WO2007142644A1 - Spectroscopic breath profile analysis device and uses thereof for facilitating diagnosis of medical conditions - Google Patents

Spectroscopic breath profile analysis device and uses thereof for facilitating diagnosis of medical conditions Download PDF

Info

Publication number
WO2007142644A1
WO2007142644A1 PCT/US2006/022247 US2006022247W WO2007142644A1 WO 2007142644 A1 WO2007142644 A1 WO 2007142644A1 US 2006022247 W US2006022247 W US 2006022247W WO 2007142644 A1 WO2007142644 A1 WO 2007142644A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
breath
patient
spectroscopic
computer
Prior art date
Application number
PCT/US2006/022247
Other languages
French (fr)
Inventor
Charles L. Braun
Original Assignee
Braun Charles L
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Braun Charles L filed Critical Braun Charles L
Priority to PCT/US2006/022247 priority Critical patent/WO2007142644A1/en
Publication of WO2007142644A1 publication Critical patent/WO2007142644A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • A61B5/082Evaluation by breath analysis, e.g. determination of the chemical composition of exhaled breath

Definitions

  • This invention relates generally to a medical device and protocols for using such a device to facilitate diagnosis of medical conditions in patients based on breath analysis profiles obtained using highly sensitive laser spectroscopies, for example Cavity Ring- down (CRD) spectroscopy, and photoacoustic (PA) spectroscopy.
  • CCD Cavity Ring- down
  • PA photoacoustic
  • exhaled breath As a diagnostic tool has long been recognized. Recently, researchers have shown that the chemical composition of expired breath can be an accurate, timely, and painless indicator of the health of an individual. See Phillips, M. et al, J Chromatography (1999), B729, 75, hereby incorporated by reference herein. For example, a number of exhaled gases such as ammonia, nitric oxide, aldehydes and ketones have been associated with kidney and liver malfunction, asthma, diabetes, cancer, and ulcers. (Alving, K et al., Eur. Respir. J. (1993), 6, 1368; Paredi, P.
  • Such gases are often detected in high concentrations at their sources and in very low concentrations in ambient atmosphere and stratosphere.
  • nitric oxide found at very high concentrations in automobile emissions at the tailpipe, but detected at level of only ppm or less in the atmosphere.
  • concentration of an unknown sample can then be determined.
  • various techniques have emerged over the years allowing the accumulation of the required spectroscopic parameters for a wide variety of molecular gases. For example, development of conventional measurements of light throughput, calorimetry, cavity-ring down spectroscopy, (see O'Keefe, A. et al., Rev. Sci. Instrum.
  • a medical device for analyzing gases in expired breath for facilitating diagnosis of a medical condition comprising: a spectroscopic analyzer component for obtaining a patient's breath concentration profile; a computer operably coupled to the analyzer component; a memory component operably coupled to the computer; a database stored within the memory component containing spectroscopic breath analysis profiles, each profile characteristic of at least one of a plurality of medical conditions; and a computer program for comparing the obtained patient's breath profile to the stored database of spectroscopic breath profiles, such that diagnosis of the presence or absence of a medical condition is facilitated.
  • a medical device for analyzing gases in expired breath for facilitating diagnosis of a medical condition utilizes a database of spectroscopic breath analysis profiles is stored within the memory component for medical conditions including kidney malfunction, liver malfunction, asthma, diabetes, cancer, ulcer, schizophrenia, neurological disorders, pneumonia, halitosis, alcohol ingestion, and organ trauma.
  • a medical device for analyzing gases in expired breath for facilitating diagnosis of a medical condition is configured to analyze gases in expired breath such as ammonia, nitric oxide, ketones, methane, ethane, butane, pentane, carbon dioxide, carbon monoxide, oxygen, sulfur dioxide, carbon disulfide, hydrogen sulfide, methyl mercaptan, skatole, indole, cadaverine, putrescine, isovaleric acid, trimethylamine, and halogens and halogen compounds are analyzed.
  • gases in expired breath such as ammonia, nitric oxide, ketones, methane, ethane, butane, pentane, carbon dioxide, carbon monoxide, oxygen, sulfur dioxide, carbon disulfide, hydrogen sulfide, methyl mercaptan, skatole, indole, cadaverine, putrescine, isovaleric acid, trimethylamine, and halogens and halogen compounds are
  • Another particular embodiment includes a medical device for analyzing gases in expired breath for facilitating diagnosis of a medical condition with a spectroscopic analyzer component wherein the spectroscopic analyzer component is a laser spectrometer.
  • a medical device for analyzing gases in expired breath for facilitating diagnosis of a medical condition with a spectroscopic analyzer component wherein the spectroscopic analyzer component is a cavity ring down spectrometer or other sensitive spectroscopic analyzer.
  • Another particular embodiment of the present invention is a medical device for analyzing gases in expired breath for facilitating diagnosis of a medical condition having a cavity ring down spectrometer wherein the spectroscopic analyzer component is a qualitative analyzer.
  • Still yet another embodiment of the present invention is a medical device for analyzing gases in expired breath for facilitating diagnosis of a medical condition having a cavity ring down spectrometer wherein the spectroscopic analyzer component is a quantitative analyzer.
  • Another embodiment of the present invention is a method for using a medical device for analyzing gases in expired breath for facilitating diagnosis of a medical condition with a spectroscopic analyzer component to analyze a patient's breath sample for facilitating diagnosis of the presence or absence of a medical condition, comprising: obtaining a breath sample from a patient; analyzing volatile components of the patient sample to provide a patient spectroscopic breath profile; comparing the patient's spectroscopic breath profile to a database of spectroscopic breath profiles, each database profile characteristic of at least one of a plurality of medical conditions, so as to facilitate diagnosis of the presence or absence of a medical condition.
  • An additional particular embodiment of the present invention is a method for using a medical device for analyzing gases in expired breath for facilitating diagnosis of a medical condition with a spectroscopic analyzer component having a spectroscopic analyzer that is a cavity ring down spectrometer to analyze a patient's breath sample for facilitating diagnosis of the presence or absence of a medical condition, comprising: obtaining a breath sample from a patient; analyzing volatile components of the patient sample to provide a patient spectroscopic breath profile; comparing the patient's spectroscopic breath profile to a database of spectroscopic breath profiles, each database profile characteristic of at least one of a plurality of medical conditions, so as to facilitate diagnosis of the presence or absence of a medical condition.
  • Yet another particular embodiment of the present invention is a method as described above for using a medical device in accordance with a medical device for analyzing gases in expired breath for facilitating diagnosis of a medical condition with a spectroscopic analyzer component having a spectroscopic analyzer that is a cavity ring down spectrometer wherein the method comprises obtaining a breath sample from a patient; analyzing volatile components of the patient sample to provide a patient spectroscopic breath profile; comparing the patient's spectroscopic breath profile to a database of spectroscopic breath profiles, each database profile characteristic of at least one of a plurality of medical conditions, so as to facilitate diagnosis of the presence or absence of a medical condition, wherein the analyzing step further comprises a qualitative analysis.
  • Still another particular embodiment of the present invention is a method for using a medical device for analyzing gases in expired breath for facilitating diagnosis of a medical condition with a spectroscopic analyzer component having a spectroscopic analyzer that is a cavity ring down spectrometer wherein the method comprises obtaining a breath sample from a patient; analyzing volatile components of the patient sample to provide a patient spectroscopic breath profile; comparing the patient's spectroscopic breath profile to a database of spectroscopic breath profiles, each database profile characteristic of at least one of a plurality of medical conditions, so as to facilitate diagnosis of the presence or absence of a medical condition, wherein the analyzing step further comprises a quantitative analysis.
  • the invention features a medical device for analyzing gases in a person's expired breath for assisting in diagnosis of a medical condition
  • the device includes a spectroscopic analyzer component that obtains a patient's breath profile that includes at least molecular identification of at least a plurality of compounds that are present in the patient's breath, a computer operably coupled to the analyzer component, a memory component operably coupled to the computer, and a database stored within the memory component containing spectroscopic breath analysis profiles, each profile characteristic of at least one of a plurality of medical conditions, the computer program being operably coupled to the analyzer component and comparing the obtained patient's breath profile, including the identified molecular compounds, to the stored database of spectroscopic breath profiles to provide information pertinent to diagnosis of the presence or absence of a medical condition.
  • the spectroscopic analyzer component also is a quantitative analyzer.
  • the database is capable of storing data from multiple spectroscopic analyses over an extended time period
  • the invention features a method of using a medical device disclosed herein to analyze a patient's breath sample for assisting in diagnosing the presence or absence of a medical condition, where the method includes obtaining a breath sample from a patient, analyzing volatile components of the patient sample to provide a patient spectroscopic breath profile that includes both qualitative and quantitative data, comparing the patient's spectroscopic breath profile to a database of spectroscopic breath profiles, each database profile characteristic of at least one of a plurality of medical conditions, so as to provide information pertinent to the presence or absence of a medical condition.
  • the method of analyzing a patient's breath sample for assisting in diagnosis of the presence or absence of a medical condition includes obtaining a breath sample from a patient; analyzing volatile components of the patient sample to provide a patient spectroscopic breath profile that includes both qualitative and quantitative data, comparing the patient's spectroscopic breath profile to a database of spectroscopic breath profiles, each database profile characteristic of at least one of a plurality of medical conditions, so as to provide information pertinent to diagnosis of the presence or absence of a medical condition.
  • the computer program is capable of establishing a baseline for a particular patient and is capable of noticing a change from the baseline. In other embodiments, the computer program is capable of providing information that alerts a user of the computer of a significant deviation from previous spectroscopic breath profiles.
  • the invention features a method of analyzing gases from the breath of a patient in diagnosing a medical condition in that patient, the method including: sampling a patient's breath, spectroscopically analyzing volatile components of the sample to provide a patient spectroscopic breath profile that includes at least qualitative molecular identification of compounds or a combination of both qualitative and quantitative molecular identification of compounds; and comparing the patient's spectroscopic breath profile to a database of spectroscopic breath profiles through use of a computer, wherein each profile in the database is characteristic of at least one of a plurality of medical conditions, to provide information pertinent to a diagnosis of the presence or absence of a medical condition.
  • the computer provides information to a user thereof of a match or non-match of the patient's spectroscopic breath profile to at least one of the profiles in the database.
  • the information is interpreted by a health care professional to evaluate the presence or absence of a medical condition.
  • the method further includes entering additional information into the computer regarding the patient.
  • the spectroscopic analysis provides a spectroscopic breath concentration profile.
  • the spectroscopic breath profile includes both qualitative and quantitative data.
  • the invention features a device to assist in diagnosing a medical condition, the device including a spectroscopic analyzer component that obtains first information regarding qualitative identification, or a combination of both qualitative and quantitative identification, of molecules present in a sample of a patient's breath, and computer that includes a computer program to receive the first information regarding qualitative or qualitative and quantitative molecular identification and to compare the first information with second information in a database, wherein the second information comprises data concerning molecules present in human breath and certain medical conditions, and wherein the comparison results in the computer providing third information to the patient or a health care professional.
  • the computer program also is capable of storing data from multiple breath samples of the patient, taken over an extended time period.
  • the computer program is further capable of providing a baseline of data from one of more samples of the patient's breath.
  • the computer program is capable of performing a trend analysis with respect to receiving multiple inputs of the first information.
  • the computer when providing the third information, is capable of alerting the patient or health care professional of significant deviations in the first information. In some embodiments, the computer is further capable of alerting the health care professional of the need for further analysis or for a proposed course of treatment. In some embodiments, the spectroscopic analyzer component obtains first information regarding both qualitative and quantitative identification of molecules present in a sample of the patient's breath.
  • the method suitable for use in diagnosing the presence or absence of a medical condition in a patient includes spectroscopically analyzing a sample of a patient's breath to obtain first information that includes at least qualitative identification of molecules that are present in the sample, comparing the first information, including the qualitative molecular identification, to second information through use of a computer, the second information comprising data concerning molecules present in human breath and the relationship of those molecules to certain medical conditions; and providing third information, the third information includes results of the comparison, to a health care professional through use of the computer to assist the health care professional in evaluating a presence or absence of the medical condition.
  • the comparison of the first information to the second information through use of the computer includes a comparison of both the qualitative and quantitative molecular identification of the first information to qualitative and quantitative data of the second information.
  • the method further includes storing the first information so that it can be compared to subsequent submissions of the first information for purposes of assisting in the diagnosis of the patient.
  • multiple samples of first information are stored so that a baseline is established for the patient.
  • the differences between the baseline and the first information can be detected and wherein the third information can alert the health care professional that the differences have been detected.
  • the spectroscopic analysis involves the detection of carbon dioxide content, alcohol content, acetone content, lipid content, aromatic compound content, thio compound content, ammonia content, amine content, halogen content, and combinations thereof, and wherein the first information includes results of the detection of such content.
  • the method further includes providing the patient with a diagnostic reagent prior to obtaining a sample of the patient's breath and spectroscopically analyzing the particular sample.
  • the comparison may detect the presence or absence of a particular molecular component or notice whether the particular molecular component has a different quantitative presence when compared to prior submissions of first information or when compared to second information.
  • the comparison can determine whether a particular molecular component meets a selected minimum detection level.
  • the comparison can note significant deviation(s) from various inputs of first information, and wherein the provision of third information can notify the health care professional of the deviation(s).
  • the comparison can detect a match or non-match of qualitative and quantitative identification of molecules in the first information with spectroscopic profiles of the second information.
  • the match or non-match information can be stored in the computer.
  • the method further includes entering additional information into the computer regarding the patient.
  • the additional information includes diet information, general state of health, amount and/or duration of recent exercise, or combinations thereof.
  • multiple lasers are used to perform the spectroscopic analysis. In other embodiments, the multiple lasers have different emission frequencies.
  • the method suitable for use in diagnosing the presence or absence of a medical condition in a patient includes comparing first information from a spectroscopic analysis of a sample of a patient's breath, the first information includes at least qualitative identification of molecules present in the spectroscopically analyzed sample, to second information through use of a computer, wherein the second information comprises information concerning molecules present in human breath, and providing third information, the third information includes results of the comparison, to a patient or health care professional(s), the information being provided at least in part through use of the computer and being helpful in assisting the patient or health care professional(s) in evaluating a presence or absence of a medical condition.
  • multiple comparisons of multiple spectroscopic analyses from multiple samples of the patient's breath are performed.
  • the comparison is made between the first information that includes both quantitative and qualitative identification of molecules present in the sample of the patient's breath and the second information that includes both qualitative and quantitative information regarding molecules present in human breath.
  • the comparison of the first information to the second information is made with the second information also including information regarding human breath profiles and their relationships to certain medical conditions.
  • FIG. 1 is a schematic representation of an embodiment of the present invention
  • FIG. 2A is a schematic showing an embodiment of how an episodic sampling mode may be implemented
  • FIG. 2B is a schematic showing an embodiment of how a steady state sampling mode may be implemented.
  • FIG. 1 illustrates a schematic diagram of a spectroscopic analyzer component of one embodiment of the present invention wherein the spectroscopic analyzer is a cavity ring down spectrometer.
  • a patient initially exhales into a sampling unit 102 which captures the exhaled breath.
  • the exhaled breath sample is then directed to an optical cavity 104 containing a piezo 106 coupled to a detector 108.
  • At least one CW laser 110 generates at least one laser light beam HOa which is directed through a Faraday isolator 112 and an acousto- optic modulator (AOM) 114.
  • the laser light beam is then focused using one or more mirrors such as 116a and 116b and passed through the optical cavity 104 containing the exhaled breath sample.
  • a threshold controller 118 operably coupled to an A/D converter 120 and a tracking unit 122, is in communication with detector 108 and AOM 114, and is further interfaced with a computer 124.
  • the data resulting from the analysis could then be transferred to and stored in computer 124, which may further have an input device or devices, such as a keyboard or mouse, an output device such as a video monitor, printer, or other means of displaying data, memory, and an appropriate CPU.
  • the computer may also be connected to an information grid such as a telephone system or the Internet.
  • System 100 should be calibrated as required, which may be done by injecting a gas of known composition into the sampling device. A gas-filled canister may be provided for this purpose. It is also important to purge the sampling device after use to discharge excess moisture or other components. Purging could be done, for example, by injecting the sampling device with dry nitrogen. In such a system, the two functions of calibration and purging may thereby be performed in a single step.
  • the calibration gas and the purging gas may be different, and the two functions performed in separate steps.
  • Certain types of analyzers are more stable and require less calibration than others.
  • Cavity ring-down spectroscopy may require reference or "zero" calibration, but will otherwise remain stable unless the associated laser or cavity is changed.
  • Sampling is any means of bringing exhaled breath into sampling unit 102.
  • sampling unit 102 is a spectrometer cell.
  • sampling unit 102 Prior to sampling, sampling unit 102 is standardized for use.
  • standardization consists of flushing sampling unit 102 with dry nitrogen gas, which has substantially no absorption of near-IR light (800-2000 nm). Ringdown (rd) time, ⁇ 0 , at the wavelength to be used for detection of the analyte, is a maximum determined chiefly by the reflectivity of sampling unit mirrors.
  • ⁇ 0 Ringdown (rd) time, at the wavelength to be used for detection of the analyte, is a maximum determined chiefly by the reflectivity of sampling unit mirrors.
  • sampling unit 102 Prior to analysis for each new analyte, sampling unit 102 is standardized at the wavelength to be used for the new gas (analyte). After use, dry nitrogen gas is isolated in sampling unit 102 by valves.
  • the subject just quits blowing during the measurement.
  • the subject establishes a steady breathing cycle of shallow, normal, or deep breaths, as instructed. Once the cycle is established, the subject exhales into a disposable mouthpiece connected to a standard respirometer tube which is connected to sampling unit 102 with intervening filters for particulates and moisture.
  • a check valve insures that flow is unidirectional from the subject into the sampling unit. If needed, multiple exhalations are used to completely purge sampling unit 102 and fill it uniformly with the subject's breath.
  • sampling unit 102 is isolated during measurement using solenoid valves. The procedure is repeated as needed to obtain meaningful concentrations of the analytes being measured. Continuous Sampling
  • a subject exhales normally into a respirometer tube 210 and inhales through the nose.
  • a check valve 220 permits flow 205 only in the direction of exhalation so that no freshly exhaled breath is inhaled.
  • the flow 205 of exhaled breath 255 through sampling unit 102 varies with time. Variations over time in the concentration of the gas of interest may be independent of variations over time in flow 205 of exhaled breath 255.
  • this sampling mode once a reproducible record is obtained and recorded by the computer, the procedure is complete.
  • Steady State Sampling In this sampling mode, as depicted in FIG. 2B, a small portion (ca.
  • 10%) of a subject's exhaled breath 255 is continuously sampled through sampling unit 102 at a substantially constant flow. Constant flow is provided from a bag reservoir 267 that the subject continuously fills by exhaling into a respirometer mouthpiece 262 connected at outlet 264 to a first "Y" fitting 265. A right outlet 266 of the first "Y” fitting 265 feeds a first check valve 280 connected to exhaled breath tube 256. First check valve 280 serves to prohibit reverse flow from exhaled breath tube 256 back into the subject.
  • a left outlet 268 of first "Y” fitting 265 has a second check valve 282, disposed in opposite flow direction from that of first check valve 280 that closes on exhalation and opens on inhalation to allow mouth breathing by the subject.
  • exhaled breath 255 flows into a tube 256 that feeds a second "Y" fitting 275.
  • a left outlet 276 of a second "Y” fitting 275 feeds a tube 277 that exhausts to atmosphere, and a right outlet 278 of second "Y" fitting 275 feeds a third check valve 284 connected via a tube 271 to bag inlet 261.
  • the amount of breath 255 exhausted to the atmosphere is controlled by an adjustable flow proportioning valve 286 at the site of exhaust 290.
  • Bag reservoir 267 is held at constant selected pressure 291, for example, by using a predetermined and pre-selected weight 293 on the top of bag reservoir 267.
  • Third check valve 284 before bag reservoir inlet 261 prohibits reverse flow to exhaust 290 during subject inhalation.
  • Bag reservoir outlet 262 feeds a tube 272 connected to a flow control valve 288 for adjusting the amount of exhaled breath 255 conducted to sampling unit 102 and further through particulate and moisture filters 292 and 294.
  • filters 292 and 294 may also be positioned at bag inlet 261 to eliminate condensation in bag reservoir 267 which may have adverse consequences due to adsorption of the analyte in the condensed moisture on the walls of the bag.
  • the spectroscopic analyzer component includes an optoacoustic analyzer, such as the system depicted in Figure 1 of Narasimhan et al., PNAS 98, 4617 at 4618 (2001), the entire contents of which have been incorporated by reference (vide supra).
  • Quantitative analyzers may include highly sensitive laser spectroscopic devices such as cavity ring down spectrometers, and optoacoustic spectrometers described above. Such devices may also be used qualitatively, to test for the mere presence of an exhaled gas.
  • a second analyzer is provided that is used for qualitative analysis.
  • Exemplary analyzers include ion mobility spectrometer detectors, acoustic wave detectors, and fiber optic detectors.
  • Processed data from both the quantitative analyzer and/or the qualitative analyzer are stored in the memory of the computer and compared to a database of spectroscopic breath profiles characteristic of one or more medical conditions.
  • both quantitative and qualitative analyses is performed using the same laser spectroscopy analyzer.
  • data from a particular patient are stored so that multiple samples over an extended period of time may be taken. This permits a baseline to be established for a particular patient, and trend analysis is performed on the resulting data, relative to the database of spectroscopic breath profiles. If there is an acute and significant change in the chronic condition of the patient's breath, indications of this change may be communicated to a physician or healthcare provider via communications components linked to the computer 124.
  • the types of tests that may be employed include carbon dioxide content, alcohol content, lipid degradation products, aromatic compounds, thio compounds, ammonia and amines or halogenated compounds.
  • lipid degradation products such as breath acetone are useful in monitoring diabetes.
  • Thio compounds such as methanethiol, ethanethiol, or dimethyl sulfides have diagnostic significance in detecting widely differing conditions, such as psoriasis and ovulation. Increased ammonia has been associated with hepatic disease.
  • Halogenated compounds may be indicative of environmental or industrial pollutants.
  • urea especially C 13 -labeled urea, or C 13 -labeled carbohydrates may be
  • a baseline or chronic breath condition history for a particular patient may also be compiled using the present invention.
  • an initialization test is first run on a sample of the patient's exhaled breath, with additional samples analyzed thereafter. As additional samples are analyzed and stored in memory at specific times over an extended period of time, the last stored or baseline sample data is then recalled from memory and the change or delta information between the new sample data and stored sample data is determined. Multiple analyses may be done simultaneously or serially on a single sample if the analyzer device 100 is capable of multiple analyses. Otherwise, an additional sample or samples may be requested of the patient.
  • Cavity-ring-down spectroscopy for example, is capable of measuring multiple components in a short period of time.
  • test may fall into two general types.
  • the presence of the breath component alone may be significant to the health of the patient. This is particularly important where the chronic monitoring of the breath components of the patient indicate the absence of a component and that component appears in a new breath sample analysis. The converse change may also be significant, that is, a component formerly present is absent in the new breath sample analysis. Both conditions may be detected by a device in accordance with the present invention if maintenance of a patient's specific data history is desired and preserved in memory.
  • a newly detected component falls within a given range.
  • the components may be detected by a qualitative analysis, estimates of the range may be obtained by certain manipulations of the qualitative device. This is important where it is economically infeasible to employ a quantitative device with respect to a particular component, but where an approximation can be obtained which is sufficient to alert an attending physician of the need for a more detailed analysis, or which is sufficient to allow the patient to follow a course of treatment, e.g. diet control, either for weight loss or for diabetes.
  • a desired range is determined by first establishing a limit for the particular component to be analyzed.
  • a test for a second limit is performed.
  • the upper limit a new setting for the LOD is provided and the cycle is repeated at the second selected setting, as described.
  • the results obtained from the quantitative analyses, the minimum detection analyses, and the minimum/maximum range analyses are then examined by computer 124.
  • computer 124 checks for significant changes in the quantitative or qualitative analyses for selected components, whether over time for a particular patient as compared to a database of spectroscopic profiles characteristic of a plurality of medical conditions, or as a single analysis compared to the database of spectroscopic breath profiles. Significant deviations over time from the database profiles, or a significant deviation as a single analysis are then used by a health care professional to facilitate diagnosis of the presence/absence and/or progression/regression of a medical condition.
  • breath analyzer 100 uses the breath analyzer 100 to facilitate diagnosis of the presence or absence of a medical condition.
  • Use of the breath analyzer 100 begins with calibration. This is accomplished by injecting a gas of known composition into the device. A canister of such gas is provided for this purpose. After calibration, a sample is taken. The analyzer 100 then compares the spectroscopic breath profile for a patient to a database of spectroscopic profiles characteristic of one or more medical conditions to facilitate diagnosis for the presence or absence of a medical condition. Computer 124 alerts the user to a "match” or “nonmatch” in patient versus database spectroscopic profiles. Such information is then interpreted by a physician or other health care professional to facilitate diagnosis of the presence or absence of a medical condition.
  • the "match/nonmatch” information may be stored in the memory of the medical device, to be retrieved and/or transferred as required.
  • the analyzer may also request the user or patient to enter certain data through the microcomputer user interface (for example, keyboard or mouse).
  • the requested data might include diet information, perceived general state of health, amount and duration of recent exercise and similar factors which might either explain an acute change in breath components (that is, indicate that the change is not in fact significant) or provide important information for a health care provider.
  • the system is purged to prevent contaminants from building up in the sampling device. This may be accomplished by providing a gas of known composition such as pure dry nitrogen, and may be combined with the calibration step.
  • Multiple tests performed on a single sample may be independent, or may be the results of several tests combined to produce a template or pattern representative of a patient's condition or representative of the presence of a particular compound or set of compounds.
  • Multiple lasers may also be used on a single sample to extend the band width for detection, and pattern recognition may then be applied to the combined output of the several lasers.
  • a single laser is generally capable of emitting light at certain limited frequencies. Although some tuning or variation of frequencies is possible, the elements or compounds that can be effectively recognized by a single laser device are limited by the frequency characteristics of the selected laser.
  • the detector 108 of an embodiment of the present invention may include multiple lasers having different emission frequencies.
  • the lasers may be directed into a single sample by being physically offset around the sample, by being fired at slightly different times, or may be directed by other techniques.
  • Optical apparatus such as mirrors, lenses or prisms may be used to direct a beam from a selected laser along a path through the sample and into a detector.
  • beams from other lasers may be directed along the same or a similar path through the sample.
  • a wider set of data points may be obtained.
  • three lasers may obtain twelve or more data points from the same sample. This information is expected to be both more selective and more quantitatively precise than similar information obtained by electronic nose technology.
  • the resulting more accurate information from all the laser beams is nevertheless processed together, using pattern recognition methods and techniques. As a result, a wider range of conditions or compounds is identified by correlating the data pattern or changes in the data pattern over time.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Pulmonology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Physiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

A medical diagnostic device for analyzing gases in expired breath. The device includes a spectroscopic analyzer component for obtaining a patient's breath concentration profile; a computer operably coupled to the analyzer component; a memory component operably coupled to the computer; and a database stored within the memory component containing spectroscopic breath analysis profiles. Each profile is characteristic of at least one of a plurality of medical conditions. A computer program compares the obtained patient's breath profile to the stored database of spectroscopic breath profiles, such that diagnosis of the presence or absence of a medical condition is facilitated.

Description

SPECTROSCOPIC BREATH PROFILE ANALYSIS DEVICE AND USES THEREOF FOR FACILITATING DIAGNOSIS OF MEDICAL CONDITIONS
BACKGROUND
This invention relates generally to a medical device and protocols for using such a device to facilitate diagnosis of medical conditions in patients based on breath analysis profiles obtained using highly sensitive laser spectroscopies, for example Cavity Ring- down (CRD) spectroscopy, and photoacoustic (PA) spectroscopy. The relationship between gas concentration and ringdown time is given in many publications including D. Romanini, A.A. Kachanov, N. Sadeghi, F. Stoeckel, Chemical Physics Letters (1997) 264 316).
The potential for the use of exhaled breath as a diagnostic tool has long been recognized. Recently, researchers have shown that the chemical composition of expired breath can be an accurate, timely, and painless indicator of the health of an individual. See Phillips, M. et al, J Chromatography (1999), B729, 75, hereby incorporated by reference herein. For example, a number of exhaled gases such as ammonia, nitric oxide, aldehydes and ketones have been associated with kidney and liver malfunction, asthma, diabetes, cancer, and ulcers. (Alving, K et al., Eur. Respir. J. (1993), 6, 1368; Paredi, P. et al., Chest (1999), 116, 1007; and Atherton, J., Gut (1994), 35, 723.) Other exhaled compounds like ethane, butane, pentane, and carbon disulfide have been connected to abnormal neurological conditions, including schizophrenia. (Phillips, M. et al , J Clin. Pathol. (1993), 46, 861; and Phillips, M. et al., J. Clin. Pathol. (1995), 48, 466).
There is a relatively long history of using light absorption and emission by molecules as a means for qualitatively identifying which molecules are present in a mixture, and quantitatively determining what concentration of each is present. Commonly, molecules with two or more atoms show distinct absorptions in the infrared region of the spectrum, generally defined as light with a wavelength between 1 μm and 15 μm (1 μm = 10'6 m). The detailed characteristics of these "fingerprint" absorptions can be extremely sharp at low pressure for molecules that are in the gas phase, enabling both the qualitative and quantitative assays with very high selectivity. A large number of industrial pollutant gases such as NO, NO2, NH3, SO2, and CH4 have also been readily detected using laser spectroscopy. Such gases are often detected in high concentrations at their sources and in very low concentrations in ambient atmosphere and stratosphere. One example is nitric oxide, found at very high concentrations in automobile emissions at the tailpipe, but detected at level of only ppm or less in the atmosphere. By characterizing the optical absorptivity of a sample of known concentration, the concentration of an unknown sample can then be determined. In order to facilitate such determinations, various techniques have emerged over the years allowing the accumulation of the required spectroscopic parameters for a wide variety of molecular gases. For example, development of conventional measurements of light throughput, calorimetry, cavity-ring down spectroscopy, (see O'Keefe, A. et al., Rev. Sci. Instrum. (1988) 59, 2544 and Scherer, J. J. et al., Chem. Rev. (1997), (Washington, D.C.) 91, 25.), and thermal distortion spectroscopy (see Bailey, R. T. et al., in Photoacoustic, Photothermal, and Photochemical Processes, Topics in Current Physics, ed. Hess, P. (Springer, Berlin), (1989) Vol. 46, pp. 37-60) have greatly aided such endeavors. In particular, ultra low-absorption measurements using calorimetric techniques, thus allowing sub-ppb detection of many gaseous components, have been shown to be widely applicable (see Patel, C. K. N. in Monitoring Toxic Substances, ACS Symposium Series, ed. Schuetzle, D. (Am. Chem. Soc, Washington, DC), (1978), Vol. 94, pp. 177-194). Recently, Narasimhan et al. (Proc. Natl Acad. Sci. U.S.A. (2001), 98, 4617, hereby incorporated by reference herein) showed that optoacoustic spectroscopic analysis of ammonia levels in patients with end-stage renal disease during hemodialysis could be correlated with blood urea nitrogen (BUN) and creatinine levels. Such a correlation allowed a means for assessment of nitrogenous waste loading in a patient's bloodstream in real time, as compared to a 24-hour (or more) delay for standard blood sample analysis for blood urea nitrogen and blood creatinine levels.
Many of these technologies are complex, expensive and difficult to calibrate. They have not been economically adapted for individual health care use. It has been suggested, however, that self-administered breath alcohol tests could be used (See, Brown et al. U.S. Pat. No. 5,303,575) by multiple individuals at bars or other locations where alcoholic beverages are served, to detect a predetermined level of breath alcohol.
There is also a product for analyzing bad breath on the market, a portable sulfide monitor, popular with dentists (see The Science of Bad Breath in Scientific American, April, 2002, p. 78). SUMMARY OF THE INVENTION
In one particular embodiment of the invention there is provided a medical device for analyzing gases in expired breath for facilitating diagnosis of a medical condition, comprising: a spectroscopic analyzer component for obtaining a patient's breath concentration profile; a computer operably coupled to the analyzer component; a memory component operably coupled to the computer; a database stored within the memory component containing spectroscopic breath analysis profiles, each profile characteristic of at least one of a plurality of medical conditions; and a computer program for comparing the obtained patient's breath profile to the stored database of spectroscopic breath profiles, such that diagnosis of the presence or absence of a medical condition is facilitated.
In another embodiment a medical device for analyzing gases in expired breath for facilitating diagnosis of a medical condition utilizes a database of spectroscopic breath analysis profiles is stored within the memory component for medical conditions including kidney malfunction, liver malfunction, asthma, diabetes, cancer, ulcer, schizophrenia, neurological disorders, pneumonia, halitosis, alcohol ingestion, and organ trauma.
In another particular embodiment, a medical device for analyzing gases in expired breath for facilitating diagnosis of a medical condition is configured to analyze gases in expired breath such as ammonia, nitric oxide, ketones, methane, ethane, butane, pentane, carbon dioxide, carbon monoxide, oxygen, sulfur dioxide, carbon disulfide, hydrogen sulfide, methyl mercaptan, skatole, indole, cadaverine, putrescine, isovaleric acid, trimethylamine, and halogens and halogen compounds are analyzed.
Another particular embodiment includes a medical device for analyzing gases in expired breath for facilitating diagnosis of a medical condition with a spectroscopic analyzer component wherein the spectroscopic analyzer component is a laser spectrometer. In yet another particular embodiment of the present invention there is provided a medical device for analyzing gases in expired breath for facilitating diagnosis of a medical condition with a spectroscopic analyzer component wherein the spectroscopic analyzer component is a cavity ring down spectrometer or other sensitive spectroscopic analyzer. Another particular embodiment of the present invention is a medical device for analyzing gases in expired breath for facilitating diagnosis of a medical condition having a cavity ring down spectrometer wherein the spectroscopic analyzer component is a qualitative analyzer.
Still yet another embodiment of the present invention is a medical device for analyzing gases in expired breath for facilitating diagnosis of a medical condition having a cavity ring down spectrometer wherein the spectroscopic analyzer component is a quantitative analyzer.
Another embodiment of the present invention is a method for using a medical device for analyzing gases in expired breath for facilitating diagnosis of a medical condition with a spectroscopic analyzer component to analyze a patient's breath sample for facilitating diagnosis of the presence or absence of a medical condition, comprising: obtaining a breath sample from a patient; analyzing volatile components of the patient sample to provide a patient spectroscopic breath profile; comparing the patient's spectroscopic breath profile to a database of spectroscopic breath profiles, each database profile characteristic of at least one of a plurality of medical conditions, so as to facilitate diagnosis of the presence or absence of a medical condition.
An additional particular embodiment of the present invention is a method for using a medical device for analyzing gases in expired breath for facilitating diagnosis of a medical condition with a spectroscopic analyzer component having a spectroscopic analyzer that is a cavity ring down spectrometer to analyze a patient's breath sample for facilitating diagnosis of the presence or absence of a medical condition, comprising: obtaining a breath sample from a patient; analyzing volatile components of the patient sample to provide a patient spectroscopic breath profile; comparing the patient's spectroscopic breath profile to a database of spectroscopic breath profiles, each database profile characteristic of at least one of a plurality of medical conditions, so as to facilitate diagnosis of the presence or absence of a medical condition.
Yet another particular embodiment of the present invention is a method as described above for using a medical device in accordance with a medical device for analyzing gases in expired breath for facilitating diagnosis of a medical condition with a spectroscopic analyzer component having a spectroscopic analyzer that is a cavity ring down spectrometer wherein the method comprises obtaining a breath sample from a patient; analyzing volatile components of the patient sample to provide a patient spectroscopic breath profile; comparing the patient's spectroscopic breath profile to a database of spectroscopic breath profiles, each database profile characteristic of at least one of a plurality of medical conditions, so as to facilitate diagnosis of the presence or absence of a medical condition, wherein the analyzing step further comprises a qualitative analysis.
And still another particular embodiment of the present invention is a method for using a medical device for analyzing gases in expired breath for facilitating diagnosis of a medical condition with a spectroscopic analyzer component having a spectroscopic analyzer that is a cavity ring down spectrometer wherein the method comprises obtaining a breath sample from a patient; analyzing volatile components of the patient sample to provide a patient spectroscopic breath profile; comparing the patient's spectroscopic breath profile to a database of spectroscopic breath profiles, each database profile characteristic of at least one of a plurality of medical conditions, so as to facilitate diagnosis of the presence or absence of a medical condition, wherein the analyzing step further comprises a quantitative analysis.
In another embodiment, the invention features a medical device for analyzing gases in a person's expired breath for assisting in diagnosis of a medical condition, the device includes a spectroscopic analyzer component that obtains a patient's breath profile that includes at least molecular identification of at least a plurality of compounds that are present in the patient's breath, a computer operably coupled to the analyzer component, a memory component operably coupled to the computer, and a database stored within the memory component containing spectroscopic breath analysis profiles, each profile characteristic of at least one of a plurality of medical conditions, the computer program being operably coupled to the analyzer component and comparing the obtained patient's breath profile, including the identified molecular compounds, to the stored database of spectroscopic breath profiles to provide information pertinent to diagnosis of the presence or absence of a medical condition.
In one embodiment, the spectroscopic analyzer component also is a quantitative analyzer. In another embodiment, the database is capable of storing data from multiple spectroscopic analyses over an extended time period
In another aspect, the invention features a method of using a medical device disclosed herein to analyze a patient's breath sample for assisting in diagnosing the presence or absence of a medical condition, where the method includes obtaining a breath sample from a patient, analyzing volatile components of the patient sample to provide a patient spectroscopic breath profile that includes both qualitative and quantitative data, comparing the patient's spectroscopic breath profile to a database of spectroscopic breath profiles, each database profile characteristic of at least one of a plurality of medical conditions, so as to provide information pertinent to the presence or absence of a medical condition.
In one embodiment, the method of analyzing a patient's breath sample for assisting in diagnosis of the presence or absence of a medical condition, includes obtaining a breath sample from a patient; analyzing volatile components of the patient sample to provide a patient spectroscopic breath profile that includes both qualitative and quantitative data, comparing the patient's spectroscopic breath profile to a database of spectroscopic breath profiles, each database profile characteristic of at least one of a plurality of medical conditions, so as to provide information pertinent to diagnosis of the presence or absence of a medical condition.
In another embodiment, the computer program is capable of establishing a baseline for a particular patient and is capable of noticing a change from the baseline. In other embodiments, the computer program is capable of providing information that alerts a user of the computer of a significant deviation from previous spectroscopic breath profiles.
In another aspect, the invention features a method of analyzing gases from the breath of a patient in diagnosing a medical condition in that patient, the method including: sampling a patient's breath, spectroscopically analyzing volatile components of the sample to provide a patient spectroscopic breath profile that includes at least qualitative molecular identification of compounds or a combination of both qualitative and quantitative molecular identification of compounds; and comparing the patient's spectroscopic breath profile to a database of spectroscopic breath profiles through use of a computer, wherein each profile in the database is characteristic of at least one of a plurality of medical conditions, to provide information pertinent to a diagnosis of the presence or absence of a medical condition. In one embodiment, the computer provides information to a user thereof of a match or non-match of the patient's spectroscopic breath profile to at least one of the profiles in the database. In some embodiments, the information is interpreted by a health care professional to evaluate the presence or absence of a medical condition.
In other embodiments, the method further includes entering additional information into the computer regarding the patient.
In one embodiment, the spectroscopic analysis provides a spectroscopic breath concentration profile. In some embodiments, the spectroscopic breath profile includes both qualitative and quantitative data.
In another aspect, the invention features a device to assist in diagnosing a medical condition, the device including a spectroscopic analyzer component that obtains first information regarding qualitative identification, or a combination of both qualitative and quantitative identification, of molecules present in a sample of a patient's breath, and computer that includes a computer program to receive the first information regarding qualitative or qualitative and quantitative molecular identification and to compare the first information with second information in a database, wherein the second information comprises data concerning molecules present in human breath and certain medical conditions, and wherein the comparison results in the computer providing third information to the patient or a health care professional. In some embodiments, the computer program also is capable of storing data from multiple breath samples of the patient, taken over an extended time period. In other embodiments, the computer program is further capable of providing a baseline of data from one of more samples of the patient's breath. In still other embodiments, the computer program is capable of performing a trend analysis with respect to receiving multiple inputs of the first information.
In one embodiment, when providing the third information, the computer is capable of alerting the patient or health care professional of significant deviations in the first information. In some embodiments, the computer is further capable of alerting the health care professional of the need for further analysis or for a proposed course of treatment. In some embodiments, the spectroscopic analyzer component obtains first information regarding both qualitative and quantitative identification of molecules present in a sample of the patient's breath.
In another embodiment, the method suitable for use in diagnosing the presence or absence of a medical condition in a patient includes spectroscopically analyzing a sample of a patient's breath to obtain first information that includes at least qualitative identification of molecules that are present in the sample, comparing the first information, including the qualitative molecular identification, to second information through use of a computer, the second information comprising data concerning molecules present in human breath and the relationship of those molecules to certain medical conditions; and providing third information, the third information includes results of the comparison, to a health care professional through use of the computer to assist the health care professional in evaluating a presence or absence of the medical condition. In some embodiments, the comparison of the first information to the second information through use of the computer includes a comparison of both the qualitative and quantitative molecular identification of the first information to qualitative and quantitative data of the second information. In one embodiment, the method further includes storing the first information so that it can be compared to subsequent submissions of the first information for purposes of assisting in the diagnosis of the patient.
In some embodiments, multiple samples of first information are stored so that a baseline is established for the patient. In other embodiments, the differences between the baseline and the first information can be detected and wherein the third information can alert the health care professional that the differences have been detected.
In another embodiment, the spectroscopic analysis involves the detection of carbon dioxide content, alcohol content, acetone content, lipid content, aromatic compound content, thio compound content, ammonia content, amine content, halogen content, and combinations thereof, and wherein the first information includes results of the detection of such content.
In one embodiment, the method further includes providing the patient with a diagnostic reagent prior to obtaining a sample of the patient's breath and spectroscopically analyzing the particular sample. In some embodiments, the comparison may detect the presence or absence of a particular molecular component or notice whether the particular molecular component has a different quantitative presence when compared to prior submissions of first information or when compared to second information. In other embodiments, the comparison can determine whether a particular molecular component meets a selected minimum detection level. In another embodiment, the comparison can note significant deviation(s) from various inputs of first information, and wherein the provision of third information can notify the health care professional of the deviation(s). In one embodiment, the comparison can detect a match or non-match of qualitative and quantitative identification of molecules in the first information with spectroscopic profiles of the second information.
In some embodiments, the match or non-match information can be stored in the computer.
In other embodiments, the method further includes entering additional information into the computer regarding the patient. In one embodiment, the additional information includes diet information, general state of health, amount and/or duration of recent exercise, or combinations thereof.
In some embodiments, multiple lasers are used to perform the spectroscopic analysis. In other embodiments, the multiple lasers have different emission frequencies.
In another embodiment, the method suitable for use in diagnosing the presence or absence of a medical condition in a patient includes comparing first information from a spectroscopic analysis of a sample of a patient's breath, the first information includes at least qualitative identification of molecules present in the spectroscopically analyzed sample, to second information through use of a computer, wherein the second information comprises information concerning molecules present in human breath, and providing third information, the third information includes results of the comparison, to a patient or health care professional(s), the information being provided at least in part through use of the computer and being helpful in assisting the patient or health care professional(s) in evaluating a presence or absence of a medical condition. In some embodiments, multiple comparisons of multiple spectroscopic analyses from multiple samples of the patient's breath are performed. In other embodiments, the comparison is made between the first information that includes both quantitative and qualitative identification of molecules present in the sample of the patient's breath and the second information that includes both qualitative and quantitative information regarding molecules present in human breath. In some embodiments, the comparison of the first information to the second information is made with the second information also including information regarding human breath profiles and their relationships to certain medical conditions.
BRIEF DESCRIPTION OF DRAWINGS
The foregoing features of the invention will be more readily understood by reference to the following detailed description, taken with reference to the accompanying drawings, in which:
FIG. 1 is a schematic representation of an embodiment of the present invention; FIG. 2A is a schematic showing an embodiment of how an episodic sampling mode may be implemented; and FIG. 2B is a schematic showing an embodiment of how a steady state sampling mode may be implemented.
DETAILED DESCRIPTION
Analysis of breath samples for diagnostic purposes has the advantage that the breath sample to be analyzed is collected from the patient in a non-invasive manner with a minimum of discomfort or inconvenience. The basic components of the analyzer component 100 of one device in accordance with the present invention can be further understood with reference to FIG. 1. FIG. 1 illustrates a schematic diagram of a spectroscopic analyzer component of one embodiment of the present invention wherein the spectroscopic analyzer is a cavity ring down spectrometer. A patient initially exhales into a sampling unit 102 which captures the exhaled breath. The exhaled breath sample is then directed to an optical cavity 104 containing a piezo 106 coupled to a detector 108. At least one CW laser 110 generates at least one laser light beam HOa which is directed through a Faraday isolator 112 and an acousto- optic modulator (AOM) 114. The laser light beam is then focused using one or more mirrors such as 116a and 116b and passed through the optical cavity 104 containing the exhaled breath sample. A threshold controller 118, operably coupled to an A/D converter 120 and a tracking unit 122, is in communication with detector 108 and AOM 114, and is further interfaced with a computer 124. The data resulting from the analysis could then be transferred to and stored in computer 124, which may further have an input device or devices, such as a keyboard or mouse, an output device such as a video monitor, printer, or other means of displaying data, memory, and an appropriate CPU. The computer may also be connected to an information grid such as a telephone system or the Internet. System 100 should be calibrated as required, which may be done by injecting a gas of known composition into the sampling device. A gas-filled canister may be provided for this purpose. It is also important to purge the sampling device after use to discharge excess moisture or other components. Purging could be done, for example, by injecting the sampling device with dry nitrogen. In such a system, the two functions of calibration and purging may thereby be performed in a single step. Alternatively, the calibration gas and the purging gas may be different, and the two functions performed in separate steps. Certain types of analyzers are more stable and require less calibration than others. Cavity ring-down spectroscopy, for example, may require reference or "zero" calibration, but will otherwise remain stable unless the associated laser or cavity is changed.
Sampling Modes
Sampling is any means of bringing exhaled breath into sampling unit 102. In one particular embodiment, sampling unit 102 is a spectrometer cell. Prior to sampling, sampling unit 102 is standardized for use. In one embodiment in accordance with the present invention, standardization consists of flushing sampling unit 102 with dry nitrogen gas, which has substantially no absorption of near-IR light (800-2000 nm). Ringdown (rd) time, τ0 , at the wavelength to be used for detection of the analyte, is a maximum determined chiefly by the reflectivity of sampling unit mirrors. Prior to analysis for each new analyte, sampling unit 102 is standardized at the wavelength to be used for the new gas (analyte). After use, dry nitrogen gas is isolated in sampling unit 102 by valves. Static Sample
For this sampling mode, no flow occurs during measurements and the sample is isolated by valves. Alternatively, the subject just quits blowing during the measurement. For example, the subject establishes a steady breathing cycle of shallow, normal, or deep breaths, as instructed. Once the cycle is established, the subject exhales into a disposable mouthpiece connected to a standard respirometer tube which is connected to sampling unit 102 with intervening filters for particulates and moisture. A check valve insures that flow is unidirectional from the subject into the sampling unit. If needed, multiple exhalations are used to completely purge sampling unit 102 and fill it uniformly with the subject's breath.
In such a sampling mode, sampling unit 102 is isolated during measurement using solenoid valves. The procedure is repeated as needed to obtain meaningful concentrations of the analytes being measured. Continuous Sampling
There are two continuous sampling measurement modes: episodic and steady state. Each requires that the spectrometer be tuned to the wavelength of interest depending on the analyte (gas) to be measured. a. Episodic sampling:
In this mode, as depicted in FIG. 2 A, a subject exhales normally into a respirometer tube 210 and inhales through the nose. A check valve 220 permits flow 205 only in the direction of exhalation so that no freshly exhaled breath is inhaled. As the subject breathes, the flow 205 of exhaled breath 255 through sampling unit 102 varies with time. Variations over time in the concentration of the gas of interest may be independent of variations over time in flow 205 of exhaled breath 255. In this sampling mode, once a reproducible record is obtained and recorded by the computer, the procedure is complete. b. Steady State Sampling: In this sampling mode, as depicted in FIG. 2B, a small portion (ca. 10%) of a subject's exhaled breath 255 is continuously sampled through sampling unit 102 at a substantially constant flow. Constant flow is provided from a bag reservoir 267 that the subject continuously fills by exhaling into a respirometer mouthpiece 262 connected at outlet 264 to a first "Y" fitting 265. A right outlet 266 of the first "Y" fitting 265 feeds a first check valve 280 connected to exhaled breath tube 256. First check valve 280 serves to prohibit reverse flow from exhaled breath tube 256 back into the subject. A left outlet 268 of first "Y" fitting 265 has a second check valve 282, disposed in opposite flow direction from that of first check valve 280 that closes on exhalation and opens on inhalation to allow mouth breathing by the subject. On exiting first check valve 280, exhaled breath 255 flows into a tube 256 that feeds a second "Y" fitting 275. A left outlet 276 of a second "Y" fitting 275 feeds a tube 277 that exhausts to atmosphere, and a right outlet 278 of second "Y" fitting 275 feeds a third check valve 284 connected via a tube 271 to bag inlet 261. The amount of breath 255 exhausted to the atmosphere is controlled by an adjustable flow proportioning valve 286 at the site of exhaust 290.
The balance of breath 255 flows through third check valve 284 and into bag reservoir 267. Bag reservoir 267 is held at constant selected pressure 291, for example, by using a predetermined and pre-selected weight 293 on the top of bag reservoir 267. Third check valve 284 before bag reservoir inlet 261 prohibits reverse flow to exhaust 290 during subject inhalation. Bag reservoir outlet 262 feeds a tube 272 connected to a flow control valve 288 for adjusting the amount of exhaled breath 255 conducted to sampling unit 102 and further through particulate and moisture filters 292 and 294. Alternatively, filters 292 and 294 may also be positioned at bag inlet 261 to eliminate condensation in bag reservoir 267 which may have adverse consequences due to adsorption of the analyte in the condensed moisture on the walls of the bag.
In accordance with another embodiment of the present invention, the spectroscopic analyzer component includes an optoacoustic analyzer, such as the system depicted in Figure 1 of Narasimhan et al., PNAS 98, 4617 at 4618 (2001), the entire contents of which have been incorporated by reference (vide supra).
The entire sample, or a portion thereof, is processed quantitatively or qualitatively. Quantitative analyzers may include highly sensitive laser spectroscopic devices such as cavity ring down spectrometers, and optoacoustic spectrometers described above. Such devices may also be used qualitatively, to test for the mere presence of an exhaled gas. Optionally, a second analyzer is provided that is used for qualitative analysis. Exemplary analyzers include ion mobility spectrometer detectors, acoustic wave detectors, and fiber optic detectors. Processed data from both the quantitative analyzer and/or the qualitative analyzer are stored in the memory of the computer and compared to a database of spectroscopic breath profiles characteristic of one or more medical conditions. Preferably both quantitative and qualitative analyses is performed using the same laser spectroscopy analyzer.
In accordance with embodiments of the present invention, data from a particular patient are stored so that multiple samples over an extended period of time may be taken. This permits a baseline to be established for a particular patient, and trend analysis is performed on the resulting data, relative to the database of spectroscopic breath profiles. If there is an acute and significant change in the chronic condition of the patient's breath, indications of this change may be communicated to a physician or healthcare provider via communications components linked to the computer 124.
The types of tests that may be employed include carbon dioxide content, alcohol content, lipid degradation products, aromatic compounds, thio compounds, ammonia and amines or halogenated compounds. As an example of the usefulness of detecting these components, lipid degradation products such as breath acetone are useful in monitoring diabetes. Thio compounds such as methanethiol, ethanethiol, or dimethyl sulfides have diagnostic significance in detecting widely differing conditions, such as psoriasis and ovulation. Increased ammonia has been associated with hepatic disease. Halogenated compounds may be indicative of environmental or industrial pollutants.
Another set of tests is based on analysis of certain breath components after the patient has taken a diagnostic reagent, in accordance with instructions from a physician. For example, urea, especially C13-labeled urea, or C13-labeled carbohydrates may be
11X taken orally and the C -based CO2 metabolite analyzed in the exhaled breath to determine if the patient has heliobactor pylori infection of the stomach lining (urea —> NH3 + CO2) or carbohydrate malabsorbtion, glucose intolerance, lactase deficiency or small bowel bacterial overgrowth. Carbon 13 isotopes can be differentiated by laser spectroscopy.
A baseline or chronic breath condition history for a particular patient may also be compiled using the present invention. In this embodiment, an initialization test is first run on a sample of the patient's exhaled breath, with additional samples analyzed thereafter. As additional samples are analyzed and stored in memory at specific times over an extended period of time, the last stored or baseline sample data is then recalled from memory and the change or delta information between the new sample data and stored sample data is determined. Multiple analyses may be done simultaneously or serially on a single sample if the analyzer device 100 is capable of multiple analyses. Otherwise, an additional sample or samples may be requested of the patient. Cavity-ring-down spectroscopy, for example, is capable of measuring multiple components in a short period of time.
If qualitative tests are to be performed, the tests may fall into two general types.
First, the presence of the breath component alone may be significant to the health of the patient. This is particularly important where the chronic monitoring of the breath components of the patient indicate the absence of a component and that component appears in a new breath sample analysis. The converse change may also be significant, that is, a component formerly present is absent in the new breath sample analysis. Both conditions may be detected by a device in accordance with the present invention if maintenance of a patient's specific data history is desired and preserved in memory.
Second, it may be significant that a newly detected component falls within a given range. Although the components may be detected by a qualitative analysis, estimates of the range may be obtained by certain manipulations of the qualitative device. This is important where it is economically infeasible to employ a quantitative device with respect to a particular component, but where an approximation can be obtained which is sufficient to alert an attending physician of the need for a more detailed analysis, or which is sufficient to allow the patient to follow a course of treatment, e.g. diet control, either for weight loss or for diabetes. After the qualitative components are identified, it may be desirable to quantify certain of those components. If a quantitative approximation is desired, a desired range is determined by first establishing a limit for the particular component to be analyzed. This involves setting the level of detection LOD to a particular level such that the component is longer detected because the minimum level is below the "pre-set" detection limit of the detector. If the desired component in the breath sample is not detected, this indicates that the component is below a selected maximum. If necessary, a new sample is taken and then a determination made for whether the component is present at that level of detection LOD. If the component is not detected, it is reported that the component falls below the selected limit. On the other hand, if the component is detected, it is reported that the component's concentration exceeds the selected limit. The data is then stored, indicating that the particular component meets or does not meet the selected minimum detection level. This may be sufficient to determine if the component is low enough for health or if it exceeds a healthy range.
If it is desired to place the component within a maximum and minimum range, a test for a second limit is performed. For the second limit, the upper limit, a new setting for the LOD is provided and the cycle is repeated at the second selected setting, as described.
The results obtained from the quantitative analyses, the minimum detection analyses, and the minimum/maximum range analyses are then examined by computer 124. Depending on the desired information, computer 124 checks for significant changes in the quantitative or qualitative analyses for selected components, whether over time for a particular patient as compared to a database of spectroscopic profiles characteristic of a plurality of medical conditions, or as a single analysis compared to the database of spectroscopic breath profiles. Significant deviations over time from the database profiles, or a significant deviation as a single analysis are then used by a health care professional to facilitate diagnosis of the presence/absence and/or progression/regression of a medical condition.
The use of the breath analyzer 100 is further explained as follows. Use of the breath analyzer 100 begins with calibration. This is accomplished by injecting a gas of known composition into the device. A canister of such gas is provided for this purpose. After calibration, a sample is taken. The analyzer 100 then compares the spectroscopic breath profile for a patient to a database of spectroscopic profiles characteristic of one or more medical conditions to facilitate diagnosis for the presence or absence of a medical condition. Computer 124 alerts the user to a "match" or "nonmatch" in patient versus database spectroscopic profiles. Such information is then interpreted by a physician or other health care professional to facilitate diagnosis of the presence or absence of a medical condition. The "match/nonmatch" information may be stored in the memory of the medical device, to be retrieved and/or transferred as required. The analyzer may also request the user or patient to enter certain data through the microcomputer user interface (for example, keyboard or mouse). The requested data might include diet information, perceived general state of health, amount and duration of recent exercise and similar factors which might either explain an acute change in breath components (that is, indicate that the change is not in fact significant) or provide important information for a health care provider.
Finally, the system is purged to prevent contaminants from building up in the sampling device. This may be accomplished by providing a gas of known composition such as pure dry nitrogen, and may be combined with the calibration step.
Multiple tests performed on a single sample may be independent, or may be the results of several tests combined to produce a template or pattern representative of a patient's condition or representative of the presence of a particular compound or set of compounds. Multiple lasers may also be used on a single sample to extend the band width for detection, and pattern recognition may then be applied to the combined output of the several lasers. A single laser is generally capable of emitting light at certain limited frequencies. Although some tuning or variation of frequencies is possible, the elements or compounds that can be effectively recognized by a single laser device are limited by the frequency characteristics of the selected laser. The detector 108 of an embodiment of the present invention may include multiple lasers having different emission frequencies. The lasers may be directed into a single sample by being physically offset around the sample, by being fired at slightly different times, or may be directed by other techniques. Optical apparatus such as mirrors, lenses or prisms may be used to direct a beam from a selected laser along a path through the sample and into a detector. By adjusting the optical apparatus, beams from other lasers may be directed along the same or a similar path through the sample. By using lasers with different emission characteristics with the same sample, a wider set of data points may be obtained. Instead of three or four data points for a single laser, three lasers may obtain twelve or more data points from the same sample. This information is expected to be both more selective and more quantitatively precise than similar information obtained by electronic nose technology. The resulting more accurate information from all the laser beams is nevertheless processed together, using pattern recognition methods and techniques. As a result, a wider range of conditions or compounds is identified by correlating the data pattern or changes in the data pattern over time.
The described examples of particular embodiments of the present invention are by means of illustration and should not be considered limiting. Persons skilled in the art will readily recognize possible changes and modifications to be incorporated into the design or construction that would not depart from the spirit and scope or teachings of the presently claimed invention. What is claimed is:

Claims

1. A medical device for analyzing gases in a person's expired breath for assisting in diagnosis of a medical condition, the device comprising: a spectroscopic analyzer component that obtains a patient's breath profile that includes at least molecular identification of at least a plurality of compounds that are present in the patient's breath; a computer; a memory component operably coupled to the computer; and a database stored within the memory component containing spectroscopic breath analysis profiles, each profile characteristic of at least one of a plurality of medical conditions, the computer program is operably coupled to the analyzer component and compares the obtained patient's breath profile, including the identified molecular compounds, to the stored database of spectroscopic breath profiles to provide information pertinent to diagnosis of the presence or absence of a medical condition.
2. A medical device according to claim 1 wherein the database of spectroscopic breath analysis profiles stored within the memory includes profiles for medical conditions including kidney malfunction, liver malfunction, asthma, diabetes, cancer, ulcer, schizophrenia, neurological disorders, pneumonia, halitosis, alcohol ingestion, and organ trauma.
3. A medical device according to claim 1 wherein the spectroscopic analyzer identifies molecular compounds in expired breath, said compounds comprising ammonia, nitric oxide, ketones, methane, ethane, butane, pentane, carbon dioxide, carbon monoxide, oxygen, sulfur dioxide, carbon disulfide, hydrogen sulfide, methyl mercaptan, skatole, indole, cadaverine, putrescine, isovaleric acid, trimethylamine, halogens, halogen compounds or a combination thereof.
4. The medical device according to claim 1 wherein the spectroscopic analyzer component is a highly sensitive laser spectrometer.
5. The medical device according to claim 4 wherein the spectroscopic analyzer component is a cavity ring down spectrometer.
6. The medical device according to claim 4 wherein the spectroscopic analyzer component is an optoacoustic spectrometer
7. The medical device according to claim 1 wherein the spectroscopic analyzer component also is a quantitative analyzer.
8. The medical device according to claim 1 wherein the database is capable of storing data from multiple spectroscopic analyses over an extended time period.
9. A method for using the medical device of claim 1 to analyze a patient' s breath sample for assisting in diagnosing the presence or absence of a medical condition, comprising: obtaining a breath sample from a patient; analyzing volatile components of the patient sample to provide a patient spectroscopic breath profile that includes both qualitative and quantitative data; comparing the patient's spectroscopic breath profile to a database of spectroscopic breath profiles, each database profile characteristic of at least one of a plurality of medical conditions, so as to provide information pertinent to the presence or absence of a medical condition.
10. A method for using the medical device of claim 4 to analyze a patient's breath sample for assisting in diagnosis of the presence or absence of a medical condition, comprising: obtaining a breath sample from a patient; analyzing volatile components of the patient sample to provide a patient spectroscopic breath profile that includes both qualitative and quantitative data; comparing the patient's spectroscopic breath profile to a database of spectroscopic breath profiles, each database profile characteristic of at least one of a plurality of medical conditions, so as to provide information pertinent to diagnosis of the presence or absence of a medical condition.
11. The medical device of claim 8, wherein the computer program is capable ' of establishing a baseline for a particular patient and is capable of noticing a change from the baseline.
12. The medical device of claim 1 , wherein the computer program is capable of providing information that alerts a user of the computer of a significant deviation from previous spectroscopic breath profiles.
13. A method of analyzing gases from the breath of a patient in diagnosing a medical condition in that patient, the method comprising:
(a) sampling a patient's breath;
(b) spectroscopically analyzing volatile components of the sample to provide a patient spectroscopic breath profile that includes at least qualitative molecular identification of compounds or a combination of both qualitative and quantitative molecular identification of compounds; and
(c) comparing the patient's spectroscopic breath profile to a database of spectroscopic breath profiles through use of a computer, wherein each profile in the database is characteristic of at least one of a plurality of medical conditions, to provide information pertinent to a diagnosis of the presence or absence of a medical condition.
14. The method of claim 13, wherein the computer provides information to a user thereof of a match or non-match of the patient's spectroscopic breath profile to at least one of the profiles in the database.
15. The method of claim 14, wherein the information is interpreted by a health care professional to evaluate the presence or absence of a medical condition.
16. The method of claim 15, further comprising entering additional information into the computer regarding the patient.
17. The method of claim 13, wherein the spectroscopic analysis provides a spectroscopic breath concentration profile.
18. The method of claim 13, wherein the spectroscopic breath profile includes both qualitative and quantitative data.
19. A device to assist in diagnosing a medical condition, the device comprising:
(a) a spectroscopic analyzer component that obtains first information regarding qualitative identification, or a combination of both qualitative and quantitative identification, of molecules present in a sample of a patient's breath; and
(b) computer that comprises a computer program to receive the first information regarding qualitative or qualitative and quantitative molecular identification and to compare the first information with second information in a database, wherein the second information comprises data concerning molecules present in human breath and certain medical conditions, and wherein the comparison results in the computer providing third information to the patient or a health care professional.
20. The device of claim 19, wherein the computer program also is capable of storing data from multiple breath samples of the patient, taken over an extended time period.
21. The device of claim 19, wherein the computer program is further capable of providing a baseline of data from one of more samples of the patient's breath.
22. The device of claim 20, wherein the computer program is capable of performing a trend analysis with respect to receiving multiple inputs of the first information.
23. The device of claim 20, wherein when providing the third information, the computer is capable of alerting the patient or health care professional of significant deviations in the first information.
24. The device of claim 23, wherein the computer is further capable of alerting the health care professional of the need for further analysis or for a proposed course of treatment.
25. The device of claim 19, wherein the spectroscopic analyzer component obtains first information regarding both qualitative and quantitative identification of molecules present in a sample of the patient's breath.
26. A method suitable for use in diagnosing the presence or absence of a medical condition in a patient, the method comprising:
(a) spectroscopically analyzing a sample of a patient's breath to obtain first information that includes at least qualitative identification of molecules that are present in the sample; (b) comparing the first information, including the qualitative molecular identification, to second information through use of a computer, the second information comprising data concerning molecules present in human breath and the relationship of those molecules to certain medical conditions; and
(c) providing third information, said third information comprising results of the comparison, to a health care professional through use of the computer to assist the health care professional in evaluating a presence or absence of the medical condition.
27. The method of claim 26, wherein the comparison of the first information to the second information through use of the computer includes a comparison of both the qualitative and quantitative molecular identification of the first information to qualitative and quantitative data of the second information.
28. The method of claim 27, further comprising storing the first information so that it can be compared to subsequent submissions of the first information for purposes of assisting in the diagnosis of the patient.
29. The method of claim 26, wherein multiple samples of first information are stored so that a baseline is established for the patient.
30. The method of claim 29, wherein differences between the baseline and the first information can be detected and wherein the third information can alert the health care professional that the differences have been detected.
31. The method of claim 26, wherein the spectroscopic analysis involves the detection of carbon dioxide content, alcohol content, acetone content, lipid content, aromatic compound content, thio compound content, ammonia content, amine content, halogen content, and combinations thereof, and wherein the first information includes results of the detection of such content.
32. The method of claim 26, further comprising providing the patient with a diagnostic reagent prior to obtaining a sample of the patient's breath and spectroscopically analyzing the particular sample.
33. The method of claim 26, wherein the comparison may detect the presence or absence of a particular molecular component and/or notice whether the particular molecular component has a different quantitative presence when compared to prior submissions of first information or when compared to second information.
34. The method of claim 26, wherein the comparison can determine whether a particular molecular component meets a selected minimum detection level.
35. The method of claim 26, wherein the comparison can note significant deviation(s) from various inputs of first information, and wherein the provision of third information can notify the health care professional of the deviation(s).
36. The method of claim 26, wherein the comparison can detect a match or non-match of qualitative and quantitative identification of molecules in the first information with spectroscopic profiles of the second information.
37. The method of claim 36, wherein the match or non-match information can be stored in the computer.
38. The method of claim 26, further comprising entering additional information into the computer regarding the patient.
39. The method of claim 38, wherein the additional information comprises diet information, general state of health, amount of recent exercise, duration of recent exercise, or a combination thereof.
40. The method of claim 26, wherein multiple lasers are used to perform the spectroscopic analysis.
41. The method of claim 40, wherein the multiple lasers have different emission frequencies.
42. A method suitable for use in diagnosing the presence or absence of a medical condition in a patient, the method comprising:
(a) comparing first information from a spectroscopic analysis of a sample of a patient's breath, the first information comprising at least qualitative identification of molecules present in the spectroscopically analyzed sample, to second information through use of a computer, wherein the second information comprises information concerning molecules present in human breath; and
(b) providing third information, the third information comprising results of the comparison, to a patient or health care professional (s), the information being provided at least in part through use of the computer and being helpful in assisting the patient or health care professional(s) in evaluating a presence or absence of a medical condition.
43. The method of claim 42, wherein multiple comparisons of multiple spectroscopic analyses from multiple samples of the patient's breath are performed.
44. The method of claim 42, wherein the comparison is made between the first information that includes both quantitative and qualitative identification of molecules present in the sample of the patient's breath and the second information that includes both qualitative and quantitative information regarding molecules present in human breath.
45. The method of claim 44, wherein the comparison of the first information to the second information is made with the second information also including information regarding human breath profiles and their relationships to certain medical conditions.
PCT/US2006/022247 2006-06-08 2006-06-08 Spectroscopic breath profile analysis device and uses thereof for facilitating diagnosis of medical conditions WO2007142644A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/US2006/022247 WO2007142644A1 (en) 2006-06-08 2006-06-08 Spectroscopic breath profile analysis device and uses thereof for facilitating diagnosis of medical conditions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2006/022247 WO2007142644A1 (en) 2006-06-08 2006-06-08 Spectroscopic breath profile analysis device and uses thereof for facilitating diagnosis of medical conditions

Publications (1)

Publication Number Publication Date
WO2007142644A1 true WO2007142644A1 (en) 2007-12-13

Family

ID=37594737

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2006/022247 WO2007142644A1 (en) 2006-06-08 2006-06-08 Spectroscopic breath profile analysis device and uses thereof for facilitating diagnosis of medical conditions

Country Status (1)

Country Link
WO (1) WO2007142644A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8945936B2 (en) 2011-04-06 2015-02-03 Fresenius Medical Care Holdings, Inc. Measuring chemical properties of a sample fluid in dialysis systems
WO2020198843A1 (en) * 2019-04-03 2020-10-08 Picomole Inc. Method and system for analyzing a sample using cavity ring-down spectroscopy, and a method for generating a predictive model

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001028416A1 (en) * 1999-09-24 2001-04-26 Healthetech, Inc. Physiological monitor and associated computation, display and communication unit
WO2002017991A2 (en) * 2000-08-28 2002-03-07 Healthtech, Inc. Respiratory gas sensors in flow path
US20040210154A1 (en) * 2001-09-27 2004-10-21 Kline Jeffrey A. Non-invasive device and method for the diagnosis of pulmonary vascular occlusions
US20050147560A1 (en) * 1998-05-06 2005-07-07 Isotechnika Inc. 13C glucose breath test for the diagnosis of diabetic indications and monitoring glycemic control

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050147560A1 (en) * 1998-05-06 2005-07-07 Isotechnika Inc. 13C glucose breath test for the diagnosis of diabetic indications and monitoring glycemic control
WO2001028416A1 (en) * 1999-09-24 2001-04-26 Healthetech, Inc. Physiological monitor and associated computation, display and communication unit
WO2002017991A2 (en) * 2000-08-28 2002-03-07 Healthtech, Inc. Respiratory gas sensors in flow path
US20040210154A1 (en) * 2001-09-27 2004-10-21 Kline Jeffrey A. Non-invasive device and method for the diagnosis of pulmonary vascular occlusions

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8945936B2 (en) 2011-04-06 2015-02-03 Fresenius Medical Care Holdings, Inc. Measuring chemical properties of a sample fluid in dialysis systems
US9599599B2 (en) 2011-04-06 2017-03-21 Fresenius Medical Care Holdings, Inc. Measuring chemical properties of a sample fluid in dialysis systems
WO2020198843A1 (en) * 2019-04-03 2020-10-08 Picomole Inc. Method and system for analyzing a sample using cavity ring-down spectroscopy, and a method for generating a predictive model
EP3948235A4 (en) * 2019-04-03 2023-01-11 Picomole Inc. Cavity ring-down spectroscopy system and method of modulating a light beam therein

Similar Documents

Publication Publication Date Title
US7101340B1 (en) Spectroscopic breath profile analysis device and uses thereof for facilitating diagnosis of medical conditions
US7192782B2 (en) Method and apparatus for determining marker gas concentration in exhaled breath using an internal calibrating gas
US20070081162A1 (en) Method And Apparatus For Determining Marker Gas Concentration Using An Internal Calibrating Gas
US6248078B1 (en) Volatile biomarkers for analysis of hepatic disorders
US4083367A (en) Method and apparatus for pulmonary function analysis
US7473229B2 (en) Method of analyzing components of alveolar breath
US6981947B2 (en) Method and apparatus for monitoring respiratory gases during anesthesia
US20140330153A1 (en) Selective Point of Care Nanoprobe Breath Analyzer
Vreman et al. Evaluation of a fully automated end-tidal carbon monoxide instrument for breath analysis
US20030139681A1 (en) Method and apparatus for monitoring intravenous (IV) drug concentration using exhaled breath
EA022246B1 (en) Measuring device and method for analysing a test gas by means of an infrared absorption spectroscopy
McCurdy et al. Performance of an exhaled nitric oxide and carbon dioxide sensor using quantum cascade laser-based integrated cavity output spectroscopy
Maurin et al. First clinical evaluation of a quartz enhanced photo-acoustic CO sensor for human breath analysis
Namjou et al. Determination of exhaled nitric oxide distributions in a diverse sample population using tunable diode laser absorption spectroscopy
JPH0954040A (en) Method for optically measuring component in exhalation
US20180271406A1 (en) Combined Sensor Apparatus for Breath Gas Analysis
Vaittinen et al. Exhaled breath biomonitoring using laser spectroscopy
McCurdy et al. Quantum cascade laser-based integrated cavity output spectroscopy of exhaled nitric oxide
US20130011872A1 (en) Stable isotopic biomarker measurement for the detection of cancer and the determination of efficacy of treatment in diagnosed cancer patients
FI112824B (en) Procedure for the analysis of exhaled gas
Hannemann et al. Influence of age and sex in exhaled breath samples investigated by means of infrared laser absorption spectroscopy
WO2014132077A1 (en) Apparatus and method of breath volatile organic compound analysis and calibration method
Wang et al. Breath acetone analysis of diabetic dogs using a cavity ringdown breath analyzer
JP2004279228A (en) Method and apparatus for measuring concentration of component gas in exhalation
WO2007142644A1 (en) Spectroscopic breath profile analysis device and uses thereof for facilitating diagnosis of medical conditions

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06784659

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 06784659

Country of ref document: EP

Kind code of ref document: A1