WO2007147351A1 - A method for making a power amplifier support multi-power, a radio frequency module and a testing method - Google Patents

A method for making a power amplifier support multi-power, a radio frequency module and a testing method Download PDF

Info

Publication number
WO2007147351A1
WO2007147351A1 PCT/CN2007/070075 CN2007070075W WO2007147351A1 WO 2007147351 A1 WO2007147351 A1 WO 2007147351A1 CN 2007070075 W CN2007070075 W CN 2007070075W WO 2007147351 A1 WO2007147351 A1 WO 2007147351A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
power amplifier
module
voltage value
radio frequency
Prior art date
Application number
PCT/CN2007/070075
Other languages
English (en)
French (fr)
Inventor
Qinhuai Fan
Original Assignee
Huawei Technologies Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co., Ltd. filed Critical Huawei Technologies Co., Ltd.
Priority to BRPI0713416-9A priority Critical patent/BRPI0713416B1/pt
Priority to EP07721697.6A priority patent/EP1986331B1/en
Publication of WO2007147351A1 publication Critical patent/WO2007147351A1/zh
Priority to US12/334,962 priority patent/US8909178B2/en
Priority to US14/547,843 priority patent/US20150079915A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0211Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the supply voltage or current
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/401Circuits for selecting or indicating operating mode
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers
    • H03G3/004Control by varying the supply voltage
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers
    • H03G3/20Automatic control
    • H03G3/30Automatic control in amplifiers having semiconductor devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers
    • H03G3/20Automatic control
    • H03G3/30Automatic control in amplifiers having semiconductor devices
    • H03G3/3036Automatic control in amplifiers having semiconductor devices in high-frequency amplifiers or in frequency-changers
    • H03G3/3042Automatic control in amplifiers having semiconductor devices in high-frequency amplifiers or in frequency-changers in modulators, frequency-changers, transmitters or power amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/451Indexing scheme relating to amplifiers the amplifier being a radio frequency amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G2201/00Indexing scheme relating to subclass H03G
    • H03G2201/70Gain control characterized by the gain control parameter
    • H03G2201/702Gain control characterized by the gain control parameter being frequency, e.g. frequency deviations
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G2201/00Indexing scheme relating to subclass H03G
    • H03G2201/70Gain control characterized by the gain control parameter
    • H03G2201/704Gain control characterized by the gain control parameter being number of multiplexed channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B2001/0408Circuits with power amplifiers
    • H04B2001/0416Circuits with power amplifiers having gain or transmission power control

Definitions

  • the present invention relates to the field of radio frequency technologies, and in particular, to a method, a radio frequency module, and a test method for enabling a power amplifier to support multiple powers. Background of the invention
  • the radio frequency module receives downlink data from the baseband board allocation.
  • the downlink data is shaped into a radio frequency signal by shaping filtering, digital up-conversion, digital-to-analog conversion (DAC), intermediate frequency analog signal amplification, analog signal up-conversion, etc. in the RF module, and the RF signal is amplified by the power amplifier before being sent to the antenna.
  • DAC digital-to-analog conversion
  • the radio frequency module in the prior art includes: a conversion module of a baseband board signal to a radio frequency signal, a storage module, a control module, a power amplifier module, a power module, and an antenna linear device.
  • the conversion module of the baseband board signal to the radio frequency signal is used to convert the downlink data allocated by the baseband board into a radio frequency signal;
  • the storage module is used to store manufacturing information of the radio frequency module, such as hardware version information, etc.;
  • the control module is used for reading and parsing
  • the hardware version information in the storage module determines the power that the power amplifier module can support;
  • the power amplifier module is used to amplify the received signal and is sent to the antenna through the antenna linear device;
  • the power module is used to supply power to the power amplifier module, and the power amplifier is used for the power amplifier
  • the module outputs a fixed voltage value to ensure that the amplifier module amplifies the signal according to the supported power.
  • the hardware version information includes a byte indicating the power capability of the module, and the byte records the power that the RF module can support, such as 20W.
  • the control module of the RF module can know the power amplifier capability of the RF module by reading and parsing this byte.
  • the maximum power is transmitted with the maximum capability of the power amplifier. It can be seen that the power amplifier capability of the RF module depends on the manufacturing information, and the production assembly needs to be accurately written into the manufacturing information.
  • the RF module can only be used with the power amplifier of the maximum power, because the voltage provided by the RF module for the power amplifier is a fixed value, and if other power amplifiers are used, other powers are used.
  • the amplifier may be burned due to excessive input voltage. In particular, if an assembly error occurs during the production of the amplifier, the amplifier is more likely to be burned.
  • the base station RF module needs a variety of power amplifier support. Therefore, in order to meet various application requirements, it is necessary to develop power amplifiers of various powers, and the power of different powers is different in manufacturing, detection, and process requirements.
  • the variety and quantity of amplifier products not only reduces production efficiency, but also puts a lot of pressure on development and maintenance. Summary of the invention
  • the embodiment of the present invention provides a method for enabling a power amplifier to support multiple powers, and another aspect provides a radio frequency module, so that the same power amplifier can support application requirements of different transmit powers.
  • a test method is provided for determining the correspondence between the transmit power and the power amplifier voltage value.
  • a method for enabling a power amplifier to support multiple powers including:
  • a radio frequency module includes: a baseband board signal to a radio frequency signal conversion module, an antenna line device, and a power amplifier module, and further includes:
  • Adjustable power module configured to store a radio frequency parameter sent by the baseband board, and a corresponding relationship between the transmit power and the power amplifier voltage value;
  • a power control module configured to calculate a transmit power according to the radio frequency parameter in the storage module, determine a power amplifier voltage value by using the calculated transmit power, and the corresponding relationship between the transmit power and the power amplifier voltage value, and adjust the power according to the determined power amplifier voltage value.
  • the output voltage of the adjustable power module is configured to calculate a transmit power according to the radio frequency parameter in the storage module, determine a power amplifier voltage value by using the calculated transmit power, and the corresponding relationship between the transmit power and the power amplifier voltage value, and adjust the power according to the determined power amplifier voltage value.
  • a test method including:
  • the production assembly performs the index test on the RF module according to the power amplifier voltage values corresponding to the different transmit powers obtained;
  • the embodiment of the present invention first determines the correspondence between the transmit power and the power amplifier voltage value by using the provided test method, and stores the determined correspondence relationship into the RF module, and sets the power module as an adjustable power module, and the RF module. Calculate the transmit power according to the received RF parameters sent by the baseband board, and determine the power amplifier voltage value according to the calculated transmit power and the corresponding relationship between the stored transmit power and the power amplifier voltage value, and then adjust according to the determined power amplifier voltage value. Adjust the output voltage of the power module, and then adjust the output power of the power amplifier module, that is, the transmit power of the RF module, thereby achieving the purpose of enabling the power amplifier to support multiple powers. BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a flow chart of determining a correspondence between a transmit power and a power amplifier voltage value according to an embodiment of the present invention
  • FIG. 2 is a structural diagram of a preferred embodiment of a radio frequency module according to the present invention
  • 3 is a flow chart of a preferred embodiment of a method for enabling a power amplifier to support multiple powers according to the present invention. Mode for carrying out the invention
  • the correspondence between the transmit power and the power amplifier voltage value is first determined, stored in the RF module, and the power module in the RF module is replaced with an adjustable power module.
  • the RF module receives the RF parameters sent by the baseband board, determines the power amplifier voltage value according to the corresponding relationship between the calculated RF values, and then adjusts the power supply voltage of the power amplifier according to the determined power amplifier voltage value, thereby adjusting the output power of the power amplifier.
  • the method for determining, by the radio frequency module, the power amplifier voltage value according to the calculated transmit power and the corresponding relationship between the transmit power stored by the radio frequency and the power amplifier voltage value includes: the radio frequency module queries from a list storing the correspondence between the transmit power and the power amplifier voltage value And reading the power amplifier voltage value corresponding to the calculated transmission power, if the query and reading is successful, determining that the power amplifier voltage value is the read power amplifier voltage value; if the query and reading fails, determining that the power amplifier voltage value is a preset The default value.
  • the flow chart of the relationship. The process includes the following steps:
  • Step 101 Production assembly and debugging of the power amplifier module and the radio frequency module under the configuration of the tested radio frequency module
  • the voltage value is written into the memory module of the RF module.
  • Step 102 Perform aging processing on the radio frequency module.
  • Step 103 Produce and test the indicator of the aging RF module under the standard working voltage of the power amplifier corresponding to different transmission powers stored in the RF module, including the frequency index test and the efficiency index test.
  • Step 104 The production assembly judges whether the measured spectrum index and the efficiency index meet the specifications under the standard working voltage of all the power amplifiers. If both indicators meet the specifications, step 105 is performed; if the power standard operating voltage is measured under certain power amplifiers, If the obtained spectrum indicator does not meet the specifications, step 106 is performed; if the measured efficiency index does not meet the specifications under certain power amplifier standard operating voltages, step 107 is performed.
  • Step 105 Keep the correspondence between the RF power in the storage module of the RF module and the standard working voltage value of the power amplifier unchanged.
  • Step 106 The production assembly fine-tunes the power standard operating voltage whose spectrum index does not meet the specifications until the spectrum index meets the specifications, and step 108 is performed.
  • Step 107 The production assembly fine-tunes the standard operating voltage of the power amplifier whose efficiency index does not meet the specifications until the efficiency index meets the specifications.
  • Step 108 The production assembly uses the power discharge voltage value obtained by adjusting step 106 or step 107 to update the correspondence between the RF power stored in the RF module and the power amplifier voltage value.
  • the correspondence between the written and adjusted RF power and the power amplifier voltage value is regularly maintained and updated. Because the correspondence between the RF power of each production batch and the power amplifier voltage value has a data standard, which is used to express the trend of the correspondence between the RF power and the power amplifier voltage value. Generally, a production batch of RF modules The correspondence between the RF power and the power amplifier voltage value is basically the same, and a production batch will maintain a few months of production. Therefore, if the correspondence between the RF power of the RF module of the batch and the voltage value of the power amplifier is updated in time, the adjustment of the RF module produced later will be small, so that the production efficiency can be improved. In order to facilitate the use, the voltage parameter table can be successfully put into operation, and the corresponding relationship between the RF power and the power amplifier voltage value is written into the power amplifier voltage parameter table, and the power amplifier voltage parameter table is regularly maintained and updated.
  • Fig. 2 is a structural diagram of a preferred embodiment of a radio frequency module in which a power amplifier supports multiple powers according to the present invention.
  • the radio frequency module includes: a power control module 201, a power module 202, a power amplifier module 203, a baseband board signal to radio frequency signal conversion module 204, and an antenna linear device 205.
  • the baseband board signal to radio frequency signal conversion module 204 is configured to convert downlink data allocated by the baseband board into a radio frequency signal; and the antenna linear device 205 is configured to send the radio frequency signal amplified by the power amplifier module to the antenna.
  • the power module 202 is an adjustable power module that includes a power control portion 206, a power discharge source 207, and a storage module 208.
  • the power control portion 206 in this embodiment can be implemented with a tunable chip.
  • the storage module 208 is connected to the power control module 201 via a bus; the power control portion 206 of the power module 202 is connected to the power control module 201 via a bus; the power amplifier 207 is connected to the power control portion 206 through a power line; the power amplifier 207 and the power amplifier module 203 Connected to power the power amplifier module 203.
  • the storage module 208 is configured to store a parameter carrier n received by the radio frequency module from the baseband board, a power level per carrier Ln, a power saving mode switch quantity, a power amplifier voltage parameter table of the production assembly write RF module, and information of the power module 202, including voltage control. Word calculation coefficient, etc.
  • the power control portion 206 in the power module 202 is for setting the voltage control word output from the power control module 201 to the output voltage of the power amplifier 207.
  • the functions of the power control module 201 include:
  • the power saving switch is expressed by a number of 16 mechanisms
  • the software mark can generally be 0 for off and 1 for open.
  • the storage module 208 in this embodiment is disposed in the power module 202. In the actual application, the storage module 208 may be disposed outside the power module 202, or partially disposed in the power module 202, and partially disposed outside the power module 202.
  • FIG. 3 is a flow chart of a preferred embodiment of a method for enabling a power amplifier to support multiple powers.
  • the method uses the method shown in FIG. 1 to store in advance a power amplifier voltage parameter table for writing a correspondence relationship between the RF power and the power amplifier voltage value in the storage module of the RF module, and the process includes the following steps:
  • Step 301 The radio frequency module receives the radio frequency parameters sent by the baseband board, including: a parameter carrier n, a power level per carrier Ln, and a power saving mode switch quantity, and saves the parameters to the storage module of the same.
  • Step 302 The power control module obtains a power saving mode switch quantity from the storage module, and determines whether the power saving mode is turned on.
  • the power-saving switch is issued by the baseband board. It is a software mark expressed in hexadecimal numbers. Generally, it can be turned off by 0, and 1 is turned on. If it is off, go to step 307; otherwise, execute Go to step 303.
  • Step 303 The power control module calculates the transmit power according to the radio frequency parameter saved by the storage module.
  • the radio frequency parameter includes: a carrier number and a carrier power level, and the calculated transmit power is a calculated transmit power level.
  • L - 100 log(10 A (Ll/( - 100))+...+10 A (Ln/( - 100)), where Ll ⁇ Ln ranges from 0 to 100.
  • the premise that the transmit power level is used to indicate the transmit power is that the power amplifier voltage value corresponding to the transmit power level is stored during the debugging process, that is, the power amplifier voltage parameter table stores different transmit power levels and their corresponding power amplifier voltage values.
  • Step 304 The power control module queries the corresponding power amplifier voltage value in the power amplifier voltage parameter table in the storage module according to the calculated transmit power level. If the query is successful, step 305 is performed; otherwise, step 306 is performed.
  • Step 305 the power control module sets the power amplifier voltage Vout to the queried power amplifier voltage value, and performs step 308.
  • Step 306 the power control module sets the power amplifier voltage Vout to a default value, and performs steps.
  • Step 307 The power control module reads the first power amplifier voltage value from the power amplifier voltage parameter table in the storage module, and sets the power amplifier voltage Vout to the value.
  • Steps 308-309 the power control module reads the K and the threshold from the storage module. If the reading is successful, step 311 is performed; otherwise, step 310 is performed.
  • step 310 the power control module sets , , and ⁇ as default values.
  • the storage module is generally E2PROM.
  • the E2PROM is a physical device. It may be invalid due to limited number of read/write times or abnormal conditions due to bus busy. This will cause the power control module to fail to read the E2PROM. Therefore, in order to ensure the continuity of the power control module implementation process Sex, the default values of ⁇ and ⁇ are set in the power control module, when the power control module reads ⁇ , ⁇ When it fails, the default value will be used for calculation.
  • Step 312 the power control part of the power module uses the value of the voltage control word Vc calculated in step 311 to set the output voltage of the power amplifier, thereby achieving the purpose of adjusting the power voltage of the power amplifier.
  • the input current of the power amplifier module is unchanged, the input voltage of the power amplifier module can be adjusted to adjust the power. .
  • the embodiment of the present invention performs the debugging of the radio frequency module and the power amplifier module, and then obtains the correspondence between the transmit power and the power amplifier voltage value through the aging process and the index test process, and stores the corresponding relationship to the radio frequency module.
  • the power control module is set in the radio frequency module, and the power module in the radio frequency module is set as the adjustable power supply module, so that the radio frequency module can be adjusted to the power amplifier according to the calculated transmit power and the stored power amplifier voltage value corresponding to different transmit powers.
  • the voltage value provided by the module so as to achieve the purpose of enabling the power amplifier to support multiple powers.
  • test method provided by the embodiment of the present invention can also update the radio frequency in real time according to requirements.
  • the method and the radio frequency module provided by the embodiments of the present invention can adjust the output voltage provided by the power module for the power amplifier module according to the current application requirements.
  • the power amplifier can support multiple transmission powers to meet different application requirements, so that it is no longer necessary to produce and maintain power amplifiers with different transmission powers, which greatly improves the flexibility of power amplifier use, reduces the power amplifier maintenance cost and the complexity of power amplifier production and use.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Amplifiers (AREA)
  • Transmitters (AREA)

Description

使功放支持多功率的方法、 射频模块及测试方法
技术领域
本发明涉及射频技术领域,特别涉及一种使功放支持多功率的方法、 射频模块及测试方法。 发明背景
在现有基站中, 射频模块接收来自基带板分配的下行数据。 下行数 据在射频模块内经过成形滤波、 数字上变频、 数模转换(DAC )、 中频 模拟信号放大、 模拟信号上变频等成为射频信号, 该射频信号要经过功 放放大后才送到天线。
现有技术中的射频模块包括: 基带板信号到射频信号的转换模块、 存储模块、 控制模块、 功放模块、 电源模块以及天线线性设备。
其中, 基带板信号到射频信号的转换模块用于将基带板分配的下行 数据转换为射频信号; 存储模块用于存储射频模块的制造信息, 如硬件 版本信息等; 控制模块用于读取并解析存储模块中的硬件版本信息, 确 定功放模块可以支持的功率; 功放模块用于对接收到的信号进行放大处 理, 并通过天线线性设备发送到天线; 电源模块用于为功放模块供电, 其向功放模块输出固定的电压值, 保证功放模块按照支持的功率对信号 进行放大。
射频模块在生产时, 由生产装配写入制造信息, 其中的硬件版本信 息中包括一个表示该模块功放能力的字节, 该字节记录了该射频模块可 以支持的功率, 比如 20W。 当射频模块工作时, 射频模块的控制模块就 可以通过读取并解析这个字节得知该射频模块的功放能力, 发射信号时 最大功率就以本身功放的最大能力发射。 由此可见, 射频模块的功放能力依赖于制造信息, 需要生产装配准 确写入制造信息。 一旦明确了射频模块支持的功放能力后, 该射频模块 就只能和该最大功率的功放一起使用 , 因为该射频模块为该功放提供的 电压是固定值, 如果采用其它功率的功放, 则其它功率的功放可能会由 于输入的电压值过大而被烧毁。特别是,如果功放生产时出现装配错误, 则功放被烧毁的可能性更大。
根据各个运营商的要求, 基站射频模块需要多种功率的功放支持, 因此, 为了满足各种应用需求需要开发多种功率的功放, 而不同功率的 功放在制造、 检测和工艺上要求不同。 功放产品的种类和数量的繁多, 不仅会降低生产效率, 也会给开发和维护带来很大的压力。 发明内容
有鉴于此, 本发明实施例一方面提供了一种使功放支持多种功率的 方法, 另一方面提供了一种射频模块, 使同一功放可以支持不同发射功 率的应用需求; 本发明实施例还提供了一种测试方法, 用于确定发射功 率与功放电压值的对应关系。
一种使功放支持多功率的方法, 包括:
接收基带板下发的射频参数, 利用所述射频参数计算发射功率; 确定功放电压值;
根据确定的功放电压值调整功放的供电电压, 进而调整功放的输出 功率。
一种射频模块, 包括: 基带板信号到射频信号的转换模块、 天线线 性设备以及功放模块, 还包括:
可调电源模块; 存储模块, 用于存储基带板下发的射频参数以及发射功率与功放电 压值的对应关系;
电源控制模块, 用于根据存储模块中的射频参数计算发射功率, 利 用计算所得的发射功率以及所述发射功率与功放电压值的对应关系, 确 定功放电压值, 根据确定的功放电压值调整所述可调电源模块的输出电 压。
一种测试方法, 包括:
调试功放模块和射频模块,获取发射功率与功放电压值的对应关系; 对射频模块进行老化处理后, 生产装配按照获取的不同发射功率对 应的功放电压值, 对射频模块进行指标测试;
判断指标测试是否符合规格, 根据指标测试结果调整不同发射功率 对应的功放电压值, 并利用调整后的功放电压值更新所述发射功率与功 放电压值的对应关系。
由以上技术方案可知 , 本发明实施例首先利用提供的测试方法确定 发射功率与功放电压值的对应关系, 并将确定的对应关系存储到射频模 块中, 设置电源模块为可调电源模块, 射频模块根据接收到的基带板下 发的射频参数计算发射功率, 并根据计算所得的发射功率以及自身存储 的发射功率与功放电压值的对应关系, 确定功放电压值, 再根据确定的 功放电压值调整可调电源模块的输出电压, 进而调整功放模块的输出功 率, 即射频模块的发射功率, 从而达到了使功放支持多功率的目的。 附图简要说明
图 1 为本发明实施例确定发射功率与功放电压值对应关系的流程 图;
图 2为本发明射频模块的较佳实施例的结构图; 图 3为本发明使功放支持多功率方法的较佳实施例的流程图。 实施本发明的方式
为使本发明的目的、 技术方案和有益效果更加清楚明白, 下面结合 附图和具体实施例对本发明作进一步的详细说明。
本发明实施例中, 首先确定发射功率与功放电压值的对应关系, 将 其存储到射频模块中, 并将射频模块中的电源模块替换为可调电源模 块。 射频模块接收基带板下发的射频参数, 根据接收到的射频参数计算 电压值的对应关系确定功放电压值; 然后根据确定的功放电压值调整功 放的供电电压, 进而调整功放的输出功率。
这里, 射频模块根据计算所得的发射功率以及自身存储的发射功率 与功放电压值的对应关系确定功放电压值的方法具体包括: 射频模块从 存储有发射功率与功放电压值的对应关系的列表中查询并读取与计算 所得的发射功率对应的功放电压值, 如果查询并读取成功, 则确定功放 电压值为读取的功放电压值; 如果查询并读取失败, 则确定功放电压值 为预设的默认值。 应关系的流程图。 该流程包括以下步骤:
步骤 101 , 生产装配在所测射频模块配置下调试功放模块和射频模
作电压值写入射频模块的存储模块中。
为了使用方便, 可以生成功放电压参数表, 将上述调试所得的发射 功率与功放标准工作电压值的对应关系写入功放电压参数表中。 步骤 102, 对射频模块进行老化处理。
步骤 103 , 生产装配在射频模块中存储的对应不同发射功率的功放 标准工作电压下, 对老化后的射频模块进行指标测试, 包括频语指标测 试和效率指标测试。
步骤 104, 生产装配判断在所有功放标准工作电压下, 测得的频谱 指标和效率指标是否符合规格, 如果两种指标都符合规格, 则执行步骤 105; 如果在某些功放标准工作电压下, 测得频谱指标不符合规格, 则 执行步骤 106; 如果在某些功放标准工作电压下, 测得的效率指标不符 合规格, 则执行步骤 107。
步骤 105, 保持射频模块存储模块中的射频功率与功放标准工作电 压值的对应关系不变。
步骤 106, 生产装配将频谱指标不符合规格的功放标准工作电压向 下微调, 直到频谱指标符合规格为止, 执行步骤 108。
步骤 107, 生产装配将效率指标不符合规格的功放标准工作电压向 上微调, 直到效率指标符合规格为止。
步骤 108, 生产装配利用步骤 106或步骤 107调整后获得的功放电 压值更新射频模块中存储的射频功率与功放电压值的对应关系。
为了提高生产效率, 对写入和调整后的射频功率与功放电压值的对 应关系还要进行定期维护和更新。 因为, 每个生产批次的射频模块的射 频功率与功放电压值的对应关系都有一个数据标准, 用于表现该射频功 率与功放电压值的对应关系的趋势, 一般一个生产批次的射频模块的射 频功率与功放电压值的对应关系基本上都一样, 而一个生产批次会维持 几个月的生产量。 因此, 如果及时更新该批次的射频模块的射频功率与 功放电压值的对应关系, 那么后面生产的射频模块的调节情况会很少, 因此可以提高生产效率。 为了使用方便, 可以生成功放电压参数表, 将射频功率与功放电压 值的对应关系写入功放电压参数表中, 并定期维护和更新该功放电压参 数表。
参见图 2, 图 2为本发明使功放支持多功率的射频模块的较佳实施 例的结构图。 该射频模块包括: 电源控制模块 201、 电源模块 202、 功 放模块 203、 基带板信号到射频信号的转换模块 204以及天线线性设备 205。
其中, 基带板信号到射频信号的转换模块 204用于将基带板分配的 下行数据转换为射频信号; 天线线性设备 205用于将功放模块放大的射 频信号发送到天线。
电源模块 202为可调电源模块, 其包括电源控制部分 206、 功放电 源 207、 以及存储模块 208。 本实施例中的电源控制部分 206可以用可 调芯片实现。
存储模块 208与电源控制模块 201通过总线相连; 电源模块 202中 的电源控制部分 206通过总线与电源控制模块 201相连; 功放电源 207 通过电源线与电源控制部分 206相连; 功放电源 207与功放模块 203相 连, 为功放模块 203供电。
存储模块 208用于存储射频模块从基带板接收的参数载波 n、 每载 波功率等级 Ln、省电模式开关量、生产装配写入射频模块的功放电压参 数表以及电源模块 202的信息, 包括电压控制字计算系数等;
电源模块 202中的电源控制部分 206用于将电源控制模块 201输出 的电压控制字设置为功放电源 207的输出电压。
电源控制模块 201的功能包括:
1 )从存储模块 208中获取省电模式开关量,确定是否开启省电模式, 即是否选择支持多功率的功放。 该省电开关量是一个用 16机制数表示 的软件标记, 一般可以用 0表示关, 1表示开。
2 )根据从存储模块 208中获取的省电开关量确定是否需要根据存储 模块 208保存的射频参数计算发射功率, 以及从功放电压参数表中读取 功放电压值的方式, 如果读取成功, 则将读取的电压值设置为功放电压 Vout; 否则将功放电压 Vout设置为默认值。
3 )从电源模块的存储模块 208中读取电压控制字计算系数 K、 Β的 值, 如果读取失败, 设置 Κ、 Β为默认值, 并根据确定的 Κ、 Β值, 利 用公式 Vc=K X Vout+B , 计算电压控制字 Vc。
4 )将计算得到的电压控制字输出到电源控制部分 206, 通过电源控 制部分 206设置为功放电源 207的输出电压, 实现对功放电源输出电压 的控制。
本实施例中的存储模块 208设置在电源模块 202中, 在实际应用中 存储模块 208也可以设置在电源模块 202外, 或者部分设置在电源模块 202中, 部分设置在电源模块 202外。
参见图 3 , 图 3为本发明使功放支持多功率的方法的较佳实施例的 流程图。 该方法利用图 1所示的方法, 预先在射频模块的存储模块中存 放了写入射频功率和功放电压值的对应关系的功放电压参数表, 该流程 包括以下步骤:
步骤 301 ,射频模块接收基带板下发的射频参数,包括:参数载波 n、 每载波功率等级 Ln和省电模式开关量, 并将这些参数保存到自身的存 储模块中。
步骤 302, 电源控制模块从存储模块中获取省电模式开关量, 确定 是否打开省电模式。
省电开关量由基带板下发,是一个用 16进制数表示的软件标记,一 般可以用 0表示关, 1表示开。 如果为关, 则执行步骤 307; 否则, 执 行步骤 303。
步骤 303, 电源控制模块根据存储模块保存的射频参数计算发射功 率, 在本实施例中射频参数包括: 载波数和载波功率等级, 计算发射功 率即计算发射功率等级。
假设发射功率等级为 L,则 L可以用公式: L= - 100 log(10A(Ll/( - 100))+...+10A(Ln/( - 100))计算, 其中, Ll~Ln取值范围都是 0~100。
这里采用发射功率等级来表示发射功率的前提是在调试过程中存储 的是对应发射功率等级的功放电压值, 即功放电压参数表中存储的是不 同发射功率等级及其对应的功放电压值。
步骤 304, 电源控制模块根据计算所得的发射功率等级到存储模块 中的功放电压参数表中查询相应的功放电压值, 如果查询成功, 则执行 步骤 305; 否则执行步骤 306。
步骤 305, 电源控制模块将功放电压 Vout设置为查询到的功放电压 值, 执行步骤 308。
步骤 306, 电源控制模块将功放电压 Vout设置为默认值, 执行步骤
308。
步骤 307, 电源控制模块从存储模块中的功放电压参数表中读取第 一个功放电压值, 并将功放电压 Vout设置为该值。
步骤 308-309, 电源控制模块从存储模块中读取 K、 Β值, 如果读取 成功, 则执行步骤 311; 否则执行步骤 310。
步骤 310, 电源控制模块将 、 Β设置为默认值。
存储模块一般为 E2PROM, E2PROM是物理器件, 可能因为读写次 数有限而失效或者由于总线忙而出现异常情况, 这样就会使电源控制模 块读取 E2PROM失败, 因此为了保证电源控制模块实现流程的连续性, 在电源控制模块中设置了 Κ、 Β的默认值, 当电源控制模块读取 Κ、 Β 失败时, 将采用默认值进行计算。
步骤 311 ,电源控制模块利用步骤 308-309或 310中确定的 K、 Β值, 步骤 305或 306或 307设置的功放电压值 Vout,以及公式 Vc=K χ Vout+B , 计算电压控制字 Vc, 并将其输出到电源模块的电源控制部分。
步骤 312, 电源模块的电源控制部分利用步骤 311计算所得的电压 控制字 Vc的值设置功放电源的输出电压, 从而达到调整功放电源电压 的目的。
功放电源电压调整后, 根据电流电压得到功率的原理, 即功率 =输 入电压 X输入电流, 则在功放模块的输入电流不变的情况下, 调整功放 模块的输入电压就可以达到调整其功率的目的。
从以上实施例可见, 本发明实施例通过对射频模块和功放模块进行 调试, 再经过老化处理和指标测试过程获得发射功率与功放电压值之间 的对应关系, 并将该对应关系存储到射频模块中。 同时, 在射频模块中 设置电源控制模块, 将射频模块中的电源模块设置为可调电源模块, 以 使得射频模块可以根据计算所得的发射功率以及存储的不同发射功率 对应的功放电压值调整为功放模块提供的电压值, 进而达到使功放支持 多功率的目的。
另外, 本发明实施例提供的测试方法还可以根据需要实时更新射频 总之, 本发明实施例提供的方法和射频模块可以根据当前的应用需 求, 通过调整电源模块为功放模块提供的输出电压, 使同一功放能够支 持多种发射功率, 满足不同的应用需求, 从而不必再生产和维护具有不 同发射功率的功放, 极大提高了功放使用的灵活性, 降低了功放维护成 本以及功放生产和使用的复杂度。

Claims

权利要求书
1、 一种使功放支持多功率的方法, 其特征在于, 包括以下步骤: 接收基带板下发的射频参数, 利用所述射频参数计算发射功率; 定功放电压值;
根据确定的功放电压值调整功放的供电电压, 进而调整功放的输出 功率。
2、 如权利要求 1所述的方法, 其特征在于, 所述根据确定的功放电 压值调整可调电源模块的输出电压包括:
确定电压控制字计算系数, 利用所述电压控制字计算系数及所述功 放电压值计算电压控制字;
利用所述电压控制字调整输出电压。
3、 如权利要求 1或 2所述的方法, 其特征在于, 所述确定发射功率 与功放电压值的对应关系的方法, 具体包括:
调试功放模块和射频模块, 将获取的发射功率与功放电压值的对应 关系存储到射频模块中;
对射频模块进行老化处理后, 生产装配按照获取的不同发射功率对 应的功放电压值, 对射频模块进行指标测试;
判断指标测试是否符合规格, 根据指标测试结果调整不同发射功率 对应的功放电压值, 并利用调整后的功放电压值更新所述发射功率与功 放电压值的对应关系。
4、 如权利要求 3所述的方法, 其特征在于, 所述指标测试包括频谱 指标测试和效率指标测试;
所述利用调整后的功放电压值更朝 系包括: 如果两种指标测试都符合规格, 则保持功放电压值不变; 如果频谱指标测试不符合规格, 则将功放电压值向下微调到频语指 标符合规格为止;
如果效率指标测试不符合规格, 则将功放电压值向上微调到效率指 标符合规格为止。
5、 如权利要求 3所述的方法, 其特征在于, 该方法进一步包括: 定 期维护和更新所述发射功率与功放电压值的对应关系。
6、 如权利要求 1所述的方法, 其特征在于, 所述利用射频参数计算 发射功率前, 进一步包括: 确定是否开启省电模式, 如果开启, 则根据 所述射频参数计算所述发射功率;
如果关闭, 则从所述发射功率与功放电压值的对应关系中读取第一 个功放电压值。
7、 如权利要求 6所述的方法, 其特征在于, 所述确定是否开启省电 模式为: 根据接收的省电模式开关量确定是否开启省电模式;
所述的省电模式开关量为基带板下发的射频参数。
8、 如权利要求 7所述的方法, 其特征在于, 所述的省电模式开关量 为基带板下发的一个 16进制数。
9、 如权利要求 1所述的方法, 其特征在于, 所述利用射频参数计算 发射功率为: 利用存储的载波数和载波功率等级计算发射功率等级; 所述的载波数和载波功率等级为基带板下发的射频参数。
10、 如权利要求 1所述的方法, 其特征在于, 所述根据所述发射功 率以及获取的发射功率与功放电压值的对应关系确定功放电压值为: 从存储有所述发射功率与功放电压值的对应关系的列表中查询并读 取与所述发射功率对应的功放电压值, 如果查询并读取成功, 则确定功 放电压值为读取的功放电压值; 如果查询并读取失败, 则确定功放电压 值为预设的默认值。
11、 如权利要求 2所述的方法, 其特征在于, 所述确定电压控制字 计算系数包括:从电源模块中读取电压控制字计算系数,如果读取失败, 则将电压控制字计算系数设置为默认值。
12、 如权利要求 11所述的方法, 其特征在于, 所述的电压控制字计 算系数为 、 B值; 所述的电压控制字等于 K与所述的功放电压值的乘 积再力口 B。
13、 一种射频模块, 包括基带板信号到射频信号的转换模块、 天线 线性设备和功放模块, 其特征在于, 还包括:
可调电源模块;
存储模块, 用于存储基带板下发的射频参数以及发射功率与功放电 压值的对应关系;
电源控制模块,用于利用所述存储模块中的射频参数计算发射功率, 放电压值, 并根据所述功放电压值调整所述可调电源模块的输出电压。
14、 如权利要求 13所述的射频模块, 其特征在于, 所述存储模块进 一步用于存储省电模式开关量;
所述电源控制模块, 进一步用于根据所述省电模式开关量确定是否 开启省电模式。
15、 如权利要求 13或 14所述的射频模块, 其特征在于, 所述电源 模块包括:
功放电源, 用于为所述功放模块供电;
电源控制部分, 用于根据所述电源控制模块确定的电压控制字设置 所述功放电源的输出电压。
16、 如权利要求 15 所述的射频模块, 其特征在于, 所述电源控制 部分为可调芯片, 其通过电源线与所述功放电源相连, 通过总线与所述 电源控制模块相连。
17、 如权利要求 13或 14所述的射频模块, 其特征在于, 所述存储 模块设置在所述电源模块中; 或设置在所述电源模块外; 或部分设置在 所述电源模块中, 部分设置在所述电源模块外;
所述存储模块通过总线与所述电源控制模块相连。
18、一种确定发射功率与功放电压值对应关系的方法,其特征在于, 包括:
调试功放模块和射频模块,获取发射功率与功放电压值的对应关系; 对射频模块进行老化处理后, 生产装配按照获取的不同发射功率对 应的功放电压值, 对射频模块进行指标测试;
判断指标测试是否符合规格, 根据指标测试结果调整不同发射功率 对应的功放电压值, 并利用调整后的功放电压值更新所述发射功率与功 放电压值的对应关系。
19、 如权利要求 18所述的方法, 其特征在于, 所述指标测试包括频 谱指标测试和效率指标测试; 系包括: 如果两种指标测试都符合规格, 则保持功放电压值不变;
如果频谱指标测试不符合规格, 则将功放电压值向下微调到频语指 标符合规格为止; 如果效率指标测试不符合规格, 则将功放电压值向上 微调到效率指标符合规格为止。
PCT/CN2007/070075 2006-06-16 2007-06-01 A method for making a power amplifier support multi-power, a radio frequency module and a testing method WO2007147351A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
BRPI0713416-9A BRPI0713416B1 (pt) 2006-06-16 2007-06-01 método e sistema para possibilitar a um amplificador de potência suportar diversas potências
EP07721697.6A EP1986331B1 (en) 2006-06-16 2007-06-01 A method for making a power amplifier support multi-power, a radio frequency module and a testing method
US12/334,962 US8909178B2 (en) 2006-06-16 2008-12-15 Method, RF module and test method for enabling power amplifier to support multiple powers
US14/547,843 US20150079915A1 (en) 2006-06-16 2014-11-19 Method, rf module and test method for enabling power amplifier to support multiple powers

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200610087092.7 2006-06-16
CN2006100870927A CN1983851B (zh) 2006-06-16 2006-06-16 一种使功放支持多功率的方法及射频模块

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/334,962 Continuation US8909178B2 (en) 2006-06-16 2008-12-15 Method, RF module and test method for enabling power amplifier to support multiple powers

Publications (1)

Publication Number Publication Date
WO2007147351A1 true WO2007147351A1 (en) 2007-12-27

Family

ID=38166139

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2007/070075 WO2007147351A1 (en) 2006-06-16 2007-06-01 A method for making a power amplifier support multi-power, a radio frequency module and a testing method

Country Status (5)

Country Link
US (2) US8909178B2 (zh)
EP (2) EP2337218B1 (zh)
CN (1) CN1983851B (zh)
BR (1) BRPI0713416B1 (zh)
WO (1) WO2007147351A1 (zh)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1983851B (zh) * 2006-06-16 2010-07-28 华为技术有限公司 一种使功放支持多功率的方法及射频模块
WO2009079865A1 (fr) * 2007-12-25 2009-07-02 Zte Corporation Appareil pour le réglage dynamique d'un amplificateur de puissance d'un terminal mobile
US8255009B2 (en) 2008-04-25 2012-08-28 Apple Inc. Radio frequency communications circuitry with power supply voltage and gain control
US8331883B2 (en) * 2008-10-30 2012-12-11 Apple Inc. Electronic devices with calibrated radio frequency communications circuitry
US8116703B2 (en) 2008-12-08 2012-02-14 Apple Inc. Wireless transmitter calibration using device receiver
US8165642B2 (en) * 2009-05-13 2012-04-24 Apple Inc. Electronic device with data-rate-dependent power amplifier bias
CN101938258B (zh) * 2010-08-27 2013-06-05 华为终端有限公司 一种控制射频功率放大器发射信号的方法和装置
US8913970B2 (en) 2010-09-21 2014-12-16 Apple Inc. Wireless transceiver with amplifier bias adjusted based on modulation scheme
US8738066B2 (en) 2010-10-07 2014-05-27 Apple Inc. Wireless transceiver with amplifier bias adjusted based on modulation scheme and transmit power feedback
CN102394586A (zh) * 2011-11-02 2012-03-28 华为终端有限公司 一种功率放大器调压方法及通讯终端设备
DE102013207898A1 (de) * 2013-04-30 2014-10-30 Novero Dabendorf Gmbh Kompensation einer Signal-Dämpfung bei der Übertragung von Sendesignalen eines Mobilfunkgeräts
US9225289B2 (en) * 2014-03-23 2015-12-29 Paragon Communications Ltd. Method and apparatus for partial envelope tracking in handheld and wireless computing devices
US9654154B2 (en) 2014-09-08 2017-05-16 Apple Inc. Radio frequency adaptive voltage shaping power amplifier systems and methods
US9537519B2 (en) 2014-09-08 2017-01-03 Apple Inc. Systems and methods for performing power amplifier bias calibration
CN106549717A (zh) * 2015-09-23 2017-03-29 中兴通讯股份有限公司 一种发射功率检测方法及装置
CN108449053B (zh) * 2018-02-28 2022-05-03 惠州Tcl移动通信有限公司 一种射频功放与转换器协同设置的方法、存储介质及设备
US11888553B2 (en) * 2019-10-18 2024-01-30 Nokia Technologies Oy Massive MIMO antenna array
CN111726140B (zh) * 2020-06-19 2022-06-10 维沃移动通信有限公司 功率放大器控制方法、装置、wifi射频电路和电子设备
CN113835053A (zh) * 2020-06-23 2021-12-24 通用电气精准医疗有限责任公司 射频功率放大器的功率控制装置和mri系统的射频发射系统
CN114172535B (zh) * 2020-08-21 2023-08-08 Oppo广东移动通信有限公司 射频前端及芯片、无线通信设备

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4866714A (en) 1987-10-15 1989-09-12 Westinghouse Electric Corp. Personal computer-based dynamic burn-in system
EP0590651A2 (en) 1992-09-30 1994-04-06 Nec Corporation Dynamic random access memory device having power supply system appropriately biasing switching transistors and storage capacitors in burn-in testing process
WO2000048307A1 (en) 1999-02-09 2000-08-17 Tropian, Inc. High-efficiency modulating rf amplifier
US6141541A (en) 1997-12-31 2000-10-31 Motorola, Inc. Method, device, phone and base station for providing envelope-following for variable envelope radio frequency signals
CN1326609A (zh) * 1998-11-18 2001-12-12 艾利森公司 用于进行具有独立的、高效率调幅的i/q调制的电路和方法
CN1399138A (zh) * 2001-07-20 2003-02-26 上海大唐移动通信设备有限公司 射频自动切换批量测试方法
CN1474517A (zh) * 2002-06-30 2004-02-11 联想(北京)有限公司 无线网卡发射功率可调的实现方法
US20050186923A1 (en) 2004-02-20 2005-08-25 Research In Motion Limited Method and apparatus for improving power amplifier efficiency in wireless communication systems having high peak to average power ratios
US20060046668A1 (en) 2004-08-31 2006-03-02 Sharp Kabushiki Kaisha Power consumption controlling apparatus for high frequency amplifier

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0725553B2 (ja) * 1987-05-07 1995-03-22 松下電器産業株式会社 板状磁性粉体の製造方法
JP2746685B2 (ja) * 1989-09-06 1998-05-06 富士通株式会社 送信出力制御回路
US5257415A (en) * 1991-03-20 1993-10-26 Fujitsu Limited Automatic transmission level control device
JP2937673B2 (ja) * 1993-01-25 1999-08-23 株式会社東芝 通信装置
US5452473A (en) * 1994-02-28 1995-09-19 Qualcomm Incorporated Reverse link, transmit power correction and limitation in a radiotelephone system
US5659892A (en) * 1995-07-13 1997-08-19 Hughes Electronics Operation of low-cost, fixed output power radio in fixed gain mode
WO1998001964A1 (en) * 1996-07-05 1998-01-15 Clifford Harris Modular transmission system and method
US6069525A (en) * 1997-04-17 2000-05-30 Qualcomm Incorporated Dual-mode amplifier with high efficiency and high linearity
FR2766992B1 (fr) * 1997-08-01 2000-12-29 France Telecom Procede de simulation d'amplificateur non lineaire a memoire d'enveloppe
JP2926576B1 (ja) * 1998-04-03 1999-07-28 埼玉日本電気株式会社 無線電話装置
US6043707A (en) * 1999-01-07 2000-03-28 Motorola, Inc. Method and apparatus for operating a radio-frequency power amplifier as a variable-class linear amplifier
WO2000055968A1 (en) * 1999-03-12 2000-09-21 Nokia Networks Oy Power amplifier unit
SE515636C2 (sv) * 2000-01-25 2001-09-17 Ericsson Telefon Ab L M Metod och anordning för att reglera utsänd effekt i ett telekommunikationssystem
US6597925B1 (en) * 2000-03-16 2003-07-22 Agere Systems Inc. Transmitter circuit with frequency self-optimization
US7283794B2 (en) * 2001-03-30 2007-10-16 Skyworks Solutions, Inc. Low voltage digital interface
BR0111736A (pt) * 2001-04-17 2003-07-01 Nokia Corp Método para determinar os ganhos de radiofrequência separados para portadoras diferentes em um transmissor de multi-portadora de uma unidade de radiotransmissão de um sistema de radiocomunicação, uso de um método, unidade de radiotransmissão para uma rede de radiocomunicação, módulo para uma unidade de radiotransmissão de um sistema de radiocomunicação, e, rede de radiocomunicação
JP3958066B2 (ja) * 2002-02-21 2007-08-15 ソニー・エリクソン・モバイルコミュニケーションズ株式会社 送信出力回路および移動体通信端末
TW583855B (en) * 2002-08-22 2004-04-11 Mediatek Inc Wireless communication device for transmitting RF signals
DE10250612B4 (de) * 2002-10-30 2014-01-16 Advanced Micro Devices, Inc. Automatische Leistungspegelsteuerschaltung für ein Sende/Empfangselement
US20040127173A1 (en) 2002-12-30 2004-07-01 Motorola, Inc. Multiple mode transmitter
ATE551773T1 (de) * 2003-02-20 2012-04-15 Sony Ericsson Mobile Comm Ab Effizienter modulation von hochfrequenzsignalen
US6847904B2 (en) * 2003-02-25 2005-01-25 Microchip Technology Incorporated Multi-channel programmable gain amplifier controlled with a serial interface
US7043213B2 (en) * 2003-06-24 2006-05-09 Northrop Grumman Corporation Multi-mode amplifier system
US7026868B2 (en) * 2003-11-20 2006-04-11 Northrop Grumman Corporation Variable supply amplifier system
JP2005167541A (ja) * 2003-12-02 2005-06-23 Matsushita Electric Ind Co Ltd 送信機
US7522892B2 (en) * 2003-12-22 2009-04-21 Black Sand Technologies, Inc. Power amplifier with serial interface and associated methods
US7440733B2 (en) * 2004-04-09 2008-10-21 Powerwave Technologies, Inc. Constant gain nonlinear envelope tracking high efficiency linear amplifier
US7102442B2 (en) * 2004-04-28 2006-09-05 Sony Ericsson Mobile Communications Ab Wireless terminals, methods and computer program products with transmit power amplifier input power regulation
US7224215B2 (en) * 2004-12-28 2007-05-29 Sony Ericsson Mobile Communications Ab Intelligent RF power control for wireless modem devices
US7183844B2 (en) * 2004-12-30 2007-02-27 Motorola, Inc. Multi-state load switched power amplifier for polar modulation transmitter
US7711070B2 (en) * 2005-08-25 2010-05-04 Qualcomm, Incorporated Method and apparatus for control of transmitter power consumption
US8093946B2 (en) * 2006-03-17 2012-01-10 Nujira Limited Joint optimisation of supply and bias modulation
US7962108B1 (en) * 2006-03-29 2011-06-14 Rf Micro Devices, Inc. Adaptive AM/PM compensation
CN1983851B (zh) 2006-06-16 2010-07-28 华为技术有限公司 一种使功放支持多功率的方法及射频模块
FI20075690A0 (fi) * 2007-10-01 2007-10-01 Nokia Corp Signaalin esivääristäminen radiolähettimessä

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4866714A (en) 1987-10-15 1989-09-12 Westinghouse Electric Corp. Personal computer-based dynamic burn-in system
EP0590651A2 (en) 1992-09-30 1994-04-06 Nec Corporation Dynamic random access memory device having power supply system appropriately biasing switching transistors and storage capacitors in burn-in testing process
US6141541A (en) 1997-12-31 2000-10-31 Motorola, Inc. Method, device, phone and base station for providing envelope-following for variable envelope radio frequency signals
CN1326609A (zh) * 1998-11-18 2001-12-12 艾利森公司 用于进行具有独立的、高效率调幅的i/q调制的电路和方法
WO2000048307A1 (en) 1999-02-09 2000-08-17 Tropian, Inc. High-efficiency modulating rf amplifier
CN1399138A (zh) * 2001-07-20 2003-02-26 上海大唐移动通信设备有限公司 射频自动切换批量测试方法
CN1474517A (zh) * 2002-06-30 2004-02-11 联想(北京)有限公司 无线网卡发射功率可调的实现方法
US20050186923A1 (en) 2004-02-20 2005-08-25 Research In Motion Limited Method and apparatus for improving power amplifier efficiency in wireless communication systems having high peak to average power ratios
US20060046668A1 (en) 2004-08-31 2006-03-02 Sharp Kabushiki Kaisha Power consumption controlling apparatus for high frequency amplifier

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1986331A4 *

Also Published As

Publication number Publication date
EP2337218B1 (en) 2012-12-26
EP2337218A3 (en) 2011-11-02
CN1983851B (zh) 2010-07-28
EP1986331A1 (en) 2008-10-29
EP2337218A2 (en) 2011-06-22
BRPI0713416B1 (pt) 2019-11-12
US8909178B2 (en) 2014-12-09
EP1986331B1 (en) 2013-05-01
BRPI0713416A2 (pt) 2012-03-27
CN1983851A (zh) 2007-06-20
US20090093225A1 (en) 2009-04-09
US20150079915A1 (en) 2015-03-19
EP1986331A4 (en) 2009-04-08

Similar Documents

Publication Publication Date Title
WO2007147351A1 (en) A method for making a power amplifier support multi-power, a radio frequency module and a testing method
US8229376B2 (en) Compensation method of radio frequency module performance and radio frequency module
CN101394151B (zh) 功率放大器自动增益补偿与线性控制方法及装置
CN100547915C (zh) 移动通信终端的发送功率控制装置和方法
US8422959B2 (en) Compensating method for capacity of radio frequency module and a radio frequency module
CN104079243A (zh) 包络追踪系统的校准方法、电源电压的调制方法及装置
CN103686968A (zh) 一种数字微波收发信机的发射功率校准方法及其校准电路
CN104521137A (zh) 使用装置表征数据确定et放大级的包络成形和信号通路预失真
CN103812454A (zh) 包络追踪系统的校准方法及装置
WO2012055185A1 (zh) 一种移动终端的射频校准方法和装置
CN101494477A (zh) 一种终端功率控制的方法及装置
WO2021136201A1 (zh) 直流校准方法、系统、设备和存储介质
CN103477556B (zh) 一种保持功率放大器的静态电流恒定的方法及装置
CN102811454A (zh) 一种移动终端灵敏度的测试方法、装置及系统
CN103634890B (zh) Dpd功放产品功率定标方法和装置
CN113759786A (zh) 一种电源芯片管理系统及方法
CN101350643A (zh) 一种射频模块性能的补偿方法及改进的射频模块
CN1972149A (zh) Td-scdma射频功率放大器的生产校准方法和装置
CN101532887A (zh) 一种用于金属溶液的无线测温枪及其工作方法
CN202285041U (zh) 一种大功率射频功放模块自动增益调试系统
CN101674640A (zh) Cdma移动终端及控制其发射功率的方法
CN201290093Y (zh) 功率放大器自动增益补偿与线性控制装置
CN106851687B (zh) 一种wcdma最小功率测试失败校准方法及系统
CN112945420B (zh) 一种无线pcr仪温度校准系统
CN101603992A (zh) 功率放大器输出功率对照表的建立方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07721697

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2007721697

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: PI0713416

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20081215