WO2007142043A1 - Transparent conductive film, process for producing the same, and sputtering target for use in the production - Google Patents

Transparent conductive film, process for producing the same, and sputtering target for use in the production Download PDF

Info

Publication number
WO2007142043A1
WO2007142043A1 PCT/JP2007/060615 JP2007060615W WO2007142043A1 WO 2007142043 A1 WO2007142043 A1 WO 2007142043A1 JP 2007060615 W JP2007060615 W JP 2007060615W WO 2007142043 A1 WO2007142043 A1 WO 2007142043A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent conductive
conductive film
film
resistance value
sputtering target
Prior art date
Application number
PCT/JP2007/060615
Other languages
French (fr)
Japanese (ja)
Inventor
Hidefumi Odaka
Akira Mitsui
Original Assignee
Asahi Glass Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Company, Limited filed Critical Asahi Glass Company, Limited
Publication of WO2007142043A1 publication Critical patent/WO2007142043A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G19/00Compounds of tin
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/13439Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making

Definitions

  • Transparent conductive film method for producing the same, and sputtering target used for the production thereof
  • the present invention relates to a transparent conductive film suitably used for a transparent electrode of a flat panel display (FPD), a manufacturing method thereof, and a sputtering target used in manufacturing the transparent conductive film. .
  • ITO in-doped indium
  • PDP plasma display panel
  • the transparent electrode is exposed to a high temperature of about 600 ° C. while being in contact with the glass frit.
  • ITO is generally poor in heat resistance, and there is a problem that if it is in contact with a glass frit, firing at a temperature of 350 ° C. or more may significantly increase the electrical resistance.
  • tin oxide SnO
  • glass frit which has high chemical durability
  • Patent Document 1 proposes a patterning method of tin oxide by a lift-off method, and a PDP transparent electrode can be formed by combining with such patterning technology.
  • Patent Document 1 Japanese Patent Laid-Open No. 6-280055
  • tin oxide provided with antimony as a dopant is not as good as ITO.
  • the present invention provides a transparent conductive film that has strong resistance to erosion of a glass frit and does not increase in electrical resistance even when fired in contact with the glass frit, and a method for producing the same.
  • Another object of the present invention is to provide a display member using such a transparent conductive film as a transparent electrode.
  • Another object of the present invention is to provide a sputtering target suitable for forming the transparent conductive film using a sputtering method, particularly a DC sputtering method.
  • the present invention provides a transparent conductive film containing tin oxide as a main component, and the transparent conductive film is selected from tungsten, tantalum, niobium, molybdenum, and a group force having a bismuth force. At least one element as a dopant, substantially free of antimony and indium,
  • M is the total amount of the elements contained as a dopant in the transparent conductive film
  • a transparent conductive film characterized by satisfying the following formulas (1) and (2) when Sn is an amount of tin element contained in an electric film.
  • the transparent conductive film of the present invention has a specific resistance value P of the transparent conductive film after heating to a temperature of 350 ° C or higher in contact with the glass frit, and a specific resistance of the transparent conductive film before heating. With value p
  • the transparent conductive film of the present invention preferably has the specific resistance value ⁇ force ⁇ ⁇ 2 ⁇ cm or less.
  • the transparent conductive film of the present invention preferably has a specific resistance value p force of ⁇ 2 ⁇ cm or less.
  • the transparent conductive film of the present invention preferably has a film thickness of 1 ⁇ m or less.
  • the present invention also provides a display member having the transparent conductive film of the present invention.
  • the present invention is a sputtering target mainly composed of tin oxide, wherein the sputtering target is at least one element selected from the group power of tungsten, tantalum, niobium, molybdenum and bismuth as dopants.
  • the total amount of the elements contained as dopants in the sputtering target is M, and the sputtering phosphorus
  • a sputtering target characterized by satisfying the following formulas (4) and (5), where Sn is the amount of tin element contained in the target.
  • the sputtering target of the present invention preferably contains niobium as a dopant.
  • the sputtering target of the present invention containing niobium as a dopant has a relative density of 60
  • the sheet resistance value of the surface is 9% + 6 ⁇ or less.
  • the present invention also provides a method for producing a transparent conductive film, which forms the transparent conductive film of the present invention described above by a sputtering method using the sputtering target of the present invention described above.
  • the transparent conductive film of the present invention does not increase in electrical resistance even when fired at a temperature of 350 ° C or higher in contact with the glass frit having high erosion resistance to the glass frit. For this reason, it is suitable as a transparent electrode of FPD such as PDP, which includes a step of baking at a temperature of 350 ° C. or higher during the manufacturing process.
  • the transparent conductive film of the present invention does not contain expensive indium, the transparent conductive film can be provided at low cost. In addition, because it does not contain toxic antimony, it is also environmentally superior.
  • the transparent electrode is baked and bonded to a dielectric called glass frit at a temperature of about 500 to 600 ° C. At this time, the transparent conductive film V used as the transparent electrode has low erosion resistance against the glass frit, and fine bubbles are generated in the glass frit or the transparent conductive film, or both. The generation of such fine bubbles is a serious problem that leads to defective PDP images.
  • the transparent conductive film of the present invention uses tandasten, tantalum, niobium, molybdenum, and bismuth, which are dopants that have better erosion resistance to glass frit than antimony. G has the effect of reducing the generation of fine bubbles.
  • the sputtering target of the present invention is suitable for producing the transparent conductive film of the present invention.
  • a DC sputtering method can be used, which contributes to improving the productivity of the transparent conductive film.
  • the transparent conductive film of the present invention contains tin oxide as a main component, and contains at least one element selected from the group force of tungsten, tantalum, niobium, molybdenum and bismuth as a dopant, and substantially contains antimony and indium. Not included. “Containing tin oxide as a main component” means that 80 atomic% or more of tin oxide is contained in the film in terms of tin element.
  • the transparent conductive film of the present invention is characterized in that the following formulas (1) and (2) are satisfied when the total amount of elements such as tungsten contained as a dopant is M and the amount of tin element is Sn.
  • the present inventors have found that a film having the above composition is more resistant to erosion against glass frit than a tin oxide film containing antimony as a dopant, which has been used conventionally.
  • the erosion resistance with respect to the glass frit is to the extent that it does not become a problem as a product when it is in contact with the glass frit and kept under a high temperature, for example, when heated to a temperature of 350 ° C or higher. It means that it is not easily eroded by glass frit.
  • the difference in erosion resistance to glass frit is thought to be related to the stability of these dopants in the tin oxide film.
  • Antimony is present in the tin oxide film with a valence of 5 or 3.
  • Antimony with a valence of 5 is located at the position of tin in the crystal lattice and contributes to the conductivity of the tin oxide film. Heating above 350 ° C in contact with the glass frit changes the antimony valence from 5 to 3.
  • Antimony having a valence of 3 escapes from the tin position of the crystal lattice and shifts to the interstitial position, causing formation of a compound with the elements constituting the glass frit.
  • Indium has a valence of 3 and exists at the position of the tin atom in the tin oxide crystal lattice. Therefore, it acts as an acceptor that absorbs carriers (electrons) in the film, and the presence thereof tends to increase the electric resistance value of the tin oxide film. Even when interstitial sites (locations) are present, impurity levels in the band gap are formed, which causes a decrease in mobility and a decrease in carrier density. Therefore, unlike antimony, indium inhibits the electrical properties of highly crystalline tin oxide films, regardless of their position in the crystal.
  • tantalum exists in tin oxide with a valence of 5 or 4! /.
  • the tantalum with a valence of 5 is located at the position of tin in the crystal lattice and contributes to the conductivity of the tin oxide film.
  • the tantalum valence is changed from 5 to 4 by the same action as described above, the tantalum having the valence of 4 slips from the tin position of the crystal lattice and shifts to the interstitial position. It becomes a cause of forming a compound with the elements constituting the frit. It is considered that the electric resistance of the tin oxide film is increased as a result of the formation of a compound between the valence 4 tantalum and the elements constituting the glass frit.
  • the tantalum valence changes from 4 to 5 by heating to a temperature of 350 ° C or higher.
  • tantalum having a valence of 5 enters the position of tin in the crystal lattice, and the electrical resistance of the tin oxide film is considered to decrease.
  • the transparent conductive film of the present invention is characterized by substantially not containing antimony and indium. Since the pentavalent state is substantially free of unstable antimony at high temperatures, it is possible to prevent an increase in the resistance value after firing, and when considering use as a transparent electrode for PDP, glass frit It is preferable because it has the effect of excellent erosion resistance against Good. When heated to temperatures above 350 ° C in contact with the glass frit, the valence of antimony changes from 5 to 3. This is because antimony having a valence of 3 escapes from the position of tin in the crystal lattice and shifts to the interstitial position, causing formation of a compound with the elements constituting the glass frit. In addition, since it does not substantially contain antimony, an environmentally friendly transparent conductive film can be provided, and the electrical resistance does not increase even when heated to a temperature of 350 ° C. or higher. ,.
  • the transparent conductive film substantially free of antimony and indium means that the transparent conductive film is formed without using a sputtering target that actively contains antimony or indium. It means that it contains no antimony or indium other than the resulting antimony and indium. Specifically, it means that the amount of antimony element contained in the transparent conductive film is 0.1 atomic% or less with respect to the amount of tin element, and the amount of indium element contained in the transparent conductive film is It means 0.1 atomic% or less with respect to the amount of.
  • the specific resistance value P of the transparent conductive film after being heated to a temperature of 350 ° C or more in contact with the glass frit the specific resistance of the transparent conductive film before being heated
  • the value it is preferable to satisfy the following formula (3).
  • the electrical resistance of the transparent conductive film does not increase but rather decreases.
  • the reason for the decrease in electrical resistance is that immediately after deposition, the dopant (Tungsten, Tantalum, Niobium, Molybdenum or Bismuth) force that existed at the position of the tin oxide crystal lattice entered the tin position of the crystal lattice by heating, and the It is estimated that the density increased and the number of electron scatterers decreased.
  • the transparent conductive film of the present invention is used as a transparent electrode for an FPD such as a PDP
  • the transparent conductive film is subjected to a baking process at a temperature of 350 ° C. or higher performed in the FPD manufacturing process.
  • the electrical characteristics of the are improved.
  • the transparent conductive film of the present invention preferably has a specific resistance value p force ⁇ -2 ⁇ cm or less.
  • E ⁇ 2 means 10 to the power of 2 ⁇ . Such a notation is not The same applies to the resistance value.
  • the specific resistance value P is 350 ° C, which is implemented in the FPD manufacturing process.
  • the specific resistance value p is more preferably 1E—2 ⁇ cm or less.
  • the transparent conductive film of the present invention preferably has a specific resistance value p force E ⁇ 2 ⁇ cm or less.
  • the specific resistance of the transparent conductive film after the baking process at the above temperature is 4E-2 ⁇ cm or less.
  • the specific resistance value / 0 is more preferably 4E—2 ⁇ cm or less 1 ⁇ —2 ⁇ « ⁇ or less
  • the transparent conductive film of the present invention preferably has a thickness of 1 ⁇ m or less. If the film thickness is less than or equal to L m, the transparent conductive film does not have an optical defect such as haze.
  • the thickness of the transparent conductive film is more preferably 0.3 ⁇ m or less, and further preferably 0.2 ⁇ m or less, and more preferably 0.02 ⁇ m or more. The film thickness hardly changes before and after firing.
  • the transparent conductive film of the present invention is preferably excellent in transparency.
  • the visible light transmittance (measured from JIS-R3106 (1998)) is preferably 80% or more, more preferably 85% or more.
  • the visible light transmittance (measured from JIS-R3106 (1998)) after applying glass frit and baking is preferably 80% or more, more preferably 85% or more! /.
  • the transparent conductive film of the present invention has the following formulas (6), (
  • the transparent conductive film of the present invention various film formation methods such as sputtering, CVD, sol-gel, and PLD can be used. From the viewpoint of large area uniformity and productivity, the sputtering method is used. It is desirable to use As a sputtering method, even when a target having a low sintered density is used, a high sheet resistance value that does not cause the target to be damaged is used. RF sputtering is preferred because it can be discharged even with one get.
  • the transparent conductive film of the present invention is formed by sputtering
  • a metal-based target mainly composed of tin and an oxide-based target (oxide sintered body target) mainly composed of tin oxide are used.
  • it can.
  • a metal target it is difficult to form a thin film by power control, and the electrical resistance of tin is very sensitive to oxygen partial pressure. There is a problem that it becomes necessary.
  • an oxide-based target is used, the above-mentioned problem does not occur and film formation with high productivity can be realized.
  • tin oxide is the main component
  • the dopant of the transparent conductive film that is, at least one element selected from the group power consisting of tungsten, tantalum, niobium, molybdenum and bismuth is used as the dopant. It is possible to use an oxide-containing sintered body target.
  • the composition of the obtained thin film and the composition of the acid oxide sintered body target substantially coincide. Therefore, in order to form the transparent conductive film of the present invention by a sputtering method, the total amount of elements such as tungsten contained as a dopant is set to M, and the amount of tin element is set as the above oxide sintered body target.
  • a material satisfying the following formulas (4) and (5) may be used.
  • the oxide-ceramic sintered body target of the present invention substantially does not contain antimony and indium! /. Does not contain antimony! /, Which increases the safety of target production. By not containing indium, there is an effect that the conductivity of the target is not lowered.
  • the meaning of “V substantially free of antimony and indium” is as described above for the transparent conductive film.
  • the above-described thread-combined oxide-ceramic sintered body target can be produced by a normal procedure for producing a sputtering target. That is, the raw materials are blended so as to have a desired composition ratio, and after pressure molding, they are sintered in an air atmosphere at a high temperature (eg, 1100 ° C.) and atmospheric pressure.
  • a high temperature eg, 1100 ° C.
  • the present inventors have increased the sintering density of the target. We have found that a target that can be used in the DC sputtering method can be obtained.
  • the oxide-ceramic sintered compact target containing niobium as a dopant is represented by the following formulas (10) and (11) when the amount of niobium element contained as a dopant is Nb and the amount of tin element is Sn. Fulfill.
  • An oxide sintered compact target satisfying the above formulas (10) and (11) has a relative density of 60% or more, and the sheet resistance value on the target surface is 9 mm + 6 ⁇ or less. It can be preferably used as a target for talling. Note that the use of the DC sputtering method instead of the RF sputtering method as the sputtering method is important because it makes it possible to drastically increase the deposition rate, and whether or not commercialization is possible.
  • the acid sinter sintered body target may contain a dopant other than niobium (tungsten, tantalum, molybdenum, or bismuth).
  • the relative density can be obtained by the following formula (12).
  • Relative density (%) (bulk density Z true density) X 100---(12)
  • the bulk density (gZcm 3 ) is the actual density obtained by measuring the size and weight force of the fabricated target, and the true density is the theoretical density obtained by calculating the theoretical density force specific to the substance. is there.
  • the element contained as the dopant is niobium, and the relative density of the oxide sintered compact target satisfying the above formulas (10) and (11) is 80% or more.
  • Nb and Sn in formulas (13) and (14) have the same meanings as in formulas (10) and (11).
  • the display member of the present invention is used as an FPD substrate such as a PDP, in particular, as a front substrate of an FPD, and the transparent conductive film of the present invention described above is used as a transparent electrode on a glass substrate. It is formed.
  • a glass substrate is not specifically limited, For example, conventionally well-known various glass substrates (Soda lime glass, an alkali free glass, etc.) can be used.
  • One preferred embodiment is a high strain point glass for PDP.
  • the size and thickness are not particularly limited. For example, lengths of about 400 to 3000 mm can be preferably used as the vertical and horizontal lengths. The thickness is preferably 0.7-3. Omm. 1.5-3. Omm is more preferred.
  • the display member of the present invention can be used as various FPD substrates in addition to the PDP.
  • Specific examples of such an FPD include a liquid crystal display (LCD), an organic EL (FED), and the like.
  • the powder was prepared so that the composition ratio of the metal elements would be the composition ratio shown in Table 1, respectively.
  • the powder was mixed using a mortar, press-molded, and then sintered in air at 1530 ° C under atmospheric pressure. This oxide-sintered body was machined into a target shape. Obtained Table 1 shows the relative density and surface resistance (surface sheet resistance value) of the sintered oxide target. The relative density of the target was calculated using the following formula (12). The sheet resistance value on the surface of the target was measured using a surface resistance measuring device (Mitsubishi Yuka: Loresta).
  • Relative density (%) (bulk density Z true density) X 100---(12)
  • the bulk density (gZcm 3 ) is the actual density obtained by measuring the size and weight force of the fabricated target, and the true density is the theoretical density obtained by calculating the theoretical density force specific to the substance. is there.
  • a high strain point glass (made by Asahi Glass Co., Ltd .: PD200, the visible light transmittance of the substrate is 91%) having a thickness of 2.8 mm was prepared as a glass substrate.
  • the glass substrate was washed, it was set on the substrate holder.
  • An oxide sintered compact target having the composition shown in Table 1 was attached to a force sword of an RF sputtering device.
  • the film formation chamber of the sputtering apparatus was evacuated to vacuum, a film mainly composed of tin oxide having a thickness of about 150 nm (0.15 m) was formed on the glass substrate by RF sputtering.
  • a mixed gas of argon and oxygen was used as the sputtering gas.
  • the substrate temperature was 250 ° C.
  • the pressure at the time of film formation was 0.5 Pa.
  • Table 2 shows the film composition, visible light transmittance, and specific resistance values obtained by adjusting the gas ratio so that the electric resistance is minimized.
  • the composition of the film, the visible light transmittance, and the specific resistance value) were measured by the following methods.
  • composition A 300 nm film was formed under the same process conditions used for film formation on a glass substrate. The amount of fluorescence emitted from a metal element was measured with a fluorescent X-ray apparatus (RIX3000 manufactured by Rigaku Corporation), and the amount and composition ratio of each metal element were calculated by theoretical calculation of Fundamental Parameter. The composition was the same even after firing.
  • the visible light transmittance after applying the glass frit and firing is 80% or more in all examples.
  • Powders were prepared so as to have the composition ratio to be mounted, and oxide sintered compact targets were prepared in the same procedure as in Examples 1 to 4.
  • Table 1 shows the relative density and surface resistance (sheet resistance value of the target surface) of the obtained sintered oxide target.
  • the oxide sintered compact target (containing niobium as a dopant) satisfying the above formulas (10) and (11) has characteristics suitable as a target for DC sputtering. That is, the relative density force of the target is 0% or more, and the sheet resistance value of the target surface is 9 ⁇ + 6 ⁇ or less.
  • a thin film was formed in the same procedure as in Examples 1 to 4, and the film composition, visible light transmittance, specific resistance value, It was measured.
  • the DC sputtering method was used instead of the RF sputtering method to form the thin film.
  • the obtained oxide-ceramic sintered compact target was attached to a force sword of a DC magnetron sputtering apparatus, the film formation chamber of the sputtering apparatus was evacuated to a vacuum, and then oxidized by a DC sputtering method with a thickness of about 150 nm.
  • a film containing tin as a main component was formed on a glass substrate.
  • the deposition rate at this time is about twice as fast as when RF sputtering is used, which is excellent for industrial production.
  • a mixed gas of argon and oxygen was used as the sputtering gas.
  • the substrate temperature was 250 ° C.
  • the pressure at the time of film formation was 0.5 Pa.
  • Table 2 shows the composition of the film, the visible light transmittance, and the specific resistance value obtained by adjusting the gas ratio so that the electric resistance is minimized.
  • the film of Example 5 is in contact with the frit material having strong acidity, and does not increase in specific resistance even when baked at a high temperature of 600 ° C. It is certain that it exhibits electrical conductivity.
  • the film composition is the same even after firing, and the visible light transmittance after applying glass frit and firing is 80% or more.
  • Powders were prepared so as to have the composition ratio to be mounted, and oxide sintered compact targets were prepared in the same procedure as in Examples 1 to 4.
  • Table 1 shows the relative density and surface resistance (sheet resistance value of the target surface) of the obtained sintered oxide target.
  • Table 2 shows the composition of the film, the visible light transmittance, and the specific resistance value obtained by adjusting the gas ratio of argon and oxygen so that the electric resistance is minimized.
  • the film formed using the tin oxide sintered target doped with antimony has a specific resistance value of about 10% lower than that of the unfired film when fired in a state where glass frit is applied. 1. It was confirmed that the number would increase to 8.
  • ITO thin film was formed in the same procedure as in Examples 1 to 4, using an ITO target (Tosoichi Specialty Materials Co., Ltd., indium oxide target with 10% by mass tin oxide dopant).
  • ITO target Tosoichi Specialty Materials Co., Ltd., indium oxide target with 10% by mass tin oxide dopant.
  • the specific resistance value p after firing of the films obtained in Examples 1 to 5 is 2.7E-3 Q c
  • the transparent conductive film of the present invention can serve as an ITO alternative material. It shows.
  • An acid oxide sintered compact target was produced in the same procedure as in Examples 1 to 4. However, the powder was prepared so as to have the composition ratio shown in Table 1. The relative density and surface resistance (sheet resistance value of the target surface) of the obtained oxide sintered compact target are as shown in Table 1.
  • Table 2 shows the composition of the film, the visible light transmittance, and the specific resistance value obtained by adjusting the gas ratio of argon and oxygen so that the electric resistance is minimized.
  • Table 2 shows the composition of the film, the visible light transmittance, and the specific resistance value obtained by adjusting the gas ratio of argon and oxygen so that the electric resistance is minimized.
  • Table 2 Film composition, visible light transmittance, specific resistance
  • the transparent conductive film of the present invention is excellent in transparency and conductivity, and the specific resistance value of the film does not increase even when it is baked in contact with a frit material having strong acidity. High electrical conductivity. Therefore, it is suitable as a transparent electrode for FPD.
  • laser patterning technology which has been developed in recent years, is applied to this film, high-definition electrode patterns can be easily formed on glass, plastic substrates, film substrates, and crystal substrates.
  • a transparent conductive film containing tin oxide as a main component and containing at least one element selected from the group power of tungsten, tantalum, niobium, molybdenum, and bismuth as a dopant is an element that is included in the thermal, chemical, and chemical elements. Therefore, when firing with glass frit applied, optical defects such as microbubbles are generated compared to transparent conductive films containing tin oxide as the main component and antimony as a dopant. There is also an effect to suppress. It should be noted that the entire contents of the specification, patent claims, drawings and abstract of Japanese Patent Application 2006-157515 filed on June 6, 2006 are incorporated herein by reference. It is something that is incorporated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Non-Insulated Conductors (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Liquid Crystal (AREA)

Abstract

A transparent conductive film which has high resistance to erosion by a glass frit and suffers no increase in electrical resistance even when burned in the state of being in contact with a glass frit; and a process for producing the film. The transparent conductive film comprises tin oxide as the main component, and is characterized in that the transparent conductive film contains one or more elements selected from the group consisting of tungsten, tantalum, niobium, molybdenum, and bismuth as a dopant and substantially contains neither antimony nor indium. It is further characterized in that when the total amount of the element(s) contained as a dopant in the transparent conductive film is expressed by MA and the amount of tin element contained in the transparent conductive film is expressed by Sn, the film satisfies the following relationships (1) and (2). 0.8<(Sn)/(Sn+MA)<1.0 (1) 0.01<(MA)/(Sn+MA)<0.2 (2)

Description

明 細 書  Specification
透明導電膜およびその製造方法、ならびにその製造に使用されるスパッ タリングターゲット  Transparent conductive film, method for producing the same, and sputtering target used for the production thereof
技術分野  Technical field
[0001] 本発明は、特にフラットパネルディスプレイ(FPD)の透明電極に好適に用いられる 透明導電膜、およびその製造方法、ならびに該透明導電膜を製造する際に使用され るスパッタリングターゲットに関するものである。  TECHNICAL FIELD [0001] The present invention relates to a transparent conductive film suitably used for a transparent electrode of a flat panel display (FPD), a manufacturing method thereof, and a sputtering target used in manufacturing the transparent conductive film. .
背景技術  Background art
[0002] FPDにお 、て、透明電極をなす透明導電膜としては従来まで ITO (スズドープ酸 ィ匕インジウム)が広く使われてきた (特許文献 1参照)。 ITOが高い電気伝導性と可視 光透過率を持っためである。 FPDの製造工程には、 350°C以上の温度で焼成する 工程が存在する場合がある。例えば、プラズマディスプレイパネル (PDP)の製造ェ 程の焼成工程では、透明電極がガラスフリットと接しながら、 600°C程度の高温にさら される。し力しながら、 ITOは一般に耐熱性が弱ぐ更にガラスフリットと接した状態で 、 350°C以上の温度で焼成すると、電気抵抗が大幅に増加してしまう可能性があると いう問題があり、原材料 (例えばインジウム)の埋蔵量という点でも問題があった。  In FPD, ITO (tin-doped indium) has been widely used as a transparent conductive film forming a transparent electrode (see Patent Document 1). This is because ITO has high electrical conductivity and visible light transmittance. In the FPD manufacturing process, there may be a process of firing at a temperature of 350 ° C or higher. For example, in the firing process of the plasma display panel (PDP) manufacturing process, the transparent electrode is exposed to a high temperature of about 600 ° C. while being in contact with the glass frit. However, ITO is generally poor in heat resistance, and there is a problem that if it is in contact with a glass frit, firing at a temperature of 350 ° C. or more may significantly increase the electrical resistance. There was also a problem in terms of reserves of raw materials (eg indium).
[0003] 一方、酸化スズ (SnO )は、一般に化学的耐久性が強ぐガラスフリットに対する耐  [0003] On the other hand, tin oxide (SnO) is generally resistant to glass frit, which has high chemical durability.
2  2
侵食性も高いことが期待できる。特に、酸化スズにアンチモンをドーパントとして付与 した透明導電膜を透明電極として使用すれば、耐侵食性の強 ヽ透明電極が作成で き、 PDP用の透明電極とすることが期待される。特許文献 1には、リフトオフ法による 酸化スズのパターユング法が提案されており、このようなパターユング技術と組み合 わせることで PDP用の透明電極を形成できる。  High erosion can be expected. In particular, if a transparent conductive film in which antimony is added to tin oxide as a dopant is used as a transparent electrode, an erosion-resistant strong transparent electrode can be produced, and it is expected to be a transparent electrode for PDP. Patent Document 1 proposes a patterning method of tin oxide by a lift-off method, and a PDP transparent electrode can be formed by combining with such patterning technology.
[0004] 特許文献 1 :特開平 6— 280055号公報 Patent Document 1: Japanese Patent Laid-Open No. 6-280055
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] しかしながら、アンチモンをドーパントとして付与した酸化スズは、 ITOほどではない[0005] However, tin oxide provided with antimony as a dopant is not as good as ITO.
1S ガラスフリットによる侵食作用を受けるため、透明電極がガラスフリットと接した状 態で 350°C以上の温度で焼成すると、電気抵抗が増加してしまうという問題があった 。また、アンチモンは毒性が強いため、できるだけ使用しないことが望ましい。 Since 1S glass frit causes erosion, the transparent electrode is in contact with the glass frit. In this state, there was a problem that the electrical resistance increased when firing at a temperature of 350 ° C or higher. Antimony is highly toxic and should not be used as much as possible.
[0006] 本発明は、ガラスフリットの侵食に対して強い耐性を持ち、ガラスフリットと接触した 状態で焼成しても電気抵抗が増加することのない透明導電膜およびその製造方法を 提供することを目的とする。また、本発明は、このような透明導電膜を透明電極として 用いたディスプレイ部材を提供することを目的とする。 [0006] The present invention provides a transparent conductive film that has strong resistance to erosion of a glass frit and does not increase in electrical resistance even when fired in contact with the glass frit, and a method for producing the same. Objective. Another object of the present invention is to provide a display member using such a transparent conductive film as a transparent electrode.
また、本発明は、スパッタリング法、特に DCスパッタリング法を用いて、前記透明導 電膜を形成するのに好適なスパッタリングターゲットを提供することを目的とする。 課題を解決するための手段  Another object of the present invention is to provide a sputtering target suitable for forming the transparent conductive film using a sputtering method, particularly a DC sputtering method. Means for solving the problem
[0007] 上記の目的を達成するため、本発明は、酸化スズを主成分とする透明導電膜であ つて、前記透明導電膜は、タングステン、タンタル、ニオブ、モリブデンおよびビスマス 力もなる群力も選択される少なくとも一つの元素をドーパントとして含み、アンチモン およびインジウムを実質的に含まず、 [0007] In order to achieve the above object, the present invention provides a transparent conductive film containing tin oxide as a main component, and the transparent conductive film is selected from tungsten, tantalum, niobium, molybdenum, and a group force having a bismuth force. At least one element as a dopant, substantially free of antimony and indium,
前記透明導電膜中にドーパントとして含まれる前記元素の総量を M、前記透明導  M is the total amount of the elements contained as a dopant in the transparent conductive film,
A  A
電膜に含まれるスズ元素の量を Snとした場合に、下記式(1) , (2)を満たすことを特 徴とする透明導電膜を提供する。  Provided is a transparent conductive film characterized by satisfying the following formulas (1) and (2) when Sn is an amount of tin element contained in an electric film.
0. 8 < (Sn) / (Sn+M ) < 1. 0 · · · (1)  0.8 <(Sn) / (Sn + M) <1. 0 (1)
A  A
O. Ol < (M ) / (Sn+M ) < 0. 2 · · · (2)  O. Ol <(M) / (Sn + M) <0.2 (2)
A A  A A
[0008] 本発明の透明導電膜は、ガラスフリットと接触させた状態で 350°C以上の温度に加 熱した後の透明導電膜の比抵抗値 P 、加熱する前の透明導電膜の比抵抗値 p と  [0008] The transparent conductive film of the present invention has a specific resistance value P of the transparent conductive film after heating to a temperature of 350 ° C or higher in contact with the glass frit, and a specific resistance of the transparent conductive film before heating. With value p
1 0 した場合に、下記式(3)を満たすことが好ま 、。  It is preferable to satisfy the following formula (3) when 10 is satisfied.
P ≤ · ' · (3)  P ≤ '' (3)
1 0  Ten
[0009] 本発明の透明導電膜は、前記比抵抗値 ρ 力 Ε— 2 Ω cm以下であることが好まし  The transparent conductive film of the present invention preferably has the specific resistance value ρ force 力 −2 Ωcm or less.
0  0
い。  Yes.
本発明の透明導電膜は、前記比抵抗値 p 力 — 2 Ω cm以下であることが好まし い。  The transparent conductive film of the present invention preferably has a specific resistance value p force of −2 Ωcm or less.
本発明の透明導電膜は、膜厚が 1 μ m以下であることが好ましい。  The transparent conductive film of the present invention preferably has a film thickness of 1 μm or less.
[0010] また、本発明は、本発明の透明導電膜を有するディスプレイ用部材を提供する。 [0011] また、本発明は、酸化スズを主成分とするスパッタリングターゲットであって、前記ス パッタリングターゲットは、ドーパントとしてタングステン、タンタル、ニオブ、モリブデン およびビスマスカ なる群力 選択される少なくとも一つの元素を含み、前記スパッタ リングターゲットにドーパントとして含まれる前記元素の総量を M、前記スパッタリン [0010] The present invention also provides a display member having the transparent conductive film of the present invention. [0011] Further, the present invention is a sputtering target mainly composed of tin oxide, wherein the sputtering target is at least one element selected from the group power of tungsten, tantalum, niobium, molybdenum and bismuth as dopants. The total amount of the elements contained as dopants in the sputtering target is M, and the sputtering phosphorus
A  A
グターゲットに含まれるスズ元素の量を Snとした場合に、下記式 (4) , (5)を満たすこ とを特徴とするスパッタリングターゲット。  A sputtering target characterized by satisfying the following formulas (4) and (5), where Sn is the amount of tin element contained in the target.
0. 8 < (Sn) / (Sn+M ) < 1. 0 · · · (4)  0. 8 <(Sn) / (Sn + M) <1. 0 (4)
A  A
0. 01 < (M ) / (Sn+M ) < 0. 2  0. 01 <(M) / (Sn + M) <0.2
A …(5)  A ... (5)
A  A
[0012] 本発明のスパッタリングターゲットは、ドーパントとしてニオブを含むことが好ましい。  [0012] The sputtering target of the present invention preferably contains niobium as a dopant.
ドーパントとしてニオブを含む本発明のスパッタリングターゲットは、相対密度が 60 The sputtering target of the present invention containing niobium as a dopant has a relative density of 60
%以上であり、表面のシート抵抗値力 9Ε + 6 ΩΖ口以下であることが好ましい。 It is preferable that the sheet resistance value of the surface is 9% + 6Ω or less.
[0013] また、本発明は、上記した本発明のスパッタリングターゲットを用いて、スパッタリン グ法により、上記した本発明の透明導電膜を形成する透明導電膜の製造方法を提 供する。 [0013] The present invention also provides a method for producing a transparent conductive film, which forms the transparent conductive film of the present invention described above by a sputtering method using the sputtering target of the present invention described above.
発明の効果  The invention's effect
[0014] 本発明の透明導電膜は、ガラスフリットに対する耐侵食性が高ぐガラスフリットと接 した状態で 350°C以上の温度で焼成した場合であっても電気抵抗が増加することが ない。このため、製造工程中に 350°C以上の温度で焼成する工程が含まれる、 PDP のような FPDの透明電極として好適である。  [0014] The transparent conductive film of the present invention does not increase in electrical resistance even when fired at a temperature of 350 ° C or higher in contact with the glass frit having high erosion resistance to the glass frit. For this reason, it is suitable as a transparent electrode of FPD such as PDP, which includes a step of baking at a temperature of 350 ° C. or higher during the manufacturing process.
本発明の透明導電膜は、高価なインジウムを含まないため、透明導電膜を低コスト で提供することができる。また、毒性を有するアンチモンを含有しないため、環境面に おいても優れている。 PDPの製造工程において、透明電極はガラスフリットと呼ばれ る誘電体と 500〜600°C程度の温度で焼成、接合される。この際、透明電極として用 V、る透明導電膜が、ガラスフリットに対する耐侵食性が低 、とガラスフリット中もしくは 透明導電膜中、または両者の中に微細な泡が発生することになる。このような微細な 泡の発生は PDPの画像不良につながり重大な問題である。本発明の透明導電膜は 、アンチモンよりもガラスフリットに対する耐侵食性に優れるドーパントであるタンダス テン、タンタル、ニオブ、モリブデンおよびビスマスを使用しており、このようなドーパン トは上記微細な泡発生の低減につながる効果を持つ。 Since the transparent conductive film of the present invention does not contain expensive indium, the transparent conductive film can be provided at low cost. In addition, because it does not contain toxic antimony, it is also environmentally superior. In the PDP manufacturing process, the transparent electrode is baked and bonded to a dielectric called glass frit at a temperature of about 500 to 600 ° C. At this time, the transparent conductive film V used as the transparent electrode has low erosion resistance against the glass frit, and fine bubbles are generated in the glass frit or the transparent conductive film, or both. The generation of such fine bubbles is a serious problem that leads to defective PDP images. The transparent conductive film of the present invention uses tandasten, tantalum, niobium, molybdenum, and bismuth, which are dopants that have better erosion resistance to glass frit than antimony. G has the effect of reducing the generation of fine bubbles.
本発明のスパッタリングターゲットは、本発明の透明導電膜を製造するのに好適で ある。特にドーパントとしてニオブを含む本発明のスパッタリングターゲットは、焼結密 度が高いため、 DCスパッタリング法を使用することができ、透明導電膜の生産性向 上に寄与する。  The sputtering target of the present invention is suitable for producing the transparent conductive film of the present invention. In particular, since the sputtering target of the present invention containing niobium as a dopant has a high sintered density, a DC sputtering method can be used, which contributes to improving the productivity of the transparent conductive film.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0015] 本発明の透明導電膜は、酸化スズを主成分とし、タングステン、タンタル、ニオブ、 モリブデンおよびビスマスカ なる群力 選択される少なくとも一つの元素をドーパン トとして含み、アンチモンおよびインジウムを実質的に含まない。なお、酸化スズを主 成分として含むとは、膜中に酸化スズをスズ元素換算で 80原子%以上含むことを意 味する。 [0015] The transparent conductive film of the present invention contains tin oxide as a main component, and contains at least one element selected from the group force of tungsten, tantalum, niobium, molybdenum and bismuth as a dopant, and substantially contains antimony and indium. Not included. “Containing tin oxide as a main component” means that 80 atomic% or more of tin oxide is contained in the film in terms of tin element.
本発明の透明導電膜は、ドーパントとして含まれるタングステン等の元素の総量を M 、スズ元素の量を Snとした場合に、下記式(1) , (2)を満たすことを特徴とする。  The transparent conductive film of the present invention is characterized in that the following formulas (1) and (2) are satisfied when the total amount of elements such as tungsten contained as a dopant is M and the amount of tin element is Sn.
A  A
0. 8 < (Sn) / (Sn+M ) < 1. 0 - - - (1)  0. 8 <(Sn) / (Sn + M) <1. 0---(1)
A  A
0. 01 < (M ) / (Sn+M ) < 0. 2 · · · (2)  0. 01 <(M) / (Sn + M) <0.2 (2)
A A  A A
[0016] 本発明者らは、上記組成の膜は、従来力も使用されてきたアンチモンをドーパントと して含む酸化スズ膜よりも、ガラスフリットに対する耐侵食性に優れることを見出した。 ここで、ガラスフリットに対する耐侵食性とは、ガラスフリットと接した状態で、高温下に おいた場合、例えば、 350°C以上の温度に加熱した場合に、製品として問題になら な 、程度にガラスフリツトによる侵食を受けにくいことをいう。  [0016] The present inventors have found that a film having the above composition is more resistant to erosion against glass frit than a tin oxide film containing antimony as a dopant, which has been used conventionally. Here, the erosion resistance with respect to the glass frit is to the extent that it does not become a problem as a product when it is in contact with the glass frit and kept under a high temperature, for example, when heated to a temperature of 350 ° C or higher. It means that it is not easily eroded by glass frit.
ガラスフリットに対する耐侵食性の差異は、その酸化スズ膜中でのこれらのドーパン トの安定性に関係して 、ると考えられる。アンチモンは 5または 3の価数を持って酸ィ匕 スズ膜中に存在している。価数 5のアンチモンは、結晶格子のスズの位置に位置して おり、酸化スズ膜の導電性に寄与している。ガラスフリットと接した状態で 350°C以上 の温度に加熱すると、アンチモンの価数が 5から 3に変化する。価数 3となったアンチ モンは、結晶格子のスズの位置から抜けて、格子間位置へとずれ、ガラスフリットを構 成する元素との化合物を形成する原因となる。そして、格子間位置で価数 3のアンチ モンとガラスフリットを構成する元素とが化合物を形成する結果、酸化スズ膜の電気 抵抗が増加すると考えられる。このような一連の作用がガラスフリットによる侵食作用 である。また、インジウムは 3の価数を持って酸化スズ結晶格子中のスズ原子の位置 に存在している。このため、膜中のキャリア(電子)を吸収するァクセプターとして働き 、これが存在することは酸化スズ膜の電気抵抗値の増加につながりやすい。また、格 子間のサイト(場所)〖こインジウムが存在した場合でも、バンドギャップ中の不純物準 位を形成し、移動度の低下やキャリア密度の減少の原因となる。よって、アンチモンと は異なり、その結晶中に存在する位置によらず、インジウムは結晶性の高い酸化スズ 膜の電気特性を阻害することになる。 The difference in erosion resistance to glass frit is thought to be related to the stability of these dopants in the tin oxide film. Antimony is present in the tin oxide film with a valence of 5 or 3. Antimony with a valence of 5 is located at the position of tin in the crystal lattice and contributes to the conductivity of the tin oxide film. Heating above 350 ° C in contact with the glass frit changes the antimony valence from 5 to 3. Antimony having a valence of 3 escapes from the tin position of the crystal lattice and shifts to the interstitial position, causing formation of a compound with the elements constituting the glass frit. As a result of the formation of a compound between antimony having a valence of 3 and the elements constituting the glass frit at the interstitial positions, the electrical properties of the tin oxide film The resistance is thought to increase. Such a series of actions is the erosion action by the glass frit. Indium has a valence of 3 and exists at the position of the tin atom in the tin oxide crystal lattice. Therefore, it acts as an acceptor that absorbs carriers (electrons) in the film, and the presence thereof tends to increase the electric resistance value of the tin oxide film. Even when interstitial sites (locations) are present, impurity levels in the band gap are formed, which causes a decrease in mobility and a decrease in carrier density. Therefore, unlike antimony, indium inhibits the electrical properties of highly crystalline tin oxide films, regardless of their position in the crystal.
[0017] 一方、タンタルは 5または 4の価数を持って酸化スズ中に存在して!/、る。価数 5のタ ンタルは、結晶格子のスズの位置に位置しており、酸化スズ膜の導電性に寄与して いる。上に記したのと同様の作用で、タンタルの価数が 5から 4に変化すると、価数 4と なったタンタルは、結晶格子のスズの位置から抜けて格子間位置へとずれて、ガラス フリットを構成する元素との化合物を形成する原因となる。該価数 4のタンタルとガラ スフリットを構成する元素とが化合物を形成する結果、酸化スズ膜の電気抵抗が増加 することになると考えられる。 On the other hand, tantalum exists in tin oxide with a valence of 5 or 4! /. The tantalum with a valence of 5 is located at the position of tin in the crystal lattice and contributes to the conductivity of the tin oxide film. When the tantalum valence is changed from 5 to 4 by the same action as described above, the tantalum having the valence of 4 slips from the tin position of the crystal lattice and shifts to the interstitial position. It becomes a cause of forming a compound with the elements constituting the frit. It is considered that the electric resistance of the tin oxide film is increased as a result of the formation of a compound between the valence 4 tantalum and the elements constituting the glass frit.
し力しながら、タンタルは上記した価数の変化(5→4)がアンチモン(5→3)に比べ て起こりにくい。このため、ガラスフリットによる侵食作用を受けにくぐ酸化スズ膜の電 気抵抗の増加が起こりにくい。  However, with tantalum, the valence change (5 → 4) is less likely to occur than antimony (5 → 3). For this reason, the electrical resistance of the tin oxide film, which is difficult to be eroded by the glass frit, hardly increases.
また、 350°C以上の温度に加熱することにより、タンタルの価数が 4から 5に変化す る。この結果、新たに価数 5となったタンタルが結晶格子のスズの位置に入ることによ り、酸化スズ膜の電気抵抗が減少すると考えられる。  In addition, the tantalum valence changes from 4 to 5 by heating to a temperature of 350 ° C or higher. As a result, tantalum having a valence of 5 enters the position of tin in the crystal lattice, and the electrical resistance of the tin oxide film is considered to decrease.
[0018] 以上、タンタルをドープした酸化スズ膜にっ 、て説明した力 タングステン、ニオブ 、モリブデンまたはビスマスをドープした場合も同様の理由で、アンチモンをドープし た酸化スズ膜に比べてガラスフリットに対する耐侵食性に優れている。 [0018] The force described above for the tin oxide film doped with tantalum has the same effect when doped with tungsten, niobium, molybdenum, or bismuth. Excellent erosion resistance.
また、本発明の透明導電膜は、実質的にアンチモンおよびインジウムを含まないこ とを特徴とする。 5価の状態が高温で不安定なアンチモンを実質的に含まないことで 、焼成後の抵抗値の上昇を防ぐことができるとともに、 PDP用の透明電極としての用 途を考えた場合、ガラスフリットに対する耐侵食性に優れるという効果を奏するため好 ましい。ガラスフリットと接した状態で 350°C以上の温度に加熱すると、アンチモンの 価数が 5から 3に変化する。価数 3となったアンチモンは、結晶格子のスズの位置から 抜けて、格子間位置へとずれ、ガラスフリットを構成する元素との化合物を形成する 原因となるからである。また、アンチモンを実質的に含まないことで、環境にやさしい 透明導電膜を提供でき、かつ 350°C以上の温度に加熱しても電気抵抗が増大しな V、と 、う効果を奏するため好ま 、。 In addition, the transparent conductive film of the present invention is characterized by substantially not containing antimony and indium. Since the pentavalent state is substantially free of unstable antimony at high temperatures, it is possible to prevent an increase in the resistance value after firing, and when considering use as a transparent electrode for PDP, glass frit It is preferable because it has the effect of excellent erosion resistance against Good. When heated to temperatures above 350 ° C in contact with the glass frit, the valence of antimony changes from 5 to 3. This is because antimony having a valence of 3 escapes from the position of tin in the crystal lattice and shifts to the interstitial position, causing formation of a compound with the elements constituting the glass frit. In addition, since it does not substantially contain antimony, an environmentally friendly transparent conductive film can be provided, and the electrical resistance does not increase even when heated to a temperature of 350 ° C. or higher. ,.
ここで、透明導電膜がアンチモンおよびインジウムを実質的に含まないとは、積極 的にアンチモンやインジウムを含有させるようなスパッタリングターゲットを使用するこ となしに透明導電膜を形成することを指し、不純物起因のアンチモンおよびインジゥ ム以外にはアンチモンおよびインジウムを含有しないことを意味する。具体的には、 透明導電膜に含まれるアンチモン元素の量がスズ元素の量に対して 0. 1原子%以 下であることを意味し、透明導電膜に含まれるインジウム元素の量がスズ元素の量に 対して 0. 1原子%以下であることを意味する。  Here, the transparent conductive film substantially free of antimony and indium means that the transparent conductive film is formed without using a sputtering target that actively contains antimony or indium. It means that it contains no antimony or indium other than the resulting antimony and indium. Specifically, it means that the amount of antimony element contained in the transparent conductive film is 0.1 atomic% or less with respect to the amount of tin element, and the amount of indium element contained in the transparent conductive film is It means 0.1 atomic% or less with respect to the amount of.
[0019] 本発明の透明導電膜において、ガラスフリットと接触させた状態で 350°C以上の温 度に加熱した後の透明導電膜の比抵抗値 P 、加熱する前の透明導電膜の比抵抗 値 p とした場合に、下記式(3)を満たすことが好ま 、。 [0019] In the transparent conductive film of the present invention, the specific resistance value P of the transparent conductive film after being heated to a temperature of 350 ° C or more in contact with the glass frit, the specific resistance of the transparent conductive film before being heated When the value is p, it is preferable to satisfy the following formula (3).
0  0
P ≤ P · ' · (3)  P ≤ P · '· (3)
1 0  Ten
すなわち、本発明の透明導電膜は、ガラスフリットと接触させた状態で 350°C以上 の温度に加熱した際に、透明導電膜の電気抵抗が増加することがなぐむしろ電気 抵抗が低下する。電気抵抗が低下する理由は、成膜直後、酸化スズの結晶格子間 位置に存在していたドーパント(タングステン、タンタル、ニオブ、モリブデンまたはビ スマス)力 加熱によって結晶格子のスズの位置に入り、キャリア密度が上昇し、電子 散乱体が減ったためと推定している。  That is, when the transparent conductive film of the present invention is heated to a temperature of 350 ° C. or higher in contact with the glass frit, the electrical resistance of the transparent conductive film does not increase but rather decreases. The reason for the decrease in electrical resistance is that immediately after deposition, the dopant (Tungsten, Tantalum, Niobium, Molybdenum or Bismuth) force that existed at the position of the tin oxide crystal lattice entered the tin position of the crystal lattice by heating, and the It is estimated that the density increased and the number of electron scatterers decreased.
したがって、本発明の透明導電膜は、 PDPのような FPDの透明電極として使用した 場合、 FPDの製造工程で実施される 350°C以上の温度での焼成工程を経ることによ つて、透明電極の電気特性が向上する。  Therefore, when the transparent conductive film of the present invention is used as a transparent electrode for an FPD such as a PDP, the transparent conductive film is subjected to a baking process at a temperature of 350 ° C. or higher performed in the FPD manufacturing process. The electrical characteristics of the are improved.
[0020] 本発明の透明導電膜は、比抵抗値 p 力 Ε— 2 Ω cm以下であることが好ましい。 [0020] The transparent conductive film of the present invention preferably has a specific resistance value p force Ε-2 Ωcm or less.
1  1
なお、「E— 2」とは、 10の— 2乗であることを意味する。このような表記は、他の比抵 抗値についても同じである。比抵抗値 P は、 FPDの製造工程で実施される 350°C “E−2” means 10 to the power of 2−. Such a notation is not The same applies to the resistance value. The specific resistance value P is 350 ° C, which is implemented in the FPD manufacturing process.
1  1
以上の温度での焼成工程を経た後の透明導電膜の比抵抗値に当たる。比抵抗値 力 E— 2cm以下であれば、透明導電膜の電気抵抗が十分低ぐ PDPのような FPD It corresponds to the specific resistance value of the transparent conductive film after the baking process at the above temperature. Specific resistance value Force E—If the thickness is 2 cm or less, the electrical resistance of the transparent conductive film is sufficiently low.
1 1
の透明電極に好適である。比抵抗値 p は 1E— 2 Ω cm以下であることがより好ましく  It is suitable for the transparent electrode. The specific resistance value p is more preferably 1E—2 Ωcm or less.
1  1
、0. 5E— 2 Ω cm以下であることがさらに好ましい。  More preferably, it is 0.5E−2 Ωcm or less.
[0021] 本発明の透明導電膜は、比抵抗値 p 力 E— 2 Ω cm以下であることが好ましい。 The transparent conductive film of the present invention preferably has a specific resistance value p force E−2 Ωcm or less.
0  0
比抵抗値 /0 力 E— 2 Ω cm以下であれば、 FPDの製造工程で実施される 350°C以  Specific resistance value / 0 force E—If it is 2 Ωcm or less, 350 ° C or more, which is performed in the FPD manufacturing process.
0  0
上の温度での焼成工程を経た後の透明導電膜の比抵抗値 を 4E— 2 Ω cm以下と  The specific resistance of the transparent conductive film after the baking process at the above temperature is 4E-2 Ωcm or less.
1  1
しゃすい。比抵抗値 /0 は 4E— 2 Ω cm以下であることがより好ましぐ 1Ε—2 Ω «η以  It ’s a lot. The specific resistance value / 0 is more preferably 4E—2 Ω cm or less 1Ε—2 Ω «η or less
0  0
下であることがさらに好ましい。  More preferably, it is below.
[0022] 本発明の透明導電膜は、膜厚が 1 μ m以下であることが好ましい。膜厚が: L m以 下であれば、透明導電膜がヘイズなどの光学的欠陥を有するおそれがない。透明導 電膜の膜厚は 0. 3 μ m以下であることがより好ましぐ 0. 2 μ m以下、また 0. 02 ^ m 以上であることがさらに好ましい。なお、膜厚は、焼成前後でほとんど変化はない。  [0022] The transparent conductive film of the present invention preferably has a thickness of 1 μm or less. If the film thickness is less than or equal to L m, the transparent conductive film does not have an optical defect such as haze. The thickness of the transparent conductive film is more preferably 0.3 μm or less, and further preferably 0.2 μm or less, and more preferably 0.02 ^ m or more. The film thickness hardly changes before and after firing.
[0023] 本発明の透明導電膜は、透明性に優れることが好ましい。具体的には、可視光透 過率 (JIS— R3106 ( 1998年)より測定)が 80%以上であることが好ましぐ 85%以上 であることがより好ましい。なお、ガラスフリットを塗布して焼成した後の可視光透過率 (JIS— R3106 ( 1998年)より測定)が 80%以上であることが好ましぐ 85%以上であ ることがより好まし!/、。  [0023] The transparent conductive film of the present invention is preferably excellent in transparency. Specifically, the visible light transmittance (measured from JIS-R3106 (1998)) is preferably 80% or more, more preferably 85% or more. The visible light transmittance (measured from JIS-R3106 (1998)) after applying glass frit and baking is preferably 80% or more, more preferably 85% or more! /.
[0024] 比抵抗値 p , をさらに低くするためには、本発明の透明導電膜は下記式 (6) , (  In order to further reduce the specific resistance value p, the transparent conductive film of the present invention has the following formulas (6), (
0 1  0 1
7)を満たすことが好ましい。  It is preferable to satisfy 7).
0. 85 < (Sn) / (Sn+ M ) < 1. 0 · · · (6)  0. 85 <(Sn) / (Sn + M) <1. 0 (6)
A  A
0. 01 < (M ) / (Sn+ M ) < 0. 15 · · · (7)  0. 01 <(M) / (Sn + M) <0.15 (7)
A A  A A
式(6)、(7)中の Mおよび Snは式(1)、(2)と同じ意味である。  M and Sn in formulas (6) and (7) have the same meanings as in formulas (1) and (2).
A  A
[0025] 本発明の透明導電膜の形成には、スパッタリング法、 CVD法、ゾルゲル法、 PLD 法等、各種成膜法を使用できるが、大面積均一性、生産性という点からスパッタリン グ法を使用することが望ましい。スパッタリング法としては、焼結密度が低いターゲット を使用した場合であってもターゲットの破損のおそれがなぐシート抵抗値が高いタ 一ゲットでも放電可能であることから、 RFスパッタリングが好まし 、。 [0025] For the formation of the transparent conductive film of the present invention, various film formation methods such as sputtering, CVD, sol-gel, and PLD can be used. From the viewpoint of large area uniformity and productivity, the sputtering method is used. It is desirable to use As a sputtering method, even when a target having a low sintered density is used, a high sheet resistance value that does not cause the target to be damaged is used. RF sputtering is preferred because it can be discharged even with one get.
スパッタリング法を用いて本発明の透明導電膜を形成する場合、スズを主成分とす る金属系ターゲットと、酸化スズを主成分とする酸化物系ターゲット (酸化物焼結体タ ーゲット)が利用できる。し力しながら、金属系ターゲットを用いた成膜においては、電 力制御による薄膜形成が難しぐまたスズの電気抵抗が酸素分圧に非常に敏感であ り、高精度な酸素分圧制御が必要になるという問題がある。一方、酸化物系ターゲッ トを使用すると、上記の問題が生じず、生産性の高い成膜が実現できる。  When the transparent conductive film of the present invention is formed by sputtering, a metal-based target mainly composed of tin and an oxide-based target (oxide sintered body target) mainly composed of tin oxide are used. it can. However, in film formation using a metal target, it is difficult to form a thin film by power control, and the electrical resistance of tin is very sensitive to oxygen partial pressure. There is a problem that it becomes necessary. On the other hand, when an oxide-based target is used, the above-mentioned problem does not occur and film formation with high productivity can be realized.
酸ィ匕物系ターゲットとしては、酸化スズを主成分とし、透明導電膜のドーパント、す なわち、タングステン、タンタル、ニオブ、モリブデンおよびビスマスカもなる群力も選 択される少なくとも一つの元素をドーパントとして含む酸ィ匕物焼結体ターゲットを使用 することができる。  As an oxide-based target, tin oxide is the main component, and the dopant of the transparent conductive film, that is, at least one element selected from the group power consisting of tungsten, tantalum, niobium, molybdenum and bismuth is used as the dopant. It is possible to use an oxide-containing sintered body target.
このような酸ィ匕物焼結体ターゲットを用いてスパッタリング法を実施した場合、得ら れる薄膜の組成と、酸ィ匕物焼結体ターゲットの組成とは、実質的に一致する。したが つて、スパッタリング法により本発明の透明導電膜を形成するためには、上記の酸ィ匕 物焼結体ターゲットとして、ドーパントとして含まれるタングステン等の元素の総量を M、スズ元素の量を Snとした場合に、下記式 (4) , (5)を満たすものを用いればよい When the sputtering method is performed using such an oxide sintered body target, the composition of the obtained thin film and the composition of the acid oxide sintered body target substantially coincide. Therefore, in order to form the transparent conductive film of the present invention by a sputtering method, the total amount of elements such as tungsten contained as a dopant is set to M, and the amount of tin element is set as the above oxide sintered body target. When Sn is used, a material satisfying the following formulas (4) and (5) may be used.
A A
0. 8 < (Sn) / (Sn+M ) < 1. 0 · · · (4) 0. 8 <(Sn) / (Sn + M) <1. 0 (4)
A  A
0. 01 < (M ) / (Sn+M ) < 0. 2 (5)  0. 01 <(M) / (Sn + M) <0.2 (5)
A A …  A A…
また、本発明の酸ィ匕物焼結体ターゲットは、実質的にアンチモンおよびインジウム を含まな!/、ことが好まし、。アンチモンを含まな!/、ことでターゲット作製作業の安全性 が高まるという効果を奏する。インジウムを含まないことで、ターゲットの導電性を低下 させないという効果を奏する。なお、「実質的にアンチモンおよびインジウムを含まな V、」の意味につ 、ては、透明導電膜にっ 、て前述したとおりである。  In addition, it is preferable that the oxide-ceramic sintered body target of the present invention substantially does not contain antimony and indium! /. Does not contain antimony! /, Which increases the safety of target production. By not containing indium, there is an effect that the conductivity of the target is not lowered. The meaning of “V substantially free of antimony and indium” is as described above for the transparent conductive film.
また、上記式 (6) , (7)を満たす本発明の透明導電膜を形成する場合には、酸ィ匕物 焼結体ターゲットとして、下記式 (8) , (9)を満たすものを用いればよ!ヽ。  In addition, when forming the transparent conductive film of the present invention that satisfies the above formulas (6) and (7), a material that satisfies the following formulas (8) and (9) is used as the oxide sintered body target. Goodbye!
0. 85 < (Sn) / (Sn+M ) < 1. 0 · · · (8) 0. 85 <(Sn) / (Sn + M) <1. 0 · · · (8)
A  A
0. 01 < (M ) / (Sn+M ) < 0. 15 · · · (9) ここで、式(8)、(9)中の Mおよび Snは式 (4)、(5)と同じ意味である。 0. 01 <(M) / (Sn + M) <0.15 (9) Here, M and Sn in formulas (8) and (9) have the same meanings as in formulas (4) and (5).
A  A
[0026] 上記糸且成の酸ィ匕物焼結体ターゲットは、スパッタリングターゲットを製造する際の通 常の手順で作製することができる。すなわち、原料を所望の組成比になるように配合 し、加圧成型した後、大気雰囲気中、高温 (例えば、 1100°C)、大気圧下で焼結させ ればよい。  [0026] The above-described thread-combined oxide-ceramic sintered body target can be produced by a normal procedure for producing a sputtering target. That is, the raw materials are blended so as to have a desired composition ratio, and after pressure molding, they are sintered in an air atmosphere at a high temperature (eg, 1100 ° C.) and atmospheric pressure.
[0027] 本発明者らは、上記式 (4) , (5)を満たす酸ィ匕物焼結体ターゲットにおいて、ドーパ ントとして含まれる元素がニオブである場合、ターゲットの焼結密度が高くなり、 DCス パッタリング法に使用可能なターゲットが得られることを見出した。  [0027] In the oxide-ceramic sintered body target satisfying the above formulas (4) and (5), when the element contained as a dopant is niobium, the present inventors have increased the sintering density of the target. We have found that a target that can be used in the DC sputtering method can be obtained.
ここで、ドーパントとしてニオブを含む酸ィ匕物焼結体ターゲットは、ドーパントとして 含まれるニオブ元素の量を Nb、スズ元素の量を Snとした場合に、下記式(10) , (11 )を満たす。  Here, the oxide-ceramic sintered compact target containing niobium as a dopant is represented by the following formulas (10) and (11) when the amount of niobium element contained as a dopant is Nb and the amount of tin element is Sn. Fulfill.
0. 8 < (Sn) / (Sn+Nb) < 1. 0 · · · (10)  0. 8 <(Sn) / (Sn + Nb) <1. 0
0. 01 < (Nb) / (Sn+Nb) < 0. 2 · · · (11)  0. 01 <(Nb) / (Sn + Nb) <0.2 (11)
上記式(10) , (11)を満たす酸ィ匕物焼結体ターゲットは、相対密度が 60%以上と 高ぐターゲット表面のシート抵抗値が 9Ε + 6 ΩΖ口以下であることから、 DCスパッ タリング用のターゲットとして好ましく使用することができる。なお、スパッタリング法とし て、 RFスパッタリング法ではなく DCスパッタリング法を使用することは、成膜速度を飛 躍的に伸ばすことが可能となるという理由で、事業化が可能かどうかを左右する重要 な要素の一つである。ここで、酸ィヒ物焼結体ターゲットは、ニオブ以外のドーパント( タングステン、タンタル、モリブデンまたはビスマス)を含有していてもよい。  An oxide sintered compact target satisfying the above formulas (10) and (11) has a relative density of 60% or more, and the sheet resistance value on the target surface is 9 mm + 6 Ω or less. It can be preferably used as a target for talling. Note that the use of the DC sputtering method instead of the RF sputtering method as the sputtering method is important because it makes it possible to drastically increase the deposition rate, and whether or not commercialization is possible. One of the elements. Here, the acid sinter sintered body target may contain a dopant other than niobium (tungsten, tantalum, molybdenum, or bismuth).
本明細書において、相対密度は下記式(12)で求めることができる。  In this specification, the relative density can be obtained by the following formula (12).
相対密度 (%) = (嵩密度 Z真密度) X 100 - - - (12)  Relative density (%) = (bulk density Z true density) X 100---(12)
ここで、嵩密度 (gZcm3)とは、作製されたターゲットの寸法と重量力も求めた実測 の密度であり、真密度とは、物質固有の理論密度力 計算して求めた理論上の密度 である。 Here, the bulk density (gZcm 3 ) is the actual density obtained by measuring the size and weight force of the fabricated target, and the true density is the theoretical density obtained by calculating the theoretical density force specific to the substance. is there.
ドーパントとして含まれる元素がニオブであって、上記式(10) , (11)を満たす酸ィ匕 物焼結体ターゲットの相対密度は、 80%以上であることがより好ま 、。  More preferably, the element contained as the dopant is niobium, and the relative density of the oxide sintered compact target satisfying the above formulas (10) and (11) is 80% or more.
なお、ドーパントしてニオブを含む酸ィ匕物焼結体ターゲットを用いて、上記式 (6) , ( 7)を満たす本発明の透明導電膜を形成するためには、酸ィ匕物焼結体ターゲットとし て、下記式(13) , (14)を満たすものを用いればよい。 In addition, the above-mentioned formula (6), ( In order to form the transparent conductive film of the present invention that satisfies 7), a material satisfying the following formulas (13) and (14) may be used as the oxide sintered body target.
0. 85 < (Sn) / (Sn+Nb) < 1. 0 · · · (13)  0. 85 <(Sn) / (Sn + Nb) <1. 0
0. 01 < (Nb) / (Sn+Nb) < 0. 15 · · · (14)  0. 01 <(Nb) / (Sn + Nb) <0. 15 (14)
ここで、式(13)、(14)中の Nbおよび Snは式(10)、(11)と同じ意味である。  Here, Nb and Sn in formulas (13) and (14) have the same meanings as in formulas (10) and (11).
[0028] 本発明にディスプレイ用部材は、 PDPのような FPD用の基板、特に、 FPDの前面 基板として使用されるものであり、ガラス基板上に透明電極として上記した本発明の 透明導電膜が形成されたものである。 [0028] The display member of the present invention is used as an FPD substrate such as a PDP, in particular, as a front substrate of an FPD, and the transparent conductive film of the present invention described above is used as a transparent electrode on a glass substrate. It is formed.
ガラス基板は特に限定されず、例えば、従来公知の各種ガラス基板 (ソーダライム ガラス、無アルカリガラス等)を用いることができる。好ましい具体的態様の 1つとして P DP用高歪点ガラスを挙げることができる。また、その大きさや厚さも特に限定されな い。例えば縦横の長さとして、各々、 400〜3000mm程度のものを好ましく用いるこ とができる。また、その厚さは 0. 7〜3. Ommが好ましぐ 1. 5〜3. Ommがより好まし い。  A glass substrate is not specifically limited, For example, conventionally well-known various glass substrates (Soda lime glass, an alkali free glass, etc.) can be used. One preferred embodiment is a high strain point glass for PDP. Also, the size and thickness are not particularly limited. For example, lengths of about 400 to 3000 mm can be preferably used as the vertical and horizontal lengths. The thickness is preferably 0.7-3. Omm. 1.5-3. Omm is more preferred.
本発明のディスプレイ用部材は、 PDP以外に種々の FPD用の基板として使用可能 である。このような FPDの具体例としては、例えば、液晶表示装置 (LCD)、有機 EL ィ (FED)等が挙げられる。  The display member of the present invention can be used as various FPD substrates in addition to the PDP. Specific examples of such an FPD include a liquid crystal display (LCD), an organic EL (FED), and the like.
実施例  Example
[0029] 以下、実施例及び比較例に基づ!/、て説明する。本実施例はあくまで一例でありこ れらによって何ら制限を受けるものではない。すなわち、本発明の包括的な範囲は、 特許請求の範囲によって定められるものであり、以下に記載する実施例以外の種々 の変形を包含するものである。  [0029] The following description is based on examples and comparative examples. This embodiment is merely an example and is not limited by these. In other words, the comprehensive scope of the present invention is defined by the scope of the claims, and includes various modifications other than the embodiments described below.
[0030] (実施例 1〜4)  [0030] (Examples 1 to 4)
純度 99. 99%相当で粒径が 5 μ m以下の SnO、 Ta O、 WO、 Mo O、 Nb Oの  Of SnO, Ta O, WO, Mo O, Nb O with a purity equivalent to 99.99% and a particle size of 5 μm or less
2 2 5 3 2 3 2 5 粉を使用して、それぞれ金属元素の組成比が表 1に記載する組成比となるように粉を 調合した。粉は乳鉢を用い混合し、加圧成型した後、大気雰囲気中、 1530°C、大気 圧下で焼結し、この酸ィ匕物焼結体を機械加工でターゲット形状に仕上げた。得られ た酸化物焼結体ターゲットの相対密度、表面抵抗 (表面のシート抵抗値)は表 1に示 す通りである。なお、ターゲットの相対密度は下記式(12)を用いて算出した。ターゲ ットの表面のシート抵抗値は、表面抵抗測定装置 (三菱油化製:ロレスタ)を用いて測 疋した。 2 2 5 3 2 3 2 5 Using the powder, the powder was prepared so that the composition ratio of the metal elements would be the composition ratio shown in Table 1, respectively. The powder was mixed using a mortar, press-molded, and then sintered in air at 1530 ° C under atmospheric pressure. This oxide-sintered body was machined into a target shape. Obtained Table 1 shows the relative density and surface resistance (surface sheet resistance value) of the sintered oxide target. The relative density of the target was calculated using the following formula (12). The sheet resistance value on the surface of the target was measured using a surface resistance measuring device (Mitsubishi Yuka: Loresta).
相対密度 (%) = (嵩密度 Z真密度) X 100 - - - (12) Relative density (%) = (bulk density Z true density) X 100---(12)
ここで、嵩密度 (gZcm3)とは、作製されたターゲットの寸法と重量力も求めた実測 の密度であり、真密度とは、物質固有の理論密度力 計算して求めた理論上の密度 である。 Here, the bulk density (gZcm 3 ) is the actual density obtained by measuring the size and weight force of the fabricated target, and the true density is the theoretical density obtained by calculating the theoretical density force specific to the substance. is there.
次に、厚さが 2. 8mmの高歪点ガラス (旭硝子株式会社製: PD200、基板の可視 光透過率は 91%)をガラス基板として用意した。該ガラス基板を洗浄後、基板ホルダ 一にセットした。表 1に示す組成を持つ酸ィ匕物焼結体ターゲットを RFスパッタリング装 置の力ソードに取り付けた。スパッタリング装置の成膜室内を真空に排気した後、 RF スパッタリング法により、厚さが約 150nm (0. 15 m)の酸化スズを主成分とする膜 を該ガラス基板上に形成した。スパッタガスとしてアルゴンと酸素の混合ガスを用いた 。基板温度は 250°Cであった。成膜時の圧力は、 0. 5Paであった。アルゴンガスと酸 素ガスの流量比を変化させることによって、透明でありかつ電気抵抗の小さな薄膜が 形成できた。表 2は、このガス比を電気抵抗が最低になるように調整して得られた際 の膜の組成、可視光透過率、比抵抗値を示すものである。なお、膜の組成、可視光 透過率、比抵抗値 , )は下記の方法により測定した。  Next, a high strain point glass (made by Asahi Glass Co., Ltd .: PD200, the visible light transmittance of the substrate is 91%) having a thickness of 2.8 mm was prepared as a glass substrate. After the glass substrate was washed, it was set on the substrate holder. An oxide sintered compact target having the composition shown in Table 1 was attached to a force sword of an RF sputtering device. After the film formation chamber of the sputtering apparatus was evacuated to vacuum, a film mainly composed of tin oxide having a thickness of about 150 nm (0.15 m) was formed on the glass substrate by RF sputtering. A mixed gas of argon and oxygen was used as the sputtering gas. The substrate temperature was 250 ° C. The pressure at the time of film formation was 0.5 Pa. By changing the flow ratio of argon gas and oxygen gas, a transparent thin film with low electrical resistance could be formed. Table 2 shows the film composition, visible light transmittance, and specific resistance values obtained by adjusting the gas ratio so that the electric resistance is minimized. The composition of the film, the visible light transmittance, and the specific resistance value) were measured by the following methods.
0 1  0 1
(1)組成:ガラス基板上の膜形成に用いたのと同じプロセス条件で 300nmの膜を作 成した。蛍光 X線装置 (理学電機工業株式会社製 RIX3000)で金属系元素から出る 蛍光量を測定し、 Fundamental Parameter理論計算で各金属元素の量、組成比 を算出した。なお、組成は焼成後であっても同等であった。  (1) Composition: A 300 nm film was formed under the same process conditions used for film formation on a glass substrate. The amount of fluorescence emitted from a metal element was measured with a fluorescent X-ray apparatus (RIX3000 manufactured by Rigaku Corporation), and the amount and composition ratio of each metal element were calculated by theoretical calculation of Fundamental Parameter. The composition was the same even after firing.
(2)可視光透過率: JIS— R3106 (1998年)により、分光光度計 (島津製作所製: U -4100)を用いて、得られた膜付きガラス基板の透過スペクトルから膜付きガラス基 板の可視光透過率を計算した。  (2) Visible light transmittance: According to JIS-R3106 (1998), using a spectrophotometer (manufactured by Shimadzu Corporation: U-4100), the transmission spectrum of the obtained film-coated glass substrate Visible light transmittance was calculated.
(3)比抵抗値:ホール効果測定器 (HL5500PC,アクセント オプティカルテクノロジ 一株式会社製)を使いファン'デル 'パゥ法によって求めた。膜の比抵抗値について は、プラズマテレビ前面板用に用いられている、酸化ケィ素、酸化鉛、酸化ホウ素を 主成分とするガラスフリット (旭硝子株式会社製、ガラスペースト、 AP5655AE (YPT 065F) )を塗布し、大気雰囲気で 600°C、 1時間焼成したものについても測定した。 表 2中、 p は未焼成の膜の比抵抗値であり、 は焼成後の膜の比抵抗値である。 (3) Specific resistance value: It was determined by the van 'del' Paul method using a Hall effect measuring device (HL5500PC, Accent Optical Technology Ichi Co., Ltd.). About specific resistance of membrane Apply a glass frit (made by Asahi Glass Co., Ltd., glass paste, AP5655AE (YPT 065F)), which is mainly used for plasma TV front plates and mainly composed of silicon oxide, lead oxide and boron oxide, It was also measured at 600 ° C for 1 hour. In Table 2, p is the specific resistance value of the unfired film, and is the specific resistance value of the film after baking.
0 1  0 1
表 2から明らかなように、実施例 1〜4の膜は、酸ィ匕力の強いフリット材料と接してい ながら、 600°Cという高温で焼成されても、比抵抗値が上昇することがなぐ高い電気 伝導性を示すことが確認された。  As is apparent from Table 2, the specific resistance values of the films of Examples 1 to 4 do not increase even when fired at a high temperature of 600 ° C. while being in contact with a frit material having strong acidity. High electrical conductivity was confirmed.
なお、ガラスフリットを塗布し、焼成した後の可視光透過率は、どの実施例も 80%以 上である。  It should be noted that the visible light transmittance after applying the glass frit and firing is 80% or more in all examples.
(実施例 5) (Example 5)
純度 99. 99%相当で粒径が 5 μ m以下の SnO、 Nb Oの粉を使用して、表 1に記  Use SnO, NbO powder with a purity of 99.99% and a particle size of 5 μm or less.
2 2 5  2 2 5
載する組成比となるように粉を調合して、実施例 1〜4と同様の手順で酸化物焼結体 ターゲットを作製した。得られた酸ィ匕物焼結体ターゲットの相対密度、表面抵抗 (ター ゲット表面のシート抵抗値)は表 1に示す通りである。表 1に示すように、上記式(10) , (11)を満たす酸ィ匕物焼結体ターゲット(ドーパントとしてニオブを含有)は、 DCスパ ッタリング用のターゲットとして好適な特性を有する。すなわち、ターゲットの相対密度 力 0%以上であり、ターゲット表面の、シート抵抗値が 9Ε + 6 ΩΖ口以下である。 得られた酸ィ匕物焼結体ターゲットを用いて、実施例 1〜4と同様の手順で薄膜を形 成し、膜の組成、可視光透過率、比抵抗値 , )は上記の方法により測定した。 Powders were prepared so as to have the composition ratio to be mounted, and oxide sintered compact targets were prepared in the same procedure as in Examples 1 to 4. Table 1 shows the relative density and surface resistance (sheet resistance value of the target surface) of the obtained sintered oxide target. As shown in Table 1, the oxide sintered compact target (containing niobium as a dopant) satisfying the above formulas (10) and (11) has characteristics suitable as a target for DC sputtering. That is, the relative density force of the target is 0% or more, and the sheet resistance value of the target surface is 9Ε + 6 ΩΖ or less. Using the obtained oxide-ceramic sintered compact target, a thin film was formed in the same procedure as in Examples 1 to 4, and the film composition, visible light transmittance, specific resistance value, It was measured.
0 1  0 1
但し、薄膜の形成には RFスパッタリング法ではなぐ DCスパッタリング法を使用した。 すなわち、得られた酸ィ匕物焼結体ターゲットを DCマグネトロンスパッタリング装置の 力ソードに取り付け、スパッタリング装置の成膜室内を真空に排気した後、 DCスパッ タリング法により、厚さが約 150nmの酸化スズを主成分とする膜をガラス基板上に形 成した。 However, the DC sputtering method was used instead of the RF sputtering method to form the thin film. In other words, the obtained oxide-ceramic sintered compact target was attached to a force sword of a DC magnetron sputtering apparatus, the film formation chamber of the sputtering apparatus was evacuated to a vacuum, and then oxidized by a DC sputtering method with a thickness of about 150 nm. A film containing tin as a main component was formed on a glass substrate.
このときの成膜速度は、 RFスパッタリング法を用いた場合と比較して約 2倍もの速度 であり、工業的生産には優れている。スパッタガスとしてアルゴンと酸素の混合ガスを 用いた。基板温度は 250°Cであった。成膜時の圧力は、 0. 5Paであった。アルゴン ガスと酸素ガスの流量比を変化させることによって、透明でありかつ電気抵抗の小さ な薄膜が形成できた。表 2は、このガス比を電気抵抗が最低になるように調整して得 られた際の膜の組成、可視光透過率、比抵抗値を示すものである。表 2から明らかな ように、実施例 5の膜は、酸ィ匕力の強いフリット材料と接していながら、 600°Cという高 温で焼成されても、比抵抗値が上昇することがなぐ高い電気伝導性を示すことが確 f*i¾ れ 。 The deposition rate at this time is about twice as fast as when RF sputtering is used, which is excellent for industrial production. A mixed gas of argon and oxygen was used as the sputtering gas. The substrate temperature was 250 ° C. The pressure at the time of film formation was 0.5 Pa. By changing the flow ratio of argon gas and oxygen gas, it is transparent and has low electrical resistance. A thin film could be formed. Table 2 shows the composition of the film, the visible light transmittance, and the specific resistance value obtained by adjusting the gas ratio so that the electric resistance is minimized. As is clear from Table 2, the film of Example 5 is in contact with the frit material having strong acidity, and does not increase in specific resistance even when baked at a high temperature of 600 ° C. It is certain that it exhibits electrical conductivity.
なお、膜組成は焼成後であっても同等であり、ガラスフリットを塗布し、焼成した後の 可視光透過率は 80%以上である。  The film composition is the same even after firing, and the visible light transmittance after applying glass frit and firing is 80% or more.
[0032] (比較例 1) [0032] (Comparative Example 1)
純度 99. 99%相当で粒径が 5 m以下の SnO  SnO with a purity equivalent to 99.99% and a particle size of 5 m or less
2、 Sb Oの粉を使用して、表 1に記 2 5  2. Use Sb O powder and record in Table 1 2 5
載する組成比となるように粉を調合して、実施例 1〜4と同様の手順で酸化物焼結体 ターゲットを作製した。得られた酸ィ匕物焼結体ターゲットの相対密度、表面抵抗 (ター ゲット表面のシート抵抗値)は表 1に示す通りである。  Powders were prepared so as to have the composition ratio to be mounted, and oxide sintered compact targets were prepared in the same procedure as in Examples 1 to 4. Table 1 shows the relative density and surface resistance (sheet resistance value of the target surface) of the obtained sintered oxide target.
得られた酸ィ匕物焼結体ターゲットを用いて、実施例 1〜4と同様の手順で薄膜を形 成し、膜の組成、可視光透過率、比抵抗値 , )は上記の方法により測定した。  Using the obtained oxide-ceramic sintered compact target, a thin film was formed in the same procedure as in Examples 1 to 4, and the film composition, visible light transmittance, specific resistance value, It was measured.
0 1  0 1
表 2は、アルゴンと酸素のガス比を電気抵抗が最低になるように調整して得られた際 の膜の組成、可視光透過率、比抵抗値を示すものである。表 2から明らかなように、ァ ンチモンをドープした酸化スズ焼結体ターゲットを用いて形成した膜は、ガラスフリット を塗布した状態で焼成した場合、未焼成の膜に比べて比抵抗値が約 1. 8培に増加 してしまうことが確認された。  Table 2 shows the composition of the film, the visible light transmittance, and the specific resistance value obtained by adjusting the gas ratio of argon and oxygen so that the electric resistance is minimized. As is apparent from Table 2, the film formed using the tin oxide sintered target doped with antimony has a specific resistance value of about 10% lower than that of the unfired film when fired in a state where glass frit is applied. 1. It was confirmed that the number would increase to 8.
[0033] (比較例 2) [0033] (Comparative Example 2)
ITOターゲット (東ソ一 'スぺシャリティマテリアル株式会社製、酸化スズ 10質量%ド ープの酸化インジウムターゲット)を用い、実施例 1〜4と同様の手順で ITO薄膜を形 成した。得られた ITO薄膜について、比抵抗値 p を測定したところ 1. 5E-4 Q cm  An ITO thin film was formed in the same procedure as in Examples 1 to 4, using an ITO target (Tosoichi Specialty Materials Co., Ltd., indium oxide target with 10% by mass tin oxide dopant). When the resistivity p of the obtained ITO thin film was measured, 1.5E-4 Q cm
0  0
であった。実施例 1〜4と同様の手順で、ガラスフリットを塗布した状態で、大気雰囲 気で 600°C、 1時間焼成したところ、比抵抗値 p が の約 6倍に増加し、 9. 5E-4  Met. When the glass frit was applied in the same procedure as in Examples 1 to 4 and baked at 600 ° C for 1 hour in an atmospheric atmosphere, the specific resistance p increased to about 6 times that of 9.5E. -Four
1 0  Ten
Ω cmとなった。実施例 1〜5で得られた膜の焼成後の比抵抗値 p は 2. 7E- 3 Q c  It became Ω cm. The specific resistance value p after firing of the films obtained in Examples 1 to 5 is 2.7E-3 Q c
1  1
m〜7. 7E— 3 Q cmであり、実際の PDPの製造プロセス環境下ではこの両者の膜の 電気特性は力なり近いものと言え、本発明の透明導電膜が ITO代替材料となりうるこ とを示している。 m to 7.7E—3 Q cm, and the electrical characteristics of both films are close to each other under the actual PDP manufacturing process environment, and the transparent conductive film of the present invention can serve as an ITO alternative material. It shows.
[0034] (比較例 3)  [0034] (Comparative Example 3)
実施例 1〜4と同様の手順で酸ィ匕物焼結体ターゲットを作製した。但し、表 1に記載 する組成比となるように粉を調合した。得られた酸化物焼結体ターゲットの相対密度 、表面抵抗 (ターゲット表面のシート抵抗値)は表 1に示す通りである。  An acid oxide sintered compact target was produced in the same procedure as in Examples 1 to 4. However, the powder was prepared so as to have the composition ratio shown in Table 1. The relative density and surface resistance (sheet resistance value of the target surface) of the obtained oxide sintered compact target are as shown in Table 1.
得られた酸ィ匕物焼結体ターゲットを用いて、実施例 1〜4と同様の手順で薄膜を形 成し、膜の組成、可視光透過率、比抵抗値 , )は上記の方法により測定した。  Using the obtained oxide-ceramic sintered compact target, a thin film was formed in the same procedure as in Examples 1 to 4, and the film composition, visible light transmittance, specific resistance value, It was measured.
0 1  0 1
表 2は、アルゴンと酸素のガス比を電気抵抗が最低になるように調整して得られた際 の膜の組成、可視光透過率、比抵抗値を示すものである。表 2から明らかなように、タ ンタルをドープした酸化スズ焼結体ターゲットを用いて形成された膜であっても、その 組成が式(1)、(2)を満たしていない場合、ガラスフリットを塗布した状態で焼成する と、未焼成の膜に比べて比抵抗値が増加することが確認された。  Table 2 shows the composition of the film, the visible light transmittance, and the specific resistance value obtained by adjusting the gas ratio of argon and oxygen so that the electric resistance is minimized. As is apparent from Table 2, even if the film is formed using a tin oxide sintered compact target doped with tantalum, if the composition does not satisfy the formulas (1) and (2), the glass frit It was confirmed that the specific resistance value was increased when fired in a state where the coating was applied as compared with the unfired film.
[0035] [表 1] [0035] [Table 1]
Figure imgf000015_0001
Figure imgf000015_0001
[0036] [表 2] [0036] [Table 2]
表 2 :膜組成と可視光透過率、 比抵抗値 Table 2: Film composition, visible light transmittance, specific resistance
Figure imgf000016_0001
産業上の利用可能性
Figure imgf000016_0001
Industrial applicability
本発明の透明導電膜は、透明性および導電性に優れており、酸ィ匕力の強いフリット 材料と接した状態で焼成した場合であっても、膜の比抵抗値が上昇することがなぐ 高い電気伝導性を示す。このため、 FPD用の透明電極として好適である。また、近年 発達の目覚しいレーザパターユング技術をこの膜に応用すれば、容易に高精細な電 極パターンをガラス、プラスチック基板、フィルム基板、結晶基板上へ形成でき有用 である。また、酸化スズを主成分とし、タングステン、タンタル、ニオブ、モリブデンおよ びビスマスカ なる群力 選択される少なくとも一つの元素をドーパントとして含む透 明導電膜は、ドーパントとして含まれる元素が熱的、化学的に安定であることから、酸 ィ匕スズを主成分とし、アンチモンをドーパントとして含む透明導電膜に比べて、ガラス フリットを塗布した状態で焼成した際に、微泡発生などの光学的欠陥を抑える効果も ある。 なお、 2006年 6月 6日に出願された日本特許出願 2006— 157515の明細書、特 許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示と して、取り入れるものである。  The transparent conductive film of the present invention is excellent in transparency and conductivity, and the specific resistance value of the film does not increase even when it is baked in contact with a frit material having strong acidity. High electrical conductivity. Therefore, it is suitable as a transparent electrode for FPD. In addition, if laser patterning technology, which has been developed in recent years, is applied to this film, high-definition electrode patterns can be easily formed on glass, plastic substrates, film substrates, and crystal substrates. In addition, a transparent conductive film containing tin oxide as a main component and containing at least one element selected from the group power of tungsten, tantalum, niobium, molybdenum, and bismuth as a dopant is an element that is included in the thermal, chemical, and chemical elements. Therefore, when firing with glass frit applied, optical defects such as microbubbles are generated compared to transparent conductive films containing tin oxide as the main component and antimony as a dopant. There is also an effect to suppress. It should be noted that the entire contents of the specification, patent claims, drawings and abstract of Japanese Patent Application 2006-157515 filed on June 6, 2006 are incorporated herein by reference. It is something that is incorporated.

Claims

請求の範囲 The scope of the claims
[1] 酸化スズを主成分とする透明導電膜であって、  [1] A transparent conductive film mainly composed of tin oxide,
前記透明導電膜は、タングステン、タンタル、ニオブ、モリブデンおよびビスマスから なる群力 選択される少なくとも一つの元素をドーパントとして含み、アンチモンおよ びインジウムを実質的に含まず、  The transparent conductive film contains at least one element selected from the group force consisting of tungsten, tantalum, niobium, molybdenum, and bismuth as a dopant, and is substantially free of antimony and indium.
前記透明導電膜中にドーパントとして含まれる前記元素の総量を M、前記透明導  M is the total amount of the elements contained as a dopant in the transparent conductive film,
A  A
電膜に含まれるスズ元素の量を Snとした場合に、下記式(1) , (2)を満たすことを特 徴とする透明導電膜。  A transparent conductive film characterized by satisfying the following formulas (1) and (2), where Sn is the amount of tin element contained in the electric film.
0. 8 < (Sn) / (Sn+M ) < 1. 0 · · · (1)  0.8 <(Sn) / (Sn + M) <1. 0 (1)
A  A
0. 01 < (M ) / (Sn+M ) < 0. 2 · · · (2)  0. 01 <(M) / (Sn + M) <0.2 (2)
A A  A A
[2] ガラスフリットと接触させた状態で 350°C以上の温度に加熱した後の透明導電膜の 比抵抗値 P 、加熱する前の透明導電膜の比抵抗値 p とした場合に、下記式 (3)を  [2] When the specific resistance value P of the transparent conductive film after heating to a temperature of 350 ° C. or more in contact with the glass frit and the specific resistance value p of the transparent conductive film before heating are given by the following formula: (3)
1 0  Ten
満たすことを特徴とする請求項 1に記載の透明導電膜。  2. The transparent conductive film according to claim 1, wherein the transparent conductive film is satisfied.
P ≤ · ' · (3)  P ≤ '' (3)
1 0  Ten
[3] 前記比抵抗値 ρ 力 Ε— 2 Ω cm以下であることを特徴とする請求項 1または 2に記  [3] The specific resistance value according to claim 1 or 2, wherein the specific resistance value ρ force Ε—2 Ωcm or less.
0  0
載の透明導電膜。  The transparent conductive film described.
[4] 前記比抵抗値 が 4E— 2 Ω cm以下であることを特徴とする請求項 1な 、し 3の ヽ  [4] The specific resistance value is 4E—2 Ωcm or less.
1  1
ずれかに記載の透明導電膜。  The transparent conductive film according to any one of the above.
[5] 前記透明導電膜の膜厚が: m以下であることを特徴とする請求項 1ないし 4のい ずれかに記載の透明導電膜。  [5] The transparent conductive film according to any one of claims 1 to 4, wherein the film thickness of the transparent conductive film is: m or less.
[6] 請求項 1な!ヽし 5の ヽずれかに記載の透明導電膜を有するディスプレイ用部材。 [6] Claim 1! A member for display having the transparent conductive film according to any one of 5.
[7] 酸化スズを主成分とするスパッタリングターゲットであって、 [7] A sputtering target mainly composed of tin oxide,
前記スパッタリングターゲットは、ドーパントとしてタングステン、タンタル、ニオブ、モ リブデンおよびビスマスカ なる群力 選択される少なくとも一つの元素を含み、 前記スパッタリングターゲットにドーパントとして含まれる前記元素の総量を M、前  The sputtering target contains at least one element selected from the group force of tungsten, tantalum, niobium, molybdenum and bismuth as a dopant, and the total amount of the elements contained as a dopant in the sputtering target is M.
A  A
記スパッタリングターゲットに含まれるスズ元素の量を Snとした場合に、下記式 (4) , ( 5)を満たすことを特徴とするスパッタリングターゲット。  The sputtering target characterized by satisfying the following formulas (4) and (5) when the amount of tin element contained in the sputtering target is Sn.
0. 8 < (Sn) / (Sn+M ) < 1. 0 · · · (4) 0. 8 <(Sn) / (Sn + M) <1. 0 (4)
0. 01 < (M ) / (Sn+M ) < 0. 2 …(5) 0. 01 <(M) / (Sn + M) <0. 2… (5)
A A  A A
[8] 前記ドーパントとしてニオブを含むことを特徴とする請求項 7に記載のスパッタリング ターゲット。  8. The sputtering target according to claim 7, wherein niobium is included as the dopant.
[9] 前記スパッタリングターゲットは、相対密度が 60%以上であり、表面のシート抵抗値 力 9E + 6 Ω Zロ以下であることを特徴とする請求項 8に記載のスパッタリングターゲ ッ卜。  [9] The sputtering target according to [8], wherein the sputtering target has a relative density of 60% or more and a surface sheet resistance value of 9E + 6ΩZ or less.
[10] 請求項 7〜9のいずれかに記載のスパッタリングターゲットを用いて、スパッタリング 法により、請求項 1〜5のいずれかに記載の透明導電膜を形成する透明導電膜の製 造方法。  [10] A method for producing a transparent conductive film, wherein the transparent conductive film according to any one of claims 1 to 5 is formed by a sputtering method using the sputtering target according to any one of claims 7 to 9.
PCT/JP2007/060615 2006-06-06 2007-05-24 Transparent conductive film, process for producing the same, and sputtering target for use in the production WO2007142043A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006157515A JP2009205799A (en) 2006-06-06 2006-06-06 Transparent conductive film, method of manufacturing the same, and sputtering target used for its manufacture
JP2006-157515 2006-06-06

Publications (1)

Publication Number Publication Date
WO2007142043A1 true WO2007142043A1 (en) 2007-12-13

Family

ID=38801304

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/060615 WO2007142043A1 (en) 2006-06-06 2007-05-24 Transparent conductive film, process for producing the same, and sputtering target for use in the production

Country Status (3)

Country Link
JP (1) JP2009205799A (en)
TW (1) TW200807449A (en)
WO (1) WO2007142043A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008055201A2 (en) * 2006-10-31 2008-05-08 H. C. Starck Inc. Tin oxide-based sputtering target, low resistivity, transparent conductive film, method for producing such film and composition for use therein
CN104011255A (en) * 2011-10-19 2014-08-27 贺利氏材料工艺有限责任两合公司 Sputtering target and use thereof
CN106876508A (en) * 2017-02-22 2017-06-20 中国科学院合肥物质科学研究院 Bismuth tin oxide DUV detector and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6488632B2 (en) * 2014-10-22 2019-03-27 セイコーエプソン株式会社 robot

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61256506A (en) * 1985-05-08 1986-11-14 工業技術院長 Low resistance transparent conductive film and generation thereof
JPH07335031A (en) * 1994-06-14 1995-12-22 Mitsui Mining & Smelting Co Ltd Composite conductive powder and conductive film
JP2001032063A (en) * 1999-07-21 2001-02-06 Nippon Sheet Glass Co Ltd Method for coating metallic oxide coating film
JP2001043741A (en) * 1999-05-27 2001-02-16 Nippon Sheet Glass Co Ltd Glass plate having conductive film and manufacture thereof, and photoelectric transducer using the same
JP2001048593A (en) * 1999-05-31 2001-02-20 Nippon Sheet Glass Co Ltd Transparent laminate and glass article produced by using the laminate
JP2001210156A (en) * 1999-11-17 2001-08-03 Toyo Gosei Kogyo Kk Method of manufacturing coating solution for forming film of transparent conductive tin oxide and transparent conductive tin oxide film, and transparent conductive tin oxide film
JP2002252361A (en) * 2000-11-21 2002-09-06 Nippon Sheet Glass Co Ltd Transparent conducting film, its manufacturing method and photoelectric converter provided with the film

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61256506A (en) * 1985-05-08 1986-11-14 工業技術院長 Low resistance transparent conductive film and generation thereof
JPH07335031A (en) * 1994-06-14 1995-12-22 Mitsui Mining & Smelting Co Ltd Composite conductive powder and conductive film
JP2001043741A (en) * 1999-05-27 2001-02-16 Nippon Sheet Glass Co Ltd Glass plate having conductive film and manufacture thereof, and photoelectric transducer using the same
JP2001048593A (en) * 1999-05-31 2001-02-20 Nippon Sheet Glass Co Ltd Transparent laminate and glass article produced by using the laminate
JP2001032063A (en) * 1999-07-21 2001-02-06 Nippon Sheet Glass Co Ltd Method for coating metallic oxide coating film
JP2001210156A (en) * 1999-11-17 2001-08-03 Toyo Gosei Kogyo Kk Method of manufacturing coating solution for forming film of transparent conductive tin oxide and transparent conductive tin oxide film, and transparent conductive tin oxide film
JP2002252361A (en) * 2000-11-21 2002-09-06 Nippon Sheet Glass Co Ltd Transparent conducting film, its manufacturing method and photoelectric converter provided with the film

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008055201A2 (en) * 2006-10-31 2008-05-08 H. C. Starck Inc. Tin oxide-based sputtering target, low resistivity, transparent conductive film, method for producing such film and composition for use therein
WO2008055201A3 (en) * 2006-10-31 2008-07-17 Starck H C Inc Tin oxide-based sputtering target, low resistivity, transparent conductive film, method for producing such film and composition for use therein
US7452488B2 (en) 2006-10-31 2008-11-18 H.C. Starck Inc. Tin oxide-based sputtering target, low resistivity, transparent conductive film, method for producing such film and composition for use therein
US7850876B2 (en) 2006-10-31 2010-12-14 H.C. Starck Inc. Tin oxide-based sputtering target, transparent and conductive films, method for producing such films and composition for use therein
CN104011255A (en) * 2011-10-19 2014-08-27 贺利氏材料工艺有限责任两合公司 Sputtering target and use thereof
CN106876508A (en) * 2017-02-22 2017-06-20 中国科学院合肥物质科学研究院 Bismuth tin oxide DUV detector and preparation method thereof

Also Published As

Publication number Publication date
JP2009205799A (en) 2009-09-10
TW200807449A (en) 2008-02-01

Similar Documents

Publication Publication Date Title
EP2039798B1 (en) Transparent conductive film, process for production of the film, and sputtering target for use in the production of the film
JP5146443B2 (en) Transparent conductive film, method for producing the same, and sputtering target used for the production thereof
JP4552950B2 (en) Oxide sintered body for target, manufacturing method thereof, manufacturing method of transparent conductive film using the same, and transparent conductive film obtained
JP5109418B2 (en) ZnO vapor deposition material, method for producing the same, and method for forming ZnO film
JP5170009B2 (en) Indium oxide sputtering target and method for producing the same
JP5388266B2 (en) ZnO-based target and manufacturing method thereof, conductive thin film manufacturing method, and conductive thin film
WO2007142043A1 (en) Transparent conductive film, process for producing the same, and sputtering target for use in the production
JP4539181B2 (en) Transparent conductive film, sintered compact target for manufacturing transparent conductive film, transparent conductive substrate, and display device using the same
JP6064895B2 (en) Indium oxide-based oxide sintered body and method for producing the same
TWI387574B (en) Oxide sintered body for the manufacture of transparent conductive films
JP4859726B2 (en) SnO2-based sputtering target and sputtered film
JP5167575B2 (en) Oxide sintered body, sputtering target, and transparent conductive film
JP5018553B2 (en) ZnO vapor deposition material, method for producing the same, and ZnO film formed thereby
JP5907086B2 (en) Indium oxide-based oxide sintered body and method for producing the same
WO2011152682A2 (en) Transparent conductive layer, target for transparent conductive layer and a process for producing the target for transparent conductive layer
JP6850981B2 (en) Oxide sputtering target
CN115925414B (en) Molybdenum oxide-based sintered body, thin film using the sintered body, thin film transistor including the thin film, and display device
JP5416991B2 (en) Oxide sintered body target, method for producing the target, transparent conductive film, and method for producing the transparent conductive film
CN115819083B (en) Molybdenum oxide-based sintered body, thin film using the sintered body, thin film transistor including the thin film, and display device
WO2021019854A1 (en) Method for manufacturing vacuum deposition tablet, oxide transparent conductive film, and tin-oxide-based sintered body
JP5290350B2 (en) Transparent electrode film
JP2022169502A (en) Layered body having function as transparent electroconductive film and method for producing the same, and oxide sputtering target for that layered body production
KR20170082445A (en) Transparent conductive layer and the preparing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07744049

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 07744049

Country of ref document: EP

Kind code of ref document: A1