reason, AC-DC conversion efficiency is improved. Therefore, a sufficient power supply voltage can be maintained for the circuit 10 of the wireless tag, the output of the rectifier circuit can reach the desired voltage even when the antenna input power is small, and the communication distance between the wireless tag and the reader / writer device can be extended. .
[0032] 本実施例によれば、さらに、復調の包絡線検波に必要な整流作用は整流回路で行 うため、整流回路と復調回路の一部を共通化することが可能となり、回路の小型化、 コスト低減に効果がある。 [0032] According to the present embodiment, the rectification action necessary for the demodulation envelope detection is further performed by the rectifier circuit. Therefore, it is possible to share a part of the rectifier circuit and the demodulator circuit, which is effective in reducing the circuit size and cost.
実施例 2  Example 2
[0033] 次に、本発明の第二の実施例を図 6、図 7で説明する。まず、第二の実施例の概念 を図 6で説明する。図 1で示したブロック図に対し、復調回路 43の前にこの復調回路 の直流電圧を保持するための復調用検波回路 42を設け、その接続点を検波回路の 2つのダイオードの接続点(内部端子) TNOから取っていることが異なる。この構成に より検波回路 n-1 (40)のコンデンサ C3は、各検波回路で昇圧された電圧を復調回 路 43の影響を受けずに保持して直流電圧 Vddを供給することが可能となる。図 6で は n-1段目の検波回路力も復調回路に接続している力 接続点は復調に必要な論 理スレツショルドを越えるところを選べばよい。但し、高い段数の検波回路から (例え ば n段目)復調回路に接続を行うと、アンテナ力ゝらの高い電圧が入力した場合、多段 の検波回路で昇圧された過電圧が復調回路に力かり回路を破壊する可能性がある ので避けるほうが望ましい。リミッタ 46は前述の通り各回路保護のために設けている。  [0033] Next, a second embodiment of the present invention will be described with reference to Figs. First, the concept of the second embodiment will be described with reference to FIG. In contrast to the block diagram shown in Fig. 1, a demodulating detector circuit 42 is provided in front of the demodulating circuit 43 to hold the DC voltage of the demodulating circuit, and the connection point is the connecting point of the two diodes of the detecting circuit (internal Terminal) What is taken from TNO is different. With this configuration, the capacitor C3 of the detection circuit n-1 (40) can hold the voltage boosted by each detection circuit without being affected by the demodulation circuit 43 and supply the DC voltage Vdd. . In Fig. 6, the power of the n-1 stage detector circuit and the power connected to the demodulator circuit should be selected so that they exceed the logical threshold required for demodulation. However, if a high-stage detector circuit is connected to the demodulator circuit (for example, the n-th stage), when a voltage with a high antenna force is input, the overvoltage boosted by the multi-stage detector circuit is applied to the demodulator circuit. It is better to avoid it as it may destroy the circuit. The limiter 46 is provided for protecting each circuit as described above.
[0034] 図 7に、図 6に示すブロック図の具体回路構成の一例を示す。整流回路 20の回路 構成は図 2で示した回路構成と同じ 3段のカスケード接続であり、整流回路 20、復調 回路 43の間に復調用検波回路 42を新たに設け、整流回路 20の n—1段の検波回 路 40のダイオード D3と D4の接続点(内部端子) TNOから、復調用検波回路 42へ接 続する。復調用検波回路 42は、ダイオード 44、コンデンサ 45からなり、ダイオード 44 で検波し、コンデンサ 45で復調回路 43に入力する直流電圧を保持する。復調回路 4 3は図 2で説明した復調回路 21と同じ構成であり、同様の復調作用を行う。リミッタ 46 は前述の通り各回路保護のために設けられて 、る。  FIG. 7 shows an example of a specific circuit configuration of the block diagram shown in FIG. The circuit configuration of the rectifier circuit 20 is the same three-stage cascade connection as the circuit configuration shown in FIG. 2, and a demodulating detector circuit 42 is newly provided between the rectifier circuit 20 and the demodulator circuit 43. Connection point (internal terminal) of diodes D3 and D4 in one-stage detection circuit 40 Connect to detection circuit 42 for demodulation from TNO. The demodulating detection circuit 42 includes a diode 44 and a capacitor 45, which detects with the diode 44 and holds the DC voltage input to the demodulation circuit 43 with the capacitor 45. The demodulator circuit 43 has the same configuration as the demodulator circuit 21 described in FIG. 2, and performs the same demodulation operation. The limiter 46 is provided for protecting each circuit as described above.
[0035] 本実施例でも、整流回路 20の途中段に復調用検波回路 42を介して復調回路 43 が接続されるため、アンテナに対する負荷インピーダンスを高くでき、整流回路に入 力するアンテナ受信電力の低下を防止できる。また、復調回路 43の影響も受けずに 安定した直流電圧 Vddを供給することができる。  Also in this embodiment, the demodulator circuit 43 is connected to the intermediate stage of the rectifier circuit 20 via the demodulator detection circuit 42, so that the load impedance to the antenna can be increased, and the antenna received power input to the rectifier circuit can be increased. Decrease can be prevented. Further, a stable DC voltage Vdd can be supplied without being affected by the demodulation circuit 43.
[0036] 本実施例によれば、さらに、復調の包絡線検波に必要な整流作用は整流回路で行 うため、整流回路と復調回路の一部を共通化することが可能となり、回路の小型化、 コスト低減に効果がある。 [0036] According to the present embodiment, since the rectification required for the envelope detection of demodulation is performed by the rectifier circuit, it is possible to share a part of the rectifier circuit and the demodulator circuit, thereby reducing the size of the circuit. , Effective for cost reduction.
実施例 3  Example 3
[0037] 次に、本発明の第三の実施例を図 8、図 9で説明する。まず、第三の実施例の概念 を図 8で説明する。図 1で示したブロック図に対し、復調回路 63の前に復調用検波回 路 62を設け、さらにアンテナ入力の信号を復調用検波回路 62に入力する構成が異 なっている。この構成によりアンテナ入力の信号を取り込むことで、復調のための検 波電圧レベルを高く保持することが可能となる。図 8では n-1段目の検波回路カも復 調回路に接続して 、るが、接続点は復調回路が接続する検波回路の段数は復調に 必要な論理スレツショルドを越えるところを選べばよい。但し、高い段数の検波回路か ら (例えば n段目)復調回路に接続を行うと、アンテナ力ゝらの高い電圧が入力した場合 、多段の検波回路で昇圧された過電圧が復調回路に力かり回路を破壊する可能性 があるので避けるほうが望ましい。リミッタ 68は前述の通り各回路保護のために設け ている。  Next, a third embodiment of the present invention will be described with reference to FIGS. First, the concept of the third embodiment will be described with reference to FIG. 1 differs from the block diagram shown in FIG. 1 in that a demodulating detector circuit 62 is provided in front of the demodulating circuit 63 and an antenna input signal is input to the demodulating detector circuit 62. By capturing the antenna input signal with this configuration, the detection voltage level for demodulation can be kept high. In Fig. 8, the n-1 stage detector circuit is also connected to the demodulator circuit, but the connection point should be selected so that the number of detector circuit stages connected to the demodulator circuit exceeds the logic threshold required for demodulation. . However, if a high-stage detector circuit is connected to the demodulator circuit (for example, the n-th stage), when a voltage with a high antenna force is input, the overvoltage boosted by the multi-stage detector circuit is applied to the demodulator circuit. It is better to avoid it as it may destroy the circuit. The limiter 68 is provided for protecting each circuit as described above.
[0038] 図 8に示すブロック図の具体回路構成の一例を図 9に示す。整流回路 20、復調回 路 63の間に復調用回路 62を新たに設け、整流回路 20の n—1段の検波回路 60の ダイオード D4と D5の接続点 TN3に復調用検波回路 62を接続する。  FIG. 9 shows an example of a specific circuit configuration of the block diagram shown in FIG. A demodulation circuit 62 is newly provided between the rectifier circuit 20 and the demodulation circuit 63, and the demodulation detection circuit 62 is connected to the connection point TN3 of the diodes D4 and D5 of the n-1 stage detection circuit 60 of the rectification circuit 20. .
[0039] すなわち、整流回路 20を構成する各検波回路 60は、第一のコンデンサ COの一端 子が送受信アンテナ端子 TN2に接続されて高周波信号 Vinの入力端子となり、第一 のコンデンサ COの他の端子が接続点 TN0で第一のダイオード D3の力ソードと第二 のダイオード D4のアノードに接続され、第一のダイオード D3のアノードは該検波回 路の入力端子となり、第二のダイオード D4の力ソードは第二のコンデンサ C2の一端 子と接続され、かつ該検波回路の出力端子 TN3となり、第二のコンデンサ C2の他の 端子は接地されている。  That is, in each detection circuit 60 constituting the rectifier circuit 20, one end of the first capacitor CO is connected to the transmission / reception antenna terminal TN2 to serve as an input terminal for the high-frequency signal Vin. The terminal is connected to the power sword of the first diode D3 and the anode of the second diode D4 at the connection point TN0, and the anode of the first diode D3 becomes the input terminal of the detection circuit, and the force of the second diode D4 The sword is connected to one end of the second capacitor C2 and serves as the output terminal TN3 of the detection circuit, and the other terminal of the second capacitor C2 is grounded.
[0040] また、復調用検波回路 62はダイオード 64、 65、コンデンサ 66、 67からなり、ダイォ ード 64、 65で検波し、コンデンサ 67で復調回路に入力する直流電圧を保持する。す なわち、多段接続された検波回路の途中段に接続する復調用の検波回路 62は、 2 つのダイオード 64、 65と 2つのコンデンサ 66、 67力らなり、第一のダイオード 64のァ ノードは途中段の検波回路の出力端子 TN3と接続され、その力ソードは第二のダイ オード 65のアノードと第一のコンデンサ 66の第一の端子と接続されて 、る。第一のコ ンデンサの第二の端子は送受信アンテナ端端子 TN2と接続され、第二のダイオード 65の力ソードは第二のコンデンサ 67の第一の端子と接続され、第二のコンデンサの 第二の端子は接地されて ヽる。 The demodulating detection circuit 62 is composed of diodes 64 and 65 and capacitors 66 and 67. The detection is performed by the diodes 64 and 65, and the DC voltage input to the demodulation circuit is held by the capacitor 67. In other words, the demodulating detector circuit 62 connected to the intermediate stage of the multistage detecting circuit is composed of two diodes 64 and 65 and two capacitors 66 and 67, and the first diode 64 node is Connected to the output terminal TN3 of the detector circuit in the middle stage, the force sword is connected to the second die. Connected to the anode of Ode 65 and the first terminal of first capacitor 66. The second terminal of the first capacitor is connected to the transmitting / receiving antenna end terminal TN2, the force sword of the second diode 65 is connected to the first terminal of the second capacitor 67, and the second terminal of the second capacitor The terminal is grounded.
[0041] また、復調回路 63は、図 2で説明した復調回路 21と同じ構成であり、同様の復調 作用を行う。すなわち、復調回路 63は、抵抗と整流回路が検波した信号を増幅する 増幅器力もなり、多段接続された検波回路 20とは別の復調用検波回路 62の第二の コンデンサ 67の第一の端子に抵抗の一端子と増幅器の入力端子が接続され、抵抗 の他の端子と増幅器の他の端子とが接地されている。リミッタ 68は前述の通り各回路 保護のために設けられて 、る。  In addition, the demodulation circuit 63 has the same configuration as the demodulation circuit 21 described in FIG. 2, and performs the same demodulation operation. That is, the demodulation circuit 63 also has an amplifier power to amplify the signal detected by the resistor and the rectifier circuit, and is connected to the first terminal of the second capacitor 67 of the demodulation detection circuit 62 different from the detection circuit 20 connected in multiple stages. One terminal of the resistor and the input terminal of the amplifier are connected, and the other terminal of the resistor and the other terminal of the amplifier are grounded. The limiter 68 is provided for protecting each circuit as described above.
[0042] 本実施例によれば、整流回路 20の途中段に復調用検波回路 62を介して復調回 路 63が接続されるため、アンテナに対する負荷インピーダンスを高くでき、整流回路 に入力するアンテナ受信電力の低下を防止できる。また、アンテナ入力の信号を復 調用検波回路 62に取り込むことで、復調のための検波電圧レベルを高く保持するこ とが可能となる。  [0042] According to the present embodiment, the demodulation circuit 63 is connected to the intermediate stage of the rectifier circuit 20 via the demodulation detector circuit 62, so that the load impedance to the antenna can be increased, and the antenna reception input to the rectifier circuit can be achieved. A reduction in power can be prevented. In addition, the detection voltage level for demodulation can be kept high by taking the antenna input signal into the demodulation circuit 62 for demodulation.
実施例 4  Example 4
[0043] 次に、本発明の第 4の実施例を図 10、図 11で説明する。まず、第 4の実施例の概 念を図 10に示す。図 1で示したブロック図は半波整流の検波回路力もなる構成であり 、正の電圧を供給していたが、第 4の実施例では全波整流回路力もなる構成で、正と 負の電圧を供給することが異なる。図 10において第 1の検波回路部 81の中の検波 回路 71は図 1の検波回路 1と同じ構成であり、アンテナ力も入力した高周波信号の 正の振幅のときにダイオードに電流が流れてコンデンサ C71に正の電荷をチャージ する。一方、検波回路 72は負の振幅のときにダイオードに電流が流れてコンデンサ C73に負の電荷をチャージする。  [0043] Next, a fourth embodiment of the present invention will be described with reference to Figs. First, Fig. 10 shows the concept of the fourth embodiment. The block diagram shown in FIG. 1 has a configuration with half-wave rectification detection circuit power and supplies a positive voltage, but in the fourth embodiment, the configuration also has full-wave rectification circuit power with positive and negative voltages. Can supply different. In FIG. 10, the detection circuit 71 in the first detection circuit unit 81 has the same configuration as the detection circuit 1 in FIG. 1, and the current flows through the diode and the capacitor C71 when the antenna force has a positive amplitude of the input high-frequency signal. Is charged with a positive charge. On the other hand, when the detection circuit 72 has a negative amplitude, a current flows through the diode and charges the capacitor C73 with a negative charge.
[0044] このような検波回路部を多段(81、 83〜84)に接続することにより、チャージ電荷が 増大して n段目検波回路 nのフローティングコンデンサ C72には、(2n-l) (|Vin | — Vf )の直流電圧が保持され、もう一つのフローティングコンデンサ C74では、 -(2n-l) (|V in I —VI)の直流電圧が保持される。電源電圧の出力点である検波回路 nの端子 TN 4では、 2n (|Vin | — Vl)、端子 TN5では- 2n (|Vin | —VI)の直流電圧が保持され、各 回路に供給される。 [0044] By connecting such detection circuit units in multiple stages (81, 83 to 84), the charge charge increases, and the floating capacitor C72 of the nth detection circuit n has (2n-l) (| Vin | — Vf) is held, and another floating capacitor C74 holds-(2n-l) (| V in I —VI). Terminal TN of the detection circuit n, which is the output point of the power supply voltage In 4, the DC voltage of 2n (| Vin | — Vl) and -2n (| Vin | —VI) is held at terminal TN5 and supplied to each circuit.
[0045] このような構成力もなる整流回路 80の途中段を、復調回路 82に接続する。復調回 路 82は整流回路 80で整流された信号を入力して包絡線検波を行った後、所定の信 号レベルに増幅し復調信号を出力する。図 10の例では n-1段目の検波回路カも復 調回路に接続しているが、接続点はこれに限定されない。すなわち、復調回路を接 続する検波回路の段数は、復調に必要な論理スレツショルドを越えるところを選べば よい。リミッタ 87は前述と同様に、各回路保護のために設けている。  [0045] An intermediate stage of the rectifier circuit 80 having such a configuration power is connected to the demodulator circuit 82. The demodulation circuit 82 inputs the signal rectified by the rectifier circuit 80 and performs envelope detection, and then amplifies the signal to a predetermined signal level and outputs a demodulated signal. In the example of Fig. 10, the n-1 stage detector circuit is also connected to the demodulator, but the connection point is not limited to this. In other words, the number of detection circuit stages connected to the demodulation circuit may be selected so as to exceed the logic threshold necessary for demodulation. The limiter 87 is provided for protecting each circuit as described above.
[0046] 次に、図 11に、図 10で示すブロック図の具体的な回路例を示す。ここでは整流回 路は、 2段のカスケード接続カゝらなる構成としており、破線で示す部分 83と 84が 1段 目の検波回路、及び最終段目の検波回路 84である。  Next, FIG. 11 shows a specific circuit example of the block diagram shown in FIG. Here, the rectifier circuit is configured as a cascade connection of two stages, and portions 83 and 84 indicated by broken lines are the first-stage detection circuit and the final-stage detection circuit 84.
[0047] すなわち、 1段目の検波回路 83において、第一のコンデンサ C72の一端子が送受 信アンテナの第一の端子 TN3に接続されて高周波信号 Vinの入力端子となり、第一 のコンデンサ C72の他の端子 TN10が第一のダイオード D1の力ソードと第二のダイ オード D2のアノードに接続され、第一のダイオード D1のアノードは検波回路の正の 入力端子となり、第二のダイオード D2の力ソードは第二のコンデンサ C71の一端子と 接続され、かっこの検波回路の正の出力端子 TN4となり、第二のコンデンサ C71の 他の端子は接地されている(TNI, TN2)。また、第三のコンデンサ C74の一端子が アンテナの第二の端子に接続されて高周波信号 Vinの入力端子 TN3となり、第三の コンデンサ C74の他の端子が第三のダイオード D6の力ソードと第四のダイオード D5 のアノードに接続され、第三のダイオード D6のアノードはこの検波回路の負の入力 端子 TN5となっており、さらに第四のコンデンサ C73の一端子と接続され、かつ、こ の検波回路の負の出力端子となり、第四のコンデンサ C73の他の端子は接地されて いる。  That is, in the first-stage detection circuit 83, one terminal of the first capacitor C72 is connected to the first terminal TN3 of the transmission / reception antenna to serve as an input terminal for the high-frequency signal Vin. The other terminal TN10 is connected to the power sword of the first diode D1 and the anode of the second diode D2, and the anode of the first diode D1 becomes the positive input terminal of the detection circuit, and the power of the second diode D2 The sword is connected to one terminal of the second capacitor C71 and becomes the positive output terminal TN4 of the parenthesis detection circuit, and the other terminal of the second capacitor C71 is grounded (TNI, TN2). Also, one terminal of the third capacitor C74 is connected to the second terminal of the antenna to become the input terminal TN3 of the high frequency signal Vin, and the other terminal of the third capacitor C74 is connected to the power sword of the third diode D6 and the second sword. The anode of the fourth diode D5 is connected, and the anode of the third diode D6 is the negative input terminal TN5 of this detection circuit, and is further connected to one terminal of the fourth capacitor C73. The negative output terminal of the circuit, and the other terminal of the fourth capacitor C73 is grounded.
[0048] 整流回路 80は前述したように、コンデンサ C71で 2 ( | Vin|-Vf)の直流電圧を、コン デンサ C73で- 2 ( I Vinl-Vf)の直流電圧を保持しており、各回路に電源電圧が供給 される。整流回路 80の 1段目出力は復調回路 82に入力している。復調回路 82は抵 抗 85とリミッタアンプ 86から構成されており、受信する変調信号の電圧レベルにより コンデンサ C71、 C73の電荷をチャージ、デイスチャージして整流回路 80の整流作 用力も包絡線を検波するために設ける。検波された包絡線は、復調回路 82のリミッタ アンプ 86で増幅され所望するレベルの信号として復調される。リミッタ 87は前述と同 様に各回路保護のために設けて 、る。 [0048] As described above, the rectifier circuit 80 holds the DC voltage of 2 (| Vin | -Vf) with the capacitor C71 and the DC voltage of -2 (I Vinl-Vf) with the capacitor C73. Supply voltage is supplied to the circuit. The output of the first stage of the rectifier circuit 80 is input to the demodulator circuit 82. The demodulator circuit 82 is composed of a resistor 85 and a limiter amplifier 86, and depends on the voltage level of the received modulation signal. The charge of capacitors C71 and C73 is charged and discharged, and the rectifying power of rectifier circuit 80 is also provided to detect the envelope. The detected envelope is amplified by the limiter amplifier 86 of the demodulation circuit 82 and demodulated as a signal of a desired level. The limiter 87 is provided for protecting each circuit as described above.
[0049] なお、実際の整流回路の段数は、必要な電源電圧、許容される回路規模やコスト により決められる。復調回路が接続される検波回路の段数は、復調に必要な論理ス レツショルドを越えるところでかつ、最終段より低!、段数を選ぶ。  [0049] The actual number of rectifier circuits is determined by the required power supply voltage, the allowable circuit scale and cost. The number of stages of the detection circuit to which the demodulation circuit is connected exceeds the logical threshold necessary for demodulation and is lower than the final stage. Select the number of stages.
[0050] 本実施例の全波整流回路方式においても、既に述べた実施例と同様な効果がある 実施例 5  [0050] The full-wave rectifier circuit system of the present embodiment also has the same effect as the embodiment described above. Embodiment 5
[0051] 次に、本発明の第 5の実施例を図 12、図 13で説明する。まず、第 5の実施例の概 念を図 12で説明する。この実施例は、図 10で示した第 4の実施例のブロック図に対 し、復調回路 103の前にこの復調回路の直流電圧を保持するための復調用検波回 路 102を設け、その接続点を検波回路の 2つのダイオードの接続点 TN11から取つ ていることが異なる。  Next, a fifth embodiment of the present invention will be described with reference to FIGS. First, the concept of the fifth embodiment will be described with reference to FIG. In this embodiment, in contrast to the block diagram of the fourth embodiment shown in FIG. 10, a demodulating detector circuit 102 for holding the DC voltage of the demodulating circuit is provided in front of the demodulating circuit 103, and its connection is made. The difference is that the point is taken from the connection point TN11 of the two diodes of the detection circuit.
[0052] この構成により検波回路 n-1のコンデンサ C71は、各検波回路で昇圧された電圧 を復調回路の影響を受けずに保持して電源電圧を供給することが可能となる。図 12 では n-1段目の検波回路力も復調回路に接続しているが、接続点は復調回路が接 続する検波回路の段数は復調に必要な論理スレツショルドを越えるところを選べばよ い。但し、高い段数の検波回路から (例えば n段目)復調回路に接続を行うと、アンテ ナカもの高い電圧が入力した場合、多段の検波回路で昇圧された過電圧が復調回 路に力かり回路を破壊する可能性があるので避けるほうが望ましい。リミッタは前述の 通り各回路保護のために設けて 、る。  [0052] With this configuration, the capacitor C71 of the detection circuit n-1 can hold the voltage boosted by each detection circuit without being affected by the demodulation circuit and supply the power supply voltage. In Fig. 12, the detection circuit power at the n-1 stage is also connected to the demodulation circuit, but the connection point should be selected so that the number of detection circuit stages to which the demodulation circuit is connected exceeds the logic threshold required for demodulation. However, if a high-level detector circuit is connected to the demodulator circuit (for example, the n-th stage), when an antenna high voltage is input, the overvoltage boosted by the multi-stage detector circuit is applied to the demodulator circuit. It is better to avoid it as it can be destroyed. A limiter is provided to protect each circuit as described above.
[0053] 図 13に、図 12に示すブロック図の具体回路構成の一例を示す。整流回路 101の 回路構成は図 11で示した回路構成と同じ 2段のカスケード接続であり、整流回路 10 1、復調回路 103の間に復調用検波回路 102を新たに設け、整流回路 101のダイォ ード D1と D2の接続点力も復調用検波回路 102へ接続する。  FIG. 13 shows an example of a specific circuit configuration of the block diagram shown in FIG. The circuit configuration of the rectifier circuit 101 is the same two-stage cascade connection as the circuit configuration shown in FIG. 11. A demodulating detector circuit 102 is newly provided between the rectifier circuit 101 and the demodulator circuit 103, and the rectifier circuit 101 has a diode configuration. The connection point force between the nodes D1 and D2 is also connected to the detection circuit 102 for demodulation.
[0054] すなわち、検波回路 101において、第一のコンデンサ C72の一端子が送受信アン テナの第一の端子 TN3に接続されて高周波信号 Vinの入力端子となり、第一のコン デンサ C72の他の端子 TN 11が第一のダイオード D3の力ソードと第二のダイオード D4のアノードに接続され、第一のダイオード D3のアノードは検波回路の正の入力端 子となり、第二のダイオード D4の力ソードは第二のコンデンサ C71の一端子と接続さ れ、かっこの検波回路の正の出力端子 TN4となり、第二のコンデンサ C71の他の端 子は接地されている(TNI, TN2)。また、第三のコンデンサ C74の一端子がアンテ ナの第二の端子に接続されて高周波信号 Vinの入力端子 TN3となり、第三のコンデ ンサ C74の他の端子が第三のダイオード D8の力ソードと第四のダイオード D7のァノ ードに接続され、第三のダイオード D8のアノードはこの検波回路の負の入力端子 T N5となり、第四のダイオード D7の力ソードは第四のコンデンサ C73の一端子と接続 され、かつ該検波回路の負の出力端子となり、第四のコンデンサの他の端子は接地 されている。 That is, in the detection circuit 101, one terminal of the first capacitor C72 is connected to the transmission / reception amplifier. Connected to the first terminal TN3 of the tenor and becomes the input terminal for the high frequency signal Vin, and the other terminal TN11 of the first capacitor C72 is connected to the power sword of the first diode D3 and the anode of the second diode D4 The anode of the first diode D3 becomes the positive input terminal of the detection circuit, the force sword of the second diode D4 is connected to one terminal of the second capacitor C71, and the positive output of the parenthesis detection circuit Terminal TN4, the other terminal of the second capacitor C71 is grounded (TNI, TN2). Also, one terminal of the third capacitor C74 is connected to the second terminal of the antenna to become the input terminal TN3 of the high frequency signal Vin, and the other terminal of the third capacitor C74 is the power sword of the third diode D8. Is connected to the anode of the fourth diode D7, the anode of the third diode D8 is the negative input terminal T N5 of the detection circuit, and the power sword of the fourth diode D7 is the fourth capacitor C73. It is connected to one terminal and becomes the negative output terminal of the detection circuit, and the other terminal of the fourth capacitor is grounded.
[0055] また、復調用検波回路 102はダイオード 104、コンデンサ 105からなり、ダイオード 1 04で検波し、コンデンサ 105で復調回路に入力する直流電圧を保持する。そして、 途中段の検波回路の第一のダイオード D1と第二のダイオード D2の接続端子 TN10 と、多段接続された検波回路とは別に設けた復調用の検波回路のダイオード 104の アノードとが接続され、その力ソードがコンデンサ C105の第一の端子に接続され、コ ンデンサの第二の端子は負の端子に接続されている。また、復調回路 103は、抵抗 と整流回路が検波した信号を増幅する増幅回路からなり、該検波回路の正の出力端 子に抵抗の一端子と増幅器の入力端子が接続され、抵抗の他の端子と増幅器の他 の端子が該検波回路の負の端子に接続されている。  [0055] The demodulation detection circuit 102 includes a diode 104 and a capacitor 105. The detection is performed by the diode 104, and the capacitor 105 holds a DC voltage input to the demodulation circuit. The connection terminal TN10 of the first diode D1 and the second diode D2 of the detection circuit in the middle stage is connected to the anode of the diode 104 of the demodulation circuit for demodulation provided separately from the detection circuit connected in multiple stages. The force sword is connected to the first terminal of the capacitor C105, and the second terminal of the capacitor is connected to the negative terminal. The demodulator circuit 103 is an amplifier circuit that amplifies the signal detected by the resistor and the rectifier circuit. One terminal of the resistor and the input terminal of the amplifier are connected to the positive output terminal of the detector circuit, and the other resistor is connected. The terminal and the other terminal of the amplifier are connected to the negative terminal of the detection circuit.
[0056] 復調回路 103は、図 11で説明した復調回路 82と同様の復調作用を行う。リミッタ 1 06は前述の通り各回路保護のために設けて 、る。  The demodulation circuit 103 performs the same demodulation operation as the demodulation circuit 82 described in FIG. The limiter 106 is provided for protecting each circuit as described above.
[0057] 本実施例の全波整流回路方式においても、既に述べた実施例と同様な効果がある 実施例 6  [0057] The full-wave rectifier circuit system of the present embodiment also has the same effect as the previously described embodiment. Embodiment 6
[0058] 次に本発明の第 6の実施例を図 14、図 15で説明する。まず、第 6の実施例の概念 を図 14で説明する。第 6の実施例は、図 10で示した第 4の実施例のブロック図に対 し、復調回路 123の前に復調用検波回路 122を設け、さらにアンテナ入力の信号を 復調用検波回路 122に入力する構成が異なっている。この構成でアンテナ入力の信 号を取り込むことで、復調のための検波電圧レベルを高く保持することが可能となる。 図 14では n-1段目の検波回路力も復調回路に接続しているが、接続点は復調回路 が接続する検波回路の段数は復調に必要な論理スレツショルドを越えるところを選べ ばよい。但し、高い段数の検波回路から (例えば n段目)復調回路に接続を行うと、ァ ンテナからの高い電圧が入力した場合、多段の検波回路で昇圧された過電圧が復 調回路に力かり回路を破壊する可能性があるので避けるほうが望ましい。リミッタは前 述の通り各回路保護のために設けている。 Next, a sixth embodiment of the present invention will be described with reference to FIGS. First, the concept of the sixth embodiment will be described with reference to FIG. The sixth embodiment is different from the block diagram of the fourth embodiment shown in FIG. However, the demodulating circuit 123 is provided with a demodulating detection circuit 122, and an antenna input signal is input to the demodulating detecting circuit 122. By capturing the antenna input signal with this configuration, the detection voltage level for demodulation can be kept high. In Fig. 14, the detection circuit power at the n-1 stage is also connected to the demodulation circuit, but the connection point should be selected so that the number of detection circuit stages connected to the demodulation circuit exceeds the logic threshold required for demodulation. However, if a high-level detector circuit (for example, the n-th stage) is connected to the demodulator circuit, if a high voltage is input from the antenna, the overvoltage boosted by the multi-stage detector circuit is applied to the demodulator circuit. It is better to avoid it because it may destroy it. The limiter is provided to protect each circuit as described above.
[0059] 図 15に、図 14に示すブロック図の具体回路構成の一例を示す。整流回路 121、復 調回路 123の間に復調用回路 122を新たに設け、整流回路 121のダイオード D2と D3の接続点から復調用検波回路 122を接続する。  FIG. 15 shows an example of a specific circuit configuration of the block diagram shown in FIG. A demodulation circuit 122 is newly provided between the rectification circuit 121 and the demodulation circuit 123, and the demodulation detection circuit 122 is connected from the connection point between the diodes D2 and D3 of the rectification circuit 121.
[0060] すなわち、整流回路 110において、第一のコンデンサ C72の一端子が送受信アン テナの第一の端子 TN3に接続されて高周波信号 Vinの入力端子となり、第一のコン デンサ C72の他の端子 TN 11が第一のダイオード D3の力ソードと第二のダイオード D4のアノードに接続され、第一のダイオード D3のアノードは検波回路の正の入力端 子となり、第二のダイオード D4の力ソードは第二のコンデンサ C71の一端子と接続さ れ、かっこの検波回路の正の出力端子 TN4となり、第二のコンデンサ C71の他の端 子は接地されている(TNI, TN2)。また、第三のコンデンサ C74の一端子がアンテ ナの第二の端子に接続されて高周波信号 Vinの入力端子 TN3となり、第三のコンデ ンサ C74の他の端子が第三のダイオード D8の力ソードと第四のダイオード D7のァノ ードに接続され、第三のダイオード D8のアノードはこの検波回路の負の入力端子 T N5となり、第四のダイオード D7の力ソードは第四のコンデンサ C3の一端子と接続さ れ、かつ該検波回路の負の出力端子となり、第四のコンデンサの他の端子は接地さ れている。  That is, in the rectifier circuit 110, one terminal of the first capacitor C72 is connected to the first terminal TN3 of the transmission / reception antenna to serve as an input terminal for the high-frequency signal Vin, and the other terminal of the first capacitor C72. TN 11 is connected to the power sword of the first diode D3 and the anode of the second diode D4, the anode of the first diode D3 is the positive input terminal of the detector circuit, and the power sword of the second diode D4 is It is connected to one terminal of the second capacitor C71 and becomes the positive output terminal TN4 of the parenthesis detection circuit, and the other terminal of the second capacitor C71 is grounded (TNI, TN2). Also, one terminal of the third capacitor C74 is connected to the second terminal of the antenna to become the input terminal TN3 of the high frequency signal Vin, and the other terminal of the third capacitor C74 is the power sword of the third diode D8. Is connected to the anode of the fourth diode D7, the anode of the third diode D8 is the negative input terminal T N5 of the detection circuit, and the power sword of the fourth diode D7 is the fourth capacitor C3. It is connected to one terminal and becomes the negative output terminal of the detection circuit, and the other terminal of the fourth capacitor is grounded.
[0061] また、多段接続された検波回路の途中段に接続された復調用検波回路 122は、ダ ィオード 124、 125、コンデンサ C126、 C127力もなり、ダイオード 124、 125で検波 し、コンデンサ C127で復調回路に入力する直流電圧を保持する。すなわち、途中段 の検波回路のダイオード D2と D3の接続端子 TN10と、復調用の検波回路 122のダ ィオード 124のアノードとが接続され、力ソードがダイオード 125を介してコンデンサ C 127の第一の端子に接続され、コンデンサ 127の第二の端子は負の端子に接続され ている。コンデンサ 126の一端子はアンテナの第二の端子に接続されて高周波信号 Vinの入力端子 TN3に接続され、他の端子は 2つのダイオード 124、 125の間に接 続されている。 [0061] Further, the demodulation detection circuit 122 connected in the middle of the detection circuits connected in multiple stages also includes diodes 124 and 125, capacitors C126 and C127, and is detected by the diodes 124 and 125 and demodulated by the capacitor C127. Holds the DC voltage input to the circuit. That is, the middle stage The connection terminal TN10 of the diodes D2 and D3 of the detection circuit in FIG. 3 is connected to the anode of the diode 124 of the detection circuit 122 for demodulation, and the force sword is connected to the first terminal of the capacitor C 127 via the diode 125. The second terminal of capacitor 127 is connected to the negative terminal. One terminal of the capacitor 126 is connected to the second terminal of the antenna and connected to the input terminal TN3 of the high frequency signal Vin, and the other terminal is connected between the two diodes 124 and 125.
[0062] また、復調回路 123は、抵抗と整流回路が検波した信号を増幅する増幅回路から なり、該検波回路の正の出力端子に抵抗の一端子と増幅器の入力端子が接続され 、抵抗の他の端子と増幅器の他の端子が該検波回路の負の端子に接続されている 。この復調回路 123は、図 13で説明した復調回路 103と同じ構成であり、同様の復 調作用を行う。リミッタ 128は前述の通り各回路保護のために設けている。  [0062] The demodulator circuit 123 is composed of an amplifier circuit that amplifies the signal detected by the resistor and the rectifier circuit. One terminal of the resistor and the input terminal of the amplifier are connected to the positive output terminal of the detector circuit. The other terminal and the other terminal of the amplifier are connected to the negative terminal of the detection circuit. The demodulating circuit 123 has the same configuration as the demodulating circuit 103 described with reference to FIG. 13 and performs the same demodulating action. The limiter 128 is provided for protecting each circuit as described above.
[0063] 本実施例の全波整流回路方式においても、既に述べた実施例と同様な効果がある 産業上の利用可能性  [0063] The full-wave rectifier circuit system of the present embodiment also has the same effect as the embodiments described above. Industrial applicability
[0064] 本発明によれば、回路規模を増大させることなく小型で低コスト、かつ通信距離の 長い無線タグを供給することが出来る。これにより、建物や部屋への入退出において 、従来より距離が離れて通過しても人や物の出入りを管理しやすくなる。また、荷物の 集荷管理などのシステムにお 、ては、リーダライタ装置を配置する間隔を広げること ができる。あるいは、通信距離は従来のままとすれば、リーダライタの出力レベルを小 さくすることが可能となり、リーダライタ装置の小型化や、低消費電力化が可能となる 。 、ずれの場合も低コストなシステムを提供することができる。 [0064] According to the present invention, it is possible to supply a wireless tag with a small size, low cost, and long communication distance without increasing the circuit scale. As a result, when entering or leaving a building or room, it becomes easier to manage the entry and exit of people and objects even if they are far away from each other. In addition, for systems such as package collection management, the interval between reader / writer devices can be increased. Alternatively, if the communication distance remains unchanged, the output level of the reader / writer can be reduced, and the reader / writer device can be reduced in size and power consumption can be reduced. In the case of deviation, a low-cost system can be provided.
図面の簡単な説明  Brief Description of Drawings
[0065] [図 1]本発明の基本的な構成を示す回路ブロック図である。 FIG. 1 is a circuit block diagram showing a basic configuration of the present invention.
[図 2]本発明の第 1の実施例を示す具体的な回路構成図である。  FIG. 2 is a specific circuit configuration diagram showing a first embodiment of the present invention.
[図 3]本発明を適用した無線タグの回路ブロック図である。  FIG. 3 is a circuit block diagram of a wireless tag to which the present invention is applied.
[図 4]本発明の第 1の実施例の動作説明図である。  FIG. 4 is an operation explanatory diagram of the first embodiment of the present invention.
[図 5]本発明の第 1の実施例による回路の動作解析結果を示す図である。  FIG. 5 is a diagram showing an operation analysis result of the circuit according to the first example of the present invention.
[図 6]本発明の第 2の実施例を示す回路ブロック図である。 [図 7]本発明の第 2の実施例を示す具体的な回路構成図である。 FIG. 6 is a circuit block diagram showing a second embodiment of the present invention. FIG. 7 is a specific circuit configuration diagram showing a second embodiment of the present invention.
[図 8]本発明の第 3の実施例を示す回路ブロック図である。  FIG. 8 is a circuit block diagram showing a third embodiment of the present invention.
[図 9]本発明の第 3の実施例を示す具体的な回路構成図である。  FIG. 9 is a specific circuit configuration diagram showing a third embodiment of the present invention.
[図 10]本発明の第 4の実施例を示す回路ブロック図である。  FIG. 10 is a circuit block diagram showing a fourth embodiment of the present invention.
[図 11]本発明の第 4の実施例を示す具体的な回路構成図である。  FIG. 11 is a specific circuit configuration diagram showing a fourth embodiment of the present invention.
[図 12]本発明の第 5の実施例を示す回路ブロック図である。  FIG. 12 is a circuit block diagram showing a fifth embodiment of the present invention.
[図 13]本発明の第 5の実施例を示す具体的な回路構成図である。  FIG. 13 is a specific circuit configuration diagram showing a fifth embodiment of the present invention.
[図 14]本発明の第 6の実施例を示す回路ブロック図である。  FIG. 14 is a circuit block diagram showing a sixth embodiment of the present invention.
[図 15]本発明の第 6の実施例を示す具体的な回路構成図である。  FIG. 15 is a specific circuit configuration diagram showing a sixth embodiment of the present invention.
[図 16]従来例になる非接触型の ICカードの回路図である。  FIG. 16 is a circuit diagram of a conventional non-contact type IC card.
符号の説明 Explanation of symbols
20、 41、 61、 81、 101、 121· ··整流回路、 21、 43、 63、 82、 103、 123· ··復調回 路、 42、 62、 102、 122· ··復調用検波回路、 22、 23、 24、 25、 71、 72、 83、 84 …検波回路、 28、 46、 68、 87、 106、 123· ··リミッタ、 130· ··アンテナ、 131· ·· 整流回路、 132…復調回路、 133…変調回路、 134· ··リミッタ、 135…論理制 御回路、 136· ··メモリ TN0、TN1、TN2、TN3、TN4、TN5、TN11…端子。 20, 41, 61, 81, 101, 121 ... Rectifier circuit, 21, 43, 63, 82, 103, 123 ... Demodulator circuit, 42, 62, 102, 122 ... Demodulator detector circuit, 22, 23, 24, 25, 71, 72, 83, 84… detection circuit, 28, 46, 68, 87, 106, 123 ... limiter, 130 ... antenna, 131 ... rectifier circuit, 132 ... Demodulator circuit 133 ... Modulator circuit 134 ... Limiter 135 ... Logic control circuit 136 ... Memory TN0, TN1, TN2, TN3, TN4, TN5, TN11 ... terminals.

Claims

請求の範囲 The scope of the claims
[1] アンテナカゝら受信した高周波信号を整流して電源用の直流電圧を発生する無線通 信装置用の整流回路であって、  [1] A rectifier circuit for a radio communication device that rectifies a high-frequency signal received from an antenna and generates a DC voltage for a power supply,
接続端子を介して縦列接続された複数段の検波回路と、  A plurality of stages of detection circuits connected in cascade via the connection terminals;
該整流回路を構成する各段の検波回路に設けられたアンテナ信号入力用の第一 の端子と、  A first terminal for antenna signal input provided in the detection circuit of each stage constituting the rectifier circuit;
該整流回路の第 1段の検波回路と最終段の検波回路との間に設けられた復調回 路接続用の端子と、  A demodulation circuit connection terminal provided between the first-stage detection circuit and the final-stage detection circuit of the rectifier circuit;
該整流回路の最終段の検波回路に設けられた前記電源供給用の直流電圧の出 力端子とを備えて成る、ことを特徴とする無線通信装置用の整流回路。  A rectifier circuit for a radio communication device, comprising: a DC voltage output terminal for supplying power, which is provided in a detector circuit at a final stage of the rectifier circuit.
[2] 請求項 1において、  [2] In claim 1,
前記縦列接続された隣接する検波回路間の接続端子に前記復調回路の入力端子 を接続したことを特徴とする無線通信装置用の整流回路。  A rectifier circuit for a radio communication apparatus, wherein an input terminal of the demodulation circuit is connected to a connection terminal between adjacent detection circuits connected in cascade.
[3] 請求項 1において、 [3] In claim 1,
前記第 1段の検波回路と最終段の検波回路との間に縦列接続されたいずれかの 検波回路の内部端子を前記復調回路接続用の端子としたことを特徴とする無線通信 装置用の整流回路。  Rectification for a radio communication device, characterized in that an internal terminal of any of the detection circuits connected in cascade between the first-stage detection circuit and the final-stage detection circuit is used as the demodulation circuit connection terminal. circuit.
[4] アンテナで受信した高周波信号を復調する復調回路と、該復調された信号を処理 する論理制御回路と、前記アンテナ力 受信した前記高周波信号を整流して電源と しての直流電圧を発生する整流回路とを含んで成る無線通信装置において、 前記整流回路は、複数段の検波回路を縦列接続して成り、  [4] A demodulation circuit that demodulates a high-frequency signal received by an antenna, a logic control circuit that processes the demodulated signal, and a DC voltage as a power source by rectifying the high-frequency signal received by the antenna force A wireless communication device including a rectifier circuit, wherein the rectifier circuit is formed by cascading a plurality of stages of detector circuits,
該整流回路の第 1段の検波回路と最終段の検波回路との間の端子を前記復調回 路の入力端子に接続したことを特徴とする無線通信装置。  A wireless communication apparatus, wherein a terminal between a first-stage detection circuit and a final-stage detection circuit of the rectifier circuit is connected to an input terminal of the demodulation circuit.
[5] 請求項 4において、 [5] In claim 4,
前記縦列接続された隣接する検波回路間の接続端子に前記復調回路の入力端子 を接続したことを特徴とする無線通信装置。  A radio communication apparatus, wherein an input terminal of the demodulation circuit is connected to a connection terminal between adjacent detection circuits connected in cascade.
[6] 請求項 4において、 [6] In claim 4,
前記整流回路を構成する各検波回路は第一ないし第三の端子を有する半波整流 回路であり、 Each detector circuit constituting the rectifier circuit has half-wave rectifiers having first to third terminals. Circuit,
前記第一の端子は送受信アンテナ端子に接続され、前記第二の端子は前段の前 記検波回路の出力端子に接続され、前記第三の端子は次段の前記検波回路の入 力端子に接続されて前記検波回路が多段接続されて成り、  The first terminal is connected to the transmission / reception antenna terminal, the second terminal is connected to the output terminal of the preceding detection circuit, and the third terminal is connected to the input terminal of the detection circuit in the next stage. The detector circuit is connected in multiple stages,
前記第 1段の検波回路の第二の端子は接地されている、ことを特徴とする無線通信 装置。  The wireless communication device, wherein the second terminal of the first-stage detection circuit is grounded.
[7] 請求項 4において、  [7] In claim 4,
前記整流回路の第 1段の検波回路と最終段の検波回路との間に縦列接続された いずれかの検波回路の内部端子を前記復調回路の入力端子に接続したことを特徴 とする無線通信装置。  A radio communication device characterized in that an internal terminal of one of the detection circuits connected in cascade between the first detection circuit and the final detection circuit of the rectifier circuit is connected to an input terminal of the demodulation circuit. .
[8] 請求項 4において、 [8] In claim 4,
前記整流回路の第 1段の検波回路と最終段の検波回路との間に縦列接続された いずれかの検波回路間の接続端子と送受信アンテナ端子とを、復調用検波回路の 入力に接続し、該復調用検波回路の出力端子を前記復調回路の入力端子に接続し たことを特徴とする無線通信装置。  A connection terminal between any of the detection circuits connected in cascade between the first detection circuit and the final detection circuit of the rectifier circuit and the transmission / reception antenna terminal are connected to the input of the demodulation detection circuit, A radio communication apparatus, wherein an output terminal of the demodulation detection circuit is connected to an input terminal of the demodulation circuit.
[9] 請求項 4において、 [9] In claim 4,
前記整流回路を構成する各検波回路は第一ないし第三の端子を有する全波整流 回路であり、  Each detection circuit constituting the rectifier circuit is a full-wave rectifier circuit having first to third terminals,
前記各検波回路の前記第一の端子は送受信アンテナ端子に接続され、 前記第二の端子は前段の前記検波回路の出力端子に接続され、  The first terminal of each detection circuit is connected to a transmission / reception antenna terminal, the second terminal is connected to an output terminal of the detection circuit in the previous stage,
前記第三の端子は次段の前記検波回路の入力端子に接続され、  The third terminal is connected to the input terminal of the detection circuit at the next stage,
前記第一の検波回路の第二の端子は接地されていることを特徴とする無線通信装 置。  The wireless communication device, wherein the second terminal of the first detection circuit is grounded.
[10] 送受信アンテナと外部力 送信され前記アンテナで受信した高周波信号を復調す る復調回路と、復調信号が意味する情報を処理する論理制御回路と、記憶回路と、 前記処理された信号を前記アンテナで送信するために高周波信号に変調する回路 と、前記アンテナから受信した高周波信号を整流して前記各回路に供給する直流電 源電圧を発生する整流回路とを含んで成る無線通信装置において、 前記整流回路は複数段の検波回路を縦列接続して構成されて成り、 該整流回路の第 1段の検波回路と最終段の検波回路との間の端子を前記復調回 路の入力端子に接続し、前記復調回路における復調の包絡線検波に必要な整流作 用を該整流回路で行い、該整流回路と前記復調回路の一部を共通化したことを特徴 とする無線通信装置。 [10] A transmission / reception antenna and an external force, a demodulation circuit that demodulates a high-frequency signal transmitted and received by the antenna, a logic control circuit that processes information indicated by the demodulation signal, a storage circuit, and the processed signal In a wireless communication device comprising: a circuit that modulates a high-frequency signal to be transmitted by an antenna; and a rectifier circuit that rectifies the high-frequency signal received from the antenna and generates a DC power supply voltage that is supplied to each circuit; The rectifier circuit is configured by cascading multiple stages of detector circuits, and a terminal between the first stage detector circuit and the final stage detector circuit of the rectifier circuit is connected to the input terminal of the demodulation circuit. A radio communication apparatus characterized in that a rectification operation necessary for envelope detection of demodulation in the demodulation circuit is performed by the rectification circuit, and a part of the rectification circuit and the demodulation circuit are shared.
[11] 請求項 10において、  [11] In claim 10,
前記整流回路を構成する検波回路は半波整流回路であり、前記各検波回路の第 一の端子は送受信アンテナ端子に接続され、第二の端子は前段の検波回路の出力 端子に接続され、第三の端子は次段の検波回路の入力端子に接続されて前記検波 回路が多段接続されて成り、  The detector circuit constituting the rectifier circuit is a half-wave rectifier circuit, the first terminal of each detector circuit is connected to the transmitting / receiving antenna terminal, the second terminal is connected to the output terminal of the preceding detector circuit, The third terminal is connected to the input terminal of the next-stage detection circuit, and the detection circuit is connected in multiple stages.
前記第一の検波回路の第二の端子は接地され、前記多段に接続された途中段の 検波回路間の接続端子に前記復調回路の入力端子が接続されていることを特徴と する無線通信装置。  A radio communication apparatus characterized in that a second terminal of the first detection circuit is grounded, and an input terminal of the demodulation circuit is connected to a connection terminal between the detection circuits in the middle stage connected in multiple stages. .
[12] 請求項 10において、  [12] In claim 10,
前記整流回路を構成する検波回路は半波整流回路であり、前記各検波回路の第 一の端子は送受信アンテナ端子に接続され、前記第二の端子は前段の検波回路の 出力端子に接続され、前記第三の端子は次段の検波回路の入力端子に接続されて 前記検波回路が多段接続されて成り、  The detection circuit constituting the rectification circuit is a half-wave rectification circuit, the first terminal of each detection circuit is connected to a transmission / reception antenna terminal, and the second terminal is connected to the output terminal of the detection circuit in the previous stage, The third terminal is connected to an input terminal of a next-stage detection circuit, and the detection circuit is connected in multiple stages.
前記第一の検波回路の第二の端子は接地され、前記多段に接続された途中段の 検波回路の内部の端子から多段接続された前記検波回路とは別の復調用の検波回 路の入力に接続され、該復調用の検波回路の出力端子に前記復調回路の入力端 子が接続されることを特徴とする無線通信装置。  The second terminal of the first detection circuit is grounded, and an input of a detection circuit for demodulation different from the detection circuit connected in multiple stages from the internal terminal of the detection circuit in the middle stage connected in multiple stages And an input terminal of the demodulation circuit is connected to an output terminal of the demodulation circuit for demodulation.
[13] 請求項 10において、 [13] In claim 10,
前記整流回路を構成する検波回路は半波整流回路であり、前記各検波回路の第 一の端子は送受信アンテナ端子に接続され、前記第二の端子は前段の検波回路の 出力端子に接続され、前記第三の端子は次段の検波回路の入力端子に接続されて 前記検波回路が多段接続されて成り、  The detection circuit constituting the rectification circuit is a half-wave rectification circuit, the first terminal of each detection circuit is connected to a transmission / reception antenna terminal, and the second terminal is connected to the output terminal of the detection circuit in the previous stage, The third terminal is connected to an input terminal of a next-stage detection circuit, and the detection circuit is connected in multiple stages.
前記第一の検波回路の第二の端子は接地され、前記多段に接続された途中段の 検波回路間の接続端子と前記送受信アンテナ端子が、前記多段接続された検波回 路とは別の復調用の検波回路の入力に接続され、該復調用の検波回路の出力端子 に前記復調回路の入力端子が接続されることを特徴とする無線通信装置。 The second terminal of the first detection circuit is grounded, and the intermediate stage connected to the multistage A connection terminal between the detection circuits and the transmission / reception antenna terminal are connected to an input of a detection circuit for demodulation different from the detection circuits connected in multiple stages, and an output terminal of the demodulation circuit is connected to an output terminal of the demodulation circuit for demodulation. A wireless communication apparatus to which an input terminal is connected.
[14] 請求項 10において、  [14] In claim 10,
前記整流回路を構成する検波回路は全波整流回路であり、前期各検波回路の第 一の端子は送受信アンテナ端子に接続され、前記第二の端子は前段の検波回路の 出力端子に接続され、前記第三の端子は次段の検波回路の入力端子に接続されて 前記検波回路が多段接続されて成り、  The detector circuit constituting the rectifier circuit is a full-wave rectifier circuit, the first terminal of each detector circuit in the previous period is connected to the transmission / reception antenna terminal, and the second terminal is connected to the output terminal of the detector circuit in the previous stage, The third terminal is connected to an input terminal of a next-stage detection circuit, and the detection circuit is connected in multiple stages.
前記第一の検波回路の第二の端子は接地され、前記多段に接続された途中段の 検波回路間の接続端子に前記復調回路の入力端子が接続されることを特徴とする 無線通信装置。  The wireless communication apparatus, wherein a second terminal of the first detection circuit is grounded, and an input terminal of the demodulation circuit is connected to a connection terminal between the detection circuits in the middle stage connected in multiple stages.
[15] 請求項 10において、 [15] In claim 10,
前記整流回路を構成する検波回路は全波整流回路であり、前記各検波回路の第 一の端子は送受信アンテナ端子に接続され、前記第二の端子は前段の検波回路の 出力端子に接続されし、前記第三の端子は次段の検波回路の入力端子に接続され て検波回路が多段接続されて成り、  The detector circuit constituting the rectifier circuit is a full-wave rectifier circuit, the first terminal of each detector circuit is connected to the transmission / reception antenna terminal, and the second terminal is connected to the output terminal of the detector circuit in the previous stage. The third terminal is connected to the input terminal of the next-stage detection circuit, and the detection circuit is connected in multiple stages.
前記第一の検波回路の第二の端子は接地され、前記多段に接続された途中段の 検波回路の内部の端子が復調用の検波回路の入力に接続され、該復調用の検波 回路の出力端子に前記復調回路の入力端子が接続されることを特徴とする無線通 信装置。  The second terminal of the first detection circuit is grounded, and the internal terminal of the intermediate detection circuit connected in multiple stages is connected to the input of the demodulation detection circuit, and the output of the demodulation detection circuit A radio communication apparatus, wherein an input terminal of the demodulation circuit is connected to a terminal.
[16] 請求項 10において、 [16] In claim 10,
前記整流回路を構成する検波回路は全波整流回路であり、前記各検波回路の第 一の端子は送受信アンテナ端子に接続され、前記第二の端子は前段の検波回路の 出力端子に接続され、前記第三の端子は次段の検波回路の入力端子に接続されて 前記検波回路が多段接続されて成り、  The detector circuit constituting the rectifier circuit is a full-wave rectifier circuit, the first terminal of each detector circuit is connected to a transmission / reception antenna terminal, and the second terminal is connected to the output terminal of the preceding detector circuit, The third terminal is connected to an input terminal of a next-stage detection circuit, and the detection circuit is connected in multiple stages.
前記第一の検波回路の第二の端子は接地され、前記多段に接続された途中段の 検波回路間の接続端子と前記送受信アンテナ端子が、復調用の検波回路の入力に 接続され、該復調用の検波回路の出力端子に前記復調回路の入力端子が接続され ることを特徴とする無線通信装置。 A second terminal of the first detection circuit is grounded, and a connection terminal between the detection circuits in the middle stage connected in multiple stages and the transmission / reception antenna terminal are connected to an input of the detection circuit for demodulation, and the demodulation The input terminal of the demodulation circuit is connected to the output terminal of the detection circuit for A wireless communication device.
[17] 請求項 11において、  [17] In claim 11,
前記整流回路を構成する検波回路は、第一のコンデンサの一端子が送受信アンテ ナ端子に接続されて高周波信号の入力端子となり、前記第一のコンデンサの他の端 子が第一のダイオード力ソードと第二のダイオードのアノードに接続され、前記第一 のダイオードのアノードは該検波回路の入力端子となり、前記第二のダイオードの力 ソードは第二のコンデンサの一端子と接続され、かつ該検波回路の出力端子となり、 前記第二のコンデンサの他の端子は接地され、  In the detection circuit constituting the rectifier circuit, one terminal of a first capacitor is connected to a transmission / reception antenna terminal to serve as an input terminal for a high-frequency signal, and the other terminal of the first capacitor is a first diode force sword. And the anode of the first diode serves as an input terminal of the detection circuit, the force sword of the second diode is connected to one terminal of a second capacitor, and the detection circuit is connected to the anode of the second diode. The output terminal of the circuit, the other terminal of the second capacitor is grounded,
前記復調回路は抵抗と整流回路が検波した信号を増幅する増幅回路からなり、該 検波回路の出力端子に抵抗の一端子と増幅器の入力端子が接続され、前記抵抗の 他の端子と前記増幅器の他の端子が接地されていることを特徴とする無線通信装置  The demodulator circuit includes an amplifier circuit that amplifies the signal detected by the resistor and the rectifier circuit. One terminal of the resistor and the input terminal of the amplifier are connected to the output terminal of the detector circuit, and the other terminal of the resistor and the amplifier Radio communication apparatus characterized in that other terminals are grounded
[18] 請求項 12において、 [18] In claim 12,
前記整流回路を構成する検波回路は、第一のコンデンサの一端子が送受信アンテ ナ端子に接続され高周波信号の入力端子となり、前記第一のコンデンサの他の端子 が第一のダイオード力ソードと第二のダイオードのアノードに接続し、前記第一のダイ オードのアノードは該検波回路の入力端子となり、前記第二のダイオードの力ソード は第二のコンデンサの一端子と接続され、  In the detection circuit constituting the rectifier circuit, one terminal of the first capacitor is connected to a transmitting / receiving antenna terminal to serve as an input terminal for a high-frequency signal, and the other terminal of the first capacitor is connected to the first diode force sword and the first diode. Connected to the anode of the second diode, the anode of the first diode is the input terminal of the detector circuit, the force sword of the second diode is connected to one terminal of the second capacitor,
前記多段接続された検波回路の途中段に接続される復調用の検波回路は、 1つの ダイオードと 1つのコンデンサを有して成り、  The detection circuit for demodulation connected to the middle stage of the detection circuit connected in multiple stages has one diode and one capacitor,
前記途中段の検波回路の第一のダイオードと第二のダイオードの接続端子と、前 記多段接続された検波回路とは別の復調用の検波回路のダイオードのアノードが接 続され力ソードが前記コンデンサの第一の端子に接続され、前記コンデンサの第二 の端子は接地され、  The connection terminals of the first diode and the second diode of the detection circuit in the middle stage and the anode of the diode of the detection circuit for demodulation different from the detection circuit connected in multi-stage are connected, and the force sword is Connected to the first terminal of the capacitor, the second terminal of the capacitor is grounded,
前記復調回路は、抵抗と整流回路が検波した信号を増幅する増幅回路を有して成 り、前記多段接続された検波回路とは別の復調用の検波回路のコンデンサの第一の 端子に抵抗の一端子と増幅器の入力端子が接続され、前記抗の他の端子と前記増 幅器の他の端子とが接地されていることを特徴とする無線通信装置。 The demodulator circuit includes an amplifier circuit that amplifies the signal detected by the resistor and the rectifier circuit, and a resistor is connected to the first terminal of the capacitor of the demodulator detector circuit different from the multistage detector circuit. One terminal and an input terminal of an amplifier are connected, and the other terminal of the resistor and the other terminal of the amplifier are grounded.
[19] 請求項 10において、 [19] In claim 10,
前記無線通信装置が、前記アンテナによる電磁誘導を利用して非接触データ通信 を行う無線タグであることを特徴とする無線通信装置。  The wireless communication apparatus, wherein the wireless communication apparatus is a wireless tag that performs non-contact data communication using electromagnetic induction by the antenna.
[20] 請求項 19において、 [20] In claim 19,
前記整流回路力も供給される電源電圧を所定のレベルに抑えるリミッタを備えて成 り、  The rectifier circuit power is also provided with a limiter that suppresses the power supply voltage supplied to a predetermined level,
前記整流回路、前記復調回路、前記変調回路、前記リミッタ、前記論理制御回路、 及びメモリが、 CMOS回路として共通の基板上に形成されている、ことを特徴とする 無線通信装置。  The wireless communication device, wherein the rectifier circuit, the demodulation circuit, the modulation circuit, the limiter, the logic control circuit, and the memory are formed as a CMOS circuit on a common substrate.
PCT/JP2006/312530 2006-06-22 2006-06-22 Rectification circuit and radio communication device using the same WO2007148401A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2006/312530 WO2007148401A1 (en) 2006-06-22 2006-06-22 Rectification circuit and radio communication device using the same
JP2008522213A JPWO2007148401A1 (en) 2006-06-22 2006-06-22 Rectifier circuit and wireless communication device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/312530 WO2007148401A1 (en) 2006-06-22 2006-06-22 Rectification circuit and radio communication device using the same

Publications (1)

Publication Number Publication Date
WO2007148401A1 true WO2007148401A1 (en) 2007-12-27

Family

ID=38833153

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/312530 WO2007148401A1 (en) 2006-06-22 2006-06-22 Rectification circuit and radio communication device using the same

Country Status (2)

Country Link
JP (1) JPWO2007148401A1 (en)
WO (1) WO2007148401A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012090840A1 (en) * 2010-12-28 2012-07-05 国立大学法人東北大学 Microwave band booster rectifier circuit, and wireless tag device and wireless tag system employing same
JP2016045778A (en) * 2014-08-25 2016-04-04 富士通セミコンダクター株式会社 Semiconductor device
WO2022055121A1 (en) * 2020-09-09 2022-03-17 삼성전자 주식회사 Electronic device for wirelessly transmitting power and operation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000278887A (en) * 1999-03-19 2000-10-06 Denso Corp Rectenna device
WO2006038314A1 (en) * 2004-09-30 2006-04-13 Fujitsu Limited Signal extraction circuit and noncontact ic card

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000278887A (en) * 1999-03-19 2000-10-06 Denso Corp Rectenna device
WO2006038314A1 (en) * 2004-09-30 2006-04-13 Fujitsu Limited Signal extraction circuit and noncontact ic card

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012090840A1 (en) * 2010-12-28 2012-07-05 国立大学法人東北大学 Microwave band booster rectifier circuit, and wireless tag device and wireless tag system employing same
JP2012142732A (en) * 2010-12-28 2012-07-26 Tohoku Univ Microwave band step-up rectifier circuit, and wireless tag device and wireless tag system using the same
US9379666B2 (en) 2010-12-28 2016-06-28 Tohoku University Microwave band booster rectifier circuit, and wireless tag device and wireless tag system employing same
JP2016045778A (en) * 2014-08-25 2016-04-04 富士通セミコンダクター株式会社 Semiconductor device
WO2022055121A1 (en) * 2020-09-09 2022-03-17 삼성전자 주식회사 Electronic device for wirelessly transmitting power and operation method thereof

Also Published As

Publication number Publication date
JPWO2007148401A1 (en) 2009-11-12

Similar Documents

Publication Publication Date Title
US7274921B2 (en) AM data recovery circuit
US6963269B2 (en) Contactless IC card
US7525438B2 (en) RFID tags combining signals received from multiple RF ports
EP1852804B1 (en) Rectifier circuit radio communication device
EP3133533B1 (en) Auxiliary charge pump for a rectifier of an rfid transponder
TWI701600B (en) Dual frequency hf-uhf rfid integrated circuit and dual frequency hf-uhf identification device
US20070075147A1 (en) Circuits for preventing overvoltage conditions on antenna terminals and method
KR101843433B1 (en) Circuit for regulating voltage, contactless card, and contactless card system comprising the same
US7317303B1 (en) Rectified power supply
US7746231B2 (en) Circuit arrangement for load regulation in the receive path of a transponder
WO2007148401A1 (en) Rectification circuit and radio communication device using the same
JP2002170082A (en) Non-contact ic card reading/writing device
US20100033999A1 (en) Low-power radio frequency direct current rectifier
US8022889B2 (en) Antenna impedance modulation method
CN106372711B (en) Radio frequency power supply circuit and ultrahigh frequency passive electronic tag
JP4498242B2 (en) Electronics
Hassouni et al. A design of a high-performance analog front-end for passive UHF RFID tag EPC C1G2
JP4180515B2 (en) Transponder having variable circuit configuration
EP3496004B1 (en) Active receiver for connected rfid tags
US20070096923A1 (en) Voltage multiplier for radio frequency identification tags
KR101010144B1 (en) Rfid device including dual antenna
Rueangsri et al. High-voltage analog front-end circuit for a magnetically-coupled RFID transponder
Liu et al. Design of a RFID Transponder for Application on Secutiry
KR20160086215A (en) Power management method and apparatus for passive rfid tag using adaptive attenuation control

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06767188

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008522213

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06767188

Country of ref document: EP

Kind code of ref document: A1