WO2007145174A1 - Electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using the same - Google Patents

Electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using the same Download PDF

Info

Publication number
WO2007145174A1
WO2007145174A1 PCT/JP2007/061744 JP2007061744W WO2007145174A1 WO 2007145174 A1 WO2007145174 A1 WO 2007145174A1 JP 2007061744 W JP2007061744 W JP 2007061744W WO 2007145174 A1 WO2007145174 A1 WO 2007145174A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte secondary
secondary battery
active material
electrode
epoxy resin
Prior art date
Application number
PCT/JP2007/061744
Other languages
French (fr)
Japanese (ja)
Inventor
Osamu Shimamura
Hideaki Horie
Original Assignee
Nissan Motor Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co., Ltd. filed Critical Nissan Motor Co., Ltd.
Publication of WO2007145174A1 publication Critical patent/WO2007145174A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • H01M50/461Separators, membranes or diaphragms characterised by their combination with electrodes with adhesive layers between electrodes and separators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to a non-aqueous electrolyte secondary battery electrode including a binder composed of a specific material and a non-aqueous electrolyte secondary battery using the same. .
  • Cycle life is particularly important when non-aqueous electrolyte secondary batteries are used as power sources for vehicles. This is because in a vehicle that is normally used for several years or more, if the cycle life is shortened, the reliability of the vehicle is greatly affected. For this reason, it is desired to maximize the cycle life.
  • an object of the present invention is to provide a means capable of improving cycle life and high-temperature durability in a nonaqueous electrolyte secondary battery.
  • the present invention has been made in view of the above problems.
  • the present invention is an electrode for a non-aqueous electrolyte secondary battery comprising a current collector and an active material layer containing an active material and a binder disposed on the surface of the current collector, wherein the binder comprises an epoxy
  • the group power consisting of rosin, phenolic terephthalate and polyimide contains at least one thermosetting selenium selected from 50 to LOO% by mass with respect to the total mass of the binder, and the thickness of the active material layer is Provided is an electrode for a non-aqueous electrolyte secondary battery that is 30 / zm or more and 300 ⁇ m or less.
  • the cycle characteristics can be maintained even at high temperatures, so that the battery life can be extended. Furthermore, a long-life and highly reliable vehicle is provided by applying a non-aqueous electrolyte secondary battery or an assembled battery in which a plurality of these are connected to a vehicle such as an automobile or a train.
  • a first embodiment of the present invention is an electrode for a nonaqueous electrolyte secondary battery comprising a current collector and an active material layer containing an active material and a binder disposed on the surface of the current collector.
  • the binder contains at least one thermosetting resin selected from the group consisting of epoxy resin, phenol resin and polyimide, and contains 50 to LOO mass% with respect to the total mass of the binder, and the active material
  • This is a nonaqueous electrolyte secondary battery electrode having a layer thickness of 30 m or more and 300 m or less.
  • the first feature of the present invention is that the binder in the active material layer is at least one thermosetting resin that is selected from the group consisting of epoxy resin, phenol resin, and polyimide, which are thermosetting resins. Is to include.
  • the epoxy resin is not particularly limited as long as it is thermosetting.
  • Specific examples of the epoxy resin include bisphenol A type epoxy resin such as bisphenol A type and bisphenol F type, phenol novolac type epoxy resin, cresol novolac type epoxy resin, glycidyl ether type epoxy resin, Examples thereof include glycidyl ester type epoxy resins, polyether modified epoxy resins, and silicone modified epoxy resins.
  • Bisphenol type epoxy resins are preferred because they can be used stably (electrochemical and electrolytic solution resistant) in the battery. These may be used alone or in combination of two or more.
  • the phenolic resin is not particularly limited as long as it is thermosetting.
  • Specific examples of the phenolic resin include novolak type phenolic resin, resol type phenolic resin, and epoxy modified phenolic resin. These can be used alone or in combination of two or more.
  • the polyimide is not particularly limited as long as it is thermosetting. Specific examples of the polyimide include condensation type polyimide and addition type polyimide. These may be used alone or in combination of two or more.
  • the thermosetting epoxy resin, phenol resin, and polyimide contained in the binder are used.
  • the total total mass is preferably 50 to 100%, more preferably 70 to 100%. Within this range, the active material is less likely to peel from the current collector, and the durability of the battery at high temperatures is improved, which is preferable.
  • thermosetting resin a conventionally known material used for a binder may be used for the noinder.
  • a conventionally known material used for a binder may be used for the noinder.
  • Specific examples include polyvinylidene fluoride (PVdF), polyacetate butyl, acrylic resin, polyethylene, polystyrene, polypropylene, polysulfone, polycarbonate, polytetrafluoroethylene, and the like; urea resin Thermosetting resin such as Polyurethane resin, Key resin resin, Unsaturated polyester resin; Rubber materials such as rubber, styrene rubber, polyisoprene rubber, polyolefin rubber, urethane rubber, polyamide rubber, attalinole rubber and fluororubber.
  • the binder may be contained in one of the active material layer of the positive electrode or the negative electrode, or may be contained in both. From the viewpoint of high output, it is preferable that the binder is contained in at least the positive electrode, and more preferably, the binder is contained in both the positive electrode and the negative electrode.
  • the active material layer contains an active material in addition to the above binder, and further contains other additives as necessary.
  • the positive electrode active material layer includes a positive electrode active material.
  • the positive electrode active material include LiCoO.
  • Li'Co complex oxide Li'Ni complex oxide such as LiNiO, Spinel LiMn O etc.
  • Lithium transition metal oxides such as Mn complex oxides and Li'Fe complex oxides such as LiFeO
  • Lithium transition metal phosphate compounds such as LiMPO (M 2 Fe, Mn, Co, Ni), Lithium
  • Examples include mu transition metal sulfate compounds. These can be used alone or in combination of two or more!
  • the positive electrode active material it is preferable to use at least one selected from Ni, ternary, and olivine-based material forces from the viewpoint of improving cycle characteristics at high temperatures.
  • the Ni-based, ternary-based, and olivine-based materials are not particularly limited, but the following are exemplified.
  • LiNiMnCoO, etc. or substituted with Co and A1 (eg LiNiCoAlO)
  • the ratio of Ni, Mn, and Co is 1: 1: 1.
  • LiMPO (M Fe, M
  • the negative electrode active material layer includes a negative electrode active material.
  • the negative electrode active material include carbon materials such as graphite, soft carbon, and hard carbon, lithium transition metal compounds as described above, metal materials, and lithium metal alloy materials. Use these alone Mogoku 2 or more types may be used in combination.
  • the average particle diameter of each active material contained in each active material layer is not particularly limited, but is preferably 0.01-: LOO ⁇ m, more preferably 1-50 ⁇ m.
  • particle diameter means the maximum distance L of the distance between any two points on the particle outline, and the value of “average particle diameter” is Using an observation means such as a scanning electron microscope (SEM) or transmission electron microscope (TEM), the value calculated as the average value of the particle diameters observed in several to several tens of fields shall be adopted. .
  • additives other than the binder that can be included in the positive electrode active material layer and the negative electrode active material layer include a conductive additive, an electrolyte salt (lithium salt), and an electrolyte.
  • the conductive additive refers to an additive that is mixed to improve the conductivity of the positive electrode active material layer or the negative electrode active material layer.
  • the conductive assistant include carbon materials such as carbon black such as acetylene black, graphite, and vapor grown carbon fiber.
  • electrolyte salts Li (C F SO) N, LiPF, LiBF, LiCIO, LiAsF
  • the mixing ratio of the components contained in the positive electrode active material layer and the negative electrode active material layer is not particularly limited.
  • the mixing ratio can be adjusted by appropriately referring to known knowledge about the non-aqueous electrolyte secondary battery.
  • the thickness of each active material layer is not less than 30 m and not more than 300 m.
  • the active material layer is preferably thicker.
  • the adhesion between the materials of the active material layer may decrease when a conventional binder is used. In some cases, the amount of binder added must be increased.
  • the binder of this embodiment even when the thickness of the active material layer is as thick as 30 m or more, the amount of the active material layer without increasing the blending amount of the binder is increased. Adhesion can be secured.
  • the thickness of the active material layer suppresses a decrease in energy density, and is preferably 50 ⁇ m or more and 200 ⁇ m or less.
  • the amount of the binder in the active material layer is not particularly limited, but may be 5 to 50%. More preferably, it is 5 to 20%. If it is in this range, the decrease in energy density can be prevented, which is preferable.
  • the current collector and the outermost layer current collector also have conductive material strength such as aluminum foil, copper foil, and stainless steel (abbreviated as SUS in Japanese Industrial Standards) foil.
  • the typical thickness of the current collector is 1-30 ⁇ .
  • the size of the current collector is determined according to the intended use of the nonaqueous electrolyte secondary battery. If a large electrode used for a large battery is to be produced, a current collector with a large area is used. If a small electrode is produced, a current collector with a small area is used.
  • the electrode of this embodiment can be manufactured by a conventionally known method for manufacturing a non-aqueous electrolyte secondary battery electrode.
  • an active material and a thermosetting resin are added to an organic solvent to prepare an active material slurry, and the active material slurry is applied to the surface of the current collector to form a coating film.
  • a desired active material and thermosetting resin, and other components e.g., conductive assistant, supporting salt (lithium salt), ion conductive polymer, etc.
  • a solvent as required.
  • the kind of solvent and the mixing means are not particularly limited, and conventionally known knowledge can be appropriately referred to for electrode production.
  • the solvent ⁇ -methyl-2-pyrrolidone ( ⁇ ), dimethylformamide, dimethylacetamide, methylformamide and the like can be used.
  • the active material slurry prepared above is applied to the surface of the current collector prepared above to form a coating film. Thereafter, drying and pressing are performed.
  • the application means for applying the active material slurry is not particularly limited. For example, a commonly used means such as a coater can be adopted.
  • the second embodiment is a nonaqueous electrolyte secondary battery using the electrode of the first embodiment.
  • a non-aqueous electrolyte secondary battery has good high-temperature durability and is expected to extend the battery life.
  • the electrode of the first embodiment may be used for at least one of the positive electrode and the negative electrode. However, since the effect of the present invention is remarkably obtained, it is preferable to use at least the positive electrode and the negative electrode. It is more preferable to use both.
  • normally known electrode components are used in addition to the electrode elements of the first embodiment. Hereinafter, members constituting the battery of this embodiment will be described.
  • the separator used in the present invention is not particularly limited, and may be a non-woven fabric separator or a microporous membrane separator.
  • the nonwoven fabric separator for example, a sheet entangled with fibers can be used. Further, a spunbond obtained by fusing fibers together by heating can also be used. That is, it may be in the form of a sheet formed by arranging fibers in a web (thin cotton) shape or mat shape by an appropriate method and joining them with an appropriate adhesive or a fusion bond of the fibers themselves.
  • the fibers used are not particularly limited, for example, polyolefins such as polypropylene and polyethylene, polyesters such as polyethylene terephthalate (PET), cellulose, rayon, acetate, nylon (registered trademark), polyimide, aramid, ceramics, etc. A conventionally well-known thing can be used.
  • the microporous membrane separator for example, a porous sheet (for example, a polyolefin microporous membrane separator, etc.) having a polymer force for absorbing and holding the electrolyte can be used.
  • the polyolefin microporous membrane separator having the property of being chemically stable to an organic solvent has an excellent effect that the reactivity with the electrolyte (electrolytic solution) can be kept low.
  • the material for the polyolefin microporous membrane separator include a laminate having a three-layer structure of polyethylene (PE), polypropylene (PP), and PPZPEZPP.
  • examples of the material for the microporous membrane separator include polyimide, aramid, and polyethylene terephthalate.
  • the material constituting the separator used in the present embodiment preferably includes at least one material selected from polypropylene, polyimide, polyethylene terephthalate (PET), aramid, cellulose, and a ceramic force. It is preferable to use such a material because the high temperature durability of the battery is further improved. In order to improve the high temperature durability of the battery, the preferable material is contained in 100% of the material constituting the separator, preferably 80% or more, more preferably 90% or more, and still more preferably 100%. Also, above The preferred materials may be used alone or in combination of two or more, but are preferably used alone from the viewpoint of productivity.
  • the separator described above is sandwiched between electrodes, and can be used as an electrolyte by impregnating the electrolyte when an electrolyte is used as the electrolyte described later. Therefore, when the above electrodes are used and a separator impregnated with an electrolyte solution is sandwiched between the electrodes as an electrolyte, these combinations form one set of battery elements. If necessary, this one set can be wrapped in an exterior material and used as it is as a nonaqueous electrolyte secondary battery, or multiple sets can be stacked and wrapped in an exterior material to be used as a nonaqueous electrolyte secondary battery. Good.
  • the high temperature durability is further improved by the combination with a specific binder used in the active material layer.
  • the material constituting the separator includes polyimide and the binder includes thermosetting polyimide;
  • the material force constituting the separator includes at least one of SPET and aramid, Preferred examples include a form containing at least one of phenolic resin and epoxy resin;
  • a material comprising the separator contains polypropylene and a binder contains at least one of phenolic resin and epoxy resin.
  • the form of (a) to (c) may be a combination of at least one of a positive electrode and a negative electrode, and a separator. However, since the effects of the present invention are remarkably obtained, both the positive electrode and the negative electrode are formed. A combination of a binder and a separator is more preferable.
  • an insulating fine particle mixed material including a thermosetting adhesive and insulating fine particles is disposed between the active material layer and the separator, between the active material layer and the separator. Preferably it is.
  • the heat resistance is further improved and the high temperature durability is further improved.
  • the insulating fine particles can be adhered well even at high temperatures.
  • Insulating fine particles mean particles that exhibit electrical insulation.
  • the material constituting the insulating fine particles is not particularly limited as long as it is a material exhibiting electrical insulation, and conventionally known materials can be appropriately used. Specifically, a ceramic material or an organic polymer material can be used as a material constituting the insulating fine particles. Insulating fine particles composed of these materials By doing so, the function of preventing the short circuit between the positive and negative electrodes required for the separator can be sufficiently exhibited.
  • Examples of these insulating fine particles include lithium ferrite (LiFeO) and silica (SiO2).
  • Anolemina Al 2 O 3
  • zirconia zirconia, magnesia, titania, silica anolemina, acid chrome
  • Acids such as ruthenium oxide, nitrides such as aluminum nitride and silicon nitride, acrylic materials such as LiFe PO, polymethyl acrylate and polymethyl methacrylate, fluorinated imides
  • polyimide materials such as polystyrene, polypropylene, polysulfone, phenol resin, and unsaturated polyester resin.
  • polyimide materials such as polystyrene, polypropylene, polysulfone, phenol resin, and unsaturated polyester resin.
  • LiFeO, SiO in terms of electronic conductivity (insulation) and mechanical strength (having a higher short-circuit prevention function)
  • AlO is preferably used. These materials may be used alone, or two or more
  • the insulating fine particles may be all particles (ceramic particles) made of a ceramic material, or all particles (organic polymer particles) made of an organic polymer material. However, it may be a mixture of these particles. When the form of the mixture is adopted, the mixing ratio of the ceramic particles and the organic polymer particles is not particularly limited. However, the ratio (volume ratio) of the ceramic particles to the organic polymer particles is preferably 10 to 20: 1. -10, more preferably 10-15: 3-10.
  • the average particle size of the insulating fine particles is ⁇ ⁇ ! More preferably, it is 50 nm to 25 ⁇ m, more preferably 100 nm to 20 ⁇ m, and most preferably 1000 nm to 10 m. If the insulating fine particles are in this range, the volume energy density of the battery is appropriate, and even if the insulating fine particles fall off due to vibration during use of the battery, the insulating particles of such a relatively small size are used. By using conductive fine particles, the occurrence of a short circuit between the positive and negative electrodes can be sufficiently suppressed.
  • the insulating fine particles are bound to each other by the thermosetting adhesive contained in the insulating fine particle mixed material, and the adhesion between the separator and the active material layer is achieved. Sex can also be improved. As a result, the reliability such as vibration resistance of the nonaqueous electrolyte secondary battery can be improved.
  • Thermosetting adhesives include urea resin, epoxy resin, polyurethane Examples of the resin include cocoa resin, key resin, phenol resin, and unsaturated polyester resin.
  • the blending amount of the thermosetting adhesive in the insulating fine particle mixed material is not particularly limited.
  • the total amount of the insulating fine particle mixed material is 100%, it is preferably 1 to 80%, more preferably 3 to 50%.
  • the added amount of the adhesive is within such a range, a battery having an excellent balance of binding property, adhesion, and volumetric energy density can be provided.
  • Examples of the arrangement method of the insulating fine particle mixed material include a method of applying to the surface of the active material layer.
  • the insulating fine particle mixed material is applied to the surface of the active material layer, it is preferable to apply 70% or more with respect to 100% of the area of the active material layer.
  • Specific examples of the application method include a method in which a slurry containing insulating particles (insulating particle slurry) is separately prepared and applied to at least one surface (preferably both surfaces) of the active material layer.
  • the solvent used in preparing the insulating particle slurry is not particularly limited, and specifically, polar solvents such as N-methyl-2-pyrrolidone (NMP), dimethylformamide, dimethylacetamide, and methylformamide. Is mentioned.
  • the concentration of the insulating particles and the binder in the insulating particle slurry and the viscosity of the slurry are not particularly limited, and may be appropriately determined in consideration of the application method to the active material layer.
  • the viscosity of the insulating particle slurry is preferably 0.5 to 8. OPa's, and more preferably 1.0 to 4. OPa's.
  • the application means for applying the insulating particle slurry to the surface of the active material layer is not particularly limited, and a conventionally known method can be appropriately employed in the battery manufacturing field.
  • a conventionally known method can be appropriately employed in the battery manufacturing field.
  • methods such as a doctor blade method, an ink jet method, a screen printing method, and a die coater method are exemplified.
  • the insulating particle slurry applied to the surface of the active material layer may be dried and heated!
  • Heating may be performed after application of the insulating particle slurry and before lamination of the electrodes, or after lamination. In a preferred embodiment, heating is performed after the electrodes are stacked. According to such a form, an effect of improving the adhesion of the active material layer, the separator, and the insulating particle mixed material can be obtained in addition to improving the binding property of the insulating particles.
  • electrolyte As the electrolyte, conventionally known electrolytes can be used, and examples thereof include liquid electrolytes (electrolytic solutions), solid electrolytes, polymer electrolytes (intrinsic polymer electrolytes, gel polymer electrolytes, and the like).
  • electrolyte salt used in the electrolyte include lithium salts such as LIB ETI, LiBF, LiPF, LiN (SO CF), and LiN (SO CF).
  • the examples of the solvent include carbonates such as propylene carbonate (PC), ethylene carbonate (EC), dimethylolate carbonate (DMC), jetinolecarbonate (DEC), and ethinoremethyl carbonate (EMC). It is done. When these electrolytes are used as electrolytes for non-aqueous secondary batteries, they are used in the separator.
  • carbonates such as propylene carbonate (PC), ethylene carbonate (EC), dimethylolate carbonate (DMC), jetinolecarbonate (DEC), and ethinoremethyl carbonate (EMC). It is done.
  • PC propylene carbonate
  • EC ethylene carbonate
  • DMC dimethylolate carbonate
  • DEC jetinolecarbonate
  • EMC ethinoremethyl carbonate
  • the polymer electrolyte is composed of an ion conductive polymer, and the material is not limited as long as it exhibits ion conductivity.
  • a polymer ion-conductive polymer that is crosslinked by thermal polymerization, ultraviolet polymerization, radiation polymerization, electron beam polymerization, or the like is preferably used because it can exhibit excellent mechanical strength. It is done.
  • polymer electrolyte examples include an intrinsic polymer electrolyte and a gel polymer electrolyte.
  • Intrinsic polymer electrolytes include, but are not limited to, polyethylene oxide (PEO), polypropylene oxide (PPO), and copolymers thereof.
  • the gel polymer electrolyte generally refers to an electrolyte solution held in an all-solid polymer electrolyte having ion conductivity.
  • the gel polymer electrolyte also includes a polymer skeleton that does not have ion conductivity and a similar electrolyte solution held therein.
  • these polymer electrolytes are used as electrolytes for non-aqueous secondary batteries, they are used by being sandwiched between electrodes in the state described here.
  • the material of the electrode terminal is not particularly limited, and a known material conventionally used as an electrode terminal for a secondary battery can be used. Examples include aluminum, copper, titanium, nickel, stainless steel (abbreviated as SUS in the Japanese Industrial Standards), and alloys thereof.
  • the exterior material is not particularly limited, and a conventionally known exterior material can be used.
  • a polymer metal composite laminate sheet having excellent thermal conductivity is preferably used because heat can be efficiently transferred from the heat source of the automobile during cold start and the inside of the battery can be quickly heated to the battery operating temperature. sell. Further, by placing the inside of the laminate at a pressure lower than the atmospheric pressure, it becomes possible to make contact between the battery elements or between the battery element electrode terminals at atmospheric pressure, and it is possible to further reduce the contact resistance.
  • the nonaqueous electrolyte secondary battery of the present embodiment can be manufactured by appropriately referring to conventionally known knowledge without using a special technique.
  • the nonaqueous electrolyte secondary battery of the present invention is not particularly limited as long as it is a battery using a nonaqueous electrolyte, but is preferably a lithium ion secondary battery from the viewpoint of practicality. .
  • the non-aqueous electrolyte secondary battery of the present invention may be in a conventionally known form, not particularly limited in structure or connection form.
  • the structure of the battery includes a stacked (flat) battery, a wound (cylindrical) battery, and the like.
  • electrical connection forms (electrode structures) in the battery include internal series connection (bipolar type) and internal parallel connection.
  • an assembled battery is configured by connecting a plurality of the nonaqueous electrolyte secondary batteries of the second embodiment described above in parallel and Z or in series.
  • connection method for connecting a plurality of nonaqueous electrolyte secondary batteries constituting the assembled battery is not particularly limited, and a conventionally known method can be appropriately employed. For example, a technique using welding such as ultrasonic welding or spot welding, or a technique of fixing using rivets or caulking can be employed. According to the powerful connection method, the long-term reliability of the assembled battery can be improved.
  • the assembled battery of the present embodiment by using the nonaqueous electrolyte secondary battery of the second embodiment as an assembled battery, capacity characteristics are sufficiently ensured under high output conditions. It is possible to provide an assembled battery capable of exhibiting sufficient output.
  • non-aqueous electrolyte secondary batteries constituting the assembled battery may be connected in parallel, or all of the non-aqueous electrolyte secondary batteries may be connected in series. And parallel connection may be combined.
  • a vehicle is configured by mounting the nonaqueous electrolyte secondary battery of the second embodiment or the assembled battery of the third embodiment as a motor driving power source.
  • Vehicles that use non-aqueous electrolyte secondary batteries or assembled batteries as power sources for motors for example, do not use gasoline! /, Hybrid vehicles such as fully electric vehicles, series hybrid vehicles and parallel hybrid vehicles, and fuel cell vehicles Examples include automobiles that drive wheels with motors.
  • the nonaqueous electrolyte secondary battery of the second embodiment or the assembled battery of the third embodiment is excellent in high temperature durability, so it is possible to place the battery even in the vicinity of components that are likely to become high temperature. From the viewpoint of vehicle mountability, it is preferable to use the nonaqueous electrolyte secondary battery or the assembled battery of the present invention for the vehicle.
  • thermosetting resin bisphenol A type epoxy resin
  • the positive electrode ink was prepared as follows. 70% LiMn O (accumulating and desorbing Li ions
  • Active material average particle size 10 ⁇ m
  • 20% acetylene black 20% acetylene black, 5% PVdF and 5% one-component epoxy resin (bisphenol A type epoxy resin) as binder
  • NMP N-methyl-2-pyrrolidone
  • the negative electrode ink was produced as follows. 85% amorphous carbon (negative electrode active material capable of absorbing and desorbing Li ions, average particle size 10 ⁇ m), 7.5% PVdF and binder 7. Mix 5% one-component epoxy resin (bisphenol A type epoxy resin), add 41% NMP as a solvent to 100% of the mixture, and mix well to prepare slurry. Made.
  • Positive and negative electrodes An aluminum foil of about 10 m was used as a current collector, and positive electrode ink was applied to both sides of the aluminum foil as a positive electrode. About 10 m of copper foil was used as the current collector, and the negative electrode was coated with negative ink on both sides of this copper foil. Thereafter, drying was performed at 120 ° C., and pressing was performed so that the thickness of the active material layer after pressing was 60 ⁇ m for the positive electrode and 65 ⁇ m for the negative electrode.
  • A1 plate with a thickness of 150 ⁇ m, width 40 mm, and length 50 mm is used for the positive terminal lead, and Ni plating is applied to the Cu plate with thickness 150 / ⁇ ⁇ , width 40 mm, length 50 mm for the negative terminal lead.
  • the terminal lead that was used was used.
  • a positive electrode and a negative electrode are laminated via a microporous membrane separator made of polypropylene, and a laminate of 11 positive electrodes and 11 negative electrodes is laminated to a laminate film (a PET film for surface protection on the outermost layer).
  • A1 electrode terminals and Ni terminal leads are welded, sandwiched between outer laminate films, the positive and negative terminals projecting from the opposite sides of the battery, the edges are heated and welded, and the electrolyte is applied.
  • the solution was poured to prepare a laminated exterior flat battery with a width of 100 mm x length of 150 mm x thickness of about 3 mm.
  • thermosetting resin bisphenol A type epoxy resin
  • the positive electrode ink was prepared as follows. 70% LiMn O (average particle size 10 m), 20
  • the negative electrode ink was produced as follows. 85% amorphous carbon with an average particle size of 10 m and binder, 4.5% PVdF and 10.5% one-component epoxy resin (bisphenol A type epoxy resin). After mixing, 41% of NMP was added as a solvent to 100% of the mixture, and stirred well to prepare a slurry.
  • Example 1 In the same manner as in Example 1 (3) to (5), a laminated exterior flat battery was produced.
  • the separator used was a polypropylene microporous membrane separator as in Example 1, V.
  • thermosetting resin bisphenol A type epoxy resin
  • the positive electrode ink was prepared as follows. 70% LiMn O (average particle size 10 m), 20
  • Acetylene black and 10% one-component epoxy resin (bisphenol A type epoxy resin) as a binder, and 41% of NMP was added as a solvent to 100% of the mixture.
  • the slurry was prepared by thorough stirring.
  • the negative electrode ink was produced as follows. 85% amorphous carbon (average particle size 10 m) and 15% one-component epoxy resin (bisphenol A type epoxy resin) as a noinder are mixed, and 100% of the mixture is mixed. Then, 41% of NMP was added as a solvent and sufficiently stirred to prepare a slurry.
  • Example 1 In the same manner as in Example 1 (3) to (5), a laminated exterior flat battery was produced.
  • the separator used was a polypropylene microporous membrane separator as in Example 1, V.
  • Thermosetting resin (polyimide or bisphenol) relative to the total binder mass in the electrode
  • a slurry was prepared as follows so that the ratio of A-type epoxy resin was 70%. [0082] (1) Preparation of positive electrode ink
  • the positive electrode ink was prepared as follows. 70% LiMn O (average particle size 10 m), 20
  • the negative electrode ink was produced as follows. 85% amorphous carbon (average particle size 10 m), 4.5% PVdF as binder and 10.5% one-component epoxy resin (bisphenol A type epoxy resin), Were mixed, 41% of NMP was added as a solvent to 100% of the mixture, and stirred well to prepare a slurry.
  • Example 1 A laminated exterior flat battery was produced in the same manner as in (3) to (5). However, the separator used was a microporous membrane separator made of polyimide.
  • Example 1 (3) to (5) a laminated exterior flat battery was produced.
  • the separator used was a PET microporous membrane separator.
  • Example 1 (3) to (5) a laminated exterior flat battery was produced.
  • the separator used was a microporous membrane separator made of aramid resin.
  • thermosetting resin phenol resin
  • the positive electrode ink was prepared as follows. 70% LiMn O (average particle size 10 m), 20
  • the negative electrode ink was produced as follows. Mix 85% amorphous carbon (average particle size 10 m) with 4.5% PVdF and 10.5% phenol resin as binders. A slurry was prepared by adding 41% NMP as a solvent and stirring well.
  • Example 1 (3) to (5) a laminated exterior flat battery was produced.
  • the separator used was a PET microporous membrane separator.
  • Example 1 (3) to (5) a laminated exterior flat battery was produced.
  • the separator used was a microporous membrane separator made of aramid resin.
  • a battery in which an insulating fine particle mixed material containing a thermosetting adhesive and insulating fine particles was disposed between the active material layer and the separator was produced as follows.
  • the positive electrode ink was prepared as follows. 70% LiMn O (average particle size 10 m), 20
  • the negative electrode ink was produced as follows. 85% amorphous carbon (average particle size 10 m), 4.5% PVdF as binder and 10.5% one-component epoxy resin (bisphenol A type epoxy resin), Were mixed, 41% of NMP was added as a solvent to 100% of the mixture, and stirred well to prepare a slurry.
  • the positive electrode an aluminum foil of about 10 m was used as a current collector, and the positive electrode was coated with positive ink on both sides of the aluminum foil.
  • a copper foil of about 10 m was used for the current collector, and the negative electrode was coated with negative ink on both sides of the copper foil.
  • a mixture of 70% alumina particles with a particle size of 1 ⁇ m as ceramic fine particles, 10% of one-part epoxy resin (bisphenol A type epoxy resin) as thermosetting adhesive, and NMP as solvent. was applied on the positive electrode active material by a die coater method with a thickness of 5 / zm. Thereafter, drying was performed at 120 ° C., and pressing was performed so that the thickness of the active material layer after pressing was 60 ⁇ m for the positive electrode and 65 ⁇ m for the negative electrode.
  • a laminated exterior flat battery was produced in the same manner as in (4) to (5) of Example 1.
  • Example 2 The same procedure as in Example 1 was performed except that the pressing was performed such that the thickness of the active material layer after pressing was 30 ⁇ m for the positive electrode and 33 ⁇ m for the negative electrode.
  • a laminated exterior flat battery was produced in the same manner as in (4) to (5) of Example 1.
  • Example 2 The same operation as in Example 1 was performed except that the pressing was performed so that the thickness of the active material layer after pressing was 150 ⁇ m for the positive electrode and 165 ⁇ m for the negative electrode.
  • Example 2 The same operation as in Example 1 was performed except that the pressing was performed so that the thickness of the active material layer after pressing was 200 ⁇ m for the positive electrode and 220 ⁇ m for the negative electrode.
  • the positive electrode ink was prepared as follows. 70% LiMn O (accumulating and desorbing Li ions
  • Active material average particle size 10 m
  • 15% acetylene black binder 7.5% PVdF and 7.5% one-component epoxy resin (bisphenol A type epoxy resin)
  • one-component epoxy resin bisphenol A type epoxy resin
  • NMP N-methyl-2-pyrrolidone
  • the negative electrode ink was produced as follows. 80% amorphous carbon (negative electrode active material capable of absorbing and desorbing Li ions, average particle size 10 ⁇ m), 10% PVdF as binder and 1 0% one-component epoxy resin (bisphenol A type epoxy resin) is mixed, and 41% of NMP is added as a solvent to 100% of the above mixture to prepare a slurry. did.
  • the current collector was a copper foil of about 10 m and the negative electrode was coated with negative ink on both sides of the copper foil. Then, it dried at 120 degreeC and pressed so that the thickness after a press might be 300 m of positive electrodes, and 280 micrometers of negative electrodes.
  • Example 2 The same procedure as in Example 1 was performed except that the pressing was performed such that the thickness of the active material layer after pressing was 30 ⁇ m for the positive electrode and 33 ⁇ m for the negative electrode.
  • Example 2 The same operation as in Example 1 was performed except that the pressing was performed so that the thickness of the active material layer after pressing was 100 ⁇ m for the positive electrode and 110 ⁇ m for the negative electrode.
  • Example 2 The same operation as in Example 1 was performed except that the pressing was performed so that the thickness of the active material layer after pressing was 150 ⁇ m for the positive electrode and 165 ⁇ m for the negative electrode.
  • Example 2 The same operation as in Example 1 was performed except that the pressing was performed so that the thickness of the active material layer after pressing was 200 ⁇ m for the positive electrode and 220 ⁇ m for the negative electrode.
  • the positive electrode ink was prepared as follows. 70% LiMn O (accumulating and desorbing Li ions
  • Active material average particle size 10 m
  • 15% acetylene black 15% acetylene black
  • binder 4.5% PVdF and 10.5% one-component epoxy resin bisphenol A epoxy) Fat
  • NMP N-methyl-2-pyrrolidone
  • the negative electrode ink was produced as follows. 80% amorphous carbon (negative electrode active material capable of absorbing and desorbing Li ions, average particle size 10 ⁇ m), 6% PVdF as binder and 14% one-component epoxy resin (bisphenol) A type epoxy resin) was mixed, and 41% of NMP was added as a solvent to 100% of the mixture to prepare a slurry.
  • a positive electrode ink was produced in the same manner as in Example 3 (1).
  • the negative electrode ink was produced as follows. 85% amorphous carbon with an average particle size of 10 m and binder, 4.5% PVdF and 10.5% one-component epoxy resin (bisphenol A type epoxy resin). After mixing, 41% of NMP was added as a solvent to 100% of the mixture, and stirred well to prepare a slurry.
  • Example 2 The same procedure as in Example 1 was performed except that the pressing was performed such that the thickness of the active material layer after pressing was 30 ⁇ m for the positive electrode and 33 ⁇ m for the negative electrode.
  • Example 2 The same operation as in Example 1 was performed except that the pressing was performed so that the thickness of the active material layer after pressing was 100 ⁇ m for the positive electrode and 110 ⁇ m for the negative electrode.
  • Example 2 The same operation as in Example 1 was performed except that the pressing was performed so that the thickness of the active material layer after pressing was 150 ⁇ m for the positive electrode and 165 ⁇ m for the negative electrode.
  • Example 20 The same operation as in Example 20 was performed except that the pressing was performed so that the thickness of the active material layer after pressing was 200 ⁇ m for the positive electrode and 220 ⁇ m for the negative electrode.
  • the positive electrode ink was prepared as follows. 70% LiMn O (average particle size 10 m), 15
  • Acetylene black and 15% one-component epoxy resin (bisphenol A type epoxy resin) as a binder, and 41% of NMP was added as a solvent to 100% of the mixture.
  • the slurry was prepared by thorough stirring.
  • the negative electrode ink was produced as follows. 80% amorphous carbon (negative electrode active material capable of absorbing and desorbing Li ions, average particle size 10 ⁇ m), 6% PVdF as binder and 14% one-part epoxy resin (bisphenol) A type epoxy resin) was mixed, and 41% of NMP was added as a solvent to 100% of the mixture to prepare a slurry with sufficient stirring
  • Positive and negative electrodes An aluminum foil of about 10 m was used as a current collector, and positive electrode ink was applied to both sides of the aluminum foil as a positive electrode. About 10 m of copper foil is used for the current collector, and negative What applied polar ink was made into the negative electrode. Then, it dried at 120 degreeC and pressed so that the thickness of the active material layer after a press might be 270 micrometers of positive electrodes, and 300 micrometers of negative electrodes.
  • the positive electrode ink was prepared as follows. 70% LiMn O (average particle size 10 m), 20
  • Acetylene black mass 0/0, and 10% of PVdF as a binder were mixed, to the mixed compound of 100%, was added NMP 41% to prepare a well stirred with a slurry as a solvent.
  • the negative electrode ink was produced as follows. Mix 85% amorphous carbon (average particle size 10 m) and 15% PVdF as a noinder, and add 41% NMP as a solvent to 100% of the mixture. A slurry was prepared by stirring.
  • Table 1 shows a summary of the ratio, type, thickness of the active material layer, and separator material of the thermosetting resin in the nozzles of the examples.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Cell Separators (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

[PROBLEMS] To provide a means for improving the cycle life and the durability at higher temperatures in a non-aqueous electrolyte secondary battery. [MEANS FOR SOLVING PROBLEMS] An electrode for use in a non-aqueous electrolyte secondary battery, which comprises a current collector and an active material layer provided on the surface of the current collector and comprising an active material and a binder, wherein the binder contains at least one thermocurable resin selected from the group consisting of an epoxy resin, a phenol resin and polyimide in an amount of 50 to 100% by mass relative to the total mass of the binder, and wherein the active material layer has a thickness of 30 to 300 μm inclusive.

Description

明 細 書  Specification
非水電解質二次電池用電極およびこれを用いた非水電解質二次電池 技術分野  Non-aqueous electrolyte secondary battery electrode and non-aqueous electrolyte secondary battery using the same
[0001] 本発明は、非水電解質二次電池に関し、より詳細には、特定の材料で構成された バインダーを含む非水電解質二次電池用電極およびこれを用いた非水電解質二次 電池に関する。  TECHNICAL FIELD [0001] The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to a non-aqueous electrolyte secondary battery electrode including a binder composed of a specific material and a non-aqueous electrolyte secondary battery using the same. .
背景技術  Background art
[0002] 地球環境汚染および地球温暖化の問題に対処するため、電気自動車ゃハイブリツ ド自動車への関心が高まっている。これらの動力源の一つとして、リチウム二次電池 に代表される非水電解質二次電池が広く開発されて!ヽる。  [0002] In order to cope with the problems of global environmental pollution and global warming, interest in electric cars and hybrid cars is increasing. As one of these power sources, non-aqueous electrolyte secondary batteries represented by lithium secondary batteries have been widely developed!
[0003] 非水電解質二次電池においては、サイクル寿命、エネルギー密度、出力密度等の 特性が重要である。非水電解質二次電池が車両の動力源として用いられる場合には 、サイクル寿命は特に重要である。なぜならば、通常は数年以上用いられる車両にお いては、サイクル寿命が短くなれば、車両に対する信頼性に大きく影響するからであ る。このため、サイクル寿命を最大限に高めることが、所望されている。  [0003] In non-aqueous electrolyte secondary batteries, characteristics such as cycle life, energy density, and power density are important. Cycle life is particularly important when non-aqueous electrolyte secondary batteries are used as power sources for vehicles. This is because in a vehicle that is normally used for several years or more, if the cycle life is shortened, the reliability of the vehicle is greatly affected. For this reason, it is desired to maximize the cycle life.
[0004] 充放電サイクルを繰り返すと、集電体から電極層が剥離して内部抵抗が上昇するた め、電池容量が低下する。この問題点を解決する試みとして、従来バインダーとして 使用されてきたフッ化ビ-リデンのようなフッ素榭脂に改良を加える技術が提案され ている。例えば、電極活物質とバインダーとからなる活物質層において、ノインダ一と してフッ化ビ-リデンとへキサフルォロプロピレンとの共重合体を使用することによつ て、集電体からの活物質層の剥離を防止し、サイクル特性を向上させる技術が提案 されて!/ヽる(特開 2000— 133270号公報参照)。さら【こ、特開 2000— 133273号公 報では、エポキシ榭脂を主体とした組成物の硬化物をバインダーとして用いた二次 電池が提案されている。  [0004] When the charge / discharge cycle is repeated, the electrode layer peels off from the current collector and the internal resistance increases, so the battery capacity decreases. As an attempt to solve this problem, a technique for improving fluorine resin such as vinylidene fluoride, which has been conventionally used as a binder, has been proposed. For example, in an active material layer composed of an electrode active material and a binder, by using a copolymer of vinylidene fluoride and hexafluoropropylene as a noda, A technique for preventing the active material layer from peeling off and improving the cycle characteristics has been proposed! (See JP 2000-133270 A). Furthermore, in the publication of Japanese Patent Laid-Open No. 2000-133273, a secondary battery using a cured product of a composition mainly composed of epoxy resin as a binder is proposed.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] し力しながら、上記文献の技術を用いたとしても、サイクル寿命は電池が搭載された 装置に対する信頼性に大きく影響するものである故に、サイクル寿命を向上させる、 さらなる手段の開発が所望されている。特に高温で電池を使用 '保存した場合に、電 池のサイクル寿命を向上させる手段、すなわち高温耐久性に優れた電池の開発が 求められている。そこで、本発明は、非水電解質二次電池において、サイクル寿命お よび高温耐久性を向上しうる手段を提供することを目的とする。 [0005] However, even if the technique of the above-mentioned document is used, the battery is mounted with a cycle life. Development of additional means to improve cycle life is desired because it greatly affects the reliability of the device. In particular, there is a need to develop a battery that improves the cycle life of the battery when it is used and stored at a high temperature, that is, a battery with excellent high-temperature durability. Therefore, an object of the present invention is to provide a means capable of improving cycle life and high-temperature durability in a nonaqueous electrolyte secondary battery.
課題を解決するための手段  Means for solving the problem
[0006] 本発明は、上記課題に鑑みてなされたものである。本発明は、集電体と、前記集電 体の表面に配置された活物質およびバインダーを含む活物質層と、を有する非水電 解質二次電池用電極であって、前記バインダーが、エポキシ榭脂、フエノール榭脂 およびポリイミドからなる群力 選ばれる少なくとも 1つの熱硬化性榭脂を前記バイン ダ一の全質量に対して 50〜: LOO質量%含み、前記活物質層の厚さが、 30 /z m以上 300 μ m以下である非水電解質二次電池用電極を提供する。  The present invention has been made in view of the above problems. The present invention is an electrode for a non-aqueous electrolyte secondary battery comprising a current collector and an active material layer containing an active material and a binder disposed on the surface of the current collector, wherein the binder comprises an epoxy The group power consisting of rosin, phenolic terephthalate and polyimide contains at least one thermosetting selenium selected from 50 to LOO% by mass with respect to the total mass of the binder, and the thickness of the active material layer is Provided is an electrode for a non-aqueous electrolyte secondary battery that is 30 / zm or more and 300 μm or less.
発明の効果  The invention's effect
[0007] 本発明の電極を用いた非水電解質二次電池によれば、高温時であってもサイクル 特性が維持されるため、電池の長寿命化が達成されうる。さらに、非水電解質二次電 池、またはこれを複数接続した組電池を、自動車や電車などの車両に適用すること により、長寿命で信頼性の高い車両が提供される。  [0007] According to the nonaqueous electrolyte secondary battery using the electrode of the present invention, the cycle characteristics can be maintained even at high temperatures, so that the battery life can be extended. Furthermore, a long-life and highly reliable vehicle is provided by applying a non-aqueous electrolyte secondary battery or an assembled battery in which a plurality of these are connected to a vehicle such as an automobile or a train.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0008] (第 1実施形態) [0008] (First embodiment)
本発明の第 1実施形態は、集電体と、前記集電体の表面に配置された活物質およ びバインダーを含む活物質層と、を有する非水電解質二次電池用電極であって、前 記バインダーが、エポキシ榭脂、フエノール榭脂およびポリイミドからなる群力も選ば れる少なくとも 1つの熱硬化性榭脂を前記バインダーの全質量に対して 50〜: LOO質 量%含み、前記活物質層の厚さが、 30 m以上 300 m以下である非水電解質二 次電池用電極である。  A first embodiment of the present invention is an electrode for a nonaqueous electrolyte secondary battery comprising a current collector and an active material layer containing an active material and a binder disposed on the surface of the current collector. The binder contains at least one thermosetting resin selected from the group consisting of epoxy resin, phenol resin and polyimide, and contains 50 to LOO mass% with respect to the total mass of the binder, and the active material This is a nonaqueous electrolyte secondary battery electrode having a layer thickness of 30 m or more and 300 m or less.
[0009] 以下、本実施形態の非水電解質二次電池用電極を構成する部材について簡単に 説明する。  Hereinafter, members constituting the electrode for the nonaqueous electrolyte secondary battery of the present embodiment will be briefly described.
[0010] [バインダー] 本発明の第 1の特徴は、活物質層中のバインダーが、熱硬化性榭脂であるェポキ シ榭脂、フエノール榭脂、およびポリイミドからなる群力も選ばれる少なくとも 1つの熱 硬化性榭脂を含むことである。 [0010] [Binder] The first feature of the present invention is that the binder in the active material layer is at least one thermosetting resin that is selected from the group consisting of epoxy resin, phenol resin, and polyimide, which are thermosetting resins. Is to include.
[0011] エポキシ榭脂は、熱硬化性であれば、特に限定されるものではな 、。エポキシ榭脂 の具体例としては、たとえば、ビスフエノール A型、ビスフエノール F型などのビスフエ ノール型エポキシ樹脂、フエノールノボラック型エポキシ榭脂、クレゾ一ルノボラック型 エポキシ榭脂、グリシジルエーテル型エポキシ榭脂、グリシジルエステル型エポキシ 榭脂、ポリエーテル変性エポキシ榭脂、シリコーン変性エポキシ榭脂などがあげられ る。電池内で安定に(電気化学的、耐電解液性)使用できるという理由から、ビスフエ ノール型のエポキシ樹脂が好ましい。これらは単独で用いてもよぐ 2種以上を組み 合わせて用いてもよい。  The epoxy resin is not particularly limited as long as it is thermosetting. Specific examples of the epoxy resin include bisphenol A type epoxy resin such as bisphenol A type and bisphenol F type, phenol novolac type epoxy resin, cresol novolac type epoxy resin, glycidyl ether type epoxy resin, Examples thereof include glycidyl ester type epoxy resins, polyether modified epoxy resins, and silicone modified epoxy resins. Bisphenol type epoxy resins are preferred because they can be used stably (electrochemical and electrolytic solution resistant) in the battery. These may be used alone or in combination of two or more.
[0012] フ ノール榭脂は、熱硬化性であれば、特に限定されるものではな 、。フ ノール 榭脂の具体例としては、ノボラック型フエノール榭脂、レゾール型フエノール榭脂、ェ ポキシ変性フエノール榭脂などがあげられる。これらは単独で用いてもよぐ 2種以上 を組み合わせて用いてもょ 、。  [0012] The phenolic resin is not particularly limited as long as it is thermosetting. Specific examples of the phenolic resin include novolak type phenolic resin, resol type phenolic resin, and epoxy modified phenolic resin. These can be used alone or in combination of two or more.
[0013] ポリイミドは、熱硬化性であれば、特に限定されるものではな 、。ポリイミドの具体例 としては、縮合型ポリイミドゃ付加型ポリイミドなどがあげられる。これらは単独で用い てもよく、 2種以上を組み合わせて用いてもよい。  [0013] The polyimide is not particularly limited as long as it is thermosetting. Specific examples of the polyimide include condensation type polyimide and addition type polyimide. These may be used alone or in combination of two or more.
[0014] ノ インダ一の全質量を 100質量% (以下、質量%を単に「%」とする)とした場合、バ インダー中に含まれる熱硬化性のエポキシ榭脂、フエノール榭脂およびポリイミドの 全合計質量が、 50〜100%であることが好ましぐさらに好ましくは 70〜100%であ る。この範囲であると、活物質が集電体から剥離しにくくなり、また、高温での電池の 耐久性が向上するため、好ましい。  [0014] When the total mass of the binder is 100% by mass (hereinafter, mass% is simply referred to as “%”), the thermosetting epoxy resin, phenol resin, and polyimide contained in the binder are used. The total total mass is preferably 50 to 100%, more preferably 70 to 100%. Within this range, the active material is less likely to peel from the current collector, and the durability of the battery at high temperatures is improved, which is preferable.
[0015] ノインダ一には、上記特定の熱硬化性榭脂に加えて、バインダーに用いられる従 来公知の材料を使用してもよい。具体的には、ポリフッ化ビ-リデン (PVdF)、ポリ酢 酸ビュル、アクリル榭脂、ポリエチレン、ポリスチレン、ポリプロピレン、ポリスルフォン、 ポリカーボネート、ポリテトラフルォロエチレンなどの熱可塑性榭脂;ユリア榭脂、ポリ ウレタン榭脂、ケィ素榭脂、不飽和ポリエステル榭脂などの熱硬化性榭脂;プチルゴ ム、スチレン系ゴム、ポリイソプレンゴム、ォレフィン系ゴム、ウレタン系ゴム、ポリアミド 系ゴム、アタリノレゴム、フッ素ゴムなどのゴム系材料などが挙げられる。 [0015] In addition to the specific thermosetting resin, a conventionally known material used for a binder may be used for the noinder. Specific examples include polyvinylidene fluoride (PVdF), polyacetate butyl, acrylic resin, polyethylene, polystyrene, polypropylene, polysulfone, polycarbonate, polytetrafluoroethylene, and the like; urea resin Thermosetting resin such as Polyurethane resin, Key resin resin, Unsaturated polyester resin; Rubber materials such as rubber, styrene rubber, polyisoprene rubber, polyolefin rubber, urethane rubber, polyamide rubber, attalinole rubber and fluororubber.
[0016] なお、上記バインダーは、正極、負極のどちらか一方の活物質層に含まれていても よいし、あるいは双方に含まれていてもよい。高出力化という点からは、少なくとも正 極に上記バインダーを含むことが好ましぐより好ましくは正極、負極の双方に上記バ インダーを含む。  [0016] The binder may be contained in one of the active material layer of the positive electrode or the negative electrode, or may be contained in both. From the viewpoint of high output, it is preferable that the binder is contained in at least the positive electrode, and more preferably, the binder is contained in both the positive electrode and the negative electrode.
[0017] [活物質層]  [0017] [Active material layer]
活物質層は上記バインダーの他、活物質を含み、必要に応じてその他の添加剤を さらに含む。  The active material layer contains an active material in addition to the above binder, and further contains other additives as necessary.
[0018] 正極活物質層は、正極活物質を含む。正極活物質としては、例えば、 LiCoO等の  [0018] The positive electrode active material layer includes a positive electrode active material. Examples of the positive electrode active material include LiCoO.
2 2
Li'Co系複合酸化物、 LiNiO等の Li' Ni系複合酸化物、スピネル LiMn O等の Li' Li'Co complex oxide, Li'Ni complex oxide such as LiNiO, Spinel LiMn O etc. Li '
2 2 4  2 2 4
Mn系複合酸化物、 LiFeO等の Li'Fe系複合酸ィ匕物等のリチウム 遷移金属酸ィ匕  Lithium transition metal oxides such as Mn complex oxides and Li'Fe complex oxides such as LiFeO
2  2
物; LiMPO (M二 Fe、 Mn、 Co、 Ni)等のリチウム 遷移金属リン酸化合物、リチウ  Lithium transition metal phosphate compounds such as LiMPO (M 2 Fe, Mn, Co, Ni), Lithium
4  Four
ムー遷移金属硫酸化合物等が挙げられる。これらは単独で用いてもよぐ 2種以上を 組み合わせて用いてもよ!、。  Examples include mu transition metal sulfate compounds. These can be used alone or in combination of two or more!
[0019] 正極活物質としては、高温時のサイクル特性を向上させる点で、 Ni系、 3元系、およ びオリビン系材料力もなる群力も選ばれる少なくとも 1つを用いることが好ましい。 Ni 系、 3元系、およびオリビン系材料は、特に制限されるものではないが、以下のものが 例示される。 Ni系としては、 LiNiO 、 LiNiOの一部を Coもしくは Mnで置換したもの [0019] As the positive electrode active material, it is preferable to use at least one selected from Ni, ternary, and olivine-based material forces from the viewpoint of improving cycle characteristics at high temperatures. The Ni-based, ternary-based, and olivine-based materials are not particularly limited, but the following are exemplified. Ni-based LiNiO, LiNiO partially substituted with Co or Mn
2 2  twenty two
(例えば、 LiNiCoO 、 LiNiMnOなど)、または Coおよび Mnで置換したもの(例え  (Eg LiNiCoO, LiNiMnO, etc.) or those substituted with Co and Mn (eg
2 2  twenty two
ば、 LiNiMnCoOなど)、または Coおよび A1で置換したもの(例えば、 LiNiCoAlO  LiNiMnCoO, etc., or substituted with Co and A1 (eg LiNiCoAlO)
2 2 など)、またはその他の遷移金属で置換したもの(例えば、 LiNiCoAlMOなど)が挙  2 2 etc.) or those substituted with other transition metals (eg LiNiCoAlMO).
2 げられる。 3元系としては、 Ni、 Mn、 Coの比が 1: 1: 1である LiNi Mn Co Oな  2 As a ternary system, the ratio of Ni, Mn, and Co is 1: 1: 1.
1/3 1/3 1/3 2 どが挙げられる。オリビン系としては、 LiFePOに代表される、 LiMPO (M = Fe、 M  1/3 1/3 1/3 2 and so on. For olivine, LiMPO (M = Fe, M
4 4  4 4
n、 Co、 Ni)などが挙げられる。  n, Co, Ni).
[0020] 負極活物質層は、負極活物質を含む。負極活物質としては、例えば、グラフアイト、 ソフトカーボン、ハードカーボン等の炭素材料、上述したようなリチウム 遷移金属化 合物、金属材料、リチウム 金属合金材料などが挙げられる。これらは単独で用いて もよぐ 2種以上を組み合わせて用いてもよい。 [0020] The negative electrode active material layer includes a negative electrode active material. Examples of the negative electrode active material include carbon materials such as graphite, soft carbon, and hard carbon, lithium transition metal compounds as described above, metal materials, and lithium metal alloy materials. Use these alone Mogoku 2 or more types may be used in combination.
[0021] 各活物質層に含まれるそれぞれの活物質の平均粒子径は特に制限されないが、 好ましくは 0. 01〜: LOO μ mであり、より好ましくは 1〜50 μ mである。なお、本明細書 中において、「粒子径」とは、粒子の輪郭線上の任意の 2点間の距離のうち、最大の 距離 Lを意味するものとし、「平均粒子径」の値としては、走査型電子顕微鏡 (SEM) や透過型電子顕微鏡 (TEM)などの観察手段を用い、数〜数十視野中に観察され る粒子の粒子径の平均値として算出される値を採用するものとする。  [0021] The average particle diameter of each active material contained in each active material layer is not particularly limited, but is preferably 0.01-: LOO μm, more preferably 1-50 μm. In this specification, “particle diameter” means the maximum distance L of the distance between any two points on the particle outline, and the value of “average particle diameter” is Using an observation means such as a scanning electron microscope (SEM) or transmission electron microscope (TEM), the value calculated as the average value of the particle diameters observed in several to several tens of fields shall be adopted. .
[0022] 正極活物質層および負極活物質層に含まれうるバインダー以外の添加剤としては 、例えば、導電助剤、電解質塩 (リチウム塩)、電解質等が挙げられる。  [0022] Examples of additives other than the binder that can be included in the positive electrode active material layer and the negative electrode active material layer include a conductive additive, an electrolyte salt (lithium salt), and an electrolyte.
[0023] 導電助剤とは、正極活物質層または負極活物質層の導電性を向上させるために配 合される添加物をいう。導電助剤としては、アセチレンブラック等のカーボンブラック、 グラフアイト、気相成長炭素繊維などの炭素材料が挙げられる。活物質層が導電助 剤を含むと、活物質層の内部における電子ネットワークが効果的に形成され、電池の 出力特性の向上に寄与しうる。  [0023] The conductive additive refers to an additive that is mixed to improve the conductivity of the positive electrode active material layer or the negative electrode active material layer. Examples of the conductive assistant include carbon materials such as carbon black such as acetylene black, graphite, and vapor grown carbon fiber. When the active material layer contains a conductive additive, an electronic network inside the active material layer is effectively formed, which can contribute to improvement of the output characteristics of the battery.
[0024] 電解質塩(リチウム塩)としては、 Li (C F SO ) N、 LiPF、 LiBF、 LiCIO、 LiAsF  [0024] As electrolyte salts (lithium salts), Li (C F SO) N, LiPF, LiBF, LiCIO, LiAsF
2 5 2 2 6 4 4 6 2 5 2 2 6 4 4 6
、 LiCF SO , LiCF SO
3 3等が挙げられる。電解質は、下記「電解質」の項で詳述する。  3 3 etc. The electrolyte is described in detail in the section “Electrolyte” below.
[0025] 正極活物質層および負極活物質層中に含まれる成分の配合比は、特に限定され ない。配合比は、非水電解質二次電池についての公知の知見を適宜参照することに より、調整されうる。  [0025] The mixing ratio of the components contained in the positive electrode active material layer and the negative electrode active material layer is not particularly limited. The mixing ratio can be adjusted by appropriately referring to known knowledge about the non-aqueous electrolyte secondary battery.
[0026] 本実施形態において、各活物質層の厚さは、 30 m以上 300 m以下である。活 物質層は、単電池当りの容量を増加させる場合は、厚いほうが好ましいが、活物質層 が厚くなると、従来のバインダーを用いた場合、活物質層の物質間の密着性が低下 する虞があり、バインダーの配合量を増カロさせなければならない場合があった。これ に対し、本実施形態のバインダーを用いることによって、活物質層の厚さが 30 m以 上と厚い場合であっても、バインダーの配合量を増加させることなぐ活物質層の物 質間の密着性を確保できる。活物質層の厚さは、エネルギー密度の低下を抑える、 好ましくは 50 μ m以上 200 μ m以下である。  [0026] In the present embodiment, the thickness of each active material layer is not less than 30 m and not more than 300 m. When the capacity per unit cell is increased, the active material layer is preferably thicker. However, when the active material layer is thicker, the adhesion between the materials of the active material layer may decrease when a conventional binder is used. In some cases, the amount of binder added must be increased. On the other hand, by using the binder of this embodiment, even when the thickness of the active material layer is as thick as 30 m or more, the amount of the active material layer without increasing the blending amount of the binder is increased. Adhesion can be secured. The thickness of the active material layer suppresses a decrease in energy density, and is preferably 50 μm or more and 200 μm or less.
[0027] 活物質層中のバインダーの配合量は、特に制限されないが、 5〜50%であることが 好ましぐより好ましくは 5〜20%である。この範囲にあれば、エネルギー密度の低下 を防止できるであるため、好ましい。 [0027] The amount of the binder in the active material layer is not particularly limited, but may be 5 to 50%. More preferably, it is 5 to 20%. If it is in this range, the decrease in energy density can be prevented, which is preferable.
[0028] [集電体 (最外層集電体を含む) ]  [0028] [Current collector (including outermost current collector)]
集電体および最外層集電体は、アルミニウム箔、銅箔、ステンレス(日本工業規格 において SUSと略される)箔など、導電性の材料力も構成される。集電体の一般的な 厚さは、 1〜30 πιである。  The current collector and the outermost layer current collector also have conductive material strength such as aluminum foil, copper foil, and stainless steel (abbreviated as SUS in Japanese Industrial Standards) foil. The typical thickness of the current collector is 1-30 πι.
[0029] 集電体の大きさは、非水電解質二次電池の使用用途に応じて決定される。大型の 電池に用いられる大型の電極を作製するのであれば、面積の大きな集電体が用いら れる。小型の電極を作製するのであれば、面積の小さな集電体が用いられる。  [0029] The size of the current collector is determined according to the intended use of the nonaqueous electrolyte secondary battery. If a large electrode used for a large battery is to be produced, a current collector with a large area is used. If a small electrode is produced, a current collector with a small area is used.
[0030] [製造方法]  [0030] [Production method]
本実施形態の電極は、従来公知の非水電解質二次電池用電極の製造方法により 製造されうる。例えば、活物質および熱硬化性榭脂を有機溶媒に添加して活物質ス ラリーを調製し、当該活物質スラリーを集電体の表面に塗布して、塗膜を形成するこ とにより、製造されうる。具体的には、所望の活物質および熱硬化性榭脂、さらに必 要に応じて他の成分 (例えば、導電助剤、支持塩 (リチウム塩)、イオン伝導性ポリマ 一など)を、溶媒中で混合して、活物質スラリーを調製する。溶媒の種類や混合手段 は特に制限されず、電極製造について従来公知の知見が適宜参照されうる。溶媒の 一例を挙げると、 Ν—メチルー 2—ピロリドン(ΝΜΡ)、ジメチルホルムアミド、ジメチル ァセトアミド、メチルホルムアミドなどが用いられうる。続いて、上記で調製した活物質 スラリーを、上記で準備した集電体の表面に塗布し、塗膜を形成する。その後、乾燥 、プレス処理を施す。また、活物質スラリーを塗布するための塗布手段も特に限定さ れない。例えば、コーターなどの一般的に用いられている手段が採用されうる。  The electrode of this embodiment can be manufactured by a conventionally known method for manufacturing a non-aqueous electrolyte secondary battery electrode. For example, an active material and a thermosetting resin are added to an organic solvent to prepare an active material slurry, and the active material slurry is applied to the surface of the current collector to form a coating film. Can be done. Specifically, a desired active material and thermosetting resin, and other components (e.g., conductive assistant, supporting salt (lithium salt), ion conductive polymer, etc.) in a solvent as required. To prepare an active material slurry. The kind of solvent and the mixing means are not particularly limited, and conventionally known knowledge can be appropriately referred to for electrode production. As an example of the solvent, Ν-methyl-2-pyrrolidone (ΝΜΡ), dimethylformamide, dimethylacetamide, methylformamide and the like can be used. Subsequently, the active material slurry prepared above is applied to the surface of the current collector prepared above to form a coating film. Thereafter, drying and pressing are performed. Also, the application means for applying the active material slurry is not particularly limited. For example, a commonly used means such as a coater can be adopted.
[0031] (第 2実施形態)  [0031] (Second Embodiment)
第 2実施形態は、第 1実施形態の電極を用いた非水電解質二次電池である。この ような非水電解質二次電池は、高温耐久性が良好であり、電池の長寿命化が期待さ れる。なお、第 1実施形態の電極は、正極、負極の少なくともどちらか一方に用いられ ていればよいが、本発明の効果が顕著に得られるので、少なくとも正極に用いること が好ましぐ正極、負極の双方に用いることがより好ましい。 [0032] 本発明の非水二次電池においては、上記第 1実施形態の電極要素の他は、通常公 知の電極の構成要素が用いられる。以下、本実施形態の電池を構成する部材につ いて、説明する。 The second embodiment is a nonaqueous electrolyte secondary battery using the electrode of the first embodiment. Such a non-aqueous electrolyte secondary battery has good high-temperature durability and is expected to extend the battery life. The electrode of the first embodiment may be used for at least one of the positive electrode and the negative electrode. However, since the effect of the present invention is remarkably obtained, it is preferable to use at least the positive electrode and the negative electrode. It is more preferable to use both. [0032] In the nonaqueous secondary battery of the present invention, in addition to the electrode elements of the first embodiment, normally known electrode components are used. Hereinafter, members constituting the battery of this embodiment will be described.
[0033] [セパレータ]  [0033] [Separator]
本発明に用いられるセパレータは、特に制限されず、不織布セパレータ、微多孔膜 セパレータの 、ずれであってもよ 、。  The separator used in the present invention is not particularly limited, and may be a non-woven fabric separator or a microporous membrane separator.
[0034] 不織布セパレータとしては、例えば、繊維を絡めてシートィ匕したものを用いることが できる。また、加熱によって繊維同士を融着することにより得られるスパンボンドなども 用いることができる。すなわち、繊維を適当な方法でウェブ (薄綿)状またはマット状に 配列させ、適当な接着剤あるいは繊維自身の融着カにより接合して作ったシート状 のものであればよい。使用する繊維としては、特に制限されるものではなぐ例えば、 ポリプロピレン、ポリエチレンなどのポリオレフイン、ポリエチレンテレフタレート(PET) などのポリエステル、セルロース、レーヨン、アセテート、ナイロン (登録商標)、ポリイミ ド、ァラミド、セラミックスなど従来公知のものを用いることができる。  [0034] As the nonwoven fabric separator, for example, a sheet entangled with fibers can be used. Further, a spunbond obtained by fusing fibers together by heating can also be used. That is, it may be in the form of a sheet formed by arranging fibers in a web (thin cotton) shape or mat shape by an appropriate method and joining them with an appropriate adhesive or a fusion bond of the fibers themselves. The fibers used are not particularly limited, for example, polyolefins such as polypropylene and polyethylene, polyesters such as polyethylene terephthalate (PET), cellulose, rayon, acetate, nylon (registered trademark), polyimide, aramid, ceramics, etc. A conventionally well-known thing can be used.
[0035] 微多孔膜セパレータとしては、例えば、電解質を吸収保持するポリマー力もなる多 孔性シート (例えば、ポリオレフイン系微多孔膜セパレータなど)などを用いることがで きる。有機溶媒に対して化学的に安定であるという性質を持つ上記ポリオレフイン系 微多孔膜セパレータは、電解質 (電解液)との反応性を低く抑えることができるという 優れた効果を有するものである。ポリオレフイン系微多孔膜セパレータの材質として は、例えば、ポリエチレン(PE)、ポリプロピレン(PP)、 PPZPEZPPの 3層構造から なる積層体などが挙げられる。その他、微多孔膜セパレータの材質としては、ポリイミ ド、ァラミド、ポリエチレンテレフタレートなどが挙げられる。  [0035] As the microporous membrane separator, for example, a porous sheet (for example, a polyolefin microporous membrane separator, etc.) having a polymer force for absorbing and holding the electrolyte can be used. The polyolefin microporous membrane separator having the property of being chemically stable to an organic solvent has an excellent effect that the reactivity with the electrolyte (electrolytic solution) can be kept low. Examples of the material for the polyolefin microporous membrane separator include a laminate having a three-layer structure of polyethylene (PE), polypropylene (PP), and PPZPEZPP. In addition, examples of the material for the microporous membrane separator include polyimide, aramid, and polyethylene terephthalate.
[0036] 本実施形態に用いられるセパレータを構成する材料は、好ましくは、ポリプロピレン 、ポリイミド、ポリエチレンテレフタレート(PET)、ァラミド、セルロースおよびセラミック スカもなる群力も選ばれる少なくとも 1つの材料を含む。このような材料を用いることで 、電池の高温耐久性がさらに向上するため、好ましい。電池の高温耐久性を向上さ せるために、上記好ましい材料は、セパレータを構成する材料 100%中に、好ましく は 80%以上、より好ましくは 90%以上、さらに好ましくは 100%含まれる。また、上記 好ましい材料は単独で用いても、 2種以上併用してもよいが、生産性の点から単独で 用いることが好ましい。 [0036] The material constituting the separator used in the present embodiment preferably includes at least one material selected from polypropylene, polyimide, polyethylene terephthalate (PET), aramid, cellulose, and a ceramic force. It is preferable to use such a material because the high temperature durability of the battery is further improved. In order to improve the high temperature durability of the battery, the preferable material is contained in 100% of the material constituting the separator, preferably 80% or more, more preferably 90% or more, and still more preferably 100%. Also, above The preferred materials may be used alone or in combination of two or more, but are preferably used alone from the viewpoint of productivity.
[0037] 以上説明したセパレータは電極間に狭持され、後ほど説明する電解質として電解 液を用いた場合に電解液を含浸させて電解質として使用されうる。よって上記電極を 用い、この電極間に電解液を含浸させたセパレータを電解質として狭持した場合にこ れらの組み合わせは 1組の電池要素を形成することになる。必要に応じてこの 1組を 外装材で包んでそのまま非水電解質二次電池と使用しても良いし、複数組を積層し て外装材で包んで非水電解質二次電池として使用しても良 、。  [0037] The separator described above is sandwiched between electrodes, and can be used as an electrolyte by impregnating the electrolyte when an electrolyte is used as the electrolyte described later. Therefore, when the above electrodes are used and a separator impregnated with an electrolyte solution is sandwiched between the electrodes as an electrolyte, these combinations form one set of battery elements. If necessary, this one set can be wrapped in an exterior material and used as it is as a nonaqueous electrolyte secondary battery, or multiple sets can be stacked and wrapped in an exterior material to be used as a nonaqueous electrolyte secondary battery. Good.
[0038] なお、上記好ま 、材料を用いた場合、活物質層中に用いられる特定のバインダ 一との組合わせによって、さらに高温耐久性が向上する。具体的には、(a)セパレー タを構成する材料にポリイミドを含み、バインダーに熱硬化性ポリイミドを含む形態;( b)セパレータを構成する材料力 SPET及びァラミドのうち少なくとも 1つ含み、バインダ 一がフエノール榭脂及びエポキシ榭脂のうち少なくとも 1つ含む形態;(c)セパレータ を構成する材料がポリプロピレンを含み、バインダーがフエノール榭脂及びエポキシ 榭脂のうち少なくとも 1つ含む形態などが好ましく例示される。(a)〜(c)の形態は、正 極、負極の少なくともどちらか一方のバインダーとセパレータとの組み合わせであれ ばよいが、本発明の効果が顕著に得られるので、正極、負極の双方のバインダーと セパレータとの組み合わせであることがより好ましい。  [0038] Preferably, when the material is used, the high temperature durability is further improved by the combination with a specific binder used in the active material layer. Specifically, (a) the material constituting the separator includes polyimide and the binder includes thermosetting polyimide; (b) the material force constituting the separator includes at least one of SPET and aramid, Preferred examples include a form containing at least one of phenolic resin and epoxy resin; (c) a material comprising the separator contains polypropylene and a binder contains at least one of phenolic resin and epoxy resin. The The form of (a) to (c) may be a combination of at least one of a positive electrode and a negative electrode, and a separator. However, since the effects of the present invention are remarkably obtained, both the positive electrode and the negative electrode are formed. A combination of a binder and a separator is more preferable.
[0039] [絶縁性微粒子混合材料]  [0039] [Insulating fine particle mixed material]
本実施形態においては、活物質層とセパレータとの間に、熱硬化性の接着剤と絶 縁性微粒子とを含む絶縁性微粒子混合材料が、上記活物質層とセパレータとの間 に配置されていることが好ましい。絶縁性微粒子混合材料が配置されることにより、耐 熱性がより向上し、高温耐久性がより向上する。また、熱硬化性のバインダーを用い ることにより、高温時においても、絶縁性微粒子の接着が良好である。  In the present embodiment, an insulating fine particle mixed material including a thermosetting adhesive and insulating fine particles is disposed between the active material layer and the separator, between the active material layer and the separator. Preferably it is. By disposing the insulating fine particle mixed material, the heat resistance is further improved and the high temperature durability is further improved. In addition, by using a thermosetting binder, the insulating fine particles can be adhered well even at high temperatures.
[0040] 「絶縁性微粒子」とは、電気絶縁性を示す粒子を意味する。絶縁性微粒子を構成 する材料は、電気絶縁性を示す材料であれば特に制限されず、従来公知の材料が 適宜用いられうる。具体的には、セラミックス材料または有機高分子材料が絶縁性微 粒子を構成する材料として用いられうる。これらの材料を用いて絶縁性微粒子を構成 することで、セパレータに必要とされる正負極間の短絡防止機能が十分に発揮されう る。 [0040] "Insulating fine particles" mean particles that exhibit electrical insulation. The material constituting the insulating fine particles is not particularly limited as long as it is a material exhibiting electrical insulation, and conventionally known materials can be appropriately used. Specifically, a ceramic material or an organic polymer material can be used as a material constituting the insulating fine particles. Insulating fine particles composed of these materials By doing so, the function of preventing the short circuit between the positive and negative electrodes required for the separator can be sufficiently exhibited.
[0041] これらの絶縁性微粒子としては、例えば、リチウムフェライト (LiFeO )、シリカ(SiO  [0041] Examples of these insulating fine particles include lithium ferrite (LiFeO) and silica (SiO2).
2 2 twenty two
)、ァノレミナ(Al O )、ジルコニァ、マグネシア、チタニア、シリカァノレミナ、酸ィ匕クロム、 ), Anolemina (Al 2 O 3), zirconia, magnesia, titania, silica anolemina, acid chrome,
2 3  twenty three
酸化ルテニウムなどの酸ィ匕物や、窒化アルミニウム、窒化ケィ素などの窒化物、 LiFe PO、ポリアクリル酸メチル、ポリメタクリル酸メチルなどのアクリル系材料、フッ化イミド Acids such as ruthenium oxide, nitrides such as aluminum nitride and silicon nitride, acrylic materials such as LiFe PO, polymethyl acrylate and polymethyl methacrylate, fluorinated imides
4 Four
などのポリイミド系材料、ポリスチレン、ポリプロピレン、ポリスルフォン、フエノール榭脂 、不飽和ポリエステル榭脂などが挙げられる。これらの材料の中でも、電子伝導性( 絶縁性)および機械的強度 (より高い短絡防止機能を有する)の点で、 LiFeO、 SiO  Examples thereof include polyimide materials such as polystyrene, polypropylene, polysulfone, phenol resin, and unsaturated polyester resin. Among these materials, LiFeO, SiO in terms of electronic conductivity (insulation) and mechanical strength (having a higher short-circuit prevention function)
2 2 twenty two
、 Al Oが好適に用いられる。これらの材料は単独で用いられてもよいし、 2種以上がAlO is preferably used. These materials may be used alone, or two or more
2 3 twenty three
併用されてもよい。  You may use together.
[0042] 絶縁性微粒子は、全てがセラミックス材料カゝらなる粒子 (セラミックス粒子)であって もよ ヽし、全てが有機高分子材料カゝらなる粒子 (有機高分子粒子)であってもよ ヽし、 これらの粒子の混合物であってもよい。混合物の形態が採用される場合、セラミックス 粒子と有機高分子粒子との混合比は特に制限されな ヽが、セラミックス粒子:有機高 分子粒子の比(体積比)で、好ましくは10〜20 : 1〜10でぁり、より好ましくは 10〜15 : 3〜10である。  [0042] The insulating fine particles may be all particles (ceramic particles) made of a ceramic material, or all particles (organic polymer particles) made of an organic polymer material. However, it may be a mixture of these particles. When the form of the mixture is adopted, the mixing ratio of the ceramic particles and the organic polymer particles is not particularly limited. However, the ratio (volume ratio) of the ceramic particles to the organic polymer particles is preferably 10 to 20: 1. -10, more preferably 10-15: 3-10.
[0043] 本実施形態にぉ 、て、絶縁性微粒子の平均粒子径は、 ΙΟηπ!〜 30 μ mであること が好ましぐより好ましくは 50nm〜25 μ mであり、さらに好ましくは 100nm〜20 μ m であり、最も好ましくは 1000nm〜10 mである。この範囲の絶縁性微粒子であれば 、電池の体積エネルギー密度が適当であり、また、仮に電池の使用時などにおける 振動によって絶縁性微粒子が脱落したとしても、このように比較的小さいサイズの絶 縁性微粒子を用いることにより、正負極間の短絡 (ショート)の発生が十分に抑制され うる。  In this embodiment, the average particle size of the insulating fine particles is 微粒子 ηπ! More preferably, it is 50 nm to 25 μm, more preferably 100 nm to 20 μm, and most preferably 1000 nm to 10 m. If the insulating fine particles are in this range, the volume energy density of the battery is appropriate, and even if the insulating fine particles fall off due to vibration during use of the battery, the insulating particles of such a relatively small size are used. By using conductive fine particles, the occurrence of a short circuit between the positive and negative electrodes can be sufficiently suppressed.
[0044] 本実施形態にお!、て、上記絶縁性微粒子混合材料に含まれる熱硬化性の接着剤 により、絶縁性微粒子どうしが結着され、かつ、セパレータまたは活物質層との間の 密着性もまた、向上しうる。その結果、非水電解質二次電池の耐振動性などの信頼 性が向上しうる。熱硬化性接着剤としては、ユリア榭脂、エポキシ榭脂、ポリウレタン 榭脂、ケィ素榭脂、フエノール榭脂、不飽和ポリエステル榭脂などが挙げられる。 [0044] In this embodiment, the insulating fine particles are bound to each other by the thermosetting adhesive contained in the insulating fine particle mixed material, and the adhesion between the separator and the active material layer is achieved. Sex can also be improved. As a result, the reliability such as vibration resistance of the nonaqueous electrolyte secondary battery can be improved. Thermosetting adhesives include urea resin, epoxy resin, polyurethane Examples of the resin include cocoa resin, key resin, phenol resin, and unsaturated polyester resin.
[0045] 絶縁性微粒子混合材料における熱硬化性の接着剤の配合量は特に制限されない 力 絶縁性微粒子混合材料の全量を 100%とした場合に、好ましくは 1〜80%であり 、より好ましくは 3〜50%である。接着剤の添加量がこのような範囲内の値であると、 結着性や密着性および体積エネルギー密度のバランスに優れる電池が提供されうる  The blending amount of the thermosetting adhesive in the insulating fine particle mixed material is not particularly limited. When the total amount of the insulating fine particle mixed material is 100%, it is preferably 1 to 80%, more preferably 3 to 50%. When the added amount of the adhesive is within such a range, a battery having an excellent balance of binding property, adhesion, and volumetric energy density can be provided.
[0046] 絶縁性微粒子混合材料の配置方法としては、活物質層表面に塗布する方法など が挙げられる。活物質層表面に絶縁性微粒子混合材料を塗布する場合、活物質層 の面積 100%に対して 70%以上塗布することが好ましい。また、具体的な塗布方法 としては、絶縁性粒子を含むスラリー (絶縁性粒子スラリー)を別途調製し、活物質層 の少なくとも一方の面 (好ましくは両面)に塗布する方法などが挙げられる。 [0046] Examples of the arrangement method of the insulating fine particle mixed material include a method of applying to the surface of the active material layer. When the insulating fine particle mixed material is applied to the surface of the active material layer, it is preferable to apply 70% or more with respect to 100% of the area of the active material layer. Specific examples of the application method include a method in which a slurry containing insulating particles (insulating particle slurry) is separately prepared and applied to at least one surface (preferably both surfaces) of the active material layer.
[0047] 絶縁性粒子スラリーを調製する際に用いられる溶媒は特に制限されず、具体的に は、 N—メチルー 2—ピロリドン(NMP)、ジメチルホルムアミド、ジメチルァセトアミド、 メチルホルムアミドなどの極性溶媒が挙げられる。  [0047] The solvent used in preparing the insulating particle slurry is not particularly limited, and specifically, polar solvents such as N-methyl-2-pyrrolidone (NMP), dimethylformamide, dimethylacetamide, and methylformamide. Is mentioned.
[0048] 絶縁性粒子スラリーにおける絶縁性粒子やバインダーの濃度、およびスラリーの粘 度も特に制限されず、活物質層への塗布手法などを考慮して適宜決定すればよい。 具体的には、絶縁性粒子スラリーの粘度は、好ましくは 0. 5〜8. OPa' sであり、より 好ましくは 1. 0〜4. OPa' sである。  [0048] The concentration of the insulating particles and the binder in the insulating particle slurry and the viscosity of the slurry are not particularly limited, and may be appropriately determined in consideration of the application method to the active material layer. Specifically, the viscosity of the insulating particle slurry is preferably 0.5 to 8. OPa's, and more preferably 1.0 to 4. OPa's.
[0049] 絶縁性粒子スラリーを活物質層の表面に塗布するための塗布手段も特に制限され ず、電池の製造分野において従来公知の手法が適宜採用されうる。一例を挙げると 、ドクターブレード方式、インクジェット方式、スクリーン印刷方式、ダイコータ方式など の手法が例示される。  [0049] The application means for applying the insulating particle slurry to the surface of the active material layer is not particularly limited, and a conventionally known method can be appropriately employed in the battery manufacturing field. For example, methods such as a doctor blade method, an ink jet method, a screen printing method, and a die coater method are exemplified.
[0050] また、活物質層の表面に塗布された絶縁性粒子スラリーを乾燥、加熱してもよ!/ヽ。  [0050] The insulating particle slurry applied to the surface of the active material layer may be dried and heated!
加熱は、絶縁性粒子スラリーの塗布後、電極の積層の前に行われてもよいし、積層 後に行われてもよい。好ましい形態においては、電極の積層後に加熱が行われる。 力 うな形態によれば、絶縁性粒子どうしの結着性の向上にカ卩えて、活物質層、セパ レータ、絶縁性粒子混合材料の密着性の向上といった効果もまた、得られる。  Heating may be performed after application of the insulating particle slurry and before lamination of the electrodes, or after lamination. In a preferred embodiment, heating is performed after the electrodes are stacked. According to such a form, an effect of improving the adhesion of the active material layer, the separator, and the insulating particle mixed material can be obtained in addition to improving the binding property of the insulating particles.
[0051] [電解質] 電解質としては、従来公知の電解質を使用することができ、例えば、液体電解質( 電解液)、固体電解質、ポリマー電解質 (真性ポリマー電解質、およびゲルポリマー 電解質など)などが挙げられる。電解液に用いられる電解質塩としては、例えば、 LIB ETI、 LiBF、 LiPF、 LiN (SO CF )、 LiN (SO C F )などのリチウム塩が挙げられ [0051] [Electrolyte] As the electrolyte, conventionally known electrolytes can be used, and examples thereof include liquid electrolytes (electrolytic solutions), solid electrolytes, polymer electrolytes (intrinsic polymer electrolytes, gel polymer electrolytes, and the like). Examples of the electrolyte salt used in the electrolyte include lithium salts such as LIB ETI, LiBF, LiPF, LiN (SO CF), and LiN (SO CF).
4 6 2 3 2 2 2 5 2  4 6 2 3 2 2 2 5 2
る。また、溶媒としては、例えば、プロピレンカーボネート(PC)、エチレンカーボネー ト(EC)、ジメチノレカーボネート (DMC)、ジェチノレカーボネート (DEC)、ェチノレメチ ルカーボネート (EMC)などのカーボネート類などが挙げられる。これら電解液を非 水二次電池用電解質として用いる場合は上記セパレータ中に含有させて用いること になる。  The Examples of the solvent include carbonates such as propylene carbonate (PC), ethylene carbonate (EC), dimethylolate carbonate (DMC), jetinolecarbonate (DEC), and ethinoremethyl carbonate (EMC). It is done. When these electrolytes are used as electrolytes for non-aqueous secondary batteries, they are used in the separator.
[0052] ポリマー電解質は、イオン伝導性ポリマーから構成され、イオン伝導性を示すので あれば材料は限定されな 、。優れた機械的強度を発現させることが可能である点で 、重合性のイオン伝導性ポリマーが、熱重合、紫外線重合、放射線重合、電子線重 合などにより架橋されてなるものが好適に用 、られる。  [0052] The polymer electrolyte is composed of an ion conductive polymer, and the material is not limited as long as it exhibits ion conductivity. A polymer ion-conductive polymer that is crosslinked by thermal polymerization, ultraviolet polymerization, radiation polymerization, electron beam polymerization, or the like is preferably used because it can exhibit excellent mechanical strength. It is done.
[0053] ポリマー電解質としては、真性ポリマー電解質、およびゲルポリマー電解質が挙げ られる。真性ポリマー電解質としては、特に限定されないが、ポリエチレンォキシド (P EO)、ポリプロピレンォキシド (PPO)、およびこれらの共重合体などが挙げられる。  [0053] Examples of the polymer electrolyte include an intrinsic polymer electrolyte and a gel polymer electrolyte. Intrinsic polymer electrolytes include, but are not limited to, polyethylene oxide (PEO), polypropylene oxide (PPO), and copolymers thereof.
[0054] また、ゲルポリマー電解質とは、一般的に、イオン伝導性を有する全固体高分子電 解質に、電解液を保持させたものをいう。なお、本願では、イオン伝導性を有しない 高分子の骨格中に、同様の電解液を保持させたものも、ゲルポリマー電解質に含ま れるものとする。これらポリマー電解質を非水二次電池用電解質として用いる場合に はここで述べた状態で電極間に狭持して用いることになる。  [0054] Further, the gel polymer electrolyte generally refers to an electrolyte solution held in an all-solid polymer electrolyte having ion conductivity. In the present application, the gel polymer electrolyte also includes a polymer skeleton that does not have ion conductivity and a similar electrolyte solution held therein. When these polymer electrolytes are used as electrolytes for non-aqueous secondary batteries, they are used by being sandwiched between electrodes in the state described here.
[0055] [電極端子]  [0055] [Electrode terminal]
電極端子の材質は、特に制限されず、二次電池用の電極端子として従来用いられ ている公知の材質が用いられうる。例えば、アルミニウム、銅、チタン、ニッケル、ステ ンレス鋼 (日本工業規格にお ヽて SUSと略される)、これらの合金等が例示される。  The material of the electrode terminal is not particularly limited, and a known material conventionally used as an electrode terminal for a secondary battery can be used. Examples include aluminum, copper, titanium, nickel, stainless steel (abbreviated as SUS in the Japanese Industrial Standards), and alloys thereof.
[0056] [外装材]  [0056] [Exterior material]
外装材としては特に制限されず、従来公知の外装材が用いられうる。自動車の熱 源による熱、あるいは高負荷による電池の自己発熱による熱を容易に冷却可能な点 、および低温始動時に自動車の熱源から効率よく熱を伝え、電池内部を迅速に電池 動作温度まで加熱しうる点で、好ましくは、熱伝導性に優れた高分子 金属複合ラミ ネートシート等が用いられうる。また、ラミネート内部を大気圧よりも減圧下におくこと で、前記電池要素間あるいは電池要素 電極端子間の接触を大気圧により行うこと が可能になり、さらに接触抵抗を下げることが可能になる。 The exterior material is not particularly limited, and a conventionally known exterior material can be used. The ability to easily cool the heat from the heat source of an automobile or the heat generated by the battery's self-heating due to a high load In addition, a polymer metal composite laminate sheet having excellent thermal conductivity is preferably used because heat can be efficiently transferred from the heat source of the automobile during cold start and the inside of the battery can be quickly heated to the battery operating temperature. sell. Further, by placing the inside of the laminate at a pressure lower than the atmospheric pressure, it becomes possible to make contact between the battery elements or between the battery element electrode terminals at atmospheric pressure, and it is possible to further reduce the contact resistance.
[0057] 本実施形態の非水電解質二次電池は、特別な手法を用いることなぐ従来公知の 知見を適宜参照することにより製造可能である。  [0057] The nonaqueous electrolyte secondary battery of the present embodiment can be manufactured by appropriately referring to conventionally known knowledge without using a special technique.
[0058] 本発明の非水電解質二次電池としては、非水電解質を用いる電池であれば、特に 制限されるものではないが、実用性の観点から、リチウムイオン二次電池であることが 好ましい。  [0058] The nonaqueous electrolyte secondary battery of the present invention is not particularly limited as long as it is a battery using a nonaqueous electrolyte, but is preferably a lithium ion secondary battery from the viewpoint of practicality. .
[0059] 本発明の非水電解質二次電池は、構造や接続形態等、特に制限されるものではな ぐ従来公知の形態を用いることができる。例えば、電池の構造としては、積層型 (扁 平型)電池、捲回型(円筒型)電池など、が挙げられる。また、電池内の電気的な接続 形態 (電極構造)としては、内部直列接続 (双極型)、内部並列接続が挙げられる。  [0059] The non-aqueous electrolyte secondary battery of the present invention may be in a conventionally known form, not particularly limited in structure or connection form. For example, the structure of the battery includes a stacked (flat) battery, a wound (cylindrical) battery, and the like. In addition, electrical connection forms (electrode structures) in the battery include internal series connection (bipolar type) and internal parallel connection.
[0060] (第 3実施形態)  [0060] (Third embodiment)
第 3実施形態では、上記の第 2実施形態の非水電解質二次電池を複数個、並列お よび Zまたは直列に接続して、組電池を構成する。  In the third embodiment, an assembled battery is configured by connecting a plurality of the nonaqueous electrolyte secondary batteries of the second embodiment described above in parallel and Z or in series.
[0061] 組電池を構成する複数個の非水電解質二次電池を接続する際の接続方法は特に 制限されず、従来公知の手法が適宜採用されうる。例えば、超音波溶接、スポット溶 接などの溶接を用いる手法や、リベット、カシメなどを用いて固定する手法が採用され うる。力 うな接続方法によれば、組電池の長期信頼性が向上しうる。  [0061] The connection method for connecting a plurality of nonaqueous electrolyte secondary batteries constituting the assembled battery is not particularly limited, and a conventionally known method can be appropriately employed. For example, a technique using welding such as ultrasonic welding or spot welding, or a technique of fixing using rivets or caulking can be employed. According to the powerful connection method, the long-term reliability of the assembled battery can be improved.
[0062] 本実施形態の組電池によれば、上記の第 2実施形態の非水電解質二次電池を用 いて組電池化することで、容量特性が充分に確保されつつ、高出力条件下において も充分な出力を発揮しうる組電池が提供されうる。  [0062] According to the assembled battery of the present embodiment, by using the nonaqueous electrolyte secondary battery of the second embodiment as an assembled battery, capacity characteristics are sufficiently ensured under high output conditions. It is possible to provide an assembled battery capable of exhibiting sufficient output.
[0063] なお、組電池を構成する非水電解質二次電池の接続は、複数個全て並列に接続 してもよく、また、複数個全て直列に接続してもよぐさら〖こ、直列接続と並列接続とを 組み合わせてもよい。  [0063] It should be noted that all of the non-aqueous electrolyte secondary batteries constituting the assembled battery may be connected in parallel, or all of the non-aqueous electrolyte secondary batteries may be connected in series. And parallel connection may be combined.
[0064] (第 4実施形態) 第 4実施形態では、上記の第 2実施形態の非水電解質二次電池、または上記の第 3実施形態の組電池をモータ駆動用電源として搭載して、車両を構成する。非水電 解質二次電池または組電池をモータ用電源として用いる車両としては、例えば、ガソ リンを用いな!/、完全電気自動車、シリーズハイブリッド自動車やパラレルハイブリッド 自動車などのハイブリッド自動車、および燃料電池自動車などの、車輪をモータによ つて駆動する自動車が挙げられる。第 2実施形態の非水電解質二次電池、または第 3実施形態の組電池は、高温耐久性に優れるため、高温になりやすい部品の近辺で あっても、電池を配置することが可能となり、車両の車載性という観点からも、車両に 本発明の非水電解質二次電池または組電池を用いることは好まし 、。 [0064] (Fourth embodiment) In the fourth embodiment, a vehicle is configured by mounting the nonaqueous electrolyte secondary battery of the second embodiment or the assembled battery of the third embodiment as a motor driving power source. Vehicles that use non-aqueous electrolyte secondary batteries or assembled batteries as power sources for motors, for example, do not use gasoline! /, Hybrid vehicles such as fully electric vehicles, series hybrid vehicles and parallel hybrid vehicles, and fuel cell vehicles Examples include automobiles that drive wheels with motors. The nonaqueous electrolyte secondary battery of the second embodiment or the assembled battery of the third embodiment is excellent in high temperature durability, so it is possible to place the battery even in the vicinity of components that are likely to become high temperature. From the viewpoint of vehicle mountability, it is preferable to use the nonaqueous electrolyte secondary battery or the assembled battery of the present invention for the vehicle.
[0065] 以上のように、本発明の幾つかの好適な実施形態について示したが、本発明は、 以上の実施形態に限られるものではなぐ当業者によって種々の変更、省略、および 追加が可能である。 [0065] Although several preferred embodiments of the present invention have been described above, the present invention is not limited to the above embodiments, and various modifications, omissions, and additions can be made by those skilled in the art. It is.
実施例  Example
[0066] 本発明の効果を、以下の実施例および比較例を用いて説明する。ただし、本発明 の技術的範囲が以下の実施例のみに制限されるわけではない。なお、特に記載がな い限り、質量%を単に「%」とする。  [0066] The effects of the present invention will be described using the following examples and comparative examples. However, the technical scope of the present invention is not limited only to the following examples. Unless otherwise specified, mass% is simply “%”.
[0067] <実施例 1 > <Example 1>
電極中の全バインダー質量 100%に対する熱硬化性榭脂(ビスフエノール A型ェポ キシ榭脂)の割合が 50%となるように以下のようにスラリーを作製した。  A slurry was prepared as follows so that the ratio of thermosetting resin (bisphenol A type epoxy resin) to 50% of the total binder mass in the electrode was 50%.
[0068] (1)正極インク作成 [0068] (1) Preparation of positive electrode ink
正極インクの作成を次のように行った。 70%の LiMn O (Liイオンを吸蔵、脱離で  The positive electrode ink was prepared as follows. 70% LiMn O (accumulating and desorbing Li ions
2 4  twenty four
きる正極活物質、平均粒径 10 μ m)と、 20%のアセチレンブラックと、バインダーであ る 5 %の PVdFおよび 5 %の一液性エポキシ榭脂(ビスフエノール A型エポキシ榭脂) と、を混合し、前記混合物 100%に対して溶媒として NMP (N—メチル—2—ピロリド ン)を 41%加えて十分に撹拌してスラリーを調製した。  Active material, average particle size 10 μm), 20% acetylene black, 5% PVdF and 5% one-component epoxy resin (bisphenol A type epoxy resin) as binder, And 41% of NMP (N-methyl-2-pyrrolidone) as a solvent was added to 100% of the mixture, and the mixture was stirred well to prepare a slurry.
[0069] (2)負極インク作成 [0069] (2) Preparation of negative electrode ink
負極インクの作製を次のように行った。 85%の非晶質系炭素 (Liイオンを吸蔵-脱 離できる負極活物質、平均粒径 10 μ m)と、バインダーである 7. 5%の PVdFおよび 7. 5%の一液性エポキシ榭脂(ビスフエノール A型エポキシ榭脂)と、を混合し、前記 混合物 100%に対して、溶媒として NMPを 41%加えて十分に撹拌してスラリーを調 製した。 The negative electrode ink was produced as follows. 85% amorphous carbon (negative electrode active material capable of absorbing and desorbing Li ions, average particle size 10 μm), 7.5% PVdF and binder 7. Mix 5% one-component epoxy resin (bisphenol A type epoxy resin), add 41% NMP as a solvent to 100% of the mixture, and mix well to prepare slurry. Made.
[0070] (3)塗布 (電極作製)  [0070] (3) Application (electrode preparation)
正負極:集電体に約 10 mのアルミ箔を用い、このアルミ箔の両面に正極インクを 塗布したものを正極とした。集電体に約 10 mの銅箔を用い、この銅箔の両面に負 極インクを塗布したものを負極とした。その後、 120°Cで乾燥し、プレス後の活物質層 の厚さが正極が 60 μ m、負極が 65 μ mとなるようにプレスを行った。  Positive and negative electrodes: An aluminum foil of about 10 m was used as a current collector, and positive electrode ink was applied to both sides of the aluminum foil as a positive electrode. About 10 m of copper foil was used as the current collector, and the negative electrode was coated with negative ink on both sides of this copper foil. Thereafter, drying was performed at 120 ° C., and pressing was performed so that the thickness of the active material layer after pressing was 60 μm for the positive electrode and 65 μm for the negative electrode.
[0071] (4)端子リード [0071] (4) Terminal lead
正極端子リードには厚さ 150 μ m、幅 40mm、長さ 50mmの A1板を用い、負極端 子リードには厚さ 150 /ζ πι、幅 40mm、長さ 50mmの Cu板に Niメツキを施した端子リ ードを用いた。  A1 plate with a thickness of 150 μm, width 40 mm, and length 50 mm is used for the positive terminal lead, and Ni plating is applied to the Cu plate with thickness 150 / ζ πι, width 40 mm, length 50 mm for the negative terminal lead. The terminal lead that was used was used.
[0072] (5)組み立て [0072] (5) Assembly
正極と、負極とをポリプロピレン製の微多孔膜セパレータを介して積層し、正極 11 枚、負極 11枚を積層した物を、電池外装材であるラミネートフィルム(最外層に表面 保護用の PETフィルム、金属フィルム層として A1箔、熱融着絶縁性フィルム層がポリ プロピレンであるラミネートフィルム)の中に収納し、正極集電体、負極集電体をそれ ぞれセパレータの対向する辺力 突出させ、 A1製の電極端子、 Ni製の端子リードを 溶接し、外装のラミネートフィルムに挟み込み正極端子、負極端子をそれぞれ電池の 対向する辺カゝら突出させて、周縁部を加熱溶着し、電解液を注液し、幅 100mm X 長さ 150mm X厚さ約 3mmのラミネート外装扁平型電池を作製した。  A positive electrode and a negative electrode are laminated via a microporous membrane separator made of polypropylene, and a laminate of 11 positive electrodes and 11 negative electrodes is laminated to a laminate film (a PET film for surface protection on the outermost layer). A1 foil as a metal film layer and a laminate film in which the heat-fusing insulating film layer is made of polypropylene), and the positive current collector and the negative current collector are protruded from the opposing side forces of the separator, A1 electrode terminals and Ni terminal leads are welded, sandwiched between outer laminate films, the positive and negative terminals projecting from the opposite sides of the battery, the edges are heated and welded, and the electrolyte is applied. The solution was poured to prepare a laminated exterior flat battery with a width of 100 mm x length of 150 mm x thickness of about 3 mm.
[0073] <実施例 2> <Example 2>
電極中の全バインダー質量に対する熱硬化性榭脂(ビスフエノール A型エポキシ榭 脂)の割合が 70%となるように以下のようにスラリーを作製した。  A slurry was prepared as follows so that the ratio of thermosetting resin (bisphenol A type epoxy resin) to the total binder mass in the electrode was 70%.
[0074] (1)正極インク作成 [0074] (1) Preparation of positive electrode ink
正極インクの作成を次のように行った。 70%の LiMn O (平均粒径 10 m)と、 20  The positive electrode ink was prepared as follows. 70% LiMn O (average particle size 10 m), 20
2 4  twenty four
%のアセチレンブラックと、バインダーである 3%の PVdFおよび 7%の一液性ェポキ シ榭脂 (ビスフエノール A型エポキシ榭脂)と、を混合し、前記混合物 100%に対して 、溶媒として NMPを 41%加えて十分に撹拌してスラリーを調製した。 % Acetylene black and 3% PVdF as a binder and 7% one-part epoxy resin (bisphenol A type epoxy resin). Then, 41% of NMP was added as a solvent, and stirred well to prepare a slurry.
[0075] (2)負極インク作成 [0075] (2) Preparation of negative electrode ink
負極インクの作製を次のように行った。 85%の平均粒径 10 mの非晶質系炭素と 、バインダーである 4. 5%の PVdFおよび 10. 5%の一液性エポキシ榭脂(ビスフエノ ール A型エポキシ榭脂)と、を混合し、前記混合物 100%に対して、溶媒として NMP を 41%加えて十分に撹拌してスラリーを調製した。  The negative electrode ink was produced as follows. 85% amorphous carbon with an average particle size of 10 m and binder, 4.5% PVdF and 10.5% one-component epoxy resin (bisphenol A type epoxy resin). After mixing, 41% of NMP was added as a solvent to 100% of the mixture, and stirred well to prepare a slurry.
[0076] (3)電池の作製 [0076] (3) Production of battery
実施例 1の(3)〜(5)と同様にラミネート外装扁平型電池を作製した。なお、セパレ ータは、実施例 1と同様にポリプロピレン製の微多孔膜セパレータを用 V、た。  In the same manner as in Example 1 (3) to (5), a laminated exterior flat battery was produced. The separator used was a polypropylene microporous membrane separator as in Example 1, V.
[0077] <実施例 3 > <Example 3>
電極中の全バインダー質量に対する熱硬化性榭脂(ビスフエノール A型エポキシ榭 脂)の割合が 100%となるように以下のようにスラリーを作製した。  A slurry was prepared as follows so that the ratio of thermosetting resin (bisphenol A type epoxy resin) to the total binder mass in the electrode was 100%.
[0078] (1)正極インク作成 [0078] (1) Preparation of positive electrode ink
正極インクの作成を次のように行った。 70%の LiMn O (平均粒径 10 m)と、 20  The positive electrode ink was prepared as follows. 70% LiMn O (average particle size 10 m), 20
2 4  twenty four
%のアセチレンブラックと、バインダーである 10%の一液性エポキシ榭脂(ビスフエノ ール A型エポキシ榭脂)と、を混合し、前記混合物 100%に対して、溶媒として NMP を 41%加えて十分に撹拌してスラリーを調製した。  % Acetylene black and 10% one-component epoxy resin (bisphenol A type epoxy resin) as a binder, and 41% of NMP was added as a solvent to 100% of the mixture. The slurry was prepared by thorough stirring.
[0079] (2)負極インク作成 [0079] (2) Create negative electrode ink
負極インクの作製を次のように行った。 85%の非晶質系炭素(平均粒径 10 m)と 、ノインダーである 15%の一液性エポキシ榭脂(ビスフエノール A型エポキシ榭脂)と 、を混合し、前記混合物 100%に対して、溶媒として NMPを 41%加えて十分に撹拌 してスラリーを調製した。  The negative electrode ink was produced as follows. 85% amorphous carbon (average particle size 10 m) and 15% one-component epoxy resin (bisphenol A type epoxy resin) as a noinder are mixed, and 100% of the mixture is mixed. Then, 41% of NMP was added as a solvent and sufficiently stirred to prepare a slurry.
[0080] (3)電池の作製 [0080] (3) Battery fabrication
実施例 1の(3)〜(5)と同様にラミネート外装扁平型電池を作製した。なお、セパレ ータは、実施例 1と同様にポリプロピレン製の微多孔膜セパレータを用 V、た。  In the same manner as in Example 1 (3) to (5), a laminated exterior flat battery was produced. The separator used was a polypropylene microporous membrane separator as in Example 1, V.
[0081] <実施例 4> <Example 4>
電極中の全バインダー質量に対する熱硬化性榭脂(ポリイミドまたはビスフエノール Thermosetting resin (polyimide or bisphenol) relative to the total binder mass in the electrode
A型エポキシ榭脂)の割合が 70%となるように以下のようにスラリーを作製した。 [0082] (1)正極インク作成 A slurry was prepared as follows so that the ratio of A-type epoxy resin was 70%. [0082] (1) Preparation of positive electrode ink
正極インクの作成を次のように行った。 70%の LiMn O (平均粒径 10 m)と、 20  The positive electrode ink was prepared as follows. 70% LiMn O (average particle size 10 m), 20
2 4  twenty four
%のアセチレンブラックと、バインダーである 3%の PVdFおよび 7%のポリイミド榭脂 と、を混合し、前記混合物 100%に対して、溶媒として NMPを 41%加えて十分に撹 拌してスラリーを調製した。  % Acetylene black, 3% PVdF as a binder, and 7% polyimide resin are mixed, and 41% NMP is added as a solvent to 100% of the mixture, and the mixture is sufficiently stirred to form a slurry. Prepared.
[0083] (2)負極インク作成 [0083] (2) Preparation of negative electrode ink
負極インクの作製を次のように行った。 85%の非晶質系炭素(平均粒径 10 m)と 、バインダーである 4. 5%の PVdFおよび 10. 5%の一液性エポキシ榭脂(ビスフエノ ール A型エポキシ榭脂)と、を混合し、前記混合物 100%に対して、溶媒として NMP を 41%加えて十分に撹拌してスラリーを調製した。  The negative electrode ink was produced as follows. 85% amorphous carbon (average particle size 10 m), 4.5% PVdF as binder and 10.5% one-component epoxy resin (bisphenol A type epoxy resin), Were mixed, 41% of NMP was added as a solvent to 100% of the mixture, and stirred well to prepare a slurry.
[0084] (3)電池の作製 [0084] (3) Battery fabrication
実施例 1 (3)〜(5)と同様にラミネート外装扁平型電池を作製した。ただし、セパレ ータはポリイミド製の微多孔膜セパレータを用いた。  Example 1 A laminated exterior flat battery was produced in the same manner as in (3) to (5). However, the separator used was a microporous membrane separator made of polyimide.
[0085] <実施例 5 > <Example 5>
(1)インクの作製  (1) Preparation of ink
実施例 4の(1)〜(2)と同様にして、正極および負極インクを作製した。  In the same manner as in Example 4 (1) and (2), positive and negative electrode inks were produced.
[0086] (2)電池の作製 [0086] (2) Battery fabrication
実施例 1の(3)〜(5)と同様にラミネート外装扁平型電池を作製した。ただし、セパ レータは PET製の微多孔膜セパレータを用いた。  In the same manner as in Example 1 (3) to (5), a laminated exterior flat battery was produced. However, the separator used was a PET microporous membrane separator.
[0087] <実施例 6 > <Example 6>
(1)インクの作製  (1) Preparation of ink
実施例 4の(1)〜(2)と同様にして、正極および負極インクを作製した。  In the same manner as in Example 4 (1) and (2), positive and negative electrode inks were produced.
[0088] (2)電池の作製 [0088] (2) Battery fabrication
実施例 1の(3)〜(5)と同様にラミネート外装扁平型電池を作製した。ただし、セパ レータはァラミド榭脂製の微多孔膜セパレータを用いた。  In the same manner as in Example 1 (3) to (5), a laminated exterior flat battery was produced. However, the separator used was a microporous membrane separator made of aramid resin.
[0089] <実施例 7> <Example 7>
電極中の全バインダー量に対する熱硬化性榭脂(フエノール榭脂)の割合が 70% となるように以下のようにスラリーを作製した。 [0090] (1)正極インク作成 A slurry was prepared as follows so that the ratio of thermosetting resin (phenol resin) to the total amount of binder in the electrode was 70%. [0090] (1) Preparation of positive electrode ink
正極インクの作成を次のように行った。 70%の LiMn O (平均粒径 10 m)と、 20  The positive electrode ink was prepared as follows. 70% LiMn O (average particle size 10 m), 20
2 4  twenty four
%のアセチレンブラックと、バインダーである 3%の PVdFおよび 7%のフエノール榭 脂と、を混合し、前記混合物 100%に対して、溶媒として NMPを 41%加えて十分に 撹拌してスラリーを調製した。  % Acetylene black, 3% PVdF binder and 7% phenol resin are mixed, and 41% NMP is added as a solvent to 100% of the mixture to prepare a slurry. did.
[0091] (2)負極インク作成 [0091] (2) Preparation of negative electrode ink
負極インクの作製を次のように行った。 85%の非晶質系炭素(平均粒径 10 m)と 、バインダーである 4. 5%の PVdFおよび 10. 5%のフエノール榭脂と、を混合し、前 記混合物 100%に対して、溶媒として NMPを 41%加えて十分に撹拌してスラリーを 調製した。  The negative electrode ink was produced as follows. Mix 85% amorphous carbon (average particle size 10 m) with 4.5% PVdF and 10.5% phenol resin as binders. A slurry was prepared by adding 41% NMP as a solvent and stirring well.
[0092] (3)電池の作製 [0092] (3) Battery fabrication
実施例 1の(3)〜(5)と同様にラミネート外装扁平型電池を作製した。ただし、セパ レータは PET製の微多孔膜セパレータを用いた。  In the same manner as in Example 1 (3) to (5), a laminated exterior flat battery was produced. However, the separator used was a PET microporous membrane separator.
[0093] <実施例 8 > <Example 8>
(1)インク作製  (1) Ink production
実施例 7の(1)〜(2)と同様にして、正極および負極インクを作製した。  In the same manner as in Example 7 (1) and (2), positive and negative electrode inks were produced.
[0094] (2)電池の作製 [0094] (2) Production of battery
実施例 1の(3)〜(5)と同様にラミネート外装扁平型電池を作製した。ただし、セパ レータはァラミド榭脂製の微多孔膜セパレータを用いた。  In the same manner as in Example 1 (3) to (5), a laminated exterior flat battery was produced. However, the separator used was a microporous membrane separator made of aramid resin.
[0095] <実施例 9 > <Example 9>
活物質層と、セパレータとの間に、熱硬化性の接着剤と絶縁性微粒子とを含む絶 縁性微粒子混合材料を配置した電池を以下のように作製した。  A battery in which an insulating fine particle mixed material containing a thermosetting adhesive and insulating fine particles was disposed between the active material layer and the separator was produced as follows.
[0096] (1)正極インク作成 [0096] (1) Preparation of positive electrode ink
正極インクの作成を次のように行った。 70%の LiMn O (平均粒径 10 m)と、 20  The positive electrode ink was prepared as follows. 70% LiMn O (average particle size 10 m), 20
2 4  twenty four
%のアセチレンブラックと、バインダーである 3%の PVdFおよび 7%の一液性ェポキ シ榭脂 (ビスフエノール A型エポキシ榭脂)と、を混合し、前記混合物 100%に対して 、溶媒として NMPを 41%加えて十分に撹拌してスラリーを調製した。  % Acetylene black and 3% PVdF as a binder and 7% one-part epoxy resin (bisphenol A type epoxy resin), and NMP as a solvent for 100% of the mixture. 41% was added and stirred well to prepare a slurry.
[0097] (2)負極インク作成 負極インクの作製を次のように行った。 85%の非晶質系炭素(平均粒径 10 m)と 、バインダーである 4. 5%の PVdFおよび 10. 5%の一液性エポキシ榭脂(ビスフエノ ール A型エポキシ榭脂)と、を混合し、前記混合物 100%に対して、溶媒として NMP を 41%加えて十分に撹拌してスラリーを調製した。 [0097] (2) Preparation of negative electrode ink The negative electrode ink was produced as follows. 85% amorphous carbon (average particle size 10 m), 4.5% PVdF as binder and 10.5% one-component epoxy resin (bisphenol A type epoxy resin), Were mixed, 41% of NMP was added as a solvent to 100% of the mixture, and stirred well to prepare a slurry.
[0098] (3)塗布 (電極作製) [0098] (3) Application (electrode preparation)
正極は集電体に約 10 mのアルミ箔を用い、このアルミ箔の両面に正極インクを塗 布したものを正極とした。負極は、集電体に約 10 mの銅箔を用い、この銅箔の両 面に、負極インクを塗布したものを負極とした。セラミックス微粒子として粒径 1 μ mの アルミナ粒子を 70%、熱硬化性接着剤として一液性エポキシ榭脂(ビスフエノール A 型エポキシ榭脂)を 10%量り取り、溶剤として NMPをカ卩えた混合物を、正極活物質 上に、ダイコータ方式、厚さ 5 /z mで塗布した。その後、 120°Cで乾燥し、プレス後の 活物質層の厚さが正極が 60 μ m、負極が 65 μ mとなるようにプレスを行った。  As the positive electrode, an aluminum foil of about 10 m was used as a current collector, and the positive electrode was coated with positive ink on both sides of the aluminum foil. As the negative electrode, a copper foil of about 10 m was used for the current collector, and the negative electrode was coated with negative ink on both sides of the copper foil. A mixture of 70% alumina particles with a particle size of 1 μm as ceramic fine particles, 10% of one-part epoxy resin (bisphenol A type epoxy resin) as thermosetting adhesive, and NMP as solvent. Was applied on the positive electrode active material by a die coater method with a thickness of 5 / zm. Thereafter, drying was performed at 120 ° C., and pressing was performed so that the thickness of the active material layer after pressing was 60 μm for the positive electrode and 65 μm for the negative electrode.
[0099] (4)電池の作製 [0099] (4) Production of battery
実施例 1の (4)〜(5)と同様にラミネート外装扁平型電池を作製した。  A laminated exterior flat battery was produced in the same manner as in (4) to (5) of Example 1.
<実施例 10 >  <Example 10>
(1)インク作成  (1) Ink creation
実施例 1の(1)〜(2)と同様にして、正極および負極のインクを作成した。  In the same manner as in (1) and (2) of Example 1, positive and negative inks were prepared.
[0100] (2)塗布 (電極作製) [0100] (2) Application (electrode preparation)
プレス後の活物質層の厚さが正極 30 μ m、負極 33 μ mとなるようにプレスを行った 以外は、実施例 1と同様に行った。  The same procedure as in Example 1 was performed except that the pressing was performed such that the thickness of the active material layer after pressing was 30 μm for the positive electrode and 33 μm for the negative electrode.
[0101] (3)電池の作製 [0101] (3) Battery fabrication
実施例 1の (4)〜(5)と同様にラミネート外装扁平型電池を作製した。  A laminated exterior flat battery was produced in the same manner as in (4) to (5) of Example 1.
<実施例 11 >  <Example 11>
(1)インク作成  (1) Ink creation
実施例 1の(1)〜(2)と同様にして、正極および負極のインクを作成した。  In the same manner as in (1) and (2) of Example 1, positive and negative inks were prepared.
[0102] (2)塗布 (電極作製) [0102] (2) Application (electrode preparation)
プレス後の活物質層の厚さが正極 100 μ m、負極 110 μ mとなるようにプレスを行 つた以外は、実施例 1と同様に行った。 [0103] (3)電池の作製 The same operation as in Example 1 was performed except that the pressing was performed so that the thickness of the active material layer after pressing was 100 μm for the positive electrode and 110 μm for the negative electrode. [0103] (3) Battery fabrication
実施例 1の (4)〜(5)と同様にして作製した。  It was produced in the same manner as (4) to (5) in Example 1.
[0104] <実施例 12> <Example 12>
(1)インク作成  (1) Ink creation
実施例 1の(1)〜(2)と同様にして、正極および負極のインクを作成した。  In the same manner as in (1) and (2) of Example 1, positive and negative inks were prepared.
[0105] (2)塗布 (電極作製) [0105] (2) Application (electrode preparation)
プレス後の活物質層の厚さが正極 150 μ m、負極 165 μ mとなるようにプレスを行 つた以外は、実施例 1と同様に行った。  The same operation as in Example 1 was performed except that the pressing was performed so that the thickness of the active material layer after pressing was 150 μm for the positive electrode and 165 μm for the negative electrode.
[0106] (3)電池の作製 [0106] (3) Battery fabrication
実施例 1の (4)〜(5)と同様にして作製した。  It was produced in the same manner as (4) to (5) in Example 1.
[0107] <実施例 13 > <Example 13>
(1)インク作成  (1) Ink creation
実施例 1の(1)〜(2)と同様にして、正極および負極のインクを作成した。  In the same manner as in (1) and (2) of Example 1, positive and negative inks were prepared.
[0108] (2)塗布 (電極作製) [0108] (2) Application (electrode preparation)
プレス後の活物質層の厚さが正極 200 μ m、負極 220 μ mとなるようにプレスを行 つた以外は、実施例 1と同様に行った。  The same operation as in Example 1 was performed except that the pressing was performed so that the thickness of the active material layer after pressing was 200 μm for the positive electrode and 220 μm for the negative electrode.
[0109] (3)電池の作製 [0109] (3) Fabrication of battery
実施例 1の (4)〜(5)と同様にして作製した。  It was produced in the same manner as (4) to (5) in Example 1.
[0110] く実施例 14 > [0110] Example 14>
(1)正極インク作成  (1) Create positive ink
正極インクの作成を次のように行った。 70%の LiMn O (Liイオンを吸蔵、脱離で  The positive electrode ink was prepared as follows. 70% LiMn O (accumulating and desorbing Li ions
2 4  twenty four
きる正極活物質、平均粒径 10 m)と、 15%のアセチレンブラックと、バインダーであ る 7. 5%の PVdFおよび 7. 5%の一液性エポキシ榭脂(ビスフエノール A型エポキシ 榭脂)と、を混合し、前記混合物 100%に対して溶媒として NMP (N—メチル—2— ピロリドン)を 41%加えて十分に撹拌してスラリーを調製した。  Active material, average particle size 10 m), 15% acetylene black, binder 7.5% PVdF and 7.5% one-component epoxy resin (bisphenol A type epoxy resin) And 41% of NMP (N-methyl-2-pyrrolidone) as a solvent with respect to 100% of the mixture, and stirred well to prepare a slurry.
[0111] (2)負極インク作成 [0111] (2) Preparation of negative electrode ink
負極インクの作製を次のように行った。 80%の非晶質系炭素 (Liイオンを吸蔵-脱 離できる負極活物質、平均粒径 10 μ m)と、バインダーである 10%の PVdFおよび 1 0%の一液性エポキシ榭脂(ビスフエノール A型エポキシ榭脂)と、を混合し、前記混 合物 100%に対して、溶媒として NMPを 41%加えて十分に撹拌してスラリーを調製 した。 The negative electrode ink was produced as follows. 80% amorphous carbon (negative electrode active material capable of absorbing and desorbing Li ions, average particle size 10 μm), 10% PVdF as binder and 1 0% one-component epoxy resin (bisphenol A type epoxy resin) is mixed, and 41% of NMP is added as a solvent to 100% of the above mixture to prepare a slurry. did.
[0112] (3)塗布 (電極作製)  [0112] (3) Application (electrode preparation)
集電体に約 10 mのアルミ箔を用い、このアルミ箔の両面に正極インクを塗布した ものを正極とした。集電体に約 10 mの銅箔を用い、この銅箔の両面に負極インクを 塗布したものを負極とした。その後、 120°Cで乾燥し、プレス後の厚さが正極 300 m、負極 280 μ mとなるようにプレスを行った。  About 10 m of aluminum foil was used as the current collector, and positive electrode ink was applied to both sides of this aluminum foil. The current collector was a copper foil of about 10 m and the negative electrode was coated with negative ink on both sides of the copper foil. Then, it dried at 120 degreeC and pressed so that the thickness after a press might be 300 m of positive electrodes, and 280 micrometers of negative electrodes.
[0113] (4)電池の作製 [0113] (4) Battery fabrication
実施例 1の (4)〜(5)と同様にして作製した。  It was produced in the same manner as (4) to (5) in Example 1.
[0114] く実施例 15 > [0114] Example 15>
(1)インク作成  (1) Ink creation
実施例 2の(1)〜(2)と同様にして、正極および負極のインクを作成した。  In the same manner as in Example 2 (1) to (2), positive and negative inks were prepared.
[0115] (2)塗布 (電極作製) [0115] (2) Application (electrode preparation)
プレス後の活物質層の厚さが正極 30 μ m、負極 33 μ mとなるようにプレスを行った 以外は、実施例 1と同様に行った。  The same procedure as in Example 1 was performed except that the pressing was performed such that the thickness of the active material layer after pressing was 30 μm for the positive electrode and 33 μm for the negative electrode.
[0116] (3)電池の作製 [0116] (3) Battery fabrication
実施例 1の (4)〜(5)と同様にして作製した。  It was produced in the same manner as (4) to (5) in Example 1.
[0117] く実施例 16 > [0117] Example 16>
(1)インク作成  (1) Ink creation
実施例 2の(1)〜(2)と同様にして、正極および負極のインクを作成した。  In the same manner as in Example 2 (1) to (2), positive and negative inks were prepared.
[0118] (2)塗布 (電極作製) [0118] (2) Application (electrode preparation)
プレス後の活物質層の厚さが正極 100 μ m、負極 110 μ mとなるようにプレスを行 つた以外は、実施例 1と同様に行った。  The same operation as in Example 1 was performed except that the pressing was performed so that the thickness of the active material layer after pressing was 100 μm for the positive electrode and 110 μm for the negative electrode.
[0119] (3)電池の作製 [0119] (3) Battery fabrication
実施例 1の (4)〜(5)と同様にして作製した。  It was produced in the same manner as (4) to (5) in Example 1.
[0120] <実施例 17> <Example 20>
(1)インク作成 実施例 2の(1)〜(2)と同様にして、正極および負極のインクを作成した。 (1) Ink creation In the same manner as in Example 2 (1) to (2), positive and negative inks were prepared.
[0121] (2)塗布 (電極作製) [0121] (2) Application (electrode preparation)
プレス後の活物質層の厚さが正極 150 μ m、負極 165 μ mとなるようにプレスを行 つた以外は、実施例 1と同様に行った。  The same operation as in Example 1 was performed except that the pressing was performed so that the thickness of the active material layer after pressing was 150 μm for the positive electrode and 165 μm for the negative electrode.
[0122] (3)電池の作製 [0122] (3) Battery fabrication
実施例 1の (4)〜(5)と同様にして作製した。  It was produced in the same manner as (4) to (5) in Example 1.
[0123] <実施例 18 > [0123] <Example 18>
(1)インク作成  (1) Ink creation
実施例 2の(1)〜(2)と同様にして、正極および負極のインクを作成した。  In the same manner as in Example 2 (1) to (2), positive and negative inks were prepared.
[0124] (2)塗布 (電極作製) [0124] (2) Application (electrode preparation)
プレス後の活物質層の厚さが正極 200 μ m、負極 220 μ mとなるようにプレスを行 つた以外は、実施例 1と同様に行った。  The same operation as in Example 1 was performed except that the pressing was performed so that the thickness of the active material layer after pressing was 200 μm for the positive electrode and 220 μm for the negative electrode.
[0125] (3)電池の作製 [0125] (3) Battery fabrication
実施例 1の (4)〜(5)と同様にして作製した。  It was produced in the same manner as (4) to (5) in Example 1.
[0126] <実施例 19 > <Example 19>
(1)正極インク作成  (1) Create positive ink
正極インクの作成を次のように行った。 70%の LiMn O (Liイオンを吸蔵、脱離で  The positive electrode ink was prepared as follows. 70% LiMn O (accumulating and desorbing Li ions
2 4  twenty four
きる正極活物質、平均粒径 10 m)と、 15%のアセチレンブラックと、バインダーであ る 4. 5%の PVdFおよび 10. 5%の一液性エポキシ榭脂(ビスフエノール A型ェポキ シ榭脂)と、を混合し、前記混合物 100%に対して溶媒として NMP (N—メチル—2 —ピロリドン)を 41%加えて十分に撹拌してスラリーを調製した。  Active material, average particle size 10 m), 15% acetylene black, binder 4.5% PVdF and 10.5% one-component epoxy resin (bisphenol A epoxy) Fat) and 41% of NMP (N-methyl-2-pyrrolidone) as a solvent was added to 100% of the mixture, and stirred well to prepare a slurry.
(2)負極インク作成  (2) Creating negative electrode ink
負極インクの作製を次のように行った。 80%の非晶質系炭素 (Liイオンを吸蔵-脱 離できる負極活物質、平均粒径 10 μ m)と、バインダーである 6%の PVdFおよび 14 %の一液性エポキシ榭脂(ビスフエノール A型エポキシ榭脂)と、を混合し、前記混合 物 100%に対して、溶媒として NMPを 41%加えて十分に撹拌してスラリーを調製し た。  The negative electrode ink was produced as follows. 80% amorphous carbon (negative electrode active material capable of absorbing and desorbing Li ions, average particle size 10 μm), 6% PVdF as binder and 14% one-component epoxy resin (bisphenol) A type epoxy resin) was mixed, and 41% of NMP was added as a solvent to 100% of the mixture to prepare a slurry.
[0127] (3)塗布 (電極作製) プレス後の活物質層の厚さが正極 300 μ m、負極 280 μ mとなるようにプレスを行 つた以外は、実施例 1と同様に行った。 [0127] (3) Application (electrode preparation) The same operation as in Example 1 was performed except that the pressing was performed so that the thickness of the active material layer after pressing was 300 μm for the positive electrode and 280 μm for the negative electrode.
[0128] (4)電池の作製 [0128] (4) Battery fabrication
実施例 1の (4)〜(5)と同様にして作製した。  It was produced in the same manner as (4) to (5) in Example 1.
[0129] <実施例 20> <Example 20>
(1)正極インク作成  (1) Create positive ink
実施例 3の(1)と同様にして、正極インクを作成した。  A positive electrode ink was produced in the same manner as in Example 3 (1).
[0130] (2)負極インク作成 [0130] (2) Create negative electrode ink
負極インクの作製を次のように行った。 85%の平均粒径 10 mの非晶質系炭素と 、バインダーである 4. 5%の PVdFおよび 10. 5%の一液性エポキシ榭脂(ビスフエノ ール A型エポキシ榭脂)と、を混合し、前記混合物 100%に対して、溶媒として NMP を 41%加えて十分に撹拌してスラリーを調製した。  The negative electrode ink was produced as follows. 85% amorphous carbon with an average particle size of 10 m and binder, 4.5% PVdF and 10.5% one-component epoxy resin (bisphenol A type epoxy resin). After mixing, 41% of NMP was added as a solvent to 100% of the mixture, and stirred well to prepare a slurry.
[0131] (3)塗布 (電極作製) [0131] (3) Application (electrode preparation)
プレス後の活物質層の厚さが正極 30 μ m、負極 33 μ mとなるようにプレスを行った 以外は、実施例 1と同様に行った。  The same procedure as in Example 1 was performed except that the pressing was performed such that the thickness of the active material layer after pressing was 30 μm for the positive electrode and 33 μm for the negative electrode.
[0132] (4)電池の作製 [0132] (4) Battery fabrication
実施例 1の (4)〜(5)と同様にして作製した。  It was produced in the same manner as (4) to (5) in Example 1.
[0133] <実施例 21 > <Example 21>
(1)インク作成  (1) Ink creation
実施例 20の(1)〜(2)と同様にして、正極および負極のインクを作成した。  In the same manner as in Example 20 (1) and (2), positive and negative inks were prepared.
[0134] (2)塗布 (電極作製) [0134] (2) Application (electrode preparation)
プレス後の活物質層の厚さが正極 100 μ m、負極 110 μ mとなるようにプレスを行 つた以外は、実施例 1と同様に行った。  The same operation as in Example 1 was performed except that the pressing was performed so that the thickness of the active material layer after pressing was 100 μm for the positive electrode and 110 μm for the negative electrode.
[0135] (3)電池の作製 [0135] (3) Battery fabrication
実施例 1の (4)〜(5)と同様にして作製した。  It was produced in the same manner as (4) to (5) in Example 1.
[0136] <実施例 22> <Example 22>
(1)インク作成  (1) Ink creation
実施例 20の(1)〜(2)と同様にして、正極および負極のインクを作成した。 [0137] (2)塗布 (電極作製) In the same manner as in Example 20 (1) and (2), positive and negative inks were prepared. [0137] (2) Application (electrode preparation)
プレス後の活物質層の厚さが正極 150 μ m、負極 165 μ mとなるようにプレスを行 つた以外は、実施例 1と同様に行った。  The same operation as in Example 1 was performed except that the pressing was performed so that the thickness of the active material layer after pressing was 150 μm for the positive electrode and 165 μm for the negative electrode.
[0138] (3)電池の作製 [0138] (3) Battery fabrication
実施例 1の (4)〜(5)と同様にして作製した。  It was produced in the same manner as (4) to (5) in Example 1.
[0139] <実施例 23 > <Example 23>
(1)インク作成  (1) Ink creation
実施例 20の(1)〜(2)と同様にして、正極および負極のインクを作成した。  In the same manner as in Example 20 (1) and (2), positive and negative inks were prepared.
[0140] (2)塗布 (電極作製) [0140] (2) Application (electrode production)
プレス後の活物質層の厚さが正極 200 μ m、負極 220 μ mとなるようにプレスを行 つた以外は、実施例 20と同様に行った。  The same operation as in Example 20 was performed except that the pressing was performed so that the thickness of the active material layer after pressing was 200 μm for the positive electrode and 220 μm for the negative electrode.
[0141] (3)電池の作製 [0141] (3) Battery fabrication
実施例 1の (4)〜(5)と同様にして作製した。  It was produced in the same manner as (4) to (5) in Example 1.
[0142] <実施例 24> [0142] <Example 24>
(1)インク作成  (1) Ink creation
正極インクの作成を次のように行った。 70%の LiMn O (平均粒径 10 m)と、 15  The positive electrode ink was prepared as follows. 70% LiMn O (average particle size 10 m), 15
2 4  twenty four
%のアセチレンブラックと、バインダーである 15%の一液性エポキシ榭脂(ビスフエノ ール A型エポキシ榭脂)と、を混合し、前記混合物 100%に対して、溶媒として NMP を 41%加えて十分に撹拌してスラリーを調製した。  % Acetylene black and 15% one-component epoxy resin (bisphenol A type epoxy resin) as a binder, and 41% of NMP was added as a solvent to 100% of the mixture. The slurry was prepared by thorough stirring.
[0143] (2)負極インク作成 [0143] (2) Create negative electrode ink
負極インクの作製を次のように行った。 80%の非晶質系炭素 (Liイオンを吸蔵,脱離 できる負極活物質、平均粒径 10 μ m)と、バインダーである 6%の PVdFおよび 14% の一液性エポキシ榭脂(ビスフエノール A型エポキシ榭脂)と、を混合し、前記混合物 100%に対して、溶媒として NMPを 41%加えて十分に撹拌してスラリーを調製した  The negative electrode ink was produced as follows. 80% amorphous carbon (negative electrode active material capable of absorbing and desorbing Li ions, average particle size 10 μm), 6% PVdF as binder and 14% one-part epoxy resin (bisphenol) A type epoxy resin) was mixed, and 41% of NMP was added as a solvent to 100% of the mixture to prepare a slurry with sufficient stirring
[0144] (3)塗布 [0144] (3) Application
正負極:集電体に約 10 mのアルミ箔を用い、このアルミ箔の両面に正極インクを 塗布したものを正極とした。集電体に約 10 mの銅箔を用い、この銅箔の両面に負 極インクを塗布したものを負極とした。その後、 120°Cで乾燥し、プレス後の活物質層 の厚さが正極 270 μ m、負極 300 μ mとなるようにプレスを行った。 Positive and negative electrodes: An aluminum foil of about 10 m was used as a current collector, and positive electrode ink was applied to both sides of the aluminum foil as a positive electrode. About 10 m of copper foil is used for the current collector, and negative What applied polar ink was made into the negative electrode. Then, it dried at 120 degreeC and pressed so that the thickness of the active material layer after a press might be 270 micrometers of positive electrodes, and 300 micrometers of negative electrodes.
[0145] (4)電池の作製 [0145] (4) Battery fabrication
実施例 1の (4)〜(5)と同様にして作製した。  It was produced in the same manner as (4) to (5) in Example 1.
[0146] <比較例 1 > [0146] <Comparative Example 1>
(1)正極インク作成  (1) Create positive ink
正極インクの作成を次のように行った。 70%の LiMn O (平均粒径 10 m)と、 20  The positive electrode ink was prepared as follows. 70% LiMn O (average particle size 10 m), 20
2 4  twenty four
質量0 /0のアセチレンブラックと、バインダーである 10%の PVdFと、を混合し、前記混 合物 100%に対して、溶媒として NMPを 41%加えて十分に撹拌してスラリーを調製 した。 Acetylene black mass 0/0, and 10% of PVdF as a binder were mixed, to the mixed compound of 100%, was added NMP 41% to prepare a well stirred with a slurry as a solvent.
[0147] (2)負極インク作成  [0147] (2) Create negative electrode ink
負極インクの作製を次のように行った。 85%の非晶質系炭素(平均粒径 10 m)と 、 ノインダーである 15%の PVdFと、を混合し、前記混合物 100%に対して、溶媒と して NMPを 41%加えて十分に撹拌してスラリーを調製した。  The negative electrode ink was produced as follows. Mix 85% amorphous carbon (average particle size 10 m) and 15% PVdF as a noinder, and add 41% NMP as a solvent to 100% of the mixture. A slurry was prepared by stirring.
[0148] (3)電池の作製 [0148] (3) Battery fabrication
実施例 1の(3)〜(5)と同様にラミネート外装扁平型電池を作製した。  In the same manner as in Example 1 (3) to (5), a laminated exterior flat battery was produced.
[0149] 以下に実施例のノ インダ一中の熱硬化性榭脂の比率、種類、活物質層の厚さ、お よびセパレータの材質をまとめたものを表 1に示す。 [0149] Table 1 shows a summary of the ratio, type, thickness of the active material layer, and separator material of the thermosetting resin in the nozzles of the examples.
[0150] [表 1] [0150] [Table 1]
熱硬化樹^ 熱硬化性樹脂 活物質層厚 ( m)セ /《レータ Thermosetting resin ^ Thermosetting resin Active material layer thickness (m)
質量 (%〉 正極 負極 正極 負極  Mass (%) Positive electrode Negative electrode Positive electrode Negative electrode
1 50 エポキシ樹脂 エポキシ樹脂 60 65 ポリプロピレン  1 50 Epoxy resin Epoxy resin 60 65 Polypropylene
2 70 エポキシ樹脂 エポキシ樹脂 60 65 ポリプロピレン  2 70 Epoxy resin Epoxy resin 60 65 Polypropylene
3 100 エポキシ樹脂 エポキシ樹脂 60 65 ポリプロピレン  3 100 Epoxy resin Epoxy resin 60 65 Polypropylene
4 70 ポリイミド エポキシ樹脂 60 65 ポリイミド  4 70 Polyimide Epoxy resin 60 65 Polyimide
5 70 ポリイ Sト' エポキシ樹脂 60 65 PET  5 70 Poly S-epoxy resin 60 65 PET
6 70 ポリイミド エポキシ樹脂 60 65 ァラミド  6 70 Polyimide Epoxy resin 60 65 Caramide
7 70 フエノール樹脂 フ Iノール樹脂 60 65 PET  7 70 Phenolic resin Phenolic resin 60 65 PET
8 70 フエノール樹脂 フエノール樹脂 60 65 ァラミド  8 70 Phenolic resin Phenolic resin 60 65 Caramide
9 70 エポキシ樹脂 エポキシ樹脂 60 65 ポリプロピレン  9 70 Epoxy resin Epoxy resin 60 65 Polypropylene
10 50 エポキシ樹脂 エポキシ樹脂 30 33 ポリプロピレン  10 50 Epoxy resin Epoxy resin 30 33 Polypropylene
1 1 50 エポキシ樹脂 エポキシ樹脂 100 1 10 ポリプロピレン 実  1 1 50 Epoxy resin Epoxy resin 100 1 10 Polypropylene Actual
12 50 エポキシ樹脂 エポキシ樹脂 150 165 ポリプロピレン 施  12 50 Epoxy resin Epoxy resin 150 165 Polypropylene
13 50 エポキシ樹脂 エポキシ樹脂 200 220 ポリプロピレン 例 14 50 エポキシ樹脂 エポキシ樹脂 300 280 ポリプロピレン  13 50 Epoxy resin Epoxy resin 200 220 Polypropylene Example 14 50 Epoxy resin Epoxy resin 300 280 Polypropylene
15 70 エポキシ樹脂 エポキシ樹脂 30 33 ポリプロピレン  15 70 Epoxy resin Epoxy resin 30 33 Polypropylene
16 70 エポキシ榭脂 エポキシ樹脂 100 1 10 ポリプロピレン  16 70 Epoxy resin Epoxy resin 100 1 10 Polypropylene
17 70 エポキシ榭脂 エポキシ樹脂 150 165 ポリプロピレン  17 70 Epoxy resin Epoxy resin 150 165 Polypropylene
18 70 エポキシ樹脂 エポキシ樹脂 200 220 ポリプロピレン  18 70 Epoxy resin Epoxy resin 200 220 Polypropylene
19 70 エポキシ樹脂 エポキシ樹脂 300 280 ポリプロピレン  19 70 Epoxy resin Epoxy resin 300 280 Polypropylene
20 100 エポキシ樹脂 エポキシ樹脂 30 33 ポリプロピレン  20 100 Epoxy resin Epoxy resin 30 33 Polypropylene
21 100 エポキシ樹脂 エポキシ樹脂 100 1 10 ポリプロピレン  21 100 Epoxy resin Epoxy resin 100 1 10 Polypropylene
22 100 エポキシ樹脂 エポキシ樹脂 150 1 65 ポリプロピレン  22 100 Epoxy resin Epoxy resin 150 1 65 Polypropylene
23 100 エポキシ樹脂 エポキシ樹脂 200 220 ポリプロピレン  23 100 Epoxy resin Epoxy resin 200 220 Polypropylene
24 100 エポキシ樹脂 エポキシ樹脂 270 300 ポリプロピレン 比 ;例 ― - - 60 65 ポリプロピレン  24 100 Epoxy resin Epoxy resin 270 300 Polypropylene Ratio : Example ―--60 65 Polypropylene
[0151] <耐久評価 > [0151] <Endurance evaluation>
評価は各実施例、比較例とも 0. 2Cの初充電 (CCCV)と 0. 5Cの初放電後、 60°C 、 1Cで 100サイクル充放電を行なった。その後、 IV測定により、 100サイクル後の内 部抵抗を測定した。比較例の 100サイクル後の内部抵抗上昇率を 100%としたとき の結果を表 2および表 3に示す。  In each of the examples and comparative examples, the initial charge (CCCV) of 0.2C and the initial discharge of 0.5C were performed, and charge / discharge of 100 cycles was performed at 60 ° C and 1C. Thereafter, the internal resistance after 100 cycles was measured by IV measurement. Tables 2 and 3 show the results of the comparative example when the rate of increase in internal resistance after 100 cycles is 100%.
[0152] [表 2] [0152] [Table 2]
(部抵抗上昇率 )内% (Partial resistance increase rate)%
Figure imgf000027_0001
Figure imgf000027_0001
[0153] [表 3] [0153] [Table 3]
Figure imgf000027_0002
Figure imgf000027_0002
[0154] <剥離強度評価 > [0154] <Peel strength evaluation>
比較例および実施例で作製した電極を幅 10mm、長さ 50mmの試験片に切断し、 電極 (活物質)にテープを貼り付け、常温(25°C)、引張速度 200mmZminで T剥離 強度を測定した。比較例の強度を 1としたときの、各実施例の結果を表 4および表 5に 示す。  Cut the electrode produced in the comparative example and the example into a 10mm wide and 50mm long test piece, apply tape to the electrode (active material), and measure the T peel strength at normal temperature (25 ° C) and tensile speed 200mmZmin. did. Tables 4 and 5 show the results of each example when the strength of the comparative example is 1.
[0155] [表 4] 剥離強度 Τ
Figure imgf000028_0001
[0155] [Table 4] Peel strength Τ
Figure imgf000028_0001
[0156] [表 5] [0156] [Table 5]
Figure imgf000028_0002
Figure imgf000028_0002
[0157] 表 1〜表 5の結果から、実施例 1〜24の電池は、高温耐久性に優れ、かつ電極層 の剥離が少な 、電池であることが示された。  [0157] From the results of Tables 1 to 5, it was shown that the batteries of Examples 1 to 24 were excellent in high temperature durability and had little peeling of the electrode layer.

Claims

請求の範囲 The scope of the claims
[1] 集電体と、  [1] current collector;
前記集電体の表面に配置された活物質およびバインダーを含む活物質層と、 を有する非水電解質二次電池用電極であって、  An active material layer including an active material and a binder disposed on the surface of the current collector, and a nonaqueous electrolyte secondary battery electrode comprising:
前記バインダーが、エポキシ榭脂、フエノール榭脂およびポリイミドからなる群から 選ばれる少なくとも 1つの熱硬化性榭脂を前記バインダーの全質量に対して 50〜: LO The binder is at least one thermosetting resin selected from the group consisting of epoxy resin, phenol resin, and polyimide, with respect to the total mass of the binder, 50 to: LO
0質量%含み、前記活物質層の厚さが、 30 m以上 300 m以下である。 Including 0% by mass, the thickness of the active material layer is not less than 30 m and not more than 300 m.
[2] 前記活物質層の厚さが、 50 m以上 200 m以下である請求項 1に記載の非水 電解質二次電池用電極。 [2] The electrode for a non-aqueous electrolyte secondary battery according to claim 1, wherein the thickness of the active material layer is 50 m or more and 200 m or less.
[3] 請求項 1または 2に記載の電極を含む非水電解質二次電池。 [3] A nonaqueous electrolyte secondary battery comprising the electrode according to claim 1 or 2.
[4] 前記電極間にセパレータを狭持して成る非水電解質二次電池であって、 [4] A nonaqueous electrolyte secondary battery comprising a separator sandwiched between the electrodes,
前記セパレータを構成する材料力 ポリプロピレン、ポリイミド、ポリエチレンテレフタ レート、ァラミド、セルロース、およびセラミックス力もなる群力も選ばれる少なくとも 1つ を含む請求項 3に記載の非水電解質二次電池。  4. The non-aqueous electrolyte secondary battery according to claim 3, further comprising at least one selected from the group strengths of polypropylene, polyimide, polyethylene terephthalate, aramid, cellulose, and ceramics.
[5] 前記バインダーが、熱硬化性ポリイミド榭脂を含み、前記セパレータを構成する材 料がポリイミドを含む、請求項 4に記載の非水電解質二次電池。 5. The nonaqueous electrolyte secondary battery according to claim 4, wherein the binder includes a thermosetting polyimide resin, and the material constituting the separator includes polyimide.
[6] 前記バインダーが、熱硬化性フ ノール榭脂、または熱硬化性エポキシ榭脂の少 なくとも 1つを含み、前記セパレータを構成する材料力 ポリプロピレン、ポリエチレン テレフタレート、およびァラミド力 選ばれる少なくとも 1つを含む、請求項 4に記載の 非水電解質二次電池。 [6] The binder includes at least one of a thermosetting phenolic resin or a thermosetting epoxy resin, and the material strength of constituting the separator is polypropylene, polyethylene terephthalate, and aramid force. The nonaqueous electrolyte secondary battery according to claim 4, comprising:
[7] 前記活物質層と、前記セパレータとの間に、熱硬化性の接着剤と絶縁性微粒子と を含む絶縁性微粒子混合材料が配置されてなる請求項 4〜6のいずれか 1項に記載 の非水電解質二次電池。  [7] The insulating fine particle mixed material containing a thermosetting adhesive and insulating fine particles is disposed between the active material layer and the separator. The nonaqueous electrolyte secondary battery of description.
[8] 前記絶縁性微粒子を構成する材料が、 Al O、 SiO及び LiFeOのうち 、ずれかを  [8] The material constituting the insulating fine particles is selected from Al O, SiO and LiFeO.
2 3 2 2  2 3 2 2
含む請求項 7に記載の非水電解質二次電池。  The nonaqueous electrolyte secondary battery according to claim 7, comprising:
[9] 正極活物質が Ni系、 3元系、およびオリビン系材料力 なる群力 選ばれる少なくと も 1つを含む請求項 3〜8のいずれ力 1項に記載の非水電解質二次電池。 [9] The non-aqueous electrolyte secondary battery according to any one of claims 3 to 8, wherein the positive electrode active material includes at least one selected from the group force of Ni-based, ternary-based, and olivine-based material forces .
[10] 請求項 3〜9のいずれか 1項に記載の非水電解質二次電池を用いた組電池。 請求項 3〜9のいずれか 1項に記載の非水電解質二次電池、または請求項 10に記 載の組電池をモータ駆動用電源として搭載した車両。 [10] An assembled battery using the nonaqueous electrolyte secondary battery according to any one of claims 3 to 9. A vehicle on which the nonaqueous electrolyte secondary battery according to any one of claims 3 to 9 or the assembled battery according to claim 10 is mounted as a motor driving power source.
PCT/JP2007/061744 2006-06-14 2007-06-11 Electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using the same WO2007145174A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006-165021 2006-06-14
JP2006165021 2006-06-14
JP2007072815A JP2008021635A (en) 2006-06-14 2007-03-20 Electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using the same
JP2007-072815 2007-03-20

Publications (1)

Publication Number Publication Date
WO2007145174A1 true WO2007145174A1 (en) 2007-12-21

Family

ID=38831688

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/061744 WO2007145174A1 (en) 2006-06-14 2007-06-11 Electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using the same

Country Status (2)

Country Link
JP (1) JP2008021635A (en)
WO (1) WO2007145174A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016143572A1 (en) * 2015-03-12 2016-09-15 日立マクセル株式会社 Non-aqueous secondary battery positive electrode and non-aqueous secondary battery

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5836933B2 (en) * 2011-08-25 2015-12-24 日立マクセル株式会社 Method for producing positive electrode mixture-containing composition and method for producing non-aqueous secondary battery
JP2013182706A (en) * 2012-02-29 2013-09-12 Sumitomo Bakelite Co Ltd Precursor for negative electrode, manufacturing method of precursor for negative electrode, production method of material for negative electrode, electrode and lithium ion secondary battery
US20150064553A1 (en) 2012-03-30 2015-03-05 Toda Kogyo Corp. Negative electrode active substance particles for non-aqueous electrolyte secondary batteries and process for producing the same, and non-aqueous electrolyte secondary battery
JP2016131056A (en) * 2013-04-24 2016-07-21 永浦 敦子 Power storage device
JP2016131057A (en) * 2013-04-24 2016-07-21 永浦 敦子 Power storage device
JP2015118871A (en) * 2013-12-19 2015-06-25 凸版印刷株式会社 Negative electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
CN107431233B (en) * 2015-03-24 2020-09-08 日本电气株式会社 Secondary battery, method for manufacturing secondary battery, electric vehicle, and power storage system
US20230282832A1 (en) * 2020-08-31 2023-09-07 Zeon Corporation Binder composition for non-aqueous secondary battery electrode and method of producing same, slurry composition for non-aqueous secondary battery electrode, electrode for non-aqueous secondary battery, and non-aqueous secondary battery

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001068115A (en) * 1999-08-27 2001-03-16 Hitachi Chem Co Ltd Nonaqueous solvent binder composition, method of manufacturing electrode, electrode and nonaqueous solvent secondary battery
JP2002260637A (en) * 2000-09-01 2002-09-13 Sanyo Electric Co Ltd Negative electrode for lithium secondary battery, and its manufacturing method
JP2002289196A (en) * 2001-03-27 2002-10-04 Shin Etsu Chem Co Ltd Composition for electrode and electrode material
JP2004134367A (en) * 2002-08-13 2004-04-30 Shin Kobe Electric Mach Co Ltd Lithium secondary battery and electric automobile
JP2004214042A (en) * 2003-01-06 2004-07-29 Mitsubishi Electric Corp Adhesive for lithium secondary battery, its manufacturing method, and battery using it
JP2004234979A (en) * 2003-01-29 2004-08-19 Yuasa Corp Nonaqueous electrolyte battery
JP2005142156A (en) * 2003-10-31 2005-06-02 Samsung Sdi Co Ltd Negative electrode for lithium metal secondary battery, its manufacturing method and lithium metal secondary battery including the negative electrode

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001068115A (en) * 1999-08-27 2001-03-16 Hitachi Chem Co Ltd Nonaqueous solvent binder composition, method of manufacturing electrode, electrode and nonaqueous solvent secondary battery
JP2002260637A (en) * 2000-09-01 2002-09-13 Sanyo Electric Co Ltd Negative electrode for lithium secondary battery, and its manufacturing method
JP2002289196A (en) * 2001-03-27 2002-10-04 Shin Etsu Chem Co Ltd Composition for electrode and electrode material
JP2004134367A (en) * 2002-08-13 2004-04-30 Shin Kobe Electric Mach Co Ltd Lithium secondary battery and electric automobile
JP2004214042A (en) * 2003-01-06 2004-07-29 Mitsubishi Electric Corp Adhesive for lithium secondary battery, its manufacturing method, and battery using it
JP2004234979A (en) * 2003-01-29 2004-08-19 Yuasa Corp Nonaqueous electrolyte battery
JP2005142156A (en) * 2003-10-31 2005-06-02 Samsung Sdi Co Ltd Negative electrode for lithium metal secondary battery, its manufacturing method and lithium metal secondary battery including the negative electrode

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016143572A1 (en) * 2015-03-12 2016-09-15 日立マクセル株式会社 Non-aqueous secondary battery positive electrode and non-aqueous secondary battery
JP2016170937A (en) * 2015-03-12 2016-09-23 日立マクセル株式会社 Positive electrode for nonaqueous secondary battery, and nonaqueous secondary battery

Also Published As

Publication number Publication date
JP2008021635A (en) 2008-01-31

Similar Documents

Publication Publication Date Title
JP5135822B2 (en) Lithium ion secondary battery and battery pack using the same
JP5252386B2 (en) Negative electrode for lithium ion battery
WO2007145174A1 (en) Electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using the same
JP5272494B2 (en) Bipolar secondary battery
JP5523678B2 (en) Non-aqueous electrolyte secondary battery
KR100985606B1 (en) Current collector for nonaqueous solvent secondary battery, and electrode and battery, which use the current collector
JP2010160984A (en) Anode for lithium-ion secondary battery and lithium-ion secondary battery
WO2014157415A1 (en) Non-aqueous electrolyte secondary battery
JP2006210002A (en) Electrode for battery
CN103296236A (en) Separator including coating layer of inorganic and organic mixture, and battery including the same
JP2010205609A (en) Electrode and battery using this
JP2007018861A (en) Separator for battery and battery using this
JP5309421B2 (en) Lithium ion secondary battery
JP2007257859A (en) Bipolar battery
WO2007032365A1 (en) Battery-use electrode
JP2008047512A (en) Positive electrode for nonaqueous electrolyte secondary battery
JP2007280687A (en) Electrode for battery
KR20150126870A (en) Non-aqueous electrolyte secondary battery
WO2015076099A1 (en) Method for producing negative electrode for nonaqueous electrolyte secondary batteries
JP5205745B2 (en) Nonaqueous electrolyte secondary battery
JP5420852B2 (en) Lithium ion battery electrode
JP2007280806A (en) Electrode for battery
JP6740011B2 (en) Non-aqueous electrolyte secondary battery
JP2006294272A (en) Secondary battery, battery pack, and vehicle mounting these
KR101634919B1 (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07745033

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07745033

Country of ref document: EP

Kind code of ref document: A1