WO2007142139A1 - Method of identifying candidate for remedy of acute myeloid leukemia - Google Patents

Method of identifying candidate for remedy of acute myeloid leukemia Download PDF

Info

Publication number
WO2007142139A1
WO2007142139A1 PCT/JP2007/061190 JP2007061190W WO2007142139A1 WO 2007142139 A1 WO2007142139 A1 WO 2007142139A1 JP 2007061190 W JP2007061190 W JP 2007061190W WO 2007142139 A1 WO2007142139 A1 WO 2007142139A1
Authority
WO
WIPO (PCT)
Prior art keywords
lyn
flt3
myeloid leukemia
acute myeloid
phosphorylation
Prior art date
Application number
PCT/JP2007/061190
Other languages
French (fr)
Japanese (ja)
Inventor
Tomoki Naoe
Fumihiko Hayakawa
Mitsunori Okamoto
Original Assignee
National University Corporation Nagoya University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University Corporation Nagoya University filed Critical National University Corporation Nagoya University
Priority to JP2008520538A priority Critical patent/JP5246776B2/en
Publication of WO2007142139A1 publication Critical patent/WO2007142139A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57407Specifically defined cancers
    • G01N33/57426Specifically defined cancers leukemia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/55Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having seven-membered rings, e.g. azelastine, pentylenetetrazole
    • A61K31/553Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having seven-membered rings, e.g. azelastine, pentylenetetrazole having at least one nitrogen and one oxygen as ring hetero atoms, e.g. loxapine, staurosporine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/7105Natural ribonucleic acids, i.e. containing only riboses attached to adenine, guanine, cytosine or uracil and having 3'-5' phosphodiester links
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5011Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing antineoplastic activity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6893Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids related to diseases not provided for elsewhere
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2500/00Screening for compounds of potential therapeutic value

Definitions

  • the present invention relates to a method for identifying a candidate substance for a therapeutic agent for acute myeloid leukemia, and a therapeutic agent for acute myeloid leukemia.
  • Fms-like tyrosine kinase 3 is a receptor belonging to the type III receptor thymosine kinase as well as KIT, FMS, PD GF receptors and the like.
  • the ligand is thought to be important for the proliferation and differentiation of hematopoietic stem cells because it is expressed in hemocyte pluripotent stem cells and the knockout mice show a decrease in hematopoietic progenitor cells. ing.
  • the receptor forms a dimer through the ligand, which causes the receptor to autophosphate and activates downstream signaling factors.
  • Signals from FLT3 play a very important role in hematopoiesis by controlling the proliferation of stem cells.
  • the active mutation FLT3 was frequently observed in adult acute myeloid leukemia (AML) cases.
  • AML acute myeloid leukemia
  • the receptor and its downstream signaling factor are constitutively activated and cell proliferation is promoted.
  • the FLT3 paramembrane region (JMD) gene has an internal tand em duplication (ITD) type (FLT3 / ITD), and the tyrosine kinase domain has a point mutation. (FLT3 / TKD) (Yamamoto Y, et al., (2001). Blood, 97, 243 4-9) is known.
  • FLT3 / ITD mutations have been reported in 20% of AML cases (Yokota, S., et al., (1997) ⁇ eukemia, ll, 1605-9), part of overlapping amino acid sequences. (Kiyoi H., et al., (1998) .Leuk emia, 12, 1333-7; Hayakawa F., et al., (2000). Oncogene, 19, 624-31. ). It has been shown in animal models that abnormalities in signal transduction caused by the active mutation FLT3 are involved in the onset and progression of leukemia as first hit or second hit.
  • the presence of the active mutant FLT3 is a poor prognostic factor for AML, and it is a disease of AML (Frohling, S., et al., (2002) .Blood, 100,4372—80; Gilliland, DG & Griffin, JD (2002) .Blood, 100,1532—42; Horiik e'S.'et al., (1997) ⁇ eukemia, ll, 1442-6; Kiyoi, H., et al., (1999) .Blood, 93, 3074-80;
  • the present inventors first introduced FLT3 / ITD into 32D and BA / F3, which are cell lines showing IL-3-dependent proliferation, and FLT3 / ITD was proliferated in an IL-3-independent manner. (Hayakawa, F., et al., (2000). Oncogene, 19,624-31) 0
  • STAT5 activation is wild-type FLT3. This is a phenomenon that is not observed in cells that have been introduced, and it is strongly suggested that this may be responsible for IL-3 independent proliferation, but the signaling pathway that links mutant FLT3 and STAT5. I understand! / ,!
  • Lyn is a member of Src family kinases (SFK) following FLT3 ligand stimulation in cells expressing wild type FLT3. Report that is phosphorylated. It also shows abnormal phosphorylation of SFK in cell lines expressing FLT3 mutant, but due to the difference in the experimental system from that used for wild-type FLT3, phosphorylation was observed in cells expressing FLT3 mutant.
  • SFK Src family kinases
  • Non-patent document 1 Yokota, S., et al., (1997) ⁇ eukemia, l l, 1605-9
  • Non-Patent Document 2 Frohling, S., et al., (2002) .Blood, 100, 4372-80
  • Non-Patent Document 3 Gilliland, D.G. & Griffin, J.D. (2002) .Blood, 100, 1532-42
  • Non-Patent Document 4 Horiike, S., et al., (1997) ⁇ eukemia, 11, 1442-6
  • Non-Patent Document 5 Kiyoi, H., et al., (1999) .Blood, 93, 3074-80
  • Non-Patent Document 6 Kiyoi, H., et al., (2005). Int J Hematol, 82, 85-92
  • Non-Patent Document 7 Kottaridis, P.D., et al., (2001) .Blood, 98, 1752-9
  • Non-Patent Document 8 Nakano, Y., et al., (1999) .Br J Haematol, 104,659-64
  • Non-Patent Document 9 Thomasger, S., et al., (2002) .Blood, 100, 59-66
  • Non-Patent Document 10 Shih, L.Y., et al., (2004) ⁇ eukemia, 18,466-75
  • Non-Patent Document 11 Shih, Y., et al, (2002) .Blood, 100, 2387-92)
  • Non-Patent Document 12 Hayakawa, F., et al., (2000) .Oncogene, 19,624-31
  • Non-Patent Document 13 Robinson, L.J., et al., (2005) .Exp Hematol, 33,469-79
  • An object of the present invention is to provide a method for identifying a candidate substance for a therapeutic agent for acute myeloid leukemia, and a therapeutic agent for acute myeloid leukemia.
  • the present inventors have found that FLT3 / ITD and Lyn bind specifically to ITD mutations, and that Lyn is phosphorylated. And by using siRNA targeting Lyn, among the SFKs, Lyn phosphate was responsible for the abnormal activation of STAT5 in leukemia cell lines with FLT3 mutant, and the cause of abnormal growth of the same cell line. It was revealed that. Regarding SFK inhibitor PP2, it was also shown that the phosphorylation of SFK inhibited by this inhibitor is more than 80% phosphorylation of Lyn and also inhibits phosphorylation of STAT5. .
  • the present invention is a method for identifying a candidate substance for a therapeutic agent for acute myeloid leukemia, and whether or not the test substance inhibits the binding between the active mutant FLT3 and Lyn in vitro or in a cell. , And determining whether to inhibit Lyn phosphate in a cell expressing Z or an active mutant FLT3.
  • the active mutant FLT3 refers to a mutant FLT3 that exhibits constitutively active FLT3 kinase activity.
  • Typical active mutations FLT3 include FLT3 / ITD and FLT3 / TKD, both of which have FLT3 kinase activity that is constitutively active and cause abnormal signaling activity. causes abnormal cell proliferation and causes leukemia.
  • the present invention relates to a method for identifying a candidate substance for a therapeutic agent for acute myeloid leukemia, wherein the test substance is contacted with a cell expressing Lyn, and the test substance expresses Lyn expression.
  • a method comprising determining whether to inhibit and whether Z or Lyn is capable of inhibiting STAT5 phosphate;
  • the present invention relates to an antisense oligonucleotide against Lyn gene, a ribozyme against Lyn gene, siRNA against Lyn gene, PP1, PP2, SU6656, Staurosporine, NS-187, KRX-
  • an antisense oligonucleotide against Lyn gene a ribozyme against Lyn gene, siRNA against Lyn gene, PP1, PP2, SU6656, Staurosporine, NS-187, KRX-
  • a therapeutic agent for acute myeloid leukemia comprising a substance selected from the group consisting of 123 and BMS-354825 as an active ingredient is provided.
  • the present invention relates to a substance that inhibits the binding between active mutant FLT3 and Lyn, a substance that inhibits phosphorylation of Lyn in cells expressing the active mutant FLT3,
  • a therapeutic agent for acute myeloid leukemia containing as an active ingredient a substance that inhibits expression and a substance selected from the group of substances that inhibits STAT5 phosphate by Lyn.
  • the present invention relates to a method for treating acute myeloid leukemia, wherein the binding of active mutant FLT3 to Lyn is inhibited and Z or active mutant FLT3 is expressed. Inhibiting Lyn phosphorylation in a cell is provided.
  • the present invention is a method for treating acute myeloid leukemia, which inhibits Lyn expression or inhibits STAT5 phosphate by Z or Lyn A method comprising:
  • the present invention provides a method for treating acute myeloid leukemia in which a patient in need of treatment is provided with an antisense oligonucleotide for the Lyn gene, a ribozyme for the Lyn gene, There is provided a method comprising administering a substance selected from the group consisting of siRNA, PP1, PP2, SU6656, staurosporine, NS-187, KRX-123, and BMS-354825 against a gene.
  • the present invention relates to a method for treating acute myeloid leukemia, wherein a substance that inhibits the binding of an active mutation FLT3 and Lyn, an activity to a patient in need of treatment.
  • a substance selected from the group consisting of a substance that inhibits Lyn phosphorylation, a substance that inhibits Lyn expression, and a substance that inhibits STAT5 phosphorylation by Lyn in cells that express type FLT3.
  • a method comprising:
  • FIG. 1 shows phosphorylation of SFK in FLT3 / ITD-introduced 32D cells.
  • Figure 2 shows the coupling of FLT3 and Lyn.
  • Fig. 3 shows phosphorylation of STAT5 and inhibition of cell proliferation by FLT3 / ITD when Lyn expression was suppressed by siRNA.
  • Figure 4 shows the effect of SFK inhibitors on FLT3 / ITD signaling and cell proliferation.
  • FIG. 5 shows inhibition of proliferation of FLT3 / ITD-32D cells in C3H / HeNCj mice by PP2.
  • Non-receptor tyrosine kinase Lyn is a member of the Src family kinase (Src family kinase: SFK) and is predominantly expressed in the blood cell system. Like other SFK members, Lyn binds to the receptor and is thought to be involved in signal generation of its receptor strength. Lyn was originally discovered as a signal transduction factor for B cell antigen receptors. In recent studies, various site forces such as erythropoietin receptor, GM-CSF receptor, CSF-1 receptor, and c-kit It has been clarified that the receptor also plays a role as a transmitter of cell proliferation signals.
  • FLT3 / ITD and Lyn are specifically bound to ITD mutation in the cell, and Lyn phosphonate is associated with it.
  • Lyn phosphonate is associated with it.
  • the binding is more affinity to FLT3 / ITD than wild-type FLT3 and is dependent on FLT3 phosphate.
  • the present invention provides a method for screening candidate substances for therapeutic agents for acute myeloid leukemia from various test substances. Screening shows whether test substance inhibits binding of active mutant FLT3 to Lyn in vitro or in cells, and inhibits Lyn phosphate in cells expressing Z or active mutant FLT3 This can be done by determining whether or not the force is strong. The ability of the test substance to inhibit the binding between active mutant FLT3 and Lyn is measured in vitro using a known binding assay using isolated active mutant FLT3 and isolated Lyn. be able to. In cells, cells expressing both the active mutations FLT3 and Lyn can be brought into contact with the test substance and assayed using known binding assays.
  • the screening method according to the present invention comprises contacting a test substance with a cell that expresses Lyn, the ability of the test substance to inhibit Lyn expression, and the STAT5 phosphate concentration by Z or Lyn.
  • test substance to inhibit Lyn expression can be evaluated by measuring the amount of Lyn mRNA or the amount of protein by a known method.
  • the ability of the test substance to inhibit STAT5 phosphate by Lyn can be assessed by measuring the degree of phosphate in the STAT5 protein using known methods. Substances identified by these assays as significantly inhibiting Lyn expression or STAT5 phosphorylation are considered candidates for inhibitors of therapeutic agents for acute myeloid leukemia.
  • Test substances can be obtained from various libraries such as various synthetic or natural compound libraries, combinatorial libraries, oligonucleotide libraries, peptide libraries, and the like.
  • extracts from natural products such as bacteria, fungi, algae, plants, animals, and partially purified products may be used as test substances.
  • Examples of the therapeutic agent for acute myeloid leukemia of the present invention include expression (transcription of Lyn gene) such as antisense oligonucleotides, ribozymes, and molecules that cause RNA interference (RNAi) (eg, dsRNA, siRNA, shRNA, miRNA). And Z or translation) inhibitors.
  • RNAi RNA interference
  • Such a nucleic acid can be easily designed and manufactured based on the known nucleotide sequence information of Lyn, and can bind to and inhibit the expression of the Lyn gene or mRNA encoding Lyn.
  • General methods for controlling gene expression using antisense, ribozyme technology and RNAi technology, or gene therapy methods for expressing exogenous genes in this manner are well known in the art.
  • An antisense oligonucleotide refers to a nucleic acid molecule having a sequence complementary to mRNA encoding Lyn or a derivative thereof. Antisense oligonucleotides specifically bind to mRNA and inhibit protein expression by inhibiting transcription and Z or translation. Binding may be by Watson-Crick or Houdsteen-type base pair complementarity, or by triplex formation.
  • Ribozymes are RNA molecules with catalytic properties that can cleave target nucleic acid sequences. To express. Ribozymes generally display endonuclease, ligase or polymerase activity. Various secondary structure ribozymes are known, for example hammerhead and hairpin type ribozymes. RNA interference (RNAi) is a method of silencing target genes using double-stranded RNA molecules.
  • the present invention relates to a substance that inhibits the binding between active mutant FLT3 and Lyn, a substance that inhibits phosphorylation of Lyn in a cell that expresses active mutant FLT3, and the expression of Lyn or STAT5 by Lyn.
  • a therapeutic agent for acute myeloid leukemia comprising a substance selected from the group consisting of substances capable of inhibiting the above-mentioned phosphate as an active ingredient.
  • Inhibitors that can inhibit Lyn include, for example, small compounds as Lyn kinase inhibitors (eg, PP1, PP2, SU6656, staurosporine, NS-187, KRX-123, and BMS-354825 (Dasachi).
  • the therapeutic agent for acute myeloid leukemia of the present invention is useful for use in patients having the active mutation FLT3, and is considered to be particularly useful for improving prognosis.
  • the therapeutic agent for acute myeloid leukemia of the present invention can be administered to a subject as it is, it is usually formulated and administered using a carrier used in medicine.
  • a carrier used in the preparation any of those commonly used in the pharmaceutical field can be used.
  • sterile water, physiological saline, excipient, stabilizer, antioxidant, buffer, surfactant Agents and binders are preferably used.
  • the therapeutic agent for acute myeloid leukemia of the present invention may be encapsulated in a microcapsule or a high molecular gel to form a sustained release preparation.
  • the administration route of the therapeutic agent for acute myeloid leukemia of the present invention includes oral administration, intravenous administration, intradermal administration, subcutaneous administration, intramuscular administration, intracavity administration, and the like.
  • the dosage depends on the type of therapeutic agent for acute myeloid leukemia, the route of administration, the degree of disease, etc. Although it is appropriately selected, it is usually 0 .: g to 1000 mg / Kg, preferably: g to 10 mg / Kg.
  • the wild-type FLT3 and FLT3 / ITD (having tandem duplication of amino acids 583 to 602) genes were stably introduced into the L-3 dependent hematopoietic progenitor cell line 32D, and Wt FLT3-32D and FLT3 / It was named ITD-32D (Hayakawa, F., et al., (2000). Oncogene, 19,624-31).
  • Cells were placed in RPMI1640 medium containing 10% urinary fetal serum (FBS) supplemented with 5ng / ml mouse IL-3 (KIRIN Brewery. Co. Japan) or FLT3 ligand (R & D Systems, Minneapolis, Minn.). And cultured.
  • FBS urinary fetal serum
  • FLT3 ligand R & D Systems, Minneapolis, Minn.
  • Anti-GST goat polyclonal antibody was obtained from Pharmacia (Uppsala, Sweden).
  • SFK inhibitor was purchased from Calbiochem (La Jolla, CA) and used by dissolving in dimethyl sulfoxide (DMSO)
  • FLT3 / pcDNA and 8F FLT3 / ITD / pcDNA were prepared by PCR mutagenesis using the QuikChange TM site-directed mutagenesis kit (Stratagene, La Jolla, Calif.).
  • lxlO 7 cells in a cyto force-in starved state were loaded with 1 ml of lysis buffer (50 mM Tris-HCl [pH 7.6], 150 mM NaCl, l% Nonidet P-40, 0.1% dodecyl sulfate).
  • lysis buffer 50 mM Tris-HCl [pH 7.6], 150 mM NaCl, l% Nonidet P-40, 0.1% dodecyl sulfate.
  • Immunoprecipitation and immunoblotting were performed as previously reported (Hong, SH & Privalsky, M ⁇ . (2000). Mol Cell
  • siRNAs targeting Lyn exon 5 or exons 7 and 8 Two predesigned siRNAs (siRNAs targeting Lyn exon 5 or exons 7 and 8)
  • 156196 and 156197 were purchased from Ambion (Austin, TX).
  • BLOCK-iT Fluores cent Oligo (trademark) was purchased from Invitrogen and used as a control.
  • a mixture of 2 Lyn siRNAs (1.5 ⁇ g each) or 3 ⁇ g of control siRNA was transiently introduced into the cells using the Nucleofector system (a maxa biosystems, Gaithersburg, MD) as recommended by the manufacturer. It was done.
  • mice 8 week old female C3H / HeNCrj mice were purchased from Charles River Japan Inc. (Atsugi, Japan). They were bred under standard conditions in accordance with the guidelines of the Nagoya University Animal Laboratory. One million FLT3 / ITD-32D cells or Wt FLT3-32D cells were administered subcutaneously on the back of mice. PP2 administration began at the time indicated in FIG. PP2 doses were determined with reference to previous reports (Nam, J.S., et al., (2002). Clin Cancer Res, 8, 2430-6). Tumor size was measured twice a week and tumor weight (TW) was calculated according to the following formula:
  • FLT3 / ITD-32D shows IL-3 independent proliferation
  • STAT5 is known to show constitutive activation in the cell (Hayakawa, F., et al., (2000). Oncogene , 19,624-31) 0 Therefore, we focused on the pathway leading to FLT3 / ITD STAT5 and investigated phosphorylation of SFK. The results are shown in Figure 1. After culturing for 24 hours in a site force-in starved state, each cell was stimulated with IL-3 (IL3) or FLT3 ligand (FL) for 10 minutes or unstimulated (-). Cell lysates were prepared as described in the experimental method. (AXJAK2 phosphorylation.
  • FLT3 protein Amount (5 ⁇ l) of FLT3 protein was precipitated with 1 ⁇ g of GST (G) or Dartathione beads conjugated with Lyn (L) fused to GST.
  • the same FLT3 protein used in the binding experiment was immunoprecipitated with anti-FLT3 antibody, and after SDS-PAGE, it was immunoprecipitated with anti-phosphotyrosine antibody or anti-FLT3 antibody.
  • wild-type FLT3 is also weaker than FLT3 / ITD, but shows binding to Lyn, and the mutation specificity in the binding between FLT3 and Lyn is considered to be not absolute.
  • the binding of receptor tyrosin kinase (RTK) and SFK depends on tyrosine phosphorylation of the receptor! /, (Boggon, TJ & Eck, MJ (2004). Oncogene, 23, 7918-27. ). Therefore, we investigated the phosphorylation state of synthetic FLT3 used in the in vitro binding experiments, and examined whether this affects the binding of FLT3 and Lyn in this system.
  • FLT3 synthesized by the system using the rabbit reticulocyte lysate caused self-tyrosine phosphorylation, and the phosphorylation of FLT3 / ITD was stronger than that of wild-type FLT3 (Fig. 2C, right panel). .
  • siRNA specifically inhibits cell multiplication by FLT3 / ITD
  • Lyn siRNA The effect of Lyn siRNA on the proliferation of FLT3-introduced 32D was examined. In the absence of IL-3, the growth of FLT3 / ITD-32D was markedly suppressed by Lyn siRNA (Figure 3D). On the other hand, in the presence of IL-3, the proliferation of Wt FLT3-32D cells and FLT3 / ITD-32D cells was not affected. Proliferation of Wt FLT3-32D cells with FLT3 ligand was also unaffected ( Figure 3C and 3D). These results suggest that Lyn is more important in cell proliferation induced by FLT3 / ITD signals than cell proliferation induced by wild-type FLT3 and IL-3 signals.
  • SFK inhibitors such as PP1 and PP2 used in the above-mentioned report by Robinson et al. are not clear in SFK. Therefore, SFK inhibitors suppress cell proliferation. However, it is not possible to identify which SFK is the inhibition, that is, which SFK is important for cell proliferation. Shown in the present invention Thus, Lyn is important for the first time by suppressing Lyn-specific expression. That is, this is the first time that Lyn has been identified as important for cell growth in cells expressing FLT3 mutants.
  • the lower Wt FLT3-32D and FLT3 / ITD-32D were about one third (5 ⁇ vs. 17.7 ⁇ .) (Fig. 4A).
  • the cell growth curves of FLT3 / ITD-32D in the presence of IL-2 in the presence or absence of PP2 at 10 ⁇ were also compared.
  • FLT3 / ITD-32D proliferation was completely inhibited by ⁇ 2.
  • some suppression of proliferation was observed even in the presence of IL-3 (Fig. 4).
  • FLT3 / ITD-32D (1 ⁇ 10 6 cells) was inoculated subcutaneously into 8 week old female C3H / HeNCj mice.
  • A Prior administration of PP2 prevents tumor development. Each mouse received 5 g or 10 g of PP2 or DMSO alone in 100 1 DMSO twice a week, ip from day 4 to day 63. Co Troll mice were treated with DMSO and died at week 8 (shown in cross).
  • mice inoculated with FLT3 / ITD-32D developed tumors by day 25. From Day 2 to Day 63, until the 63rd day, the indicated amount of PP2 dissolved in 100 1 DMSO was administered intraperitoneally twice a week.
  • mice were inoculated with FLT3 / ITD-32D and all developed tumors by day 25. These mice were given PP2 or DMSO after the tumor developed (day 25). In control mice, subcutaneous tumors grew rapidly and all mice died by day 45. On the other hand, in the group given 30 g of PP2, tumor progression was slow and all mice were still alive at day 63. Furthermore, in the group administered with 60 g of PP2, stronger growth inhibition was observed. That is, by day 35, the tumor had shrunk until it could not be detected (Fig. 5B). Both mice in this group remained alive without tumor growth for more than 20 weeks after the end of PP2. These results indicate that PP2 is a safe and effective drug for the prevention and treatment of tumors with FLT3 / ITD in the amounts used here.
  • the present invention is useful for screening candidate substances for therapeutic agents for acute myeloid leukemia and for treating acute myeloid leukemia.

Abstract

It is intended to disclose a method of identifying a candidate for a remedy of acute myeloid leukemia which comprises contacting activated mutant FLT3 with Lyn in the presence of a test substance and examining whether or not the test substance inhibits the binding of activated mutant FLT3 to Lyn and/or whether or not the test substance inhibits the phosphorylation of Lyn in a cell expressing activated mutant FLT3. It is also intended to disclose a method of identifying a candidate for a remedy of acute myeloid leukemia which comprises contacting a test substance with a cell expressing Lyn and examining whether or not the test substance inhibits the expression or Lyn and/or whether or not the test substance inhibits the phosphorylation of STAT5 by Lyn. A substance identified by the above method is useful as the active ingredient of a remedy for acute myeloid leukemia.

Description

急性骨髄性白血病治療剤の候補物質を同定する方法  Method for identifying candidate substances for therapeutic agents for acute myeloid leukemia
技術分野  Technical field
[0001] 本発明は,急性骨髄性白血病治療剤の候補物質を同定する方法,ならびに急性 骨髄性白血病治療剤に関する。  [0001] The present invention relates to a method for identifying a candidate substance for a therapeutic agent for acute myeloid leukemia, and a therapeutic agent for acute myeloid leukemia.
背景技術  Background art
[0002] Fms様チロシンキナーゼ 3 (Fms- like tyrosine kinase 3 : FLT3)は, KIT, FMS, PD GFレセプター等と共に III型レセプターチ口シンキナーゼに属するレセプターである。 血球系の多能性幹細胞に発現していることや,そのノックアウトマウスは血球系前駆 細胞の減少を示すこと等から,そのリガンドは造血幹細胞の増殖や分ィヒに重要であ ると考えられている。リガンドがレセプターに結合するとリガンドを介してレセプターが 2量体を形成し,それによりレセプターが自己リン酸ィ匕して下流のシグナル伝達因子 が活性化される。 FLT3によるシグナルは幹細胞の分ィ匕ゃ増殖を制御することで造血 に非常に重要な役割を果たして 、る。  [0002] Fms-like tyrosine kinase 3 (FLT3) is a receptor belonging to the type III receptor thymosine kinase as well as KIT, FMS, PD GF receptors and the like. The ligand is thought to be important for the proliferation and differentiation of hematopoietic stem cells because it is expressed in hemocyte pluripotent stem cells and the knockout mice show a decrease in hematopoietic progenitor cells. ing. When the ligand binds to the receptor, the receptor forms a dimer through the ligand, which causes the receptor to autophosphate and activates downstream signaling factors. Signals from FLT3 play a very important role in hematopoiesis by controlling the proliferation of stem cells.
[0003] 最近,成人急性骨髄性白血病 (AML)症例において活性型変異 FLT3が高頻度に 認められることが分力つた。活性型変異 FLT3が存在すると,レセプターおよびその下 流のシグナル伝達因子が恒常的に活性化され,細胞増殖が促進される。活性型変 異 FLT3としては, FLT3傍膜部領域 (JMD)の遺伝子に重複縦列変異 (internal tand em duplication: ITD)を有するタイプ(FLT3/ITD) ,およびチロシンキナーゼドメイン に点突然変異を持つタイプ(FLT3/TKD) (Yamamoto Y,et al.,(2001).Blood,97,243 4-9)が知られている。 FLT3/ITD変異は, AML症例の 20%において認められることが 報告されており(Yokota,S.,et al.,(1997)丄 eukemia,ll,1605- 9) ,重複するアミノ酸配 列の部分が異なる多数のバリエーションが知られている (Kiyoi H.,et al.,(1998).Leuk emia,12, 1333-7; Hayakawa F.,et al.,(2000).Oncogene,19,624- 31.)。活性型変異 F LT3に起因するシグナル伝達の異常は,ファーストヒットあるいはセカンドヒットとして 白血病の発症,進行に関与していることが動物モデルで示されている。また活性型 変異 FLT3の存在は AMLの予後不良因子であり, AMLや骨髄異形成症候群の疾患 の進行 (再発, 白血病ィ匕)に関連することが報告されている(Frohling,S.,et al.,(2002) .Blood, 100,4372— 80;Gilliland,D.G. & Griffin,J.D.(2002).Blood,100,1532— 42; Horiik e'S.'et al.,(1997)丄 eukemia,ll,1442- 6; Kiyoi,H.,et al.,(1999).Blood,93, 3074-80;[0003] Recently, the active mutation FLT3 was frequently observed in adult acute myeloid leukemia (AML) cases. In the presence of the active mutant FLT3, the receptor and its downstream signaling factor are constitutively activated and cell proliferation is promoted. As the active variant FLT3, the FLT3 paramembrane region (JMD) gene has an internal tand em duplication (ITD) type (FLT3 / ITD), and the tyrosine kinase domain has a point mutation. (FLT3 / TKD) (Yamamoto Y, et al., (2001). Blood, 97, 243 4-9) is known. FLT3 / ITD mutations have been reported in 20% of AML cases (Yokota, S., et al., (1997) 丄 eukemia, ll, 1605-9), part of overlapping amino acid sequences. (Kiyoi H., et al., (1998) .Leuk emia, 12, 1333-7; Hayakawa F., et al., (2000). Oncogene, 19, 624-31. ). It has been shown in animal models that abnormalities in signal transduction caused by the active mutation FLT3 are involved in the onset and progression of leukemia as first hit or second hit. In addition, the presence of the active mutant FLT3 is a poor prognostic factor for AML, and it is a disease of AML (Frohling, S., et al., (2002) .Blood, 100,4372—80; Gilliland, DG & Griffin, JD (2002) .Blood, 100,1532—42; Horiik e'S.'et al., (1997) 丄 eukemia, ll, 1442-6; Kiyoi, H., et al., (1999) .Blood, 93, 3074-80;
Kiyoi,H.,et al.,(2005).Int J Hematol,82,85— 92; Kottaridis,P.D.,et al.,(2001).Bl ood,98,1752-9; Nakano,Y.,et al.,(1999).Br J Haematol, 104,659-64; Schnittger, S.,et al.,(2002).Blood, 100,59-66; Shih,L.Y.,et al.,(2004)丄 eukemia,18,466- 75; S hih,L.Y.,et al,(2002).Blood, 100,2387-92) 0こうしたことから FLT3シグナルの異常は 白血病の発症,進行に重要な役割を果たして 、ると考えられて 、る。 Kiyoi, H., et al., (2005). Int J Hematol, 82, 85—92; Kottaridis, PD, et al., (2001). Bl ood, 98, 1752-9; Nakano, Y., et al., (1999) .Br J Haematol, 104,659-64; Schnittger, S., et al., (2002) .Blood, 100,59-66; Shih, LY, et al., (2004) 丄 eukemia, 18,466- 75; S hih, LY, et al, (2002) .Blood, 100,2387-92) 0 abnormalities of FLT3 signaling these reasons onset of leukemia, plays an important role in the progression, believed Ru RU
[0004] 本発明者らは先に, FLT3/ITDを IL-3依存性増殖を示す細胞株である 32D, BA/F3 に導入し, FLT3/ITDがこれらにおいて IL-3非依存性の増殖や恒常的な MAP キナ ーゼ, STAT5の活性化を引き起こすことを示した(Hayakawa,F.,et al.,(2000).Oncog ene,19,624-31) 0特に STAT5の活性化は野生型 FLT3を導入した細胞においては認 められない現象であり,これが IL-3非依存性増殖の原因となっている可能性が強く示 唆されて 、るが,変異 FLT3と STAT5とをつなぐシグナル伝達経路は分かって!/、な!/ヽ [0004] The present inventors first introduced FLT3 / ITD into 32D and BA / F3, which are cell lines showing IL-3-dependent proliferation, and FLT3 / ITD was proliferated in an IL-3-independent manner. (Hayakawa, F., et al., (2000). Oncogene, 19,624-31) 0 In particular, STAT5 activation is wild-type FLT3. This is a phenomenon that is not observed in cells that have been introduced, and it is strongly suggested that this may be responsible for IL-3 independent proliferation, but the signaling pathway that links mutant FLT3 and STAT5. I understand! / ,!
[0005] Robinsonら(Robinson,L.J.,et al.,(2005).Exp Hematol,33,469- 79)は野生型 FLT3 を発現する細胞において FLT3リガンド刺激に伴い Src family kinases (SFK)の一員 である Lynがリン酸ィ匕されることを報告して ヽる。また FLT3変異体を発現する細胞株 における異常な SFKのリン酸化も示しているが,野生型 FLT3について行ったものとの 実験系の違いから, FLT3変異体発現細胞においてリン酸ィ匕しているのが, 6種類あ る SFKのうちの Lynであると特定するには!、たって!/ヽな 、。また FLT3変異体と Lynの結 合などのデータも何も示されておらず, Lynのリン酸ィ匕が FLT3変異体により直接引き 起こされることを示唆していない。また彼等は SFK阻害剤 (PP1,PP2)により FLT3変異 体を発現する細胞において SFKのリン酸ィ匕が阻害されること,それに伴い細胞増殖 が阻害されることも報告している。しかし,この阻害に関しても,彼等の使用した SFK 阻害剤が阻害したのは Lynであったのか他の SFKであったのかは確認されて!ヽな!、。 更に FLT3変異体により Lyn以外の SFKがリン酸ィ匕されるのかどうかも明らかにしてい ない。従って, SFKの中でも Lynのリン酸化力 SFLT3変異体をもつ細胞の増殖に重要 であるのか,すなわち白血病の治療標的となりうるのかは不明であった。 [0005] Robinson et al. (Robinson, LJ, et al., (2005). Exp Hematol, 33, 469-79), Lyn is a member of Src family kinases (SFK) following FLT3 ligand stimulation in cells expressing wild type FLT3. Report that is phosphorylated. It also shows abnormal phosphorylation of SFK in cell lines expressing FLT3 mutant, but due to the difference in the experimental system from that used for wild-type FLT3, phosphorylation was observed in cells expressing FLT3 mutant. To identify Lyn as one of the six types of SFK! In addition, there are no data on the binding of FLT3 mutants to Lyn, etc., suggesting that Lyn phosphate is directly caused by FLT3 mutants. They also reported that SFK inhibitors (PP1, PP2) inhibit the phosphorylation of SFK in cells expressing FLT3 mutants, which in turn inhibits cell growth. However, regarding this inhibition, it was confirmed whether the SFK inhibitors they used were Lyn or other SFKs! Furthermore, it is not clear whether SFKs other than Lyn are phosphorylated by FLT3 mutants. Therefore, it is important for the growth of cells with SFLT3 mutant phosphorylation ability of Lyn among SFK. It is unclear whether it is a therapeutic target for leukemia.
[0006] 本明細書において引用される参考文献は以下のとおりである。これらの文献に記載 される内容はすべて本明細書の一部としてここに引用する。これらの文献のいずれか 力 本明細書に対する先行技術であると認めるものではない。  [0006] References cited in the present specification are as follows. All the contents described in these documents are cited herein as part of this specification. Any of these documents is not admitted to be prior art to this specification.
非特許文献 1: Yokota,S.,et al.,(1997)丄 eukemia,l l,1605- 9  Non-patent document 1: Yokota, S., et al., (1997) 丄 eukemia, l l, 1605-9
非特許文献 2 : Frohling,S.,et al.,(2002).Blood,100,4372-80  Non-Patent Document 2: Frohling, S., et al., (2002) .Blood, 100, 4372-80
非特許文献 3 : Gilliland,D.G. & Griffin,J.D.(2002).Blood, 100, 1532-42  Non-Patent Document 3: Gilliland, D.G. & Griffin, J.D. (2002) .Blood, 100, 1532-42
非特許文献 4: Horiike,S.,et al. ,(1997)丄 eukemia, 11 ,1442-6  Non-Patent Document 4: Horiike, S., et al., (1997) 丄 eukemia, 11, 1442-6
非特許文献 5 : Kiyoi,H.,et al.,(1999).Blood,93, 3074-80  Non-Patent Document 5: Kiyoi, H., et al., (1999) .Blood, 93, 3074-80
非特許文献 6 : Kiyoi,H.,et al.,(2005).Int J Hematol,82, 85-92  Non-Patent Document 6: Kiyoi, H., et al., (2005). Int J Hematol, 82, 85-92
非特許文献 7 : Kottaridis,P.D.,et al.,(2001).Blood,98, 1752-9  Non-Patent Document 7: Kottaridis, P.D., et al., (2001) .Blood, 98, 1752-9
非特許文献 8 : Nakano,Y.,et al.,(1999).Br J Haematol, 104,659-64  Non-Patent Document 8: Nakano, Y., et al., (1999) .Br J Haematol, 104,659-64
非特許文献 9 : Schnittger,S.,et al.,(2002).Blood,100,59-66  Non-Patent Document 9: Schnittger, S., et al., (2002) .Blood, 100, 59-66
非特許文献 10 : Shih,L.Y.,et al., (2004)丄 eukemia, 18,466- 75  Non-Patent Document 10: Shih, L.Y., et al., (2004) 丄 eukemia, 18,466-75
非特許文献 11 : Shih,し Y.,et al,(2002).Blood, 100,2387-92)  Non-Patent Document 11: Shih, Y., et al, (2002) .Blood, 100, 2387-92)
非特許文献 12 : Hayakawa,F.,et al.,(2000).Oncogene,19,624- 31  Non-Patent Document 12: Hayakawa, F., et al., (2000) .Oncogene, 19,624-31
非特許文献 13 : Robinson,L.J.,et al.,(2005).Exp Hematol,33,469- 79  Non-Patent Document 13: Robinson, L.J., et al., (2005) .Exp Hematol, 33,469-79
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0007] 本発明は,急性骨髄性白血病治療剤の候補物質を同定する方法,ならびに急性 骨髄性白血病の治療剤を提供することを目的とする。 [0007] An object of the present invention is to provide a method for identifying a candidate substance for a therapeutic agent for acute myeloid leukemia, and a therapeutic agent for acute myeloid leukemia.
課題を解決するための手段  Means for solving the problem
[0008] 本発明者らは, FLT3/ITDと Lynが ITD変異特異的に結合し,これに伴って Lynがリ ン酸ィ匕されることを見出した。そして Lynを標的とした siRNAを使用することにより, SFK の中でも Lynのリン酸ィ匕が FLT3変異体を持つ白血病細胞株における STAT5の異常 活性化の原因であり,同細胞株の異常増殖の原因であることを明らかにした。また SF K阻害剤 PP2に関して,本阻害剤が阻害している SFKのリン酸ィ匕は 80%以上 Lynのリン 酸化であり,また STAT5のリン酸化も阻害して ヽることを併せて示した。 [0009] すなわち,本発明は,急性骨髄性白血病治療剤の候補物質を同定する方法であ つて,試験物質が試験管内または細胞内で活性型変異 FLT3と Lynとの結合を阻害 するか否か,および Zまたは活性型変異 FLT3を発現する細胞内で Lynのリン酸ィ匕を 阻害するか否かを判定することを含む方法を提供する。本明細書にぉ ヽて活性型変 異 FLT3とは,恒常的に活性ィ匕した FLT3キナーゼ活性を示す変異型 FLT3をいう。代 表的な活性型変異 FLT3としては, FLT3/ITDおよび FLT3/TKDがあり,これらはいず れも,恒常的に活性ィ匕した FLT3キナーゼ活性を持ち,シグナル伝達の異常活性ィ匕 をおこし,細胞の異常増殖を引き起こして, 白血病の原因となる。この両者は, FLT3 活性ィ匕のメカニズムに相違があるものの,それ以後のシグナル伝達の相違は報告さ れておらず,いずれの場合も下流の STAT5の異常活性ィ匕が認められる。 [0008] The present inventors have found that FLT3 / ITD and Lyn bind specifically to ITD mutations, and that Lyn is phosphorylated. And by using siRNA targeting Lyn, among the SFKs, Lyn phosphate was responsible for the abnormal activation of STAT5 in leukemia cell lines with FLT3 mutant, and the cause of abnormal growth of the same cell line. It was revealed that. Regarding SFK inhibitor PP2, it was also shown that the phosphorylation of SFK inhibited by this inhibitor is more than 80% phosphorylation of Lyn and also inhibits phosphorylation of STAT5. . [0009] That is, the present invention is a method for identifying a candidate substance for a therapeutic agent for acute myeloid leukemia, and whether or not the test substance inhibits the binding between the active mutant FLT3 and Lyn in vitro or in a cell. , And determining whether to inhibit Lyn phosphate in a cell expressing Z or an active mutant FLT3. Throughout this specification, the active mutant FLT3 refers to a mutant FLT3 that exhibits constitutively active FLT3 kinase activity. Typical active mutations FLT3 include FLT3 / ITD and FLT3 / TKD, both of which have FLT3 kinase activity that is constitutively active and cause abnormal signaling activity. Causes abnormal cell proliferation and causes leukemia. Although there is a difference in the mechanism of FLT3 activity between the two, no subsequent signal transduction has been reported, and in both cases, abnormal downstream activity of STAT5 is observed.
[0010] 別の観点においては,本発明は,急性骨髄性白血病治療剤の候補物質を同定す る方法であって,試験物質を Lynを発現する細胞と接触させ,試験物質が Lynの発現 を阻害するか否か,および Zまたは Lynによる STAT5のリン酸ィ匕を阻害する力否かを 判定することを含む方法を提供する。  [0010] In another aspect, the present invention relates to a method for identifying a candidate substance for a therapeutic agent for acute myeloid leukemia, wherein the test substance is contacted with a cell expressing Lyn, and the test substance expresses Lyn expression. A method comprising determining whether to inhibit and whether Z or Lyn is capable of inhibiting STAT5 phosphate;
[0011] また別の観点においては,本発明は, Lyn遺伝子に対するアンチセンス'オリゴヌク レオチド, Lyn遺伝子に対するリボザィム, Lyn遺伝子に対する siRNA, PP1, PP2, S U6656,スタウロスポリン, NS-187, KRX-123,および BMS- 354825からなる群より選択 される物質を有効成分として含有する急性骨髄性白血病治療剤を提供する。  [0011] In another aspect, the present invention relates to an antisense oligonucleotide against Lyn gene, a ribozyme against Lyn gene, siRNA against Lyn gene, PP1, PP2, SU6656, Staurosporine, NS-187, KRX- A therapeutic agent for acute myeloid leukemia comprising a substance selected from the group consisting of 123 and BMS-354825 as an active ingredient is provided.
[0012] さらに別の観点においては,本発明は,活性型変異 FLT3と Lynとの結合を阻害す る物質,活性型変異 FLT3を発現する細胞内で Lynのリン酸化を阻害する物質, Lyn の発現を阻害する物質,および Lynによる STAT5のリン酸ィ匕を阻害する物質力 なる 群より選択される物質を有効成分として含有する急性骨髄性白血病治療剤を提供す る。  [0012] In still another aspect, the present invention relates to a substance that inhibits the binding between active mutant FLT3 and Lyn, a substance that inhibits phosphorylation of Lyn in cells expressing the active mutant FLT3, Provided is a therapeutic agent for acute myeloid leukemia containing as an active ingredient a substance that inhibits expression and a substance selected from the group of substances that inhibits STAT5 phosphate by Lyn.
[0013] さらに別の観点においては,本発明は,急性骨髄性白血病を治療する方法であつ て,活性型変異 FLT3と Lynとの結合を阻害するか,および Zまたは活性型変異 FLT3 を発現する細胞内で Lynのリン酸化を阻害することを含む方法を提供する。  [0013] In yet another aspect, the present invention relates to a method for treating acute myeloid leukemia, wherein the binding of active mutant FLT3 to Lyn is inhibited and Z or active mutant FLT3 is expressed. Inhibiting Lyn phosphorylation in a cell is provided.
[0014] さらに別の観点においては,本発明は,急性骨髄性白血病を治療する方法であつ て, Lynの発現を阻害するか,および Zまたは Lynによる STAT5のリン酸ィ匕を阻害する ことを含む方法を提供する。 [0014] In yet another aspect, the present invention is a method for treating acute myeloid leukemia, which inhibits Lyn expression or inhibits STAT5 phosphate by Z or Lyn A method comprising:
[0015] さらに別の観点においては,本発明は,急性骨髄性白血病を治療する方法であつ て,治療を必要とする患者に, Lyn遺伝子に対するアンチセンス ·ォリゴヌクレオチド, Lyn遺伝子に対するリボザィム, Lyn遺伝子に対する siRNA, PP1, PP2, SU6656,ス タウロスポリン, NS-187, KRX-123,および BMS-354825からなる群より選択される物 質を投与することを含む方法を提供する。  [0015] In still another aspect, the present invention provides a method for treating acute myeloid leukemia in which a patient in need of treatment is provided with an antisense oligonucleotide for the Lyn gene, a ribozyme for the Lyn gene, There is provided a method comprising administering a substance selected from the group consisting of siRNA, PP1, PP2, SU6656, staurosporine, NS-187, KRX-123, and BMS-354825 against a gene.
[0016] さらに別の観点においては,本発明は,急性骨髄性白血病を治療する方法であつ て,治療を必要とする患者に,活性型変異 FLT3と Lynとの結合を阻害する物質,活 性型変異 FLT3を発現する細胞内で Lynのリン酸化を阻害する物質, Lynの発現を阻 害する物質,および Lynによる STAT5のリン酸ィ匕を阻害する物質力 なる群より選択さ れる物質を投与することを含む方法を提供する。  [0016] In another aspect, the present invention relates to a method for treating acute myeloid leukemia, wherein a substance that inhibits the binding of an active mutation FLT3 and Lyn, an activity to a patient in need of treatment. A substance selected from the group consisting of a substance that inhibits Lyn phosphorylation, a substance that inhibits Lyn expression, and a substance that inhibits STAT5 phosphorylation by Lyn in cells that express type FLT3. A method comprising:
図面の簡単な説明  Brief Description of Drawings
[0017] [図 1]図 1は, FLT3/ITD導入 32D細胞における SFKのリン酸化を示す。 [0017] FIG. 1 shows phosphorylation of SFK in FLT3 / ITD-introduced 32D cells.
[図 2]図 2は, FLT3と Lynの結合を示す。  [Figure 2] Figure 2 shows the coupling of FLT3 and Lyn.
[図 3]図 3は, siRNAにより Lynの発現を抑制したときの STAT5のリン酸化および FLT3/ ITDによる細胞増殖の阻害を示す。  [Fig. 3] Fig. 3 shows phosphorylation of STAT5 and inhibition of cell proliferation by FLT3 / ITD when Lyn expression was suppressed by siRNA.
[図 4]図 4は, SFK阻害剤の FLT3/ITDシグナル伝達とこれによる細胞増殖に対する 影響を示す。  [Figure 4] Figure 4 shows the effect of SFK inhibitors on FLT3 / ITD signaling and cell proliferation.
[図 5]図 5は, PP2による C3H/HeNCjマウス内での FLT3/ITD- 32D細胞の増殖の抑制 を示す。  [Fig. 5] Fig. 5 shows inhibition of proliferation of FLT3 / ITD-32D cells in C3H / HeNCj mice by PP2.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0018] 非受容体型チロシンキナーゼ Lynは Srcファミリーキナーゼ(Src family kinase : SFK )の一員であり,血球系に優位に発現している。他の SFKメンバーと同様に Lynは受 容体に結合し,その受容体力ものシグナル発生に関与すると考えられている。もとも と Lynは B細胞抗原受容体のシグナル伝達因子として発見されたが,最近の研究で エリスロポエチン受容体, GM- CSF受容体, CSF-1受容体, c-kit等の種々のサイト力 インレセプターの細胞増殖シグナルの伝達因子としての役割もあることが明らかにさ [0019] 本発明においては,下記の実施例に示されるように, FLT3/ITDと Lynとが細胞内で ITD変異特異的に結合すること,それに伴って Lynカ^ン酸ィ匕されることを明らかにし た。また FLT3と Lynとが直接結合することを試験管内で示すとともに,その結合は野 生型 FLT3より FLT3/ITDに対して親和性があり, FLT3リン酸ィ匕依存性であることを示 した。 FLT3/ITDを導入した 32D細胞 (FLT3/ITD- 32D)に対して, Lynを標的とした siR NA,または SFK阻害剤である PP2いずれで処理した場合でも,その増殖が抑制され, Lynと STAT5のリン酸化が減弱した。更に FLT3/ITD-32Dを移植したマウス(無治療 では 8週間以内に腫瘍により死亡する)に対して PP2投与を行うと腫瘍の発症が予防 されたり,発症した腫瘍が縮小され,マウスの生存が延長されることが示された。これ らの結果から, Lynは活性型変異 FLT3特異的なシグナル伝達にぉ 、て STAT5の上 流に位置し,活性型変異 FLT3がもたらす細胞増殖に非常に重要な因子であることが 明らかになった。さらに, Lynは活性型変異 FLT3をもつ AMLに対する治療標的となり うることが示された。 [0018] Non-receptor tyrosine kinase Lyn is a member of the Src family kinase (Src family kinase: SFK) and is predominantly expressed in the blood cell system. Like other SFK members, Lyn binds to the receptor and is thought to be involved in signal generation of its receptor strength. Lyn was originally discovered as a signal transduction factor for B cell antigen receptors. In recent studies, various site forces such as erythropoietin receptor, GM-CSF receptor, CSF-1 receptor, and c-kit It has been clarified that the receptor also plays a role as a transmitter of cell proliferation signals. In the present invention, as shown in the following examples, FLT3 / ITD and Lyn are specifically bound to ITD mutation in the cell, and Lyn phosphonate is associated with it. Made clear. In addition to showing in vitro that FLT3 and Lyn are directly bound, it was shown that the binding is more affinity to FLT3 / ITD than wild-type FLT3 and is dependent on FLT3 phosphate. When the FLT3 / ITD-introduced 32D cells (FLT3 / ITD-32D) were treated with either siRNA targeting Lyn or PP2 as the SFK inhibitor, the proliferation was suppressed, and Lyn and STAT5 Phosphorylation was attenuated. Furthermore, when PP2 is administered to mice transplanted with FLT3 / ITD-32D (with no treatment, they die from the tumor within 8 weeks), the onset of the tumor is prevented, the onset tumor is reduced, and the mouse survives. It was shown to be extended. These results indicate that Lyn is a very important factor for cell proliferation caused by active mutant FLT3, which is located upstream of STAT5, in addition to signal transduction specific to active mutant FLT3. It was. In addition, Lyn has been shown to be a therapeutic target for AML with the active mutation FLT3.
[0020] スクリーニング方法  [0020] Screening method
1つの観点においては,本発明は,多様な試験物質から,急性骨髄性白血病治療 剤の候補物質をスクリーニングする方法を提供する。スクリーニングは,試験物質が 試験管内または細胞内で活性型変異 FLT3と Lynとの結合を阻害する力否か,および Zまたは活性型変異 FLT3を発現する細胞内で Lynのリン酸ィ匕を阻害する力否かを 判定することにより行うことができる。試験物質が活性型変異 FLT3と Lynとの結合を阻 害する能力は,試験管内においては,単離された活性型変異 FLT3と単離された Lyn とを用いて,既知の結合分析法により測定することができる。細胞内においては活性 型変異 FLT3と Lyn両方を発現する細胞と試験物質を接触させ,既知の結合分析法 により測定できる。活性型変異 FLT3を発現する細胞内での Lynのリン酸化は,活性 型変異 FLT3を発現する細胞と試験物質とを接触させ,既知の方法により Lynのリン酸 化の程度を測定することにより評価することができる。これらのアツセィにより,活性型 変異 FLT3と Lynとの結合を有意に阻害するか,および Zまたは活性型変異 FLT3を 発現する細胞内での Lynのリン酸ィ匕を有意に阻害するものとして同定された物質は, 急性骨髄性白血病治療剤の抑制剤の候補物質であると考えられる。 [0021] また,本発明にしたがうスクリーニング方法は,試験物質を Lynを発現する細胞と接 触させ,試験物質が Lynの発現を阻害する力否力,および Zまたは Lynによる STAT5 のリン酸ィ匕を阻害する力否かを判定することにより行うことができる。試験物質が Lyn の発現を阻害する能力は,既知の方法により Lynの mRNA量または蛋白質量を測定 すること〖こより評価することができる。試験物質が Lynによる STAT5のリン酸ィ匕を阻害 する能力は,既知の方法により STAT5蛋白質のリン酸ィ匕の程度を測定することにより 評価することができる。これらのアツセィにより, Lynの発現または STAT5のリン酸化を 有意に阻害するものとして同定された物質は,急性骨髄性白血病治療剤の抑制剤 の候補物質であると考えられる。 In one aspect, the present invention provides a method for screening candidate substances for therapeutic agents for acute myeloid leukemia from various test substances. Screening shows whether test substance inhibits binding of active mutant FLT3 to Lyn in vitro or in cells, and inhibits Lyn phosphate in cells expressing Z or active mutant FLT3 This can be done by determining whether or not the force is strong. The ability of the test substance to inhibit the binding between active mutant FLT3 and Lyn is measured in vitro using a known binding assay using isolated active mutant FLT3 and isolated Lyn. be able to. In cells, cells expressing both the active mutations FLT3 and Lyn can be brought into contact with the test substance and assayed using known binding assays. Phosphorylation of Lyn in cells expressing active mutant FLT3 was evaluated by contacting the test substance with cells expressing active mutant FLT3 and measuring the degree of Lyn phosphorylation by a known method. can do. These assays were identified as significantly inhibiting the binding of active mutant FLT3 to Lyn, and significantly inhibiting Lyn phosphate in cells expressing Z or active mutant FLT3. These substances are considered to be candidates for inhibitors of therapeutic agents for acute myeloid leukemia. [0021] In addition, the screening method according to the present invention comprises contacting a test substance with a cell that expresses Lyn, the ability of the test substance to inhibit Lyn expression, and the STAT5 phosphate concentration by Z or Lyn. This can be done by determining whether or not it is a force that inhibits. The ability of a test substance to inhibit Lyn expression can be evaluated by measuring the amount of Lyn mRNA or the amount of protein by a known method. The ability of the test substance to inhibit STAT5 phosphate by Lyn can be assessed by measuring the degree of phosphate in the STAT5 protein using known methods. Substances identified by these assays as significantly inhibiting Lyn expression or STAT5 phosphorylation are considered candidates for inhibitors of therapeutic agents for acute myeloid leukemia.
[0022] 試験物質は,種々の合成または天然の化合物ライブラリー,コンビナトリアルライブ ラリー,オリゴヌクレオチドライブラリー,ペプチドライブラリ一等のライブラリ一力も得る ことができる。また,細菌,真菌類,藻類,植物,動物等の天然物からの抽出物やそ の部分精製物を試験物質として用いてもょ 、。  [0022] Test substances can be obtained from various libraries such as various synthetic or natural compound libraries, combinatorial libraries, oligonucleotide libraries, peptide libraries, and the like. In addition, extracts from natural products such as bacteria, fungi, algae, plants, animals, and partially purified products may be used as test substances.
[0023] 1 遣伝早の ¾制剤  [0023] 1 ¾ early preparation
本発明の急性骨髄性白血病治療剤の例としては,アンチセンスオリゴヌクレオチド ,リボザィム, RNA干渉 (RNAi)を引き起こす分子(例えば, dsRNA, siRNA, shR NA, miRNA)等の, Lyn遺伝子の発現 (転写および Zまたは翻訳)の抑制剤を挙げ ることができる。このような核酸は, Lynの既知のヌクレオチド配列情報に基づいて容 易に設計し製造することができ, Lyn遺伝子または Lynをコードする mRNAに結合し その発現を阻害することができる。アンチセンス,リボザィム技術および RNAi技術を 用いて遺伝子発現を制御する一般的方法,またはこのようにして外因性遺伝子を発 現させる遺伝子治療方法は当該技術分野においてよく知られている。  Examples of the therapeutic agent for acute myeloid leukemia of the present invention include expression (transcription of Lyn gene) such as antisense oligonucleotides, ribozymes, and molecules that cause RNA interference (RNAi) (eg, dsRNA, siRNA, shRNA, miRNA). And Z or translation) inhibitors. Such a nucleic acid can be easily designed and manufactured based on the known nucleotide sequence information of Lyn, and can bind to and inhibit the expression of the Lyn gene or mRNA encoding Lyn. General methods for controlling gene expression using antisense, ribozyme technology and RNAi technology, or gene therapy methods for expressing exogenous genes in this manner are well known in the art.
[0024] アンチセンスオリゴヌクレオチドとは, Lynをコードする mRNAと相補的な配列を有 する核酸分子またはその誘導体を表す。アンチセンスオリゴヌクレオチドは, mRNA と特異的に結合し,転写および Zまたは翻訳を阻害することによりタンパク質の発現 を阻害する。結合はワトソン 'クリックまたはフーダスティーン型の塩基対相補性による ものでもよく,トリプレックス形成によるものでもよい。  [0024] An antisense oligonucleotide refers to a nucleic acid molecule having a sequence complementary to mRNA encoding Lyn or a derivative thereof. Antisense oligonucleotides specifically bind to mRNA and inhibit protein expression by inhibiting transcription and Z or translation. Binding may be by Watson-Crick or Houdsteen-type base pair complementarity, or by triplex formation.
[0025] リボザィムとは,標的とする核酸配列を切断しうる触媒的特性を有する RNA分子を 表す。リボザィムは,一般に,エンドヌクレアーゼ,リガーゼまたはポリメラーゼ活性を 示す。種々の二次構造のリボザィム,例えばハンマーヘッドタイプおよびヘアピンタイ プのリボザィムが知られている。 RNA干渉 (RNAi)とは,二本鎖 RNA分子を用いて 標的遺伝子をサイレンシングする手法を 、う。 [0025] Ribozymes are RNA molecules with catalytic properties that can cleave target nucleic acid sequences. To express. Ribozymes generally display endonuclease, ligase or polymerase activity. Various secondary structure ribozymes are known, for example hammerhead and hairpin type ribozymes. RNA interference (RNAi) is a method of silencing target genes using double-stranded RNA molecules.
[0026] 急件骨髄件白血病 '治療剤  [0026] Sudden bone marrow leukemia 'therapeutic agent
別の観点においては,本発明は,活性型変異 FLT3と Lynとの結合を阻害する物質 ,活性型変異 FLT3を発現する細胞内で Lynのリン酸化を阻害する物質および Lynの 発現または Lynによる STAT5のリン酸ィ匕を阻害する物質力 なる群より選択される物 質を有効成分として含有する急性骨髄性白血病治療剤を提供する。 Lynを阻害しうる 阻害剤としては,例えば, Lynキナーゼ阻害剤としての小化合物(例えば, PP1, PP2, SU6656,スタウロスポリン(staurosporine) , NS-187, KRX-123,および BMS- 354825 ( ダサチ-ブ; Dasatinib)を含む), Lynキナーゼのアミノ酸配列に基づく基質との結合 部位の予測とその部位を阻害するオリゴペプチドあるいは小化合物, Wexlerらの方 法(BioTechniques39:575-576,2005)で見出されるであろうキナーゼ阻害剤,ならび に Lynの転写.翻訳の抑制(siRNA,アンチセンスなど)が挙げられ,これらのいずれも 本発明において用いることができる。本発明の急性骨髄性白血病治療剤は,活性型 変異 FLT3を有する患者において用いるのに有用であり,特に予後の改善に有用で あると考えられる。  In another aspect, the present invention relates to a substance that inhibits the binding between active mutant FLT3 and Lyn, a substance that inhibits phosphorylation of Lyn in a cell that expresses active mutant FLT3, and the expression of Lyn or STAT5 by Lyn. There is provided a therapeutic agent for acute myeloid leukemia comprising a substance selected from the group consisting of substances capable of inhibiting the above-mentioned phosphate as an active ingredient. Inhibitors that can inhibit Lyn include, for example, small compounds as Lyn kinase inhibitors (eg, PP1, PP2, SU6656, staurosporine, NS-187, KRX-123, and BMS-354825 (Dasachi). -B; including Dasatinib)), prediction of the binding site with the substrate based on the amino acid sequence of Lyn kinase and oligopeptide or small compound that inhibits the site, by the method of Wexler et al. (BioTechniques 39: 575-576, 2005) Kinase inhibitors that may be found, and Lyn transcription and translational repression (siRNA, antisense, etc.) can be mentioned, any of which can be used in the present invention. The therapeutic agent for acute myeloid leukemia of the present invention is useful for use in patients having the active mutation FLT3, and is considered to be particularly useful for improving prognosis.
[0027] 靠製剤および  [0027] vaginal formulation and
本発明の急性骨髄性白血病治療剤は,被験者にそのまま投与することも可能であ るが,通常,医薬で用いられる担体を用いて製剤して投与する。製剤に用いる担体と しては,製剤分野で常用されるいずれのものをも用いることができ,例えば,滅菌水, 生理食塩水,賦形剤,安定剤,酸化防止剤,緩衝剤,界面活性剤,結合剤等が好ま しく用いられる。さらに,本発明の急性骨髄性白血病治療剤をマイクロカプセルや高 分子ゲル中に封入して,徐放性製剤としてもよい。  Although the therapeutic agent for acute myeloid leukemia of the present invention can be administered to a subject as it is, it is usually formulated and administered using a carrier used in medicine. As the carrier used in the preparation, any of those commonly used in the pharmaceutical field can be used. For example, sterile water, physiological saline, excipient, stabilizer, antioxidant, buffer, surfactant Agents and binders are preferably used. Furthermore, the therapeutic agent for acute myeloid leukemia of the present invention may be encapsulated in a microcapsule or a high molecular gel to form a sustained release preparation.
[0028] 本発明の急性骨髄性白血病治療剤の投与経路としては,経口投与,静脈内投与, 皮内投与,皮下投与,筋肉内投与,体腔内投与等が挙げられる。  [0028] The administration route of the therapeutic agent for acute myeloid leukemia of the present invention includes oral administration, intravenous administration, intradermal administration, subcutaneous administration, intramuscular administration, intracavity administration, and the like.
[0029] 投与量は,急性骨髄性白血病治療剤の種類や投与経路,疾患の程度等に応じて 適宜選択されるが,通常, 0.: g〜1000mg/Kg,好ましくは,: g〜10mg/Kgで ある。 [0029] The dosage depends on the type of therapeutic agent for acute myeloid leukemia, the route of administration, the degree of disease, etc. Although it is appropriately selected, it is usually 0 .: g to 1000 mg / Kg, preferably: g to 10 mg / Kg.
[0030] 本明細書において明示的に引用される全ての特許および参考文献の内容は全て 本明細書の一部としてここに引用する。また,本出願が有する優先権主張の基礎とな る出願である日本特許出願 2006-155281号の明細書および図面に記載の内容は全 て本明細書の一部としてここに引用する。  [0030] The contents of all patents and references explicitly cited herein are hereby incorporated by reference as part of the present specification. In addition, the contents described in the specification and drawings of Japanese Patent Application No. 2006-155281, which is the application on which the priority of the present application is based, are cited herein as part of this specification.
実施例  Example
[0031] 以下に実施例により本発明をより詳細に説明するが,本発明はこれらの実施例によ り限定されるものではない。  Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
[0032] 述 [0032] Description
 纖
L-3依存性血球系前駆細胞細胞株 32Dに,野生型 FLT3と FLT3/ITD (583から 602 番目のアミノ酸の縦列重複を持つ)遺伝子が安定的に導入され,それぞれ Wt FLT3 - 32Dと FLT3/ITD- 32Dと名付けられた (Hayakawa,F.,et al. ,(2000). Oncogene, 19,624 -31)。細胞は, 5ng/mlマウス IL- 3(KIRIN Brewery.Co.Japan)または FLT3リガンド (R& D Systems,Minneapolis,MN)を添カ卩された 10%ゥシ胎児血清 (FBS)を含む RPMI1640 培地にて培養された。  The wild-type FLT3 and FLT3 / ITD (having tandem duplication of amino acids 583 to 602) genes were stably introduced into the L-3 dependent hematopoietic progenitor cell line 32D, and Wt FLT3-32D and FLT3 / It was named ITD-32D (Hayakawa, F., et al., (2000). Oncogene, 19,624-31). Cells were placed in RPMI1640 medium containing 10% urinary fetal serum (FBS) supplemented with 5ng / ml mouse IL-3 (KIRIN Brewery. Co. Japan) or FLT3 ligand (R & D Systems, Minneapolis, Minn.). And cultured.
[0033] 抗体.試薬.プラスミド [0033] Antibody. Reagent. Plasmid
Lyn,FLT3(C- 20),Jak2(C- 20),および C- Src,Fyn,Lck,c- Yesに対するゥサギポリクロー ナル抗体,ならびに Lynに対するマウスモノクローナル抗体は, Santa Cruz Biotech nology(Santa Cruz,CA)より購入した。 JAK2,STAT5,p44/42 MAPK,Akt,Shc,Src Fa mily(Tyr416)に対するリン酸化特異的ゥサギポリクローナル抗体,および p44/42 MA PK,Akt,に対するリン酸化非特異的ゥサギポリクローナル抗体は Cell Signaling Tech nology(Beverly,MA)より購入した。抗リン酸化チロシン,抗 STAT5,抗 Hckマウスモノク ローナル抗体は, Transduction Laboratory(Lexington,KY)より入手した。抗 GSTャギ ポロクローナル抗体は, Pharmacia(Uppsala,Sweden)より入手した。 SFK阻害剤は Calbi ochem(La Jolla,CA)より購入し,ジメチルスルホキシド (DMSO)に溶解して使用された [0034] ヒト全長 Lyn Bまたはその部分的断片(1-222アミノ酸, 1-169アミノ酸, 106-222アミ ノ酸)を GST融合蛋白として発現させるためのプラスミド Lyn(foll)/pGEX,Lyn(l-222)/p GEX,Lyn(l- 169)/pGEX,Lyn(106- 222)/pGEXは, LynB/pHNGAP,(Abe,A.,et al"(20 04).Biochem Biophys Res Commun,320,920- 6)から制限酵素により Lyn遺伝子を切 り出し, pGEX5X-l vector(Pharmacia)へ挿入することによって作られた。 FLT3蛋白 の試験管内での合成のために,野生型 FLT3と FLT3/ITD (583-602アミノ酸の縦列重 複を持つ)の cDNAを pcDNA3.1 vector(Invitrogen,Carlsbad,CA)に組み込んだプラ スミドを作製し,それぞれ WtFLT3/pcDNAおよび FLT3/ITD/pcDNAと名付けた。 4F Wt FLT3/pcDNAと 8F FLT3/ITD/pcDNAは, QuikChange (商標) site— directed m utagenesis kit(Stratagene,La Jolla,CA)を用いた PCR変異誘発により作製された。 Usagi polyclonal antibodies against Lyn, FLT3 (C-20), Jak2 (C-20), and C-Src, Fyn, Lck, c-Yes, and mouse monoclonal antibodies against Lyn are Santa Cruz Biotechnology (Santa Cruz, CA). ) Purchased from. Phosphorylation specific rabbit antibody against JAK2, STAT5, p44 / 42 MAPK, Akt, Shc, Src Fa mily (Tyr416), and non-phosphorylation specific rabbit antibody against p44 / 42 MA PK, Akt, Cell Purchased from Signaling Technology (Beverly, MA). Anti-phosphotyrosine, anti-STAT5, and anti-Hck mouse monoclonal antibodies were obtained from Transduction Laboratory (Lexington, KY). Anti-GST goat polyclonal antibody was obtained from Pharmacia (Uppsala, Sweden). SFK inhibitor was purchased from Calbiochem (La Jolla, CA) and used by dissolving in dimethyl sulfoxide (DMSO) [0034] Plasmid Lyn (foll) / pGEX, Lyn (l for expressing full-length human Lyn B or a partial fragment thereof (1-222 amino acids, 1-169 amino acids, 106-222 amino acids) as a GST fusion protein -222) / p GEX, Lyn (l-169) / pGEX, Lyn (106-222) / pGEX is LynB / pHNGAP, (Abe, A., et al "(20 04). Biochem Biophys Res Commun, 320,920 It was made by excising the Lyn gene with restriction enzymes from 6) and inserting it into the pGEX5X-l vector (Pharmacia) For the synthesis of FLT3 protein in vitro, wild-type FLT3 and FLT3 / ITD ( Plasmids were prepared by incorporating cDNA with 583-602 amino acid tandem duplications into pcDNA3.1 vector (Invitrogen, Carlsbad, CA) and named WtFLT3 / pcDNA and FLT3 / ITD / pcDNA, respectively. FLT3 / pcDNA and 8F FLT3 / ITD / pcDNA were prepared by PCR mutagenesis using the QuikChange ™ site-directed mutagenesis kit (Stratagene, La Jolla, Calif.).
[0035] 細胞溶解液の調整.免痔沈降.ィムノブロッテイング  [0035] Preparation of cell lysate. Isolated sedimentation. Immunoblotting
細胞溶解液調整のため,サイト力イン飢餓状態においた lxlO7の細胞が, 1mlのリシ スバッファ (50mM Tris-HCl[pH7.6],150mM NaCl,l%Nonidet P- 40,0.1%ドデシル硫 酸ナトリウム [SDS],lmM バナジン酸ナトリウム, ImM フッ化フエ-ルメチルスルホ- ル [PMSF],lmM ジチオスレィトール [DTT],10mM フッ化ナトリウム,および 10 g/ml のァプロチュン,ロイぺプチンおよびぺプスタチン A)に溶解された。免疫沈降とィムノ ブロッテイングは以前に報告された方法で行われた (Hong,S.H.&Privalsky,M丄. (2000 ).Mol Cell Biol,20,6612-25)o To prepare the cell lysate, lxlO 7 cells in a cyto force-in starved state were loaded with 1 ml of lysis buffer (50 mM Tris-HCl [pH 7.6], 150 mM NaCl, l% Nonidet P-40, 0.1% dodecyl sulfate). Sodium [SDS], lmM Sodium vanadate, ImM Fluorophenylmethylsulfol [PMSF], lmM Dithiothreitol [DTT], 10 mM sodium fluoride, and 10 g / ml aprotune, leupeptin and pepstatin Dissolved in A). Immunoprecipitation and immunoblotting were performed as previously reported (Hong, SH & Privalsky, M 丄. (2000). Mol Cell Biol, 20, 6612-25) o
[0036] FT 3-T Am試,験管内結合 ¾験  [0036] FT 3-T Am test, in vitro coupling ¾ experiment
試験管内結合実験と蛋白の脱リン酸化は,以前に報告されたやり方に最小限の改 良をカ卩えて行われた (Hong,S.H.&Privalsky,M丄. (2000).Mol Cell Biol,20,6612- 25)。 手短に述べると, GSTまたは GSTに融合させた各種 Lynは大腸菌 BL21内で発現され た。大腸菌溶解, GST蛋白のダルタチオンビーズ (Pharmacia)への結合,精製はメー カーの手引きに従った。ビーズに結合された GST蛋白は, SDS-PAGE後のクマシ一 ブルー染色により定量された。野生型 FLT3と FLT3/ITDは試験管内翻訳転写システ ム (TnT kit,Promega,Madison,WI)を用いて,試験管内で合成された。各種 FLT3の発 現が同等であることは, SDS-PAGE後に抗 FLT3抗体によるィムノブロッテイングを行 つて確認した。ビーズに結合された 1 μ gの GST蛋白と 5 μ 1の FLT3力 1%ゥシ血清ァ ルブミン (BSA)を含む 100 μ 1の HEMGバッファ (40mM Hepes- NaOH[pH7.8],100mM KCl,5mM MgCl ,10%グリセロール, 0.1%Nonidet P- 40,および 0.2mM EDTA)と供に 4 In vitro binding experiments and protein dephosphorylation were performed with minimal improvements to previously reported methods (Hong, SH & Privalsky, M 丄. (2000). Mol Cell Biol, 20, 6612). - twenty five). Briefly, GST or various Lyn fused to GST was expressed in E. coli BL21. The manufacturer's instructions were followed for E. coli lysis, GST protein binding to Pharmacia, and purification. GST protein bound to the beads was quantified by Coomassie blue staining after SDS-PAGE. Wild-type FLT3 and FLT3 / ITD were synthesized in vitro using an in vitro translation transcription system (TnT kit, Promega, Madison, WI). The expression of various FLT3s was confirmed by immunoblotting with anti-FLT3 antibody after SDS-PAGE. 1 μg of GST protein bound to beads and 5 μl of FLT3 1% sushi serum 4 with 100 μ1 HEMG buffer (40 mM Hepes-NaOH [pH 7.8], 100 mM KCl, 5 mM MgCl 2, 10% glycerol, 0.1% Nonidet P-40, and 0.2 mM EDTA) containing rubmin (BSA) 4
2  2
。 Cで 1時間インキュベートされた。ビーズは HEMGバッファで 5回洗浄され, SDS-PA GE後,抗 FLT3抗体でィムノブロッテイングされた。 FLT3脱リン酸化反応では結合実 験の前に, 5 の合成 FLT3が 5Uの仔牛腸アルカリホスファターゼ (New England Bi olabs,Beverly,MA)と供に, 10 1の反応液の中で 37° C, 1時間インキュベートされた  . Incubated for 1 hour at C. The beads were washed 5 times with HEMG buffer, followed by SDS-PAGE and immunoblotting with anti-FLT3 antibody. In the FLT3 dephosphorylation reaction, the synthetic FLT3 of 5 was combined with 5 U of calf intestinal alkaline phosphatase (New England Biolabs, Beverly, MA) before the binding experiment. Incubated for 1 hour
[0037] siRNAによる Lvn発現抑制 [0037] Suppression of Lvn expression by siRNA
Lynのェクソン 5またはェクソン 7と 8を標的とする 2種類のデザイン済み siRNA(siRNA Two predesigned siRNAs (siRNAs targeting Lyn exon 5 or exons 7 and 8)
ID: 156196および 156197)は, Ambion(Austin,TX)より購入した。 BLOCK- iT Fluores cent Oligo (商標)は Invitrogenより購入しコントロールとして使用された。 2種類の Lyn siRNAs (各 1.5 μ g)混合物または 3 μ gのコントロール siRNAは Nucleofector system(a maxa biosystems,Gaithersburg,MD)により,メーカーの推奨する方法で,一過'性に細 胞内に導入された。 ID: 156196 and 156197) were purchased from Ambion (Austin, TX). BLOCK-iT Fluores cent Oligo (trademark) was purchased from Invitrogen and used as a control. A mixture of 2 Lyn siRNAs (1.5 μg each) or 3 μg of control siRNA was transiently introduced into the cells using the Nucleofector system (a maxa biosystems, Gaithersburg, MD) as recommended by the manufacturer. It was done.
[0038] PP2の牛.体への投与 [0038] PP2 cattle.
生後 8週のメス C3H/HeNCrjマウスは, Charles River Japan Inc.(Atsugi,Japan)より 購入した。それらは名古屋大学動物実験施設のガイドラインに従い,標準的な条件 で飼育された。百万個の FLT3/ITD- 32D細胞または Wt FLT3-32D細胞がマウスの 背中に皮下投与された。 PP2の投与は図 5に指示された時点から開始された。 PP2投 与量は以前の報告を参考に決定された (Nam,J.S.,et al.,(2002).Clin Cancer Res,8, 2430-6)。腫瘍の大きさは週 2回計測され,腫瘍の重量 (TW)は以下の式に従い算出 された:  8 week old female C3H / HeNCrj mice were purchased from Charles River Japan Inc. (Atsugi, Japan). They were bred under standard conditions in accordance with the guidelines of the Nagoya University Animal Laboratory. One million FLT3 / ITD-32D cells or Wt FLT3-32D cells were administered subcutaneously on the back of mice. PP2 administration began at the time indicated in FIG. PP2 doses were determined with reference to previous reports (Nam, J.S., et al., (2002). Clin Cancer Res, 8, 2430-6). Tumor size was measured twice a week and tumor weight (TW) was calculated according to the following formula:
TW(mg)=(d2 X D)/2 TW (mg) = (d 2 XD) / 2
[d(mm)と D(mm)は腫瘍の最短径と最長径]。  [d (mm) and D (mm) are the shortest and longest diameters of the tumor].
[0039] 腿 [0039] thigh
FLT3/ITD導入 32D細朐における Lvnのチロシンリン酸化  Introduction of FLT3 / ITD Tyrosine phosphorylation of Lvn in 32D filaments
FLT3/ITD-32Dが IL-3非依存性増殖を示し,その細胞内では STAT5が恒常的活 性化を示すことが知られている (Hayakawa,F.,et al.,(2000). Oncogene, 19,624-31)0こ のため, FLT3/ITD力 STAT5〖こ至る経路〖こ注目し, SFKのリン酸化を調べた。結果 を図 1に示す。 24時間サイト力イン飢餓状態で培養した後,各細胞は IL-3(IL3)または FLT3リガンド (FL)で 10分間刺激されるか,何も刺激されな力つた (-)。細胞溶解液は 実験方法で述べたように調整された。(AXJAK2リン酸化。 10 1の溶解液を使用して S DS-PAGEに続 ヽて抗リン酸化 JAK2抗体 (写真上)または抗 JKA2抗体 (写真下)によ るィムノブロッテイング (IB)が行われた。(B)Lynリン酸化。 100 1の細胞溶解液を使用 してゥサギ (R)抗 Lyn抗体により免疫沈降 (IP)が行われた。免疫沈降物のそれぞれ 90% と 10%を用いて抗リン酸ィ匕チ口シン (pTyr)抗体 (写真上)とマウス (M)抗 Lyn抗体 (写真 下)による IBが行われた。(C)Srcリン酸化。(B)と同様に IPに抗 Src抗体, IBに抗リン酸 化チロシン抗体,抗 Src抗体を使用して行われた。 FLT3 / ITD-32D shows IL-3 independent proliferation, and STAT5 is known to show constitutive activation in the cell (Hayakawa, F., et al., (2000). Oncogene , 19,624-31) 0 Therefore, we focused on the pathway leading to FLT3 / ITD STAT5 and investigated phosphorylation of SFK. The results are shown in Figure 1. After culturing for 24 hours in a site force-in starved state, each cell was stimulated with IL-3 (IL3) or FLT3 ligand (FL) for 10 minutes or unstimulated (-). Cell lysates were prepared as described in the experimental method. (AXJAK2 phosphorylation. Immun blotting with anti-phosphorylated JAK2 antibody (top) or anti-JKA2 antibody (bottom) following SDS-PAGE using 10 1 lysate (IB) (B) Lyn phosphorylation.Immunoprecipitation (IP) was performed with Usagi (R) anti-Lyn antibody using 100 1 cell lysate, 90% and 10% of the immunoprecipitate, respectively. (C) Src phosphorylation (as in (B)) with IB using anti-phosphorylated mouth syn (pTyr) antibody (top photo) and mouse (M) anti-Lyn antibody (bottom photo). In addition, anti-Src antibody was used for IP and anti-phosphotyrosine antibody and anti-Src antibody were used for IB.
[0040] まず IL-3シグナル等で STAT5の上流因子として知られる JAK2のリン酸化を調べて みたが,野生型 FLT3, FLT3/ITDいずれでも JAK2のリン酸化は起きていなかった (図 1A)。次に, JAK2以外に STAT5をリン酸化することが知られている SFKのなかでいず れの SFKがリン酸ィ匕されるかを調べるために,まず野生型 FLT3または FLT3/ITDを導 入した 32D細胞(Wt FLT3-32D, FLT3/ITD- 32D)をサイト力インで刺激,あるいは刺 激しない状態で種々の SFKのリン酸化を調べたところ, FLT3/ITD- 32Dでは Lynの恒 常的なリン酸ィ匕が認められた。一方, Wt FLT3-32Dでは FLT3リガンド刺激をしても の Lynリン酸ィ匕は認められなかった (図 1B)。別の SFKである Srcに関してもリン酸ィ匕状 態を調べてみたが,両細胞間でサイト力インの有無に関わらず差は認められな力つた (図 1C)。このことは Lyn力 FLT3/ITDシグナル伝達において STAT5の上流因子である こと,およびそのシグナル伝達は FLT3/ITD力もたらす細胞増殖作用に関与すること を示唆している。図 1Bで示した実験により, FLT3/ITDにより異常活性ィ匕されていると Robinsonらが報告している SFKのリン酸化は, Lynのリン酸化であることが明らかにさ れた。なお,この報告では野生型 FLT3による Lynのリン酸ィ匕が報告されているが,我 々の実験ではこの事実は認められなかった。  [0040] First, phosphorylation of JAK2, which is known as an upstream factor of STAT5, was examined using IL-3 signal, etc. However, phosphorylation of JAK2 did not occur in either wild-type FLT3 or FLT3 / ITD (Fig. 1A). Next, in order to investigate whether any SFK other than JAK2 that is known to phosphorylate STAT5 is phosphorylated, we first introduced wild-type FLT3 or FLT3 / ITD. When 32D cells (Wt FLT3-32D, FLT3 / ITD-32D) were stimulated with site force-in or were not stimulated, phosphorylation of various SFKs was examined. In FLT3 / ITD-32D, Lyn was constantly expressed. Was found. On the other hand, Wt FLT3-32D did not show Lyn phosphate after stimulation with FLT3 ligand (Fig. 1B). Src, another SFK, was also examined for its phosphoric acid state, but there was no difference between the two cells regardless of the presence or absence of site force in (Fig. 1C). This suggests that Lyn force is an upstream factor of STAT5 in FLT3 / ITD signal transduction and that the signal transduction is involved in the cell proliferation effect resulting from FLT3 / ITD force. The experiment shown in Fig. 1B revealed that the phosphorylation of SFK, reported by Robinson et al., Is abnormally activated by FLT3 / ITD, is the phosphorylation of Lyn. In this report, Lyn phosphate was reported by wild-type FLT3, but this fact was not observed in our experiment.
[0041] Lvnと FLT3の結合は明らかに FLT3/ITDにおいて強くまた FLT3のリン酸化に依存し ている。  [0041] The binding of Lvn and FLT3 is clearly strong in FLT3 / ITD and depends on the phosphorylation of FLT3.
次に FLT3と Lynの結合は FLT3/ITDに特異的なのかどうかを調べるため,抗 FLT3 抗体をで免疫沈降し,抗 Lyn抗体でィムノブロッテイングする共沈実験を行った。結果 を図 2に示す。 6時間サイト力イン飢餓状態で培養した後,細胞は図 1で述べたように サイト力イン刺激され,細胞溶解液が調整された。(A)細胞内における FLT3と Lynの結 合。 100 1の溶解液が抗 FLT3抗体による免疫沈降に使用された。免疫沈降物の 90% と 10%がそれぞれ SDS-PAGEされた後,抗 Lyn抗体 (M) (写真上)または抗 FLT3抗体( 写真下)によりィムノブロッテイングされた。(B)抗 Lyn抗体 (R)を免疫沈降に抗 FLT3抗 体または抗 Lyn抗体 (M)をィムノブロッテイングに使用する鏡面的共沈実験が (A)と同 様のやり方で行われた。(OFLT3対 Lynの試験管内結合実験。野生型と変異 FLT3は 試験管内で合成され,その発現が同等であることは抗 FLT3抗体を用いたィムノブ口 ッティングで確認された (データ示さず)。等量(5 μ 1)の FLT3蛋白力 1 μ gの GST(G) または GSTに融合した Lyn(L)を結合したダルタチオンビーズにより沈降された。沈降 物は SDS-PAGEの後抗 FLT3抗体でィムノブロッテイングされた(写真左)。結合実験 に使われたのと同じ FLT3蛋白は抗 FLT3抗体でも免疫沈降され, SDS-PAGE後抗リ ン酸ィ匕チロシン抗体または抗 FLT3抗体によりィムノブロッテイングされた(写真右)。( D)脱リン酸ィ匕後の試験管内結合実験。試験管内で合成された FLT3は結合実験の前 に図中に示されて 、るように仔牛腸アルカリホスファターゼ (CIP)を含む力または含ま ない脱リン酸ィ匕反応液と供にインキュベートされた。試験管内結合実験および FLT3 のリン酸ィ匕状態の確認は (C)で述べた如くに行われた。(E)各種 Lyn, FLT3コンストラタ トのシェーマ FLT3/ITDの縦列重複部の位置とアミノ酸配列が図示されて!、る。 4FWt FLT3と 8F FLT3/の黒丸はそれぞれ Wt FLT3と FLT3/ITDのアミノ酸配列と同じで あることを意味している。(F)Lynにおける結合領域の同定。 Lynの様々な部分の GST 融合蛋白が図示された如くに使用され,結合実験は (C)で述べた通り行われた。沈 降物の 90%は抗 FLT3抗体でィムノブロッテイングされ 10%は抗 GST抗体によりィムノ ブロッテイングされた。(G)FLT3の結合部位の同定。試験管内結合実験およびリン酸 化状態の確認は (C)で述べた通り行われた。 Next, to investigate whether the binding of FLT3 and Lyn is specific to FLT3 / ITD, anti-FLT3 A coprecipitation experiment was performed in which the antibody was immunoprecipitated and immunoblotted with an anti-Lyn antibody. The result is shown in figure 2. After culturing for 6 hours in a cyto force-in starved state, the cells were stimulated with a site force in as described in Fig. 1, and the cell lysate was prepared. (A) Binding of FLT3 and Lyn in the cell. 100 1 lysate was used for immunoprecipitation with anti-FLT3 antibody. 90% and 10% of the immunoprecipitates were subjected to SDS-PAGE and then immunoblotted with anti-Lyn antibody (M) (top) or anti-FLT3 antibody (bottom). (B) A specular coprecipitation experiment using anti-Lyn antibody (R) for immunoprecipitation and anti-FLT3 antibody or anti-Lyn antibody (M) for immunoblotting was performed in the same manner as (A). It was. (OFLT3 vs. Lyn in vitro binding experiment. Wild type and mutant FLT3 were synthesized in vitro, and their expression was confirmed to be equivalent by imknob fitting with anti-FLT3 antibody (data not shown)). Amount (5 μl) of FLT3 protein was precipitated with 1 μg of GST (G) or Dartathione beads conjugated with Lyn (L) fused to GST. The same FLT3 protein used in the binding experiment was immunoprecipitated with anti-FLT3 antibody, and after SDS-PAGE, it was immunoprecipitated with anti-phosphotyrosine antibody or anti-FLT3 antibody. Muno blotted (right photo) (D) In vitro binding experiment after dephosphorylation, FLT3 synthesized in vitro was shown in the figure before the binding experiment as shown in the calf With or without dephosphorylate reaction with or without intestinal alkaline phosphatase (CIP) In vitro binding experiments and confirmation of the phosphorylation state of FLT3 were performed as described in (C) (E) Schematics of various Lyn and FLT3 constructs FLT3 / ITD 4FWt FLT3 and 8F FLT3 / black circles are the same as the amino acid sequences of Wt FLT3 and FLT3 / ITD, respectively (F) The binding region of Lyn Identification GST fusion proteins of various parts of Lyn were used as shown and binding experiments were performed as described in (C) 90% of the precipitate was immunoblotted with anti-FLT3 antibody 10% were immunoblotted with anti-GST antibody (G) Identification of FLT3 binding sites In vitro binding experiments and confirmation of phosphorylation status were performed as described in (C).
Lynと FLT3の結合(共沈)は, FLT3/ITD- 32Dでは認められた力 Wt FLT3-32Dで は FLT3リガンド刺激しても認められなかった (図 2A)。この変異特異的な FLT3と Lynの 結合は,免疫沈降に抗 Lyn抗体,ィムノブロッテイングに抗 FLT3抗体を使用した鏡面 的共沈実験でも確認された (図 2B)。更にその結合が直接的なものであるのカゝ他の因 子を介しているのかを調べるために,試験管内での結合実験を行った。 Lynの SH3と S H2領域が含まれる N端側半分と GSTの融合蛋白は合成 FLT3と試験管内で結合し, 両者は直接結合することが示唆された (図 2C左パネル)。注目すべきことに,野生型 F LT3も FLT3/ITDよりはずつと弱いが Lynとの結合を示し, FLT3と Lynの結合における 変異特異性は絶対的なものではないと考えられた。多くの場合,レセプターチ口シン キナーゼ(RTK)と SFKの結合はレセプターのチロシンリン酸化に依存して!/、る (Boggo n,T.J. & Eck,M.J.(2004).Oncogene,23,7918-27)。そこで試験管内結合実験に使用し た合成 FLT3のリン酸化状態を調べ,これがこのシステムにおける FLT3と Lynの結合 に影響して 、るのかどうかを検討した。ゥサギ網状赤血球溶解液を使用するシステム で合成された FLT3は, 自己チロシンリン酸化を起こしており,そのリン酸化は FLT3/I TDの方が野生型 FLT3よりずつと強かった (図 2C右パネル)。このことから, FLT3と Lyn の結合は FLT3のチロシンリン酸化に依存しており, FLT3のリン酸化の程度の違いが 結合の違 、の原因になって!/、る可能性が示唆された。 No binding (coprecipitation) between Lyn and FLT3 was observed in FLT3 / ITD-32D with Wt FLT3-32D, even when stimulated with FLT3 ligand (Figure 2A). This mutation-specific binding of FLT3 and Lyn is specular using anti-Lyn antibody for immunoprecipitation and anti-FLT3 antibody for immunoblotting. This was also confirmed in the experimental coprecipitation experiment (Fig. 2B). Furthermore, in order to investigate whether the coupling is direct or via other factors, a coupling experiment was conducted in a test tube. It was suggested that the N-terminal half containing Lyn SH3 and SH2 regions and the GST fusion protein were bound to synthetic FLT3 in vitro, and both were bound directly (Fig. 2C left panel). Of note, wild-type FLT3 is also weaker than FLT3 / ITD, but shows binding to Lyn, and the mutation specificity in the binding between FLT3 and Lyn is considered to be not absolute. In many cases, the binding of receptor tyrosin kinase (RTK) and SFK depends on tyrosine phosphorylation of the receptor! /, (Boggon, TJ & Eck, MJ (2004). Oncogene, 23, 7918-27. ). Therefore, we investigated the phosphorylation state of synthetic FLT3 used in the in vitro binding experiments, and examined whether this affects the binding of FLT3 and Lyn in this system. FLT3 synthesized by the system using the rabbit reticulocyte lysate caused self-tyrosine phosphorylation, and the phosphorylation of FLT3 / ITD was stronger than that of wild-type FLT3 (Fig. 2C, right panel). . This suggests that the binding of FLT3 and Lyn depends on the tyrosine phosphorylation of FLT3, and the difference in the degree of phosphorylation of FLT3 may cause the difference in binding! /.
この結合のリン酸ィ匕依存性を調べるために,脱リン酸ィ匕された FLT3を用いて試験 管内結合実験を行った。予想通り, FLT3の脱リン酸ィ匕により野生型,変異型どちらの FLT3においても Lynとの結合が消失し,その FLT3リン酸ィ匕依存性が示唆された。多 くの場合リン酸ィ匕チ口シンの認識には SH2領域が関わっているので,この結合の FLT 3チロシンリン酸ィ匕依存性を更に明らかにするため, Lynの SH2領域力この結合に関 与して 、るの力否かを調べた。更に FLT3の Lyn結合領域として最も可能性が高 、と 考えられる傍膜部領域のチロシン フエ-ルァラニン置換の両者の結合に与える影 響も調べた。図 2Eに示したような Lynの様々な部分と GSTとの融合蛋白と合成 FLT3/I TDを使用した試験管内結合実験により, Lyn SH2領域のこの結合への関与が明ら 力になった (図 2F)。使用した FLT3/ITDは傍膜部領域の中でも野生型 FLT3の 583-60 2アミノ酸に相当する部分の縦列重複を持っている。野生型 FLT3および FLT3/ITDに 対してこの領域に存在する 4個および 8個のチロシンをフエ-ルァラニンに置換し (そ れぞれ 4F置換, 8F置換と命名)得られた変異 FLT3をそれぞれ 4F Wt FLT3および 8 F FLT3/ITDと名付けた (図 2E)。試験管内結合実験において 4F Wt FLT3と 8F F LT3/ITDは減弱した Lynとの結合(それぞれ Wt FLT3と FLT3/ITDのおよそ 30%位)を 示した (図 2G左パネル)。また 4Fおよび 8F置換により野生型 FLT3, FLT3/ITDのチロ シンリン酸ィ匕は著明に減少した (図 2G右パネル)。これらのデータから,置換されたチ 口シンは野生型 FLT3, FLT3/ITDの自己リン酸化におけるリン酸化サイトであり,これ らチロシンのリン酸化は Lynの SH2領域で認識されることが示唆された。図 2A- Gで示 された野生型および変異型 FLT3と Lynの結合,その結合部位の同定,ならびにその 結合の FLT3リン酸ィ匕依存性は,全て本発明において初めて明らかになつたことであ る。 In order to investigate the dependence of this binding on phosphate, an in vitro binding experiment was performed using dephosphorylated FLT3. As expected, dephosphorylation of FLT3 lost its binding to Lyn in both wild-type and mutant FLT3, suggesting its dependence on FLT3 phosphate. In many cases, the SH2 region is involved in the recognition of phosphate synthase. Therefore, to further clarify the dependence of this binding on FLT 3 tyrosine phosphate, Lyn's SH2 region force Involved, I investigated the power of the ru. Furthermore, the effect of the tyrosine ferrolanine substitution on the parasial region, which is considered to be the most probable Lyn binding region of FLT3, was examined. In vitro binding experiments using fusion proteins of various parts of Lyn and GST as shown in Fig. 2E and synthetic FLT3 / ITD revealed the involvement of the Lyn SH2 region in this binding ( (Figure 2F). The FLT3 / ITD used has a tandem duplication of the portion corresponding to the 583-602 amino acids of wild-type FLT3 in the paramembrane region. For wild-type FLT3 and FLT3 / ITD, the 4 and 8 tyrosines present in this region were replaced with ferrolanins (named 4F and 8F substitutions, respectively). They were named Wt FLT3 and 8 F FLT3 / ITD (Figure 2E). 4F Wt FLT3 and 8F F in in vitro coupling experiments LT3 / ITD showed reduced binding to Lyn (approximately 30% of Wt FLT3 and FLT3 / ITD, respectively) (Figure 2G left panel). In addition, the substitution of 4F and 8F markedly decreased the tyrosin phosphate of wild-type FLT3 and FLT3 / ITD (Fig. 2G right panel). These data suggest that the substituted thiocin is a phosphorylation site in wild-type FLT3 and FLT3 / ITD autophosphorylation, and that tyrosine phosphorylation is recognized in the SH2 region of Lyn. . The binding of wild-type and mutant FLT3 and Lyn shown in Fig. 2A-G, the identification of the binding site, and the dependence of the binding on FLT3 phosphate were all clarified for the first time in the present invention. The
siRNAによる特異的な Lvnシグナルの阻害は FLT3/ITDによる細朐增殖を特異的に 謹 Inhibition of specific Lvn signal by siRNA specifically inhibits cell multiplication by FLT3 / ITD
Lyn特異的な DNA配列をもとにデザインした siRNAにより Lynの発現を抑制すること で, FLT3/ITDによるサイト力イン非依存性増殖における Lyn活性ィ匕の意義を調べた 。結果を図 3に示す。 siRNAによる Lynの発現抑制。 IL_3存在下で培養されている百 万個の FLT3/ITD- 32Dは, 3 μ gのコントロール siRNA(C)または 1.5 μ gずつ 2種類の L yn siRNAの混合物を Nucleofectorシステムを用いて細胞導入された。導入の 24時 間後,細胞は洗浄されてサイト力イン飢餓状態に 24時間おかれた。それから細胞溶 解液が調整され, SDS- PAGE後,図示の如く Lyn,c- Src,Fyn,Lck,c- Yesそして Hckに 対する抗体によるィムノブロッテイングが行われた。(B)STAT5の特異的な阻害。(A)と 同じ溶解液が図示のようなリン酸ィ匕特異的抗体によるィムノブロッテイングに使用され た。 SFK以外の各シグナル伝達因子の発現が同等であったことは対応するリン酸ィ匕 非特異的抗体によるィムノブロッテイングで確認された (データ示さず)。(C),(D)FLT3 導入各種 32D細胞の増殖に対する siRNAによる Lyn発現抑制の影響。 Wt FLT3-32 Dと FLT3/ITD- 32Dは (A)で述べた如く IL-3存在下で培養され, siRNAを導入された。 細胞は導入 24時間後洗浄され,図示の如く 5ng/mlの IL-3(IL3), FLT3リガンド (FL)ま たはサイト力インなし (-)の培養液で, 2 X 105個/ mlの密度で再懸濁された (Time 0)。 各時点での生存細胞数はトリパンブルー排除法(trypan blue exclusion method)に より計測され, Time 0時点での値 (2 X 105個/ ml)に対する比を算出してグラフを作成 した。各実験は 2重に 2回行われ,その平均値と標準偏差が示されている。 [0045] FLT3/ITD- 32Dにおいて, Lyn siRNAにより Lynの発現がおよそ 90%程度抑制され たこと力ィムノブロッテイングで確認された。更に発現抑制の特異性もィムノブロッティ ングで確認された。すなわち, Lyn以外の 5つの SFKの発現はいずれも明らかな影響 は受けて!/、なかった (図 3A)。 FLT3/ITDシグナル伝達における Lyn発現抑制の影響 は,各シグナル伝達因子に対するリン酸ィ匕特異的抗体によるィムノブロッテイングで 調べられた。 SFKのリン酸ィ匕は著明に,およそ 20%程度にまで減少していた。 Lyn以外 の SFKの発現は影響を受けて 、な力つたことを考慮すると,この SFKリン酸ィ匕の減少 は Lyn発現抑制により起きていると考えられる。このことは, FLT3/ITD- 32D細胞にお いて,抗リン酸ィ匕 SFK抗体により検出されたリン酸ィ匕は主に Lynのリン酸ィ匕であり,こ の抗体は FLT3/ITD-32D細胞における Lynのリン酸ィ匕を検出するのに使用可能であ ることを示している。 STAT5のリン酸化はコントロールの 50%程度にまで減少した力^ M APキナーゼ, Akt, Sheのリン酸化は影響を受けなかった (図 3B)。ここで示したように, 抗リン酸ィ匕 SFK抗体の認識するリン酸ィ匕が Lyn特異的な発現抑制により大幅に (80% 以上)減少することを示すことで初めて,このリン酸ィ匕が(80%以上) Lynのリン酸化で あると 、うことができる。 Robinsonらの前述の報告ではこうした実験が行われて!/、な!/ヽ ので,観察されたリン酸ィ匕はいずれの SFKのリン酸ィ匕であるか不明である。 We investigated the significance of Lyn activity in FLT3 / ITD site-independent growth by suppressing Lyn expression with siRNA designed based on Lyn-specific DNA sequences. The results are shown in Figure 3. Suppression of Lyn expression by siRNA. Millions of FLT3 / ITD-32D cultured in the presence of IL_3 were introduced into the cells using a Nucleofector system with 3 μg of control siRNA (C) or 1.5 μg of each mixture of two L yn siRNAs. It was. Twenty-four hours after introduction, the cells were washed and placed in a site force-in starvation state for 24 hours. Cell lysates were then prepared, and after SDS-PAGE, immunoblotting was performed with antibodies against Lyn, c-Src, Fyn, Lck, c-Yes and Hck as shown. (B) Specific inhibition of STAT5. The same lysate as in (A) was used for immunoblotting with phosphate-specific antibodies as shown. The expression of each signaling factor other than SFK was confirmed by immunoblotting with the corresponding non-specific antibody (data not shown). (C), (D) Effect of suppression of Lyn expression by siRNA on the proliferation of various 32D cells introduced with FLT3. Wt FLT3-32 D and FLT3 / ITD-32D were cultured in the presence of IL-3 and introduced with siRNA as described in (A). Cells were washed 24 hours after introduction, and 5 ng / ml IL-3 (IL3), FLT3 ligand (FL), or no cytodynamic force-in (-) culture medium as shown, 2 X 10 5 cells / ml. Resuspended at a density of (Time 0). The number of viable cells at each time point was measured by the trypan blue exclusion method, and a graph was created by calculating the ratio to the value at time 0 (2 X 10 5 cells / ml). Each experiment was performed twice, and the mean and standard deviation are shown. [0045] In FLT3 / ITD-32D, it was confirmed by force immunoblotting that Lyn siRNA suppressed Lyn expression by approximately 90%. Furthermore, the specificity of expression suppression was confirmed by immunoblotting. That is, the expression of all five SFKs other than Lyn was clearly affected! / No (Fig. 3A). The effect of Lyn expression suppression on FLT3 / ITD signaling was examined by immunoblotting with phosphate-specific antibodies against each signaling factor. The SFK phosphate was markedly reduced to about 20%. The expression of SFKs other than Lyn is affected, and taking into account their strength, this decrease in SFK phosphate is thought to be caused by suppression of Lyn expression. This means that in FLT3 / ITD-32D cells, the phosphate detected by anti-phosphate SFK antibody is mainly Lyn phosphate, and this antibody is FLT3 / ITD-32D. It can be used to detect Lyn phosphate in cells. STAT5 phosphorylation was reduced to about 50% of the control, but phosphorylation of MAP kinase, Akt, and She was not affected (Fig. 3B). As shown here, the phosphate phosphate recognized by the anti-phosphate SFK antibody was shown for the first time only by showing that Lyn-specific expression suppression significantly decreased (over 80%). (80% or more) can be expressed as phosphorylation of Lyn. In the previous report of Robinson et al., Such experiments were carried out! /, Na! / ヽ, so it is unclear which SFK phosphate was observed.
[0046] 制による特虽的な STAT5リン酸化の阳.害は /Π/Π シグナル伝捧終路 にお ヽて Lvnが STAT5のト.流闵子であるこ を示險して 、る。  [0046] The specific damage of STAT5 phosphorylation by the system is indicated by the fact that Lvn is the STAT5 fluency at the end of signal transmission.
Lyn siRNAの FLT3導入 32Dの増殖に対する影響を調べた。 IL-3非存在下では, F LT3/ITD- 32Dの増殖は Lyn siRNAにより著明に抑制された (図 3D)。一方 IL-3存在 下では, Wt FLT3-32D細胞も FLT3/ITD-32D細胞もその増殖は影響を受けなかつ た。 FLT3リガンドによる Wt FLT3-32D細胞の増殖も影響を受けなかった (図 3Cおよ び 3D)。これらの結果から, Lynは野生型 FLT3シグナルや IL-3シグナルで誘導される 細胞増殖よりも, FLT3/ITDシグナルにより誘導される細胞増殖において,より重要で あると考えられた。なお, Robinsonらの前述の報告でも使用されている, PP1および PP 2といった SFK阻害剤は, SFKの中での選択性は明かではないため, SFK阻害剤で細 胞の増殖が抑制されたとしても,それがどの SFKの阻害によるのか,すなわちどの SF Kが細胞増殖に重要であるのかを同定することはできな 、。本発明にお 、て示された ように, Lyn特異的な発現抑制をすることで初めて Lynが重要であることを同定するこ とができる。すなわち, FLT3変異体を発現する細胞においてその細胞増殖に Lynが 重要であることが同定されたのは今回が初めてである。 The effect of Lyn siRNA on the proliferation of FLT3-introduced 32D was examined. In the absence of IL-3, the growth of FLT3 / ITD-32D was markedly suppressed by Lyn siRNA (Figure 3D). On the other hand, in the presence of IL-3, the proliferation of Wt FLT3-32D cells and FLT3 / ITD-32D cells was not affected. Proliferation of Wt FLT3-32D cells with FLT3 ligand was also unaffected (Figure 3C and 3D). These results suggest that Lyn is more important in cell proliferation induced by FLT3 / ITD signals than cell proliferation induced by wild-type FLT3 and IL-3 signals. In addition, SFK inhibitors such as PP1 and PP2 used in the above-mentioned report by Robinson et al. Are not clear in SFK. Therefore, SFK inhibitors suppress cell proliferation. However, it is not possible to identify which SFK is the inhibition, that is, which SFK is important for cell proliferation. Shown in the present invention Thus, Lyn is important for the first time by suppressing Lyn-specific expression. That is, this is the first time that Lyn has been identified as important for cell growth in cells expressing FLT3 mutants.
[0047] SFK阻害剤 PP2による FLT3/ITD- 32D細朐増殖の抑制  [0047] Inhibition of FLT3 / ITD- 32D fine cell proliferation by SFK inhibitor PP2
FLT3/ITDによる細胞増殖における Lynの重要性を更に確認するために, SFK阻害 剤 PP2(Hanke,J.H.,et al.,(1996).J Biol Chem,271,695- 701)の, Wt FLT3- 32Dお よび FLT3/ITD-32Dの増殖に対する影響を調べた。両方の細胞株は様々な濃度の P P2で 24時間培養された。結果を図 4に示す。(A)PP2による濃度依存性の増殖抑制。 Wt FLT3-32D(Wt)または FLT3/ITD- 32D(Mut)は IL-3存在下 Z非存在下で図示 された濃度の PP2添加の下 24時間培養された。 24時間後の各濃度での生存細胞数 はトリパンブルー排除法 (trypan blue exclusion method)により計測された。各数値 より 0 Mでの値に対する比を %で算出してグラフを作成した。各実験は 3重に 2回行 われ,その平均値と標準偏差が示されている。(B)PP2処理された細胞の増殖曲線。 F LT3/ITD- 32Dは IL- 3(2ng/ml)と ΡΡ2(10 μ Μ)を図示されたような組み合わせで添カロさ れて培養された。生細胞数の計測とグラフの作成は図 3Cと同様。各実験は 3重にで 2 回行われ,その平均値と標準偏差が示されている。(C),(D)PP2処理された FLT3/ITD -32Dにおけるシグナル阻害。 IL-3存在下 Z非存在下で培養される FLT3/ITD- 32D に 10 /z Mの PP2が添加された。図示された時点で細胞溶解液が前述のように調整さ れた。 FLT3リン酸ィ匕は,抗 FLT3抗体を免疫沈降に使用した以外は図 1Bと同様に調 ベられた。他のシグナル伝達因子のリン酸ィ匕は図 3Bと同様に調べられた。各時点間 での各因子の発現,あるいは FLT3免疫沈降の効率が同等であることは,対応するリ ン酸ィ匕非特異的抗体によるィムノブロッテイングにより確認された。  To further confirm the importance of Lyn in cell proliferation by FLT3 / ITD, the SFK inhibitor PP2 (Hanke, JH, et al., (1996). J Biol Chem, 271, 695-701), Wt FLT3-32D And the effect of FLT3 / ITD-32D on proliferation. Both cell lines were cultured for 24 hours with various concentrations of PP2. The results are shown in Fig. 4. (A) Concentration-dependent growth inhibition by PP2. Wt FLT3-32D (Wt) or FLT3 / ITD-32D (Mut) was cultured in the presence of IL-3 in the absence of Z for 24 hours with the addition of PP2 at the indicated concentration. The number of viable cells at each concentration after 24 hours was counted by the trypan blue exclusion method. A graph was created by calculating the ratio of each value to the value at 0 M in%. Each experiment was performed twice in triplicate, and the mean and standard deviation are shown. (B) Proliferation curve of cells treated with PP2. FLT3 / ITD-32D was cultured with IL-3 (2 ng / ml) and ΡΡ2 (10 μΜ) supplemented with the combination shown. Viable cell count and graph creation are the same as in Figure 3C. Each experiment was performed twice in triplicate, and the mean and standard deviation are shown. (C), (D) Signal inhibition in PP2-treated FLT3 / ITD-32D. 10 / z M PP2 was added to FLT3 / ITD-32D cultured in the absence of Z in the presence of IL-3. At the time indicated, the cell lysate was prepared as described above. FLT3 phosphate was examined in the same manner as in Figure 1B, except that anti-FLT3 antibody was used for immunoprecipitation. Other signaling factors, phosphate, were examined as in Figure 3B. The expression of each factor or the efficiency of FLT3 immunoprecipitation between each time point was confirmed by immunoblotting using the corresponding non-specific antibody.
[0048] 増殖抑制効果は明らかに濃度依存性であり, IL-3非存在下で培養した FLT3/ITD- 32Dにおいて強かった。 IL-3不在下での FLT3/ITD-32Dに対する GI は, IL-3存在  [0048] The growth inhibitory effect was clearly concentration-dependent and was strong in FLT3 / ITD-32D cultured in the absence of IL-3. GI for FLT3 / ITD-32D in the absence of IL-3 is the presence of IL-3
50  50
下の Wt FLT3- 32Dや FLT3/ITD- 32Dのそれのおよそ 3分の 1であった (5 Μ vs.17 .7 μ Μ)(図 4A)。 IL- 3存在下と非存在下で, PP2 10 μ Μ添カ卩時の FLT3/ITD- 32Dの 細胞増殖曲線も比較された。 IL-3不在下では FLT3/ITD-32Dの増殖は ΡΡ2により完 全に阻害された。ただし IL-3存在下でもある程度の増殖抑制が認められた (図 4Β)。 Ρ P2による細胞増殖抑制は, IL-3により誘導される細胞増殖よりも, FLT3/ITDによるも のに対してより効果が高いと考えられ,このことは FLT3/ITDにより起こる癌に対して P P2が抗腫瘍薬として働く可能性を示している。次に FLT3/ITDまたは IL-3により誘導 されるシグナル伝達因子のリン酸ィ匕に対する PP2の影響を,抗リン酸化抗体を用いて 経時的に観察した。 FLT3/ITD- 32Dでは FLT3のリン酸化状態は 10 μ Μの ΡΡ2による 処理では変化なかった (図 4C,上パネル)。しかし, IL-3非存在下では,主に Lynのリン 酸化からなる SFKのリン酸ィ匕は 1時間以内に急速に消失し, STAT5のリン酸化もそれ に続いて 6時間以内に消失した。 MAPキナーゼリン酸ィ匕の軽度減弱が 12時間後に認 められ, Akt, Sheのリン酸化は影響を受けなかった (図 4C)。 JAK2のリン酸化はどの時 点でも認めなかった (データ示さず)。一方 IL-3が存在すると JAK2のリン酸ィ匕が認めら れ,それは 12時間後に軽度抑制されていた。そして JAK2のリン酸ィ匕が残存している のに一致して, STAT5のリン酸化も残存していた。 MAPキナーゼリン酸化の減弱は IL -3不在下と同じ程度に認められた (図 4D)。 Aktと Sheのリン酸ィ匕は影響を受けな力つた (データ示さず)。これらの結果から,シグナル伝達因子のリン酸ィ匕阻害が, Lyn阻害の 直接の効果であるの力, Lyn以外の SFK阻害の効果であるの力,あるいは SFK以外の キナーゼの阻害によるのかは判断できな力つた。し力し PP2によるシグナル阻害は, S TAT5に対してより強く起きているようにみえ,このことは Lyn力 TAT5の上流因子で あるという仮説を裏付ける。 The lower Wt FLT3-32D and FLT3 / ITD-32D were about one third (5 Μ vs. 17.7 μ.) (Fig. 4A). The cell growth curves of FLT3 / ITD-32D in the presence of IL-2 in the presence or absence of PP2 at 10 μΜ were also compared. In the absence of IL-3, FLT3 / ITD-32D proliferation was completely inhibited by ΡΡ2. However, some suppression of proliferation was observed even in the presence of IL-3 (Fig. 4). Ρ Inhibition of cell growth by P2 is considered to be more effective against that induced by FLT3 / ITD than cell proliferation induced by IL-3, which suggests that P P2 is effective against cancers caused by FLT3 / ITD. Has the potential to work as an anti-tumor agent. Next, the effect of PP2 on the signaling factor induced by FLT3 / ITD or IL-3 was observed over time using anti-phosphorylated antibodies. In FLT3 / ITD-32D, the phosphorylation state of FLT3 was not changed by treatment with 10 μΜ of ΡΡ2 (Fig. 4C, upper panel). However, in the absence of IL-3, the phosphorylation of SFK, which mainly consists of Lyn phosphorylation, disappeared rapidly within 1 hour, and the phosphorylation of STAT5 also disappeared within 6 hours. Mild attenuation of MAP kinase phosphate was observed after 12 hours, and phosphorylation of Akt and She was not affected (Fig. 4C). JAK2 phosphorylation was not observed at any time (data not shown). On the other hand, in the presence of IL-3, JAK2 phosphate was observed, which was slightly suppressed after 12 hours. In line with the fact that JAK2 phosphate remained, phosphorylation of STAT5 also remained. Attenuation of MAP kinase phosphorylation was observed to the same extent as in the absence of IL-3 (Figure 4D). Akt and She phosphates were unaffected (data not shown). From these results, it is determined whether the phosphorylation inhibition of signaling factors is the direct effect of Lyn inhibition, the force of SFK inhibition other than Lyn, or the inhibition of kinases other than SFK. I couldn't do it. However, signal inhibition by PP2 appears to occur more strongly with respect to S TAT5, confirming the hypothesis that it is an upstream factor of Lyn force TAT5.
マウスモデルにおける FT/H/TTDによる脯傷に針する PP2の治療効菜 Therapeutic effect of PP2 on needle injury caused by FT / H / TTD in a mouse model
SFK阻害剤の FLT3/ITDにより起こる癌に対する治療薬としての可能性を検討する ために,先に開発した FLT3/ITDにより発症した腫瘍のマウスモデル(FLT3/ITD-32 Dを放射線照射していないマウスに接種することで作る)を使用した (Zhao et al.,(20 00)丄 eukemia, 14,374-8.)。結果を図 5に示す。 6匹のマウスが第 1日目に FLT3/ITD- 3 2Dを皮下に接種され, DMSOに溶解された 5 μ gまたは 10 μ gの ΡΡ2または DMSOのみ を週 2回,第 4日目力 63日目まで腹腔内投与された。 FLT3/ITD-32D(1 X 106個の 細胞)が生後 8週のメス C3H/HeNCjマウスに皮下接種された。(A)PP2の先行投与は 腫瘍の発症を予防する。各マウスは 100 1の DMSOに溶解された 5 gまたは 10 gの PP2または DMSOのみを週 2回,第 4日目から 63日目まで腹腔内投与 (ip.)された。コ ントロールマウスは DMSOを投与され第 8週で死亡した (クロスで表示)。(B)腫瘍発症 後の PP2の投与は腫瘍の進行を抑制する。 In order to investigate the possibility of an SFK inhibitor as a therapeutic agent for cancer caused by FLT3 / ITD, a mouse model of FLT3 / ITD developed previously (FLT3 / ITD-32 D was not irradiated). Made by inoculating mice) (Zhao et al., (20 00) 丄 eukemia, 14,374-8.). The results are shown in FIG. Six mice were inoculated subcutaneously with FLT3 / ITD-3 2D on the first day, 5 μg or 10 μg ΡΡ2 or DMSO alone dissolved in DMSO twice a week, day 4 force 63 days It was administered intraperitoneally to the eyes. FLT3 / ITD-32D (1 × 10 6 cells) was inoculated subcutaneously into 8 week old female C3H / HeNCj mice. (A) Prior administration of PP2 prevents tumor development. Each mouse received 5 g or 10 g of PP2 or DMSO alone in 100 1 DMSO twice a week, ip from day 4 to day 63. Co Troll mice were treated with DMSO and died at week 8 (shown in cross). (B) Administration of PP2 after tumor onset suppresses tumor progression.
FLT3/ITD- 32Dを接種された全てのマウスは第 25日目までに腫瘍を発症した。第 2 5日目力ら 63日目まで 100 1の DMSOに溶解した図示された量の PP2を週 2回腹腔内 投与された。  All mice inoculated with FLT3 / ITD-32D developed tumors by day 25. From Day 2 to Day 63, until the 63rd day, the indicated amount of PP2 dissolved in 100 1 DMSO was administered intraperitoneally twice a week.
[0050] コントロールマウスでは第 25日目より皮下腫瘍は急速に増大し,第 45日目までに 全てのマウスが死亡した。対称的に 10 gの PP2を投与された群は明らかな腫瘍は発 生しな力つた。 5 /z gの PP2を投与された群では第 25日目以降腫瘍が発生したが観察 期間全体に渡ってその増殖は著明に抑制されていた。腫瘍の重量はコントロール群 に発生した腫瘍のおよそ 3分の 1であった (図 5A)。  [0050] In the control mice, the subcutaneous tumor rapidly increased from the 25th day, and all mice died by the 45th day. In contrast, the group that received 10 g of PP2 did not develop obvious tumors. In the group receiving 5 / z g of PP2, tumors developed from day 25, but their growth was markedly suppressed over the entire observation period. The tumor weight was approximately one-third that of tumors in the control group (Figure 5A).
[0051] 腫瘍の進行に対する PP2の効果が次に検討された。 6匹のマウスに FLT3/ITD-32D が接種され,全てが第 25日目までに腫瘍を発症した。これらマウスは腫瘍が発症し てから (第 25日目) PP2または DMSOが投与された。コントロールマウスでは皮下腫瘍 は急速に増大し,第 45日目までに全てのマウスが死亡した。一方 30 gの PP2が投 与された群では腫瘍の進展は緩やかで全てのマウスは第 63日目でもまだ生存して いた。更に 60 gの PP2を投与された群では更に強い増殖抑制が認められた。すなわ ち第 35日目までに腫瘍は検知できないまでに縮小した (図 5B)。この群のマウスは 2 匹とも PP2の投与終了後も 20週間以上腫瘍が増大することなく生存し続けた。これら の結果は, PP2はここで使用した量においては, FLT3/ITDによる腫瘍の予防と治療 に安全かつ効果的な薬剤であることを示して 、る。  [0051] The effect of PP2 on tumor progression was next examined. Six mice were inoculated with FLT3 / ITD-32D and all developed tumors by day 25. These mice were given PP2 or DMSO after the tumor developed (day 25). In control mice, subcutaneous tumors grew rapidly and all mice died by day 45. On the other hand, in the group given 30 g of PP2, tumor progression was slow and all mice were still alive at day 63. Furthermore, in the group administered with 60 g of PP2, stronger growth inhibition was observed. That is, by day 35, the tumor had shrunk until it could not be detected (Fig. 5B). Both mice in this group remained alive without tumor growth for more than 20 weeks after the end of PP2. These results indicate that PP2 is a safe and effective drug for the prevention and treatment of tumors with FLT3 / ITD in the amounts used here.
産業上の利用可能性  Industrial applicability
[0052] 本発明は,急性骨髄性白血病治療剤の候補物質のスクリーニングならびに急性骨 髄性白血病の治療に有用である。 [0052] The present invention is useful for screening candidate substances for therapeutic agents for acute myeloid leukemia and for treating acute myeloid leukemia.

Claims

請求の範囲 The scope of the claims
[1] 急性骨髄性白血病治療剤の候補物質を同定する方法であって,試験物質の存在下 で活性型変異 FLT3を Lynと接触させ,前記試験物質が活性型変異 FLT3と Lynとの結 合を阻害する力否か,および Zまたは活性型変異 FLT3を発現する細胞内で Lynのリ ン酸ィ匕を阻害するカゝ否かを判定することを含む方法。  [1] A method for identifying candidate substances for the treatment of acute myeloid leukemia, in which the active mutant FLT3 is contacted with Lyn in the presence of the test substance, and the test substance binds to the active mutant FLT3 and Lyn. And determining whether or not it inhibits phosphorylation of Lyn in cells expressing Z or active mutant FLT3.
[2] 急性骨髄性白血病治療剤の候補物質を同定する方法であって,試験物質を Lynを 発現する細胞と接触させ,前記試験物質が Lynの発現を阻害するか否か,および Z または Lynによる STAT5のリン酸ィ匕を阻害するか否かを判定することを含む方法。  [2] A method for identifying a candidate substance for a therapeutic agent for acute myeloid leukemia, comprising contacting a test substance with a cell that expresses Lyn, whether the test substance inhibits Lyn expression, and whether Z or Lyn Determining whether to inhibit STAT5 phosphorylation.
[3] Lyn遺伝子に対するアンチセンス'オリゴヌクレオチド, Lyn遺伝子に対するリボザィム , Lyn遺伝子に対する siRNA, PP1, PP2, SU6656,スタウロスポリン, NS-187, KRX- 123,および BMS-354825からなる群より選択される物質を有効成分として含有する急 性骨髄性白血病治療剤。  [3] An antisense oligonucleotide against the Lyn gene, a ribozyme against the Lyn gene, siRNA against the Lyn gene, PP1, PP2, SU6656, staurosporine, NS-187, KRX-123, and BMS-354825 A therapeutic agent for acute myeloid leukemia containing the active substance as an active ingredient.
[4] 活性型変異 FLT3と Lynとの結合を阻害する物質,活性型変異 FLT3を発現する細胞 内で Lynのリン酸ィ匕を阻害する物質, Lynの発現を阻害する物質,および Lynによる S TAT5のリン酸化を阻害する物質からなる群より選択される物質を有効成分として含 有する急性骨髄性白血病治療剤。  [4] Substances that inhibit the binding of active mutant FLT3 and Lyn, substances that inhibit Lyn phosphate in cells that express active mutant FLT3, substances that inhibit Lyn expression, and S by Lyn A therapeutic agent for acute myeloid leukemia comprising as an active ingredient a substance selected from the group consisting of substances that inhibit phosphorylation of TAT5.
[5] 急性骨髄性白血病を治療する方法であって,活性型変異 FLT3と Lynとの結合を阻 害するか,および Zまたは活性型変異 FLT3を発現する細胞内で Lynのリン酸ィ匕を阻 害することを含む方法。  [5] A method for treating acute myeloid leukemia, which inhibits the binding of active mutant FLT3 to Lyn, and inhibits Lyn phosphate in cells expressing Z or active mutant FLT3. A method involving harming.
[6] 急性骨髄性白血病を治療する方法であって, Lynの発現を阻害するか,および Zま たは Lynによる STAT5のリン酸ィ匕を阻害することを含む方法。  [6] A method of treating acute myeloid leukemia, comprising inhibiting Lyn expression and inhibiting STAT5 phosphate by Z or Lyn.
[7] 急性骨髄性白血病を治療する方法であって,治療を必要とする患者に, Lyn遺伝子 に対するアンチセンス'オリゴヌクレオチド, Lyn遺伝子に対するリボザィム, Lyn遺伝 子に対する siRNA, PP1, PP2, SU6656,スタウロスポリン, NS-187, KRX-123,およ び BMS-354825からなる群より選択される物質を投与することを含む方法。  [7] A method for treating acute myeloid leukemia, in which patients who need treatment have antisense oligonucleotides against the Lyn gene, ribozymes against the Lyn gene, siRNA against the Lyn gene, PP1, PP2, SU6656, Administering a substance selected from the group consisting of taurosporine, NS-187, KRX-123, and BMS-354825.
[8] 急性骨髄性白血病を治療する方法であって,治療を必要とする患者に,活性型変異 FLT3と Lynとの結合を阻害する物質,活性型変異 FLT3を発現する細胞内で Lynのリ ン酸化を阻害する物質, Lynの発現を阻害する物質,および Lynによる STAT5のリン 酸化を阻害する物質からなる群より選択される物質を投与することを含む方法。 [8] A method for treating acute myeloid leukemia, in which a patient in need of treatment is treated with a substance that inhibits the binding between active mutant FLT3 and Lyn, and the expression of Lyn in cells expressing active mutant FLT3. Substances that inhibit phosphorylation, substances that inhibit Lyn expression, and STAT5 phosphorylation by Lyn Administering a substance selected from the group consisting of substances that inhibit oxidation.
PCT/JP2007/061190 2006-06-02 2007-06-01 Method of identifying candidate for remedy of acute myeloid leukemia WO2007142139A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008520538A JP5246776B2 (en) 2006-06-02 2007-06-01 Method for identifying candidate substances for therapeutic agents for acute myeloid leukemia

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-155281 2006-06-02
JP2006155281 2006-06-02

Publications (1)

Publication Number Publication Date
WO2007142139A1 true WO2007142139A1 (en) 2007-12-13

Family

ID=38801395

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/061190 WO2007142139A1 (en) 2006-06-02 2007-06-01 Method of identifying candidate for remedy of acute myeloid leukemia

Country Status (2)

Country Link
JP (1) JP5246776B2 (en)
WO (1) WO2007142139A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2047849A1 (en) * 2007-10-08 2009-04-15 KTB Tumorforschungsgesellschaft mbH Use of indolocarbazole imides as protein kinase inhibitors for the treatment of hematologic and solid tumors
WO2014017659A1 (en) * 2012-07-27 2014-01-30 独立行政法人理化学研究所 Agent for treating or controlling recurrence of acute myelogenous leukemia
CN116602947A (en) * 2023-05-18 2023-08-18 苏州大学 Small molecular compound and application thereof in preparation of medicines for treating FLT3 mutant leukemia

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
CHIN H. ET AL.: "Lyn physically associates with the erythropoietin receptor and may play a role in activation of the Stat5 pathway", BLOOD, vol. 91, no. 10, 1998, pages 3734 - 3745, XP003019800 *
DATABASE MEDLINE [online] OKAMOTO M. ET AL.: "Lyn is an important component of the signal transduction pathway specific to FLT3/ITD and can be a therapeutic target in the treatment of AML with FLT3/ITD", XP003020105, Database accession no. (17230226) *
HAKAYAMA F. ET AL.: "Tandem-duplicated Flt3 constitutively activates STAT5 and MAP kinase and introduces autonomous cell growth in IL-3-dependent cell lines", ONCOGENE, vol. 19, no. 5, 2000, pages 624 - 631, XP003020101 *
HAYAKAWA F. ET AL.: "FLT3/ITD Tokuiteki Signal Dentatsu Keiro ni okeru Lyn no Yakuwari to AML Chiryo ni okeru Bunshihyoteki toshite to Kanosei no Kento", RINSHO KETSUEKI, vol. 47, no. 9, 30 September 2006 (2006-09-30), pages 1037 + ABSTR. NO. WS-21-3, XP003020104 *
LEUKEMIA, vol. 21, no. 3, 18 January 2007 (2007-01-18) *
NAOE T.: "Byotai Seiri ni Kansuru Kisoteki Rinshoteki Kenkyu:Saikin no Shinpo 56 Byotai Kenkyu FLT3 no Kyusei Hakketsubyo", IGAKU NO AYUMI, 2005, pages 227 - 229, XP003020103 *
PTASZNIK A. ET AL.: "Short interfering RNA (siRNA) targeting the Lyn kinase induces apoptosis in primary, and drug-resistant, BCR-ABL1(+) leukemia cells", NATURE MEDICINE, vol. 10, no. 11, 2004, pages 1187 - 1189, XP003020102 *
ROBINSON L.J. ET AL.: "Src family tyrosine kinases are activated by Flt3 and are involved in the proliferative effects of leukemia-associated Flt3 mutations", EXP. HEMATOL., vol. 33, no. 4, 2005, pages 469 - 479, XP004803330 *
SAKHINIA E. ET AL.: "Real-Time PCR Gene Expression Profiling of Microarray Gene Signatures in Acute Leukemia", BLOOD, vol. 104, no. 11, PART 2, 16 November 2004 (2004-11-16), pages 184B, XP003019799 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2047849A1 (en) * 2007-10-08 2009-04-15 KTB Tumorforschungsgesellschaft mbH Use of indolocarbazole imides as protein kinase inhibitors for the treatment of hematologic and solid tumors
WO2009047216A2 (en) * 2007-10-08 2009-04-16 Ktb Tumorforschungsgesellschaft Mbh Use of indolocarbazole imides as protein kinase inhibitors for the treatment of hematologic and solid tumors
WO2009047216A3 (en) * 2007-10-08 2009-10-01 Ktb Tumorforschungsgesellschaft Mbh Use of indolocarbazole imides as protein kinase inhibitors for the treatment of hematologic and solid tumors
WO2014017659A1 (en) * 2012-07-27 2014-01-30 独立行政法人理化学研究所 Agent for treating or controlling recurrence of acute myelogenous leukemia
JPWO2014017659A1 (en) * 2012-07-27 2016-07-11 国立研究開発法人理化学研究所 Acute myeloid leukemia treatment or recurrence inhibitor
US9604988B2 (en) 2012-07-27 2017-03-28 Riken Agent for treating or inhibiting recurrence of acute myeloid leukemia
CN116602947A (en) * 2023-05-18 2023-08-18 苏州大学 Small molecular compound and application thereof in preparation of medicines for treating FLT3 mutant leukemia
CN116602947B (en) * 2023-05-18 2023-12-08 苏州大学 Small molecular compound and application thereof in preparation of medicines for treating FLT3 mutant leukemia

Also Published As

Publication number Publication date
JPWO2007142139A1 (en) 2009-10-22
JP5246776B2 (en) 2013-07-24

Similar Documents

Publication Publication Date Title
US9932589B2 (en) EML4-ALK fusion gene
JP6254087B2 (en) SCD1 antagonists for treating cancer
RU2639459C2 (en) Apoptosis-inducing means
WO2013155077A1 (en) Response markers for src inhibitor therapies
TWI767883B (en) Cell death-inducing agent for cell having braf gene mutation, growth-inhibiting agent for the cell, and pharmaceutical composition for treatment of disease caused by abnormal growth of the cell
CN106661622B (en) MIT biomarkers and methods of using the same
US20220313700A1 (en) Methods for treating map3k8 positive cancers
US20160289663A1 (en) Novel chimeric gene atf7ip-pdgfrb of acute lymphoblastic leukemia
US20160130663A1 (en) Method for predicting response to cancer treatment
Köstler et al. Targeting receptor tyrosine kinases in cancer
EP3436601A1 (en) Cytidine deaminase expression level in cancer as a new therapeutic target
Sanchez et al. In vivo ERK1/2 reporter predictively models response and resistance to combined BRAF and MEK inhibitors in melanoma
EP3980563A2 (en) Ntrk fusion molecules and uses thereof
JP2007517763A (en) Compositions and methods for restoring sensitivity to treatment with HER2 antagonists
KR102164964B1 (en) Synthetic lethality and the treatment of cancer
JP5246776B2 (en) Method for identifying candidate substances for therapeutic agents for acute myeloid leukemia
JP2010502640A (en) Compositions and methods for modulating mTOR signaling
ES2873377T3 (en) Methods and pharmaceutical compositions for the treatment of lung cancer
US20160208335A1 (en) Use of RhoA in Cancer Diagnosis and Inhibitor Screening
US20180221438A1 (en) Modulating uracil-dna glycosylase and uses thereof
JP2015525563A (en) Compositions comprising RAC variants and methods of use thereof
JP2019108277A (en) Cytostatic agent and pharmaceutical composition for treating or preventing cancer containing the same
US20210236465A1 (en) Methods and compositions for treating heterotopic ossification
Patel Src-Family Kinases Impact Prognosis and Targeted Therapy in Flt3-ITD+ Acute Myeloid Leukemia
Kessler Dissecting the dual roles of focal adhesion kinase (FAK) in thyroid cancer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07744578

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2008520538

Country of ref document: JP

122 Ep: pct application non-entry in european phase

Ref document number: 07744578

Country of ref document: EP

Kind code of ref document: A1