WO2007144977A1 - Apparatus for measuring biological light - Google Patents

Apparatus for measuring biological light Download PDF

Info

Publication number
WO2007144977A1
WO2007144977A1 PCT/JP2006/325814 JP2006325814W WO2007144977A1 WO 2007144977 A1 WO2007144977 A1 WO 2007144977A1 JP 2006325814 W JP2006325814 W JP 2006325814W WO 2007144977 A1 WO2007144977 A1 WO 2007144977A1
Authority
WO
WIPO (PCT)
Prior art keywords
biological light
classification model
disease
waveform
subject
Prior art date
Application number
PCT/JP2006/325814
Other languages
French (fr)
Japanese (ja)
Inventor
Naoki Tanaka
Masashi Kiguchi
Atsushi Maki
Shingo Kawasaki
Noriyoshi Ichikawa
Fumio Kawaguchi
Original Assignee
Hitachi Medical Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corporation filed Critical Hitachi Medical Corporation
Priority to JP2008521091A priority Critical patent/JPWO2007144977A1/en
Publication of WO2007144977A1 publication Critical patent/WO2007144977A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence

Definitions

  • the present invention relates to a biological optical measurement device that supports disease diagnosis non-invasively.
  • a biological light measurement device is a device that irradiates a living body with near-infrared light and measures light that has passed through the living body or reflected within the living body, and has blood circulation, hemodynamics, and hemoglobin content inside the living body. Since changes can be easily measured with low restraint and no harm to the subject, clinical application is expected.
  • Non-patent documents 1 and 2 below report that abnormalities occur in the pattern of hemoglobin changes in the frontal lobe by biophotometry in patients with mental illness such as depression and schizophrenia (schizophrenia). . Specifically, it has been reported that the integration values during the trial of the hemoglobin time waveform have different characteristics of large, small, and medium when comparing healthy subjects, depressed patients, and schizophrenic patients. In schizophrenia, it has been reported that a re-elevation change of hemoglobin is observed after completion of the task.
  • the present applicant determines a reference waveform for each disease group and uses the correlation between the waveform of each subject and the reference waveform of each disease group as a reference.
  • a technique for determining a disease is proposed (for example, Patent Document 1).
  • a method for calculating and displaying a disease determination score by calculating the Mahalanobis distance between the measured feature value of the hemoglobin change waveform force and the disease-specific dictionary data is proposed (Patent Document 2).
  • the dictionary data for each disease is classified and categorized based on the disease name added by the user.
  • Non-Patent Document 1 “Dynamics of frontal lobe regional cerebral blood volume in neuropsychiatric disorders ⁇ Examination using Graph '' Masato Fukuda, JSPS Grant-in-Aid for Scientific Research 2001-2002
  • Non-Patent Document 2 "The Mind Seen by Light” Masato Fukuda et al., Mind and Society No. 34 ⁇ 1 separate volume, Japan Mental Health
  • Patent Document 1 Japanese Patent Laid-Open No. 2003-275191
  • Patent Document 2 International Publication WO2005Z025421
  • the present invention provides a biological optical measurement device that improves separation of healthy groups and non-healthy groups, enables simple category generation in disease classification, and can perform effective disease classification.
  • the purpose is to provide.
  • the present invention provides a determination unit that determines a disease by a classification model in an analysis unit that performs waveform analysis of a biological light measurement device, and performs hierarchical classification in the determination unit.
  • a determination unit for determining a disease using a classification model is provided, and a variable obtained by synthesizing a plurality of types of feature amounts is used as a classification model used by the determination unit.
  • the biological light measurement device of the present invention irradiates a subject with light having a wavelength belonging to the visible to infrared region, detects light that has passed through the subject, and measures a hemoglobin change waveform.
  • a feature amount calculation unit that extracts and analyzes a plurality of types of feature amounts from the measured waveform, and a classification model that is set in advance using the plurality of types of feature amounts extracted by the feature amount calculation unit. 1. It comprises a determination unit that performs disease determination and a display unit that displays a determination result of the determination unit, and the determination unit includes a plurality of classification models having a hierarchical structure as the classification model. To do.
  • the determination unit includes a plurality of types as the classification model. It is characterized by using a variable that combines feature quantities.
  • the classification model is, for example, a variable obtained by combining a plurality of types of feature amounts, for example, a linear combination of a plurality of types of feature amounts, and a plurality of subject groups for which disease determination is confirmed. Each is determined to maximize the probability of being classified into the class corresponding to the disease.
  • the biological optical measurement device of the present invention can be used to construct a classification model, for example, a slope value immediately after the start of a task of a hemoglobin waveform, an integral value during task execution, and a re-rise degree after the task ends.
  • the center of gravity value of the entire waveform is used as the feature amount.
  • the feature amount calculation unit extracts a feature amount from a hemoglobin waveform obtained in each of the multichannels of the biological light measurement unit.
  • the present invention provides a disease diagnosis support apparatus in which components other than the biological light measurement unit are separated from the force of the biological light measurement unit.
  • This disease diagnosis support device is the same as the biological light measurement device of the present invention except that the biological light measurement unit is independent.
  • the effect of separating a healthy person group from a non-healthy person group can be enhanced by performing disease classification hierarchically.
  • the classification of disease patient groups is adopted, it is possible to classify diseases effectively by creating a simple category by incorporating hierarchical properties.
  • FIG. 1 is a block diagram showing an outline of the biological light measurement device 100 of the present invention.
  • the biological light measurement device 100 extracts features from the biological light measurement unit 10 and the hemoglobin change waveform measured by the biological light measurement unit 10 and performs various analyzes based on the input of the operator.
  • the feature amount calculation unit 20, the input unit 30 for inputting information necessary for calculation in the feature amount calculation unit 20, and the plurality of types of feature amounts extracted by the feature amount calculation unit 20 A patient is classified into five types, and a decision unit 40 that supports disease diagnosis and analysis results of biological light measurement data obtained from a large number of subjects are stored as disease dictionary data together with definitive diagnosis results and
  • the storage unit 50 stores the waveform data measured by the optical measurement unit 10 and the classification model used by the determination unit 40, and the determination results of the determination unit 40 are registered as a dictionary.
  • the biological light measurement unit 10 irradiates a human head with light, receives light reflected and scattered in the vicinity of the head surface at a plurality of detection positions, and changes signals in the blood (here, hemoglobin).
  • This is a multi-channel device that measures the amount of hemoglobin change for each channel when a subject is exposed to a fluency task with language recall.
  • the specific configuration mainly includes a light source unit 102, a light receiver 108, a lock-in amplifier 109, an A / D converter 110, a measurement control computer 111, and the like.
  • the letters at the end of these codes mean that there are multiple elements.
  • the light source unit 102 and the subject 106 and the light receiver 108 and the subject 106 are connected by an irradiation optical fiber 105 and a light receiving optical fiber 107, respectively.
  • the light source unit 102 includes two light source units 102a and 102b having a first wavelength (for example, 690 nm or 780 nm) and light source units 102c and 102d having a second wavelength (for example, 830 nm). Connected, modulated differently depending on the measurement position, and irradiated to the head of the subject 106 via the couplers 104a and 104b and the irradiation optical fibers 105a and 105b. The light reflected / scattered near the head is collected by receiving optical fibers 107a to 107fC arranged close to the irradiation optical fiber, and photoelectrically converted by the optical receivers 108a to 108fC, respectively.
  • a first wavelength for example, 690 nm or 780 nm
  • second wavelength for example, 830 nm
  • the distal ends of the irradiation optical fiber 105 and the light receiving optical fiber 107 are arranged so that the light receiving positions are arranged at the same distance (for example, 30 mm) from the light irradiation position force.
  • a photoelectric conversion element represented by a photomultiplier tube or a photodiode is used.
  • Electric signals representing the intensity of light passing through the living body photoelectrically converted by the light receiver 108 are respectively input to the lock-in amplifier 109.
  • the intensity modulation frequency from the oscillator 101 is input to the lock-in amplifier 109 as a reference frequency.
  • the light intensity signals from the light sources 102a and 102b and 102c and 102d are separated by the reference frequency, respectively. Is output.
  • the separated transmitted light intensity signal of each wavelength which is the output of the lock-in amplifier 109, is analog-digital converted by the analog-digital converter 110, and then sent to the measurement control computer 111.
  • the measurement control computer 111 calculates the detection signal power at each detection point, the relative change in oxygen concentration to deoxygenated hemoglobin concentration, deoxygenated hemoglobin concentration, and total hemoglobin concentration. Store.
  • Oxygenated hemoglobin concentration One or a plurality of hemoglobin change signals, which are relative changes in the deoxygenated hemoglobin concentration and the total hemoglobin concentration, are used depending on the disease to be determined.
  • the measurement control computer 112 controls the operation of the biological light measurement unit 20. Note that FIG. 2 shows a configuration of a biological light measurement unit that separates a plurality of lights by a modulation method. However, the present invention is not limited to this. It is also possible to use a time-sharing method for discriminating between the two.
  • the elements other than the biological light measurement unit 10, that is, the feature amount calculation unit 20, the determination unit 40, and the storage unit 50 are all in the calculator 112, and the input unit 30 and the display unit 60 are It is provided in computer 112.
  • the computer 111 and the computer 112 may be a single computer. Further, it may be placed at a completely distant place and connected via a communication means such as the Internet. That is, the computer 112 can also be a disease diagnosis support device that is independent of the biological light measurement unit.
  • the feature amount calculation unit 20 analyzes the feature amount based on the waveform data of the measured changes in local oxygenated hemoglobin, deoxygenated hemoglobin, and total hemoglobin. The function of the feature quantity calculation unit 20 will be described later. Waveform data and features are passed to the storage unit 50
  • the storage unit 50 temporarily stores the measurement information of the subject and enables subsequent processing.
  • the measurement information is stored as dictionary data.
  • the dictionary data is used not only when optimizing the classification model (automatic parameter adjustment) used by the determination unit 40 as will be described later, but also when diagnosing with this device.
  • the determination unit 40 uses the feature quantities and classification models stored in the storage unit 50 to determine the subject's disease, specifically, whether a person is healthy or unhealthy for mental illness, Judgment is made regarding which disease the determined person belongs to. Details will be described later.
  • the input unit 30 displays a GUI for the user to input data and commands for control and calculation performed by the computer 112, and enables communication between the user and the computer 112 using the GUI.
  • the display unit 60 stores the feature amount of the subject extracted by the feature amount calculation unit 20 in the storage unit 50. Database information, the result of classification by the determination unit 40 , and the like are displayed.
  • the hemoglobin change signal to be processed by the feature calculation unit 20 is, for example, as shown in FIG. 3, a change in signal intensity in a predetermined time consisting of a waiting time before starting a task and a pause time during and after the task. This is obtained as a waveform 300 indicating (mMmm).
  • the two vertical lines shown in the figure represent the start time 301 and the end time 302 of the task, respectively.
  • tasks are repeated multiple times with a set of load and pause.
  • the hemoglobin waveforms obtained from multiple measurements are averaged and subjected to preprocessing such as smoothing and baseline processing as necessary. Of course, there are cases where the amount of hemoglobin change is determined in a single trial without repeating multiple times.
  • FIG. 3 shows one hemoglobin change waveform, which is obtained for each channel of the biological light measurement unit 10.
  • Non-Patent Documents 1 and 2 show the waveform feature patterns for each of the load diseases for subjects with a language fluency task involving language recall. As shown in the figure, in healthy subjects, the hemoglobin change is large and monotonously decreases after the task ends. In schizophrenia, the hemoglobin change is moderate and the waveform re-rises after the task ends. A small feature is that bipolar disorder has large hemoglobin changes and peaks in the second half of the task.
  • the feature amount calculation unit 20 digitizes these features from the measured hemoglobin waveform 300. Specifically, the slope value 311, the integral value 313, the re-elevation degree 315, and the center of gravity 317 are calculated as feature quantities. Slope 311 is the slope of the hemoglobin waveform calculated from the task start time to 5 seconds. The slope 311 represents the speed of response to the task. The integral value 313 is obtained by integrating the hemoglobin waveform in the section during the task trial. The integrated value 313 is considered to reflect the magnitude of the reaction. The re-elevation degree 315 is obtained by connecting the hemoglobin value at the end of the task and the hemoglobin value at the end of the measurement with a straight line, and calculating the area above the straight line.
  • the rise of 315 seems to reflect a mental tendency not to follow the task order.
  • the centroid value 317 represents the relative time at which the centroid of the waveform is located.
  • the measurement start is zero and the measurement end is one.
  • the center of gravity value 317 is considered to represent the speed of sustained response. It is done.
  • the biological light measuring unit 10 can obtain a hemoglobin waveform and a feature quantity of a plurality of channels in one measurement. Depending on the type of feature quantity, the average waveform value of the measurement region or the maximum value of all channels is used. In the present embodiment, the maximum value of all channels is used for the degree of re-elevation, and the average waveform value in the measurement region is used otherwise.
  • the feature quantity calculation unit 20 further performs a calculation according to the classification model of the determination unit 40 using these feature quantities.
  • the calculation result is used by the determination unit 40 to determine which disease the subject belongs to by applying the classification model.
  • the measured waveforms are classified into five types by hierarchical classification. Responses to subjects of healthy subjects and patients with diseases are very complex, and it is difficult to classify them in one step even by combining the four types of features described above. It becomes possible to classify into groups.
  • Figure 5 shows the hierarchical classification adopted in this embodiment.
  • the first layer 501 classifies the Typel group and the non-Typel group
  • the second layer 502 classifies the non-Typel group into three groups Type2 / Type3, Type4, and Type5.
  • Type2 / Type3 group is classified into Type2 group and Type3 group.
  • the Typel group consists mainly of healthy individuals
  • the Type2 and Type5 groups mainly consist of schizophrenic patients
  • the Type3 group consists of bipolar disorder patients
  • the Type4 group consists mainly of depressed patients.
  • FIGS. 6 to 8 are diagrams showing classification models of the first hierarchy, the second hierarchy, and the third hierarchy and the threshold value thr for determination, respectively.
  • the classification model of the first layer that classifies into the Typel group and the non-Typel group consists of four types of feature values, slope value (D), integral value (I), re-rise (R), and center of gravity (C). It is a variable X_l that is normalized and combined by combining them linearly.
  • Equation 1 indicates normalization.
  • the waveform belongs to the Typel group.
  • the second hierarchy for classifying the group classified as a non-Typel group in the first hierarchy is further divided into two hierarchies of classification using slope values and classification using integral values.
  • the classification model of the third layer is a classification model for classifying Type2 / Type3 group into Type2 group and Type3 group. It is a variable X_23 that is synthesized by combining the above four types of feature values, slope value (D), integral value (1), re-rise (R), and center of gravity (C), and combining them linearly.
  • Equation 2 indicates normalization.
  • the waveform is determined to belong to Type 2 group, and otherwise, it belongs to Type 3 group.
  • classification models in the first to third layers are combinations of features that are considered to represent the features of each disease in a straightforward manner, and the threshold thr and linear combination coefficients C1 to C4, D1 ⁇ D4 is obtained by optimizing the model using dictionary data.
  • optimization of each classification model will be described.
  • the classification model of the first layer is optimized by considering a unit vector c facing a certain direction in a four-dimensional space with a normalized feature amount, and with the vector ⁇ corresponding to one data. Take the product and let it be X. The minimum and maximum values of X are determined for dictionary data, and an appropriate value thr is taken and classification is performed.
  • a vector that maximizes the evaluation function f (u) u * pl + (lu) * p_l Find c and the value thr.
  • the optimized c elements (cl, c2, c3, c4) and the value thr be Cl, C2, C3, C4, and thr_l in equation (1).
  • the optimization of the classification model in the second hierarchy uses, for example, an automatic clustering technique.
  • the threshold value is selected so that the existence probability of each disease group in each type is as biased as possible. That is, the entropy sum E corresponding to the combination j of threshold values (thr_a, thr_b) (j) is
  • pn NC, S, D, BP
  • pn is the ratio of data included in type n to threshold combination j.
  • the determination unit 40 performs disease determination using the classification model described above.
  • Figure 9 shows the disease determination algorithm.
  • the determination unit 40 receives the first layer 901. Determine whether the value X_l in equation (1) is larger than thr_, and classify it as either Typel or Non-Typel. If it is classified as non-Typel, it is further classified as Type2 / Type3, Type4, or Type5 in the second layer 902, 903. If it is classified as Type2 / Type3, it is further classified as either Type 4 or Type 5 in the third layer 904.
  • a subject who has a hemoglobin change with an integration value of 102, a slope of 0.003, a re-elevation degree of 5, and a center of gravity of 0.15 is determined to belong to a healthy person (Typel).
  • Typel contains the most healthy individuals
  • Type2 contains schizophrenia
  • Type3 contains bipolar disorder
  • Type4 contains depression
  • Type5 contains schizophrenia. Will be. However, since these only indicate a high probability, the judgment result is expressed as a high probability.
  • a display method for example, it is possible to display findings such as “high possibility of schizophrenia” and “possibility of depression”, but display them on the scatter chart of the classification model. You can also.
  • FIG. 10 shows an example of a scatter diagram.
  • Figure 10 is a scatter plot of the classification model in the second layer, and the Type area divided by the thr value of the classification model is shown on the graph with the horizontal axis tilted and the vertical axis the integrated value. Each data in the dictionary data is indicated by a symbol.
  • the type to which the subject belongs can be confirmed at a glance, and the distance from other types can also be confirmed.
  • the first layer is classified as belonging to the non-Type 1 group, subjects who have hemoglobin changes with the same integral value 102 and slope 0.003 as in the previous case are distributed in the upper right area on the scatter diagram. It can be recognized that it belongs to Type2 / Type3 group.
  • FIG. 11 shows a procedure from the feature amount extraction described above to the disease determination.
  • An input screen as shown in FIG. 12 is displayed on the input unit 30 to make a disease determination. Accordingly, information necessary for disease determination, examination date, subject number, etc. are entered (step 1101). In this example, the name of the force identifying the subject by number may be used. If there is a confirmed diagnosis result, check the mouth of item 1.
  • the measurement waveform of the corresponding subject is read from the biological light measurement unit 10, and a plurality of types of feature quantities are calculated (steps 1102 and 1103). Next, hierarchical classification is performed based on the calculated feature amount (step 1104). The judgment result is displayed on a scatter diagram as shown in FIG. 10 (step 1105).
  • the test result is automatically stored in the database (storage unit 50).
  • a mental disorder having a complex aspect of waveform characteristics for each disease by performing hierarchical classification using variables that combine feature quantities. Can be automatically discriminated from a healthy person and between disease groups, and the accuracy of discrimination can be increased. In particular, it is possible to grasp the overall trend by comparing and comparing the feature values of the subject (or variables that combine them) and the feature values of the dictionary data (or variables that combine them) on a scatter diagram. However, it becomes possible to determine the disease category.
  • the classification model used by the determination unit 40 is constructed from dictionary data by an optimization method.
  • the accuracy of classification improves as the number of dictionary data increases. Therefore, it is preferable that the living body optical measurement device of the present invention has a function of updating (automatically adjusting) the classification model!
  • the test result is automatically stored in the database.
  • the dictionary data changes by such a dictionary data storage function.
  • the automatic adjustment function is a mechanism that optimizes the classification model parameters again as the dictionary data changes.
  • the optimization method is the same as the optimization method when the classification model is constructed.
  • the evaluation function is set for the set solid c and value thr. Set the maximum vector c and value thr, and use the optimized c element and value thr as the coefficients and thresholds in equation (1) or (2).
  • the automatic clustering technology is used and the threshold value is selected so that the existence probability of each disease group is as biased as possible for each type.
  • a scatter diagram can be used.
  • the thr value calculated by optimization is displayed on a graph plotting each data in the dictionary data.
  • Fig. 13 shows an example of the display screen showing the classification model.
  • a bar graph shows what diseases are present in each disease category classified by the calculated threshold (disease abundance ratio)! .
  • Such a display makes it possible to immediately confirm the classification result (classification accuracy).
  • variable X_l synthesized by linearly combining four types of normalized features, slope value (D), integral value (I), re-rise (R), and centroid (C) Use
  • the correct answer rate was the highest, but 46% of healthy subjects and 31% of non-healthy subjects were judged as typel.
  • C3 0 was also fixed, 21% of healthy subjects and 48% of unhealthy subjects were determined to be typel. From this, it can be seen that the center of gravity (C) and the re-elevation degree (R) are important features for the separation of Typel and non-Typel groups.
  • Fig. 10 is the result of this example. In Fig. 10, it can be seen that the four groups are distributed so as to overlap each other rather than being clearly separated. Still, it is distributed in Type 5, which is a small area of schizophrenia, but with a small slope. The remaining patients with schizophrenia are distributed with the majority of patients with bipolar disorder in the type 2 and type 3 regions where the slope and integral are relatively large. Most patients with depression have a relatively large slope and a small integrated value, and are distributed in the region Type4. Since the number of healthy individuals is large, a considerable number is distributed among non-Typel, especially Type2 / Type3.
  • Example 2 it was determined that Type 2 / Type 3 were 37 cases, and the four types of feature values, slope value (D), integral value (I), and re-elevation degree (R) were further normalized. Judgment was performed using variable X_23, which was synthesized by linearly combining the center of gravity (C).
  • Type 13 is a diagram showing the determination result of the third hierarchy according to the present example.
  • Typel is healthy
  • Type2 is schizophrenia
  • Type3 is Bipolar disorder
  • Type 4 has depression
  • Type 5 has many schizophrenia.
  • Type2 and Type3 showed a tendency to separate schizophrenia and bipolar disorder, respectively.
  • the main feature of the present invention is that the analysis is performed in advance using a plurality of types of feature amounts in the analysis of the waveform measured by the biological light measurement device.
  • a determination function for determining a disease according to a similar model is provided, and various modifications and applications can be made within the scope described in the claims, not limited to the above embodiment.
  • the present invention also includes that the hierarchical classification model automates only the classification of the first hierarchy using a composite variable of a plurality of feature amounts, and allows the user to make subsequent determinations.
  • the display method of the determination result can be appropriately combined with display using characters, display using a dull, and the like.
  • the present invention relates to a disease determination function using an optical measurement result, and can be used for a disease diagnosis support apparatus such as a mental illness.
  • FIG. 1 is a diagram showing a schematic configuration of a biological light measurement device according to the present invention.
  • FIG. 2 is a diagram showing a configuration of a biological light measurement unit.
  • FIG. 3 is a diagram for explaining extraction of feature values of hemoglobin change waveform force.
  • FIG. 4 is a diagram showing waveform characteristics for each disease.
  • FIG. 5 is a diagram schematically showing a hierarchical classification in a determination unit.
  • FIG. 6 is a diagram showing a classification model in the first layer.
  • FIG. 7 is a diagram showing a classification model of the second hierarchy.
  • FIG. 8 is a diagram showing a classification model of the third hierarchy.
  • FIG. 9 is a diagram showing a disease determination algorithm.
  • FIG. 10 is a diagram showing a display example of determination results.
  • FIG. 11 is a diagram showing a disease state determination flow.
  • FIG. 12 is a diagram showing an example of an input screen of the input unit.
  • FIG. 13 is a diagram showing the result of optimizing the classification model.
  • Measurement control computer 112 ⁇ computer (disease diagnosis support device).

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

In automatically judging diseases of subjects from the characteristic wave patterns of changes in the hemoglobin level that are determined by measuring biological light, the separation of a group of healthy subjects from a group of unhealthy subjects and the separation of individual disease groups are improved. In an apparatus (10) for measuring biological light, an analysis section, wherein the wave pattern is analyzed, is provided with a judgment section (40) by which diseases are judged based on classification models. For conducting hierarchical classification, multiple classification models are provided in the judgment section. As the classification models, parameters obtained by synthesizing characteristic amounts of multiple kinds are employed. These classification models are optimized by the optimization method and automatically adjusted in association with changes in the data.

Description

明 細 書  Specification
生体光計測装置  Biological light measurement device
技術分野  Technical field
[0001] 本発明は、無侵襲的に疾患診断を支援する生体光計測装置に関する。  [0001] The present invention relates to a biological optical measurement device that supports disease diagnosis non-invasively.
背景技術  Background art
[0002] 生体光計測装置は、近赤外光を生体に照射し、生体内部を通過或いは生体内部 で反射した光を計測する装置であり、生体内部の血液循環、血行動態及びへモグロ ビン量変化を簡便に被検者に対し低拘束で且つ害を与えずに計測できることから臨 床への応用が期待されて 、る。  [0002] A biological light measurement device is a device that irradiates a living body with near-infrared light and measures light that has passed through the living body or reflected within the living body, and has blood circulation, hemodynamics, and hemoglobin content inside the living body. Since changes can be easily measured with low restraint and no harm to the subject, clinical application is expected.
[0003] 生体光計測の臨床応用としては、てんかん、脳虚血等の診断や言語機能の研究の 等が報告されている。また下記の非特許文献 1、文献 2には、うつ病や統合失調症( 精神分裂症)などの精神疾患患者において生体光計測による前頭葉のヘモグロビン 量変化パターンに異常が生じることが報告されている。具体的にはヘモグロビン時間 波形の課題試行中の積分値において、健常者、うつ病患者、統合失調症患者を比 較した場合、大、小、中という異なる特徴を有することが報告されている。また統合失 調症においては課題終了後にヘモグロビンの再上昇変化が見られることが報告され ている。  [0003] As clinical applications of biological light measurement, diagnosis of epilepsy, cerebral ischemia, and research of language function have been reported. Non-patent documents 1 and 2 below report that abnormalities occur in the pattern of hemoglobin changes in the frontal lobe by biophotometry in patients with mental illness such as depression and schizophrenia (schizophrenia). . Specifically, it has been reported that the integration values during the trial of the hemoglobin time waveform have different characteristics of large, small, and medium when comparing healthy subjects, depressed patients, and schizophrenic patients. In schizophrenia, it has been reported that a re-elevation change of hemoglobin is observed after completion of the task.
[0004] しカゝしこのような波形特徴をもって被検者の疾患を推定する場合、その判断を検査 者にゆだねれば客観性を確保することは難しい。そこで本出願人は、客観性を重ん じて自動化を図る方法として、各疾患群に対して基準波形を決定し、各被検者の波 形と各疾患群の基準波形間の相関を基準として疾患判定を行う技術を提案している (例えば、特許文献 1)。また計測したヘモグロビン変化波形力 抽出した特徴量と疾 患毎辞書データとのマハラノビス距離を計算することで、疾患判定スコアを算出、表 示する手法も提案して 、る (特許文献 2)。この発明では判定の基準と成って 、る疾 患毎辞書データは、ユーザにより付加された疾患名を基準として分類、カテゴライズ されていた。  [0004] When estimating a subject's disease with such waveform characteristics, it is difficult to ensure objectivity if the judgment is left to the examiner. Therefore, as a method of automation that emphasizes objectivity, the present applicant determines a reference waveform for each disease group and uses the correlation between the waveform of each subject and the reference waveform of each disease group as a reference. A technique for determining a disease is proposed (for example, Patent Document 1). In addition, a method for calculating and displaying a disease determination score by calculating the Mahalanobis distance between the measured feature value of the hemoglobin change waveform force and the disease-specific dictionary data is proposed (Patent Document 2). In the present invention, as a criterion for determination, the dictionary data for each disease is classified and categorized based on the disease name added by the user.
非特許文献 1:「精神神経疾患における前頭葉局所脳血液量のダイナミクス一光トポ グラフィを用いた検討」福田正人、日本学術振興会科学研究費補助金 2001-2002年 度研究成果報告書 Non-Patent Document 1: “Dynamics of frontal lobe regional cerebral blood volume in neuropsychiatric disorders `` Examination using Graph '' Masato Fukuda, JSPS Grant-in-Aid for Scientific Research 2001-2002
非特許文献 2 :「光で見る心」福田正人ら、心と社会第 34卷 1号別冊、日本精神衛生 ム  Non-Patent Document 2: "The Mind Seen by Light" Masato Fukuda et al., Mind and Society No. 34 卷 1 separate volume, Japan Mental Health
特許文献 1 :特開 2003— 275191号公報  Patent Document 1: Japanese Patent Laid-Open No. 2003-275191
特許文献 2:国際公開 WO2005Z025421号公報  Patent Document 2: International Publication WO2005Z025421
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] し力しながら、これら技術においては、健常者群 ·非健常者群の分離が十分でない 側面があり、また、疾患群の分離において、波形特徴に基いた端的なカテゴリー形成 がなされて!/ヽな ヽ場合があった。 [0005] However, in these technologies, there is an aspect that the separation of the healthy group and the non-healthy group is not sufficient, and in the separation of the disease group, a simple categorization based on the waveform feature is made. ! / There was a cunning habit.
そこで本発明は、健常者群 ·非健常者群の分離を向上すると共に、さらに疾患分類 においても端的なカテゴリー生成を可能にし、効果的な疾患の分類を行なうことがで きる生体光計測装置を提供することを目的とする。  Therefore, the present invention provides a biological optical measurement device that improves separation of healthy groups and non-healthy groups, enables simple category generation in disease classification, and can perform effective disease classification. The purpose is to provide.
課題を解決するための手段  Means for solving the problem
[0006] 上記課題を解決するため、本発明は、生体光計測装置の波形解析を行なう解析部 に、分類モデルにより疾患の判定を行なう判定部を設け、判定部に階層的分類を行 なう複数の分類モデルを設けた。また本発明は分類モデルにより疾患の判定を行な う判定部を設け、判定部が用いる分類モデルとして複数種の特徴量を合成した変数 を採用した。 [0006] In order to solve the above problems, the present invention provides a determination unit that determines a disease by a classification model in an analysis unit that performs waveform analysis of a biological light measurement device, and performs hierarchical classification in the determination unit. Several classification models were provided. In the present invention, a determination unit for determining a disease using a classification model is provided, and a variable obtained by synthesizing a plurality of types of feature amounts is used as a classification model used by the determination unit.
[0007] すなわち本発明の生体光計測装置は、可視から赤外領域に属する波長の光を被 検体に照射し、被検体内部を通過した光を検出しヘモグロビン変化波形を計測する 生体光計測部と、計測された波形から複数種の特徴量を抽出し、解析する特徴量演 算部と、前記特徴量演算部で抽出された複数種の特徴量を用いて予め設定された 分類モデルに従 1、疾患判定を行う判定部と、前記判定部の判定結果を表示する表 示部とを備え、前記判定部は、前記分類モデルとして階層構造を有する複数の分類 モデルを備えたことを特徴とする。  That is, the biological light measurement device of the present invention irradiates a subject with light having a wavelength belonging to the visible to infrared region, detects light that has passed through the subject, and measures a hemoglobin change waveform. In addition, a feature amount calculation unit that extracts and analyzes a plurality of types of feature amounts from the measured waveform, and a classification model that is set in advance using the plurality of types of feature amounts extracted by the feature amount calculation unit. 1. It comprises a determination unit that performs disease determination and a display unit that displays a determination result of the determination unit, and the determination unit includes a plurality of classification models having a hierarchical structure as the classification model. To do.
[0008] また本発明の生体光計測装置は、前記判定部が、前記分類モデルとして複数種の 特徴量を合成した変数を用いることを特徴とする。 [0008] Further, in the biological light measurement device of the present invention, the determination unit includes a plurality of types as the classification model. It is characterized by using a variable that combines feature quantities.
本発明の生体光計測装置において、分類モデルは、例えば、複数種の特徴量を 合成した変数、例えば複数種の特徴量の線形結合であり、疾患判定が確定された複 数の被検体群のそれぞれが、その疾患に対応する類に分類される確率を最大化す るように決定されている。  In the biological optical measurement device of the present invention, the classification model is, for example, a variable obtained by combining a plurality of types of feature amounts, for example, a linear combination of a plurality of types of feature amounts, and a plurality of subject groups for which disease determination is confirmed. Each is determined to maximize the probability of being classified into the class corresponding to the disease.
[0009] また本発明の生体光計測装置は、分類モデルの構築にぉ 、て、例えば、へモグロ ビン波形の課題開始直後の傾き値、課題遂行中の積分値、課題終了後の再上昇度 、波形全体の重心値等を特徴量として用いる。前記特徴量演算部は、生体光計測部 の多チャンネルの各々で得られたヘモグロビン波形カゝら特徴量を抽出する。  [0009] In addition, the biological optical measurement device of the present invention can be used to construct a classification model, for example, a slope value immediately after the start of a task of a hemoglobin waveform, an integral value during task execution, and a re-rise degree after the task ends. The center of gravity value of the entire waveform is used as the feature amount. The feature amount calculation unit extracts a feature amount from a hemoglobin waveform obtained in each of the multichannels of the biological light measurement unit.
さらに本発明は、生体光計測部以外の構成要素を生体光計測部力 切り離した疾 患診断支援装置を提供する。この疾患診断支援装置は、生体光計測部が独立して いることを除き、本発明の生体光計測装置と同じである。  Furthermore, the present invention provides a disease diagnosis support apparatus in which components other than the biological light measurement unit are separated from the force of the biological light measurement unit. This disease diagnosis support device is the same as the biological light measurement device of the present invention except that the biological light measurement unit is independent.
発明の効果  The invention's effect
[0010] 本発明によれば、疾患分類を階層的に行うことにより、健常者群 ·非健常者群 (疾 患患者群)の分離の効果を高めることができる。また疾患患者群の分類にぉ 、ても階 層的な性質を取り入れることにより、端的なカテゴリー生成により、効果的に疾患の分 類を行うことができる。  [0010] According to the present invention, the effect of separating a healthy person group from a non-healthy person group (disease patient group) can be enhanced by performing disease classification hierarchically. In addition, even if the classification of disease patient groups is adopted, it is possible to classify diseases effectively by creating a simple category by incorporating hierarchical properties.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0011] 以下、本発明の実施の形態を図面を参照して説明する。  Hereinafter, embodiments of the present invention will be described with reference to the drawings.
図 1は、本発明の生体光計測装置 100の概要を示すブロック図である。この生体光 計測装置 100は、操作者の入力等に基づいて、生体光計測部 10と、生体光計測部 10 で計測されたヘモグロビン変化波形カゝら特徴量を抽出するとともに種々の解析を行 なう特徴量演算部 20と、特徴量演算部 20における演算に必要な情報などを入力する ための入力部 30と、特徴量演算部 20が抽出した複数種の特徴量を用いて検査対象 である患者を 5つのタイプに分類し、疾患診断を支援する判定部 40と、多数の対象か ら得られた生体光計測データの解析結果を確定診断結果とともに疾患辞書データと して格納するとともに生体光計測部 10が計測した波形データや判定部 40が使用する 分類モデルなどを格納する記憶部 50と、判定部 40の判定結果を辞書として登録され た情報とともに表示する表示部 60とを備えている。以下、各要素を説明する。 FIG. 1 is a block diagram showing an outline of the biological light measurement device 100 of the present invention. The biological light measurement device 100 extracts features from the biological light measurement unit 10 and the hemoglobin change waveform measured by the biological light measurement unit 10 and performs various analyzes based on the input of the operator. The feature amount calculation unit 20, the input unit 30 for inputting information necessary for calculation in the feature amount calculation unit 20, and the plurality of types of feature amounts extracted by the feature amount calculation unit 20 A patient is classified into five types, and a decision unit 40 that supports disease diagnosis and analysis results of biological light measurement data obtained from a large number of subjects are stored as disease dictionary data together with definitive diagnosis results and The storage unit 50 stores the waveform data measured by the optical measurement unit 10 and the classification model used by the determination unit 40, and the determination results of the determination unit 40 are registered as a dictionary. And a display unit 60 for displaying information together with the information. Hereinafter, each element will be described.
[0012] 生体光計測部 10は、人の頭部に光を照射し、頭部表面近傍で反射、散乱した光を 複数の検出位置で受光し、血液内物質 (ここではヘモグロビン)の変化信号を計測す る多チャンネル装置で、言語想起を伴う語流暢課題を被検者に負荷した場合のへモ グロビン変化量をチャンネル毎に計測する。その具体的な構成は、図 2に示すように 、主として光源部 102、受光器 108、ロックインアンプ 109、 A/D変換器 110、計測制御 用計算機 111など力 成っている。なおこれら符号の末尾の文字は、同じ要素が複数 あることを意味する。光源部 102と被検体 106および受光器 108と被検体 106は、それ ぞれ照射用光ファイバ 105、受光用光フィアバ 107によって接続されている。  [0012] The biological light measurement unit 10 irradiates a human head with light, receives light reflected and scattered in the vicinity of the head surface at a plurality of detection positions, and changes signals in the blood (here, hemoglobin). This is a multi-channel device that measures the amount of hemoglobin change for each channel when a subject is exposed to a fluency task with language recall. As shown in FIG. 2, the specific configuration mainly includes a light source unit 102, a light receiver 108, a lock-in amplifier 109, an A / D converter 110, a measurement control computer 111, and the like. The letters at the end of these codes mean that there are multiple elements. The light source unit 102 and the subject 106 and the light receiver 108 and the subject 106 are connected by an irradiation optical fiber 105 and a light receiving optical fiber 107, respectively.
[0013] 光源部 102は、第 1の波長(例えば 690nmあるいは 780nm)の光源部 102a、 102bと 第 2の波長(例えば 830nm)の光源部 102c、 102dの 2系統からなり、それぞれ発振器 1 01に接続され、測定位置によって異なる変調を与えられ、結合器 104a、 104bおよび 照射用光ファイバ 105a、 105bを介して被検体 106の頭部に照射される。頭部近傍で 反射 ·散乱した光は、照射用光ファイバに近接して配置された受光用光ファイバ 107a 〜107fC集光され、それぞれ受光器 108a〜108fC光電変換される。照射用光フアイ バ 105と受光用光ファイバ 107の先端は、光照射位置力ら等距離 (例えば 30mm)の位 置に受光位置が配列するように配置されている。受光器 108としては光電子増倍管や フォトダイオードに代表される光電変換素子を用いる。  [0013] The light source unit 102 includes two light source units 102a and 102b having a first wavelength (for example, 690 nm or 780 nm) and light source units 102c and 102d having a second wavelength (for example, 830 nm). Connected, modulated differently depending on the measurement position, and irradiated to the head of the subject 106 via the couplers 104a and 104b and the irradiation optical fibers 105a and 105b. The light reflected / scattered near the head is collected by receiving optical fibers 107a to 107fC arranged close to the irradiation optical fiber, and photoelectrically converted by the optical receivers 108a to 108fC, respectively. The distal ends of the irradiation optical fiber 105 and the light receiving optical fiber 107 are arranged so that the light receiving positions are arranged at the same distance (for example, 30 mm) from the light irradiation position force. As the light receiver 108, a photoelectric conversion element represented by a photomultiplier tube or a photodiode is used.
[0014] 受光器 108で光電変換された生体通過光強度を表す電気信号は、それぞれロック インアンプ 109に入力される。ロックインアンプ 109には発振器 101からの強度変調周 波数が参照周波数として入力されており、参照周波数により光源 102a及び 102b並び に 102cおよび 102dに対する生体通過光強度信号がそれぞれ分離され、ロックインァ ンプ 109から出力される。  Electric signals representing the intensity of light passing through the living body photoelectrically converted by the light receiver 108 are respectively input to the lock-in amplifier 109. The intensity modulation frequency from the oscillator 101 is input to the lock-in amplifier 109 as a reference frequency. The light intensity signals from the light sources 102a and 102b and 102c and 102d are separated by the reference frequency, respectively. Is output.
[0015] ロックインアンプ 109の出力である分離された各波長の通過光強度信号はアナログ デジタル変換器 110でアナログ デジタル変換された後に、計測制御用計算機 11 1に送られる。計測制御用計算機 111では各検出点の検出信号力 酸素化へモグロ ビン濃度、脱酸素化ヘモグロビン濃度および総ヘモグロビン濃度の相対変化量を演 算し、複数の計測点の経時情報として記憶部 50に格納する。酸素化ヘモグロビン濃 度、脱酸素化ヘモグロビン濃度および総ヘモグロビン濃度の相対変化量であるへモ グロビン変化信号の 1又は複数が、判定の対象である疾患に応じて用いられる。計測 制御用計算機 112は、上記演算のほか、生体光計測部 20の動作の制御も行なう。 なお、図 2では、複数の光を変調方式により分離する生体光計測部の構成を示した 力 これに限定されず、たとえば、複数の光を照射するタイミングを時間的にずらすこ とで複数光を弁別する時分割方式を用いることもできる。 [0015] The separated transmitted light intensity signal of each wavelength, which is the output of the lock-in amplifier 109, is analog-digital converted by the analog-digital converter 110, and then sent to the measurement control computer 111. The measurement control computer 111 calculates the detection signal power at each detection point, the relative change in oxygen concentration to deoxygenated hemoglobin concentration, deoxygenated hemoglobin concentration, and total hemoglobin concentration. Store. Oxygenated hemoglobin concentration One or a plurality of hemoglobin change signals, which are relative changes in the deoxygenated hemoglobin concentration and the total hemoglobin concentration, are used depending on the disease to be determined. In addition to the above calculation, the measurement control computer 112 controls the operation of the biological light measurement unit 20. Note that FIG. 2 shows a configuration of a biological light measurement unit that separates a plurality of lights by a modulation method. However, the present invention is not limited to this. It is also possible to use a time-sharing method for discriminating between the two.
[0016] 図 2に示す例では、生体光計測部 10の以外の要素、すなわち特徴量演算部 20、判 定部 40および記憶部 50はすべて計算機 112にあり、入力部 30および表示部 60は計 算機 112に備えられている。ただし計算機 111と計算機 112は、一つの計算機としても よい。また全く離れた場所に置かれ、インターネット等の通信手段を介して接続される ものであってもよい。すなわち計算機 112は生体光計測部 10力 独立した疾患診断 支援装置とすることも可能である。  In the example shown in FIG. 2, the elements other than the biological light measurement unit 10, that is, the feature amount calculation unit 20, the determination unit 40, and the storage unit 50 are all in the calculator 112, and the input unit 30 and the display unit 60 are It is provided in computer 112. However, the computer 111 and the computer 112 may be a single computer. Further, it may be placed at a completely distant place and connected via a communication means such as the Internet. That is, the computer 112 can also be a disease diagnosis support device that is independent of the biological light measurement unit.
[0017] 特徴量演算部 20では計測された局所酸素化ヘモグロビン、脱酸素化ヘモグロビン および総ヘモグロビンの変化量の波形データに基づき特徴量を解析する。特徴量演 算部 20の機能については後述する。波形データ及び特徴量は記憶部 50に渡される  [0017] The feature amount calculation unit 20 analyzes the feature amount based on the waveform data of the measured changes in local oxygenated hemoglobin, deoxygenated hemoglobin, and total hemoglobin. The function of the feature quantity calculation unit 20 will be described later. Waveform data and features are passed to the storage unit 50
[0018] 記憶部 50では被検者の計測情報等を一時的に保存しその後の処理を可能とする 一方、例えば確定診断がある場合には計測情報を辞書データとして格納する。辞書 データは後述するように判定部 40が用いる分類モデルの最適化 (パラメータの自動 調整)を行う際に使用されるほか、本装置により診断を行う際にも利用できる。 [0018] The storage unit 50 temporarily stores the measurement information of the subject and enables subsequent processing. On the other hand, for example, when there is a definitive diagnosis, the measurement information is stored as dictionary data. The dictionary data is used not only when optimizing the classification model (automatic parameter adjustment) used by the determination unit 40 as will be described later, but also when diagnosing with this device.
判定部 40は、記憶部 50に保存された特徴量や分類モデルを用いて、被検者の疾 患判定、具体的には精神疾患について健常者か非健常者力の判定、非健常者と判 定された者についていずれの疾患に属するかの判定などを行なう。その詳細は後述 する。  The determination unit 40 uses the feature quantities and classification models stored in the storage unit 50 to determine the subject's disease, specifically, whether a person is healthy or unhealthy for mental illness, Judgment is made regarding which disease the determined person belongs to. Details will be described later.
[0019] 入力部 30は、ユーザーが計算機 112が行なう制御や演算のためのデータや指令を 入力するための GUIを表示し、 GUIによるユーザーと計算機 112のやりとりを交信を可 能にする。  [0019] The input unit 30 displays a GUI for the user to input data and commands for control and calculation performed by the computer 112, and enables communication between the user and the computer 112 using the GUI.
表示部 60は、特徴量演算部 20が抽出した被検体の特徴量、記憶部 50に格納され たデータベースの情報、判定部 40が分類した結果などを表示する。 The display unit 60 stores the feature amount of the subject extracted by the feature amount calculation unit 20 in the storage unit 50. Database information, the result of classification by the determination unit 40 , and the like are displayed.
[0020] 次に、特徴量演算部 20の機能について説明する。  Next, the function of the feature amount calculation unit 20 will be described.
特徴演算部 20が処理すべきヘモグロビン変化信号は、例えば、図 3に示すように、 課題開始前の待ち時間と課題中と課題終了後の休止時間からなる所定の時間にお ける信号強度の変化 (mMmm)を示す波形 300として得られる。図に示す 2本の縦線 は、それぞれ課題の開始時点 301と修了時点 302を表している。通常、課題は負荷と 休止を一組として複数回繰り返される。複数回の計測で得られたヘモグロビン波形は 加算平均され、必要に応じてスムージング処理、ベースライン処理等の前処理が施さ れる。もちろん複数回繰り返さずに 1回の課題試行でヘモグロビン変化量を求める場 合もある。また図 3には、一つのヘモグロビン変化波形を示しているが、波形は生体 光計測部 10のチャンネル毎に得られる。  The hemoglobin change signal to be processed by the feature calculation unit 20 is, for example, as shown in FIG. 3, a change in signal intensity in a predetermined time consisting of a waiting time before starting a task and a pause time during and after the task. This is obtained as a waveform 300 indicating (mMmm). The two vertical lines shown in the figure represent the start time 301 and the end time 302 of the task, respectively. Usually, tasks are repeated multiple times with a set of load and pause. The hemoglobin waveforms obtained from multiple measurements are averaged and subjected to preprocessing such as smoothing and baseline processing as necessary. Of course, there are cases where the amount of hemoglobin change is determined in a single trial without repeating multiple times. FIG. 3 shows one hemoglobin change waveform, which is obtained for each channel of the biological light measurement unit 10.
[0021] このようなヘモグロビン波形は、精神疾患の疾患毎の異なる特徴があることが報告 されている (非特許文献 1、 2)。言語想起を伴う語流暢課題を被検者に負荷疾患毎 の波形特徴パターンを図 4に示す。図示するように、健常者ではヘモグロビン変化が 大で課題終了後に単調に減少する特徴が、統合失調症ではヘモグロビン変化が中 程度で課題終了後に波形が再上昇する特徴が、うつ病ではヘモグロビン変化が小さ い特徴が、双極性障害ではヘモグロビン変化が大きく課題後半にピークを迎える特 徴が見られる。  [0021] It has been reported that such a hemoglobin waveform has different characteristics for each psychiatric disorder (Non-Patent Documents 1 and 2). Figure 4 shows the waveform feature patterns for each of the load diseases for subjects with a language fluency task involving language recall. As shown in the figure, in healthy subjects, the hemoglobin change is large and monotonously decreases after the task ends.In schizophrenia, the hemoglobin change is moderate and the waveform re-rises after the task ends. A small feature is that bipolar disorder has large hemoglobin changes and peaks in the second half of the task.
[0022] 特徴量演算部 20は、計測されたヘモグロビン波形 300からこれらの特徴を数値化す る。具体的には、傾き値 311、積分値 313、再上昇度 315、重心 317を特徴量として算 出する。傾き 311は課題開始時刻から 5秒までの区間におけるヘモグロビン波形の傾 きを算出したものである。傾き 311は課題に対する反応の速さを表す。積分値 313は、 課題試行中の区間のヘモグロビン波形を積分したものである。積分値 313は、反応の 大きさを反映していると考えられる。再上昇度 315は、課題終了時のヘモグロビン値と 計測終了時のヘモグロビン値を直線で結び、その直線より上の部分の面積を算出し たものである。再上昇度 315は、課題終了命令に従わない精神的傾向を反映してい ると思われる。重心値 317は、波形の重心が位置する相対時刻を表す。測定開始を ゼロ、測定終了時を 1としている。重心値 317は、持続的反応の速さを表すものと考え られる。なお生体光計測部 10では一回の計測で複数チャンネルのヘモグロビン波形 と特徴量が得られるが、特徴量の種類により、測定領域の平均波形の値あるいは全 チャンネルの最大値を用いる。本実施の形態では、再上昇度については全チャンネ ルの最大値を用い、それ以外は測定領域の平均波形の値を用いた。 [0022] The feature amount calculation unit 20 digitizes these features from the measured hemoglobin waveform 300. Specifically, the slope value 311, the integral value 313, the re-elevation degree 315, and the center of gravity 317 are calculated as feature quantities. Slope 311 is the slope of the hemoglobin waveform calculated from the task start time to 5 seconds. The slope 311 represents the speed of response to the task. The integral value 313 is obtained by integrating the hemoglobin waveform in the section during the task trial. The integrated value 313 is considered to reflect the magnitude of the reaction. The re-elevation degree 315 is obtained by connecting the hemoglobin value at the end of the task and the hemoglobin value at the end of the measurement with a straight line, and calculating the area above the straight line. The rise of 315 seems to reflect a mental tendency not to follow the task order. The centroid value 317 represents the relative time at which the centroid of the waveform is located. The measurement start is zero and the measurement end is one. The center of gravity value 317 is considered to represent the speed of sustained response. It is done. The biological light measuring unit 10 can obtain a hemoglobin waveform and a feature quantity of a plurality of channels in one measurement. Depending on the type of feature quantity, the average waveform value of the measurement region or the maximum value of all channels is used. In the present embodiment, the maximum value of all channels is used for the degree of re-elevation, and the average waveform value in the measurement region is used otherwise.
[0023] 特徴量演算部 20は、さらにこれら特徴量を用いて、判定部 40の分類モデルに従つ た演算を行なう。この演算結果は、判定部 40が分類モデルを適用して、被検者がい ずれの疾患に属するかの判定を行なうために用いられる。  [0023] The feature quantity calculation unit 20 further performs a calculation according to the classification model of the determination unit 40 using these feature quantities. The calculation result is used by the determination unit 40 to determine which disease the subject belongs to by applying the classification model.
[0024] 以下、判定部 40の分類モデルについて詳述する。  Hereinafter, the classification model of the determination unit 40 will be described in detail.
本実施の形態の生体光計測装置では、計測された波形を階層的分類により 5つの タイプに分類する。健常者および疾患患者の課題に対する反応は非常に複雑であり 、上述した 4種類の特徴量を組み合わせても一段階で分類することは困難であるが、 階層的分類を用いることにより、個々の疾患群に分類することが可能となる。図 5に、 本実施の形態で採用する階層的分類を示す。本実施の形態は 3つ階層からなり、第 1階層 501で Typel群と非 Typel群に分類し、第 2階層 502で非 Typel群を Type2/Type 3、 Type4および Type5の 3群に分類する。第 3階層 503で Type2/Type3群を Type2群と Type3群に分類する。 Typel群は主として健常者から、 Type2群および Type5群は主と して統合失調症患者から、 Type3群は双極性障害患者から、 Type4群は主としてうつ 病患者から構成される。  In the biological optical measurement device of the present embodiment, the measured waveforms are classified into five types by hierarchical classification. Responses to subjects of healthy subjects and patients with diseases are very complex, and it is difficult to classify them in one step even by combining the four types of features described above. It becomes possible to classify into groups. Figure 5 shows the hierarchical classification adopted in this embodiment. In this embodiment, there are three layers, the first layer 501 classifies the Typel group and the non-Typel group, and the second layer 502 classifies the non-Typel group into three groups Type2 / Type3, Type4, and Type5. In the third hierarchy 503, Type2 / Type3 group is classified into Type2 group and Type3 group. The Typel group consists mainly of healthy individuals, the Type2 and Type5 groups mainly consist of schizophrenic patients, the Type3 group consists of bipolar disorder patients, and the Type4 group consists mainly of depressed patients.
[0025] 次に各階層で用いる分類モデルを説明する。図 6〜図 8は、それぞれ第 1階層、第 2階層および第 3階層の分類モデルと判定のための閾値 thrを示す図である。  Next, a classification model used in each hierarchy will be described. FIGS. 6 to 8 are diagrams showing classification models of the first hierarchy, the second hierarchy, and the third hierarchy and the threshold value thr for determination, respectively.
[0026] Typel群と非 Typel群に分類する第 1階層の分類モデルは、 4種の特徴量、傾き値( D)、積分値 (I)、再上昇度 (R)、重心 (C)を正規化し、それらを線形に結合して合成 した変数 X_lである。  [0026] The classification model of the first layer that classifies into the Typel group and the non-Typel group consists of four types of feature values, slope value (D), integral value (I), re-rise (R), and center of gravity (C). It is a variable X_l that is normalized and combined by combining them linearly.
X_1=C 1*1 + C2*D + C3*R+ C4*C (1)  X_1 = C 1 * 1 + C2 * D + C3 * R + C4 * C (1)
式 1で下線は正規化されていることを示す。変数 X_lの値が、 thr_l以上のとき、その波 形は Typel群に属する。  Underline in Equation 1 indicates normalization. When the value of the variable X_l is greater than or equal to thr_l, the waveform belongs to the Typel group.
[0027] 第 1階層で非 Typel群に分類された群を分類する第 2階層は、さらに傾き値を用い た分類と積分値を用いた分類の 2階層カゝらなる。まず傾き値が thr_aより小さ 、とき Typ e5と判定される。つぎに傾き値力 ¾hr_a以上であって且つ積分値が thr_b以上のとき、 T ype2/Type3群に属し、傾き値力 ¾hr_a以上であって且つ積分値力 ¾hr_b未満のとき、 ty pe4と判定される。 [0027] The second hierarchy for classifying the group classified as a non-Typel group in the first hierarchy is further divided into two hierarchies of classification using slope values and classification using integral values. First, when the slope value is smaller than thr_a, Typ It is determined as e5. Next, when the slope force is greater than ¾hr_a and the integral value is greater than or equal to thr_b, it belongs to the Type2 / Type3 group. .
[0028] 第 3階層の分類モデルは、 Type2/Type3群を Type2群と Type3群に分類するもので 、ための分類モデルを示す。上記 4種の特徴量、傾き値 (D)、積分値 (1)、再上昇度 ( R)、重心 (C)を正規ィ匕し、それらを線形に結合して合成した変数 X_23である。  [0028] The classification model of the third layer is a classification model for classifying Type2 / Type3 group into Type2 group and Type3 group. It is a variable X_23 that is synthesized by combining the above four types of feature values, slope value (D), integral value (1), re-rise (R), and center of gravity (C), and combining them linearly.
X_23=D 1*1 + D2*D + D3*R + D4*C (2)  X_23 = D 1 * 1 + D2 * D + D3 * R + D4 * C (2)
式 2で下線は正規化されていることを示す。変数 X_23の値が、 thr_23以上のとき、その 波形は Type2群に、それ以外のとき Type3群に属すると判定する。  Underline in Equation 2 indicates normalization. When the value of variable X_23 is greater than or equal to thr_23, the waveform is determined to belong to Type 2 group, and otherwise, it belongs to Type 3 group.
[0029] これら第 1階層〜第 3階層の分類モデルは、各疾患の特徴を端的に表すと考えら れる特徴量を組み合わせたものであり、その閾値 thrおよび線形結合の係数 C1〜C4 、 D1〜D4は、辞書データを用いてモデルを最適化することにより求められる。以下、 各分類モデルの最適化について説明する。  [0029] These classification models in the first to third layers are combinations of features that are considered to represent the features of each disease in a straightforward manner, and the threshold thr and linear combination coefficients C1 to C4, D1 ˜D4 is obtained by optimizing the model using dictionary data. Hereinafter, optimization of each classification model will be described.
[0030] まず第 1階層の分類モデルの最適化は、正規化された特徴量の張る 4次元空間で 、ある方向を向いた単位ベクトル cを考え、 1つのデータに対応するベクトル χθとの内 積をとり、 Xとする。辞書データに対して Xの最小値、最大値が決まり、適当な値 thrを 取り分類を実行する。このとき健常者を Typelに分類する確率を pi、非健常者を Type 1に分類しない確率を p_lとするとき、評価関数 f(u)=u*pl+(l-u)*p_lを最大にするベタ トル cおよび値 thrを求める。最適化された cの要素 (cl,c2,c3,c4)及び値 thrを、式(1) の Cl、 C2、 C3、 C4、 thr_lとする。  [0030] First, the classification model of the first layer is optimized by considering a unit vector c facing a certain direction in a four-dimensional space with a normalized feature amount, and with the vector χθ corresponding to one data. Take the product and let it be X. The minimum and maximum values of X are determined for dictionary data, and an appropriate value thr is taken and classification is performed. In this case, when the probability that a healthy person is classified as Typel is pi and the probability that a non-healthy person is not classified as Type 1 is p_l, a vector that maximizes the evaluation function f (u) = u * pl + (lu) * p_l Find c and the value thr. Let the optimized c elements (cl, c2, c3, c4) and the value thr be Cl, C2, C3, C4, and thr_l in equation (1).
[0031] 次に第 2階層の分類モデルの最適化は、例えば自動クラスタリングの技術を用いる 。閾値組み合わせ jに対しタイプは 3種(TYPE(j,n) n=l,2,3;上記の Type2/Type3, Type4, Type5に対応)あり、各タイプに対しで健常者、統合失調症、うつ病、双極性 障害の各疾患群の存在確率 pNC(j,n), pSO.n), pD(j,n), pBP(j,n)が決まる。これらの確 率の間には  Next, the optimization of the classification model in the second hierarchy uses, for example, an automatic clustering technique. There are 3 types for the threshold combination j (TYPE (j, n) n = l, 2,3; corresponding to the above Type2 / Type3, Type4, Type5), and for each type, healthy, schizophrenia, Presence probability pNC (j, n), pSO.n), pD (j, n), pBP (j, n) is determined for each disease group of depression and bipolar disorder. Between these probabilities
pNCO.n) + pSO.n) + pD(j,n) + ρΒΡθ,η) = 1  pNCO.n) + pSO.n) + pD (j, n) + ρΒΡθ, η) = 1
の関係が成り立つ。各タイプで各疾患群の存在確率ができるだけ偏りを示すように閾 値を選択する。すなわち閾値 (thr_a, thr_b)の組み合わせ jに対応するエントロピー和 E (j)は The relationship holds. The threshold value is selected so that the existence probability of each disease group in each type is as biased as possible. That is, the entropy sum E corresponding to the combination j of threshold values (thr_a, thr_b) (j) is
[数 1]  [Number 1]
E(J) =∑P J, ") E (J) = ∑P J, ")
E(J, «) = - ∑ poc(j, n) ldg2 p (j, n)E (J, «) =-∑ poc (j, n) ldg 2 p (j, n)
=NC,S,D,BP と表せる。ここで pnは閾値組み合わせ jに対しタイプ nに含まれるデータの割合である 。エントロピー和 E(j)を最小にする閾値組み合わせ力 最良の分類 (すなわちクラスタ リング)を与える。エントロピーを最小化するということは、各タイプで各疾患群の存在 確率ができるだけ偏りを示すように閾値を選択することに対応している。  = NC, S, D, BP Here, pn is the ratio of data included in type n to threshold combination j. Threshold combination force that minimizes the entropy sum E (j). Gives the best classification (ie clustering). Minimizing entropy corresponds to selecting thresholds so that the probability of existence of each disease group in each type is as biased as possible.
[0032] 最後に第 3階層の分類モデルの最適化について説明する。正規化された特徴量の 張る 4次元空間で、ある方向を向いた単位ベクトル dを考え、 1つのデータに対応する ベクトル χθとの内積をとり、 Xとする。辞書データに対して Xの最小値、最大値が決まり 、適当な値 thrを取り分類を実行する。このとき Type2/Type3群に属する統合失調症 患者を Type2に分類する確率を p2、Type2/Type3群に属する双極性障害患者を Typ e3に分類する確率を p_2とするとき、評価関数 g(W)=W*p2+(l-w)*p_2を最大にするベタ トル dおよび thrを求める。最適化された dの要素 (dl,d2,d3,d4)及び thrを、式(2)の D1 、 D2、 D3、 D4,thr— 23とする。 [0032] Finally, optimization of the classification model of the third hierarchy will be described. Consider a unit vector d pointing in a certain direction in a four-dimensional space with normalized features, and let X be the inner product of the vector χθ corresponding to one piece of data. The minimum and maximum values of X are determined for the dictionary data, and an appropriate value thr is taken for classification. At this time when the p_2 the probability of classifying a bipolar disorder patients belonging the probability of classifying the schizophrenic patients belonging to the Type2 / Type3 group to Type2 to p2, Type2 / Type3 group to Typ e3, the evaluation function g (W) = Find the vectors d and thr that maximize W * p2 + (lw) * p_2. Let the optimized elements of d (dl, d2, d3, d4) and thr be D1, D2, D3, D4, thr-23 in equation (2).
[0033] 判定部 40は、以上の説明した分類モデルを用いて疾患判定を行なう。疾患判定の アルゴリズムを図 9に示す。図示するように、判定部 40は、特徴演算部 20でへモグロ ビン波形力 算出された特徴量 (ここでは傾き値、積分値、再上昇度、重心)が入力 されると、第 1階層 901で式(1)の値 X_lが thr_はり大きいか否かを判断し、 Typel、非 Typelのいずれか〖こ分類する。非 Typelに分類された場合には、さらに第 2階層 902、 903で Type2/Type3、 Type4、 Type5のいずれかに分類する。 Type2/Type3に分類さ れた場合には、さらに第 3階層 904で Type4、 Type5のいずれかに分類する。例えば積 分値 102、傾き 0.003、再上昇度 5、重心 0.15というヘモグロビン変化を生じた被検者 は健常者 (Typel)に属すると判定される。  [0033] The determination unit 40 performs disease determination using the classification model described above. Figure 9 shows the disease determination algorithm. As shown in the figure, when the feature amount (in this case, the slope value, the integral value, the re-rise degree, and the center of gravity) calculated by the feature calculation unit 20 in the hemoglobin waveform force is input, the determination unit 40 receives the first layer 901. Determine whether the value X_l in equation (1) is larger than thr_, and classify it as either Typel or Non-Typel. If it is classified as non-Typel, it is further classified as Type2 / Type3, Type4, or Type5 in the second layer 902, 903. If it is classified as Type2 / Type3, it is further classified as either Type 4 or Type 5 in the third layer 904. For example, a subject who has a hemoglobin change with an integration value of 102, a slope of 0.003, a re-elevation degree of 5, and a center of gravity of 0.15 is determined to belong to a healthy person (Typel).
[0034] この階層的分類によれば、 Typelには健常者、 Type2には統合失調症、 Type3には 双極性障害、 Type4にはうつ病、 Type5には統合失調症が、それぞれ最も多く含まれ ることになる。しかし、これらは確率が高いことを示しているにすぎないので、判定結 果は確率の高さとして表される。表示方法としては、例えば、「統合失調症である可能 性が高い」「うつ病の可能性がある」などの所見を表示することも可能であるが、分類 モデルの散布図上に表示することもできる。 [0034] According to this hierarchical classification, Typel contains the most healthy individuals, Type2 contains schizophrenia, Type3 contains bipolar disorder, Type4 contains depression, and Type5 contains schizophrenia. Will be. However, since these only indicate a high probability, the judgment result is expressed as a high probability. As a display method, for example, it is possible to display findings such as “high possibility of schizophrenia” and “possibility of depression”, but display them on the scatter chart of the classification model. You can also.
[0035] 図 10に散布図の一例を示す。図 10は、第 2階層の分類モデルの散布図を示す図 であり、横軸を傾き、縦軸を積分値としたグラフ上に、分類モデルの thr値で分けられ た Typeの領域が示され、辞書データ内の各データが符号で示されている。このような 散布図上に、被検者の数値をプロットすることにより、被検者が属する Typeを一目で 確認することができ、また他の Typeとの距離も確認することができる。第 1層で非 Type 1群に属すると分類された場合、前掲の場合と同じ積分値 102、傾き 0.003というへモ グロビン変化を生じた被検者は、散布図上では右上領域に分布し、 Type2/Type3群 に属することが認識できる。  FIG. 10 shows an example of a scatter diagram. Figure 10 is a scatter plot of the classification model in the second layer, and the Type area divided by the thr value of the classification model is shown on the graph with the horizontal axis tilted and the vertical axis the integrated value. Each data in the dictionary data is indicated by a symbol. By plotting the value of the subject on such a scatter diagram, the type to which the subject belongs can be confirmed at a glance, and the distance from other types can also be confirmed. When the first layer is classified as belonging to the non-Type 1 group, subjects who have hemoglobin changes with the same integral value 102 and slope 0.003 as in the previous case are distributed in the upper right area on the scatter diagram. It can be recognized that it belongs to Type2 / Type3 group.
[0036] 以上説明した特徴量抽出から疾患判定までの手順を図 11に示す。疾患判定を行 なうために入力部 30に図 12に示すような入力画面が表示される。これに従って疾患 判定に必要な情報、検査日、被検者番号などが入力される (ステップ 1101)。この例 では、被検者を番号で識別している力 氏名であっても良い。確定した診断結果があ る場合、 1項の口にチェックする。入力されると、生体光計測部 10から該当する被検 者の計測波形が読み出され、複数種の特徴量が算出される (ステップ 1102、 1103)。 次いで算出された特徴量に基き階層的分類が実行される (ステップ 1104)。判定結果 は、図 10に示すような散布図上に表示される (ステップ 1105)。また被検者の確定診 断がある場合には、検査結果は自動的にデータベース (記憶部 50)に格納される。  FIG. 11 shows a procedure from the feature amount extraction described above to the disease determination. An input screen as shown in FIG. 12 is displayed on the input unit 30 to make a disease determination. Accordingly, information necessary for disease determination, examination date, subject number, etc. are entered (step 1101). In this example, the name of the force identifying the subject by number may be used. If there is a confirmed diagnosis result, check the mouth of item 1. When input, the measurement waveform of the corresponding subject is read from the biological light measurement unit 10, and a plurality of types of feature quantities are calculated (steps 1102 and 1103). Next, hierarchical classification is performed based on the calculated feature amount (step 1104). The judgment result is displayed on a scatter diagram as shown in FIG. 10 (step 1105). When there is a definitive diagnosis of the subject, the test result is automatically stored in the database (storage unit 50).
[0037] このように本実施の形態の生体光計測装置によれば、特徴量を組み合わせた変数 を用い、階層的分類を行なうことで、疾患毎に波形の特徴が複雑な様相を持つ精神 疾患について、健常者との判別、疾患群間の判別を自動的に行なうことができ、また 判別の確力もしさを高めることができる。特に被検者の特徴量 (或いはそれを合成し た変数)と辞書データの特徴量 (或 、はそれを合成した変数)とを散布図上で比較表 示することで、全体傾向を把握しながら疾患カテゴリーを判定することが可能となる。  [0037] As described above, according to the biological optical measurement device of the present embodiment, a mental disorder having a complex aspect of waveform characteristics for each disease by performing hierarchical classification using variables that combine feature quantities. Can be automatically discriminated from a healthy person and between disease groups, and the accuracy of discrimination can be increased. In particular, it is possible to grasp the overall trend by comparing and comparing the feature values of the subject (or variables that combine them) and the feature values of the dictionary data (or variables that combine them) on a scatter diagram. However, it becomes possible to determine the disease category.
[0038] ところで判定部 40が用いる分類モデルは、辞書データから最適化法により構築した ものであるが、分類の精度は、辞書データのデータ数が多いほど向上する。従って本 発明の生体光計測装置は、分類モデルを更新(自動調整)する機能を備えて!/、るこ とが好ましい。 [0038] By the way, the classification model used by the determination unit 40 is constructed from dictionary data by an optimization method. However, the accuracy of classification improves as the number of dictionary data increases. Therefore, it is preferable that the living body optical measurement device of the present invention has a function of updating (automatically adjusting) the classification model!
[0039] 以下、分類モデルの自動調整機能につ!、て説明する。  The automatic adjustment function of the classification model will be described below.
既に述べたように、被検者の確定診断結果がある場合、検査結果は自動的にデー タベースに格納される。このような辞書データの蓄積機能により、辞書データは変化 する。自動調整機能は、辞書データの変化に伴い、分類モデルのパラメータを再度 最適化する仕組みである。最適化の手法は、分類モデルを構築した場合の最適化 手法と同じであり、第 1階層および第 3層の分類モデルについては、設定されたべタト ル cおよび値 thrにつ ヽて評価関数を設定し、これ最大にするベクトル cおよび値 thrを 求め、最適化された cの要素及び値 thrを、式(1)或いは(2)の係数および閾値とする 。また第 2階層の分類モデルについては、自動クラスタリングの技術を用い、各タイプ で各疾患群の存在確率ができるだけ偏りを示すように閾値を選択する。  As already mentioned, if there is a definitive diagnosis result of the subject, the test result is automatically stored in the database. The dictionary data changes by such a dictionary data storage function. The automatic adjustment function is a mechanism that optimizes the classification model parameters again as the dictionary data changes. The optimization method is the same as the optimization method when the classification model is constructed. For the first and third layer classification models, the evaluation function is set for the set solid c and value thr. Set the maximum vector c and value thr, and use the optimized c element and value thr as the coefficients and thresholds in equation (1) or (2). For the classification model of the second layer, the automatic clustering technology is used and the threshold value is selected so that the existence probability of each disease group is as biased as possible for each type.
[0040] 分類モデルの最適化に際し、散布図を用いることができる。この場合には、辞書デ ータ内の各データをプロットしたグラフに、最適化によって算出された thr値を表示す る。図 13に分類モデルを表す表示画面の一例を示す。図 13に示す例では、各分類 モデルの散布図とともに、算出された閾値で分類された各疾患カテゴリーにどのよう な疾患が多く存在するか (疾患存在割合)を棒グラフで示して!/ヽる。このような表示に より、分類の結果 (分類の正確さ)を直ちに確認することができる。  In the optimization of the classification model, a scatter diagram can be used. In this case, the thr value calculated by optimization is displayed on a graph plotting each data in the dictionary data. Fig. 13 shows an example of the display screen showing the classification model. In the example shown in Fig. 13, along with a scatter plot of each classification model, a bar graph shows what diseases are present in each disease category classified by the calculated threshold (disease abundance ratio)! . Such a display makes it possible to immediately confirm the classification result (classification accuracy).
実施例  Example
[0041] 確定された診断結果のある 107例について、本発明の生体光計測装置の階層的分 類により疾患判定を行な!ヽ、疾患判定の精度を評価した。  [0041] For 107 cases with confirmed diagnosis results, disease determination was performed using the hierarchical classification of the biological optical measurement device of the present invention! The accuracy of disease determination was evaluated.
[0042] <第 1階層 > [0042] <First level>
第 1階層の分類モデルとして、正規化した 4種の特徴量、傾き値 (D)、積分値 (I)、 再上昇度 (R)、重心 (C)を線形に結合して合成した変数 X_lを用い、  As a classification model for the first layer, a variable X_l synthesized by linearly combining four types of normalized features, slope value (D), integral value (I), re-rise (R), and centroid (C) Use
X_1=C 1*1 + C2*D + C3*R+ C4*C (1)  X_1 = C 1 * 1 + C2 * D + C3 * R + C4 * C (1)
式(1)の各係数を Cl=0.31、 C2=0.15、 C3=- 0.66、 C4=- 0.66とし thr_l=0.482とした。そ の結果、 107例中 35例が typelと判定された。健常者の 64%が Typelと判定されたの に対して非健常者で typelと判定されたのはわず力 6%だった。 The coefficients in Equation (1) were Cl = 0.31, C2 = 0.15, C3 = -0.66, C4 = -0.66, and thr_l = 0.482. As a result, 35 cases out of 107 cases were determined as typel. 64% of healthy people were judged as Typel On the other hand, the unhealthy person was determined to be typel with 6% strength.
[0043] 比較例として、 C4=0に固定し、 Cl=0.56、 C2=0.42、 C3=-0.71、 thr_l=0.191として判 定を行なった。この場合、正答率は最大となったが、健常者の 46%、非健常者の 31 %が typelと判定された。さらに C3=0も固定した場合には、健常者の 21%、非健常者 の 48%が typelと判定された。このことから、 Typel群と非 Typel群の分離には重心値( C)、さらには再上昇度 (R)が重要な特徴量となって 、ることが分かる。 As a comparative example, C4 = 0 was fixed, and determination was performed with Cl = 0.56, C2 = 0.42, C3 = −0.71, and thr_l = 0.191. In this case, the correct answer rate was the highest, but 46% of healthy subjects and 31% of non-healthy subjects were judged as typel. Furthermore, when C3 = 0 was also fixed, 21% of healthy subjects and 48% of unhealthy subjects were determined to be typel. From this, it can be seen that the center of gravity (C) and the re-elevation degree (R) are important features for the separation of Typel and non-Typel groups.
[0044] く第 2階層〉 [0044] Second level>
非 Typel群に分類された 72例について、第 2階層の分類として、傾きおよび積分値 を用いた判定を行なった。傾きの閾値 thr_a=-0.0012、積分値の閾値 thr_b=12としたと ころ良好な結果が得られた。図 10に示した散布図は本実施例の結果である。図 10 では 4群が明確に分かれるのではなぐ互いにかなり重なり合って分布しているのが 分かる。それでも統合失調症患者の中のわずかではあるが、傾きが小さい領域 Type 5に分布している。また、残りの統合失調症患者は傾きも積分値も比較的大きい領域 Type2/Type3に双極性障害患者の大部分とともに分布している。うつ病患者の大半 は傾きが比較的大きく積分値が小さ 、領域 Type4に分布して 、る。健常者は全体数 が多いため、非 Typelの中、特に Type2/Type3に相当数が分布している。  For the 72 cases classified into the non-Typel group, a judgment was made using slope and integral as the second-layer classification. Good results were obtained when the slope threshold thr_a = -0.0012 and the integral threshold thr_b = 12. The scatter diagram shown in Fig. 10 is the result of this example. In Fig. 10, it can be seen that the four groups are distributed so as to overlap each other rather than being clearly separated. Still, it is distributed in Type 5, which is a small area of schizophrenia, but with a small slope. The remaining patients with schizophrenia are distributed with the majority of patients with bipolar disorder in the type 2 and type 3 regions where the slope and integral are relatively large. Most patients with depression have a relatively large slope and a small integrated value, and are distributed in the region Type4. Since the number of healthy individuals is large, a considerable number is distributed among non-Typel, especially Type2 / Type3.
[0045] <第 3階層 > [0045] <Third layer>
実施例 2にお 、て Type2/Type3と判定された 37例にっ 、て、さらに正規ィ匕した 4種 の特徴量、傾き値 (D)、積分値 (I)、再上昇度 (R)、重心 (C)を線形に結合して合成 した変数 X_23を用い、判定を行なった。  In Example 2, it was determined that Type 2 / Type 3 were 37 cases, and the four types of feature values, slope value (D), integral value (I), and re-elevation degree (R) were further normalized. Judgment was performed using variable X_23, which was synthesized by linearly combining the center of gravity (C).
X_23=D 1*1 + D2*D + D3*R + D4*C (2)  X_23 = D 1 * 1 + D2 * D + D3 * R + D4 * C (2)
Dl=0.15、 D2=0.15、 D3=0.98、 D4=0.0、 thr_l=0.129としたとき、 37例中 17例が type2と 判定された。各タイプを主成分疾患ラベルと同一視した場合、最終的に各疾患群分 類正答率は 64%以上となった。 D3=0と固定すると Dl=0.55、 D2=0.76、 D3=0.0、 D4=0. 34、 thr_l=0.349のとき平均正答率は最大となるが、各疾患群分類正答率は、わずか 3 9%にとどまった。このことから Type2群と Type3群の分類には再上昇度が重要な特徴 量であることが分かる。図 13に示した棒グラフは、本実施例による第 3階層の判定結 果を示した図である。この図を見ると Typelは健常者、 Type2は統合失調症、 Type3は 双極性障害、 Type4はうつ病、 Type5は統合失調症が多く存在することが分かった。 T ype2と Type3はそれぞれ統合失調症と双極性障害が分離される傾向が確認された。 When Dl = 0.15, D2 = 0.15, D3 = 0.98, D4 = 0.0, and thr_l = 0.129, 17 out of 37 cases were judged as type2. When each type was identified with the main component disease label, the correct answer rate for each disease group was finally over 64%. When D3 = 0 is fixed, Dl = 0.55, D2 = 0.76, D3 = 0.0, D4 = 0.34, thr_l = 0.349, the average correct answer rate is maximum, but each disease group classification correct answer rate is only 39% I stayed at. From this, it can be seen that the degree of re-elevation is an important feature for the classification of Type 2 and Type 3 groups. The bar graph shown in FIG. 13 is a diagram showing the determination result of the third hierarchy according to the present example. In this figure, Typel is healthy, Type2 is schizophrenia, Type3 is Bipolar disorder, Type 4 has depression, Type 5 has many schizophrenia. Type2 and Type3 showed a tendency to separate schizophrenia and bipolar disorder, respectively.
[0046] 以上、本発明の実施の形態を説明したが、本発明の主たる特徴は、生体光計測装 置で計測された波形の解析において、複数種の特徴量を用いて予め設定された分 類モデルに従い疾患判定を行う判定機能を設けたことであり、上記実施の形態に限 定されることなぐ特許請求の範囲に記載される範囲で種々の変更や応用が可能で ある。例えば、階層分類モデルは、複数の特徴量の合成変数を用いた第 1階層の分 類のみ自動化し、その後の判定をユーザーが行うようにすることも本発明に含まれる 。また判定結果の表示方法などは、散布図による表示のほか、文字による表示、ダラ フによる表示などを適宜組み合わせ用いることができる。  As described above, the embodiments of the present invention have been described. The main feature of the present invention is that the analysis is performed in advance using a plurality of types of feature amounts in the analysis of the waveform measured by the biological light measurement device. This is that a determination function for determining a disease according to a similar model is provided, and various modifications and applications can be made within the scope described in the claims, not limited to the above embodiment. For example, the present invention also includes that the hierarchical classification model automates only the classification of the first hierarchy using a composite variable of a plurality of feature amounts, and allows the user to make subsequent determinations. In addition to the display using a scatter diagram, the display method of the determination result can be appropriately combined with display using characters, display using a dull, and the like.
[0047] 本発明は、光計測結果を用いた疾患判定機能に係るものであり、精神疾患等の疾 患診断支援装置に用いることができる。  The present invention relates to a disease determination function using an optical measurement result, and can be used for a disease diagnosis support apparatus such as a mental illness.
図面の簡単な説明  Brief Description of Drawings
[0048] [図 1]本発明に係る生体光計測装置の概略構成を示す図。  FIG. 1 is a diagram showing a schematic configuration of a biological light measurement device according to the present invention.
[図 2]生体光計測部の構成を示す図。  FIG. 2 is a diagram showing a configuration of a biological light measurement unit.
[図 3]ヘモグロビン変化波形力 の特徴量の抽出を説明する図。  FIG. 3 is a diagram for explaining extraction of feature values of hemoglobin change waveform force.
[図 4]疾患ごとの波形特徴を示す図。  FIG. 4 is a diagram showing waveform characteristics for each disease.
[図 5]判定部における階層的分類を模式的に示す図。  FIG. 5 is a diagram schematically showing a hierarchical classification in a determination unit.
[図 6]第 1階層の分類モデルを示す図。  FIG. 6 is a diagram showing a classification model in the first layer.
[図7]第 2階層の分類モデルを示す図。 FIG. 7 is a diagram showing a classification model of the second hierarchy.
[図 8]第 3階層の分類モデルを示す図。  FIG. 8 is a diagram showing a classification model of the third hierarchy.
[図 9]疾患判定アルゴリズムを示す図。  FIG. 9 is a diagram showing a disease determination algorithm.
[図 10]判定結果の表示例を示す図。  FIG. 10 is a diagram showing a display example of determination results.
[図 11]疾患状態判定フローを示す図。  FIG. 11 is a diagram showing a disease state determination flow.
[図 12]入力部の入力画面の一例を示す図。  FIG. 12 is a diagram showing an example of an input screen of the input unit.
[図 13]分類モデルを最適化した結果を示す図。  FIG. 13 is a diagram showing the result of optimizing the classification model.
符号の説明  Explanation of symbols
[0049] 10· · ·生体光計測部、 20· · ·特徴量演算部、 30· · ·入力部、 40· · ·判定部、 50· ·,記 憶部、 60···表示部、 102…光源、 108···受光器、 106···検査対象 (被検者)、 111·[0049] 10 ··· Biometric light measurement unit, 20 ··· Feature amount calculation unit, 30 ··· Input unit, 40 ··· Determination unit, 50 ··· Memory, 60 ··· Display, 102… Light source, 108 ··· Receiver, 106 ··· Inspection object (subject), 111 ·
•,計測制御用計算機、 112· · ·計算機 (疾患診断支援装置)。 • Measurement control computer, 112 ··· computer (disease diagnosis support device).

Claims

請求の範囲 The scope of the claims
[1] 可視力 赤外領域に属する波長の光を被検体に照射し、被検体内部を通過した光 を検出しヘモグロビン変化波形を計測する生体光計測部と、計測された波形力 複 数種の特徴量を抽出し、解析する特徴量演算部と、前記特徴量演算部で抽出され た複数種の特徴量を用いて予め設定された分類モデルに従 ヽ疾患判定を行う判定 部と、前記判定部の判定結果を表示する表示部とを備え、前記判定部は、前記分類 モデルとして階層構造を有する複数の分類モデルを備えたことを特徴とする生体光 装置。  [1] Visible force A biological light measurement unit that irradiates a subject with light having a wavelength belonging to the infrared region, detects the light passing through the subject, and measures the hemoglobin change waveform, and the measured waveform force A feature amount calculation unit that extracts and analyzes the feature amount, a determination unit that performs disease determination according to a preset classification model using a plurality of types of feature amounts extracted by the feature amount calculation unit, And a display unit that displays a determination result of the determination unit, wherein the determination unit includes a plurality of classification models having a hierarchical structure as the classification model.
[2] 請求項 1に記載の生体光計測装置にお!、て、  [2] In the biological light measurement device according to claim 1,!
前記複数の分類モデルの少なくとも 1つに、前記複数種の特徴量を合成した変数 を用いたことを特徴とする生体光計測装置。  A biological light measurement apparatus, wherein a variable obtained by combining the plurality of types of feature quantities is used for at least one of the plurality of classification models.
[3] 請求項 1に記載の生体光計測装置にお!、て、 [3] In the biological optical measurement device according to claim 1,!
前記階層構造を有する複数の分類モデルのうち最上層の分類モデルは、被検体 を健常者群および非健常者群のいずれに分類する分類モデルであることを特徴とす る生体光計測装置。  The biological light measurement apparatus according to claim 1, wherein the uppermost classification model among the plurality of classification models having a hierarchical structure is a classification model for classifying a subject into either a normal group or a non-normal group.
[4] 請求項 1に記載の生体光計測装置にお!、て、 [4] In the biological light measurement device according to claim 1,!
前記階層構造を有する複数の分類モデルのうち最上層の分類モデルは、被検体 を健常者群および非健常者群のいずれかに分類する分類モデルであり、下層の分 類モデルは、非健常者群に分類された被検体を最終的に複数の疾患群の一つに分 類する分類モデルであることを特徴とする生体光計測装置。  Among the plurality of classification models having the hierarchical structure, the uppermost classification model is a classification model for classifying the subject into either a healthy group or a non-healthy person group, and the lower classification model is a non-healthy person. A biological light measurement apparatus, which is a classification model for finally classifying subjects classified into groups into one of a plurality of disease groups.
[5] 可視力 赤外領域に属する波長の光を被検体に照射し、被検体内部を通過した光 を検出しヘモグロビン変化波形を計測する生体光計測部と、計測された波形力 複 数種の特徴量を抽出し、解析する特徴量演算部と、前記特徴量演算部で抽出され た複数種の特徴量を用いて予め設定された分類モデルに従 ヽ疾患判定を行う判定 部と、前記判定部の判定結果を表示する表示部とを備え、前記判定部は、前記分類 モデルとして複数種の特徴量を合成した変数を用いることを特徴とする生体光計測 装置。 [5] Visible force A biological light measurement unit that irradiates a subject with light having a wavelength belonging to the infrared region, detects light passing through the subject, and measures a hemoglobin change waveform, and a plurality of measured waveform forces A feature amount calculation unit that extracts and analyzes the feature amount, a determination unit that performs disease determination according to a preset classification model using a plurality of types of feature amounts extracted by the feature amount calculation unit, and And a display unit that displays a determination result of the determination unit, wherein the determination unit uses a variable obtained by combining a plurality of types of feature amounts as the classification model.
[6] 請求項 2に記載の生体光計測装置にお 、て、 前記合成された変数は、前記複数種の特徴量の線形結合であることを特徴とする 生体光計測装置。 [6] In the biological light measurement device according to claim 2, The biometric optical measurement apparatus, wherein the synthesized variable is a linear combination of the plurality of types of feature quantities.
[7] 請求項 1に記載の生体光計測装置にお!、て、 [7] In the biological light measurement device according to claim 1,!
前記分類モデルは、疾患判定が確定された複数の被検体群のそれぞれが、その 疾患に対応する類に分類される確率を最大化するように決定されて ヽることを特徴と する生体光計測装置。  The biometric measurement is characterized in that the classification model is determined so as to maximize the probability that each of the plurality of subject groups for which disease determination is confirmed is classified into a class corresponding to the disease. apparatus.
[8] 請求項 1に記載の生体光計測装置であって、 [8] The biological light measurement device according to claim 1,
前記判定部が用いる特徴量は、ヘモグロビン時間波形の課題開始直後の傾き値、 課題遂行中の積分値、課題終了後の再上昇度、波形全体の重心値から選ばれる 1 ないし複数の特徴量を含むことを特徴とする生体光計測装置。  The feature value used by the determination unit is one or more feature values selected from the slope value of the hemoglobin time waveform immediately after the start of the task, the integral value during the task execution, the re-rise degree after the task ends, and the centroid value of the entire waveform. A biological light measuring device comprising:
[9] 請求項 1に記載の生体光計測装置であって、 [9] The biological light measurement device according to claim 1,
前記生体光計測部は、前記被検体の複数の測定位置から複数の波形を計測する 多チャンネル構造を有し、前記特徴量演算部は多チャンネルの各々で得られた波形 から特徴量を抽出し、その最大値を解析対象とすることを特徴とする生体光計測装 置。  The biological light measurement unit has a multi-channel structure that measures a plurality of waveforms from a plurality of measurement positions of the subject, and the feature amount calculation unit extracts a feature amount from waveforms obtained from each of the multi-channels. A biological light measuring device characterized in that the maximum value is an analysis target.
[10] 請求項 1に記載の生体光計測装置であって、  [10] The biological light measurement device according to claim 1,
前記判定部は、疾患の確定された被検体につ!、て計測された波形および Zまたは 当該波形から抽出された複数種の特徴量をもとに、前記分類モデルを最適化する手 段を備えたことを特徴とする生体光計測装置。  The determination unit is a method for optimizing the classification model based on the waveform measured with the disease confirmed subject and Z or a plurality of feature amounts extracted from the waveform. A biological light measuring device comprising:
[11] 請求項 5に記載の生体光計測装置であって、 [11] The biological light measurement device according to claim 5,
前記分類モデルは、疾患判定が確定された複数の被検体群のそれぞれが、その 疾患に対応する類に分類される確率を最大化するように決定されて ヽることを特徴と する生体光計測装置。  The biometric measurement is characterized in that the classification model is determined so as to maximize the probability that each of a plurality of subject groups for which disease determination is confirmed is classified into a class corresponding to the disease. apparatus.
[12] 請求項 5に記載の生体光計測装置であって、 [12] The biological light measurement device according to claim 5,
前記判定部が用いる特徴量は、ヘモグロビン時間波形の課題開始直後の傾き値、 課題遂行中の積分値、課題終了後の再上昇度、波形全体の重心値から選ばれる 1 ないし複数の特徴量を含むことを特徴とする生体光計測装置。  The feature value used by the determination unit is one or more feature values selected from the slope value of the hemoglobin time waveform immediately after the start of the task, the integral value during the task execution, the re-rise degree after the task ends, and the centroid value of the entire waveform. A biological light measuring device comprising:
[13] 請求項 5に記載の生体光計測装置であって、 前記生体光計測部は、前記被検体の複数の測定位置から複数の波形を計測する 多チャンネル構造を有し、前記特徴量演算部は多チャンネルの各々で得られた波形 から特徴量を抽出し、その最大値を解析対象とすることを特徴とする生体光計測装 置。 [13] The biological light measurement device according to claim 5, The biological light measurement unit has a multi-channel structure that measures a plurality of waveforms from a plurality of measurement positions of the subject, and the feature amount calculation unit extracts a feature amount from waveforms obtained from each of the multi-channels. A biological light measuring device characterized in that the maximum value is an analysis target.
請求項 5に記載の生体光計測装置であって、  The biological light measurement device according to claim 5,
前記判定部は、疾患の確定された被検体につ!、て計測された波形および Zまたは 当該波形から抽出された複数種の特徴量をもとに、前記分類モデルを最適化する手 段を備えたことを特徴とする生体光計測装置。  The determination unit is a method for optimizing the classification model based on the measured waveform and Z or a plurality of types of feature values extracted from the waveform for a subject whose disease has been confirmed. A biological light measuring device comprising:
PCT/JP2006/325814 2006-06-15 2006-12-25 Apparatus for measuring biological light WO2007144977A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008521091A JPWO2007144977A1 (en) 2006-06-15 2006-12-25 Biological light measurement device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-165978 2006-06-15
JP2006165978 2006-06-15

Publications (1)

Publication Number Publication Date
WO2007144977A1 true WO2007144977A1 (en) 2007-12-21

Family

ID=38831500

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/325814 WO2007144977A1 (en) 2006-06-15 2006-12-25 Apparatus for measuring biological light

Country Status (2)

Country Link
JP (1) JPWO2007144977A1 (en)
WO (1) WO2007144977A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008142878A1 (en) * 2007-05-21 2008-11-27 Hitachi Medical Corporation Apparatus for measuring biological light
JP2011229413A (en) * 2010-04-23 2011-11-17 Nagoya Univ Cell evaluation device, incubator, program, and culture method
WO2012165602A1 (en) * 2011-05-31 2012-12-06 国立大学法人名古屋工業大学 Cognitive dysfunction-determining equipment, cognitive dysfunction-determining system, and program
CN113876320A (en) * 2021-09-29 2022-01-04 天津用恒医疗科技有限公司 Hemoglobin concentration determination method, hemoglobin concentration determination device, electronic equipment and storage medium

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003275191A (en) * 2002-03-26 2003-09-30 Hitachi Medical Corp Biological optical measuring device
WO2005025421A1 (en) * 2003-09-11 2005-03-24 Hitachi Medical Corporation Organism light measuring device
WO2005096951A1 (en) * 2004-04-09 2005-10-20 Hitachi Medical Corporation Biophotonic measuring apparatus
WO2006132313A1 (en) * 2005-06-09 2006-12-14 Hitachi Medical Corporation Disease judging supporting system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2667867B2 (en) * 1988-03-30 1997-10-27 東亜医用電子株式会社 Particle analyzer
JP2002107366A (en) * 2000-10-02 2002-04-10 Hitachi Ltd Diagnosis-assisting system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003275191A (en) * 2002-03-26 2003-09-30 Hitachi Medical Corp Biological optical measuring device
WO2005025421A1 (en) * 2003-09-11 2005-03-24 Hitachi Medical Corporation Organism light measuring device
WO2005096951A1 (en) * 2004-04-09 2005-10-20 Hitachi Medical Corporation Biophotonic measuring apparatus
WO2006132313A1 (en) * 2005-06-09 2006-12-14 Hitachi Medical Corporation Disease judging supporting system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008142878A1 (en) * 2007-05-21 2008-11-27 Hitachi Medical Corporation Apparatus for measuring biological light
JPWO2008142878A1 (en) * 2007-05-21 2010-08-05 株式会社日立メディコ Biological light measurement device
JP2011229413A (en) * 2010-04-23 2011-11-17 Nagoya Univ Cell evaluation device, incubator, program, and culture method
WO2012165602A1 (en) * 2011-05-31 2012-12-06 国立大学法人名古屋工業大学 Cognitive dysfunction-determining equipment, cognitive dysfunction-determining system, and program
JPWO2012165602A1 (en) * 2011-05-31 2015-02-23 国立大学法人 名古屋工業大学 Cognitive impairment determination apparatus, cognitive impairment determination system, and program
US9131889B2 (en) 2011-05-31 2015-09-15 Nagoya Institute Of Technology Cognitive impairment determination apparatus, cognitive impairment determination system and program
CN113876320A (en) * 2021-09-29 2022-01-04 天津用恒医疗科技有限公司 Hemoglobin concentration determination method, hemoglobin concentration determination device, electronic equipment and storage medium

Also Published As

Publication number Publication date
JPWO2007144977A1 (en) 2009-10-29

Similar Documents

Publication Publication Date Title
Liang et al. A new, short-recorded photoplethysmogram dataset for blood pressure monitoring in China
JP3543453B2 (en) Biological input device using optical biometric method
JP4555230B2 (en) Biological light measurement device
US7349727B2 (en) Living body light measuring device
Xu et al. Prediction in autism by deep learning short-time spontaneous hemodynamic fluctuations
JP4518281B2 (en) Disease determination support system
JP3916985B2 (en) Biological light measurement device
Hassan et al. Early detection of cardiovascular autonomic neuropathy: A multi-class classification model based on feature selection and deep learning feature fusion
JP6694289B2 (en) Drug efficacy evaluation support system and drug efficacy evaluation support information presentation method
KR102099214B1 (en) Artificial intelligence diseases diagnostic system through biological information and video information cooperation
JP7217289B2 (en) Medical intervention control system
CN109069081A (en) For predicting, screening and monitoring encephalopathy/delirium equipment, system and method
Zou et al. Constructing multi-scale entropy based on the empirical mode decomposition (EMD) and its application in recognizing driving fatigue
Sappia et al. Signal quality index: an algorithm for quantitative assessment of functional near infrared spectroscopy signal quality
CN109859843A (en) Intelligent health all-in-one machine
Zhao et al. Applying machine learning to identify autism with restricted kinematic features
Wang et al. Depression analysis and recognition based on functional near-infrared spectroscopy
WO2007144977A1 (en) Apparatus for measuring biological light
CN116013514A (en) Multi-parameter fusion-based integrated diabetic foot prediction system
Mohebbian et al. Semi-supervised active transfer learning for fetal ECG arrhythmia detection
Gopalakrishnan et al. Itl-cnn: Integrated transfer learning-based convolution neural network for ultrasound pcos image classification
KR100955716B1 (en) Method and apparatus for generating character string of biological data, and method and apparatus for detecting biological wave, and method and apparatus for classifying a pulse wave using it
Shao et al. EEG-Based Mental Workload Classification Method Based on Hybrid Deep Learning Model Under IoT
JP5043107B2 (en) Biological light measurement device
Zhang et al. Heart failure classification using deep learning to extract spatiotemporal features from ECG

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06835184

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008521091

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06835184

Country of ref document: EP

Kind code of ref document: A1