WO2007147839A1 - Glycine transporter inhibiting compounds and uses in medicine - Google Patents

Glycine transporter inhibiting compounds and uses in medicine Download PDF

Info

Publication number
WO2007147839A1
WO2007147839A1 PCT/EP2007/056120 EP2007056120W WO2007147839A1 WO 2007147839 A1 WO2007147839 A1 WO 2007147839A1 EP 2007056120 W EP2007056120 W EP 2007056120W WO 2007147839 A1 WO2007147839 A1 WO 2007147839A1
Authority
WO
WIPO (PCT)
Prior art keywords
disorder
compound
disorders
formula
compounds
Prior art date
Application number
PCT/EP2007/056120
Other languages
French (fr)
Other versions
WO2007147839A9 (en
Inventor
Steven Coulton
Martin Leonard Gilpin
Roderick Alan Porter
Original Assignee
Glaxo Group Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Glaxo Group Limited filed Critical Glaxo Group Limited
Publication of WO2007147839A1 publication Critical patent/WO2007147839A1/en
Publication of WO2007147839A9 publication Critical patent/WO2007147839A9/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C235/00Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms
    • C07C235/42Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings and singly-bound oxygen atoms bound to the same carbon skeleton
    • C07C235/44Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings and singly-bound oxygen atoms bound to the same carbon skeleton with carbon atoms of carboxamide groups and singly-bound oxygen atoms bound to carbon atoms of the same non-condensed six-membered aromatic ring
    • C07C235/58Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings and singly-bound oxygen atoms bound to the same carbon skeleton with carbon atoms of carboxamide groups and singly-bound oxygen atoms bound to carbon atoms of the same non-condensed six-membered aromatic ring with carbon atoms of carboxamide groups and singly-bound oxygen atoms, bound in ortho-position to carbon atoms of the same non-condensed six-membered aromatic ring
    • C07C235/60Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings and singly-bound oxygen atoms bound to the same carbon skeleton with carbon atoms of carboxamide groups and singly-bound oxygen atoms bound to carbon atoms of the same non-condensed six-membered aromatic ring with carbon atoms of carboxamide groups and singly-bound oxygen atoms, bound in ortho-position to carbon atoms of the same non-condensed six-membered aromatic ring having the nitrogen atoms of the carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D295/00Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms
    • C07D295/04Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms
    • C07D295/12Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by singly or doubly bound nitrogen atoms
    • C07D295/125Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by singly or doubly bound nitrogen atoms with the ring nitrogen atoms and the substituent nitrogen atoms attached to the same carbon chain, which is not interrupted by carbocyclic rings
    • C07D295/13Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by singly or doubly bound nitrogen atoms with the ring nitrogen atoms and the substituent nitrogen atoms attached to the same carbon chain, which is not interrupted by carbocyclic rings to an acyclic saturated chain

Definitions

  • the present invention relates to glycine transporter inhibiting compounds, their use in the manufacture of medicaments for treating neurological and neuropsychiatric disorders, in particular psychoses, dementia or attention deficit disorder.
  • the invention further comprises processes to make these compounds and pharmaceutical formulations thereof.
  • GIyTI is found predominantly in the forebrain and its distribution corresponds to that of glutamatergic pathways and NMDA receptors (Smith, et al., Neuron, 8, 1992: 927-935).
  • GIyT-Ia three variants of GIyTI , termed GIyT-Ia, GIyT-I b and GIyT-I c (Kim et al., Molecular Pharmacology, 45, 1994: 608-617), each of which displays a unique distribution in the brain and peripheral tissues.
  • GlyT2 in contrast, is found predominantly in the brain stem and spinal cord, and its distribution corresponds closely to that of strychnine-sensitive glycine receptors (Liu et al., J. Biological Chemistry, 268, 1993: 22802-22808; Jursky and Nelson, J. Neurochemistry, 64, 1995 : 1026-1033).
  • Another distinguishing feature of glycine transport mediated by GlyT2 is that it is not inhibited by sarcosine as is the case for glycine transport mediated by GIyTI .
  • NMDA receptors are critically involved in memory and learning (Rison and Staunton, Neurosci. Biobehav. Rev.. 19 533-552 (1995); Danysz et al, Behavioral Pharmacol.. 6 455-474 (1995)); and, furthermore, decreased function of NMDA-mediated neurotransmission appears to underlie, or contribute to, the symptoms of schizophrenia (Olney and Farber, Archives General Psychiatry. 52, 998-1007 (1996).
  • agents that inhibit GIyTI and thereby increase glycine activation of NMDA receptors can be used as novel antipsychotics and anti-dementia agents, and to treat other diseases in which cognitive processes are impaired, such as attention deficit disorders and organic brain syndromes.
  • NMDA receptors have been implicated in a number of disease states, in particular the neuronal death associated with stroke and possibly neurodegenerative diseases, such as Alzheimer's disease, multi-infarct dementia, AIDS dementia, Huntington's disease, Parkinson's disease, amyotrophic lateral sclerosis or other conditions in which neuronal cell death occurs, such as stroke or head trauma.
  • neurodegenerative diseases such as Alzheimer's disease, multi-infarct dementia, AIDS dementia, Huntington's disease, Parkinson's disease, amyotrophic lateral sclerosis or other conditions in which neuronal cell death occurs, such as stroke or head trauma.
  • Coyle & Puttfarcken Science. 262, 689-695 (1993); Lipton and Rosenberg, New Engl. J. of Medicine. 330. 613-622 (1993); Choi, Neuron, 1 , 623-634 (1988).
  • pharmacological agents that increase the activity of GIyTI will result in decreased glycine- activation of NMDA receptors, which activity can be used to treat these and related disease states.
  • drugs that directly block the glycine site of the NMDA receptors can be used to treat these and related disease states.
  • Glycine transport inhibitors are already known in the art, for example as disclosed in published international patent application WO03/055478 (SmithKline Beecham).
  • the present invention provides a novel group of compounds which inhibit the glycine transporter, and are thus useful in the treatment of neurological and neuropsychiatric disorders.
  • R1 and R2 are both methyl, or R1 and R2 form a pyrrolidinyl group.
  • salt refers to any salt of a compound according to the present invention prepared from an inorganic or organic acid or base, quaternary ammonium salts and internally formed salts.
  • Pharmaceutically acceptable salts are particularly suitable for medical applications because of their greater aqueous solubility relative to the parent compounds. Such salts must clearly have a pharmaceutically acceptable anion or cation.
  • salts of the compounds of the present invention include acid addition salts formed with inorganic acids such as hydrochloric, hydrobromic, hydroiodic, phosphoric, metaphosphohc, nitric and sulfuric acids, and with organic acids, such as tartaric, acetic, trifluoroacetic, citric, malic, lactic, fumaric, benzoic, formic, propionic, glycolic, gluconic, maleic, succinic, camphorsulfuhc, isothionic, mucic, gentisic, isonicotinic, saccharic, glucuronic, furoic, glutamic, ascorbic, anthranilic, salicylic, phenylacetic, mandelic, embonic (pamoic), methanesulfonic, ethanesulfonic, pantothenic, stearic, sulfinilic, alginic, galacturonic and arylsulfonic, for example naphthalene
  • Salts having a non-pharmaceutically acceptable anion or cation are within the scope of the invention as useful intermediates for the preparation of pharmaceutically acceptable salts and/or for use in non-therapeutic, for example, in vitro, situations.
  • the salts may have any suitable stoichiometry.
  • a salt may have 1 :1 or 2:1 stoichiometry.
  • Non- integral stoichiometry ratios are also possible.
  • solvate refers to a complex of variable stoichiometry formed by a solute (in this invention, a compound of formula (I) or a salt thereof) and a solvent.
  • solvents for the purpose of the invention may not interfere with the biological activity of the solute.
  • suitable solvents include, but are not limited to, water, methanol, ethanol and acetic acid.
  • the solvent used is a pharmaceutically acceptable solvent.
  • suitable pharmaceutically acceptable solvents include water, ethanol and acetic acid.
  • the solvent used is water.
  • the compounds of the present invention may have the ability to crystallise in more than one form. This is a characteristic known as polymorphism, and it is understood that such polymorphic forms (“polymorphs”) are within the scope of the present invention.
  • Polymorphism generally can occur as a response to changes in temperature or pressure or both and can also result from variations in the crystallisation process. Polymorphs can be distinguished by various physical characteristics known in the art such as x-ray diffraction patterns, solubility, and melting point.
  • the compounds of the present invention have an asymmetric carbon and thus exist in two enantiomeric forms, as shown below.
  • individual enantiomers of compounds of formula (I) may be prepared.
  • an optically pure enantiomer is desired.
  • the term "optically pure enantiomer” means that the compound contains greater than about 90 % of the desired isomer by weight, for example greater than about 95 % of the desired isomer by weight, or greater than about 99 % of the desired isomer by weight, said weight percent based upon the total weight of the isomer(s) of the compound.
  • one enantiomer of a particular structure may have a significantly higher activity than the other enantiomer of the same structure.
  • Chirally pure, or chirally enriched compounds may be prepared by chirally selective synthesis or by separation of enantiomers. The separation of enantiomers may be carried out on the final product or, alternatively on a suitable intermediate.
  • the present invention includes both possible enantiomers and includes not only racemic compounds but the individual enantiomers as well.
  • the stereochemistry is indicated as being variable at certain positions, a mixture of enantiomers may be obtained, this mixture having been separated where indicated.
  • Enantiomers may be separated by chiral high-performance liquid chromatography or other appropriate means.
  • a single enantiomer is desired, it may be obtained by stereospecific synthesis or by resolution of the final product or any convenient intermediate. Resolution of the final product, an intermediate, or a starting material may be effected by any suitable method known in the art. See, for example, Stereochemistry of Organic Compounds by E. L. Eliel, S. H. Wilen, and L. N. Mander (Wiley-lnterscience, 1994).
  • R1 and R2 are as defined for formula (I).
  • Step (i) is carried out for example by reaction of acetone with either dimethylamine or pyrrolidine or salt thereof in the presence of inorganic cyanide, for example potassium cyanide, in solvent such as water or by reaction of acetone with either dimethylamine or pyrrolidine with trimethylsilyl cyanide in either the absence of solvent or in a solvent such as acetic acid.
  • Step (ii) can be achieved by successive reaction with an appropriate organometallic reagent, for example phenyllithium, in a suitable inert solvent for example tetrahydrofuran, followed by reduction with a reducing agent, for example, sodium borohydride in a suitable solvent, for example methanol.
  • L represents a suitable leaving group.
  • L may be halogen and acylation in step (iii) may be carried out in an inert solvent such as dichloromethane, in the presence of a base such as triethylamine.
  • the reaction may take place in an inert solvent such as dichloromethane in the presence of a coupling reagent, for example a diimide reagent such as N 1 N dicyclohexylcarbodiimide (DCC), N- (3-(dimethylamino)propyl)-N-ethylcarbodiimide hydrochloride (EDC), polymer-supported EDC, polymer-supported DCC or O-(7-azabenzotriazol-1-yl)-1 ,1 ,3,3-tetramethyluronium hexafluoro phosphate (HATU).
  • a coupling reagent for example a diimide reagent such as N 1 N dicyclohexylcarbodiimide (DCC), N- (3-(dimethylamino)propyl)-N-ethylcarbodiimide hydrochloride (EDC), polymer-supported EDC, polymer-supported DCC or O-(7-azabenz
  • the present invention provides a method of preparing a compound of formula (I), comprising reacting a compound of formula (II):
  • compositions may be prepared conventionally by reaction with the appropriate acid or acid derivative.
  • the compounds of the present invention inhibit the GIyTI transporter.
  • the compounds may selectively inhibit the GIyTI transporter over the GlyT2 transporter.
  • treatment and “treating” refer to the alleviation and/or cure of established symptoms as well as prophylaxis.
  • affinities of the compounds of this invention for the GIyTI transporter can be determined by the following assay:
  • HEK293 cells expressing the Glycine (Type 1 ) transporter were grown in cell culture medium [DMEM/NUT mix F12 containing 2mM L-Glutamine, 0.8mg/ml_ G418 and 10% heat inactivated fetal calf serum] at 37 0 C and 5% CO 2 .
  • Cells grown to 70-80% confluency in T175 flasks were harvested and resuspended at 1.32x10 6 cells/mL in assay buffer [14OmM NaCI, 5.4mM KCI, 1.8mM CaCI 2 , 0.8mM MgSO 4 , 2OmM HEPES, 5mM glucose and 5mM alanine, pH 7.4].
  • the following assay may also be used:
  • HEK293 cells expressing the Glycine (Type 1 ) transporter are grown in cell medium (DMEM/NUT mix F12) containing 2 mM L-Glutamine, 0.8 mg/mL G418 and 10% heat inactivated fetal calf serum (Gibco BRL) at 37 0 C in 5% CO2.
  • Cells grown to 70-80% confluency in T175 flasks are harvested and resuspended at 4x10 5 cells/ml in assay buffer [NaCI (140 mM), KCI (5.4 mM), CaCI 2 (1.8 mM), MgSC>4 (0.8 mM), HEPES (2OmM), glucose (5 mM) and alanine (5 mM), pH 7.4].
  • ElectrodeTM SPA beads (12.5mg/ml suspended in assay buffer) is added to the cell suspension.
  • Compounds are prepared as 1OmM stocks in DMSO. 2.5 fold serial dilutions of the compounds are made in DMSO from a top cone of 2.5 mM. 100 nl_ of compound at each concentration is added to the assay plate (384-well white solid bottom plate) using the hummingbird dispenser. 5uL of the cell/bead mix is then added on top of the compound using a multidrop dispenser.
  • Substrate (5uL) is then added to each well (1 :100 dilution of H3-glycine in assay buffer containing 2.5 uM glycine) Data is collected using a PerkinElmer Viewlux as 5 minute exposures. plC50 data values are determined using Activity Base.
  • Compounds may be assayed in their free base form or in the form of a salt, for example the hydrochloride salt or the formate salt.
  • a disorder mediated by GIyTI refers to a disorder that may be treated by the administration of a medicament that alters the activity of the GIyTI transporter.
  • the action of GIyTI transporters affects the local concentration of glycine around NMDA receptors. As a certain amount of glycine is needed for the efficient functioning of NMDA receptors, any change to that local concentration can affect NMDA-mediated neurotransmission.
  • changes in NMDA-mediated neurotransmission have been implicated in certain neuropsychiatric disorders such as dementia, depression and psychoses, for example schizophrenia, and learning and memory disorders, for example attention deficit disorders and autism.
  • alterations in the activity of the GIyTI transporter are expected to influence such disorders.
  • the disorders mediated by GIyTI referred to herein include neurological and neuropsychiatric disorders, including psychoses such as schizophrenia, dementia and other forms of impaired cognition such as attention deficit disorders and organic brain syndromes.
  • Other neuropsychiatric disorders include drug-induced (phencyclidine, ketamine and other dissociative anesthetics, amphetamine and other psychostimulants and cocaine) psychosis, psychosis associated with affective disorders, brief reactive psychosis, schizoaffective psychosis, and psychosis NOS, "schizophrenia-spectrum” disorders such as schizoid or schizotypal personality disorders, or illness associated with psychosis (such as major depression, manic depressive (bipolar) disorder, Alzheimer's disease and post-traumatic stress syndrome), and NMDA receptor-related disorders such as autism, depression, benign forgetfulness, childhood learning disorders and closed head injury.
  • NMDA receptor-related disorders such as autism, depression, benign forgetfulness, childhood learning disorders and closed head injury.
  • the compounds of formula (I) are of use as antipsychotic agents for example in the treatment of schizophrenia, schizo-affective disorders, schizophreniform diseases, psychotic depression, mania, acute mania, paranoid and delusional disorders.
  • DSM-IV Diagnostic and Statistical Manual of Mental Disorders
  • ICD-10 International Classification of Diseases
  • the compounds of formula (I) are of use in the treatment of schizophrenia including the subtypes Paranoid Type (295.30), Disorganised Type (295.10), Catatonic Type (295.20), Undifferentiated Type (295.90) and Residual Type (295.60); Schizophreniform Disorder (295.40); Schizoaffective Disorder (295.70) including the subtypes Bipolar Type and Depressive Type; Delusional Disorder (297.1 ) including the subtypes Erotomanic Type, Grandiose Type, Jealous Type, Persecutory Type, Somatic Type, Mixed Type and Unspecified Type; Brief Psychotic Disorder (298.8); Shared Psychotic Disorder (297.3); Psychotic Disorder Due to a General Medical Condition including the subtypes With Delusions and With Hallucinations; Substance-Induced Psychotic Disorder including the subtypes With Delusions (293.81 ) and With Hallucinations (293.82); and Psychotic Disorder Not Otherwise Specified (298.9).
  • the compounds of formula (I) are also of use in the treatment of mood disorders including Major Depressive Episode, Manic Episode, Mixed Episode and Hypomanic Episode;
  • Depressive Disorders including Major Depressive Disorder, Dysthymic Disorder (300.4),
  • Bipolar Il Disorder Recurrent Major Depressive Episodes with Hypomanic
  • the compounds of formula (I) are also of use in the treatment of anxiety disorders including Panic Attack, Agoraphobia, Panic Disorder, Agoraphobia Without History of Panic Disorder (300.22), Specific Phobia (300.29) including the subtypes Animal Type, Natural Environment Type, Blood-lnjection-lnjury Type, Situational Type and Other Type), Social Phobia (300.23), Obsessive-Compulsive Disorder (300.3), Posttraumatic Stress Disorder (309.81 ), Acute Stress Disorder (308.3), Generalized Anxiety Disorder (300.02), Anxiety Disorder Due to a General Medical Condition (293.84), Substance-Induced Anxiety Disorder and Anxiety Disorder Not Otherwise Specified (300.00).
  • the compounds of formula (I) are also of use in the treatment of substance-related disorders including Substance Use Disorders such as Substance Dependence and Substance Abuse; Substance-Induced Disorders such as Substance Intoxication, Substance Withdrawal, Substance-Induced Delirium, Substance-Induced Persisting Dementia, Substance-Induced Persisting Amnestic Disorder, Substance-Induced Psychotic Disorder, Substance-Induced Mood Disorder, Substance-Induced Anxiety Disorder, Substance-Induced sexual Dysfunction, Substance-Induced Sleep Disorder and Hallucinogen Persisting Perception Disorder (Flashbacks); Alcohol-Related Disorders such as Alcohol Dependence (303.90), Alcohol Abuse (305.00), Alcohol Intoxication (303.00), Alcohol Withdrawal (291.81 ), Alcohol Intoxication Delirium, Alcohol Withdrawal Delirium, Alcohol-Induced Persisting Dementia, Alcohol-Induced Persisting Amnestic Disorder, Alcohol
  • the compounds of formula (I) are also of use in the treatment of sleep disorders including primary sleep disorders such as Dyssomnias such as Primary Insomnia (307.42), Primary Hypersomnia (307.44), Narcolepsy (347), Breathing-Related Sleep Disorders (780.59), Circadian Rhythm Sleep Disorder (307.45) and Dyssomnia Not Otherwise Specified (307.47); primary sleep disorders such as Parasomnias such as Nightmare Disorder (307.47), Sleep Terror Disorder (307.46), Sleepwalking Disorder (307.46) and Parasomnia Not Otherwise Specified (307.47); Sleep Disorders Related to Another Mental Disorder such as Insomnia Related to Another Mental Disorder (307.42) and Hypersomnia Related to Another Mental Disorder (307.44); Sleep Disorder Due to a General Medical Condition; and Substance-Induced Sleep Disorder including the subtypes Insomnia Type, Hypersomnia Type, Parasomnia Type and Mixed Type.
  • the compounds of formula (I) are also of use in the treatment of eating disorders such as Anorexia Nervosa (307.1 ) including the subtypes Restricting Type and Binge- Eating/Purging Type; Bulimia Nervosa (307.51 ) including the subtypes Purging Type and Nonpurging Type; Obesity; Compulsive Eating Disorder; and Eating Disorder Not Otherwise Specified (307.50).
  • eating disorders such as Anorexia Nervosa (307.1 ) including the subtypes Restricting Type and Binge- Eating/Purging Type; Bulimia Nervosa (307.51 ) including the subtypes Purging Type and Nonpurging Type; Obesity; Compulsive Eating Disorder; and Eating Disorder Not Otherwise Specified (307.50).
  • the compounds of formula (I) are also of use in the treatment of Autistic Disorder (299.00); Attention-Deficit /Hyperactivity Disorder including the subtypes Attention-Deficit /Hyperactivity Disorder Combined Type (314.01 ), Attention-Deficit /Hyperactivity Disorder Predominantly Inattentive Type (314.00), Attention-Deficit /Hyperactivity Disorder Hyperactive-Impulse Type (314.01 ) and Attention-Deficit /Hyperactivity Disorder Not Otherwise Specified (314.9); Hyperkinetic Disorder; Disruptive Behaviour Disorders such as Conduct Disorder including the subtypes childhood-onset type (321.81 ), Adolescent- Onset Type (312.82) and Unspecified Onset (312.89), Oppositional Defiant Disorder (313.81 ) and Disruptive Behaviour Disorder Not Otherwise Specified; and Tic Disorders such as Tourette's Disorder (307.23).
  • the compounds of formula (I) are also of use in the treatment of Personality Disorders including the subtypes Paranoid Personality Disorder (301.0), Schizoid Personality
  • the compounds of Formula (I) are also of use in the enhancement of cognition including the treatment of cognition impairment in other diseases such as schizophrenia, bipolar disorder, depression, other psychiatric disorders and psychotic conditions associated with cognitive impairment.
  • cognitive impairment includes for example the treatment of impairment of cognitive functions including attention, orientation, learning disorders, memory (i.e.
  • Alzheimer's disease Huntington's disease, Pick disease, Aids-related dementia or other dementia states
  • Multiinfarct dementia alcoholic dementia, hypotiroidism-related dementia, and dementia associated to other degenerative disorders such as cerebellar atrophy and amyotropic lateral sclerosis
  • other acute or sub-acute conditions that may cause cognitive decline such as delirium or depression (pseudodementia states) trauma, head trauma, age related cognitive decline, stroke, neurodegeneration, drug-induced states, neurotoxic agents, mild cognitive impairment, age related cognitive impairment, autism related cognitive impairment, Down's syndrome, cognitive deficit related to psychosis, and post-electroconvulsive treatment related cognitive disorders
  • dyskinetic disorders such as Parkinson's disease, neuroleptic-induced parkinsonism, and tardive dyskinesias.
  • the compounds of formula (I) are also of use in the treatment of sexual dysfunctions including sexual Desire Disorders such as Hypoactive Sexual Desire Disorder (302.71 ), and sexual Aversion Disorder (302.79); sexual arousal disorders such as Female sexual Arousal Disorder (302.72) and Male Erectile Disorder (302.72); orgasmic disorders such as Female Orgasmic Disorder (302.73), Male Orgasmic Disorder (302.74) and Premature Ejaculation (302.75); sexual pain disorder such as Dyspareunia (302.76) and Vaginismus (306.51 ); Sexual Dysfunction Not Otherwise Specified (302.70); paraphilias such as Exhibitionism (302.4), Fetishism (302.81 ), Frotteurism (302.89), Pedophilia (302.2), Sexual Masochism (302.83), sexual Sadism (302.84), Transvestic Fetishism (302.3), Voyeurism (302.82) and Paraphilia Not Otherwise Specified (302.9); gender identity disorders such as Gender Identity Disorder in Children (302.6) and Gender Identity
  • the invention also provides a compound of formula (I) as hereinbefore described or a pharmaceutically acceptable salt or solvate thereof for use in the treatment of schizophrenia, mood disorders, anxiety disorders, substance-related disorders, sleep disorders, eating disorders, autistic disorder, attention-deficit/hyperactivity disorder, disruptive behaviour disorder, tic disorders, personality disorders, cognition impairment in other diseases, sexual dysfunction, Parkinson's disease, dyskinetic disorders, depression, bipolar disorder, cognitive impairment, obesity, emesis, movement disorders, obsessive- compulsive disorders, amnesia, aggression, vertigo, dementia and circadian rhythm disorders.
  • the invention also provides a compound of formula (I) as hereinbefore described or a pharmaceutically acceptable salt or solvate thereof for use in the treatment of psychotic disorders, substance abuse, cognitive impairment, obesity, and gastric motility disorders.
  • a method of treating a mammal including a human, suffering from or susceptible to a disorder mediated by GIyTI , which comprises administering an effective amount of a compound of formula (I) as hereinbefore defined or a salt or solvate thereof.
  • the invention also provides a method of treating schizophrenia, mood disorders, anxiety disorders, substance-related disorders, sleep disorders, eating disorders, autistic disorder, attention-deficit/hyperactivity disorder, disruptive behaviour disorder, tic disorders, personality disorders, cognition impairment in other diseases, sexual dysfunction, Parkinson's disease, dyskinetic disorders, depression, bipolar disorder, cognitive impairment, obesity, emesis, movement disorders, obsessive-compulsive disorders, amnesia, aggression, vertigo, dementia and circadian rhythm disorders which comprises administering to a mammal in need thereof an effective amount of a compound of formula (I) as hereinbefore described or a pharmaceutically acceptable salt or solvate thereof.
  • the invention also provides a method of treating psychotic disorders, substance abuse, cognitive impairment, obesity and gastric motility disorders which comprises administering to a mammal in need thereof an effective amount of a compound of formula (I) as hereinbefore described or a pharmaceutically acceptable salt or solvate thereof.
  • the compounds of formula (I) are also of use as anticonvulsants.
  • the compounds of formula (I) are thus useful in the treatment of convulsions in mammals, and particularly epilepsy in humans.
  • "Epilepsy” is intended to include the following seizures: simple partial seizures, complex partial seizures, secondary generalised seizures, generalised seizures including absence seizures, myoclonic seizures, clonic seizures, tonic seizures, tonic clonic seizures and atonic seizures.
  • the invention also provides a method of treating convulsions, which comprises administering to a mammal in need thereof an effective amount of a compound of formula (I) as hereinbefore described or a pharmaceutically acceptable salt or solvate thereof.
  • Treatment of epilepsy may be carried out by the administration of a non-toxic anticonvulsant effective amount of a compound of the formula (III) or a pharmaceutically acceptable salt, or a composition as hereinbefore defined.
  • the compounds of formula (I) also find use in the treatment of neuropathic pain, for example in diabetic neuropathy, sciatica, non-specific lower back pain, multiple sclerosis pain, fibromyalgia, HIV-related neuropathy, neuralgia such as post-herpetic neuralgia and trigeminal neuralgia and pain resulting from physical trauma, amputation, cancer, toxins or chronic inflammatory conditions.
  • neuropathic pain for example in diabetic neuropathy, sciatica, non-specific lower back pain, multiple sclerosis pain, fibromyalgia, HIV-related neuropathy, neuralgia such as post-herpetic neuralgia and trigeminal neuralgia and pain resulting from physical trauma, amputation, cancer, toxins or chronic inflammatory conditions.
  • the disorder mediated by GIyTI to be treated by the use or method as hereinbefore described is a psychosis, including schizophrenia, dementia and attention deficit disorders, particularly schizophrenia.
  • the invention also provides the use of a compound of formula (I) as hereinbefore described or a pharmaceutically acceptable salt or solvate thereof in the manufacture of a medicament for the treatment of schizophrenia, mood disorders, anxiety disorders, substance-related disorders, sleep disorders, eating disorders, autistic disorder, attention- deficit/hyperactivity disorder, disruptive behaviour disorder, tic disorders, personality disorders, cognition impairment in other diseases, sexual dysfunction, Parkinson's disease, dyskinetic disorders, depression, bipolar disorder, cognitive impairment, obesity, emesis, movement disorders, obsessive-compulsive disorders, amnesia, aggression, vertigo, dementia and circadian rhythm disorders.
  • the invention also provides the use of a compound of formula (I) as hereinbefore described or a pharmaceutically acceptable salt or solvate thereof in the manufacture of a medicament for the treatment of psychotic disorders, substance abuse, cognitive impairment, obesity and gastric motility disorders.
  • the term "effective amount” means that amount of a drug or pharmaceutical agent that will elicit the biological or medical response of a tissue, system, animal or human that is being sought, for instance, by a researcher or clinician.
  • compositions for use according to the invention may be administered as the raw material but the active ingredients may be provided in the form of pharmaceutical compositions.
  • a pharmaceutical composition comprising a compound of formula (I) as hereinbefore described or a salt or solvate thereof, and at least one pharmaceutically acceptable carrier, diluent or excipient.
  • compositions may be used in the treatment of clinical conditions for which a GIyTI inhibitor is indicated such as, for example, schizophrenia.
  • the carrier must be pharmaceutically acceptable to the recipient and must be compatible with, i.e. not have a deleterious effect upon, the other ingredients in the composition.
  • the carrier may be a solid or a liquid and may be formulated with at least one compound of formula (I) or a salt or solvate thereof as a unit dose formulation. If desired, other physiologically active ingredients may also be incorporated in the pharmaceutical compositions of the invention.
  • the compounds according to the invention may advantageously be used in conjunction with one or more other therapeutic agents, for instance, different antidepressant agents such as 5HT3 antagonists, serotonin agonists, NK-1 antagonists, selective serotonin reuptake inhibitors (SSRI), noradrenaline re-uptake inhibitors (SNRI), tricyclic antidepressants, dopaminergic antidepressants, H3 antagonists, 5HT1A antagonists, 5HT1 B antagonists, 5HT1 D antagonists, D1 agonists, M1 agonists and/or anticonvulsant agents, as well as atypical antipsychotic drugs and cognitive enhancers.
  • Suitable 5HT3 antagonists which may be used in combination of the compounds of the inventions include for example ondansetron, granisetron, metoclopramide.
  • Suitable serotonin agonists which may be used in combination with the compounds of the invention include sumatriptan, rauwolscine, yohimbine, metoclopramide.
  • Suitable SSRIs which may be used in combination with the compounds of the invention include fluoxetine, citalopram, femoxetine, fluvoxamine, paroxetine, indalpine, sertraline, zimeldine.
  • Suitable SNRIs which may be used in combination with the compounds of the invention include venlafaxine and reboxetine.
  • Suitable tricyclic antidepressants which may be used in combination with a compound of the invention include imipramine, amitriptiline, chlomipramine and nortriptiline.
  • Suitable dopaminergic antidepressants which may be used in combination with a compound of the invention include bupropion and amineptine.
  • Suitable anticonvulsant agents which may be used in combination of the compounds of the invention include for example divalproex, carbamazepine and diazepam.
  • the compounds of formula (I) and their pharmaceutically acceptable salts and solvates thereof are also suitable for combination with other typical and atypical antipsychotics to provide improved treatment of psychotic disorders.
  • adjunctive administration is meant the coterminous or overlapping administration of each of the components in the form of separate pharmaceutical compositions or devices.
  • This regime of therapeutic administration of two or more therapeutic agents is referred to generally by those skilled in the art and herein as adjunctive therapeutic administration; it is also known as add-on therapeutic administration.
  • Any and all treatment regimes in which a patient receives separate but coterminous or overlapping therapeutic administration of the compounds of formula (I) or a pharmaceutically acceptable salt or solvate thereof and at least one neuroleptic agent are within the scope of the current invention.
  • a patient is typically stabilised on a therapeutic administration of one or more of the components for a period of time and then receives administration of another component.
  • the compounds of formula (I) or a pharmaceutically acceptable salt or solvate thereof may be administered as adjunctive therapeutic treatment to patients who are receiving administration of at least one neuroleptic agent, but the scope of the invention also includes the adjunctive therapeutic administration of at least one neuroleptic agent to patients who are receiving administration of compounds of formula (I) or a pharmaceutically acceptable salt or solvate thereof.
  • the combination therapies of the invention may also be administered simultaneously.
  • simultaneous administration is meant a treatment regime wherein the individual components are administered together, either in the form of a single pharmaceutical composition or device comprising or containing both components, or as separate compositions or devices, each comprising one of the components, administered simultaneously.
  • Such combinations of the separate individual components for simultaneous combination may be provided in the form of a kit-of-parts.
  • the invention provides a method of treatment of a psychotic disorder by adjunctive therapeutic administration of compounds of formula (I) or a pharmaceutically acceptable salt or solvate thereof to a patient receiving therapeutic administration of at least one neuroleptic agent.
  • the invention provides the use of compounds of formula (I) or a pharmaceutically acceptable salt or solvate thereof in the manufacture of a medicament for adjunctive therapeutic administration for the treatment of a psychotic disorder in a patient receiving therapeutic administration of at least one neuroleptic agent.
  • the invention further provides compounds of formula (I) or a pharmaceutically acceptable salt or solvate thereof for use for adjunctive therapeutic administration for the treatment of a psychotic disorder in a patient receiving therapeutic administration of at least one neuroleptic agent.
  • the invention provides a method of treatment of a psychotic disorder by adjunctive therapeutic administration of at least one neuroleptic agent to a patient receiving therapeutic administration of compounds of formula (I) or a pharmaceutically acceptable salt or solvate thereof.
  • the invention provides the use of at least one neuroleptic agent in the manufacture of a medicament for adjunctive therapeutic administration for the treatment of a psychotic disorder in a patient receiving therapeutic administration of compounds of formula (I) or a pharmaceutically acceptable salt or solvate thereof.
  • the invention further provides at least one neuroleptic agent for adjunctive therapeutic administration for the treatment of a psychotic disorder in a patient receiving therapeutic administration of compounds of formula (I) or a pharmaceutically acceptable salt or solvate thereof.
  • the invention provides a method of treatment of a psychotic disorder by simultaneous therapeutic administration of compounds of formula (I) or a pharmaceutically acceptable salt or solvate thereof in combination with at least one neuroleptic agent.
  • the invention further provides the use of a combination of compounds of formula (I) or a pharmaceutically acceptable salt or solvate thereof and at least one neuroleptic agent in the manufacture of a medicament for simultaneous therapeutic administration in the treatment of a psychotic disorder.
  • the invention further provides the use of compounds of formula (I) or a pharmaceutically acceptable salt thereof in the manufacture of a medicament for simultaneous therapeutic administration with at least one neuroleptic agent in the treatment of a psychotic disorder.
  • the invention further provides compounds of formula (I) or a pharmaceutically acceptable salt thereof for use for simultaneous therapeutic administration with at least one neuroleptic agent in the treatment of a psychotic disorder.
  • the invention further provides the use of at least one neuroleptic agent in the manufacture of a medicament for simultaneous therapeutic administration with compounds of formula (I) or a pharmaceutically acceptable salt thereof in the treatment of a psychotic disorder.
  • the invention provides a method of treatment of a psychotic disorder by simultaneous therapeutic administration of a pharmaceutical composition comprising compounds of formula (I) or a pharmaceutically acceptable salt or solvate thereof and at least one mood stabilising or antimanic agent, a pharmaceutical composition comprising compounds of formula (I) or a pharmaceutically acceptable salt or solvate thereof and at least one mood stabilising or antimanic agent, the use of a pharmaceutical composition comprising compounds of formula (I) or a pharmaceutically acceptable salt or solvate thereof and at least one mood stabilising or antimanic agent in the manufacture of a medicament for the treatment of a psychotic disorder, and a pharmaceutical composition comprising compounds of formula (I) or a pharmaceutically acceptable salt or solvate thereof and at least one mood stabilising or antimanic agent for use in the treatment of a psychotic disorder.
  • the invention provides a kit-of-parts for use in the treatment of a psychotic disorder comprising a first dosage form comprising compounds of formula (I) or a pharmaceutically acceptable salt or solvate thereof and one or more further dosage forms each comprising a neuroleptic agent for simultaneous therapeutic administration.
  • psychiatric disorder includes those disorders mentioned above, such as schizophrenia, mood disorders, anxiety disorders, substance-related disorders, sleep disorders, eating disorders, autistic disorder, attention- deficit/hyperactivity disorder, disruptive behaviour disorder, tic disorders, personality disorders, cognition impairment in other diseases, sexual dysfunction, dyskinetic disorders, depression, bipolar disorder, cognitive impairment and obsessive-compulsive disorders and all the various forms of the disorders as mentioned herein, which are contemplated as part of the present invention.
  • neuroleptic/antipsychotic drugs examples include, but are not limited to: butyrophenones, such as haloperidol, pimozide, and droperidol; phenothiazines, such as chlorpromazine, thioridazine, mesoridazine, trifluoperazine, perphenazine, fluphenazine, thiflupromazine, prochlorperazine, and acetophenazine; thioxanthenes, such as thiothixene and chlorprothixene ; thienobenzodiazepines; dibenzodiazepines; benzisoxazoles; dibenzothiazepines; imidazolidinones ; benzisothiazolyl-piperazines; triazine such as lamotrigine; dibenzoxazepines, such as loxapine; dihydroindolones, such as molindone; arip
  • clozapine available under the tradename CLOZARIL®, from Mylan, Zenith Goldline, UDL, Novartis
  • olanzapine available under the tradename ZYPREX®, from Lilly
  • ziprasidone available under the tradename GEODON®, from Pfizer
  • risperidone available under the tradename RISPERDAL®, from Janssen
  • quetiapine fumarate available under the tradename SEROQUEL®, from AstraZeneca
  • haloperidol available under the tradename HALDOL®, from Ortho-McNeil
  • chlorpromazine available under the tradename THORAZINE®, from SmithKline Beecham (GSK); fluphenazine (available under the tradename PROLIXIN®, from Apothecon, Copley, Schering, Teva, and American Pharmaceutical Partners, Pasadena); thiothixene (available under
  • neuroleptic drugs include promazine (available under the tradename SPARINE®), triflurpromazine (available under the tradename VESPRIN®), chlorprothixene (available under the tradename TARACTAN®), droperidol (available under the tradename INAPSINE®), acetophenazine (available under the tradename TINDAL®;), prochlorperazine (available under the tradename COMPAZINE®), methotrimeprazine (available under the tradename NOZINAN®), pipotiazine (available under the tradename PIPOTRIL®), ziprasidone, and hoperidone.
  • promazine available under the tradename SPARINE®
  • triflurpromazine available under the tradename VESPRIN®
  • chlorprothixene available under the tradename TARACTAN®
  • droperidol available under the tradename INAPSINE®
  • acetophenazine available under the tradename TINDAL®
  • prochlorperazine available under the tradename COMP
  • the neuroleptic agents for use in the invention are selected from the group consisting of olanzapine, risperidone, quetiapine, aripiprazole, haloperidol, clozapine, ziprasidone and osanetant.
  • the compounds of the present invention are usually administered as a standard pharmaceutical composition.
  • the present invention therefore provides in a further aspect a pharmaceutical composition comprising a compound of formula (I) as hereinbefore described or a pharmaceutically (i.e. physiologically) acceptable salt thereof and a pharmaceutically (i.e. physiologically) acceptable carrier.
  • the pharmaceutical composition can be for use in the treatment of any of the conditions described herein.
  • Possible formulations include those suitable for oral, sub-lingual, buccal, parenteral (for example, subcutaneous, intramuscular, or intravenous), rectal, topical and intranasal administration and in forms suitable for administration by inhalation or insufflation (either through the mouth or nose).
  • parenteral for example, subcutaneous, intramuscular, or intravenous
  • rectal topical and intranasal administration and in forms suitable for administration by inhalation or insufflation (either through the mouth or nose).
  • inhalation or insufflation either through the mouth or nose.
  • oral administration is provided.
  • Formulations suitable for oral administration may be provided as discrete units, such as tablets, capsules, cachets, or lozenges, each containing a predetermined amount of the active compound; as powders or granules; as solutions or suspensions in aqueous or non-aqueous liquids; or as oil-in-water or water-in-oil emulsions.
  • a compound of the invention may be prepared as a formulation with a controlled release profile. This may be in any of the above mentioned pharmaceutical forms.
  • it may be a gel formulation in a non aqueous oily vehicle, for example Miglyol, with a suitable gelling agent if required, for example methyl cellulose or hydrophobic colloidal silica.
  • Formulations suitable for sublingual or buccal administration include lozenges comprising the active compound and, typically, a flavoured base, such as sugar and acacia or tragacanth and pastilles comprising the active compound in an inert base, such as gelatin and glycerin or sucrose and acacia.
  • a flavoured base such as sugar and acacia or tragacanth
  • pastilles comprising the active compound in an inert base, such as gelatin and glycerin or sucrose and acacia.
  • Formulations suitable for parenteral administration typically comprise sterile aqueous solutions containing a predetermined concentration of the active compound; the solution may be isotonic with the blood of the intended recipient. Although such solutions may be administered intrave ⁇ eously, they may also be administered by subcutaneous or intramuscular injection.
  • Formulations suitable for rectal administration may be provided as unit-dose suppositories comprising the active ingredient and one or more solid carriers forming the suppository base, for example, cocoa butter.
  • Formulations suitable for topical or intranasal application include ointments, creams, lotions, pastes, gels, sprays, aerosols and oils.
  • Suitable carriers for such formulations include petroleum jelly, lanolin, polyethylene glycols, alcohols, and combinations thereof.
  • Formulations of compounds of the invention may, for example, be composed so as to improve the exposure profile of the compound of the invention.
  • Compositions suitable for transdermal administration include ointments, gels and patches.
  • the composition is in unit dose form such as a tablet, capsule or ampoule.
  • the formulations of the invention may be prepared by any suitable method, typically by uniformly and intimately admixing the active compound(s) with liquids or finely divided solid carriers, or both, in the required proportions and then, if necessary, shaping the resulting mixture into the desired shape.
  • a tablet may be prepared by compressing an intimate mixture comprising a powder or granules of the active ingredient and one or more optional ingredients, such as a binder, lubricant, inert diluent, or surface active dispersing agent, or by moulding an intimate mixture of powdered active ingredient and inert liquid diluent.
  • one or more optional ingredients such as a binder, lubricant, inert diluent, or surface active dispersing agent, or by moulding an intimate mixture of powdered active ingredient and inert liquid diluent.
  • Aqueous solutions for parenteral administration are typically prepared by dissolving the active compound in sufficient water to give the desired concentration and then rendering the resulting solution sterile and isotonic.
  • the compound may be administered in single or divided doses and may be administered one or more times, for example 1 to 4 times per day.
  • PET shall mean: positron emission tomography
  • SPECT shall mean: single photon emission (computed) tomography.
  • UV wavelength range 220 -330 nm Temperature: 30 0 C
  • Mass Directed Auto-Purification System chromatography conditions Column: Waters Atlantis 19mm x 100mm or 30mm X 100mm, 5um particle size Mobile phase: A: 0.1% Formic acid + Water
  • Dry THF (6ml) was stirred under argon at -80° and treated with sec-butyl lithium (4.6ml of a 1.4M solution in cyclohexane, 6.5mmol) and N,N,N',N'-tetramethylethylenediamine (1.00ml, 6.5mmol).
  • a solution of 4-fluoro-2-methoxybenzoic acid (0.5Og, 2.94mmol) in dry THF (2ml) was now added dropwise over 30 minutes and allowed to stir for a further 30 minutes at -80°.
  • lodomethane (732ul, 11.76mmol) was now added dropwise over 5 minutes and the reaction stirred at -70° for a further 20 minutes and allowed to warm to room temperature.
  • Example 1 4-fluoro-2-methyl-6-(methyloxy)- ⁇ /-[2-methyl-1-phenyl-2-(1- pyrrolidinyl)propyl]benzamide chiral
  • Example compound above is convertable to the corresponding hydrochloride salt by dissolving the parent free base in DCM or DCM/methanol mixtures and adding 1 M hydrogen chloride in ether, followed by evaporation and drying in vacuo.

Abstract

Compounds of formula (I) and salts and solvates thereof are provided: wherein R1 and R2 are both methyl, or R1 and R2 form a pyrrolidinyl group. Uses in the manufacture of medicaments for treating neurological and neuropsychiatric disorders, such as psychoses, dementia or attention deficit disorder, and processes to make these compounds and pharmaceutical formulations thereof are also disclosed.

Description

Glycine Transporter Inhibiting Compounds And Uses In Medicine
The present invention relates to glycine transporter inhibiting compounds, their use in the manufacture of medicaments for treating neurological and neuropsychiatric disorders, in particular psychoses, dementia or attention deficit disorder. The invention further comprises processes to make these compounds and pharmaceutical formulations thereof.
Molecular cloning has revealed the existence in mammalian brains of two classes of glycine transporters, termed GIyTI and GlyT2. GIyTI is found predominantly in the forebrain and its distribution corresponds to that of glutamatergic pathways and NMDA receptors (Smith, et al., Neuron, 8, 1992: 927-935). Molecular cloning has further revealed the existence of three variants of GIyTI , termed GIyT-Ia, GIyT-I b and GIyT-I c (Kim et al., Molecular Pharmacology, 45, 1994: 608-617), each of which displays a unique distribution in the brain and peripheral tissues. The variants arise by differential splicing and exon usage, and differ in their N-terminal regions. GlyT2, in contrast, is found predominantly in the brain stem and spinal cord, and its distribution corresponds closely to that of strychnine-sensitive glycine receptors (Liu et al., J. Biological Chemistry, 268, 1993: 22802-22808; Jursky and Nelson, J. Neurochemistry, 64, 1995 : 1026-1033). Another distinguishing feature of glycine transport mediated by GlyT2 is that it is not inhibited by sarcosine as is the case for glycine transport mediated by GIyTI . These data are consistent with the view that, by regulating the synaptic levels of glycine, GIyTI and GlyT2 selectively influence the activity of NMDA receptors and strychnine-sensitive glycine receptors, respectively.
NMDA receptors are critically involved in memory and learning (Rison and Staunton, Neurosci. Biobehav. Rev.. 19 533-552 (1995); Danysz et al, Behavioral Pharmacol.. 6 455-474 (1995)); and, furthermore, decreased function of NMDA-mediated neurotransmission appears to underlie, or contribute to, the symptoms of schizophrenia (Olney and Farber, Archives General Psychiatry. 52, 998-1007 (1996). Thus, agents that inhibit GIyTI and thereby increase glycine activation of NMDA receptors can be used as novel antipsychotics and anti-dementia agents, and to treat other diseases in which cognitive processes are impaired, such as attention deficit disorders and organic brain syndromes. Conversely, over-activation of NMDA receptors has been implicated in a number of disease states, in particular the neuronal death associated with stroke and possibly neurodegenerative diseases, such as Alzheimer's disease, multi-infarct dementia, AIDS dementia, Huntington's disease, Parkinson's disease, amyotrophic lateral sclerosis or other conditions in which neuronal cell death occurs, such as stroke or head trauma. Coyle & Puttfarcken, Science. 262, 689-695 (1993); Lipton and Rosenberg, New Engl. J. of Medicine. 330. 613-622 (1993); Choi, Neuron, 1 , 623-634 (1988). Thus, pharmacological agents that increase the activity of GIyTI will result in decreased glycine- activation of NMDA receptors, which activity can be used to treat these and related disease states. Similarly, drugs that directly block the glycine site of the NMDA receptors can be used to treat these and related disease states.
Glycine transport inhibitors are already known in the art, for example as disclosed in published international patent application WO03/055478 (SmithKline Beecham). The present invention provides a novel group of compounds which inhibit the glycine transporter, and are thus useful in the treatment of neurological and neuropsychiatric disorders.
Thus, in a first aspect, there is provided a compound of formula (I) or a salt or solvate thereof:
Figure imgf000003_0001
(I)
wherein R1 and R2 are both methyl, or R1 and R2 form a pyrrolidinyl group.
In one embodiment, there is provided 4-fluoro-2-methyl-6-(methyloxy)-Λ/-[2-methyl-1- phenyl-2-(1-pyrrolidinyl)propyl]benzamide or a salt or solvate thereof. In another embodiment, there is provided Λ/-[2-(dimethylamino)-2-methyl-1-phenylpropy|]-4-fluoro-2- methyl-6-(methyloxy)benzamide or a salt or solvate thereof.
4-fluoro-2-methyl-6-(methyloxy)-Λ/-[2-methyl-1-phenyl-2-(1-pyrrolidinyl)propyl]benzamide and Λ/-[2-(dimethylamino)-2-methyl-1-phenylpropyl]-4-fluoro-2-methyl-6-
(methyloxy)benzamide are shown below:
Figure imgf000003_0002
As used herein, the term "salt" refers to any salt of a compound according to the present invention prepared from an inorganic or organic acid or base, quaternary ammonium salts and internally formed salts. Pharmaceutically acceptable salts are particularly suitable for medical applications because of their greater aqueous solubility relative to the parent compounds. Such salts must clearly have a pharmaceutically acceptable anion or cation. Suitably salts of the compounds of the present invention include acid addition salts formed with inorganic acids such as hydrochloric, hydrobromic, hydroiodic, phosphoric, metaphosphohc, nitric and sulfuric acids, and with organic acids, such as tartaric, acetic, trifluoroacetic, citric, malic, lactic, fumaric, benzoic, formic, propionic, glycolic, gluconic, maleic, succinic, camphorsulfuhc, isothionic, mucic, gentisic, isonicotinic, saccharic, glucuronic, furoic, glutamic, ascorbic, anthranilic, salicylic, phenylacetic, mandelic, embonic (pamoic), methanesulfonic, ethanesulfonic, pantothenic, stearic, sulfinilic, alginic, galacturonic and arylsulfonic, for example naphthalene-1 ,5-disulphonic, naphthalene-1 ,3- disulphonic, benzenesulfonic, and p-toluenesulfonic, acids; base addition salts formed with alkali metals and alkaline earth metals and organic bases such as N1N- dibenzylethylenediamine, chloroprocaine, choline, diethanolamine, ethylenediamine, meglumaine (N-methylglucamine), lysine and procaine; and internally formed salts. Salts having a non-pharmaceutically acceptable anion or cation are within the scope of the invention as useful intermediates for the preparation of pharmaceutically acceptable salts and/or for use in non-therapeutic, for example, in vitro, situations. The salts may have any suitable stoichiometry. For example, a salt may have 1 :1 or 2:1 stoichiometry. Non- integral stoichiometry ratios are also possible.
In one embodiment, there is provided 4-fluoro-2-methyl-6-(methyloxy)-Λ/-[2-methyl-1- phenyl-2-(1-pyrrolidinyl)propyl]benzamide hydrochloride or a solvate thereof, and Λ/-[2- (dimethylamino)-2-methyl-1-phenylpropyl]-4-fluoro-2-methyl-6-(methyloxy)benzamide hydrochloride or a solvate thereof.
As used herein, the term "solvate" refers to a complex of variable stoichiometry formed by a solute (in this invention, a compound of formula (I) or a salt thereof) and a solvent. Such solvents for the purpose of the invention may not interfere with the biological activity of the solute. Examples of suitable solvents include, but are not limited to, water, methanol, ethanol and acetic acid. In one embodiment, the solvent used is a pharmaceutically acceptable solvent. Examples of suitable pharmaceutically acceptable solvents include water, ethanol and acetic acid. In one embodiment, the solvent used is water.
The compounds of the present invention may have the ability to crystallise in more than one form. This is a characteristic known as polymorphism, and it is understood that such polymorphic forms ("polymorphs") are within the scope of the present invention.
Polymorphism generally can occur as a response to changes in temperature or pressure or both and can also result from variations in the crystallisation process. Polymorphs can be distinguished by various physical characteristics known in the art such as x-ray diffraction patterns, solubility, and melting point. The compounds of the present invention have an asymmetric carbon and thus exist in two enantiomeric forms, as shown below.
Figure imgf000005_0001
The individual enantiomers and racemic mixtures of these are included within the scope of the present invention. Likewise, it is understood that the compounds of the present invention may exist in tautomeric forms other than that shown in the formula, and these are also included within the scope of the present invention.
As referred to above, individual enantiomers of compounds of formula (I) may be prepared. In one embodiment, an optically pure enantiomer is desired. The term "optically pure enantiomer" means that the compound contains greater than about 90 % of the desired isomer by weight, for example greater than about 95 % of the desired isomer by weight, or greater than about 99 % of the desired isomer by weight, said weight percent based upon the total weight of the isomer(s) of the compound. In some cases, one enantiomer of a particular structure may have a significantly higher activity than the other enantiomer of the same structure. Chirally pure, or chirally enriched compounds may be prepared by chirally selective synthesis or by separation of enantiomers. The separation of enantiomers may be carried out on the final product or, alternatively on a suitable intermediate.
Compounds of general formula (I) may be prepared by methods known in the art of organic synthesis as set forth in part by the following synthesis schemes. It is also recognised that in all of the schemes described below, it is well understood that protecting groups for sensitive or reactive groups are employed where necessary in accordance with general principles of chemistry. Protecting groups are manipulated according to standard methods of organic synthesis (T. W. Greene and P. G. M. Wuts (1991 ) Protecting Groups in Organic Synthesis. John Wiley & Sons). These groups are removed at a convenient stage of the compound synthesis using methods that are readily apparent to those skilled in the art. The selection of processes as well as the reaction conditions and order of their execution shall be consistent with the preparation of compounds of formula (I). Those skilled in the art will recognise if a stereocentre exists in compounds of formula (I). Accordingly, the present invention includes both possible enantiomers and includes not only racemic compounds but the individual enantiomers as well. Where the stereochemistry is indicated as being variable at certain positions, a mixture of enantiomers may be obtained, this mixture having been separated where indicated. Enantiomers may be separated by chiral high-performance liquid chromatography or other appropriate means. When a single enantiomer is desired, it may be obtained by stereospecific synthesis or by resolution of the final product or any convenient intermediate. Resolution of the final product, an intermediate, or a starting material may be effected by any suitable method known in the art. See, for example, Stereochemistry of Organic Compounds by E. L. Eliel, S. H. Wilen, and L. N. Mander (Wiley-lnterscience, 1994).
Typical reaction routes for the preparation of a compound of formula (I) as hereinbefore defined, are shown in the following schemes. The starting materials and reagents are known to the skilled person in the art and/or can be prepared using methods known in the art.
Compounds of formula (I) can be synthesised by known methods; for example by, but not limited to, the synthetic route outlined in the scheme below:
Scheme 1
Figure imgf000006_0001
Step (iii)
Figure imgf000006_0002
wherein R1 and R2 are as defined for formula (I).
Step (i) is carried out for example by reaction of acetone with either dimethylamine or pyrrolidine or salt thereof in the presence of inorganic cyanide, for example potassium cyanide, in solvent such as water or by reaction of acetone with either dimethylamine or pyrrolidine with trimethylsilyl cyanide in either the absence of solvent or in a solvent such as acetic acid. Step (ii) can be achieved by successive reaction with an appropriate organometallic reagent, for example phenyllithium, in a suitable inert solvent for example tetrahydrofuran, followed by reduction with a reducing agent, for example, sodium borohydride in a suitable solvent, for example methanol.
Acylation step (iii) can be achieved by reaction with a compound of formula (III):
Figure imgf000007_0001
wherein L represents a suitable leaving group. Examples of leaving groups include halogen, hydroxy, OC(=O)alkyl, OC(=O)O-alkyl and OSO2Me. L may be halogen and acylation in step (iii) may be carried out in an inert solvent such as dichloromethane, in the presence of a base such as triethylamine. When L represents hydroxy, the reaction may take place in an inert solvent such as dichloromethane in the presence of a coupling reagent, for example a diimide reagent such as N1N dicyclohexylcarbodiimide (DCC), N- (3-(dimethylamino)propyl)-N-ethylcarbodiimide hydrochloride (EDC), polymer-supported EDC, polymer-supported DCC or O-(7-azabenzotriazol-1-yl)-1 ,1 ,3,3-tetramethyluronium hexafluoro phosphate (HATU).
Accordingly, in a second aspect, the present invention provides a method of preparing a compound of formula (I), comprising reacting a compound of formula (II):
Figure imgf000007_0002
wherein R1 and R2 are as defined in formula (I), with a compound of formula (III):
Figure imgf000007_0003
(III) wherein L represents a suitable leaving group; and thereafter optionally:
• removing any protecting groups and/or
• forming a salt or solvate.
In one embodiment, L is halogen, hydroxy, OC(=O)alkyl, OC(=O)O-alkyl or OSO2Me. In one embodiment, L is chlorine.
Pharmaceutically acceptable salts may be prepared conventionally by reaction with the appropriate acid or acid derivative.
The compounds of the present invention inhibit the GIyTI transporter. The compounds may selectively inhibit the GIyTI transporter over the GlyT2 transporter.
Such compounds would be suitable for the treatment of certain neurological and neuropsychiatric disorders. As used herein, the terms "treatment" and "treating" refer to the alleviation and/or cure of established symptoms as well as prophylaxis.
The affinities of the compounds of this invention for the GIyTI transporter can be determined by the following assay:
HEK293 cells expressing the Glycine (Type 1 ) transporter were grown in cell culture medium [DMEM/NUT mix F12 containing 2mM L-Glutamine, 0.8mg/ml_ G418 and 10% heat inactivated fetal calf serum] at 370C and 5% CO2. Cells grown to 70-80% confluency in T175 flasks were harvested and resuspended at 1.32x106 cells/mL in assay buffer [14OmM NaCI, 5.4mM KCI, 1.8mM CaCI2, 0.8mM MgSO4, 2OmM HEPES, 5mM glucose and 5mM alanine, pH 7.4]. Compounds were serially diluted 2.5-fold in DMSO from a top concentration of 2.5mM with each compound giving a 11 data point dose-response. 10OnL of compound at each concentration was added to the assay plate. An equal volume of Leadseeker™ WGA SPA beads (12.5mg/ml suspended in assay buffer) was added to the cell suspension (1.32 x 106) and 5uL of the cell/bead suspension transferred to each well of a 384-well white solid bottom plate (3300 cells/well) containing 10OnL of test compounds. Substrate (5uL) was added to each well [1 :100 dilution of [3H]-glycine stock in assay buffer containing 2.5uM glycine). Final DMSO concentration was 1 % v/v. Data was collected using a Perkin Elmer Viewlux. plC50 values were determined using ActivityBase.
The following assay may also be used:
HEK293 cells expressing the Glycine (Type 1 ) transporter are grown in cell medium (DMEM/NUT mix F12) containing 2 mM L-Glutamine, 0.8 mg/mL G418 and 10% heat inactivated fetal calf serum (Gibco BRL) at 370C in 5% CO2. Cells grown to 70-80% confluency in T175 flasks are harvested and resuspended at 4x105 cells/ml in assay buffer [NaCI (140 mM), KCI (5.4 mM), CaCI2 (1.8 mM), MgSC>4 (0.8 mM), HEPES (2OmM), glucose (5 mM) and alanine (5 mM), pH 7.4]. An equal volume of Leadseeker™ SPA beads (12.5mg/ml suspended in assay buffer) is added to the cell suspension. Compounds are prepared as 1OmM stocks in DMSO. 2.5 fold serial dilutions of the compounds are made in DMSO from a top cone of 2.5 mM. 100 nl_ of compound at each concentration is added to the assay plate (384-well white solid bottom plate) using the hummingbird dispenser. 5uL of the cell/bead mix is then added on top of the compound using a multidrop dispenser. Substrate (5uL) is then added to each well (1 :100 dilution of H3-glycine in assay buffer containing 2.5 uM glycine) Data is collected using a PerkinElmer Viewlux as 5 minute exposures. plC50 data values are determined using Activity Base.
Compounds may be assayed in their free base form or in the form of a salt, for example the hydrochloride salt or the formate salt. The assays described above are generally considered to provide data that is correct to ±3 standard deviations = ±0.5.
Compounds having a PIC50 at the GIyTI transporter of greater than or equal to 5.0 are considered to be active at the GIyTI transporter. The example compounds below were found to have a PIC50 at the GIyTI transporter of greater than or equal to 7.0.
Accordingly, in a further aspect of the invention, there is provided a compound of formula (I) or a salt or solvate thereof for use in therapy.
In another aspect of the invention, there is provided a compound of formula (I) as hereinbefore described or a salt or solvate thereof, for use in the treatment of a disorder mediated by GIyTI .
As used herein, the term "a disorder mediated by GIyTI" refers to a disorder that may be treated by the administration of a medicament that alters the activity of the GIyTI transporter. As hereinbefore described, the action of GIyTI transporters affects the local concentration of glycine around NMDA receptors. As a certain amount of glycine is needed for the efficient functioning of NMDA receptors, any change to that local concentration can affect NMDA-mediated neurotransmission. As hereinbefore described, changes in NMDA-mediated neurotransmission have been implicated in certain neuropsychiatric disorders such as dementia, depression and psychoses, for example schizophrenia, and learning and memory disorders, for example attention deficit disorders and autism. Thus, alterations in the activity of the GIyTI transporter are expected to influence such disorders.
The disorders mediated by GIyTI referred to herein include neurological and neuropsychiatric disorders, including psychoses such as schizophrenia, dementia and other forms of impaired cognition such as attention deficit disorders and organic brain syndromes. Other neuropsychiatric disorders include drug-induced (phencyclidine, ketamine and other dissociative anesthetics, amphetamine and other psychostimulants and cocaine) psychosis, psychosis associated with affective disorders, brief reactive psychosis, schizoaffective psychosis, and psychosis NOS, "schizophrenia-spectrum" disorders such as schizoid or schizotypal personality disorders, or illness associated with psychosis (such as major depression, manic depressive (bipolar) disorder, Alzheimer's disease and post-traumatic stress syndrome), and NMDA receptor-related disorders such as autism, depression, benign forgetfulness, childhood learning disorders and closed head injury.
The compounds of formula (I) are of use as antipsychotic agents for example in the treatment of schizophrenia, schizo-affective disorders, schizophreniform diseases, psychotic depression, mania, acute mania, paranoid and delusional disorders.
Within the context of the present invention, the terms used herein are classified in the Diagnostic and Statistical Manual of Mental Disorders, 4th Edition, published by the American Psychiatric Association (DSM-IV) and/or the International Classification of Diseases, 10th Edition (ICD-10). The various subtypes of the disorders mentioned herein are contemplated as part of the present invention. Numbers in brackets after the listed diseases below refer to the classification code in DSM-IV.
In particular, the compounds of formula (I) are of use in the treatment of schizophrenia including the subtypes Paranoid Type (295.30), Disorganised Type (295.10), Catatonic Type (295.20), Undifferentiated Type (295.90) and Residual Type (295.60); Schizophreniform Disorder (295.40); Schizoaffective Disorder (295.70) including the subtypes Bipolar Type and Depressive Type; Delusional Disorder (297.1 ) including the subtypes Erotomanic Type, Grandiose Type, Jealous Type, Persecutory Type, Somatic Type, Mixed Type and Unspecified Type; Brief Psychotic Disorder (298.8); Shared Psychotic Disorder (297.3); Psychotic Disorder Due to a General Medical Condition including the subtypes With Delusions and With Hallucinations; Substance-Induced Psychotic Disorder including the subtypes With Delusions (293.81 ) and With Hallucinations (293.82); and Psychotic Disorder Not Otherwise Specified (298.9).
The compounds of formula (I) are also of use in the treatment of mood disorders including Major Depressive Episode, Manic Episode, Mixed Episode and Hypomanic Episode;
Depressive Disorders including Major Depressive Disorder, Dysthymic Disorder (300.4),
Depressive Disorder Not Otherwise Specified (311 ); Bipolar Disorders including Bipolar I
Disorder, Bipolar Il Disorder (Recurrent Major Depressive Episodes with Hypomanic
Episodes) (296.89), Cyclothymic Disorder (301.13) and Bipolar Disorder Not Otherwise Specified (296.80); Other Mood Disorders including Mood Disorder Due to a General
Medical Condition (293.83) which includes the subtypes With Depressive Features, With
Major Depressive-like Episode, With Manic Features and With Mixed Features), Substance-Induced Mood Disorder (including the subtypes With Depressive Features, With Manic Features and With Mixed Features) and Mood Disorder Not Otherwise Specified (296.90).
The compounds of formula (I) are also of use in the treatment of anxiety disorders including Panic Attack, Agoraphobia, Panic Disorder, Agoraphobia Without History of Panic Disorder (300.22), Specific Phobia (300.29) including the subtypes Animal Type, Natural Environment Type, Blood-lnjection-lnjury Type, Situational Type and Other Type), Social Phobia (300.23), Obsessive-Compulsive Disorder (300.3), Posttraumatic Stress Disorder (309.81 ), Acute Stress Disorder (308.3), Generalized Anxiety Disorder (300.02), Anxiety Disorder Due to a General Medical Condition (293.84), Substance-Induced Anxiety Disorder and Anxiety Disorder Not Otherwise Specified (300.00).
The compounds of formula (I) are also of use in the treatment of substance-related disorders including Substance Use Disorders such as Substance Dependence and Substance Abuse; Substance-Induced Disorders such as Substance Intoxication, Substance Withdrawal, Substance-Induced Delirium, Substance-Induced Persisting Dementia, Substance-Induced Persisting Amnestic Disorder, Substance-Induced Psychotic Disorder, Substance-Induced Mood Disorder, Substance-Induced Anxiety Disorder, Substance-Induced Sexual Dysfunction, Substance-Induced Sleep Disorder and Hallucinogen Persisting Perception Disorder (Flashbacks); Alcohol-Related Disorders such as Alcohol Dependence (303.90), Alcohol Abuse (305.00), Alcohol Intoxication (303.00), Alcohol Withdrawal (291.81 ), Alcohol Intoxication Delirium, Alcohol Withdrawal Delirium, Alcohol-Induced Persisting Dementia, Alcohol-Induced Persisting Amnestic Disorder, Alcohol-Induced Psychotic Disorder, Alcohol-Induced Mood Disorder, Alcohol- Induced Anxiety Disorder, Alcohol-Induced Sexual Dysfunction, Alcohol-Induced Sleep Disorder and Alcohol-Related Disorder Not Otherwise Specified (291.9); Amphetamine (or Amphetamine-Like)-Related Disorders such as Amphetamine Dependence (304.40), Amphetamine Abuse (305.70), Amphetamine Intoxication (292.89), Amphetamine Withdrawal (292.0), Amphetamine Intoxication Delirium, Amphetamine Induced Psychotic Disorder, Amphetamine-Induced Mood Disorder, Amphetamine-Induced Anxiety Disorder, Amphetamine-Induced Sexual Dysfunction, Amphetamine-Induced Sleep Disorder and Amphetamine-Related Disorder Not Otherwise Specified (292.9); Caffeine Related Disorders such as Caffeine Intoxication (305.90), Caffeine-Induced Anxiety Disorder, Caffeine-Induced Sleep Disorder and Caffeine-Related Disorder Not Otherwise Specified (292.9); Cannabis-Related Disorders such as Cannabis Dependence (304.30), Cannabis Abuse (305.20), Cannabis Intoxication (292.89), Cannabis Intoxication Delirium, Cannabis-lnduced Psychotic Disorder, Cannabis-lnduced Anxiety Disorder and Cannabis- Related Disorder Not Otherwise Specified (292.9); Cocaine-Related Disorders such as Cocaine Dependence (304.20), Cocaine Abuse (305.60), Cocaine Intoxication (292.89), Cocaine Withdrawal (292.0), Cocaine Intoxication Delirium, Cocaine-Induced Psychotic Disorder, Cocaine-Induced Mood Disorder, Cocaine-Induced Anxiety Disorder, Cocaine- Induced Sexual Dysfunction, Cocaine-Induced Sleep Disorder and Cocaine-Related Disorder Not Otherwise Specified (292.9); Hallucinogen-Related Disorders such as Hallucinogen Dependence (304.50), Hallucinogen Abuse (305.30), Hallucinogen Intoxication (292.89), Hallucinogen Persisting Perception Disorder (Flashbacks) (292.89), Hallucinogen Intoxication Delirium, Hallucinogen-Induced Psychotic Disorder, Hallucinogen-Induced Mood Disorder, Hallucinogen-Induced Anxiety Disorder and Hallucinogen-Related Disorder Not Otherwise Specified (292.9); Inhalant-Related Disorders such as Inhalant Dependence (304.60), Inhalant Abuse (305.90), Inhalant Intoxication (292.89), Inhalant Intoxication Delirium, Inhalant-Induced Persisting Dementia, Inhalant-Induced Psychotic Disorder, Inhalant-Induced Mood Disorder, Inhalant-Induced Anxiety Disorder and Inhalant-Related Disorder Not Otherwise Specified (292.9); Nicotine-Related Disorders such as Nicotine Dependence (305.1 ), Nicotine Withdrawal (292.0) and Nicotine-Related Disorder Not Otherwise Specified (292.9); Opioid-Related Disorders such as Opioid Dependence (304.00), Opioid Abuse (305.50), Opioid Intoxication (292.89), Opioid Withdrawal (292.0), Opioid Intoxication Delirium, Opioid-lnduced Psychotic Disorder, Opioid-lnduced Mood Disorder, Opioid-lnduced Sexual Dysfunction, Opioid-lnduced Sleep Disorder and Opioid-Related Disorder Not Otherwise Specified (292.9); Phencyclidine (or Phencyclidine-Like)-Related Disorders such as Phencyclidine Dependence (304.60), Phencyclidine Abuse (305.90), Phencyclidine Intoxication (292.89), Phencyclidine Intoxication Delirium, Phencyclidine- lnduced Psychotic Disorder, Phencyclidine-lnduced Mood Disorder, Phencyclidine- lnduced Anxiety Disorder and Phencyclidine-Related Disorder Not Otherwise Specified (292.9); Sedative-, Hypnotic-, or Anxiolytic-Related Disorders such as Sedative, Hypnotic, or Anxiolytic Dependence (304.10), Sedative, Hypnotic, or Anxiolytic Abuse (305.40), Sedative, Hypnotic, or Anxiolytic Intoxication (292.89), Sedative, Hypnotic, or Anxiolytic Withdrawal (292.0), Sedative, Hypnotic, or Anxiolytic Intoxication Delirium, Sedative, Hypnotic, or Anxiolytic Withdrawal Delirium, Sedative-, Hypnotic-, or Anxiolytic-Persisting Dementia, Sedative-, Hypnotic-, or Anxiolytic- Persisting Amnestic Disorder, Sedative-, Hypnotic-, or Anxiolytic-lnduced Psychotic Disorder, Sedative-, Hypnotic-, or Anxiolytic- Induced Mood Disorder, Sedative-, Hypnotic-, or Anxiolytic-lnduced Anxiety Disorder Sedative-, Hypnotic-, or Anxiolytic-lnduced Sexual Dysfunction, Sedative-, Hypnotic-, or Anxiolytic-lnduced Sleep Disorder and Sedative-, Hypnotic-, or Anxiolytic-Related Disorder Not Otherwise Specified (292.9); Polysubstance-Related Disorder such as Polysubstance Dependence (304.80); and Other (or Unknown) Substance-Related Disorders such as Anabolic Steroids, Nitrate Inhalants and Nitrous Oxide.
The compounds of formula (I) are also of use in the treatment of sleep disorders including primary sleep disorders such as Dyssomnias such as Primary Insomnia (307.42), Primary Hypersomnia (307.44), Narcolepsy (347), Breathing-Related Sleep Disorders (780.59), Circadian Rhythm Sleep Disorder (307.45) and Dyssomnia Not Otherwise Specified (307.47); primary sleep disorders such as Parasomnias such as Nightmare Disorder (307.47), Sleep Terror Disorder (307.46), Sleepwalking Disorder (307.46) and Parasomnia Not Otherwise Specified (307.47); Sleep Disorders Related to Another Mental Disorder such as Insomnia Related to Another Mental Disorder (307.42) and Hypersomnia Related to Another Mental Disorder (307.44); Sleep Disorder Due to a General Medical Condition; and Substance-Induced Sleep Disorder including the subtypes Insomnia Type, Hypersomnia Type, Parasomnia Type and Mixed Type.
The compounds of formula (I) are also of use in the treatment of eating disorders such as Anorexia Nervosa (307.1 ) including the subtypes Restricting Type and Binge- Eating/Purging Type; Bulimia Nervosa (307.51 ) including the subtypes Purging Type and Nonpurging Type; Obesity; Compulsive Eating Disorder; and Eating Disorder Not Otherwise Specified (307.50).
The compounds of formula (I) are also of use in the treatment of Autistic Disorder (299.00); Attention-Deficit /Hyperactivity Disorder including the subtypes Attention-Deficit /Hyperactivity Disorder Combined Type (314.01 ), Attention-Deficit /Hyperactivity Disorder Predominantly Inattentive Type (314.00), Attention-Deficit /Hyperactivity Disorder Hyperactive-Impulse Type (314.01 ) and Attention-Deficit /Hyperactivity Disorder Not Otherwise Specified (314.9); Hyperkinetic Disorder; Disruptive Behaviour Disorders such as Conduct Disorder including the subtypes childhood-onset type (321.81 ), Adolescent- Onset Type (312.82) and Unspecified Onset (312.89), Oppositional Defiant Disorder (313.81 ) and Disruptive Behaviour Disorder Not Otherwise Specified; and Tic Disorders such as Tourette's Disorder (307.23).
The compounds of formula (I) are also of use in the treatment of Personality Disorders including the subtypes Paranoid Personality Disorder (301.0), Schizoid Personality
Disorder (301.20), Schizotypal Personality Disorder (301 ,22), Antisocial Personality
Disorder (301.7), Borderline Personality Disorder (301 ,83), Histrionic Personality Disorder
(301.50), Narcissistic Personality Disorder (301 ,81 ), Avoidant Personality Disorder
(301.82), Dependent Personality Disorder (301.6), Obsessive-Compulsive Personality Disorder (301.4) and Personality Disorder Not Otherwise Specified (301.9).
The compounds of Formula (I) are also of use in the enhancement of cognition including the treatment of cognition impairment in other diseases such as schizophrenia, bipolar disorder, depression, other psychiatric disorders and psychotic conditions associated with cognitive impairment. Within the context of the present invention, the term cognitive impairment includes for example the treatment of impairment of cognitive functions including attention, orientation, learning disorders, memory (i.e. memory disorders, amnesia, amnesic disorders, transient global amnesia syndrome and age-associated memory impairment) and language function; cognitive impairment as a result of stroke, Alzheimer's disease, Huntington's disease, Pick disease, Aids-related dementia or other dementia states such as Multiinfarct dementia, alcoholic dementia, hypotiroidism-related dementia, and dementia associated to other degenerative disorders such as cerebellar atrophy and amyotropic lateral sclerosis; other acute or sub-acute conditions that may cause cognitive decline such as delirium or depression (pseudodementia states) trauma, head trauma, age related cognitive decline, stroke, neurodegeneration, drug-induced states, neurotoxic agents, mild cognitive impairment, age related cognitive impairment, autism related cognitive impairment, Down's syndrome, cognitive deficit related to psychosis, and post-electroconvulsive treatment related cognitive disorders; and dyskinetic disorders such as Parkinson's disease, neuroleptic-induced parkinsonism, and tardive dyskinesias.
The compounds of formula (I) are also of use in the treatment of sexual dysfunctions including Sexual Desire Disorders such as Hypoactive Sexual Desire Disorder (302.71 ), and Sexual Aversion Disorder (302.79); sexual arousal disorders such as Female Sexual Arousal Disorder (302.72) and Male Erectile Disorder (302.72); orgasmic disorders such as Female Orgasmic Disorder (302.73), Male Orgasmic Disorder (302.74) and Premature Ejaculation (302.75); sexual pain disorder such as Dyspareunia (302.76) and Vaginismus (306.51 ); Sexual Dysfunction Not Otherwise Specified (302.70); paraphilias such as Exhibitionism (302.4), Fetishism (302.81 ), Frotteurism (302.89), Pedophilia (302.2), Sexual Masochism (302.83), Sexual Sadism (302.84), Transvestic Fetishism (302.3), Voyeurism (302.82) and Paraphilia Not Otherwise Specified (302.9); gender identity disorders such as Gender Identity Disorder in Children (302.6) and Gender Identity Disorder in Adolescents or Adults (302.85); and Sexual Disorder Not Otherwise Specified (302.9).
The invention also provides a compound of formula (I) as hereinbefore described or a pharmaceutically acceptable salt or solvate thereof for use in the treatment of schizophrenia, mood disorders, anxiety disorders, substance-related disorders, sleep disorders, eating disorders, autistic disorder, attention-deficit/hyperactivity disorder, disruptive behaviour disorder, tic disorders, personality disorders, cognition impairment in other diseases, sexual dysfunction, Parkinson's disease, dyskinetic disorders, depression, bipolar disorder, cognitive impairment, obesity, emesis, movement disorders, obsessive- compulsive disorders, amnesia, aggression, vertigo, dementia and circadian rhythm disorders.
The invention also provides a compound of formula (I) as hereinbefore described or a pharmaceutically acceptable salt or solvate thereof for use in the treatment of psychotic disorders, substance abuse, cognitive impairment, obesity, and gastric motility disorders.
In another aspect of the invention, there is provided a method of treating a mammal, including a human, suffering from or susceptible to a disorder mediated by GIyTI , which comprises administering an effective amount of a compound of formula (I) as hereinbefore defined or a salt or solvate thereof. The invention also provides a method of treating schizophrenia, mood disorders, anxiety disorders, substance-related disorders, sleep disorders, eating disorders, autistic disorder, attention-deficit/hyperactivity disorder, disruptive behaviour disorder, tic disorders, personality disorders, cognition impairment in other diseases, sexual dysfunction, Parkinson's disease, dyskinetic disorders, depression, bipolar disorder, cognitive impairment, obesity, emesis, movement disorders, obsessive-compulsive disorders, amnesia, aggression, vertigo, dementia and circadian rhythm disorders which comprises administering to a mammal in need thereof an effective amount of a compound of formula (I) as hereinbefore described or a pharmaceutically acceptable salt or solvate thereof.
The invention also provides a method of treating psychotic disorders, substance abuse, cognitive impairment, obesity and gastric motility disorders which comprises administering to a mammal in need thereof an effective amount of a compound of formula (I) as hereinbefore described or a pharmaceutically acceptable salt or solvate thereof.
The compounds of formula (I) are also of use as anticonvulsants. The compounds of formula (I) are thus useful in the treatment of convulsions in mammals, and particularly epilepsy in humans. "Epilepsy" is intended to include the following seizures: simple partial seizures, complex partial seizures, secondary generalised seizures, generalised seizures including absence seizures, myoclonic seizures, clonic seizures, tonic seizures, tonic clonic seizures and atonic seizures. The invention also provides a method of treating convulsions, which comprises administering to a mammal in need thereof an effective amount of a compound of formula (I) as hereinbefore described or a pharmaceutically acceptable salt or solvate thereof. Treatment of epilepsy may be carried out by the administration of a non-toxic anticonvulsant effective amount of a compound of the formula (III) or a pharmaceutically acceptable salt, or a composition as hereinbefore defined.
The compounds of formula (I) also find use in the treatment of neuropathic pain, for example in diabetic neuropathy, sciatica, non-specific lower back pain, multiple sclerosis pain, fibromyalgia, HIV-related neuropathy, neuralgia such as post-herpetic neuralgia and trigeminal neuralgia and pain resulting from physical trauma, amputation, cancer, toxins or chronic inflammatory conditions.
In another aspect of the invention, there is provided use of a compound of formula (I) as hereinbefore defined or a salt or solvate thereof in the preparation of a medicament for the treatment of a disorder mediated by GIyTI .
In one embodiment, the disorder mediated by GIyTI to be treated by the use or method as hereinbefore described is a psychosis, including schizophrenia, dementia and attention deficit disorders, particularly schizophrenia. The invention also provides the use of a compound of formula (I) as hereinbefore described or a pharmaceutically acceptable salt or solvate thereof in the manufacture of a medicament for the treatment of schizophrenia, mood disorders, anxiety disorders, substance-related disorders, sleep disorders, eating disorders, autistic disorder, attention- deficit/hyperactivity disorder, disruptive behaviour disorder, tic disorders, personality disorders, cognition impairment in other diseases, sexual dysfunction, Parkinson's disease, dyskinetic disorders, depression, bipolar disorder, cognitive impairment, obesity, emesis, movement disorders, obsessive-compulsive disorders, amnesia, aggression, vertigo, dementia and circadian rhythm disorders.
The invention also provides the use of a compound of formula (I) as hereinbefore described or a pharmaceutically acceptable salt or solvate thereof in the manufacture of a medicament for the treatment of psychotic disorders, substance abuse, cognitive impairment, obesity and gastric motility disorders.
As used herein, the term "effective amount" means that amount of a drug or pharmaceutical agent that will elicit the biological or medical response of a tissue, system, animal or human that is being sought, for instance, by a researcher or clinician.
Compounds for use according to the invention may be administered as the raw material but the active ingredients may be provided in the form of pharmaceutical compositions.
Accordingly, in a further aspect of the invention, there is provided a pharmaceutical composition comprising a compound of formula (I) as hereinbefore described or a salt or solvate thereof, and at least one pharmaceutically acceptable carrier, diluent or excipient.
These pharmaceutical compositions may be used in the treatment of clinical conditions for which a GIyTI inhibitor is indicated such as, for example, schizophrenia. The carrier must be pharmaceutically acceptable to the recipient and must be compatible with, i.e. not have a deleterious effect upon, the other ingredients in the composition. The carrier may be a solid or a liquid and may be formulated with at least one compound of formula (I) or a salt or solvate thereof as a unit dose formulation. If desired, other physiologically active ingredients may also be incorporated in the pharmaceutical compositions of the invention.
It will be appreciated by those skilled in the art that the compounds according to the invention may advantageously be used in conjunction with one or more other therapeutic agents, for instance, different antidepressant agents such as 5HT3 antagonists, serotonin agonists, NK-1 antagonists, selective serotonin reuptake inhibitors (SSRI), noradrenaline re-uptake inhibitors (SNRI), tricyclic antidepressants, dopaminergic antidepressants, H3 antagonists, 5HT1A antagonists, 5HT1 B antagonists, 5HT1 D antagonists, D1 agonists, M1 agonists and/or anticonvulsant agents, as well as atypical antipsychotic drugs and cognitive enhancers. Suitable 5HT3 antagonists which may be used in combination of the compounds of the inventions include for example ondansetron, granisetron, metoclopramide.
Suitable serotonin agonists which may be used in combination with the compounds of the invention include sumatriptan, rauwolscine, yohimbine, metoclopramide.
Suitable SSRIs which may be used in combination with the compounds of the invention include fluoxetine, citalopram, femoxetine, fluvoxamine, paroxetine, indalpine, sertraline, zimeldine.
Suitable SNRIs which may be used in combination with the compounds of the invention include venlafaxine and reboxetine.
Suitable tricyclic antidepressants which may be used in combination with a compound of the invention include imipramine, amitriptiline, chlomipramine and nortriptiline.
Suitable dopaminergic antidepressants which may be used in combination with a compound of the invention include bupropion and amineptine.
Suitable anticonvulsant agents which may be used in combination of the compounds of the invention include for example divalproex, carbamazepine and diazepam.
The compounds of formula (I) and their pharmaceutically acceptable salts and solvates thereof are also suitable for combination with other typical and atypical antipsychotics to provide improved treatment of psychotic disorders.
The combination therapies of the invention may be administered adjunctively. By adjunctive administration is meant the coterminous or overlapping administration of each of the components in the form of separate pharmaceutical compositions or devices. This regime of therapeutic administration of two or more therapeutic agents is referred to generally by those skilled in the art and herein as adjunctive therapeutic administration; it is also known as add-on therapeutic administration. Any and all treatment regimes in which a patient receives separate but coterminous or overlapping therapeutic administration of the compounds of formula (I) or a pharmaceutically acceptable salt or solvate thereof and at least one neuroleptic agent are within the scope of the current invention. In one embodiment of adjunctive therapeutic administration as described herein, a patient is typically stabilised on a therapeutic administration of one or more of the components for a period of time and then receives administration of another component. Within the scope of this invention, the compounds of formula (I) or a pharmaceutically acceptable salt or solvate thereof may be administered as adjunctive therapeutic treatment to patients who are receiving administration of at least one neuroleptic agent, but the scope of the invention also includes the adjunctive therapeutic administration of at least one neuroleptic agent to patients who are receiving administration of compounds of formula (I) or a pharmaceutically acceptable salt or solvate thereof.
The combination therapies of the invention may also be administered simultaneously. By simultaneous administration is meant a treatment regime wherein the individual components are administered together, either in the form of a single pharmaceutical composition or device comprising or containing both components, or as separate compositions or devices, each comprising one of the components, administered simultaneously. Such combinations of the separate individual components for simultaneous combination may be provided in the form of a kit-of-parts.
In a further aspect therefore, the invention provides a method of treatment of a psychotic disorder by adjunctive therapeutic administration of compounds of formula (I) or a pharmaceutically acceptable salt or solvate thereof to a patient receiving therapeutic administration of at least one neuroleptic agent. In a further aspect, the invention provides the use of compounds of formula (I) or a pharmaceutically acceptable salt or solvate thereof in the manufacture of a medicament for adjunctive therapeutic administration for the treatment of a psychotic disorder in a patient receiving therapeutic administration of at least one neuroleptic agent. The invention further provides compounds of formula (I) or a pharmaceutically acceptable salt or solvate thereof for use for adjunctive therapeutic administration for the treatment of a psychotic disorder in a patient receiving therapeutic administration of at least one neuroleptic agent.
In a further aspect, the invention provides a method of treatment of a psychotic disorder by adjunctive therapeutic administration of at least one neuroleptic agent to a patient receiving therapeutic administration of compounds of formula (I) or a pharmaceutically acceptable salt or solvate thereof. In a further aspect, the invention provides the use of at least one neuroleptic agent in the manufacture of a medicament for adjunctive therapeutic administration for the treatment of a psychotic disorder in a patient receiving therapeutic administration of compounds of formula (I) or a pharmaceutically acceptable salt or solvate thereof. The invention further provides at least one neuroleptic agent for adjunctive therapeutic administration for the treatment of a psychotic disorder in a patient receiving therapeutic administration of compounds of formula (I) or a pharmaceutically acceptable salt or solvate thereof.
In a further aspect, the invention provides a method of treatment of a psychotic disorder by simultaneous therapeutic administration of compounds of formula (I) or a pharmaceutically acceptable salt or solvate thereof in combination with at least one neuroleptic agent. The invention further provides the use of a combination of compounds of formula (I) or a pharmaceutically acceptable salt or solvate thereof and at least one neuroleptic agent in the manufacture of a medicament for simultaneous therapeutic administration in the treatment of a psychotic disorder. The invention further provides the use of compounds of formula (I) or a pharmaceutically acceptable salt thereof in the manufacture of a medicament for simultaneous therapeutic administration with at least one neuroleptic agent in the treatment of a psychotic disorder. The invention further provides compounds of formula (I) or a pharmaceutically acceptable salt thereof for use for simultaneous therapeutic administration with at least one neuroleptic agent in the treatment of a psychotic disorder. The invention further provides the use of at least one neuroleptic agent in the manufacture of a medicament for simultaneous therapeutic administration with compounds of formula (I) or a pharmaceutically acceptable salt thereof in the treatment of a psychotic disorder.
In further aspects, the invention provides a method of treatment of a psychotic disorder by simultaneous therapeutic administration of a pharmaceutical composition comprising compounds of formula (I) or a pharmaceutically acceptable salt or solvate thereof and at least one mood stabilising or antimanic agent, a pharmaceutical composition comprising compounds of formula (I) or a pharmaceutically acceptable salt or solvate thereof and at least one mood stabilising or antimanic agent, the use of a pharmaceutical composition comprising compounds of formula (I) or a pharmaceutically acceptable salt or solvate thereof and at least one mood stabilising or antimanic agent in the manufacture of a medicament for the treatment of a psychotic disorder, and a pharmaceutical composition comprising compounds of formula (I) or a pharmaceutically acceptable salt or solvate thereof and at least one mood stabilising or antimanic agent for use in the treatment of a psychotic disorder.
In a further aspect, the invention provides a kit-of-parts for use in the treatment of a psychotic disorder comprising a first dosage form comprising compounds of formula (I) or a pharmaceutically acceptable salt or solvate thereof and one or more further dosage forms each comprising a neuroleptic agent for simultaneous therapeutic administration.
Within the context of the present invention, the term psychiatric disorder includes those disorders mentioned above, such as schizophrenia, mood disorders, anxiety disorders, substance-related disorders, sleep disorders, eating disorders, autistic disorder, attention- deficit/hyperactivity disorder, disruptive behaviour disorder, tic disorders, personality disorders, cognition impairment in other diseases, sexual dysfunction, dyskinetic disorders, depression, bipolar disorder, cognitive impairment and obsessive-compulsive disorders and all the various forms of the disorders as mentioned herein, which are contemplated as part of the present invention.
Examples of neuroleptic/antipsychotic drugs that are useful in the present invention include, but are not limited to: butyrophenones, such as haloperidol, pimozide, and droperidol; phenothiazines, such as chlorpromazine, thioridazine, mesoridazine, trifluoperazine, perphenazine, fluphenazine, thiflupromazine, prochlorperazine, and acetophenazine; thioxanthenes, such as thiothixene and chlorprothixene ; thienobenzodiazepines; dibenzodiazepines; benzisoxazoles; dibenzothiazepines; imidazolidinones ; benzisothiazolyl-piperazines; triazine such as lamotrigine; dibenzoxazepines, such as loxapine; dihydroindolones, such as molindone; aripiprazole; and derivatives thereof that have antipsychotic activity.
Examples of tradenames and suppliers of selected neuroleptic drugs are as follows : clozapine (available under the tradename CLOZARIL®, from Mylan, Zenith Goldline, UDL, Novartis); olanzapine (available under the tradename ZYPREX®, from Lilly ; ziprasidone (available under the tradename GEODON®, from Pfizer); risperidone (available under the tradename RISPERDAL®, from Janssen); quetiapine fumarate (available under the tradename SEROQUEL®, from AstraZeneca); haloperidol (available under the tradename HALDOL®, from Ortho-McNeil); chlorpromazine (available under the tradename THORAZINE®, from SmithKline Beecham (GSK); fluphenazine (available under the tradename PROLIXIN®, from Apothecon, Copley, Schering, Teva, and American Pharmaceutical Partners, Pasadena); thiothixene (available under the tradename NAVANE®;, from Pfizer); trifluoperazine (10-[3-(4-methyl-1-piperazinyl)propy|]- 2-(trifluoromethyl)phenothiazine dihydrochloride, available under the tradename STELAZINE®, from Smith Klein Beckman; perphenazine (available under the tradename TRILAFON®; from Schering); thioridazine (available under the tradename MELLARIL®; from Novartis, Roxane, HiTech, Teva, and Alpharma) ; molindone (available under the tradename MOBAN®, from Endo); and loxapine (available under the tradename LOXITANE®; from Watson). Furthermore, benperidol (Glianimon®), perazine (Taxilan®) or melperone (Eunerpan®)) may be used.
Other neuroleptic drugs include promazine (available under the tradename SPARINE®), triflurpromazine (available under the tradename VESPRIN®), chlorprothixene (available under the tradename TARACTAN®), droperidol (available under the tradename INAPSINE®), acetophenazine (available under the tradename TINDAL®;), prochlorperazine (available under the tradename COMPAZINE®), methotrimeprazine (available under the tradename NOZINAN®), pipotiazine (available under the tradename PIPOTRIL®), ziprasidone, and hoperidone.
In one embodiment, the neuroleptic agents for use in the invention are selected from the group consisting of olanzapine, risperidone, quetiapine, aripiprazole, haloperidol, clozapine, ziprasidone and osanetant.
For use in medicine, the compounds of the present invention are usually administered as a standard pharmaceutical composition. The present invention therefore provides in a further aspect a pharmaceutical composition comprising a compound of formula (I) as hereinbefore described or a pharmaceutically (i.e. physiologically) acceptable salt thereof and a pharmaceutically (i.e. physiologically) acceptable carrier. The pharmaceutical composition can be for use in the treatment of any of the conditions described herein.
Possible formulations include those suitable for oral, sub-lingual, buccal, parenteral (for example, subcutaneous, intramuscular, or intravenous), rectal, topical and intranasal administration and in forms suitable for administration by inhalation or insufflation (either through the mouth or nose). The most suitable means of administration for a particular patient will depend on the nature and severity of the conditions being treated and on the nature of the active compound. In one embodiment, oral administration is provided.
Formulations suitable for oral administration may be provided as discrete units, such as tablets, capsules, cachets, or lozenges, each containing a predetermined amount of the active compound; as powders or granules; as solutions or suspensions in aqueous or non-aqueous liquids; or as oil-in-water or water-in-oil emulsions. For example, a compound of the invention may be prepared as a formulation with a controlled release profile. This may be in any of the above mentioned pharmaceutical forms. For example, it may be a gel formulation in a non aqueous oily vehicle, for example Miglyol, with a suitable gelling agent if required, for example methyl cellulose or hydrophobic colloidal silica.
Formulations suitable for sublingual or buccal administration include lozenges comprising the active compound and, typically, a flavoured base, such as sugar and acacia or tragacanth and pastilles comprising the active compound in an inert base, such as gelatin and glycerin or sucrose and acacia.
Formulations suitable for parenteral administration typically comprise sterile aqueous solutions containing a predetermined concentration of the active compound; the solution may be isotonic with the blood of the intended recipient. Although such solutions may be administered intraveπeously, they may also be administered by subcutaneous or intramuscular injection.
Formulations suitable for rectal administration may be provided as unit-dose suppositories comprising the active ingredient and one or more solid carriers forming the suppository base, for example, cocoa butter.
Formulations suitable for topical or intranasal application include ointments, creams, lotions, pastes, gels, sprays, aerosols and oils. Suitable carriers for such formulations include petroleum jelly, lanolin, polyethylene glycols, alcohols, and combinations thereof.
Formulations of compounds of the invention may, for example, be composed so as to improve the exposure profile of the compound of the invention. Compositions suitable for transdermal administration include ointments, gels and patches. In one embodiment, the composition is in unit dose form such as a tablet, capsule or ampoule.
The formulations of the invention may be prepared by any suitable method, typically by uniformly and intimately admixing the active compound(s) with liquids or finely divided solid carriers, or both, in the required proportions and then, if necessary, shaping the resulting mixture into the desired shape.
For example, a tablet may be prepared by compressing an intimate mixture comprising a powder or granules of the active ingredient and one or more optional ingredients, such as a binder, lubricant, inert diluent, or surface active dispersing agent, or by moulding an intimate mixture of powdered active ingredient and inert liquid diluent.
Aqueous solutions for parenteral administration are typically prepared by dissolving the active compound in sufficient water to give the desired concentration and then rendering the resulting solution sterile and isotonic.
It will be appreciated that the precise dose administered will depend on the age and condition of the patient and the frequency and route of administration and will be at the ultimate discretion of the attendant physician. The compound may be administered in single or divided doses and may be administered one or more times, for example 1 to 4 times per day.
Compounds of the invention may be used as PET ligands (for example labelled with carbon-11 or fluohne-18) or as SPECT ligands (for example labelled with iodine-123 or meta stable technetium-99) for in vivo visualisation and quantification of the GIyTI transporter. For example, they may be used in PET or SPECT imaging of the brain. In the context of this patent, PET shall mean: positron emission tomography and SPECT (= SPET) shall mean: single photon emission (computed) tomography.
All publications, including but not limited to patents and patent applications, cited in this specification are herein incorporated by reference as if each individual publication were specifically and individually indicated to be incorporated by reference herein as though fully set forth.
The invention is further illustrated by the following non-limiting examples.
Abbreviations:
THF tetrahydrofuran DCM dichloromethane
DMF dimethylformamide MDAP Mass Directed Auto-Purification
Analytical LC/MS chromatography conditions:
Column: Waters Atlantis 50mm x 4.6mm, 3um particle size Mobile phase: A: 0.05% Formic acid + Water
B: Acetonitrile +0.05% Formic acid
Gradient: 5-min runtime: 3%B to 97%B over 4min
Flow rate: 3 ml/min
UV wavelength range: 220 -330 nm Temperature: 300C
Mass Directed Auto-Purification System chromatography conditions: Column: Waters Atlantis 19mm x 100mm or 30mm X 100mm, 5um particle size Mobile phase: A: 0.1% Formic acid + Water
B: Acetonitrile +0.1% Formic acid Gradient: 13.5 min runtime with 10min gradient dependant on analytical retention time Flow rate: 20 or 40 ml/min
Throughout the examples section, the following terminology is adopted with regard to chiral compounds: when a mixture of two enantiomers has been prepared, the compound is described as (±). When a single enantiomer (that is to say mixture chirally enriched in one of the enantiomers) has been prepared, it is referred to as "chiral". The absolute stereochemistry has not been ascertained at the time of filing. Individual enantiomers of some materials prepared are identified by virtue of optical rotations and such materials are identified as the (+) or (-) enantiomers. Where optical rotation information is not yet available, individual enantiomers of the products are individually identifiable by virtue of the chiral HPLC characteristics of the amine intermediate.
Where reactions are described as having been carried out in a similar manner to earlier, more completely described reactions, the general reaction conditions used were essentially the same. Work up conditions used were of the types standard in the art, but may have been adapted from one reaction to another.
Description 1: 2-Methyl-2-(1-pyrrolidinyl)propanenitrile
Figure imgf000023_0001
To a stirred, ice-cooled mixture of pyrrolidine (8.35ml; 0.1 mol) and acetone (7.34ml; 0.1 mol) was added a solution of potassium cyanide (6.51 g; 0.1 mol) in water (50ml) dropwise over 10min. After stirring at room temperature overnight, the crude reaction mixture was extracted with diethyl ether (2 x 250ml) and the combined extracts washed with saturated brine (150ml), dried (MgSO4), and evaporated under reduced pressure to afford the title product as a pale green liquid (10.7g; 78%) which was used without further purification. 1H NMR (CDCI3) δ: 1.51 (6H, s), 1.80 - 1.90 (4H, m), 2.70 - 2.80 (4H, m).
Description 2: (±)[2-Methyl-1-phenyl-2-(1-pyrrolidinyl)propyl]amine
Figure imgf000024_0001
To a solution of 2-methyl-2-(1-pyrrolidinyl)propanenitrile D1 (10.7g; 77.54mmol) in THF (400ml) at -700C under argon was added over 10 minutes a solution of phenyllithium in dibutylether (86.3ml of a 1.8M solution; 155mmol). The reaction mixture was stirred at - 700C for 2 hours then allowed to warm to room temperature and stirred overnight. The reaction mixture was cooled in ice as saturated aqueous sodium hydrogen carbonate (400ml) was added. After stirring for a further 30 minutes the layers were separated, and the aqueous layer extracted with ether (200ml). Combined organics were dried (MgSO4) and evaporated. The residual amber oil was dissolved in methanol (400ml), cooled in ice and sodium borohydride (5.2g; 137mmol) added in four portions over 5 minutes. The reaction mixture was stirred with ice cooling for 30 minutes, the ice removed and stirred at room temperature for 1.5 hours. The mixture was cooled in ice as water (50ml) was added prior to concentration in vacuo to approx 70ml. The mixture was partitioned between 2N HCI (100ml) and ethyl acetate (400ml) and the organics extracted with 2N HCI (2 x 100ml). Combined acidic aqueous layers were washed with ethyl acetate (200ml), basified with 50% NaOH and extracted with DCM (3 x 150ml). Combined DCM organic extracts were dried (Na2SO4) and evaporated in vacuo to afford the title compound as a colourless solid (15g: 88%) 1H NMR (CDCI3), δ:0.75 (3H, s), 0.99 (3H, s), 1.70 - 1.76 (4H, m), 1.80 (2H, bs), 2.65 - 2.70 (4H1 m), 4.08 (1 H, s), 7.20 - 7.42 (5H, m).
Description 3: (+)- [2-Methyl-1-phenyl-2-(1-pyrrolidinyl)propyl]amine
Figure imgf000024_0002
A solution of (R)-(-)-α-methoxyphenylacetic acid (8.08g; 49mmol) in 2-propanol (50ml) was added dropwise over 10 minutes to a stirred solution of [2-methyl-1-phenyl-2-(1- pyrrolidinyl)propyl]amine D2 (10.64g; 49mmol) in 2-propanol (107ml) at 570C. After complete addition heating was continued for a further 10 minutes. Heating was then removed and stirring continued for one and three quarter hours. Further 2-propanol (100ml) was added and the mixture filtered and the solid washed with 2-propanol (3 x 50ml), ether (100ml) and dried. The solid was recrystallised from boiling 2-propanol (1 L) and the crystals filtered, washed with cold 2-propanol, ether and dried. A sample was partitioned between saturated aqueous sodium hydrogen carbonate and DCM and the organic layer passed through a phase separation cartridge and blown down with argon to afford the title compound as a colourless solid. 1H NMR (CDCI3), δ:0.75 (3H1 s), 0.99 (3H, s), 1.70 - 1.79 (4H, m), 1.85 (2H, bs), 2.65 - 2.70 (4H, m), 4.08 (1 H, s), 7.20 - 7.42 (5H, m). Chiral HPLC: 97.5% ee, corresponding to the slower running enantiomer 2. [α]D = +28.5° (c=1 , CHCI3 at 27.50C). The remaining free base was liberated in a similar manner (3.55g, 66%).
Conditions for resolution of racemate D2 were as follows:- Analytical chromatography conditions: Column: chiralcel OD-H 5 um, 250 x 4.6 mm i.d.
10 micron particle size
Mobile phase: Heptane : Ethanol (90:10)
Gradient: isocratic
Flow rate: 1 ml/min UV wavelength range: 254 nm
Analysis time: 10 min
Ret. Time: 5.4min (Enantiomer 1 ); 7.0min (Enantiomer 2)
Description 4: 4-Fluoro-2-methoxy-6-methylbenzoic acid
Figure imgf000025_0001
Dry THF (6ml) was stirred under argon at -80° and treated with sec-butyl lithium (4.6ml of a 1.4M solution in cyclohexane, 6.5mmol) and N,N,N',N'-tetramethylethylenediamine (1.00ml, 6.5mmol). A solution of 4-fluoro-2-methoxybenzoic acid (0.5Og, 2.94mmol) in dry THF (2ml) was now added dropwise over 30 minutes and allowed to stir for a further 30 minutes at -80°. lodomethane (732ul, 11.76mmol) was now added dropwise over 5 minutes and the reaction stirred at -70° for a further 20 minutes and allowed to warm to room temperature. Water (1ml) was added dropwise and the mixture partitioned between ethyl acetate and water. The water layer was acidified with 2M hydrochloric acid and extracted twice with ethyl acetate. The combined extracts were dried over magnesium sulphate and evaporated to afford a crude solid. NMR indicated this to be a mixture of starting material, 6-methylated and 5-methylated material. Purification by MDAP afforded 4-fluoro-2-methoxy-6-methylbenzoic acid as a white solid (65mg, 12%). δH (400 MHz, CDCI3) 2.48 (3H, s), 3.90 (3H, s), 6.58 (2H, overlapping m) ppm. LC/MS (ES) Found 183 (M-H') C9H9O3F requires 184. Retention time 2.07 minutes.
Description 5: 4-Fluoro-2-methoxy-6-methylbenzoyl chloride
Figure imgf000026_0001
A solution of 4-Fluoro-2-methoxy-6-methylbenzoic acid (D4) (65 mg, 0.35mmol) in dry DCM (2 ml), containing dry DMF (1 drop), was stirred under argon and treated with oxalyl chloride (37ul, 0.42mmol). After 1.5 hours the solvent was removed under reduced pressure and the residue re-evaporated from fresh DCM. The crude 4-fluoro-2-methoxy-6- methylbenzoyl chloride was used without further purifcation.
Example 1 : 4-fluoro-2-methyl-6-(methyloxy)-Λ/-[2-methyl-1-phenyl-2-(1- pyrrolidinyl)propyl]benzamide chiral
Figure imgf000026_0002
A stirred solution of (+)- [2-Methyl-1-phenyl-2-(1-pyrrolidinyl)propyl]amine (D3) (39 mg, 0.18mmol) and 4-fluoro-2-methoxy-6-methylbenzoyl chloride (D5) (0.18mmol) in dry DCM (3 ml) was treated with triethylamine (50 ul, 0.36mmol) and stirred overnight. The volatile components were removed under reduced pressure and the residue chromatographed on silica gel. Elution with 0 - 80% ethyl acetate in pentane gave 4-fluoro-2-methyl-6- (methyloxy)-Λ/-[2-methyl-1-phenyl-2-(1-pyrrolidinyl)propyl]benzamide as a gum (67 mg, 97%). δH (400 MHz, CDCI3) 0.95 (6H, s), 1.7 (4H, overlapping m), 2.28 (3H, s), 2.68 (4H, overlapping m), 3.80 (3H, s), 4.81 (1 H, d, J = 3.6 Hz), 6.50 (2H, overlapping m), 7.24 - 7.39 (6H, overlapping m) ppm. LC/MS (ES) Found 385 (MH+) C23H29N2O2F requires 384. Retention time 1.91 minutes. The Example compound above is convertable to the corresponding hydrochloride salt by dissolving the parent free base in DCM or DCM/methanol mixtures and adding 1 M hydrogen chloride in ether, followed by evaporation and drying in vacuo.

Claims

Claims
1. A compound of formula (I) or a salt or solvate thereof:
Figure imgf000028_0001
(i)
wherein R1 and R2 are both methyl, or R1 and R2 form a pyrrolidinyl group.
2. A compound as claimed in claim 1 which is:
4-fluoro-2-methyl-6-(methyloxy)-Λ/-[2-methyl-1-phenyl-2-(1-pyrrolidinyl)propyl]benzamide or a salt or solvate thereof.
3. A compound as claimed in claim 1 which is:
Λ/-[2-(dimethylamino)-2-methyl-1-phenylpropyl]-4-fluoro-2-methyl-6-(methyloxy)benzamide or a salt of solvate thereof.
4. A method of preparing a compound as defined in claim 1 , 2 or 3, comprising reacting a compound of formula (II):
Figure imgf000028_0002
wherein R1 and R2 are as defined in claim 1 for formula (I), with a compound of formula (III):
(HI)
wherein L represents a suitable leaving group; and thereafter optionally:
• removing any protecting groups and/or
• forming a salt or solvate.
5. A compound as claimed in claim 1 , 2 or 3 for use in therapy.
6. A compound as claimed in claim 1 , 2 or 3 for use in the treatment of a disorder mediated by GIyTL
7. A compound as claimed in claim 6, wherein the disorder is psychosis.
8. A compound as claimed in claim 7, wherein the disorder is schizophrenia, dementia or attention deficit disorder.
9. A method of treating a mammal, including a human, suffering from or susceptible to a disorder mediated by GIyTI , which comprises administering an effective amount of a compound as claimed in claim 1 , 2 or 3. 10. A method as claimed in claim 9, wherein the disorder is psychosis.
10. A method as claimed in claim 9, wherein the disorder is schizophrenia, dementia or attention deficit disorder.
11. Use of a compound as claimed in claim 1 , 2 or 3 in the preparation of a medicament for the treatment of a disorder mediated by GIyTI .
12. Use as claimed in claim 11 , wherein the disorder is psychosis.
13. The use as claimed in claim 12, wherein the disorder is schizophrenia, dementia or attention deficit disorder.
14. A pharmaceutical composition comprising a compound as claimed in claim 1 , 2 or 3 and at least one pharmaceutically acceptable carrier, diluent or excipient.
15. A pharmaceutical composition as claimed in claim 14 further comprising one or more other therapeutic agents, selected from antidepressant agents selected from 5HT3 antagonists, serotonin agonists, NK-1 antagonists, selective serotonin reuptake inhibitors (SSRI), noradrenaline re-uptake inhibitors (SNRI), tricyclic antidepressants, dopaminergic antidepressants, H3 antagonists, 5HT1A antagonists, 5HT1 B antagonists, 5HT1 D antagonists, D1 agonists, M1 agonists, anticonvulsant agents; atypical antipsychotic drugs and cognitive enhancers.
PCT/EP2007/056120 2006-06-22 2007-06-20 Glycine transporter inhibiting compounds and uses in medicine WO2007147839A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB0612437A GB0612437D0 (en) 2006-06-22 2006-06-22 Compounds
GB0612437.4 2006-06-22

Publications (2)

Publication Number Publication Date
WO2007147839A1 true WO2007147839A1 (en) 2007-12-27
WO2007147839A9 WO2007147839A9 (en) 2008-11-13

Family

ID=36803748

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/056120 WO2007147839A1 (en) 2006-06-22 2007-06-20 Glycine transporter inhibiting compounds and uses in medicine

Country Status (2)

Country Link
GB (1) GB0612437D0 (en)
WO (1) WO2007147839A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9045445B2 (en) 2010-06-04 2015-06-02 Albany Molecular Research, Inc. Glycine transporter-1 inhibitors, methods of making them, and uses thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3145209A (en) * 1961-07-31 1964-08-18 Olin Mathieson Substituted aminophenyl-ethylamine derivatives
WO2006067423A1 (en) * 2004-12-23 2006-06-29 Glaxo Group Limited Glycine transport inhibitors
WO2006067417A1 (en) * 2004-12-23 2006-06-29 Glaxo Group Limited Glycine transport inhibitors

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3145209A (en) * 1961-07-31 1964-08-18 Olin Mathieson Substituted aminophenyl-ethylamine derivatives
WO2006067423A1 (en) * 2004-12-23 2006-06-29 Glaxo Group Limited Glycine transport inhibitors
WO2006067417A1 (en) * 2004-12-23 2006-06-29 Glaxo Group Limited Glycine transport inhibitors

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9045445B2 (en) 2010-06-04 2015-06-02 Albany Molecular Research, Inc. Glycine transporter-1 inhibitors, methods of making them, and uses thereof

Also Published As

Publication number Publication date
GB0612437D0 (en) 2006-08-02
WO2007147839A9 (en) 2008-11-13

Similar Documents

Publication Publication Date Title
EP1833811B1 (en) Oxygen containing heterocycles as glycine transporter inhibiting compounds
US20090326027A1 (en) N-Phenyl-2-0X0-1,4-Diazaspiro [4.5] Dec-3-EN-1-YL Acetamide Derivatives And Their Use As Glycine Transporter Inhibitors
EP1838663B1 (en) Glycine transport inhibitors
US20100216837A1 (en) Glycine transport inhibitors
US20090286828A1 (en) 2-amino-1-phenylethylcarboxamide derivatives
US20090221577A1 (en) Compounds having morpholinyl and piperidinyl groups for use as glyt1 inhibitors
US20090325993A1 (en) GLYT1 Transporter Inhibitors and Uses Thereof in Treatment of Neurological and Neuropsychiatric Disorders
EP2041082B1 (en) Pyrrolidine derivatives having activity at the glyt1 transporter
US20100113545A1 (en) Glyt1 transporter inhibitors and uses thereof in treatment of neurological and neuropsychiatric disorders
WO2007147836A1 (en) Glycine transporter inhibiting compounds and uses in medicine
US20090227629A1 (en) Compounds having activity at the glycine transporter glyt1 and uses thereof
US20100016374A1 (en) Compounds Which Inhibit the Glycine Transporter and Uses Thereof
WO2007147839A1 (en) Glycine transporter inhibiting compounds and uses in medicine
US20100048656A1 (en) Glyt1 transporter inhibitors and uses thereof in treatment of neurological and neuropsychiatric disorders
WO2007147834A1 (en) Glycine transporter inhibiting compounds and uses in medicine
WO2010010133A1 (en) 2-thia-1,3-diazaspirocyclic-substituted phenylacetamides as glt1 mediators for neurological diseases
US20100016399A1 (en) GLYT1 Transporter Inhibitors and Uses Thereof in Treatment of Neurological and Neuropsychiatric Disorders
JP2010517962A (en) GlyT1 transporter inhibitors and their use in the treatment of neurological and neuropsychiatric disorders

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07786772

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07786772

Country of ref document: EP

Kind code of ref document: A1