WO2007144962A1 - Hydraulic control device for automatic transmission - Google Patents

Hydraulic control device for automatic transmission Download PDF

Info

Publication number
WO2007144962A1
WO2007144962A1 PCT/JP2006/312174 JP2006312174W WO2007144962A1 WO 2007144962 A1 WO2007144962 A1 WO 2007144962A1 JP 2006312174 W JP2006312174 W JP 2006312174W WO 2007144962 A1 WO2007144962 A1 WO 2007144962A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
valve
port
oil
spool
Prior art date
Application number
PCT/JP2006/312174
Other languages
French (fr)
Japanese (ja)
Inventor
Nobuhiro Sato
Takuya Fujimine
Kazuyuki Noda
Minoru Todo
Kazuhisa Ozaki
Kazutoshi Nozaki
Masafumi Kinoshita
Atsushi Honda
Akiharu Abe
Original Assignee
Aisin Aw Co., Ltd.
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Aw Co., Ltd., Toyota Jidosha Kabushiki Kaisha filed Critical Aisin Aw Co., Ltd.
Priority to CN2006800280928A priority Critical patent/CN101233347B/en
Priority to PCT/JP2006/312174 priority patent/WO2007144962A1/en
Priority to DE112006002125T priority patent/DE112006002125T5/en
Publication of WO2007144962A1 publication Critical patent/WO2007144962A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/14Control of torque converter lock-up clutches
    • F16H61/143Control of torque converter lock-up clutches using electric control means

Definitions

  • Hydraulic control device for automatic transmission
  • the present invention relates to a hydraulic control device for an automatic transmission mounted on, for example, a vehicle or the like, and more specifically, an automatic transmission that supplies a secondary pressure of a second pressure regulating valve force to a torque converter and a lockup clutch.
  • the present invention relates to a hydraulic control device for a transmission.
  • an automatic transmission mounted on a vehicle or the like is provided with a fluid transmission device for fluid transmission of an engine output to an input shaft of a transmission mechanism, that is, the fluid transmission device includes: A torque converter is provided that can allow a difference in rotational speed between the output shaft (crankshaft) of the engine and the input shaft of the transmission mechanism.
  • a lock-up clutch capable of directly connecting (locking up) an engine output shaft and a transmission mechanism input shaft in order to improve fuel efficiency.
  • the automatic transmission is provided with a clutch brake for forming a power transmission path of the transmission gear mechanism, and a hydraulic control device for controlling engagement / disengagement of the clutch and the brake. It has been.
  • This hydraulic control device is provided with a solenoid valve that outputs a control pressure in accordance with the throttle opening, and a primary regulator valve that is controlled based on the control pressure. The pressure is regulated and the line pressure is supplied to the clutch and brake hydraulic servos.
  • the torque converter and the lock-up clutch described above have a secondary pressure that is reduced by a secondary regulator valve that is similarly controlled based on the control pressure in order to improve the durability of the torque comparator. Is generated, and the secondary pressure is supplied.
  • FIG. 4 is a diagram showing an example of a conventional hydraulic control device for an automatic transmission.
  • the automatic transmission includes a fluid transmission device 4 having a torque converter 2 and a lock-up clutch 3.
  • a hydraulic control device 50 of the automatic transmission includes a strainer 5, an oil pump 6 , Linear solenoid valve SLT, Solenoid valve SI, Primary regulator valve 7, Secondary regulator valve 58, Lockup relay valve 59, Lockup control valve 10, Check valve 12, Orifice 19, Oil cooler 30, Lubricating oil passage (LUBE) 31 is provided.
  • the oil pump 6 when the oil pump 6 is driven by a driving force of an engine (not shown), the oil is sucked from the oil pan (not shown) via the strainer 5 and then the primary regulator via the oil passage al. Hydraulic pressure is supplied to the valve 7.
  • the linear solenoid valve SLT receives a modulator pressure P from a not shown modulator valve and based on the throttle opening.
  • the primary regulator valve 7 has a spool position that depends on the urging force of the spring 7s and the control pressure P input to the oil chamber 7a via the oil passage c2 and the feedback pressure input to the oil chamber 7b.
  • the oil pressure in the oil passages al, a2, a3, and a4 is adjusted to the line pressure P corresponding to the throttle opening while adjusting the oil pressure that is returned to the oil pump 6 through the oil passage dl. .
  • the valve hole 22 formed in the valve body 20 includes a spool 58p, a spring 58s, a plunger 58j, and a lid portion 58g having a sleeve portion 58i in the arrow X direction.
  • the lid portion 58g is fixed to the valve body 20 with a key 58h, thereby forming a first oil chamber 58a, a second oil chamber 58b, and a third oil chamber 58c.
  • the land 58pl and the plunger 58j of the spool 58p are formed with an outer diameter D3, and the land 58pl, the land 58pl, and the land 58pl are formed with an outer diameter D4.
  • the secondary regulator valve 58 has a control pressure P via the oil passage c3 to the first oil chamber 58a.
  • the secondary regulator valve 58 is based on the biasing force of the spring 58s, the control pressure P input to the first oil chamber 58a, and the feedback pressure input to the second oil chamber 58b.
  • the secondary pressure in this state is a state in which the pressure is adjusted to a lower pressure than the engagement state of the lock-up clutch 3 described later, and thus is set to the low secondary pressure PLo. Also, receive the outer diameter D3.
  • the pressure area is A3 (i.e., D3 2 ⁇ / 4), and the spring 58s biasing force is F.
  • the input / output ratio of secondary pressure P to 1) is 1.
  • This low secondary pressure P Lo is supplied from the oil passage b5 through the lock-up relay valve 59.
  • the low secondary pressure P Lo is adjusted according to the throttle opening.
  • the secondary regulator valve 58 receives the control pressure P in the first oil chamber 58a, the feedback pressure in the second oil chamber 58b, and the control pressure P in the third oil chamber 58c.
  • the control pressure P input to the third oil chamber 58c includes a plunger 58j having an outer diameter D3 and an outer diameter D4.
  • the pressure receiving area of the outer diameter D3 is A3 (ie, ⁇ 3 2 ⁇ ⁇ 4)
  • the pressure receiving area of the outer diameter D4 is A4 (ie, D4 2 ⁇ / 4)
  • the biasing force of the spring 58s is F.
  • the output ratio is ⁇ 4 ⁇ 3 ( ⁇ 4> ⁇ 3), that is, greater than 1.
  • This high secondary pressure P Hi is applied to the lockup control valve 10 and the opening from the oil passage b6.
  • the torque converter 2 After being pressed, the torque converter 2 is supplied. For this reason, the lockup clutch 3 is engaged by the differential pressure between the supply pressure of the lockup clutch 3 and the supply pressure of the torque converter 2.
  • the secondary pressure P can be made higher than the input control pressure P, and the linear solenoid
  • the lockup clutch 3 can secure the necessary transmission torque capacity and improve fuel efficiency.
  • control pressure P input to the third oil chamber 58c is particularly effective.
  • the torque transmission capacity of the torque converter 2 may be insufficient compared to the increase in engine output.
  • each valve of a hydraulic control device is configured as a valve by forming a valve hole in a plate-like valve body, and sealing the spool with a lid-like member after inserting the spool. If the land 58pl located in the middle part of the spool 58p as described above has a large diameter, the portion of the spool 58p that is inserted and the part located on the rear end side (in the insertion direction)
  • the axial center of the valve hole 22 and the axial center of the sleeve 58p are not necessarily concentric. If the spool 58p is simply extended as it is, problems such as an increase in contact resistance between the spool 58p and the sleeve 58p and a gap may occur due to eccentricity. Therefore, it is necessary to provide a plunger 53 ⁇ 4 that slides concentrically with respect to the sleeve 58i, and to press the sleeve 58p through the plunger 53 ⁇ 4.
  • the present invention provides a hydraulic control device for an automatic transmission that has a simple configuration and can be made compact while allowing the gain of the second pressure regulating valve to be larger than 1. Is intended to provide.
  • the present invention (see, for example, FIGS. 1 to 3) outputs a control pressure (P) according to the throttle opening.
  • a hydraulic control device (1) for an automatic transmission that supplies a fluid transmission (4) having a knock-up clutch (3) and a torque converter (2),
  • It is formed in a shaft shape and has a large-diameter land (8pl, 8pl) on one side in the axial direction (for example, the arrow Y direction)
  • the third oil chamber (8c) has a gay of the second pressure regulating valve (8) with respect to the control pressure (P).
  • Gain increasing pressure input means for example, el, e3, or S2, a2, a5, si, 13.
  • the present invention is a first solenoid that can output a first signal pressure (P 1).
  • the lockup clutch Based on the first signal pressure (P) of the first solenoid valve (S1), the lockup clutch The secondary pressure (P) is output to the hose (3) and the secondary pressure (P) is shut off.
  • the engagement / disengagement of the lockup clutch can be controlled by controlling the first solenoid valve.
  • the first solenoid valve (S1) inputs the line pressure (P) as a source pressure of the first signal pressure (P). And the first signal pressure (P
  • the gain increasing pressure input means is a first signal pressure (P) of the first solenoid valve (S1).
  • the first oil passage (el, e3) inputs S1 into the third oil chamber (8c).
  • the line pressure can be supplied as a pressure at which the gain of the second pressure regulating nozzle is greater than 1.
  • the first signal pressure of the first solenoid valve makes the gain of the second pressure regulating valve greater than 1, the gain of the second pressure regulating valve is greater than 1 in conjunction with the engagement of the lockup clutch. Can be controlled.
  • the gain increase pressure input means includes:
  • the second oil passage (a2, a5, si) is interposed in the second oil passage (a) based on the second signal pressure (P).
  • the line pressure can be supplied as a pressure at which the gain of the second pressure regulating nozzle is greater than 1. Also, since the gain of the second pressure regulating valve is made larger than 1 by the second signal pressure of the second solenoid valve, the gain of the second pressure regulating valve is greater than 1 regardless of the engagement operation of the lockup clutch. Can be controlled to be larger.
  • FIG. 1 is a diagram showing a hydraulic control device for an automatic transmission according to a first embodiment.
  • FIG. 2 is a diagram showing the relationship between the SLT pressure, the line pressure, and the secondary pressure in the hydraulic control device for an automatic transmission according to the present invention.
  • FIG. 3 is a diagram showing a hydraulic control device for an automatic transmission according to a second embodiment.
  • FIG. 4 is a diagram showing an example of a conventional hydraulic control device for an automatic transmission.
  • FIG. 1 is a diagram showing a hydraulic control device for an automatic transmission according to a first embodiment.
  • an automatic transmission mounted on a vehicle or the like includes an input shaft that can be connected to an engine crankshaft, and a fluid transmission device that can fluidly transmit rotation (driving force) of the input shaft. 4 and a speed change mechanism that changes the speed of rotation input through the fluid transmission device 4 by a gear mechanism or a friction engagement element (clutch or brake) and transmits it to the output shaft.
  • the hydraulic control device 1 of the automatic transmission according to the present invention is configured to hydraulically control the engagement state of the friction engagement element and the fluid transmission device.
  • the fluid transmission device 4 is rotated by receiving a flow of oil from the pump impeller 2a that inputs rotation of the input shaft and the pump impeller 2a (fluid transmission) ) It is equipped with a turbine runner 2b and a torque converter 2 having a stator 2c that rectifies the oil returning from the turbine runner 2b to the pump impeller 2a and produces a torque increasing effect.
  • a lockup clutch 3 is provided to directly connect the shaft and the turbine runner 2b.
  • the stator 2c is fixed by the one-way clutch F in a state where the rotation of the turbine runner 2b is lower than the rotation of the pump impeller 3a, and receives a reaction force against the oil flow to produce a torque increasing effect. If the rotation of the turbine runner 2b is exceeded, the engine runs idle and the oil flow does not act in the negative direction.
  • the hydraulic control device 1 for an automatic transmission consists of a strainer 5, an oil pump 6, a linear Solenoid valve (control valve) SLT, primary regulator valve (first pressure regulating valve) 7, secondary regulator valve (second pressure regulating valve) 8, solenoid valve (first solenoid valve) Sl, lock-up relay The valve (first switching valve) 9, lockup control valve 10, check valve 12, orifice 19, oil cooler 30, lubricating oil passage (LUBE) 31, etc.
  • the automatic transmission hydraulic control device 1 includes various valves and oil passages for supplying hydraulic pressure to the hydraulic servos of the clutches and brakes of the transmission mechanism.
  • the explanation is omitted except for the main part of the present invention.
  • the hydraulic control device 1 of the automatic transmission includes an oil pump 6 that is driven in conjunction with the rotation of the engine, and an oil pan (not shown) is driven by the oil pump 6.
  • the oil pressure is generated by sucking the oil through the strainer 5.
  • the hydraulic pressure generated by the oil pump 6 is output from the output port 6a to the oil passages al, a2, a3, and a4, and is adjusted by a primary regulator valve 7 described later in detail.
  • the linear solenoid valve SLT has a linear drive section 11A and a pressure regulating valve section 11B.
  • the linear drive unit 11A is provided with a plunger ⁇ ⁇ whose position is electronically controlled (linear drive) in accordance with the throttle opening based on a signal from an electronic control device (not shown).
  • the valve section 11B includes a spool ⁇ ⁇ , a spring 1 IBs that urges the spool ⁇ ⁇ toward the plunger 1 ⁇ side (upper side in the figure), and a modulator pressure P force S
  • An input port SLTa for input and an output port SLTb are provided.
  • the plunger ⁇ ⁇ is moved and driven downward in the figure by electronic control in accordance with the throttle opening. If the spool ⁇ ⁇ ⁇ force is moved downward in the figure against the urging force of the spring 1 ⁇ by the pressing drive of the plunger 11 Ap, the communication state between the input port SLTa and the output port SLTb is changed to the spool. 1 Open with the travel of ⁇ !, te! /, And so the output port SLTb force is also controlled by the control pressure P force S in proportion to the throttle opening.
  • the primary regulator valve 7 includes a spool 7p and a spring 7s that biases the spool 7p downward, and an oil chamber 7a and a spool 7p above the spool 7p.
  • An oil chamber 7b, a pressure regulating port 7c, a discharge port 7d, and an output port 7e are provided below the bottom.
  • the control pressure P is input to the oil chamber 7a through the oil passages cl and c2 from the linear solenoid valve SLT, and the line pressure P, which will be described in detail later, is supplied to the oil chamber 7b.
  • the spool 7p is in the upper side in the figure
  • the pressure adjustment port 7c and the discharge port 7d are in communication with each other, and the spool 7p is controlled to move to the lower side in the figure, the communication amount between the pressure adjustment port 7c and the discharge port 7d ( (Aperture amount) is reduced (blocked). In other words, it depends on the magnitude of the control pressure P input to the oil chamber 7a.
  • the spool 7p is controlled to move downward, and the hydraulic pressure discharged from the discharge port 7d is adjusted to adjust the hydraulic pressure in the pressure adjustment port 7c.
  • the hydraulic pressures a2, a3, and a4 are adjusted as the line pressure P corresponding to the throttle opening.
  • the hydraulic pressure discharged from the discharge port 7d is returned to the port 6b of the oil pump 6 and becomes the original pressure of the oil pump 6.
  • the oil pump 6 reduces the necessary driving force, It is possible to prevent wasteful energy consumption and contribute to improving the fuel consumption of a vehicle equipped with the hydraulic control device 1 for the automatic transmission.
  • the line pressure P is also supplied to the modulator valve via an oil passage (not shown).
  • the oil pressure adjusted to a constant pressure is output as the modulator pressure P.
  • the lid member 8g is inserted, and the lid member 8g Is fixed by a key member 8h, whereby the spool 8p is urged upward by a spring 8s, an oil chamber 8a is provided below the spool 8p, and an upper portion of the spool 8p.
  • the oil chamber 8b, an oil chamber 8c, which will be described in detail later, a pressure adjusting port (pressure adjusting portion) 8f, a discharge port (pressure adjusting portion) 8d, and an output port (pressure adjusting portion) 8e are formed. It has been done.
  • the spool 8p is formed in an axial shape with respect to the arrow X—Y direction, and has a large-diameter portion 8 ⁇ formed with three land portions 8pl, 8pl, 8pl having an outer diameter D1, and an outer diameter. Smaller diameter than D1
  • An oil chamber 8c is formed between the diameter portion 8 ⁇ and the small diameter portion 8 ⁇ .
  • the oil chamber 8 b is pressure-receiving area Dl 2/4 based on the outer diameter D1 '[pi (hereinafter, referred to as "pressure receiving area Al”)
  • the pressure receiving area D2 2/4 is the oil chamber 8a based on the outer diameter D2 ' ⁇ (hereinafter referred to as “pressure-receiving area ⁇ 2”)
  • the oil chamber 8c has a pressure-receiving area (Dl 2 — D2 2 ) / 4' ⁇ (hereinafter referred to as the pressure difference between the outer diameter D1 and the outer diameter D2).
  • Pressure-receiving area Al— ⁇ 2 The control pressure P is input to the oil chamber 8a through the oil passages cl and c3 from the linear solenoid valve SLT described above.
  • the oil chamber 8b is also input as a secondary pressure P force idback pressure described later in detail.
  • the line pressure P is input to the oil chamber 8c when the lockup clutch 3 is engaged from a solenoid valve S1 described later.
  • the movement of the pool 8p is controlled, and the hydraulic pressure discharged from the discharge port 8d is adjusted, so that the oil pressure S of the pressure adjustment port 8f is adjusted and the oil passages bl, b2, b3, b4,
  • the oil pressures b5 and b6 are adjusted as the secondary pressure P corresponding to the throttle opening.
  • the solenoid valve S1 (for example, normally closed) has an input port Sla and an output port Sib, and the line pressure P adjusted by the primary regulator valve 7 described above is supplied to the input port Sla as oil. Input via route a4.
  • the solenoid valve S1 is OFF
  • oil chamber 9a of the relay valve 9 In addition to being input to the oil chamber 9a of the relay valve 9, it is supplied to the oil chamber 8c of the secondary regulator valve 8 described above via oil paths (gain increasing pressure input means, first oil path) el, e3.
  • the solenoid valve S1 is a force that explains the so-called normally closed type in which the input port Sla and the output port Sib are cut off when the power is not supplied. Conversely, the input port Sla and the output port Sib are connected when the power is not supplied. In this case, it is energized without the signal pressure P being output.
  • the lockup relay valve 9 includes a spool 9p and a spool 9s that urges the spool 9p upward, and an oil chamber 9a, a port 9c, and a port 9d above the spool 9p.
  • the oil chamber 9a is connected to the output port Sla of the solenoid valve SI via the oil passages el and e2, and when the signal pressure P (line pressure P) is output from the solenoid valve S1.
  • the signal pressure P is input. That is, the lock-up relay valve 9 is the solenoid valve.
  • right half position The position indicated by the right half in the figure (hereinafter referred to as the “right half position”).
  • the oil is discharged, input to the port 9f of the lockup relay valve 9 through the oil passage il, further output from the port 9e, and input to the oil cooler (COOLER) 30.
  • the oil input to the oil cooler 30 is cooled by the oil cooler 30 and then discharged to an oil pan (not shown) and again sucked into the oil pump 6 through the strainer 5.
  • the oil passage g4 is connected to a check valve 12 having a plunger 12p and a spring 12s for urging the plunger 12p upward, and when the secondary pressure P becomes equal to or higher than a predetermined pressure, the oil passage g4
  • the plunger 12p is pushed downward by overcoming the urging force of the pulling 12s, and the drain port EX of the check valve 12 is opened and drained), so the secondary in the oil passages gl, g2, g3, g4
  • the pressure P is reduced to a predetermined pressure. In other words, this reduced secondary pressure
  • the lockup control valve 10 includes a spool 10p and a spring 10s that urges the spool 10p downward (via the plunger), and an oil chamber 10a below the spool, Above the spool 10p, there are provided an oil chamber 10b, an oil chamber 10c formed by a difference in the diameter of the land portion of the spool 10p (a difference in pressure receiving area), a port 10d, and a port 10e.
  • a lockup engagement pressure described later output from the port 10e is input to the oil chamber 10b as a feedback pressure via the oil passages hl and h2.
  • the spool ⁇ of the lock-up control valve 10 is obtained when the secondary pressure P is reduced to the oil chamber 10a and the control pressure P is gradually input to the oil chamber 10c.
  • the spool 10p is controlled to move upward (from the right half position to the left half position in the figure) against the urging force of the spring 10s and the feedback pressure. Then, as the spool 10p moves upward, the port 10d and the port 10e gradually communicate with each other (the amount of restriction decreases), and the secondary pressure P input to the port 10d through the oil passage b6 gradually increases.
  • the secondary pressure P output to the oil passage h3 is a lock in which the spool 9p is in the right half position.
  • Road el, e3 is provided.
  • the solenoid valve S1 outputs the signal pressure P (line pressure P)
  • the supply of the secondary pressure P is cut off. That is, the oil chamber 8c of the secondary regulator valve 8
  • the line pressure P is input while the lockup clutch 3 is engaged, and the lockup clutch 3
  • Hydraulic pressure is not input when latch 3 is released.
  • Dariregulator valve 8 oil chamber 8a has control pressure P from linear solenoid valve SLT.
  • the secondary pressure P that is regulated at the pressure regulating port 8f of the secondary regulator valve 8 is controlled in the range of the relatively lower position of the spool 8p.
  • low secondary pressure P Lo The amount of restriction between 8d and the pressure regulating port 8f is small (the amount of communication is large), resulting in a low pressure secondary pressure (hereinafter referred to as “low secondary pressure”) P Lo.
  • the gain (input / output ratio) as the secondary regulator valve 8 is A2ZA1 (A1> A2), that is, the gain is smaller than 1 (see FIG. 2).
  • Dariregulator valve 8 oil chamber 8a has control pressure P from linear solenoid valve SLT.
  • the gain (input / output ratio) of the C SLT SP single valve 8 is A2ZA1 (A1> ⁇ 2, ⁇ > 1), that is, the gain is greater than 1 (see Fig. 2).
  • the low secondary pressure P Lo is supplied to the lockup clutch 3 as it is.
  • control pressure P is supplied through the oil passage c2 to the oil chamber 7 of the primary leg turret 7.
  • control pressure P is applied to the oil chamber 8c of the secondary regulator valve 8.
  • the gain of the secondary regulator valve 8 is greater than 1 in the oil chamber 8c of the secondary regulator valve 8 as described above. Since the line pressure P is input as the pressure that increases, the hydraulic pressure B3 (
  • the line pressure P becomes the hydraulic pressure A3, that is, the line pressure P increases unnecessarily.
  • the spool 8p of the secondary regulator valve 8 includes the large-diameter portion 8pA and the small-diameter portion 8pB.
  • an intermediate portion is formed so as not to have a larger diameter than both end portions of the spool 8p, and an oil chamber 8c is formed between the large diameter portion 8pA and the small diameter portion 8pB.
  • the secondary regulator valve 8 can be configured with a simple configuration, so that the number of parts can be reduced, the manufacturing process can be simplified, and compactness can be achieved.
  • the secondary pressure P is output to the lockup clutch 3 based on the
  • the solenoid valve S1 inputs the line pressure P as the source pressure of the signal pressure P and
  • the line pressure P is output as it is as the signal pressure P.
  • the line pressure P can be supplied as the pressure at which the gain of the urerator valve 8 is greater than 1.
  • the secondary regulator valve 8 is controlled by the signal pressure P of the solenoid valve S1.
  • the gain of the secondary leg tanner lev 8 can be controlled to be larger than 1 in conjunction with the engagement of the lock-up clutch 3. It is possible to prevent the line pressure P from being increased unnecessarily during engagement.
  • FIG. 3 is a diagram showing a hydraulic control device for an automatic transmission according to the second embodiment.
  • the same reference numerals are given to the same parts as those in the first embodiment except for some changed parts, and the description thereof is omitted.
  • the hydraulic control device 1 for the automatic transmission according to the second embodiment As shown in FIG. 3, the hydraulic control device 1 for the automatic transmission according to the second embodiment
  • oil passage e3 is eliminated, and the pressure regulating port 7c of the primary regulator valve 7 and the oil chamber 8c of the secondary regulator valve 8 are connected.
  • a5, si and relay valve (gain increasing pressure input means, second switching valve) 13 interposed between the oil passages a2, a5, si and the spool position of the relay valve 13 are controlled.
  • the solenoid valve S2 (eg, normally closed) has an input port S 2a and an output port S2b, and the above-described modulator pressure P is applied to the input port S2a.
  • the solenoid valve S2 When the solenoid valve S2 is in the OFF state (non-energized state), the input port S2a and the output port S2b are shut off, and when the solenoid valve S2 enters the ON state (energized state) based on a signal from an electronic control device (not shown).
  • the input port S2a communicates with the output port S2b, and the modulator pressure P input to the input port S2a from the output port S2b is output as the signal pressure P substantially as it is.
  • the signal pressure P (modulator pressure P) enters the oil chamber 13a of the relay valve 13 via the oil passage rl.
  • the solenoid valve S2 is a force that explains the so-called normally closed type in which the input port S2a and the output port S2b are cut off when the power is not supplied. In this case, it is energized without the signal pressure P being output.
  • the relay solenoid 13 includes a spool 13p and a spring 13s that urges the spool 13p upward, and an oil chamber 13a, a port 13c, and a port 13d above the spool 13p. It has.
  • the oil chamber 13a is connected to an output port S2a of the solenoid valve S2 via an oil passage rl. When a signal pressure P is output from the solenoid valve S2, the oil chamber 13a
  • Signal pressure P is input. That is, the relay valve 13 has a signal pressure higher than that of the solenoid valve S2.
  • Spool 13p is in the right half position against the bias of pull 13s. Then, the line pressure P input to the port 13d via the oil passages a2 and a5 is supplied from the port 13c connected to the oil passage si.
  • the gain of the secondary regulator valve 8 is greater than 1 and can output a high secondary pressure P Hi, thus preventing an unnecessary increase in the line pressure P.
  • the hydraulic control device 1 for the automatic transmission according to the second embodiment of the present invention includes
  • the spool 8p of the secondary regulator valve 8 is formed to have a large diameter portion 8pA and a small diameter portion 8pB, that is, the intermediate portion is formed so as not to have a large diameter from both end portions of the spool 8p.
  • An oil chamber 8c is formed between the large-diameter portion 8pA and the small-diameter portion 8pB, and a pressure at which the gain of the secondary regulator valve 8 is greater than 1 can be input to the oil chamber 8c.
  • the gain of the ureter valve 8 can be made larger than 1, While it can prevent the line pressure P from being increased unnecessarily,
  • the secondary regulator valve 8 can be configured with a simple configuration, so that the number of parts can be reduced, the manufacturing process can be simplified, and compactness can be achieved.
  • the solenoid valve S2 capable of outputting the signal pressure P and the line pressure P are conducted to the oil chamber 8c.
  • the oil passage a5, si is connected to the oil passage a5, si, and communicates with the oil passage a5, si based on the signal pressure P.
  • the line pressure P is applied as a pressure at which the gain of the secondary regulator valve 8 is greater than 1.
  • the secondary regulator is controlled by the signal pressure P of solenoid valve S2.
  • the gain of the regulator valve 8 is larger than 1, the gain of the secondary regulator valve 8 can be controlled to be larger than 1 regardless of the engagement operation of the lockup clutch 3. This prevents unnecessary increases in the secondary pressure P.
  • the force described for what can input the line pressure P to the oil chamber 8c of the secondary regulator valve 8 is not limited to this.
  • the force described for the fluid transmission device 4 including the three ports 4a, 4b, and 4c includes only the two ports, and the lock Even if the secondary pressure is supplied to the torque converter from the direction not pressing the friction plate when the up-clutch is released, and the secondary pressure is supplied from the direction pressing the friction plate when the lock-up clutch is engaged.
  • the present invention can be applied.
  • the hydraulic circuit device is an automatic mounted on a passenger car, a truck, a nose, an agricultural machine, etc. It can be used for transmissions, motors, hybrid drive systems, etc., and is particularly suitable for applications where the gain of the pressure regulating valve that regulates the hydraulic pressure supplied to the lockup clutch or the like is required to be large. Therefore, the pressure regulating valve is suitable for those requiring reduction of the number of parts, simplification of the manufacturing process, compactness, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Transmission Device (AREA)

Abstract

A hydraulic control device (11) for an automatic transmission has a linear solenoid valve (SLT) for outputting a control pressure, a primary regulator valve (7) for regulating a line pressure (PL) according to the control pressure, and a secondary regulator valve (8) for regulating a secondary pressure (PSEC) according to the control pressure (PSLT). The secondary pressure (PSEC) is supplied to both a lock-up clutch (3) and a torque converter (2). A spool (8p) of the secondary regulator valve (8) is formed to have a large-diameter section (8pA) and a small-diameter section (8pB). The hydraulic control device is constructed so that, without installation of parts including a sleeve, the line pressure (PL) can be inputted in an oil chamber (8c) formed between the large-diameter section (8pA) and the small-diameter section (8pB). Although the gain of the secondary regulator valve (8) can be set greater than 1, the hydraulic control device (11) has a simple structure and compact size.

Description

明 細 書  Specification
自動変速機の油圧制御装置  Hydraulic control device for automatic transmission
技術分野  Technical field
[0001] 本発明は、例えば車両等に搭載される自動変速機の油圧制御装置に係り、詳しく はトルクコンバータとロックアップクラッチとに第 2調圧バルブ力 のセカンダリ圧を供 給するような自動変速機の油圧制御装置に関する。  [0001] The present invention relates to a hydraulic control device for an automatic transmission mounted on, for example, a vehicle or the like, and more specifically, an automatic transmission that supplies a secondary pressure of a second pressure regulating valve force to a torque converter and a lockup clutch. The present invention relates to a hydraulic control device for a transmission.
背景技術  Background art
[0002] 一般に、例えば車両等に搭載される自動変速機には、エンジンの出力を変速機構 の入力軸に流体伝動するための流体伝動装置が備えられており、即ち該流体伝動 装置には、エンジンの出力軸 (クランク軸)と変速機構の入力軸との回転数差を許容 することができるトルクコンバータが備えられている。また近年、このような自動変速機 の流体伝動装置においては、燃費向上等を図るため、エンジンの出力軸と変速機構 の入力軸とを直結状態に(ロックアップ)することが可能なロックアップクラッチを備え たものが主流となりつつある。  [0002] Generally, for example, an automatic transmission mounted on a vehicle or the like is provided with a fluid transmission device for fluid transmission of an engine output to an input shaft of a transmission mechanism, that is, the fluid transmission device includes: A torque converter is provided that can allow a difference in rotational speed between the output shaft (crankshaft) of the engine and the input shaft of the transmission mechanism. In recent years, in such a fluid transmission device for an automatic transmission, a lock-up clutch capable of directly connecting (locking up) an engine output shaft and a transmission mechanism input shaft in order to improve fuel efficiency. Those equipped with are becoming mainstream.
[0003] ところで、自動変速機には、変速歯車機構の動力伝達経路を形成するためのクラッ チゃブレーキが備えられており、それらクラッチやブレーキの係脱を制御するための 油圧制御装置が備えられている。この油圧制御装置においては、スロットル開度に応 じて制御圧を出力するソレノイドバルブと、該制御圧に基づき制御されるプライマリレ ギユレータバルブとが備えられており、これらによりスロットル開度に応じたライン圧が 調圧されて、そのライン圧が上記クラッチやブレーキの油圧サーボなどに供給されて いる。一方、上述のトルクコンバータとロックアップクラッチとには、特にトルクコンパ一 タの耐久性の向上を図るため、同様に制御圧に基づき制御されるセカンダリレギユレ ータバルブによって、ライン圧を減圧したセカンダリ圧を生成し、該セカンダリ圧を供 給するように構成されている。  By the way, the automatic transmission is provided with a clutch brake for forming a power transmission path of the transmission gear mechanism, and a hydraulic control device for controlling engagement / disengagement of the clutch and the brake. It has been. This hydraulic control device is provided with a solenoid valve that outputs a control pressure in accordance with the throttle opening, and a primary regulator valve that is controlled based on the control pressure. The pressure is regulated and the line pressure is supplied to the clutch and brake hydraulic servos. On the other hand, the torque converter and the lock-up clutch described above have a secondary pressure that is reduced by a secondary regulator valve that is similarly controlled based on the control pressure in order to improve the durability of the torque comparator. Is generated, and the secondary pressure is supplied.
[0004] し力しながら、例えばエンジンの出力が大きい場合など、ロックアップクラッチの伝達 トルク容量の必要量が大きな場合には、セカンダリ圧を上昇する必要が生じ、つまりラ イン圧を不要に上昇する場合が生じてしまい、燃費向上などに悪影響を与えてしまう 虞がある。そのため、セカンダリレギユレータバルブの 2つの油室に上述のソレノイド バルブ力もの制御圧を同時入力し、それによつてセカンダリレギユレータバルブのゲ インを上昇させ、ライン圧の不要な上昇の防止を図ったものが提案されている(例え ば日本国特開 2003—42287号公報、参照)。 [0004] However, if the required amount of transmission torque capacity of the lock-up clutch is large, for example, when the engine output is large, the secondary pressure needs to be increased, that is, the line pressure is increased unnecessarily. Will cause adverse effects on fuel efficiency, etc. There is a fear. Therefore, the control pressure of the above solenoid valve force is simultaneously input to the two oil chambers of the secondary regulator valve, thereby increasing the gain of the secondary regulator valve and preventing unnecessary increase in line pressure. What has been proposed has been proposed (for example, see Japanese Laid-Open Patent Publication No. 2003-42287).
[0005] ここで、従来の自動変速機の油圧制御装置の一例を簡単に説明する。図 4は従来 の自動変速機の油圧制御装置の一例を示す図である。  Here, an example of a conventional hydraulic control device for an automatic transmission will be briefly described. FIG. 4 is a diagram showing an example of a conventional hydraulic control device for an automatic transmission.
[0006] 自動変速機は、トルクコンバータ 2及びロックアップクラッチ 3を有する流体伝動装置 4を備えており、図 4に示すように、自動変速機の油圧制御装置 50は、ストレーナ 5、 オイルポンプ 6、リニアソレノイドバルブ SLT、ソレノイドバルブ SI、プライマリレギユレ ータバルブ 7、セカンダリレギユレータバルブ 58、ロックアップリレーバルブ 59、ロック アップコントロールバルブ 10、チェックバルブ 12、オリフィス 19、オイルクーラ 30、潤 滑油路 (LUBE) 31を備えて構成されている。  [0006] The automatic transmission includes a fluid transmission device 4 having a torque converter 2 and a lock-up clutch 3. As shown in FIG. 4, a hydraulic control device 50 of the automatic transmission includes a strainer 5, an oil pump 6 , Linear solenoid valve SLT, Solenoid valve SI, Primary regulator valve 7, Secondary regulator valve 58, Lockup relay valve 59, Lockup control valve 10, Check valve 12, Orifice 19, Oil cooler 30, Lubricating oil passage (LUBE) 31 is provided.
[0007] 例えば不図示のエンジンの駆動力によりオイルポンプ 6が駆動されると、不図示の オイルパンよりストレーナ 5を介してオイルを吸上げる形で、油路 alを介してプライマ リレギユレータバルブ 7に油圧が供給される。また、リニアソレノイドバルブ SLTは、不 図示のモジユレータバルブよりモジユレータ圧 P を入力し、スロットル開度に基づき  [0007] For example, when the oil pump 6 is driven by a driving force of an engine (not shown), the oil is sucked from the oil pan (not shown) via the strainer 5 and then the primary regulator via the oil passage al. Hydraulic pressure is supplied to the valve 7. The linear solenoid valve SLT receives a modulator pressure P from a not shown modulator valve and based on the throttle opening.
MOD  MOD
出力ポート SLTbより油路 cl, c2, c3, c4へ制御圧 P を出力する。そして、上記プ  Outputs the control pressure P from the output port SLTb to the oil passages cl, c2, c3, c4. And the above
SLT  SLT
ライマリレギユレータバルブ 7は、スプリング 7sの付勢力及び油路 c2を介して油室 7a に入力される制御圧 P と、油室 7bに入力されるフィードバック圧とによりスプール位  The primary regulator valve 7 has a spool position that depends on the urging force of the spring 7s and the control pressure P input to the oil chamber 7a via the oil passage c2 and the feedback pressure input to the oil chamber 7b.
SLT  SLT
置が調整されることで、油路 dlを介してオイルポンプ 6に還元する油圧を調整しつつ 、油路 al, a2, a3, a4の油圧をスロットル開度に応じたライン圧 Pに調圧する。  By adjusting the position, the oil pressure in the oil passages al, a2, a3, and a4 is adjusted to the line pressure P corresponding to the throttle opening while adjusting the oil pressure that is returned to the oil pump 6 through the oil passage dl. .
L  L
[0008] 一方、セカンダリレギユレータバルブ 58は、バルブボディ 20に形成されたバルブ穴 22に、スプール 58pと、スプリング 58sと、プランジャ 58jと、スリーブ部 58iを有する蓋 部 58gとが矢印 X方向に向けて挿入され、該蓋部 58gがキー 58hによりバルブボディ 20に固定されて構成されており、これらにより第 1油室 58a、第 2油室 58b、第 3油室 58cを形成している。また、上記スプール 58pのランド部 58plとプランジャ 58jとは外 径 D3に形成され、ランド部 58plとランド部 58plとランド部 58plとは外径 D4に形成  [0008] On the other hand, in the secondary regulator valve 58, the valve hole 22 formed in the valve body 20 includes a spool 58p, a spring 58s, a plunger 58j, and a lid portion 58g having a sleeve portion 58i in the arrow X direction. The lid portion 58g is fixed to the valve body 20 with a key 58h, thereby forming a first oil chamber 58a, a second oil chamber 58b, and a third oil chamber 58c. . In addition, the land 58pl and the plunger 58j of the spool 58p are formed with an outer diameter D3, and the land 58pl, the land 58pl, and the land 58pl are formed with an outer diameter D4.
2 3 4  2 3 4
されている。 [0009] ロックアップクラッチ 3を解放状態にする場合には、ソレノイドバルブ SIを制御して 信号圧 P を出力せず、それによつてロックアップリレーバルブ 59のスプール 59pが Has been. [0009] When the lock-up clutch 3 is released, the solenoid valve SI is controlled so as not to output the signal pressure P, thereby causing the spool 59p of the lock-up relay valve 59 to
S1  S1
図中の左半位置に示す状態となり、リニアソレノイドバルブ SLTから油路 c4を介して 供給される制御圧 P が該ロックアップリレーバルブ 59により遮断される。これにより  In the state shown in the left half of the figure, the control pressure P supplied from the linear solenoid valve SLT via the oil passage c4 is cut off by the lockup relay valve 59. This
SLT  SLT
、セカンダリレギユレータバルブ 58には、第 1油室 58aに油路 c3を介して制御圧 P  The secondary regulator valve 58 has a control pressure P via the oil passage c3 to the first oil chamber 58a.
SLT  SLT
と、第 2油室 58bにフィードバック圧と、だけが入力される。  Then, only the feedback pressure is input to the second oil chamber 58b.
[0010] そして、セカンダリレギユレータバルブ 58は、スプリング 58sの付勢力及び第 1油室 58aに入力される制御圧 P と、第 2油室 58bに入力されるフィードバック圧とにより  [0010] The secondary regulator valve 58 is based on the biasing force of the spring 58s, the control pressure P input to the first oil chamber 58a, and the feedback pressure input to the second oil chamber 58b.
SLT  SLT
スプール 58pの位置が調整されることで、ポート 58dより油路 d2を介してオイルポンプ 6に還元する油圧を調整しつつ、ポート 58fに接続された油路 bl, b2, b3, b4, b5, b6の油圧をスロットル開度に応じてライン圧 Pよりも大幅に減圧したセカンダリ圧 P  By adjusting the position of the spool 58p, the oil passage bl, b2, b3, b4, b5, connected to the port 58f is adjusted while adjusting the hydraulic pressure returned to the oil pump 6 from the port 58d via the oil passage d2. Secondary pressure P where b6's hydraulic pressure is greatly reduced from line pressure P according to throttle opening
L SEC  L SEC
に調圧する。  Adjust pressure.
[0011] なお、この状態のセカンダリ圧は、後述するロックアップクラッチ 3の係合状態より低 圧に調圧される状態であるので、低セカンダリ圧 P Loとする。また、外径 D3の受  [0011] It should be noted that the secondary pressure in this state is a state in which the pressure is adjusted to a lower pressure than the engagement state of the lock-up clutch 3 described later, and thus is set to the low secondary pressure PLo. Also, receive the outer diameter D3.
SEC  SEC
圧面積を A3 (即ち D32 π /4)、スプリング 58sの付勢力を F とし、この低セカンダリ The pressure area is A3 (i.e., D3 2 π / 4), and the spring 58s biasing force is F.
SP  SP
圧 P Loを数式で示すと、 A3 · P Lo=A3 -P +F であり、 P Lo = P +F The pressure P Lo is expressed by the following formula: A3 · P Lo = A3 -P + F and P Lo = P + F
SEC SEC SLT SP SEC SLTSEC SEC SLT SP SEC SLT
ZA3であるので、セカンダリレギユレータバルブ 58としてのゲイン(制御圧 P にSince it is ZA3, the gain (control pressure P to the secondary regulator valve 58)
SP SLT SP SLT
対するセカンダリ圧 P の入出力比)は、 1である。  The input / output ratio of secondary pressure P to 1) is 1.
SEC  SEC
[0012] この低セカンダリ圧 P Loは、油路 b5よりロックアップリレーバルブ 59を介してトル  [0012] This low secondary pressure P Lo is supplied from the oil passage b5 through the lock-up relay valve 59.
SEC  SEC
クコンバータ 2に供給される。このようにトルクコンバータ 2には、ライン圧 Pを大幅に  Supplied to converter 2. In this way, the line pressure P is greatly increased in the torque converter 2.
 Shi
減圧した低セカンダリ圧 P Loが供給されるので、高圧がかからず、耐久性の向上  Low secondary pressure P Lo is supplied, so high pressure is not applied and durability is improved.
SEC  SEC
が図られる。また、低セカンダリ圧 P Loは、スロットル開度に応じて調圧されるので  Is planned. The low secondary pressure P Lo is adjusted according to the throttle opening.
SEC  SEC
、スロットル開度に応じてエンジンの出力が上昇しても、トルクコンバータ 2のトルク伝 達能力も上昇するため、トルク伝達が正常になされる。  Even if the engine output increases according to the throttle opening, the torque transmission capacity of the torque converter 2 also increases, so that torque transmission is performed normally.
[0013] 一方、ロックアップクラッチ 3を係合状態にする場合には、ソレノイドバルブ S1を制 御して信号圧 P を出力し、それによつてロックアップリレーバルブ 59のスプール 59p  [0013] On the other hand, when the lockup clutch 3 is engaged, the solenoid valve S1 is controlled to output the signal pressure P, and thereby the spool 59p of the lockup relay valve 59 is output.
SI  SI
を図中右半位置に示す状態となる。すると、ロックアップリレーバルブ 59のポート 591 とポート 59mとが連通し、リニアソレノイドバルブ SLTから油路 c4を介して供給される 制御圧 P が油路 tlを介してセカンダリレギユレータバルブ 58の第 3油室 58cに入Is shown in the right half position in the figure. Then, the port 591 and the port 59m of the lockup relay valve 59 communicate with each other and are supplied from the linear solenoid valve SLT through the oil passage c4. The control pressure P enters the third oil chamber 58c of the secondary regulator valve 58 via the oil passage tl.
SLT SLT
力される。これにより、セカンダリレギユレータバルブ 58には、第 1油室 58aに制御圧 P と、第 2油室 58bにフィードバック圧と、第 3油室 58cに制御圧 P とが入力され It is powered. As a result, the secondary regulator valve 58 receives the control pressure P in the first oil chamber 58a, the feedback pressure in the second oil chamber 58b, and the control pressure P in the third oil chamber 58c.
SLT SLT SLT SLT
る。  The
[0014] 上記第 3油室 58cに入力された制御圧 P は、外径 D3のプランジャ 58jと外径 D4  [0014] The control pressure P input to the third oil chamber 58c includes a plunger 58j having an outer diameter D3 and an outer diameter D4.
SLT  SLT
のランド部 58plとの受圧面積の差分に対応して、スプール 58pを矢印 X方向に押圧  Press the spool 58p in the direction of the arrow X in accordance with the difference in pressure receiving area with the land 58pl
4  Four
するように作用する。これにより、ポート 58dより油路 d2を介してオイルポンプ 6に還元 する油圧を絞り、ポート 58fに接続された油路 bl, b2, b3, b4, b5, b6の油圧をスロ ットル開度に応じて上記低セカンダリ圧 P Loよりも高いセカンダリ圧(以下、「高セ  Acts like As a result, the oil pressure to be reduced to the oil pump 6 is reduced from the port 58d through the oil passage d2, and the oil pressure in the oil passages bl, b2, b3, b4, b5, b6 connected to the port 58f is adjusted according to the throttle opening. Secondary pressure higher than the low secondary pressure P Lo (hereinafter referred to as “high
SEC  SEC
カンダリ圧」とする) P Hiに調圧する。  Adjust pressure to P Hi.
SEC  SEC
[0015] なお、外径 D3の受圧面積を A3 (即ち ϋ32 π Ζ4)、外径 D4の受圧面積を A4 (即ち D42 π /4)、スプリング 58sの付勢力を F とし、この高セカンダリ圧 P Hiを数式で [0015] The pressure receiving area of the outer diameter D3 is A3 (ie, ϋ3 2 π Ζ4), the pressure receiving area of the outer diameter D4 is A4 (ie, D4 2 π / 4), and the biasing force of the spring 58s is F. Pressure P Hi
SP SEC  SP SEC
示すと、 A3 -P Hi=A3 -P + (A4—A3) ·Ρ +F であり、 P Hi=A4/A  A3 -P Hi = A3 -P + (A4-A3) · Ρ + F, P Hi = A4 / A
SEC SLT SLT SP SEC  SEC SLT SLT SP SEC
3 ·Ρ +F ZA3であるので、セカンダリレギユレータバルブ 58としてのゲイン(入 3 · Ρ + F ZA3, so the gain as the secondary regulator valve 58 (input
SLT SP SLT SP
出力比)は、 Α4ΖΑ3 (Α4>Α3)であって、つまり 1よりも大きくなる。  The output ratio is Α4ΖΑ3 (Α4> Α3), that is, greater than 1.
[0016] この高セカンダリ圧 P Hiは、油路 b6よりロックアップコントロールバルブ 10及び口 [0016] This high secondary pressure P Hi is applied to the lockup control valve 10 and the opening from the oil passage b6.
SEC  SEC
ックアップリレーバルブ 59を介してロックアップクラッチ 3に供給される。また、油路 b5 より供給される高セカンダリ圧 P Hiは、オリフィス 19及びチェックバルブ 12により減  Supplied to the lockup clutch 3 via the backup relay valve 59. The high secondary pressure P Hi supplied from the oil passage b5 is reduced by the orifice 19 and the check valve 12.
SEC  SEC
圧された後、トルクコンバータ 2に供給される。このため、ロックアップクラッチ 3の供給 圧とトルクコンバータ 2の供給圧との差圧によりロックアップクラッチ 3が係合する。  After being pressed, the torque converter 2 is supplied. For this reason, the lockup clutch 3 is engaged by the differential pressure between the supply pressure of the lockup clutch 3 and the supply pressure of the torque converter 2.
[0017] このように、セカンダリレギユレータバルブ 58のゲインを 1よりも大きくすることで、入 力される制御圧 P に対してセカンダリ圧 P を高圧にすることができ、リニアソレノ In this way, by making the gain of the secondary regulator valve 58 larger than 1, the secondary pressure P can be made higher than the input control pressure P, and the linear solenoid
SLT SEC  SLT SEC
イドバルブ SLTの制御圧 P を不要に上昇せずに、つまりライン圧 Pを不要に上昇  Without increasing the control pressure P of the id valve SLT unnecessarily, that is, increasing the line pressure P unnecessarily.
SLT し  SLT
することなく、ロックアップクラッチ 3にお 、て必要な伝達トルク容量を確保することが でき、燃費の向上を図ることが可能となっている。  Therefore, the lockup clutch 3 can secure the necessary transmission torque capacity and improve fuel efficiency.
発明の開示  Disclosure of the invention
[0018] しかしながら、上述したセカンダリレギユレータバルブ 58の 2つの油室 58a, 58cに 制御圧を入力するものにおいて、特に第 3油室 58cに入力される制御圧 P を作用  [0018] However, in the case where the control pressure is input to the two oil chambers 58a and 58c of the secondary regulator valve 58 described above, the control pressure P input to the third oil chamber 58c is particularly effective.
SLT させてゲインをはりも大きくするためには、スプール 58pの中間部分に位置するラン ド部 58plをプランジャ 58jよりも大径 (即ち D4>D3)に形成する必要が生じてしまう SLT Therefore, in order to increase the gain, it is necessary to form the land portion 58pl located at the intermediate portion of the spool 58p with a larger diameter than the plunger 58j (that is, D4> D3).
4  Four
[0019] また、スプール 58pのランド部 58plをランド部 58plと同径に形成すると、特に低セ [0019] In addition, when the land portion 58pl of the spool 58p is formed to have the same diameter as the land portion 58pl, a particularly low
1 4  14
カンダリ圧 P Loのゲインが低くなり(P Lo=A3/A4-P +F ZA4となり)、  Gandari pressure P Lo gain decreases (P Lo = A3 / A4-P + F ZA4)
SEC SEC SLT SP  SEC SEC SLT SP
スロットル開度が大きくなつた際に、エンジンの出力上昇に比してトルクコンバータ 2 のトルク伝達能力が不足する虞がある。  When the throttle opening increases, the torque transmission capacity of the torque converter 2 may be insufficient compared to the increase in engine output.
[0020] 一般に、油圧制御装置の各バルブにおいては、板状のバルブボディにバルブ穴を 形成し、スプールを挿入した後に蓋状部材で該スプールを封入することで、バルブと して構成している力 上述のようなスプール 58pの中間部分に位置するランド部 58pl が大径であると、挿入したスプール 58pの (挿入方向の)後端側に位置する部分とバ[0020] In general, each valve of a hydraulic control device is configured as a valve by forming a valve hole in a plate-like valve body, and sealing the spool with a lid-like member after inserting the spool. If the land 58pl located in the middle part of the spool 58p as described above has a large diameter, the portion of the spool 58p that is inserted and the part located on the rear end side (in the insertion direction)
4 Four
ルブ穴 22との間に間隙が生じてしまうので、上述のようなスリーブ 58iのような部材を 設ける必要が生じてしまう。  Since a gap is generated between the lube hole 22, it is necessary to provide a member such as the sleeve 58i as described above.
[0021] また、例えばバルブ穴 22とスプール 58pとの間にスリーブ 58iを設けると、該バルブ 穴 22の軸方向の中心とスリーブ 58pの軸方向の中心とが必ずしも同心となるとは限ら ないため、スプール 58pをそのまま延設するだけでは、偏心によってスプール 58pと スリーブ 58pとの接触抵抗が大きくなることや隙間が生じるなどの問題が生じる虞があ る。そのため、スリーブ 58iに対して同心上を摺動するプランジャ 5¾を設け、該プラン ジャ 5¾を介してスリーブ 58pを押圧するように構成する必要がある。  [0021] Further, for example, when the sleeve 58i is provided between the valve hole 22 and the spool 58p, the axial center of the valve hole 22 and the axial center of the sleeve 58p are not necessarily concentric. If the spool 58p is simply extended as it is, problems such as an increase in contact resistance between the spool 58p and the sleeve 58p and a gap may occur due to eccentricity. Therefore, it is necessary to provide a plunger 5¾ that slides concentrically with respect to the sleeve 58i, and to press the sleeve 58p through the plunger 5¾.
[0022] このように、セカンダリレギユレータバルブの高セカンダリ圧出力時のゲインを 1よりも 大きくするためには、スリーブやプランジャを設けることによる部品点数の増カロ、製造 工程の増加、コストダウンの妨げなどの問題を生じると共に、スプールの径 (即ちラン ド部 58pl )を大きくすることに伴うセカンダリレギユレ一タノ レブの肥大化を招き、自  [0022] Thus, in order to increase the gain at the time of high secondary pressure output of the secondary regulator valve to be larger than 1, the number of parts is increased by providing a sleeve and a plunger, the manufacturing process is increased, and the cost is reduced. This causes problems such as hindrance to the secondary leg and the enlargement of the secondary leg and the torque associated with the increase in the spool diameter (i.e., the land part 58pl).
4  Four
動変速機の油圧制御装置のコンパクトィ匕の妨げとなるという問題があった。  There has been a problem that the compactness of the hydraulic control device of the dynamic transmission is hindered.
[0023] そこで本発明は、第 2調圧バルブのゲインを 1よりも大きくすることが可能であるもの でありながら、簡単な構成で、かつコンパクト化が可能な自動変速機の油圧制御装 置を提供することを目的とするものである。 Therefore, the present invention provides a hydraulic control device for an automatic transmission that has a simple configuration and can be made compact while allowing the gain of the second pressure regulating valve to be larger than 1. Is intended to provide.
[0024] 本発明は (例えば図 1乃至図 3参照)、スロットル開度に応じて制御圧 (P )を出力 する制御バルブ (SLT)と、前記制御圧 (P )に応じてライン圧 (P )を調圧する第 1 [0024] The present invention (see, for example, FIGS. 1 to 3) outputs a control pressure (P) according to the throttle opening. A control valve (SLT) for controlling and a first pressure regulating the line pressure (P) according to the control pressure (P).
SLT し  SLT
調圧バルブ(7)と、前記制御圧 (P )に応じて前記ライン圧 (P )より低圧なセカンダ  A pressure control valve (7) and a second pressure lower than the line pressure (P) according to the control pressure (P)
SLT し  SLT
リ圧 (P )を調圧する第 2調圧バルブ (8)と、を備え、前記セカンダリ圧 (P )を、口 A second pressure regulating valve (8) for regulating the re-pressure (P), and the secondary pressure (P)
SEC SEC SEC SEC
ックアップクラッチ (3)とトルクコンバータ(2)とを有する流体伝動装置 (4)に供給する 自動変速機の油圧制御装置(1)において、  In a hydraulic control device (1) for an automatic transmission that supplies a fluid transmission (4) having a knock-up clutch (3) and a torque converter (2),
前記第 2調圧バルブ (8)は、  The second pressure regulating valve (8)
軸状に形成され、軸方向一方側(例えば矢印 Y方向側)に大径のランド部(8pl , 8pl It is formed in a shaft shape and has a large-diameter land (8pl, 8pl) on one side in the axial direction (for example, the arrow Y direction)
, 8pl )が形成された大径部(8ρΑ)と、軸方向他方側(例えば矢印 X方向側)に該大, 8pl) and the large diameter part (8ρΑ) formed on the other side in the axial direction (for example, the arrow X direction side)
2 3 twenty three
径のランド部(8pl , 8pl , 8pl )より小径のランド部(8pl )が形成された小径部(8ρΒ  Small-diameter part (8ρΒ) with a smaller-diameter land part (8pl) than the diameter land part (8pl, 8pl, 8pl)
1 2 3 4  1 2 3 4
)と、を備えたスプール(8ρ)と、  ), And a spool (8ρ) with
前記スプール (8ρ)が前記軸方向一方側(例えば矢印 Υ方向)に移動することに応じ て前記セカンダリ圧 (Ρ )が高くなるように調圧する調圧部(8d, 8e, 8f)と、  A pressure adjusting section (8d, 8e, 8f) that adjusts the secondary pressure (Ρ) to increase in response to the spool (8ρ) moving to one side in the axial direction (for example, the direction of the arrow Υ);
SEC  SEC
前記スプール (8p)の軸方向他方側(例えば矢印 X方向)の端部より前記制御圧 (P  From the end of the spool (8p) on the other axial side (for example, the direction of the arrow X), the control pressure (P
Sし S
)を作用させる第 1油室 (8a)と、 ) Act the first oil chamber (8a),
T  T
前記スプール (8p)の軸方向一方側(例えば矢印 Y方向)の端部より前記セカンダリ 圧 (P )のフィードバック圧を作用させる第 2油室 (8b)と、  A second oil chamber (8b) for applying a feedback pressure of the secondary pressure (P) from an end on one axial side of the spool (8p) (for example, in the direction of arrow Y);
SEC  SEC
前記大径部(8pA)と前記小径部(8pB)との間に形成された第 3油室(8c)と、 を有し、  A third oil chamber (8c) formed between the large diameter portion (8pA) and the small diameter portion (8pB),
前記第 3油室 (8c)に、前記制御圧 (P )に対する前記第 2調圧バルブ (8)のゲイ  The third oil chamber (8c) has a gay of the second pressure regulating valve (8) with respect to the control pressure (P).
SLT  SLT
ンが 1よりも大きくなる圧を入力し得るゲイン上昇圧入力手段 (例えば el, e3、又は S 2, a2, a5, si, 13)を備えた、ことを特徴とする。  Gain increasing pressure input means (for example, el, e3, or S2, a2, a5, si, 13) is provided.
[0025] これにより、第 2調圧ノ レブのゲインを 1よりも大きな状態にすることができるもので ありながら、スリーブやプランジャを設けることを不要とすることができ、簡単な構成で 第 2調圧バルブを構成することができて、部品点数の削減、製造工程の簡易化、コン パクトイ匕を図ることができる。 [0025] This makes it possible to make the gain of the second pressure regulating nozzle larger than 1, but it is not necessary to provide a sleeve or a plunger. A pressure regulating valve can be configured, and the number of parts can be reduced, the manufacturing process can be simplified, and compaction can be achieved.
[0026] また、本発明は (例えば図 1乃至図 3参照)、第 1信号圧 (P )を出力し得る第 1ソレ In addition, the present invention (see, for example, FIGS. 1 to 3) is a first solenoid that can output a first signal pressure (P 1).
S1  S1
ノイドバルブ(S1)と、  The noid valve (S1),
前記第 1ソレノイドバルブ (S1)の第 1信号圧 (P )に基づき、前記ロックアップクラッ チ(3)に前記セカンダリ圧 (P )を出力する状態と該セカンダリ圧 (P )を遮断する Based on the first signal pressure (P) of the first solenoid valve (S1), the lockup clutch The secondary pressure (P) is output to the hose (3) and the secondary pressure (P) is shut off.
SEC SEC  SEC SEC
状態とを切換える第 1切換えバルブ (9)と、を備えてなる。  A first switching valve (9) for switching between states.
[0027] これにより、第 1ソレノイドバルブを制御することによって、ロックアップクラッチの係 脱を制御することができる。 [0027] Thereby, the engagement / disengagement of the lockup clutch can be controlled by controlling the first solenoid valve.
[0028] また具体的には (例えば図 1及び図 2参照)、前記第 1ソレノイドバルブ (S1)は、前 記第 1信号圧 (P )の元圧として前記ライン圧 (P )を入力し、かつ前記第 1信号圧 (P More specifically (see, for example, FIGS. 1 and 2), the first solenoid valve (S1) inputs the line pressure (P) as a source pressure of the first signal pressure (P). And the first signal pressure (P
SI L  SI L
)の出力時に前記ライン圧 (P )をそのまま前記第 1信号圧 (P )として出力してなり ) Output the line pressure (P) as it is as the first signal pressure (P).
SI L S1 前記ゲイン上昇圧入力手段は、前記第 1ソレノイドバルブ (S1)の第 1信号圧 (P ) SI L S1 The gain increasing pressure input means is a first signal pressure (P) of the first solenoid valve (S1).
S1 を前記第 3油室 (8c)に入力する第 1油路 (el, e3)からなる。  The first oil passage (el, e3) inputs S1 into the third oil chamber (8c).
[0029] これにより、第 2調圧ノ レブのゲインが 1よりも大きくなる圧としてライン圧を供給する ことができる。また、第 1ソレノイドバルブの第 1信号圧によって第 2調圧バルブのゲイ ンを 1よりも大きくするので、ロックアップクラッチの係合に連動して第 2調圧バルブの ゲインが 1よりも大きくなるように制御することができる。 [0029] Thereby, the line pressure can be supplied as a pressure at which the gain of the second pressure regulating nozzle is greater than 1. In addition, since the first signal pressure of the first solenoid valve makes the gain of the second pressure regulating valve greater than 1, the gain of the second pressure regulating valve is greater than 1 in conjunction with the engagement of the lockup clutch. Can be controlled.
[0030] また具体的には (例えば図 3参照)、前記ゲイン上昇圧入力手段は、 [0030] More specifically (see, for example, FIG. 3), the gain increase pressure input means includes:
第 2信号圧 (P )を出力し得る第 2ソレノイドバルブ (S2)と、  A second solenoid valve (S2) capable of outputting a second signal pressure (P),
S2  S2
前記ライン圧 (P )を前記第 3油室 (8c)に導通する第 2油路 (a2, a5, si)と、  A second oil passage (a2, a5, si) for conducting the line pressure (P) to the third oil chamber (8c);
 Shi
前記第 2油路 (a2, a5, si)に介在し、前記第 2信号圧 (P )に基づき、該第 2油路 (a  The second oil passage (a2, a5, si) is interposed in the second oil passage (a) based on the second signal pressure (P).
S2  S2
2, a5, si)を連通する状態と該第 2油路 (a2, a5, si)を遮断する状態とを切換える 第 2切換えバルブ(13)と、  2, a5, si) and a second switching valve (13) for switching between a state in which the second oil passage (a2, a5, si) is shut off,
からなる。  Consists of.
[0031] これにより、第 2調圧ノ レブのゲインが 1よりも大きくなる圧としてライン圧を供給する ことができる。また、第 2ソレノイドバルブの第 2信号圧によって第 2調圧バルブのゲイ ンを 1よりも大きくするので、ロックアップクラッチの係合動作とは無関係に第 2調圧バ ルブのゲインが 1よりも大きくなるように制御することができる。  Thereby, the line pressure can be supplied as a pressure at which the gain of the second pressure regulating nozzle is greater than 1. Also, since the gain of the second pressure regulating valve is made larger than 1 by the second signal pressure of the second solenoid valve, the gain of the second pressure regulating valve is greater than 1 regardless of the engagement operation of the lockup clutch. Can be controlled to be larger.
[0032] なお、上記カツコ内の符号は、図面と対照するためのものである力 これは、発明の 理解を容易にするための便宜的なものであり、特許請求の範囲の構成に何等影響を 及ぼすものではない。 図面の簡単な説明 [0032] It should be noted that the reference numerals in Katsuko are for comparison with the drawings. This is for convenience to facilitate understanding of the invention and has no effect on the structure of the claims. It does not affect. Brief Description of Drawings
[0033] [図 1]第 1の実施の形態に係る自動変速機の油圧制御装置を示す図。  FIG. 1 is a diagram showing a hydraulic control device for an automatic transmission according to a first embodiment.
[図 2]本発明の自動変速機の油圧制御装置における SLT圧とライン圧及びセカンダ リ圧との関係を示す図。  FIG. 2 is a diagram showing the relationship between the SLT pressure, the line pressure, and the secondary pressure in the hydraulic control device for an automatic transmission according to the present invention.
[図 3]第 2の実施の形態に係る自動変速機の油圧制御装置を示す図。  FIG. 3 is a diagram showing a hydraulic control device for an automatic transmission according to a second embodiment.
[図 4]従来の自動変速機の油圧制御装置の一例を示す図。  FIG. 4 is a diagram showing an example of a conventional hydraulic control device for an automatic transmission.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0034] <第 1の実施の形態 >  [0034] <First embodiment>
以下、本発明に係る第 1の実施の形態を図に沿って説明する。図 1は第 1の実施の 形態に係る自動変速機の油圧制御装置を示す図である。  A first embodiment according to the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing a hydraulic control device for an automatic transmission according to a first embodiment.
[0035] 例えば車両等に搭載される自動変速機 (全体図は省略)は、エンジンのクランク軸 に接続し得る入力軸と、該入力軸の回転 (駆動力)を流体伝動し得る流体伝動装置 4 と、該流体伝動装置 4を介して入力された回転を歯車機構や摩擦係合要素 (クラッチ やブレーキ)によって変速し、出力軸に伝達する変速機構とを備えており、更に、該 変速機構の摩擦係合要素の係合状態や上記流体伝動装置を油圧制御するための 、本発明に係る自動変速機の油圧制御装置 1を備えて構成されている。  [0035] For example, an automatic transmission (generally omitted) mounted on a vehicle or the like includes an input shaft that can be connected to an engine crankshaft, and a fluid transmission device that can fluidly transmit rotation (driving force) of the input shaft. 4 and a speed change mechanism that changes the speed of rotation input through the fluid transmission device 4 by a gear mechanism or a friction engagement element (clutch or brake) and transmits it to the output shaft. The hydraulic control device 1 of the automatic transmission according to the present invention is configured to hydraulically control the engagement state of the friction engagement element and the fluid transmission device.
[0036] 上記流体伝動装置 4は、図 1に示すように、入力軸の回転を入力するポンプインべ ラ 2a、該ポンプインペラ 2aからのオイルの流れを受けて回転される(流体伝動される) タービンランナ 2b、及びタービンランナ 2bからポンプインペラ 2aに戻るオイルを整流 しつつトルク増大効果を生じさせるステータ 2cを有するトルクコンバータ 2を備えてお り、また、詳しくは後述する油圧供給に基づき入力軸とタービンランナ 2bとを直結状 態にするロックアップクラッチ 3を備えて構成されている。なお、ステータ 2cは、ワンゥ エイクラッチ Fによって、ポンプインペラ 3aの回転よりタービンランナ 2bの回転が下回 る状態で回転が固定されて、オイルの流れの反カを受圧してトルク増大効果を生じさ せ、タービンランナ 2bの回転が上回る状態になると空転して、オイルの流れが負方向 に作用しな 、ように構成されて 、る。  [0036] As shown in Fig. 1, the fluid transmission device 4 is rotated by receiving a flow of oil from the pump impeller 2a that inputs rotation of the input shaft and the pump impeller 2a (fluid transmission) ) It is equipped with a turbine runner 2b and a torque converter 2 having a stator 2c that rectifies the oil returning from the turbine runner 2b to the pump impeller 2a and produces a torque increasing effect. A lockup clutch 3 is provided to directly connect the shaft and the turbine runner 2b. The stator 2c is fixed by the one-way clutch F in a state where the rotation of the turbine runner 2b is lower than the rotation of the pump impeller 3a, and receives a reaction force against the oil flow to produce a torque increasing effect. If the rotation of the turbine runner 2b is exceeded, the engine runs idle and the oil flow does not act in the negative direction.
[0037] つづいて、本発明に係る自動変速機の油圧制御装置 1について説明する。自動 変速機の油圧制御装置 1は、図 1に示すように、ストレーナ 5、オイルポンプ 6、リニア ソレノイドバルブ (制御バルブ) SLT、プライマリレギユレータバルブ (第 1調圧バルブ) 7、セカンダリレギユレータバルブ(第 2調圧バルブ) 8、ソレノイドバルブ(第 1ソレノイド ノ レブ) Sl、ロックアップリレーバルブ(第 1切換えバルブ) 9、ロックアップコントロー ルバルブ 10、チェックバルブ 12、オリフィス 19、オイルクーラ 30、潤滑油路(LUBE) 31などを備えて構成されている。 [0037] Next, the hydraulic control device 1 for an automatic transmission according to the present invention will be described. As shown in Fig. 1, the hydraulic control device 1 of the automatic transmission consists of a strainer 5, an oil pump 6, a linear Solenoid valve (control valve) SLT, primary regulator valve (first pressure regulating valve) 7, secondary regulator valve (second pressure regulating valve) 8, solenoid valve (first solenoid valve) Sl, lock-up relay The valve (first switching valve) 9, lockup control valve 10, check valve 12, orifice 19, oil cooler 30, lubricating oil passage (LUBE) 31, etc.
[0038] なお、自動変速機の油圧制御装置 1 には、図 1に示した部分の他に、上記変速機 構のクラッチやブレーキの油圧サーボに油圧を供給するための各種バルブや油路な どが備えられているが、説明の便宜上、本発明の要部を除き、省略して説明する。  In addition to the parts shown in FIG. 1, the automatic transmission hydraulic control device 1 includes various valves and oil passages for supplying hydraulic pressure to the hydraulic servos of the clutches and brakes of the transmission mechanism. However, for convenience of explanation, the explanation is omitted except for the main part of the present invention.
[0039] 図 1に示すように、自動変速機の油圧制御装置 1は、エンジンの回転に連動して駆 動されるオイルポンプ 6を備えており、該オイルポンプ 6により不図示のオイルパンか らストレーナ 5を介してオイルを吸上げる形で油圧を発生させて 、る。上記オイルボン プ 6により発生された油圧は、出力ポート 6aより油路 al, a2, a3, a4に出力されると 共に、詳しくは後述するプライマリレギユレータバルブ 7によって調圧される。  [0039] As shown in FIG. 1, the hydraulic control device 1 of the automatic transmission includes an oil pump 6 that is driven in conjunction with the rotation of the engine, and an oil pan (not shown) is driven by the oil pump 6. The oil pressure is generated by sucking the oil through the strainer 5. The hydraulic pressure generated by the oil pump 6 is output from the output port 6a to the oil passages al, a2, a3, and a4, and is adjusted by a primary regulator valve 7 described later in detail.
[0040] リニアソレノイドバルブ SLTは、リニア駆動部 11 Aと、調圧バルブ部 11Bとを有して いる。該リニア駆動部 11Aには、不図示の電子制御装置からの信号に基づき、スロッ トル開度に応じて位置が電子制御(リニア駆動)されるプランジャ Ι ΙΑρが備えられて おり、また、調圧バルブ部 11Bには、スプール Ι ΙΒρと、該スプール Ι ΙΒρを上記プラ ンジャ 1 ΙΑρ側(図中上方側)に付勢するスプリング 1 IBsと、モジユレータ圧 P 力 S  [0040] The linear solenoid valve SLT has a linear drive section 11A and a pressure regulating valve section 11B. The linear drive unit 11A is provided with a plunger ΙΑ ΙΑρ whose position is electronically controlled (linear drive) in accordance with the throttle opening based on a signal from an electronic control device (not shown). The valve section 11B includes a spool Ι ΙΒρ, a spring 1 IBs that urges the spool Ι ΙΒρ toward the plunger 1 ΙΑρ side (upper side in the figure), and a modulator pressure P force S
MOD  MOD
入力される入力ポート SLTaと、出力ポート SLTbとが備えられている。  An input port SLTa for input and an output port SLTb are provided.
[0041] 例えば不図示の運転席のアクセルペダルが踏まれ、スロットル開度が大きくなると、 該スロットル開度に応じて電子制御によりプランジャ Ι ΙΑρが図中下方に移動駆動さ れる。そして、上記スプール Ι ΙΒρ力 上記プランジャ 11 Apの押圧駆動によりスプリ ング 1 ΙΒρの付勢力に反して図中下方側に移動制御されると、入力ポート SLTaと出 力ポート SLTbとの連通状態がスプール 1 ΙΒρの移動量に伴って開!、て!/、き、それに よって、スロットル開度の大きさに比例する形で出力ポート SLTb力も制御圧 P 力 S For example, when an accelerator pedal in a driver's seat (not shown) is depressed and the throttle opening is increased, the plunger Ι ΙΑρ is moved and driven downward in the figure by electronic control in accordance with the throttle opening. If the spool 上 記 ΙΒρ force is moved downward in the figure against the urging force of the spring 1 ΙΒρ by the pressing drive of the plunger 11 Ap, the communication state between the input port SLTa and the output port SLTb is changed to the spool. 1 Open with the travel of ΙΒρ !, te! /, And so the output port SLTb force is also controlled by the control pressure P force S in proportion to the throttle opening.
SLT  SLT
出力される。  Is output.
[0042] プライマリレギユレータバルブ 7は、スプール 7pと、該スプール 7pを下方に付勢する スプリング 7sとを備えていると共に、該スプール 7pの上方に油室 7aと、該スプール 7p の下方に油室 7bと、調圧ポート 7cと、排出ポート 7dと、出力ポート 7eとを備えている 。上記油室 7aには、上述のリニアソレノイドバルブ SLTより油路 cl, c2を介して制御 圧 P が入力され、また、油室 7bには、詳しくは後述するライン圧 Pが油路 a2, a3をThe primary regulator valve 7 includes a spool 7p and a spring 7s that biases the spool 7p downward, and an oil chamber 7a and a spool 7p above the spool 7p. An oil chamber 7b, a pressure regulating port 7c, a discharge port 7d, and an output port 7e are provided below the bottom. The control pressure P is input to the oil chamber 7a through the oil passages cl and c2 from the linear solenoid valve SLT, and the line pressure P, which will be described in detail later, is supplied to the oil chamber 7b. The
SLT し SLT
介してフィードバック圧として入力される。  And input as feedback pressure.
[0043] 該プライマリレギユレータバルブ 7のスプール 7pには、上記フィードバック圧に対向 してスプリング 7sの付勢力と制御圧 P とが作用し、即ち、該スプール 7pの位置は、 [0043] The urging force of the spring 7s and the control pressure P act on the spool 7p of the primary regulator valve 7 in opposition to the feedback pressure. That is, the position of the spool 7p is
SLT  SLT
主に制御圧 P の大きさによって制御される。該スプール 7pが図中の上方側の状態  It is mainly controlled by the magnitude of the control pressure P. The spool 7p is in the upper side in the figure
SLT  SLT
であると、調圧ポート 7cと排出ポート 7dとが連通し、また、スプール 7pが図中の下方 側の状態に移動制御されると、調圧ポート 7cと排出ポート 7dとの連通量 (絞り量)が 絞られて (遮断されて)いく。つまり上記油室 7aに入力される制御圧 P の大きさによ  If the pressure adjustment port 7c and the discharge port 7d are in communication with each other, and the spool 7p is controlled to move to the lower side in the figure, the communication amount between the pressure adjustment port 7c and the discharge port 7d ( (Aperture amount) is reduced (blocked). In other words, it depends on the magnitude of the control pressure P input to the oil chamber 7a.
SLT  SLT
つてスプール 7pが下方側に向けて移動制御されると共に、排出ポート 7dより排出さ れる油圧量が調整されることで調圧ポート 7cの油圧が調圧され、これによつて油路 a 1, a2, a3, a4の油圧がスロットル開度に応じたライン圧 Pとして調圧される。  Therefore, the spool 7p is controlled to move downward, and the hydraulic pressure discharged from the discharge port 7d is adjusted to adjust the hydraulic pressure in the pressure adjustment port 7c. The hydraulic pressures a2, a3, and a4 are adjusted as the line pressure P corresponding to the throttle opening.
 Shi
[0044] 排出ポート 7dより排出された油圧は、オイルポンプ 6のポート 6bに戻され、オイルポ ンプ 6の元圧となるため、結果的にオイルポンプ 6が必要な駆動力を下げることになり 、無駄なエネルギを消費することを防ぐことができ、 自動変速機の油圧制御装置 1を 備える車両の燃費向上に寄与することが可能となる。  [0044] The hydraulic pressure discharged from the discharge port 7d is returned to the port 6b of the oil pump 6 and becomes the original pressure of the oil pump 6. As a result, the oil pump 6 reduces the necessary driving force, It is possible to prevent wasteful energy consumption and contribute to improving the fuel consumption of a vehicle equipped with the hydraulic control device 1 for the automatic transmission.
[0045] なお、上記ライン圧 Pは、不図示の油路を介してモジユレータバルブにも供給され  [0045] The line pressure P is also supplied to the modulator valve via an oil passage (not shown).
 Shi
ており、該モジユレータバルブは、該ライン圧 Pが所定圧以下であれば、そのままの  If the line pressure P is below a predetermined pressure, the modulator valve
 Shi
油圧を上記モジユレータ圧 P として出力し、該ライン圧 Pが所定圧以上となると、  When the hydraulic pressure is output as the modulator pressure P and the line pressure P exceeds a predetermined pressure,
MOD L  MOD L
一定圧に調圧した油圧をモジユレータ圧 P として出力する。  The oil pressure adjusted to a constant pressure is output as the modulator pressure P.
MOD  MOD
[0046] セカンダリレギユレータバルブ 8は、バルブボディ 20に矢印 Y方向に穿設された穴 部 21に、スプリング 8s及びスプール 8pを挿入した後、蓋部材 8gを嵌入し、更に該蓋 部材 8gをキー部材 8hで固定した形で構成されており、それによつて、スプリング 8sに よって該スプール 8pが上方に付勢されると共に、該スプール 8pの下方に油室 8aと、 該スプール 8pの上方に油室 8bと、詳しくは後述する油室 8cと、調圧ポート (調圧部) 8fと、排出ポート (調圧部) 8dと、出力ポート (調圧部) 8eとが形成されて構成されて いる。 [0047] 上記スプール 8pは、矢印 X—Y方向に対して軸状に形成されており、外径 D1から なる 3つのランド部 8pl , 8pl , 8plが形成された大径部 8ρΑと、外径 D1よりも小径な [0046] In the secondary regulator valve 8, after inserting the spring 8s and the spool 8p into the hole portion 21 formed in the valve body 20 in the direction of the arrow Y, the lid member 8g is inserted, and the lid member 8g Is fixed by a key member 8h, whereby the spool 8p is urged upward by a spring 8s, an oil chamber 8a is provided below the spool 8p, and an upper portion of the spool 8p. The oil chamber 8b, an oil chamber 8c, which will be described in detail later, a pressure adjusting port (pressure adjusting portion) 8f, a discharge port (pressure adjusting portion) 8d, and an output port (pressure adjusting portion) 8e are formed. It has been done. [0047] The spool 8p is formed in an axial shape with respect to the arrow X—Y direction, and has a large-diameter portion 8ρΑ formed with three land portions 8pl, 8pl, 8pl having an outer diameter D1, and an outer diameter. Smaller diameter than D1
1 2 3  one two Three
外径 D2からなるランド部 8plが形成された小径部 8ρΒとを備えている。また、この大  And a small-diameter portion 8ρΒ formed with a land portion 8pl having an outer diameter D2. Also this big
4  Four
径部 8ρΑと小径部 8ρΒとの間に、油室 8cが形成されている。これにより、上記油室 8 bは外径 D1に基づく受圧面積 Dl2/4' π (以下、「受圧面積 Al」という)を、上記油 室 8aは外径 D2に基づく受圧面積 D22/4 ' π (以下、「受圧面積 Α2」という)を、上記 油室 8cは外径 D1と外径 D2との径の差に基づく受圧面積 (Dl2— D22) /4' π (以 下、「受圧面積 Al— Α2」という)を、それぞれ有することになる。この油室 8aには、上 述のリニアソレノイドバルブ SLTより油路 cl, c3を介して制御圧 P が入力され、ま An oil chamber 8c is formed between the diameter portion 8ρΑ and the small diameter portion 8ρΑ. Thus, the oil chamber 8 b is pressure-receiving area Dl 2/4 based on the outer diameter D1 '[pi (hereinafter, referred to as "pressure receiving area Al") the pressure receiving area D2 2/4 is the oil chamber 8a based on the outer diameter D2 'π (hereinafter referred to as “pressure-receiving area Α2”), the oil chamber 8c has a pressure-receiving area (Dl 2 — D2 2 ) / 4' π (hereinafter referred to as the pressure difference between the outer diameter D1 and the outer diameter D2). “Pressure-receiving area Al—Α2”). The control pressure P is input to the oil chamber 8a through the oil passages cl and c3 from the linear solenoid valve SLT described above.
SLT  SLT
た、油室 8bには、詳しくは後述するセカンダリ圧 P 力 イードバック圧として入力さ  The oil chamber 8b is also input as a secondary pressure P force idback pressure described later in detail.
SEC  SEC
れ、更に、油室 8cには、後述するソレノイドバルブ S1よりロックアップクラッチ 3の係合 時にライン圧 Pが入力される。  Furthermore, the line pressure P is input to the oil chamber 8c when the lockup clutch 3 is engaged from a solenoid valve S1 described later.
L  L
[0048] セカンダリレギユレータバルブ 8のスプール 8pの位置は、図中の下方側の状態であ ると、調圧ポート 8fと排出ポート 8dとが連通し、また、スプール 8pが図中の上方側の 状態に移動制御されると、調圧ポート 8fと排出ポート 8dとの連通量 (絞り量)が絞られ て (遮断されて)いく。つまり上記油室 8aに入力される制御圧 P の大きさによってス  [0048] When the position of the spool 8p of the secondary regulator valve 8 is in the lower side in the figure, the pressure regulating port 8f and the discharge port 8d communicate with each other, and the spool 8p is in the upper side in the figure. When the movement is controlled to the side state, the communication amount (throttle amount) between the pressure adjusting port 8f and the discharge port 8d is reduced (blocked). In other words, depending on the magnitude of the control pressure P input to the oil chamber 8a,
SLT  SLT
プール 8pが移動制御されると共に、排出ポート 8dより排出される油圧量が調整され ることで調圧ポート 8fの油圧力 S調圧され、これによつて油路 bl, b2, b3, b4, b5, b6 の油圧がスロットル開度に応じたセカンダリ圧 P として調圧される。  The movement of the pool 8p is controlled, and the hydraulic pressure discharged from the discharge port 8d is adjusted, so that the oil pressure S of the pressure adjustment port 8f is adjusted and the oil passages bl, b2, b3, b4, The oil pressures b5 and b6 are adjusted as the secondary pressure P corresponding to the throttle opening.
SEC  SEC
[0049] 排出ポート 8dより排出された油圧は、上述のプライマリレギユレータバルブ 7から排 出された油圧と同様にオイルポンプ 6のポート 6bに戻され、オイルポンプ 6の元圧とな るため、結果的にオイルポンプ 6が必要な駆動力を下げることとになり、無駄なェネル ギを消費することを防ぐことができ、自動変速機の油圧制御装置 1を備える車両の燃 費向上に寄与することが可能となる。  [0049] Since the hydraulic pressure discharged from the discharge port 8d is returned to the port 6b of the oil pump 6 in the same way as the hydraulic pressure discharged from the primary regulator valve 7 described above, it becomes the original pressure of the oil pump 6. As a result, the oil pump 6 reduces the required driving force, preventing wasteful energy consumption and contributing to improved fuel consumption of vehicles equipped with the hydraulic control device 1 for automatic transmissions. It becomes possible to do.
[0050] ソレノイドバルブ S1 (例えばノーマルクローズ)は、入力ポート Slaと出力ポート Sib とを有しており、該入力ポート Slaに上述のプライマリレギユレータバルブ 7により調圧 されたライン圧 Pが油路 a4を介して入力されている。該ソレノイドバルブ S1は、 OFF  [0050] The solenoid valve S1 (for example, normally closed) has an input port Sla and an output port Sib, and the line pressure P adjusted by the primary regulator valve 7 described above is supplied to the input port Sla as oil. Input via route a4. The solenoid valve S1 is OFF
 Shi
状態 (非通電状態)には入力ポート Slaと出力ポート Sibとが遮断されており、不図示 の電子制御装置力 の信号に基づき ON状態 (通電状態)になると、入力ポート Sla と出力ポート Sibとが連通され、該出力ポート Sibより入力ポート Slaに入力されてい るライン圧 Pを信号圧 (第 1信号圧) P として略そのまま出力する。該出力ポート Sib In the state (non-energized state), the input port Sla and the output port Sib are shut off, not shown The input port Sla communicates with the output port Sib based on the signal of the electronic control device power of the input port Sla and the output port Sib. The line pressure P input to the input port Sla from the output port Sib is changed to the signal pressure ( The first signal pressure (P) is output as it is. Output port Sib
L SI  L SI
より出力された信号圧 P (ライン圧 P )は、油路 el, e2を介して後述のロックアツプリ  The signal pressure P (line pressure P) output from the
SI L  SI L
レーバルブ 9の油室 9aに入力されると共に、油路 (ゲイン上昇圧入力手段、第 1油路 ) el, e3を介して上述のセカンダリレギユレータバルブ 8の油室 8cに供給される。  In addition to being input to the oil chamber 9a of the relay valve 9, it is supplied to the oil chamber 8c of the secondary regulator valve 8 described above via oil paths (gain increasing pressure input means, first oil path) el, e3.
[0051] なお、ソレノイドバルブ S1は、非通電時に入力ポート Slaと出力ポート Sibとが遮断 される、いわゆるノーマルクローズタイプものを説明した力 反対に非通電時に入力 ポート Slaと出力ポート Sibとが連通される、いわゆるノーマルオープンタイプもので あってもよぐこの際は、信号圧 P を出力しない状態で通電されることになる。 [0051] The solenoid valve S1 is a force that explains the so-called normally closed type in which the input port Sla and the output port Sib are cut off when the power is not supplied. Conversely, the input port Sla and the output port Sib are connected when the power is not supplied. In this case, it is energized without the signal pressure P being output.
S1  S1
[0052] ロックアップリレーバルブ 9は、スプール 9pと、該スプール 9pを上方に付勢するスプ リング 9sとを備えていると共に、該スプール 9pの上方に油室 9aと、ポート 9cと、ポート 9dと、ポー卜 9eと、ポー卜 9fと、ポー卜 9gと、ポー卜 9hと、ポー卜 9iと、ポー卜 9jと、ポー卜 9kとを備えている。  [0052] The lockup relay valve 9 includes a spool 9p and a spool 9s that urges the spool 9p upward, and an oil chamber 9a, a port 9c, and a port 9d above the spool 9p. A port 9e, a port 9f, a port 9g, a port 9h, a port 9i, a port 9j, and a port 9k.
[0053] 上記油室 9aには、油路 el, e2を介して上記ソレノイドバルブ SIの出力ポート Sla が接続されており、該ソレノイドバルブ S1より信号圧 P (ライン圧 P )が出力されると  [0053] The oil chamber 9a is connected to the output port Sla of the solenoid valve SI via the oil passages el and e2, and when the signal pressure P (line pressure P) is output from the solenoid valve S1.
SI L  SI L
、該信号圧 P が入力される。即ち、ロックアップリレーバルブ 9は、該ソレノイドバルブ  The signal pressure P is input. That is, the lock-up relay valve 9 is the solenoid valve.
S1  S1
siより信号圧 p が出力されていない状態では、図中の左半分で示す位置 (以下、「  When no signal pressure p is output from si, the position shown in the left half of the figure (hereinafter referred to as ``
S1  S1
左半位置」という)となり、該ソレノイドバルブ siより信号圧 p が出力された状態では  In the state where the signal pressure p is output from the solenoid valve si
S1  S1
、図中の右半分で示す位置 (以下、「右半位置」という)となる。  The position indicated by the right half in the figure (hereinafter referred to as the “right half position”).
[0054] 該ロックアップリレーバルブ 9のスプール 9pが左半位置であると、ポート 9gとポート 9 h、ポート 9fとポート 9e、ポート 9jとドレーンポート EXがそれぞれ連通状態となり、該ス プール 9pが右半位置であると、ポート 9iとポート 9c、ポート 9dとポート 9e、ポート 9fと ドレーンポート EX、ポート 9gとポート 9j、ポート 9kとポート 9hがそれぞれ連通状態と なる。  [0054] When the spool 9p of the lockup relay valve 9 is in the left half position, the port 9g and the port 9h, the port 9f and the port 9e, the port 9j and the drain port EX are in communication with each other, and the spool 9p In the right half position, port 9i and port 9c, port 9d and port 9e, port 9f and drain port EX, port 9g and port 9j, and port 9k and port 9h are in communication.
[0055] 上記ソレノイドバルブ S1が OFF状態であると、油室 9aに油圧が入力されず、スプリ ング 9sの付勢力に基づきスプール 9pが左半位置となる。すると、油路 b5を介してポ ート 9gに入力されているセカンダリ圧 P がポート 9hより出力され、油路 flを介して 流体伝動装置 4の入力ポート 4aに供給され、つまりトルクコンバータ 2内にセカンダリ 圧 P が供給される。トルクコンバータ 2内に供給されたオイルは、排出ポート 4bより[0055] When the solenoid valve S1 is in the OFF state, no hydraulic pressure is input to the oil chamber 9a, and the spool 9p is in the left half position based on the urging force of the spring 9s. Then, the secondary pressure P input to the port 9g through the oil passage b5 is output from the port 9h, and then through the oil passage fl. The pressure is supplied to the input port 4 a of the fluid transmission device 4, that is, the secondary pressure P is supplied into the torque converter 2. Oil supplied into the torque converter 2 is discharged from the discharge port 4b.
SEC SEC
排出され、油路 ilを介して上記ロックアップリレーバルブ 9のポート 9fに入力され、更 にポート 9eより出力されて、オイルクーラ(COOLER) 30に入力される。なお、オイル クーラ 30に入力されたオイルは、該オイルクーラ 30により冷却された後、不図示のォ ィルパンに排出されて、再びストレーナ 5を介してオイルポンプ 6に吸入されることに なる。  The oil is discharged, input to the port 9f of the lockup relay valve 9 through the oil passage il, further output from the port 9e, and input to the oil cooler (COOLER) 30. The oil input to the oil cooler 30 is cooled by the oil cooler 30 and then discharged to an oil pan (not shown) and again sucked into the oil pump 6 through the strainer 5.
[0056] また、上記ソレノイドバルブ S1が ON状態であると、油室 9aに上記信号圧 P が入  [0056] When the solenoid valve S1 is ON, the signal pressure P is applied to the oil chamber 9a.
S1 力され、スプリング 9sの付勢力に反してスプール 9pが右半位置となる。すると、油路 b 5を介してポート 9gに入力されているセカンダリ圧 P がポート ¾より出力され、オリフ  S1 is applied, and the spool 9p is in the right half position against the biasing force of the spring 9s. Then, the secondary pressure P input to the port 9g via the oil passage b 5 is output from the port ¾ and
SEC  SEC
イス 19、油路 gl, g2, g3, g4に供給される。  Supplied to chair 19, oilway gl, g2, g3, g4.
[0057] 油路 g4は、プランジャ 12pと該プランジャ 12pを上方に付勢するスプリング 12sを有 するチェックバルブ 12に接続されており、セカンダリ圧 P が所定圧以上となると、ス [0057] The oil passage g4 is connected to a check valve 12 having a plunger 12p and a spring 12s for urging the plunger 12p upward, and when the secondary pressure P becomes equal to or higher than a predetermined pressure, the oil passage g4
SEC  SEC
プリング 12sの付勢力に打勝ってプランジャ 12pが下方に押圧され、該チェックバル ブ 12のドレーンポート EXが開口してドレーン 出)されるため、油路 gl, g2, g3, g 4内のセカンダリ圧 P は所定圧に減圧される。つまり、この減圧されたセカンダリ圧  The plunger 12p is pushed downward by overcoming the urging force of the pulling 12s, and the drain port EX of the check valve 12 is opened and drained), so the secondary in the oil passages gl, g2, g3, g4 The pressure P is reduced to a predetermined pressure. In other words, this reduced secondary pressure
SEC  SEC
P は、ポート 9kに入力されると共に、後述のロックアップコントロールバルブ 10の油 P is input to the port 9k and the oil of the lockup control valve 10 described later.
SEC SEC
室 10aに入力される。  Input to chamber 10a.
[0058] ポート 9kに入力される減圧されたセカンダリ圧 P は、ポート 9hより上述と同様に  [0058] The reduced secondary pressure P input to the port 9k is the same as described above from the port 9h.
SEC  SEC
油路 flを介してトルクコンバータ 2内に供給される。なお、排出ポート 4bより排出され 、油路 ilを介して上記ロックアップリレーバルブ 9のポート 9fに入力されたオイルは、 そのままロックアップリレーバルブ 9のドレーンポート EXよりドレーンされる。  It is supplied into the torque converter 2 through the oil passage fl. The oil discharged from the discharge port 4b and input to the port 9f of the lockup relay valve 9 through the oil passage il is drained from the drain port EX of the lockup relay valve 9 as it is.
[0059] 一方、ロックアップコントロールバルブ 10は、スプール 10pと、該スプール 10pを(プ ランジャを介して)下方に付勢するスプリング 10sとを備えており、該スプールの下方 に油室 10aと、該スプール 10pの上方に油室 10bと、スプール 10pのランド部の径の 差違 (受圧面積の差違)により形成された油室 10cと、ポート 10dと、ポート 10eとを備 えている。 [0059] On the other hand, the lockup control valve 10 includes a spool 10p and a spring 10s that urges the spool 10p downward (via the plunger), and an oil chamber 10a below the spool, Above the spool 10p, there are provided an oil chamber 10b, an oil chamber 10c formed by a difference in the diameter of the land portion of the spool 10p (a difference in pressure receiving area), a port 10d, and a port 10e.
[0060] 該油室 10aには、上述のようにロックアップリレーバルブ 9が右半位置の際に、チェ ックバルブ 12により所定圧に減圧されたセカンダリ圧 P が入力され、油室 10cには [0060] In the oil chamber 10a, as described above, when the lock-up relay valve 9 is in the right half position, The secondary pressure P reduced to a predetermined pressure by the pressure valve 12 is input, and the oil chamber 10c
SEC  SEC
、不図示のリニアソレノイドバルブ SLUより電子制御に基づきコントロール圧 P 力 S  Control pressure P force S based on electronic control from linear solenoid valve SLU (not shown)
SLU  SLU
入力される。また、油室 10bには、ポート 10eから出力される後述のロックアップ係合 圧が油路 hl、 h2を介してフィードバック圧として入力される。  Entered. In addition, a lockup engagement pressure described later output from the port 10e is input to the oil chamber 10b as a feedback pressure via the oil passages hl and h2.
[0061] ロックアップコントロールバルブ 10のスプール ΙΟρは、油室 10aに減圧されたセカン ダリ圧 P が入力された状態で、油室 10cにコントロール圧 P が徐々に入力されて[0061] The spool ΙΟρ of the lock-up control valve 10 is obtained when the secondary pressure P is reduced to the oil chamber 10a and the control pressure P is gradually input to the oil chamber 10c.
SEC SLU SEC SLU
いくと、上記スプリング 10sの付勢力とフィードバック圧とに反し、スプール 10pが上方 に(図中の右半位置より左半位置に)移動制御される。すると、スプール 10pが上方 に移動するに連れてポート 10dとポート 10eとが徐々に連通し(絞り量が少なくなり)、 油路 b6を介してポート 10dに入力されているセカンダリ圧 P が徐々に上昇するよう  As a result, the spool 10p is controlled to move upward (from the right half position to the left half position in the figure) against the urging force of the spring 10s and the feedback pressure. Then, as the spool 10p moves upward, the port 10d and the port 10e gradually communicate with each other (the amount of restriction decreases), and the secondary pressure P input to the port 10d through the oil passage b6 gradually increases. To rise
SEC  SEC
に調圧されてポート 10eより油路 hi, h2, h3に出力される。また、上記コントロール圧 P が所定圧以上になると、ロックアップコントロールバルブ 10のポート 10dとポート Is output to oil passages hi, h2, and h3 from port 10e. Further, when the control pressure P becomes a predetermined pressure or higher, the port 10d and the port 10 of the lockup control valve 10
SLU SLU
10eとが略完全な連通状態となり、セカンダリ圧 P がそのまま油路 hi, h2, h3に出  10e is almost completely connected, and the secondary pressure P is directly output to the oil passages hi, h2, h3.
SEC  SEC
力される。  It is powered.
[0062] この油路 h3に出力されたセカンダリ圧 P は、スプール 9pが右半位置であるロック  [0062] The secondary pressure P output to the oil passage h3 is a lock in which the spool 9p is in the right half position.
SEC  SEC
アップリレーバルブ 9のポート 9iに入力され、ポート 9cより油路 j lを介して流体伝動装 置 4のポート 4cに入力される。上述したトルクコンバータ 2内に供給されている減圧さ れたセカンダリ圧 P より(即ち、入力ポート 4aの油圧より)該ポート 4cに入力される  Input to port 9i of up-relay valve 9 and input to port 4c of fluid transmission device 4 from port 9c via oil passage jl. The pressure is input to the port 4c from the reduced secondary pressure P supplied to the torque converter 2 (that is, from the hydraulic pressure of the input port 4a).
SEC  SEC
油圧が高くなると、ロックアップクラッチ 3の摩擦板 3aが図中右方側に押圧されていき 、これによつて、ロックアップクラッチ 3が係合される。  When the hydraulic pressure increases, the friction plate 3a of the lock-up clutch 3 is pressed to the right side in the figure, whereby the lock-up clutch 3 is engaged.
[0063] その後、ソレノイドバルブ S1が OFF状態にされ、ロックアップリレーバルブ 9のスプ ール 9pがスプリング 9sの付勢により左半位置になると、ポート 9cとドレーンポート EX とが連通し、油路 j l、ポート 4cを介してロックアップクラッチ 3の油圧がドレーンされる 。また、油路 g2を介して油室 10aに入力されていたセカンダリ圧 P 力 ックアツプリ [0063] After that, when the solenoid valve S1 is turned OFF and the spool 9p of the lockup relay valve 9 is moved to the left half position by the bias of the spring 9s, the port 9c and the drain port EX communicate with each other, and the oil passage The hydraulic pressure of the lockup clutch 3 is drained through jl and port 4c. Also, the secondary pressure P force input to the oil chamber 10a via the oil passage g2
SEC  SEC
レーバルブ 9により遮断されると共に、油路 g2がポート ¾を介してドレーンポート EXと 連通しドレーンされると、ロックアップコントロールバルブ 10のスプール 10pが右半位 置となって、ポート 10eとドレーンポート EXとが連通し、油路 hi, h2, h3内の油圧もド レーンされる。 [0064] つづいて、本発明の要部となるセカンダリ圧 P の高圧 '低圧の切替えについて説 When the oil passage g2 is drained through the port ¾ and connected to the drain port EX, the spool 10p of the lockup control valve 10 is placed in the right half position, and the port 10e and the drain port are blocked. EX communicates with the oil pressure in the oil passages hi, h2, and h3. [0064] Next, the secondary pressure P, which is the main part of the present invention, will be explained.
SEC  SEC
明する。本発明の第 1の実施の形態に係る自動変速機の油圧制御装置 1 において は、上述のようにソレノイドバルブ S1の出力ポート Sibとセカンダリレギユレータバル ブ 8の油室 8cとを接続する油路 el, e3を備えている。また上述のように、このソレノィ ドバルブ S1が信号圧 P (ライン圧 P )を出力すると、ロックアップリレーバルブ 9が右  Light up. In the hydraulic control apparatus 1 for an automatic transmission according to the first embodiment of the present invention, the oil that connects the output port Sib of the solenoid valve S1 and the oil chamber 8c of the secondary regulator valve 8 as described above. Road el, e3 is provided. As described above, when the solenoid valve S1 outputs the signal pressure P (line pressure P), the lockup relay valve 9
SI L  SI L
半位置より左半位置に切替えられ、セカンダリ圧 P 力 ックアップクラッチ 3に供給  Switch from half position to left half position and supply secondary pressure P force to clutch 3
SEC  SEC
され、ソレノイドバルブ S1が信号圧 P を出力しないと、ロックアップクラッチ 3へのセ  If the solenoid valve S1 does not output the signal pressure P, the lockup clutch 3
S1  S1
カンダリ圧 P の供給が遮断される。即ち、セカンダリレギユレータバルブ 8の油室 8c  The supply of the secondary pressure P is cut off. That is, the oil chamber 8c of the secondary regulator valve 8
SEC  SEC
には、ロックアップクラッチ 3を係合する状態でライン圧 Pが入力され、ロックアップク  The line pressure P is input while the lockup clutch 3 is engaged, and the lockup clutch 3
 Shi
ラッチ 3を解放する状態では油圧が入力されない。  Hydraulic pressure is not input when latch 3 is released.
[0065] 上記ソレノイドバルブ S1より信号圧 P (ライン圧 P )が出力されていない際、セカン  [0065] When the signal pressure P (line pressure P) is not output from the solenoid valve S1, the second
SI L  SI L
ダリレギユレータバルブ 8の油室 8aには、リニアソレノイドバルブ SLTからの制御圧 P  Dariregulator valve 8 oil chamber 8a has control pressure P from linear solenoid valve SLT.
s が入力され、かつ油室 8bにセカンダリ圧 P のフィードバック圧が入力される。この s is input, and the feedback pressure of the secondary pressure P is input to the oil chamber 8b. this
LT SEC LT SEC
状態でセカンダリレギユレータバルブ 8の調圧ポート 8fにおいて調圧されるセカンダリ 圧 P は、スプール 8pが比較的下方側の位置の範囲で制御されるため、排出ポート In this state, the secondary pressure P that is regulated at the pressure regulating port 8f of the secondary regulator valve 8 is controlled in the range of the relatively lower position of the spool 8p.
SEC SEC
8dと調圧ポート 8fとの絞り量が少なく(連通する量が多く)、低圧なセカンダリ圧(以下 、「低セカンダリ圧」という) P Loとなる。  The amount of restriction between 8d and the pressure regulating port 8f is small (the amount of communication is large), resulting in a low pressure secondary pressure (hereinafter referred to as “low secondary pressure”) P Lo.
SEC  SEC
[0066] ここで、スプリング 8sの付勢力を F とし、この低セカンダリ圧 P Loを数式で示す  [0066] Here, the urging force of the spring 8s is F, and this low secondary pressure P Lo is expressed by a mathematical expression.
SP SEC  SP SEC
と、 Α1 ·Ρ Lo=A2-P +F であり、 P Lo=A2/Al -P +F ZAlである  Α1 · Ρ Lo = A2-P + F and P Lo = A2 / Al -P + F ZAl
SEC SLT SP SEC SLT SP  SEC SLT SP SEC SLT SP
ので、セカンダリレギユレータバルブ 8としてのゲイン(入出力比)は、 A2ZA1 (A1 > A2)であって、つまりゲインは 1よりも小さい(図 2参照)。  Therefore, the gain (input / output ratio) as the secondary regulator valve 8 is A2ZA1 (A1> A2), that is, the gain is smaller than 1 (see FIG. 2).
[0067] 一方、上記ソレノイドバルブ S1より信号圧 P (ライン圧 P )が出力された際、セカン  [0067] On the other hand, when the signal pressure P (line pressure P) is output from the solenoid valve S1,
SI L  SI L
ダリレギユレータバルブ 8の油室 8aには、リニアソレノイドバルブ SLTからの制御圧 P  Dariregulator valve 8 oil chamber 8a has control pressure P from linear solenoid valve SLT.
s が入力され、かつ油室 8bにセカンダリ圧 P のフィードバック圧が入力されている s is input and the feedback pressure of the secondary pressure P is input to the oil chamber 8b
LT SEC LT SEC
状態で、油室 8cにライン圧 Pが入力される。この状態でセカンダリレギユレータバル  In this state, the line pressure P is input to the oil chamber 8c. In this state, the secondary leg
 Shi
ブ 8の調圧ポート 8fにお!/、て調圧されるセカンダリ圧 P は、スプール 8pが比較的  The secondary pressure P to be adjusted to the pressure adjustment port 8f of
SEC  SEC
上方側の位置の範囲で制御されるため、排出ポート 8dと調圧ポート 8fとの絞り量が 多く(連通する量が少なく)、高圧なセカンダリ圧 (以下、「高セカンダリ圧」という) P  Since it is controlled in the range of the upper position, the amount of throttle between the discharge port 8d and the pressure adjustment port 8f is large (the amount of communication is small), and the high pressure secondary pressure (hereinafter referred to as “high secondary pressure”) P
SEC Hiとなる。 SEC Hi.
[0068] 同様に、スプリング 8sの付勢力を F とし、この高セカンダリ圧 P Hiを数式で示す  [0068] Similarly, the biasing force of the spring 8s is F, and this high secondary pressure P Hi is expressed by a mathematical expression.
SP SEC  SP SEC
と、 Α1 · Ρ Ηί=Α2 · Ρ + (Α1 -Α2) · Ρ +F であり、 Ρ Ηί=Α2/Α1 · Ρ  Α1 · Ρ Ηί = Α2 · Ρ + (Α1 -Α2) · Ρ + F and Ρ Ηί = Α2 / Α1 · Ρ
SEC SLT L SP SEC SLT  SEC SLT L SP SEC SLT
+ (Α1 -Α2) /Α1 · Ρ +F ZA1であって、 P = α · Ρ とすると は係数)、 P  + (Α1 -Α2) / Α1 · Ρ + F ZA1, where P = α · は is a coefficient), P
L SP L SLT SE  L SP L SLT SE
Hi= {A2 + a (Α1 -Α2) }/Α1 · Ρ +F /Alあるので、セカンダリレギユレ Hi = {A2 + a (Α1 -Α2)} / Α1 · Ρ + F / Al
C SLT SP 一 タバルブ 8としてのゲイン(入出力比)は、 A2ZA1 (A1 > Α2、 α > 1)であって、つま りゲインは 1よりも大きくなる(図 2参照)。 The gain (input / output ratio) of the C SLT SP single valve 8 is A2ZA1 (A1> Α2, α> 1), that is, the gain is greater than 1 (see Fig. 2).
[0069] ここで、例えば上記低セカンダリ圧 P Loをロックアップクラッチ 3にそのまま供給し Here, for example, the low secondary pressure P Lo is supplied to the lockup clutch 3 as it is.
SEC  SEC
た場合、ロックアップクラッチ 3の伝達トルクとして必要なトルク容量を確保するため、 図 2に示すような油圧 B1を出力する必要があると、リニアソレノイドバルブ SLTを制御 して制御圧 P を高圧にし、低セカンダリ圧 P Loを油圧 B1まで引き上げることに  If the hydraulic pressure B1 as shown in Fig. 2 needs to be output to secure the necessary torque capacity as the transmission torque of the lockup clutch 3, the linear solenoid valve SLT is controlled to increase the control pressure P. To increase the low secondary pressure P Lo to the hydraulic pressure B1
SLT SEC  SLT SEC
なる。この際、制御圧 P は油路 c2を介してプライマリレギユレ一タノ レブ 7の油室 7  Become. At this time, the control pressure P is supplied through the oil passage c2 to the oil chamber 7 of the primary leg turret 7.
SLT  SLT
aにも入力されるため、ライン圧 Pを油圧 A1まで上昇させてしまうことになる。  Since it is also input to a, the line pressure P is increased to the hydraulic pressure A1.
 Shi
[0070] また例えば従来のようにセカンダリレギユレータバルブ 8の油室 8cに制御圧 P を  [0070] Further, for example, as in the prior art, the control pressure P is applied to the oil chamber 8c of the secondary regulator valve 8.
SLT  SLT
入力してゲインを 1にしたセカンダリ圧 P をロックアップクラッチ 3に供給した場合で  When secondary pressure P with a gain of 1 is supplied to lockup clutch 3,
SEC  SEC
あっても、ロックアップクラッチ 3の伝達トルクとして必要なトルク容量を確保するため、 図 2に示すような油圧 B2 (セカンダリ圧は油圧 B1と同じ)を出力する必要があると、制 御圧 P に基づき、ライン圧 Pを油圧 A2まで上昇させてしまうことになる。  Even if it is necessary to output the hydraulic pressure B2 (secondary pressure is the same as the hydraulic pressure B1) as shown in Fig. 2 in order to secure the required torque capacity as the transmission torque of the lockup clutch 3, the control pressure P Therefore, the line pressure P is increased to the hydraulic pressure A2.
SLT し  SLT
[0071] し力しながら、本発明の自動変速機の油圧制御装置 1 においては、上述のように セカンダリレギユレータバルブ 8の油室 8cに該セカンダリレギユレータバルブ 8のゲイ ンが 1よりも大きくなる圧としてライン圧 Pを入力するので、図 2に示すような油圧 B3 (  However, in the hydraulic control device 1 for an automatic transmission according to the present invention, the gain of the secondary regulator valve 8 is greater than 1 in the oil chamber 8c of the secondary regulator valve 8 as described above. Since the line pressure P is input as the pressure that increases, the hydraulic pressure B3 (
 Shi
セカンダリ圧は油圧 Bl, B2と同じ)を出力する必要があっても、制御圧 P を不要に  Even if it is necessary to output the secondary pressure is the same as the hydraulic pressure Bl, B2, the control pressure P is not required.
SLT  SLT
高圧せずに足り、ライン圧 Pが油圧 A3となって、つまりライン圧 Pが不要に上昇する  The line pressure P becomes the hydraulic pressure A3, that is, the line pressure P increases unnecessarily.
し し  Lion
ことを防ぐこととなる。  Will be prevented.
[0072] 以上のように、本発明の第 1の実施の形態に係る自動変速機の油圧制御装置 1 に よると、セカンダリレギユレータバルブ 8のスプール 8pを大径部 8pAと小径部 8pBとを 備えるように形成し、つまりスプール 8pの両端部分より中間部分が大径とならないよう に形成すると共に、大径部 8pAと小径部 8pBとの間に油室 8cを形成し、該油室 8cに セカンダリレギユレータバルブ 8のゲインが 1よりも大きくなる圧を入力し得るようにした ので、セカンダリレギユレータバルブ 8のゲインを 1よりも大きな状態にすることができ、 不要にライン圧 Pを上昇させることを防ぐことができるものでありながら、従来のような [0072] As described above, according to the hydraulic control device 1 for the automatic transmission according to the first embodiment of the present invention, the spool 8p of the secondary regulator valve 8 includes the large-diameter portion 8pA and the small-diameter portion 8pB. In other words, an intermediate portion is formed so as not to have a larger diameter than both end portions of the spool 8p, and an oil chamber 8c is formed between the large diameter portion 8pA and the small diameter portion 8pB. In Since the pressure that makes the gain of the secondary regulator valve 8 greater than 1 can be input, the gain of the secondary regulator valve 8 can be made larger than 1, and the line pressure P can be increased unnecessarily. While it can prevent the rise,
 Shi
スリーブやプランジャを設けることを不要とすることができ、簡単な構成でセカンダリレ ギユレータバルブ 8を構成することができて、部品点数の削減、製造工程の簡易化、 コンパクトィ匕を図ることができる。  The provision of a sleeve and a plunger can be eliminated, and the secondary regulator valve 8 can be configured with a simple configuration, so that the number of parts can be reduced, the manufacturing process can be simplified, and compactness can be achieved.
[0073] また、信号圧 P を出力し得るソレノイドバルブ S1と、ソレノイドバルブ S1の信号圧 P [0073] Further, the solenoid valve S1 that can output the signal pressure P, and the signal pressure P of the solenoid valve S1
S1  S1
に基づきロックアップクラッチ 3にセカンダリ圧 P を出力する状態と該セカンダリ圧 The secondary pressure P is output to the lockup clutch 3 based on the
SI SEC SI SEC
P を遮断する状態とを切換えるロックアップリレーバルブ 9とを備えているので、ソレ It is equipped with a lock-up relay valve 9 that switches between the states that shut off P.
SEC SEC
ノイドバルブ SIを制御することによって、ロックアップクラッチ 3の係脱 (係合又は解放 )を制御することができる。  By controlling the noid valve SI, it is possible to control the engagement / disengagement (engagement or release) of the lockup clutch 3.
[0074] 更に、ソレノイドバルブ S1は、信号圧 P の元圧としてライン圧 Pを入力し、かつ信 [0074] Further, the solenoid valve S1 inputs the line pressure P as the source pressure of the signal pressure P and
SI L  SI L
号圧 P の出力時にライン圧 Pをそのまま信号圧 P として出力してなり、ソレノイドバ When the signal pressure P is output, the line pressure P is output as it is as the signal pressure P.
SI L S1 SI L S1
ルブ S1の信号圧 P を油室 8cに入力する油路 e3を備えているので、セカンダリレギ  Since there is an oil passage e3 that inputs the signal pressure P of the valve S1 to the oil chamber 8c, the secondary leg
S1  S1
ユレータバルブ 8のゲインが 1よりも大きくなる圧としてライン圧 Pを供給することがで  The line pressure P can be supplied as the pressure at which the gain of the urerator valve 8 is greater than 1.
 Shi
きる。また、ソレノイドバルブ S1の信号圧 P によってセカンダリレギユレータバルブ 8  wear. Also, the secondary regulator valve 8 is controlled by the signal pressure P of the solenoid valve S1.
S1  S1
のゲインを 1よりも大きくするので、ロックアップクラッチ 3の係合に連動してセカンダリ レギユレ一タノ レブ 8のゲインが 1よりも大きくなるように制御することができ、つまり口 ックアップクラッチ 3の係合中に、不要にライン圧 Pを上昇させることを防ぐことができ  Therefore, the gain of the secondary leg tanner lev 8 can be controlled to be larger than 1 in conjunction with the engagement of the lock-up clutch 3. It is possible to prevent the line pressure P from being increased unnecessarily during engagement.
 Shi
る。  The
[0075] <第 2の実施の形態 >  [0075] <Second embodiment>
ついで、上記第 1の実施の形態を一部変更した第 2の実施の形態について、図 3に 沿って説明する。図 3は第 2の実施の形態に係る自動変速機の油圧制御装置を示す 図である。なお、本第 2の実施の形態においては、一部の変更部分を除き、上記第 1 の実施の形態と同様の部分に同符号を付して、その説明を省略する。  Next, a second embodiment obtained by partially changing the first embodiment will be described with reference to FIG. FIG. 3 is a diagram showing a hydraulic control device for an automatic transmission according to the second embodiment. In the second embodiment, the same reference numerals are given to the same parts as those in the first embodiment except for some changed parts, and the description thereof is omitted.
[0076] 本第 2の実施の形態に係る自動変速機の油圧制御装置 1は、図 3に示すように、  As shown in FIG. 3, the hydraulic control device 1 for the automatic transmission according to the second embodiment
2  2
上述の自動変速機の油圧制御装置 1 に対して、油路 e3を無くし、プライマリレギユレ ータバルブ 7の調圧ポート 7cとセカンダリレギユレータバルブ 8の油室 8cとを接続して ライン圧 Pを該油室 8cに導通 (供給)する油路 (ゲイン上昇圧入力手段、第 2油路) a し For the hydraulic control device 1 of the automatic transmission described above, the oil passage e3 is eliminated, and the pressure regulating port 7c of the primary regulator valve 7 and the oil chamber 8c of the secondary regulator valve 8 are connected. Oil passage (gain increasing pressure input means, second oil passage) for conducting (supplying) line pressure P to the oil chamber 8c
2, a5, siと、該油路 a2, a5, siの間に介在するリレーバルブ(ゲイン上昇圧入力手 段、第 2切換えノ レブ) 13と、該リレーバルブ 13のスプール位置を制御するための信 号圧 (第 2信号圧) P を出力し得るソレノイドバルブ (第 2ソレノイドバルブ) S2と、を  2, a5, si and relay valve (gain increasing pressure input means, second switching valve) 13 interposed between the oil passages a2, a5, si and the spool position of the relay valve 13 are controlled. The solenoid valve (second solenoid valve) S2 that can output the signal pressure (second signal pressure) P of
S2  S2
備えて構成したものである。  It is prepared.
[0077] 詳細に説明すると、ソレノイドバルブ S2 (例えばノーマルクローズ)は、入力ポート S 2aと出力ポート S2bとを有しており、該入力ポート S2aに上述のモジユレータ圧 P More specifically, the solenoid valve S2 (eg, normally closed) has an input port S 2a and an output port S2b, and the above-described modulator pressure P is applied to the input port S2a.
MOD  MOD
が油路 qlを介して入力されている。該ソレノイドバルブ S2は、 OFF状態 (非通電状 態)には入力ポート S2aと出力ポート S2bとが遮断されており、不図示の電子制御装 置からの信号に基づき ON状態 (通電状態)になると、入力ポート S2aと出力ポート S2 bとが連通され、該出力ポート S2bより入力ポート S2aに入力されているモジユレータ 圧 P を信号圧 P として略そのまま出力する。該出力ポート S2bより出力された信 Is input via the oil path ql. When the solenoid valve S2 is in the OFF state (non-energized state), the input port S2a and the output port S2b are shut off, and when the solenoid valve S2 enters the ON state (energized state) based on a signal from an electronic control device (not shown). The input port S2a communicates with the output port S2b, and the modulator pressure P input to the input port S2a from the output port S2b is output as the signal pressure P substantially as it is. The signal output from the output port S2b
MOD S2 MOD S2
号圧 P (モジユレータ圧 P )は、油路 rlを介してリレーバルブ 13の油室 13aに入 The signal pressure P (modulator pressure P) enters the oil chamber 13a of the relay valve 13 via the oil passage rl.
S2 MOD S2 MOD
力される。  It is powered.
[0078] なお、ソレノイドバルブ S2は、非通電時に入力ポート S2aと出力ポート S2bとが遮断 される、いわゆるノーマルクローズタイプものを説明した力 反対に非通電時に入力 ポート S2aと出力ポート S2bとが連通される、いわゆるノーマルオープンタイプもので あってもよぐこの際は、信号圧 P を出力しない状態で通電されることになる。  [0078] The solenoid valve S2 is a force that explains the so-called normally closed type in which the input port S2a and the output port S2b are cut off when the power is not supplied. In this case, it is energized without the signal pressure P being output.
S2  S2
[0079] リレーノ レブ 13は、スプール 13pと、該スプール 13pを上方に付勢するスプリング 1 3sとを備えていると共に、該スプール 13pの上方に油室 13aと、ポート 13cと、ポート 1 3dとを備えている。該油室 13aには、油路 rlを介して上記ソレノイドバルブ S2の出力 ポート S2aが接続されており、該ソレノイドバルブ S2より信号圧 P が出力されると、該  [0079] The relay solenoid 13 includes a spool 13p and a spring 13s that urges the spool 13p upward, and an oil chamber 13a, a port 13c, and a port 13d above the spool 13p. It has. The oil chamber 13a is connected to an output port S2a of the solenoid valve S2 via an oil passage rl. When a signal pressure P is output from the solenoid valve S2, the oil chamber 13a
S2  S2
信号圧 P が入力される。即ち、リレーバルブ 13は、該ソレノイドバルブ S2より信号圧  Signal pressure P is input. That is, the relay valve 13 has a signal pressure higher than that of the solenoid valve S2.
S2  S2
P が出力されていない状態では左半位置となり、該ソレノイドバルブ S2より信号圧 P When P is not output, the valve is in the left half position, and the signal pressure P from the solenoid valve S2
S2 S2
が出力された状態では右半位置となる。該リレーバルブ 13のスプール 13pが左半 When is output, the position is the right half. The spool 13p of the relay valve 13 is in the left half
S2 S2
位置であると、ポート 13cとポート 13dとは遮断され、かつポート 13cとドレーンポート E Xが連通した状態となり、該スプール 13pが右半位置であると、ポート 13cとポート 13 dとが連通状態となる。 [0080] 上記ソレノイドバルブ S2が OFF状態であると、油室 13aに油圧が入力されず、スプ リング 13sの付勢力に基づきスプール 13pが左半位置となる。すると、油路 a2, a5を 介してポート 13dに入力されているライン圧 Pは遮断され、セカンダリレギユレ In the position, the port 13c and the port 13d are blocked, and the port 13c and the drain port EX are in communication with each other. When the spool 13p is in the right half position, the port 13c and the port 13d are in communication with each other. Become. [0080] When the solenoid valve S2 is in the OFF state, no hydraulic pressure is input to the oil chamber 13a, and the spool 13p is in the left half position based on the urging force of the spring 13s. Then, the line pressure P input to the port 13d through the oil passages a2 and a5 is cut off, and the secondary leg
し 一タパ ルブ 8の油室 8cには油圧が入力されない(油路 siを介してドレーンされる)。  However, the hydraulic pressure is not input to the oil chamber 8c of the one-tablet 8 (drained via the oil passage si).
[0081] 上記ソレノイドバルブ S2が ON状態となると、油室 13aに信号圧 P が入力され、ス [0081] When the solenoid valve S2 is turned on, the signal pressure P is input to the oil chamber 13a, and the
S2  S2
プリング 13sの付勢に反してスプール 13pが右半位置となる。すると、油路 a2, a5を 介してポート 13dに入力されているライン圧 Pが油路 siに接続されたポート 13cより  Spool 13p is in the right half position against the bias of pull 13s. Then, the line pressure P input to the port 13d via the oil passages a2 and a5 is supplied from the port 13c connected to the oil passage si.
L  L
出力され、つまりプライマリレギユレータバルブ 7の調圧ポート 7cとセカンダリレギユレ ータバルブ 8の油室 8cとを連通し、該油室 8cにライン圧 Pが入力される。セカンダリ  In other words, the pressure regulating port 7c of the primary regulator valve 7 and the oil chamber 8c of the secondary regulator valve 8 communicate with each other, and the line pressure P is input to the oil chamber 8c. Secondary
 Shi
レギユレ一タノ レブ 8の油室 8cにライン圧 Pが入力された際は、上記第 1の実施の形  When the line pressure P is input to the oil chamber 8c of the reguille tan lev 8, the first embodiment above
 Shi
態と同様に、セカンダリレギユレータバルブ 8のゲインが 1よりも大きくなり、高セカンダ リ圧 P Hiを出力することができるので、同様にライン圧 Pの不要な上昇を防ぐこと In the same way as the state, the gain of the secondary regulator valve 8 is greater than 1 and can output a high secondary pressure P Hi, thus preventing an unnecessary increase in the line pressure P.
SEC L SEC L
ができる。  Can do.
[0082] また、ソレノイドバルブ S2の信号圧 P の出力状態によって、セカンダリレギユレータ  [0082] Depending on the output state of the signal pressure P of the solenoid valve S2, the secondary regulator
S2  S2
バルブ 8の油室 8cにライン圧 Pを入力する状態と入力しない状態とを切換えるので、  Since the state where the line pressure P is input to the oil chamber 8c of the valve 8 and the state where the line pressure P is not input are switched,
 Shi
上記ソレノイドバルブ S1の信号圧 P の出力状態に拘らず、つまりロックアップリレー  Regardless of the output state of signal pressure P of solenoid valve S1, the lockup relay
si  si
バルブ 9の切換えによるロックアップクラッチ 3の係合 '解放の切換えに拘らず、セカン ダリレギユレ一タノ レブ 8のゲインを 1より大きな状態又は 1より小さい状態に切換える ことが可能となる。即ち、ロックアップクラッチ 3の伝達するトルク容量が低くて足り、か つライン圧 Pが高圧で必要な場合などに、低セカンダリ圧 P Loを出力することが  Engagement of the lock-up clutch 3 by switching the valve 9 'The gain of the secondary leg tan- nore 8 can be switched to a state larger than 1 or smaller than 1 regardless of the switching of release. That is, when the torque capacity transmitted by the lockup clutch 3 is low and the line pressure P is required to be high, the low secondary pressure P Lo can be output.
L SEC  L SEC
でき、高セカンダリ圧 P Hiを出力しないようにすることができるので、トルクコンパ  It is possible to prevent the high secondary pressure P Hi from being output.
SEC 一 タ 2の耐久性の向上を図ることが可能となる。  It is possible to improve the durability of SEC unit 2.
[0083] 以上のように、本発明の第 2の実施の形態に係る自動変速機の油圧制御装置 1 に [0083] As described above, the hydraulic control device 1 for the automatic transmission according to the second embodiment of the present invention includes
2 よると、セカンダリレギユレータバルブ 8のスプール 8pを大径部 8pAと小径部 8pBとを 備えるように形成し、つまりスプール 8pの両端部分より中間部分が大径とならないよう に形成すると共に、大径部 8pAと小径部 8pBとの間に油室 8cを形成し、該油室 8cに セカンダリレギユレータバルブ 8のゲインが 1よりも大きくなる圧を入力し得るようにした ので、セカンダリレギユレータバルブ 8のゲインを 1よりも大きな状態にすることができ、 不要にライン圧 Pを上昇させることを防ぐことができるものでありながら、従来のような According to Fig. 2, the spool 8p of the secondary regulator valve 8 is formed to have a large diameter portion 8pA and a small diameter portion 8pB, that is, the intermediate portion is formed so as not to have a large diameter from both end portions of the spool 8p. An oil chamber 8c is formed between the large-diameter portion 8pA and the small-diameter portion 8pB, and a pressure at which the gain of the secondary regulator valve 8 is greater than 1 can be input to the oil chamber 8c. The gain of the ureter valve 8 can be made larger than 1, While it can prevent the line pressure P from being increased unnecessarily,
 Shi
スリーブやプランジャを設けることを不要とすることができ、簡単な構成でセカンダリレ ギユレータバルブ 8を構成することができて、部品点数の削減、製造工程の簡易化、 コンパクトィ匕を図ることができる。  The provision of a sleeve and a plunger can be eliminated, and the secondary regulator valve 8 can be configured with a simple configuration, so that the number of parts can be reduced, the manufacturing process can be simplified, and compactness can be achieved.
[0084] また、信号圧 P を出力し得るソレノイドバルブ S2と、ライン圧 Pを油室 8cに導通す [0084] Further, the solenoid valve S2 capable of outputting the signal pressure P and the line pressure P are conducted to the oil chamber 8c.
S2 L  S2 L
る油路 a5, siと、油路 a5, siに介在し、信号圧 P に基づき該油路 a5, siを連通す  The oil passage a5, si is connected to the oil passage a5, si, and communicates with the oil passage a5, si based on the signal pressure P.
S2  S2
る状態と該油路 a5, siを遮断する状態とを切換えるリレーノ レブ 13と、からなるので 、セカンダリレギユレータバルブ 8のゲインが 1よりも大きくなる圧としてライン圧 Pを供  Therefore, the line pressure P is applied as a pressure at which the gain of the secondary regulator valve 8 is greater than 1.
し 給することができる。また、ソレノイドバルブ S 2の信号圧 P によってセカンダリレギュ  Can be paid. Also, the secondary regulator is controlled by the signal pressure P of solenoid valve S2.
S2  S2
レータバルブ 8のゲインを 1よりも大きくするので、ロックアップクラッチ 3の係合動作と は無関係にセカンダリレギユレータバルブ 8のゲインが 1よりも大きくなるように制御す ることができる。それによつて、不要にセカンダリ圧 P を上昇させることを防ぐことが  Since the gain of the regulator valve 8 is larger than 1, the gain of the secondary regulator valve 8 can be controlled to be larger than 1 regardless of the engagement operation of the lockup clutch 3. This prevents unnecessary increases in the secondary pressure P.
SEC  SEC
でき、トルクコンバータ 2の耐久性の向上を図ることができる。  Thus, the durability of the torque converter 2 can be improved.
[0085] なお、以上説明した第 1及び第 2の実施の形態においては、セカンダリレギユレータ バルブ 8の油室 8cにライン圧 Pを入力し得るものについて説明した力 これに限らず Note that, in the first and second embodiments described above, the force described for what can input the line pressure P to the oil chamber 8c of the secondary regulator valve 8 is not limited to this.
 Shi
、制御圧 P よりも大きな圧を入力し得るものであれば、セカンダリレギユレータバル  If a pressure greater than the control pressure P can be input, the secondary regulator valve
SLT  SLT
ブ 8のゲインを 1よりも大きくすることができる。  8 gain can be greater than unity.
[0086] また、第 1及び第 2の実施の形態においては、リニアソレノイドバルブ SLT及びソレ ノイドバルブ S2の元圧としてモジユレータ圧 P を用いるものについて説明したが、 [0086] In the first and second embodiments, the description has been given of the case where the modulator pressure P is used as the source pressure of the linear solenoid valve SLT and the solenoid valve S2.
MOD  MOD
制御圧 P や信号圧 P として機能し得る油圧が出力できるものであれば、どのよう  As long as it can output hydraulic pressure that can function as control pressure P and signal pressure P
SLT S2  SLT S2
な元圧を用いてもよい。  Various source pressures may be used.
[0087] また、第 1及び第 2の実施の形態においては、流体伝動装置 4が 3つのポート 4a, 4 b, 4cを備えて構成されたものについて説明した力 2つのポートだけを備え、ロック アップクラッチの解放時に摩擦板を押圧しない方向からトルクコンバータにセカンダリ 圧を供給し、ロックアップクラッチの係合時に摩擦板を押圧する方向からセカンダリ圧 を供給するように構成されたものであっても本発明を適用することができる。  [0087] In the first and second embodiments, the force described for the fluid transmission device 4 including the three ports 4a, 4b, and 4c includes only the two ports, and the lock Even if the secondary pressure is supplied to the torque converter from the direction not pressing the friction plate when the up-clutch is released, and the secondary pressure is supplied from the direction pressing the friction plate when the lock-up clutch is engaged. The present invention can be applied.
産業上の利用可能性  Industrial applicability
[0088] 本発明に係る油圧回路装置は、乗用車、トラック、ノス、農機等に搭載される自動 変速機、ノ、イブリツド駆動装置等に用いることが可能であり、特にロックアップクラッチ 等に供給する油圧を調圧する調圧バルブのゲインを大きな状態にすることが要求さ れるものに用いて好適であって、該調圧バルブにおける部品点数の削減、製造工程 の簡易化、コンパクトィ匕等が要求されるものに適している。 [0088] The hydraulic circuit device according to the present invention is an automatic mounted on a passenger car, a truck, a nose, an agricultural machine, etc. It can be used for transmissions, motors, hybrid drive systems, etc., and is particularly suitable for applications where the gain of the pressure regulating valve that regulates the hydraulic pressure supplied to the lockup clutch or the like is required to be large. Therefore, the pressure regulating valve is suitable for those requiring reduction of the number of parts, simplification of the manufacturing process, compactness, and the like.

Claims

請求の範囲 The scope of the claims
[1] スロットル開度に応じて制御圧を出力する制御バルブと、前記制御圧に応じてライ ン圧を調圧する第 1調圧バルブと、前記制御圧に応じて前記ライン圧より低圧なセカ ンダリ圧を調圧する第 2調圧バルブと、を備え、前記セカンダリ圧を、ロックアップクラ ツチとトルクコンバータとを有する流体伝動装置に供給する自動変速機の油圧制御 装置において、  [1] A control valve that outputs a control pressure according to the throttle opening, a first pressure regulating valve that regulates a line pressure according to the control pressure, and a secrecy lower than the line pressure according to the control pressure A hydraulic control device for an automatic transmission, comprising: a second pressure regulating valve that regulates a secondary pressure; and supplying the secondary pressure to a fluid transmission device having a lock-up clutch and a torque converter.
前記第 2調圧バルブは、  The second pressure regulating valve is
軸状に形成され、軸方向一方側に大径のランド部が形成された大径部と、軸方向他 方側に該大径のランド部より小径のランド部が形成された小径部と、を備えたスプー ルと、  A large-diameter portion formed in a shaft shape and having a large-diameter land portion formed on one side in the axial direction; A spool with
前記スプールが前記軸方向一方側に移動することに応じて前記セカンダリ圧が高く なるように調圧する調圧部と、  A pressure adjusting unit that adjusts the secondary pressure to increase in response to the spool moving to one side in the axial direction;
前記スプールの軸方向他方側の端部より前記制御圧を作用させる第 1油室と、 前記スプールの軸方向一方側の端部より前記セカンダリ圧のフィードバック圧を作用 させる第 2油室と、  A first oil chamber that applies the control pressure from an end portion on the other side in the axial direction of the spool; a second oil chamber that applies a feedback pressure of the secondary pressure from an end portion on the one side in the axial direction of the spool;
前記大径部と前記小径部との間に形成された第 3油室と、  A third oil chamber formed between the large diameter portion and the small diameter portion;
を有し、  Have
前記第 3油室に、前記制御圧に対する前記第 2調圧バルブのゲインが 1よりも大きく なる圧を入力し得るゲイン上昇圧入力手段を備えた、  The third oil chamber is provided with gain increasing pressure input means capable of inputting a pressure at which the gain of the second pressure regulating valve with respect to the control pressure is greater than 1.
ことを特徴とする自動変速機の油圧制御装置。  A hydraulic control apparatus for an automatic transmission.
[2] 第 1信号圧を出力し得る第 1ソレノイドバルブと、 [2] a first solenoid valve capable of outputting a first signal pressure;
前記第 1ソレノイドバルブの第 1信号圧に基づき、前記ロックアップクラッチに前記セ カンダリ圧を出力する状態と該セカンダリ圧を遮断する状態とを切換える第 1切換え バルブと、を備えてなる、  A first switching valve that switches between a state in which the secondary pressure is output to the lockup clutch and a state in which the secondary pressure is shut off based on a first signal pressure of the first solenoid valve;
請求項 1記載の自動変速機の油圧制御装置。  The hydraulic control device for an automatic transmission according to claim 1.
[3] 前記第 1ソレノイドバルブは、前記第 1信号圧の元圧として前記ライン圧を入力し、 かつ前記第 1信号圧の出力時に前記ライン圧をそのまま前記第 1信号圧として出力 してなり、 前記ゲイン上昇圧入力手段は、前記第 1ソレノイドバルブの第 1信号圧を前記第 3 油室に入力する第 1油路力 なる、 [3] The first solenoid valve receives the line pressure as an original pressure of the first signal pressure, and outputs the line pressure as the first signal pressure as it is when the first signal pressure is output. , The gain increasing pressure input means is a first oil passage force for inputting the first signal pressure of the first solenoid valve to the third oil chamber.
請求項 2記載の自動変速機の油圧制御装置。  The hydraulic control device for an automatic transmission according to claim 2.
前記ゲイン上昇圧入力手段は、  The gain increasing pressure input means includes
第 2信号圧を出力し得る第 2ソレノイドバルブと、 A second solenoid valve capable of outputting a second signal pressure;
前記ライン圧を前記第 3油室に導通する第 2油路と、 A second oil passage that conducts the line pressure to the third oil chamber;
前記第 2油路に介在し、前記第 2信号圧に基づき、該第 2油路を連通する状態と該 第 2油路を遮断する状態とを切換える第 2切換えバルブと、 A second switching valve that is interposed in the second oil passage and switches between a state in which the second oil passage is communicated and a state in which the second oil passage is shut off based on the second signal pressure;
からなる、 Consist of,
請求項 2記載の自動変速機の油圧制御装置。  The hydraulic control device for an automatic transmission according to claim 2.
PCT/JP2006/312174 2006-06-16 2006-06-16 Hydraulic control device for automatic transmission WO2007144962A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2006800280928A CN101233347B (en) 2006-06-16 2006-06-16 Oil pressure control device of automatic speed transmission
PCT/JP2006/312174 WO2007144962A1 (en) 2006-06-16 2006-06-16 Hydraulic control device for automatic transmission
DE112006002125T DE112006002125T5 (en) 2006-06-16 2006-06-16 Hydraulic control device for automatic transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/312174 WO2007144962A1 (en) 2006-06-16 2006-06-16 Hydraulic control device for automatic transmission

Publications (1)

Publication Number Publication Date
WO2007144962A1 true WO2007144962A1 (en) 2007-12-21

Family

ID=38831486

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/312174 WO2007144962A1 (en) 2006-06-16 2006-06-16 Hydraulic control device for automatic transmission

Country Status (3)

Country Link
CN (1) CN101233347B (en)
DE (1) DE112006002125T5 (en)
WO (1) WO2007144962A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7375682B2 (en) 2020-06-16 2023-11-08 トヨタ自動車株式会社 hydraulic control device

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8425378B2 (en) * 2009-05-29 2013-04-23 GM Global Technology Operations LLC Dual gain clutch control system
CN102121529B (en) * 2010-01-11 2014-07-16 通用汽车环球科技运作有限责任公司 Hydraulic control system for an automatic transmission having a three path torque converter control subsystem
US8579094B2 (en) 2010-01-11 2013-11-12 GM Global Technology Operations LLC Hydraulic control system for an automatic transmission having a three path torque converter control subsystem
US8794417B2 (en) * 2010-10-15 2014-08-05 GM Global Technology Operations LLC Powertrain pressure and flow control system for a torque converter clutch
CN104813079B (en) * 2012-12-26 2017-05-03 爱信艾达株式会社 Hydraulic control device for automatic transmission
US9062782B2 (en) * 2013-01-03 2015-06-23 Ford Global Technologies, Llc Hydraulic gain of transmission control elements
US10107389B2 (en) * 2014-02-12 2018-10-23 Aisin Aw Co., Ltd. Hydraulic control device for automatic transmission
CN108317280B (en) * 2018-04-18 2023-11-21 第一拖拉机股份有限公司 Power reversing valve for tractor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003042287A (en) * 2001-07-31 2003-02-13 Aisin Aw Co Ltd Hydraulic controller for automatic transmission
JP2006052747A (en) * 2004-08-10 2006-02-23 Aisin Aw Co Ltd Hydraulic pressure controller for fluid transmission device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4385461B2 (en) * 1999-12-20 2009-12-16 アイシン・エィ・ダブリュ株式会社 Hydraulic control device for automatic transmission

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003042287A (en) * 2001-07-31 2003-02-13 Aisin Aw Co Ltd Hydraulic controller for automatic transmission
JP2006052747A (en) * 2004-08-10 2006-02-23 Aisin Aw Co Ltd Hydraulic pressure controller for fluid transmission device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7375682B2 (en) 2020-06-16 2023-11-08 トヨタ自動車株式会社 hydraulic control device

Also Published As

Publication number Publication date
CN101233347A (en) 2008-07-30
CN101233347B (en) 2011-05-18
DE112006002125T5 (en) 2008-07-10

Similar Documents

Publication Publication Date Title
JP4642560B2 (en) Hydraulic control device for automatic transmission
WO2007144962A1 (en) Hydraulic control device for automatic transmission
WO2009122858A1 (en) Oil pressure control apparatus for starting apparatus
WO2011039963A1 (en) Hydraulic control device for automatic transmission
US7338407B2 (en) Reduced engine load at stop apparatus and method
US20120241272A1 (en) Hydraulic control device
US20120000740A1 (en) Hydraulic pressure control device
US9243703B2 (en) Lubricating oil supply device
US9568090B2 (en) Spool valve and lubricating oil supply device
JP5321421B2 (en) Hydraulic control device for starter
US9109686B2 (en) Hydraulic control device
JP3861840B2 (en) Fluid pressure control circuit
JP5724619B2 (en) Hydraulic control circuit for vehicle power transmission device
JP2007010090A (en) Hydraulic control device
US6591958B1 (en) Pressure control apparatus for a torque-transmitting mechanism
US20110302915A1 (en) Hydraulic pressure control device
JP3607783B2 (en) Hydraulic control circuit for continuously variable transmission
JP3630883B2 (en) Hydraulic control circuit for continuously variable transmission
JP2011052795A (en) Hydraulic controller for vehicular transmission mechanism
JP2003194199A (en) Hydraulic control device of continuously variable transmission
JP2776055B2 (en) Hydraulic control device for hydraulic transmission with direct coupling clutch for vehicles
JP3291051B2 (en) Hydraulic control device for automatic transmission
JP5267258B2 (en) Hydraulic control device for automatic transmission
JPH11118033A (en) Hydraulic control device for transmission
JP2911606B2 (en) Hydraulic pressure control system for automatic transmission

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680028092.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1120060021257

Country of ref document: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06757392

Country of ref document: EP

Kind code of ref document: A1

RET De translation (de og part 6b)

Ref document number: 112006002125

Country of ref document: DE

Date of ref document: 20080710

Kind code of ref document: P

WWE Wipo information: entry into national phase

Ref document number: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06757392

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP