WO2007141883A1 - Method of forming electrical wiring and method of repairing the same - Google Patents

Method of forming electrical wiring and method of repairing the same Download PDF

Info

Publication number
WO2007141883A1
WO2007141883A1 PCT/JP2006/311686 JP2006311686W WO2007141883A1 WO 2007141883 A1 WO2007141883 A1 WO 2007141883A1 JP 2006311686 W JP2006311686 W JP 2006311686W WO 2007141883 A1 WO2007141883 A1 WO 2007141883A1
Authority
WO
WIPO (PCT)
Prior art keywords
paste material
gas
oxygen radical
insulating substrate
wiring
Prior art date
Application number
PCT/JP2006/311686
Other languages
French (fr)
Japanese (ja)
Inventor
Masato Ikeda
Original Assignee
Kabushiki Kaisha Nihon Micronics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Nihon Micronics filed Critical Kabushiki Kaisha Nihon Micronics
Priority to JP2008520117A priority Critical patent/JPWO2007141883A1/en
Priority to PCT/JP2006/311686 priority patent/WO2007141883A1/en
Priority to TW096116789A priority patent/TW200820856A/en
Publication of WO2007141883A1 publication Critical patent/WO2007141883A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
    • H05K3/1241Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns by ink-jet printing or drawing by dispensing
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • H05K1/097Inks comprising nanoparticles and specially adapted for being sintered at low temperature
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/01Tools for processing; Objects used during processing
    • H05K2203/0104Tools for processing; Objects used during processing for patterning or coating
    • H05K2203/0126Dispenser, e.g. for solder paste, for supplying conductive paste for screen printing or for filling holes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/07Treatments involving liquids, e.g. plating, rinsing
    • H05K2203/0779Treatments involving liquids, e.g. plating, rinsing characterised by the specific liquids involved
    • H05K2203/0786Using an aqueous solution, e.g. for cleaning or during drilling of holes
    • H05K2203/0796Oxidant in aqueous solution, e.g. permanganate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/11Treatments characterised by their effect, e.g. heating, cooling, roughening
    • H05K2203/1131Sintering, i.e. fusing of metal particles to achieve or improve electrical conductivity
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/225Correcting or repairing of printed circuits

Definitions

  • the present invention relates to a method for forming electrical wiring and a repair method therefor, and more particularly to a wiring formation method suitable for a wiring board of an electronic circuit device such as a liquid crystal display device and a semiconductor device and a repair method therefor.
  • a film is formed on a glass substrate by using a paste made of an organic binder containing acid silver powder and low-melting glass powder on a glass substrate.
  • the binder is removed by heating by laser irradiation, and silver oxide in the film is partially baked on the glass substrate, and then the film is heated. By removing unnecessary portions, an electrode is formed by the baked silver oxide.
  • the work is selectively covered with a mask such as a photoresist.
  • a liquid repellent treatment is applied to the surface of the mask, and then the liquid pattern material is filled into the area exposed from the mask of the workpiece. After the filled liquid pattern material is solidified, the mask is removed, and an electrode pattern is formed by the solidified portion of the liquid pattern material.
  • This publication also describes the use of atmospheric plasma generated by an atmospheric plasma apparatus that converts a fluorine compound into plasma for the formation of a liquid-repellent mask and atmospheric pressure plasma for removal of the mask. However, heat treatment using a heater is used to solidify the liquid pattern material.
  • Patent Document 1 Japanese Patent No. 3 5 2 3 2 5 1
  • Patent Document 2 International Publication Number WO 2 0 0 2 Z 0 5 2 6 2 7 Disclosure of Invention
  • An object of the present invention is to provide a method for forming or repairing electrical wiring efficiently and easily.
  • the present invention basically does not depend on a physical phenomenon such as heating in order to remove a binder composed of organic substances such as carbon, oxygen, hydrogen and nitrogen contained in a paste material for forming a conductive path. It is characterized by using chemical reaction by oxygen radical.
  • the present invention is to form a pattern portion for wiring on an insulating substrate with a paste material including nano metal particles and a binder made of an organic substance, and to convert the pattern portion formed with the paste material into an oxygen radical. Characterized by exposure to molecules or their gases.
  • the paste material containing the nano metal particles is surely adhered onto the insulating substrate along the desired pattern on the insulating substrate due to the viscosity of the organic binder.
  • a desired pattern portion is formed on the insulating substrate with the paste material.
  • This pattern portion is exposed to oxygen radical molecules or its gas.
  • the oxygen radical molecule is a molecule having an unpaired electron in the outer electron, and causes a chemical reaction with each organic substance in the paste material. Through this chemical reaction, hydrogen in the organic material becomes water, which is evaporated and released into the atmosphere. Carbon also becomes carbon dioxide and is released into the atmosphere. In addition, other organic materials such as oxygen and nitrogen are also released into the atmosphere as gases.
  • a conductive path is formed by metal bonding between the contact metal particles without using a physical heating phenomenon by a heater or laser light.
  • oxygen radical molecules can be injected toward the pattern on the insulating substrate.
  • the oxygen radical molecule can be formed using a plasma generator.
  • the plasma generator generates a gas in which positive and negative charged particles coexist, and the gas contains radical molecules such as oxygen radicals. Therefore, the organic material of the pattern portion can be exposed to oxygen radical molecules or the gas by injecting the plasma gas generated from the plasma generator toward the pattern portion on the insulating substrate.
  • an atmospheric plasma generator can be used as the plasma generator. Since the atmospheric plasma generator can generate oxygen radical molecules at almost atmospheric pressure, the insulating substrate including the pattern portion, that is, the workpiece, is not exposed to vacuum, and is almost exposed to the atmosphere. Radical molecules can be irradiated onto the pattern portion. This eliminates the need for a vacuum chamber for holding the workpiece in a vacuum, so that the conductive path can be formed more easily by using an atmospheric plasma generator. Further, the ratio of radical molecules in the plasma gas can be increased by lowering the temperature of the plasma gas, for example, by cooling. The organic material can be more effectively removed by spraying the gas having an increased proportion of radical molecules on the pattern portion, whereby the conductive portion can be formed more efficiently.
  • the nano metal particles are metal fine particles such as silver having a particle diameter of several nanometers to several hundred nanometers. Since such metal fine particles have extremely high surface energy, it is possible to generate metal bonds more reliably by simply removing the binder.
  • a paste material containing gold or silver fine metal particles and an organic pinder for example, a product sold by Harima Kasei Co., Ltd. under a trade name of nanopace can be used.
  • each of the nano metal particles is covered with a protective film made of an organic material.
  • the protective film reliably prevents unexpected or unnecessary metal bonds due to direct contact between nano metal particles in an unreacted state with radical molecules, and is removed quickly and reliably by irradiation with radical molecules. It enables metal bonding by direct contact between nano metal particles.
  • the pattern part can be formed on the insulating substrate by spraying the paste material by an ink jet method.
  • this pattern portion is formed by maskless mesoscale material deposition (M 3 D (trademark)) apparatus (U.S. Pat. No. 7,045,015) manufactured by Optomek, USA. ) Or other printing methods can be employed as appropriate.
  • M 3 D maskless mesoscale material deposition
  • a binder is removed by utilizing a chemical reaction between an oxygen radical molecule and an organic material of a binder, and a conductive portion such as a conductive path is formed by sintering by contact between nano metal particles by removing the binder. It is formed. Therefore, by heating the pattern portion with oxygen radical molecules for a short time without using laser light in the heating furnace, the temperature of the irradiated portion is suppressed and the binder is removed. Thus, the conductive portion can be formed efficiently.
  • FIG. 1 is a flowchart showing the steps of the method of the present invention.
  • FIG. 2 is a schematic diagram of an apparatus for carrying out the method of the present invention.
  • FIG. 3 is a cross-sectional view schematically showing the principle of the atmospheric plasma generator used as the purified gas generator shown in FIG.
  • FIG. 4 is a cross-sectional view schematically showing the principle of the atmospheric plasma generator used as the oxygen radical generator shown in FIG.
  • FIG. 5 is an explanatory diagram showing the electrical characteristics of the conductive path formed by the method of the present invention. Explanation of symbols
  • Oxygen radical molecule injection device (atmospheric plasma generator)
  • the method for forming an electrical wiring according to the present invention includes a step S 10 for preliminarily purifying a portion to be wired on an insulating substrate, and a desired wiring pattern on the insulating substrate.
  • the oxides on the insulating substrate are removed by spraying the purified gas onto the insulating substrate.
  • plasma gas from an atmospheric plasma generator can be used.
  • a reducing gas such as carbon monoxide gas or hydrogen gas is used as the plasma generating gas.
  • the oxide remaining in the irradiated part causes a chemical reaction with the plasma gas, and these are effectively removed.
  • such a plasma gas exhibits a relatively low temperature of 60 ° C. to 80 ° C. at the irradiated portion, and therefore the irradiated portion and its surroundings are not damaged by heating.
  • this purification step S 10 other appropriate cleaning means can be used instead of the plasma apparatus. Further, the purification step S 10 can be eliminated. However, the adhesion of the paste material to the insulating substrate in the subsequent coating step S 1 2 is increased, and the bonding force of the formed metal wiring to the insulating substrate is further increased. Above, it is desirable to adopt some sort of purification means.
  • a paste material containing nano metal particles and a binder made of an organic material is applied along the desired wiring pattern on the insulating substrate.
  • the nano metal particles in the paste material are fine metal particles having a particle size of several nanometers to several hundred nanometers and exhibiting good conductivity such as gold or silver. Since such metal fine particles have extremely high surface energy, when the metal particles are in direct contact with each other, this contact causes metal sintering.
  • the binder in the paste material has an E contact between the nano metal particles in order to prevent unnecessary and unexpected metal sintering. This prevents the metal particles from being sintered.
  • a binder is formed of an organic material such as oxygen, carbon, hydrogen and nitrogen, as is well known as an organic binder.
  • the paste material can be sprayed, for example, by a nozzle using an ink jet method.
  • a paste material can be appropriately applied onto the insulating substrate by the M 3 D (trademark) apparatus or other printing methods.
  • a selective mask that selectively exposes the desired portion can be used for applying the paste material to the desired portion.
  • the oxygen radical molecule or its gas is sprayed onto the pattern portion made of the paste material applied on the insulating substrate.
  • the gas containing oxygen radical molecules can be obtained by a plasma generator, for example.
  • the plasma gas is high temperature and is electrically neutral as a whole, but positive and negative charged particles and ion-op radical molecules coexist in the gas.
  • the proportion of oxygen radical molecules is relatively low compared to charged particles and ions.
  • this plasma gas is cooled, The proportion of oxygen radical molecules in the plasma gas increases. Since the present invention basically uses this oxygen radical molecule, it is desirable to use a gas that is cooled and has as high a proportion of oxygen radical molecules as possible.
  • the nano metal particles that have been prevented from direct contact by the binder are brought into direct contact. Since the surface energy of the nano metal particles is extremely high, sintering occurs due to direct mutual contact. As a result, a conductive path is formed on the insulating substrate by sintering the nano metal particles.
  • FIG. 2 is a schematic view partially showing an example of a wiring forming apparatus 10 for carrying out the above-described wiring forming method of the present invention.
  • the wiring forming apparatus 10 is used to form the conductive path 14 along a desired pattern on the insulating substrate 12.
  • the wiring forming apparatus 10 includes a purifier atmospheric plasma generating apparatus 16, a paste material applying apparatus 18, and an oxygen radical molecule injection apparatus 20.
  • the atmospheric plasma generator for clean water 16 has a dielectric material such as glass whose upper end is a gas inlet 2 2 a and whose lower end is a plasma outlet 2 2 b.
  • a reducing gas G 1 such as carbon monoxide gas or hydrogen gas and a carrier gas C a such as nitrogen or argon are conceived through the opening and closing pulp 28. Is possible.
  • the dielectric tube 22 has its plasma injection port 2 2 b directed to the surface of the insulating substrate 12 on which the conductive path 14 is to be formed.
  • the on-off valve 2 8 is opened, the carrier gas C a from the carrier gas source 3 2 and the reducing gas G 1 force from the reducing gas source 3 0 G 1 force Dielectric tube 2 2 ⁇ is turned into its plasma injection port 2 2 b Guided towards.
  • a pair of electrodes 2 4 and 2 4 to which a voltage from the electrical apparatus 26 is applied corresponds to the distance d 1 between both electrodes.
  • a discharge space region is formed in the region by dielectric barrier discharge. Therefore, the reducing gas G 1 guided from the gas introduction port 2 2 a of the dielectric tube 2 2 toward the plasma injection port 2 2 b is put in a plasma state in the process of passing through this discharge space region. As a result, a plasma gas using the reducing gas G 1 as a plasma source is injected onto the insulating substrate 12.
  • the oxide remaining in the portion irradiated with the plasma gas is effectively removed 1 by the chemical reaction with the plasma gas as described above.
  • the temperature of the irradiated part is maintained at 60 ° C. to 80 ° C. Therefore, the irradiated part on the insulating substrate 1 2 Will not be damaged by heating.
  • the dielectric tube 2 2 of the atmospheric plasma generator for purification 1 2, that is, the air plasma injection nozzle 2 2, is automatically shown in the desired arrangement and pattern using a well-known automatic control mechanism (not shown). Can be moved to.
  • the paste material is supplied from the nozzle 3 4 outlet of the paste material application device 18 to the region on the insulating substrate 12 2 purified by the injection of atmospheric plasma gas using the reducing gas G 1 as a gas source.
  • a wiring pattern portion formed linearly on the insulating substrate 12 by the paste material is irradiated with oxygen radical molecules by the oxygen radical molecule injection device 20.
  • this oxygen radical molecule injection device 20 basically uses an atmospheric plasma generator similar to the atmospheric plasma generator shown in FIG.
  • the fundamental difference between the two atmospheric plasma generators is that the purifying atmospheric plasma generator 16 uses a reducing gas source 30 as the plasma gas source, while oxygen radical molecule injection
  • the atmospheric plasma generator used as the apparatus 20 is that an oxidizing gas source such as oxygen or air is used as the plasma gas source.
  • the atmospheric plasma generator 20 used as an oxygen radical molecular jetting apparatus includes a dielectric tube 36 made of a dielectric material such as glass and a longitudinal direction of the dielectric tube, as shown in FIG.
  • a pair of electrodes 3 8 and 3 8 which are arranged with a distance d 2 from each other, and are arranged around the dielectric tube 3 6, and an alternating voltage or a pulsed voltage is applied between the electrodes.
  • the gas inlet 36a which is the upper end of the dielectric tube 36, has an open / close valve 42 and an oxygen gas G2 such as oxygen gas or air and a carrier gas Ca such as nitrogen or argon. Guided. As shown in FIG. 2, the dielectric tube 36 has its plasma injection port 36 b directed toward the wiring pattern portion.
  • the carrier gas source 4 6 and the carrier gas C a together with the oxidizing gas source G 4 from the oxidizing gas source 4 4 pass through the dielectric tube 3 6 toward its plasma injection port 3 6 b. Guided.
  • the dielectric tube 36 through which the oxygen gas G 2 is guided there is a region corresponding to d 2 between the pair of electrodes 38 and 38 to which the voltage from the power supply device 40 is applied.
  • a discharge space region is formed by dielectric barrier discharge. Therefore, as in the above-described atmospheric plasma generator 16, the oxidizing gas G 2 guided from the gas inlet 3 6 a of the dielectric tube 3 6 toward the plasma outlet 3 6 b is in this discharge space. In the process of passing through the region, it is put into a plasma state.
  • the content of oxygen radical molecules in the plasma gas sprayed from the nozzle 36 of the atmospheric plasma generator 20 using the oxidizing gas G 2 as the plasma gas source is increased, and the temperature rise of the insulating substrate 12 is unnecessary.
  • each atmospheric plasma generator 1 6, 20 The operating conditions of each atmospheric plasma generator 1 6, 20 are, for example, the rise time of the voltage applied from the power supply 2 6, 40 to the pair of electrodes 2 4, 2 4, 3 8, 3 8 or At least one of the falling times is 100 seconds or less, the repetition frequency of the waveform of the voltage V from the power supply devices 26 and 40 is 0.5 to 100 kHz, and the pair of electrodes 2 4 , 2, 3 8, and 38 can be appropriately selected within the range of 0.5 to 200 kV / cm 2. Further, it is desirable to adjust the distance between the plasma nozzles 2 2 b and 30 b of each of the nozzles 22 and 36 and the insulating substrate 12 within a range of 1 to 20 mm, for example.
  • the table in FIG. 5 shows that a wiring path is formed by jetting oxygen radical molecules from the atmospheric plasma generator 20 to the wiring pattern portion made of the paste material.
  • a line with a pad is drawn on the raw glass as a wiring pattern portion made of the paste material.
  • the thickness of the paste material was approximately 4 O nm, and the line length between pads was set to approximately 3 mm.
  • Each line width was set to 10 m, 2 0 ⁇ , and 30 ⁇ , respectively.
  • the resistance value was measured in the wiring path of any line width, and it was confirmed that the conductive path was formed.
  • the sintering of the metal material in the paste material can be achieved by an extremely short plasma irradiation operation of about 10 seconds. It was.
  • a vacuum plasma generator can be used.
  • the atmospheric plasma generator as described above, the insulating substrate 12 to be processed can be processed in the air without being placed in the vacuum chamber. It is desirable to use an atmospheric plasma generator.
  • the present invention can be applied to repair of a broken portion of a wiring path.
  • a paste material containing nano metal particles and an organic binder is supplied to the wiring defect portion to be repaired on the circuit board, and the supplied paste material is exposed to oxygen radical molecules or its gas.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Liquid Crystal (AREA)

Abstract

It is intended to provide a method of forming an electrical wiring, in which a paste material containing metal nanoparticles, a binder comprising an organic compound is applied on an insulating substrate thereby to form a pattern portion for wiring. Then, on the pattern portion formed with the paste material, oxygen radical molecules are sprayed. By this spraying of oxygen radical molecules, the organic compound in the binder is oxidized and released in the atmosphere, and then the metal nanoparticles directly come into contact with one another, whereby sintering occurs due to the resulting high surface energy. By the sintering due to the mutual contact of metal nanoparticles, a conductive portion is formed on the insulating substrate.

Description

明 細 書 '  Specification '
電気配線の形成方法およびその補修方法  Electrical wiring formation method and repair method thereof
技術分野  Technical field
本発明は、 電気配線の形成方法およびその補修方法に関し、 特に、 液晶表示装 置および半導体装置のような電子回路装置の配線基板に好適な配線形成方法およ ぴその補修方法に関する。  The present invention relates to a method for forming electrical wiring and a repair method therefor, and more particularly to a wiring formation method suitable for a wiring board of an electronic circuit device such as a liquid crystal display device and a semiconductor device and a repair method therefor.
背京技術  Backkyo technology
従来のフラットパネルディスプレイの電極の形成方法に、 特許第 3 5 2 3 2 5 1号公報に記載の方法がある。 この方法によれば、 ガラス基板上に酸ィヒ銀粉末お ょぴ低融点ガラス粉末を含有する有機バインダからなるペーストを用いて、 ガラ ス基板上に膜が形成される。 この膜に所望のパターンに沿ってレーザが照射され ると、 レーザ照射による加熱により、 バインダが除去され、 また前記膜中の酸化 銀がガラス基板上に部分的に焼き付けられ、 その後、 前記膜の不要部分が除去さ れることにより、 焼き付けられた酸化銀により、 電極が形成される。  As a conventional method for forming an electrode of a flat panel display, there is a method described in Japanese Patent No. 3 5 2 3 2 5 1. According to this method, a film is formed on a glass substrate by using a paste made of an organic binder containing acid silver powder and low-melting glass powder on a glass substrate. When this film is irradiated with a laser along a desired pattern, the binder is removed by heating by laser irradiation, and silver oxide in the film is partially baked on the glass substrate, and then the film is heated. By removing unnecessary portions, an electrode is formed by the baked silver oxide.
また、国際公開番号 WO 2 0 0 2 / 0 5 2 6 2 7号公報に記載の方法によれば、 ワーク上がフォトレジストのようなマスクで選択的に覆われる。 このマスクの表 面に撥液処理が施され、 その後、 ワークのマスクから露出する領域に液状パター ン材が充填される。 この充填された液状パターン材が固化された後、 マスクが除 去され、 液状パターン材の固化部分により、 電極パターンが形成される。 また、 この公報には、 撥液性を有するマスクの形成に、 フッ素化合物をプラズマ化する 大気プラズマ装置により生成された大気プラズマを用いることおよびマスクの除 去に大気圧プラズマを用いることが記載されているが、 液状パターン材の固化に は、 ヒータを用いた加熱処理が採用されている。  Further, according to the method described in International Publication No. WO 2 0 0 2/0 5 2 6 2 7, the work is selectively covered with a mask such as a photoresist. A liquid repellent treatment is applied to the surface of the mask, and then the liquid pattern material is filled into the area exposed from the mask of the workpiece. After the filled liquid pattern material is solidified, the mask is removed, and an electrode pattern is formed by the solidified portion of the liquid pattern material. This publication also describes the use of atmospheric plasma generated by an atmospheric plasma apparatus that converts a fluorine compound into plasma for the formation of a liquid-repellent mask and atmospheric pressure plasma for removal of the mask. However, heat treatment using a heater is used to solidify the liquid pattern material.
このように、 従来技術によれば、 配線あるいは電極材料の形成には、 レーザ光 あるいはヒータを用いた物理的な加熱が採用されており、 この物理的な加熱によ つて、 有機バインダが除去され、 また配線あるいは電極材料を構成する導電材料 が焼成されている。  As described above, according to the prior art, physical heating using a laser beam or a heater is employed for the formation of the wiring or electrode material, and the organic binder is removed by this physical heating. In addition, the conductive material constituting the wiring or electrode material is fired.
しかしながら、 レーザ照射では、 高エネルギーのレーザ光により不要な部分を 照射しないように、 注意が必要となり、 その取り扱いが容易ではない。 また、 ヒ ータを用いる加熱処理では、 加熱に長時間を有し、 また基板の全体が高温雰囲気 に晒されることから、 半導体 I Cのような高温を嫌う電子回路には不利である。 However, with laser irradiation, care must be taken so that unnecessary portions are not irradiated with high-energy laser light, and handling is not easy. Also, Heat treatment using a heater is disadvantageous for electronic circuits that dislike high temperatures, such as semiconductor ICs, because the heating process takes a long time and the entire substrate is exposed to a high temperature atmosphere.
[特許文献 1 ] 特許第 3 5 2 3 2 5 1号公報 [Patent Document 1] Japanese Patent No. 3 5 2 3 2 5 1
[特許文献 2 ] 国際公開番号 WO 2 0 0 2 Z 0 5 2 6 2 7号公報 発明の開示  [Patent Document 2] International Publication Number WO 2 0 0 2 Z 0 5 2 6 2 7 Disclosure of Invention
発明が解決しょうとする課題  Problems to be solved by the invention
本発明の目的は、 効率的にかつ容易に電気配線を形成または補修する方法を提 供することにある。  An object of the present invention is to provide a method for forming or repairing electrical wiring efficiently and easily.
課題を解決するための手段  Means for solving the problem
本発明は、 基本的に、 導電路を形成するためのペースト材料に含まれる炭素、 酸素、 水素および窒素のような有機物からなるバインダを除去するために、 加熱 のような物理的現象に依らず、 酸素ラジカルによる化学反応を利用することを特 徴とする。  The present invention basically does not depend on a physical phenomenon such as heating in order to remove a binder composed of organic substances such as carbon, oxygen, hydrogen and nitrogen contained in a paste material for forming a conductive path. It is characterized by using chemical reaction by oxygen radical.
すなわち、 本発明は、 ナノ金属粒子と、 有機物からなるパインダとを含むぺー スト材料で絶縁基板上に配線のためのパターン部を形成すること、 前記ぺースト 材料で形成されたパターン部分を酸素ラジカル分子またはそのガスに晒すことを 含むことを特徴とする。  That is, the present invention is to form a pattern portion for wiring on an insulating substrate with a paste material including nano metal particles and a binder made of an organic substance, and to convert the pattern portion formed with the paste material into an oxygen radical. Characterized by exposure to molecules or their gases.
本発明に係る電気配線形成方法では、 ナノ金属粒子を含むペースト材料は、 そ の有機バインダの粘性により、 絶縁基板上の所望パターンに沿って該絶縁基板上 に確実に付着される。 これによりペースト材料で絶縁基板上に所望のパターン部 分が形成される。 このパターン部分は、 酸素ラジカル分子またはそのガスに晒さ れる。 酸素ラジカル分子は、 外殻電子に不対電子を有する分子であり、 前記ぺー ス ト材料中の各有機物と化学反応を生じる。 この化学反応により、 有機材料中の 水素は水になり、 蒸発して雰囲気中に放出される。 また、 炭素は二酸化炭素とな り、 雰囲気中に放出される。 さらに、 酸素おょぴ窒素等の他の有機材料も、 ガス となってそれぞれ雰囲気中に放出される。 この有機材料の放出によってペースト 材料から有機パインダが除去されると、 表面エネルギーの高いナノ金属粒子は、 有機パインダを介すること無く直接に相互接触することで、 その表面エネルギー によって金属結合を生じる。 In the electrical wiring forming method according to the present invention, the paste material containing the nano metal particles is surely adhered onto the insulating substrate along the desired pattern on the insulating substrate due to the viscosity of the organic binder. As a result, a desired pattern portion is formed on the insulating substrate with the paste material. This pattern portion is exposed to oxygen radical molecules or its gas. The oxygen radical molecule is a molecule having an unpaired electron in the outer electron, and causes a chemical reaction with each organic substance in the paste material. Through this chemical reaction, hydrogen in the organic material becomes water, which is evaporated and released into the atmosphere. Carbon also becomes carbon dioxide and is released into the atmosphere. In addition, other organic materials such as oxygen and nitrogen are also released into the atmosphere as gases. When organic binder is removed from the paste material due to the release of this organic material, the nano metal particles with high surface energy By direct contact with each other without going through an organic binder, a metal bond is generated by the surface energy.
その結果、 ヒータやレーザ光による物理的な加熱現象を利用することなく、 接 触金属粒子間の金属結合により、 導電路が形成される。  As a result, a conductive path is formed by metal bonding between the contact metal particles without using a physical heating phenomenon by a heater or laser light.
有機バインダを酸素ラジカ^分子またはそのガスに晒すために、 酸素ラジカル 分子を絶縁基板上のパターン部に向けて噴射することができる。  In order to expose the organic binder to oxygen radical molecules or its gas, oxygen radical molecules can be injected toward the pattern on the insulating substrate.
また、酸素ラジカル分子は、プラズマ発生装置を用いて形成することができる。 プラズマ発生装置は、 正負の荷電粒子が共存している状態のガスを発生するが、 このガス中に酸素ラジカルのようなラジカル分子が含まれる。 したがって、 この ブラズマ発生装置から発生するブラズマガスを絶縁基板上の前記パタ一ン部に向 けて噴射することにより、 前記パターン部の有機材料を酸素ラジカル分子または そのガスに晒すことができる。  The oxygen radical molecule can be formed using a plasma generator. The plasma generator generates a gas in which positive and negative charged particles coexist, and the gas contains radical molecules such as oxygen radicals. Therefore, the organic material of the pattern portion can be exposed to oxygen radical molecules or the gas by injecting the plasma gas generated from the plasma generator toward the pattern portion on the insulating substrate.
また、 前記プラズマ発生装置として、 大気プラズマ発生装置を用いることがで きる。 大気プラズマ発生装置は、 ほぼ大気圧で酸素ラジカル分子を生成すること ができるので、 前記パターン部を含む絶縁基板すなわち被加工物を真空中に保持 することなく、 ほぼ大気中に晒した状態で、 ラジカル分子を前記パターン部に照 射することができる。 そのため、 被加工物を真空中に保持するための真空チャン パが不要となることから、 大気プラズマ発生装置を用いることにより、 より容易 に導電路を形成することができる。 また、 このプラズマガスの温度を例えば冷却 によって低下させることにより、 プラズマガス中のラジカル分子の割合を増大す ることができる。 このラジカル分子の割合が増大したガスをパターン部に吹き付 けることにより、 より効果的に有機材料を除去することができるので、 これによ り導電部を一層効率的に形成することができる。  In addition, an atmospheric plasma generator can be used as the plasma generator. Since the atmospheric plasma generator can generate oxygen radical molecules at almost atmospheric pressure, the insulating substrate including the pattern portion, that is, the workpiece, is not exposed to vacuum, and is almost exposed to the atmosphere. Radical molecules can be irradiated onto the pattern portion. This eliminates the need for a vacuum chamber for holding the workpiece in a vacuum, so that the conductive path can be formed more easily by using an atmospheric plasma generator. Further, the ratio of radical molecules in the plasma gas can be increased by lowering the temperature of the plasma gas, for example, by cooling. The organic material can be more effectively removed by spraying the gas having an increased proportion of radical molecules on the pattern portion, whereby the conductive portion can be formed more efficiently.
前記ナノ金属粒子は、 数ナノないし数 1 0 0ナノの粒子径を有する、 例えば銀 のような金属微粒子である。 このような金属微粒子は、 表面エネルギーが極めて 高いので、 パインダを除去するだけで、 より確実に金属結合を生じさせることが できる。 このような金あるいは銀の金属微粒子と有機パインダとを含むペースト 材料は、 例えば商品名がナノペースとしてハリマ化成株式会社から販売されてい るものを用いることができる。 ' 前記ナノ金属粒子のぞれぞれが有機物からなる保護膜で覆われていることが望 ましい。 前記保護膜は、 ラジカル分子との未反応状態ではナノ金属粒子間の直接 接触による不意あるいは不要な金属結合を確実に防止し、 またラジカル分子の照 射により迅速かつ確実に除去されることにより、 ナノ金属粒子間の直接接触によ る金属結合を可能とする。 The nano metal particles are metal fine particles such as silver having a particle diameter of several nanometers to several hundred nanometers. Since such metal fine particles have extremely high surface energy, it is possible to generate metal bonds more reliably by simply removing the binder. As such a paste material containing gold or silver fine metal particles and an organic pinder, for example, a product sold by Harima Kasei Co., Ltd. under a trade name of nanopace can be used. ' It is desirable that each of the nano metal particles is covered with a protective film made of an organic material. The protective film reliably prevents unexpected or unnecessary metal bonds due to direct contact between nano metal particles in an unreacted state with radical molecules, and is removed quickly and reliably by irradiation with radical molecules. It enables metal bonding by direct contact between nano metal particles.
前記絶縁基板上へのパターン部の形成は、 インクジエツト方式による前記ぺー スト材料の吹き付けで行なうことができる。 また、 このパターン部の形成は、 米 国、 ォプトメック社のマスクレスメソスケーノレ材料堆積 (Maskless Mesoscale Material Deposition:M3D (商標) ) 装置 (米国特許第 7, 0 4 5 , 0 1 5号) を用 いて行うことができ、 あるいはその他の印刷方法を適宜採用することができる。 本発明の前記した形成方法は、 絶縁回路基板上の配線路の補修にも適用するこ とができる。 The pattern part can be formed on the insulating substrate by spraying the paste material by an ink jet method. In addition, this pattern portion is formed by maskless mesoscale material deposition (M 3 D (trademark)) apparatus (U.S. Pat. No. 7,045,015) manufactured by Optomek, USA. ) Or other printing methods can be employed as appropriate. The above-described forming method of the present invention can also be applied to repair of a wiring path on an insulating circuit board.
発明の効果  The invention's effect
本発明によれば、 酸素ラジカル分子とバインダの有機材料との化学反応を利用 してパインダを除去し、 このバインダの除去によるナノ金属粒子間の接触による 焼結によって導電路のような導電部が形成される。 したがって、 加熱炉ゃレーザ 光を用いることなく、 酸素ラジカル分子をパターン部に、 短時間、 照射.すること により、 被照射部の昇温を抑制してバインダを除去すると共に、 前記ナノ金属粒 子を焼結することができ、 これにより効率的に導電部を形成することができる。 図面の簡単な説明  According to the present invention, a binder is removed by utilizing a chemical reaction between an oxygen radical molecule and an organic material of a binder, and a conductive portion such as a conductive path is formed by sintering by contact between nano metal particles by removing the binder. It is formed. Therefore, by heating the pattern portion with oxygen radical molecules for a short time without using laser light in the heating furnace, the temperature of the irradiated portion is suppressed and the binder is removed. Thus, the conductive portion can be formed efficiently. Brief Description of Drawings
図 1は、 本発明の方法の各ステップを示すフローチャートである。  FIG. 1 is a flowchart showing the steps of the method of the present invention.
図 2は、 本発明の方法を実施する装置の概略図である。  FIG. 2 is a schematic diagram of an apparatus for carrying out the method of the present invention.
図 3は、 図 2に示した浄ィ匕ガス発生装置として用いられる大気プラズマ発生装 置の原理を概略的に示す断面図である。  FIG. 3 is a cross-sectional view schematically showing the principle of the atmospheric plasma generator used as the purified gas generator shown in FIG.
図 4は、 図 2に示した酸素ラジカル発生装置として用いられる大気プラズマ発 生装置の原理を概略的に示す断面図である。  FIG. 4 is a cross-sectional view schematically showing the principle of the atmospheric plasma generator used as the oxygen radical generator shown in FIG.
図 5は、本発明の方法により形成された導電路の電気特性を示す説明図である。 符号の説明 , FIG. 5 is an explanatory diagram showing the electrical characteristics of the conductive path formed by the method of the present invention. Explanation of symbols
1 0 配線形成装置  1 0 Wiring forming equipment
1 2 絶縁基板  1 2 Insulation substrate
1 4 導電路 (パターン部分)  1 4 Conduction path (pattern part)
1 6 浄化用大気プラズマ発生装置  1 6 Air plasma generator for purification
1 8 ペースト材料塗布装置  1 8 Paste material applicator
2 0 酸素ラジカル分子噴射装置 (大気プラズマ発生装置)  2 0 Oxygen radical molecule injection device (atmospheric plasma generator)
S 1 2 パターン部形成ステップ  S 1 2 Pattern part formation step
S 1 4 酸素ラジカル分子の照射ステップ 発明を実施するための最良の形態  S1 4 Oxygen radical molecule irradiation step BEST MODE
本発明に係る電気配線の形成方法は、 図 1に示されているように、 絶縁基板上 の配線を施す部分を予め浄化するステップ S 1 0と、 前記絶縁基板上に所望の配 線パターンに沿ってペースト材料を塗布することにより、 該ペースト材料でパタ 一ン部を形成する塗布ステップ S 1 2と、 前記絶縁基板上に形成された前記パタ ーン部に酸素ラジカル分子を照射するステップ S 1 4とを含む。  As shown in FIG. 1, the method for forming an electrical wiring according to the present invention includes a step S 10 for preliminarily purifying a portion to be wired on an insulating substrate, and a desired wiring pattern on the insulating substrate. A coating step S 12 for forming a pattern portion with the paste material by applying a paste material along the paste material, and a step S for irradiating the pattern portion formed on the insulating substrate with oxygen radical molecules Including 1 and 4.
浄ィ匕ステップ S 1 0では、 後述するように、 前記絶縁基板への浄化ガスの吹き 付けにより、 前記絶縁基板上の酸ィ匕物が除去される。 この浄化ステップ S 1 0と して、 例えば大気プラズマ発生装置からのプラズマガスを用いることができる。 浄化用大気プラズマ発生装置では、 プラズマ生成用ガスとして、 一酸化炭素ガ スあるいは水素ガスのような還元ガスが用いられる。 このような還元ガスを用い た大気プラズマ発生装置からのプラズマガスの吹き付けにより、 その照射部に残 存する酸化物がプラズマガスと化学反応を生じ、 これらが効果的に除去される。 また、 このようなプラズマガスは、 その照射部で 6 0 °C〜8 0 °Cの比較的低温を 示すことから、 照射部おょぴその周辺に加熱による損傷を与えることはない。 この浄化ステップ S 1 0に、 プラズマ装置に代えて適宜の他のクリーニング手 段を用いることができる。また、浄化ステップ S 1 0を不要とすることができる。 しかしながら、 引き続く塗布ステップ S 1 2でのペースト材料の前記絶縁基板へ の付着性を高め、 さらに形成される金属配線の前記絶縁基板への結合力を高める 上で、 何らかの浄化手段を採用することが望ましい。 In the purification step S 10, as described later, the oxides on the insulating substrate are removed by spraying the purified gas onto the insulating substrate. As the purification step S 10, for example, plasma gas from an atmospheric plasma generator can be used. In the atmospheric plasma generator for purification, a reducing gas such as carbon monoxide gas or hydrogen gas is used as the plasma generating gas. By blowing the plasma gas from the atmospheric plasma generator using such a reducing gas, the oxide remaining in the irradiated part causes a chemical reaction with the plasma gas, and these are effectively removed. In addition, such a plasma gas exhibits a relatively low temperature of 60 ° C. to 80 ° C. at the irradiated portion, and therefore the irradiated portion and its surroundings are not damaged by heating. In this purification step S 10, other appropriate cleaning means can be used instead of the plasma apparatus. Further, the purification step S 10 can be eliminated. However, the adhesion of the paste material to the insulating substrate in the subsequent coating step S 1 2 is increased, and the bonding force of the formed metal wiring to the insulating substrate is further increased. Above, it is desirable to adopt some sort of purification means.
塗布ステップ S 1 2では、 ナノ金属粒子と、 有機物からなるバインダとを含む ペースト材料が前記絶縁基板上で所望の配線パターンに沿って塗布される。  In the applying step S 1 2, a paste material containing nano metal particles and a binder made of an organic material is applied along the desired wiring pattern on the insulating substrate.
前記ペースト材料中のナノ金属粒子は、 数ナノないし数 1 0 0ナノの粒子径を 有する例えば金あるいは銀のような良好な導電性を示す金属微粒子である。 この ような金属微粒子は、 表面エネルギーが極めて高いので、 金属粒子が相互に直接 的に接触すると、 この接触によって金属焼結を生じる。  The nano metal particles in the paste material are fine metal particles having a particle size of several nanometers to several hundred nanometers and exhibiting good conductivity such as gold or silver. Since such metal fine particles have extremely high surface energy, when the metal particles are in direct contact with each other, this contact causes metal sintering.
前記ペースト材料中のバインダは、 前記絶縁基板上への前記ペースト材料の付 着力を高めることに加えて、 前記した不要かつ不意の金属焼結を防止すべく、 ナ ノ金属粒子間の E接接触を防止することにより、 前記金属粒子を焼結から保護す る作用をなす。 このようなバインダは、 有機バインダとして従来よく知られてい るように、酸素、炭素、水素おょぴ窒素のような有機物質により形成されている。 また、 前記したバインダによる保護作用を高める上で、 各ナノ金属粒子の表面を バインダの保護膜で覆うことが望ましい。  In addition to increasing the adhesion of the paste material onto the insulating substrate, the binder in the paste material has an E contact between the nano metal particles in order to prevent unnecessary and unexpected metal sintering. This prevents the metal particles from being sintered. Such a binder is formed of an organic material such as oxygen, carbon, hydrogen and nitrogen, as is well known as an organic binder. Further, in order to enhance the protective action by the binder, it is desirable to cover the surface of each nano metal particle with a binder protective film.
このようなペースト材料に、 ハリマ化成株式会社から販売されている 「ナノべ 一スト」 を用いることが望ましい。  It is desirable to use “Nanobest” sold by Harima Kasei Co., Ltd. as such paste material.
前記ペースト材料の塗布のために、 例えばィンクジェット方式を用いたノズル により、ペースト材料を吹き付けることができる。 また、 前記 M3D (商標) 装置 あるいはその他の印刷方法により、 適宜ペースト材料を前記絶縁基板上に塗布す ることができる。 また、 このペースト材料の所望箇所への塗布に、 所望箇所を選 択的に露出させる選択マスクを用いることができる。 For application of the paste material, the paste material can be sprayed, for example, by a nozzle using an ink jet method. In addition, a paste material can be appropriately applied onto the insulating substrate by the M 3 D (trademark) apparatus or other printing methods. In addition, a selective mask that selectively exposes the desired portion can be used for applying the paste material to the desired portion.
酸素ラジカル分子の照射ステップ S 1 4では、 酸素ラジカノレ分子またはそのガ スが、 前記絶縁基板上に塗布された前記ペースト材料からなるパターン部分に噴 射される。  In the oxygen radical molecule irradiation step S 14, the oxygen radical molecule or its gas is sprayed onto the pattern portion made of the paste material applied on the insulating substrate.
酸素ラジカル分子を含むガスは、 例えばプラズマ発生装置によって得ることが できる。 プラズマガスは高温であり、 全体的には電気的に中性を示すが、 該ガス 中には、 正負の荷電粒子、 イオンおょぴラジカル分子が共存する。 ラジカル分子 に酸素ラジカル分子を含むプラズマガスでは、 荷電粒子やイオンに比較して、 酸 素ラジカル分子の割合は比較的低い。 しかし、 このプラズマガスを冷却すると、 プラズマガス中の酸素ラジカル分子の割合は増加する。 本発明は、 基本的には、 この酸素ラジカル分子を利用することから、 冷却されて酸素ラジカル分子の割合 が出来るだけ高いガスを利用することが望ましい。 The gas containing oxygen radical molecules can be obtained by a plasma generator, for example. The plasma gas is high temperature and is electrically neutral as a whole, but positive and negative charged particles and ion-op radical molecules coexist in the gas. In a plasma gas that contains oxygen radical molecules in the radical molecules, the proportion of oxygen radical molecules is relatively low compared to charged particles and ions. However, when this plasma gas is cooled, The proportion of oxygen radical molecules in the plasma gas increases. Since the present invention basically uses this oxygen radical molecule, it is desirable to use a gas that is cooled and has as high a proportion of oxygen radical molecules as possible.
プラズマガスの照射により、 前記ペースト材料が酸素ラジカル分子の雰囲気中 に晒されると'、 酸素ラジカル分子と各有機物質との化学反応が生じる。 この化学 反応により、有機物質の中の水素は水になり、雰囲気中に放出される。 また炭素、 窒素あるいは酸素等はガスとなって、 同様に雰囲気中に放出される。  When the paste material is exposed to an atmosphere of oxygen radical molecules by plasma gas irradiation, a chemical reaction occurs between the oxygen radical molecules and each organic substance. By this chemical reaction, hydrogen in the organic substance becomes water and is released into the atmosphere. Carbon, nitrogen, oxygen, etc. become gas and are similarly released into the atmosphere.
有機物と酸素ラジカル分子との化学反応によって、 前記パインダの有機成分が 放出され、 分解されると、 前記バインダによって直接接触が妨げられていた前記 ナノ金属粒子が直接接触を生じる。 前記ナノ金属粒子は、 その表面エネルギーが 極めて高いことから、 その直接の相互接触によって焼結を生じる。 その結果、 前 記ナノ金属粒子の焼結によつて前記絶縁基板上に導電路が形成される。  When the organic component of the binder is released and decomposed by a chemical reaction between an organic substance and an oxygen radical molecule, the nano metal particles that have been prevented from direct contact by the binder are brought into direct contact. Since the surface energy of the nano metal particles is extremely high, sintering occurs due to direct mutual contact. As a result, a conductive path is formed on the insulating substrate by sintering the nano metal particles.
図 2は、 前記した本発明の配線形成方法を実施する配線形成装置 1 0の一例を 部分的に示す概略図である。  FIG. 2 is a schematic view partially showing an example of a wiring forming apparatus 10 for carrying out the above-described wiring forming method of the present invention.
配線形成装置 1 0は、 図 2に示す例では、 絶縁基板 1 2上の所望パターンに沿 つて導電路 1 4を形成するために使用されている。 配線形成装置 1 0は、 浄ィ匕用 大気プラズマ発生装置 1 6と、 ペースト材料塗布装置 1 8と、 酸素ラジカル分子 噴射装置 2 0とを含む。  In the example shown in FIG. 2, the wiring forming apparatus 10 is used to form the conductive path 14 along a desired pattern on the insulating substrate 12. The wiring forming apparatus 10 includes a purifier atmospheric plasma generating apparatus 16, a paste material applying apparatus 18, and an oxygen radical molecule injection apparatus 20.
浄ィ匕用大気プラズマ発生装置 1 6は、 図 3に示されているように、 上端がガス 導入口 2 2 aとなり、 また下端がプラズマ噴射口 2 2 bとなる例えばガラスのよ うな誘電体からなる誘電体管 2 2と、 該誘電体管の長手方向へ相互に間隔 d 1を 覆いて配置され、 それぞれが誘電体管 2 2を取り卷いて配置される一対の電極 2 4、 2 4と、 該両電極間に交番電圧あるいはパルス状電圧を印加するための電源 装置 2 6とを備える。 .  As shown in FIG. 3, the atmospheric plasma generator for clean water 16 has a dielectric material such as glass whose upper end is a gas inlet 2 2 a and whose lower end is a plasma outlet 2 2 b. A dielectric tube 2 2 and a pair of electrodes 2 4, 2 4 arranged so as to cover each other in the longitudinal direction of the dielectric tube and covering a distance d 1, each surrounding the dielectric tube 2 2 And a power supply device 26 for applying an alternating voltage or a pulse voltage between the electrodes. .
誘電体管 2 2のガス導入口 2 2 aには、 開閉パルプ 2 8を経て、 一酸化炭素ガ スあるいは水素ガスのような還元ガス G 1および窒素あるいはアルゴン等のキャ リアガス C aが案內可能である。 誘電体管 2 2は、 図 2に示したように、 そのプ ラズマ噴射口 2 2 bが導電路 1 4を形成すべき絶縁基板 1 2の表面へ向けられて いる。 開閉バルブ 2 8が開放されると、 キャリアガス源 3 2からのキャリアガス C a と共に還元ガス源 3 0からの還元ガス G 1力 誘電体管 2 2內をそのプラズマ嘖 射口 2 2 bに向けて案内される。 この還元ガス G 1が案内される誘電体管 2 2の 流路には、 電¾¾装置 2 6からの電圧が印加される一対の電極 2 4、 2 4によって 該両電極間 d 1に対応する領域に誘電体バリァ放電による放電空間領域が形成さ れている。 そのため、 誘電体管 2 2のガス導入口 2 2 aからプラズマ噴射口 2 2 bへ向けて案内される還元ガス G 1は、 この放電空間領域を経る過程でプラズマ 状態におかれる。 その結果、 この還元ガス G 1をプラズマ源とするプラズマガス が絶縁基板 1 2上に噴射される。 At the gas inlet 2 2 a of the dielectric tube 2 2, a reducing gas G 1 such as carbon monoxide gas or hydrogen gas and a carrier gas C a such as nitrogen or argon are conceived through the opening and closing pulp 28. Is possible. As shown in FIG. 2, the dielectric tube 22 has its plasma injection port 2 2 b directed to the surface of the insulating substrate 12 on which the conductive path 14 is to be formed. When the on-off valve 2 8 is opened, the carrier gas C a from the carrier gas source 3 2 and the reducing gas G 1 force from the reducing gas source 3 0 G 1 force Dielectric tube 2 2 內 is turned into its plasma injection port 2 2 b Guided towards. In the flow path of the dielectric tube 2 2 through which the reducing gas G 1 is guided, a pair of electrodes 2 4 and 2 4 to which a voltage from the electrical apparatus 26 is applied corresponds to the distance d 1 between both electrodes. A discharge space region is formed in the region by dielectric barrier discharge. Therefore, the reducing gas G 1 guided from the gas introduction port 2 2 a of the dielectric tube 2 2 toward the plasma injection port 2 2 b is put in a plasma state in the process of passing through this discharge space region. As a result, a plasma gas using the reducing gas G 1 as a plasma source is injected onto the insulating substrate 12.
この誘電体管 2 2からのプラズマガスの噴射により、 該プラズマガスの照射を 受けた部分に残存する酸化物が前記したようにプラズマガスとの化学反応によ 1、 効果的に除去される。 このとき、 還元ガス G 1をプラズマガス源とする大気 プラズマでは、 照射部の温度が 6 0 °C〜8 0 °Cに保持されるので、 絶縁基板 1 2 上の照射部おょぴその周辺に加熱による損傷を与えることはない。  By the injection of the plasma gas from the dielectric tube 22, the oxide remaining in the portion irradiated with the plasma gas is effectively removed 1 by the chemical reaction with the plasma gas as described above. At this time, in the atmospheric plasma using the reducing gas G 1 as a plasma gas source, the temperature of the irradiated part is maintained at 60 ° C. to 80 ° C. Therefore, the irradiated part on the insulating substrate 1 2 Will not be damaged by heating.
浄化用大気プラズマ発生装置 1 6の誘電体管 2 2すなわち大気プラズマ噴射ノ ズル 2 2は、 図示しないが従来よく知られた自動制御機構を用いて、 所望の配,镍 パターンに沿って自動的に移動させることができる。  The dielectric tube 2 2 of the atmospheric plasma generator for purification 1 2, that is, the air plasma injection nozzle 2 2, is automatically shown in the desired arrangement and pattern using a well-known automatic control mechanism (not shown). Can be moved to.
還元ガス G 1をガス源とする大気プラズマガスの噴射により浄化された絶縁基 板 1 2上の領域には、 ペースト材料塗布装置 1 8のノズル 3 4の嘖出口から前記 したペースト材料が供給される。 このペースト材料塗布装置 1 8のノズル 3 4を 浄化用大気プラズマ発生装置 1 6の前記ノズル 2 2に追従させることにより、 絶 縁基板 1 2上の浄化された領域上に、 順次、 前記ペースト材料を線状に供給する ことができる。  The paste material is supplied from the nozzle 3 4 outlet of the paste material application device 18 to the region on the insulating substrate 12 2 purified by the injection of atmospheric plasma gas using the reducing gas G 1 as a gas source. The By making the nozzle 3 4 of this paste material coating device 1 8 follow the nozzle 2 2 of the purification atmospheric plasma generation device 16, the paste material is sequentially applied onto the purified region on the insulating substrate 1 2. Can be supplied linearly.
前記ペースト材料により絶縁基板 1 2上に線状に形成された配線パターン部分 は、 酸素ラジカル分子噴射装置 2 0により酸素ラジカル分子の照射を受ける。 こ の酸素ラジカル分子噴射装置 2 0は、 図 4に示す例では、 基本的には、 図 3に示 した大気プラズマ発生装置と同様な大気プラズマ発生装置が用いられている。 両 大気プラズマ発生装置の根本的な相違点は、 浄化用大気プラズマ発生装置 1 6が プラズマガス源として還元ガス源 3 0を用いたのに対し、 酸素ラジカル分子噴射 装置 2 0として用いる大気プラズマ発生装置は、 プラズマガス源として、 酸素あ るいは空気のような酸化ガス源を用いる点にある。 A wiring pattern portion formed linearly on the insulating substrate 12 by the paste material is irradiated with oxygen radical molecules by the oxygen radical molecule injection device 20. In the example shown in FIG. 4, this oxygen radical molecule injection device 20 basically uses an atmospheric plasma generator similar to the atmospheric plasma generator shown in FIG. The fundamental difference between the two atmospheric plasma generators is that the purifying atmospheric plasma generator 16 uses a reducing gas source 30 as the plasma gas source, while oxygen radical molecule injection The atmospheric plasma generator used as the apparatus 20 is that an oxidizing gas source such as oxygen or air is used as the plasma gas source.
すなわち、 酸素ラジカル分子噴射装置として用いられる大気プラズマ発生装置 2 0は、 図 4に示されているように、 ガラスのような誘電体からなる誘電体管 3 6と、 該誘電体管の長手方向へ相互に間隔 d 2をおいて配置され、 それぞれが誘 電体管 3 6を取り卷いて配置される一対の電極 3 8、 3 8と、 該両電極間に交番 電圧あるいはパルス状電圧を印加するための電源装置 4 0とを備える。  That is, the atmospheric plasma generator 20 used as an oxygen radical molecular jetting apparatus includes a dielectric tube 36 made of a dielectric material such as glass and a longitudinal direction of the dielectric tube, as shown in FIG. A pair of electrodes 3 8 and 3 8 which are arranged with a distance d 2 from each other, and are arranged around the dielectric tube 3 6, and an alternating voltage or a pulsed voltage is applied between the electrodes. Power supply device 40 for performing the operation.
誘電体管 3 6の上端であるガス導入口 3 6 aには、 開閉バルブ 4 2を経て、 酸 素ガスあるいは空気のような酸ィ匕ガス G 2および窒素あるいはアルゴン等のキヤ リアガス C aが案内される。 誘電体管 3 6は、 図 2に示したように、 そのプラズ マ噴射口 3 6 bが前記配線パターン部分に向けられている。  The gas inlet 36a, which is the upper end of the dielectric tube 36, has an open / close valve 42 and an oxygen gas G2 such as oxygen gas or air and a carrier gas Ca such as nitrogen or argon. Guided. As shown in FIG. 2, the dielectric tube 36 has its plasma injection port 36 b directed toward the wiring pattern portion.
開閉バルブ 4 2が開放されると、 キャリアガス源 4 6からのキヤリァガス C a と共に酸化ガス源 4 4からの酸ィヒガス G 2が誘電体管 3 6内をそのプラズマ噴射 口 3 6 bに向けて案内される。 この酸ィ匕ガス G 2が案内される誘電体管 3 6の流 路には、 電源装置 4 0からの電圧が印加される一対の電極 3 8、 3 8間 d 2に対 応する領域に誘電体バリア放電による放電空間領域が形成されている。そのため、 前記した大気プラズマ発生装置 1 6におけると同様に、 誘電体管 3 6のガス導入 口 3 6 aからプラズマ噴射口 3 6 bへ向けて案内される酸化ガス G 2は、 この放 電空間領域を経る過程でプラズマ状態におかれる。  When the on-off valve 4 2 is opened, the carrier gas source 4 6 and the carrier gas C a together with the oxidizing gas source G 4 from the oxidizing gas source 4 4 pass through the dielectric tube 3 6 toward its plasma injection port 3 6 b. Guided. In the flow path of the dielectric tube 36 through which the oxygen gas G 2 is guided, there is a region corresponding to d 2 between the pair of electrodes 38 and 38 to which the voltage from the power supply device 40 is applied. A discharge space region is formed by dielectric barrier discharge. Therefore, as in the above-described atmospheric plasma generator 16, the oxidizing gas G 2 guided from the gas inlet 3 6 a of the dielectric tube 3 6 toward the plasma outlet 3 6 b is in this discharge space. In the process of passing through the region, it is put into a plasma state.
この酸ィ匕ガス G 2をプラズマ源とするプラズマが絶縁基板 1 2上に噴射される と、 前記したように、 該プラズマ中に含まれる酸素ラジカルが前記配線パターン 部分のペースト材料中の有機バインダと化学反応を生じる。 その結果、 前記有機 バインダは、 主として酸素ラジカルとの化学反応により除去される。 前記ペース ト材料で形成された前記配線パターン部分から有機バインダが除去されると、 該 配線パターン部分中の前記ナノ金属粒子が相互に接触する。 この相互接触が生じ ると、 前記したように前記ナノ金属粒子の表面エネルギーにより、 前記ナノ金属 粒子は焼結を生じ、 導電路 1 4が形成される。  When the plasma using the oxygen gas G 2 as a plasma source is sprayed onto the insulating substrate 12, as described above, oxygen radicals contained in the plasma are converted into an organic binder in the paste material of the wiring pattern portion. Cause a chemical reaction. As a result, the organic binder is removed mainly by a chemical reaction with oxygen radicals. When the organic binder is removed from the wiring pattern portion formed of the paste material, the nano metal particles in the wiring pattern portion come into contact with each other. When this mutual contact occurs, the nanometal particles are sintered by the surface energy of the nanometal particles as described above, and the conductive path 14 is formed.
酸素ラジカル分子噴射装置 2 0の誘電体管すなわちノズル 3 6をペースト材料 塗布装置 1 8のノズル 3 4から所定の間隔をおいて該ノズルに追従させることが 望ましい。 It is possible to cause the dielectric tube or nozzle 36 of the oxygen radical molecular injection device 20 to follow the nozzle at a predetermined interval from the nozzle 34 of the paste material coating device 18. desirable.
また、 酸化ガス G 2をプラズマガス源とする大気プラズマ発生装置 2 0のノズ ル 3 6から嘖射されるプラズマガス中の酸素ラジカル分子の含有率を高め、 絶縁 基板 1 2の不要な温度上昇を抑制する上で、 誘電体管 3 6のプラズマ噴射口 3 6 bから噴射されるプラズマガス流の温度をできる限り低下させることが望まし い。 プラズマ噴射口 3 6 bから噴射されるプラズマ流の温度を例えば 2 0 0 °Cと することにより、 酸素ラジカル分子の含有率を高め、 これにより、 周辺部の過熱 を招くことなく前記配線パターン部分の有機パインダを効果的に除去することが できるので、 例えば 3 0秒程度の短時間のプラズマガスの吹き付けによってナノ 金属粒子を焼結することができる。  In addition, the content of oxygen radical molecules in the plasma gas sprayed from the nozzle 36 of the atmospheric plasma generator 20 using the oxidizing gas G 2 as the plasma gas source is increased, and the temperature rise of the insulating substrate 12 is unnecessary. In order to suppress this, it is desirable to reduce the temperature of the plasma gas flow injected from the plasma injection port 3 6 b of the dielectric tube 36 as much as possible. By setting the temperature of the plasma flow injected from the plasma injection port 36 b to, for example, 200 ° C., the content rate of oxygen radical molecules is increased, and thereby the wiring pattern portion is not caused without overheating of the peripheral portion. Therefore, the nano metal particles can be sintered by spraying plasma gas in a short time of about 30 seconds, for example.
各大気プラズマ発生装置 1 6、 2 0の運転条件は、 例えば、 電源装置 2 6、 4 0から一対の電極 2 4、 2 4、 3 8、 3 8に印加される電圧の立ち上がり時間ま たは立ち下がり時間の少なくとも一方が 1 0 0 秒以下であり、 電源装置 2 6、 4 0からの電圧 Vの波形の繰り返し周波数は 0 . 5〜 1 0 0 0 k Hであり、 一対 の電極 2 4、 2 4、 3 8、 3 8間に適用される電界強度は、 0 . 5〜 2 0 0 k V/cm の範囲で適宜選択することができる。 また、 各ノズノレ 2 2、 3 6のプラズマ噴射 口 2 2 b、 3 0 bと絶縁基板 1 2との間隔を例えば 1〜 2 0 mmの範囲で調整す ることが望ましい。  The operating conditions of each atmospheric plasma generator 1 6, 20 are, for example, the rise time of the voltage applied from the power supply 2 6, 40 to the pair of electrodes 2 4, 2 4, 3 8, 3 8 or At least one of the falling times is 100 seconds or less, the repetition frequency of the waveform of the voltage V from the power supply devices 26 and 40 is 0.5 to 100 kHz, and the pair of electrodes 2 4 , 2, 3 8, and 38 can be appropriately selected within the range of 0.5 to 200 kV / cm 2. Further, it is desirable to adjust the distance between the plasma nozzles 2 2 b and 30 b of each of the nozzles 22 and 36 and the insulating substrate 12 within a range of 1 to 20 mm, for example.
図 5の表は、 前記ペースト材料からなる配線パターン部分へ大気プラズマ発生 装置 2 0からの酸素ラジカル分子の噴射によって、 配線路が形成されることを示 す。 図 5に示す例では、 素ガラス上に前記ペースト材料からなる配線パターン部 分としてパッド付きのラインを描画した。 前記ペースト材料の厚さ寸法はほぼ 4 O n mであり、 パッド間のライン長は約 3 mmに設定された。 各ライン幅は、 そ れぞれ 1 0 m、 2 0 πιおよび 3 0 μ πιに設定された。 このような各配線パタ ーン部分に大気プラズマ発生装置 2 0からの酸素ラジカル分子を約 1 0秒間噴射 して配線を形成した後、ライン毎にそれぞれのパッド間のライン抵抗を測定した。 図 5に示すように、いずれのライン幅の配線路においても、抵抗値が測定され、 導電路が形成されたことが確認できた。 また、 約 1 0秒という極めて短時間のプ ラズマ照射作業で前記ペースト材料中の金属材料の焼結を達成することができ た。 The table in FIG. 5 shows that a wiring path is formed by jetting oxygen radical molecules from the atmospheric plasma generator 20 to the wiring pattern portion made of the paste material. In the example shown in FIG. 5, a line with a pad is drawn on the raw glass as a wiring pattern portion made of the paste material. The thickness of the paste material was approximately 4 O nm, and the line length between pads was set to approximately 3 mm. Each line width was set to 10 m, 2 0 πι, and 30 μππι, respectively. After forming the wiring by injecting oxygen radical molecules from the atmospheric plasma generator 20 to each wiring pattern portion for about 10 seconds, the line resistance between each pad was measured for each line. As shown in Fig. 5, the resistance value was measured in the wiring path of any line width, and it was confirmed that the conductive path was formed. In addition, the sintering of the metal material in the paste material can be achieved by an extremely short plasma irradiation operation of about 10 seconds. It was.
前記した各プラズマ発生装置として、 真空プラズマ発生装置を用いることがで きる。 しかしながら、前記したような大気プラズマ発生装置を用いることにより、 加工を受ける絶縁基板 1 2を真空チャンバ内に配置することなく大気中で処理で きることから、 作業および装置の簡素化を図る上で、 大気プラズマ発生装置を用 いることが望ましい。  As each of the plasma generators described above, a vacuum plasma generator can be used. However, by using the atmospheric plasma generator as described above, the insulating substrate 12 to be processed can be processed in the air without being placed in the vacuum chamber. It is desirable to use an atmospheric plasma generator.
また、 前記したところでは、 本発明を配線路の形成に適用した例について説明 したが、 配線路の断線部分の補修に本発明を適用することができる。 この場合、 回路基板の補修すべき配線欠損部分にナノ金属粒子と有機物からなるバインダと を含むペースト材料が供給され、 供給された前記ペース ト材料が酸素ラジカル分 子またはそのガスに晒される。  In the above description, the example in which the present invention is applied to the formation of a wiring path has been described. However, the present invention can be applied to repair of a broken portion of a wiring path. In this case, a paste material containing nano metal particles and an organic binder is supplied to the wiring defect portion to be repaired on the circuit board, and the supplied paste material is exposed to oxygen radical molecules or its gas.
また、 ナノ金属粒子と、 有機物からなるバインダとを含むペース ト材料で形成 されたパターン部分に酸素ラジカル分子を吹き付けることに代えて、活性酸素(ォ ゾン) あるいはこれを含むガスを吹き付けることにより、 ペースト材料中の有機 物パインダを除去し、 これによりペース ト材料中のナノ金属粒子を相互に接触さ せて焼結させることができる。 産業上の利用可能性  In addition, instead of spraying oxygen radical molecules on a pattern portion formed of a paste material containing nano metal particles and a binder made of an organic material, by spraying active oxygen (zone) or a gas containing this, The organic binder in the paste material can be removed, so that the nano metal particles in the paste material can be brought into contact with each other and sintered. Industrial applicability
本発明は、 上記実施例に限定されず、 その趣旨を逸脱しない限り、 種々変更する ことができる。 ' The present invention is not limited to the above embodiments, and various modifications can be made without departing from the spirit of the present invention. '

Claims

請求の範囲 The scope of the claims
1 . ナノ金属粒子と、 有機物からなるバインダとを含むペースト材料で絶縁基板 上に配線のためのパターン部を形成すること、 前記ぺースト材料で形成されたパ ターン部分を酸素ラジカル分子またはそのガスに晒すことを含む、 電気配線の形 成方法。 1. A pattern part for wiring is formed on an insulating substrate with a paste material containing nano metal particles and an organic binder, and the pattern part formed with the paste material is replaced with an oxygen radical molecule or a gas thereof. A method of forming electrical wiring, including exposure to heat.
2 . 前記パタ一ン部に向けて酸素ラジカル分子を噴射することを特徴とする請求 項 1に記載の形成方法。 2. The forming method according to claim 1, wherein oxygen radical molecules are sprayed toward the pattern portion.
3 . 前記酸素ラジカル分子はプラズマ発生装置を用いて形成される、 請求項 1に 記載の方法。 3. The method of claim 1, wherein the oxygen radical molecules are formed using a plasma generator.
4 . 前記プラズマ発生装置は大気プラズマ発生装置である、 請求項 3に記載の方 法。 4. The method of claim 3, wherein the plasma generator is an atmospheric plasma generator.
5 . 前記ナノ金属粒子は、 数ナノないし数 1 0 0ナノの粒子径を有する、 請求項 1に記載の方法。 5. The method according to claim 1, wherein the nano metal particles have a particle diameter of several nanometers to several hundred nanometers.
6 . 前記ナノ金属粒子は有機物からなる保護膜で覆われている、 請求項 5に記载 の方法。 6. The method according to claim 5, wherein the nano metal particles are covered with a protective film made of an organic material.
7 . 前記絶縁基板上へのパターン部の形成は、 ィンクジェット方式による前記ぺ ースト材料の吹き付けで行われる、 請求項 5に記載の方法。 7. The method according to claim 5, wherein the pattern portion is formed on the insulating substrate by spraying the paste material by an ink jet method.
8 . 回路基板の補修すべき配線欠損部分にナノ金属粒子と有機物からなるバイン ダとを含むペースト材料を供給すること、 供給された前記ペースト材料を酸素ラ ジカル分子またはそのガスに晒すことを含む電気配線補修方法。 8. Supplying paste material containing nano metal particles and organic binder to the wiring defect portion to be repaired on the circuit board, and exposing the supplied paste material to oxygen radical molecules or its gas Electrical wiring repair method.
PCT/JP2006/311686 2006-06-06 2006-06-06 Method of forming electrical wiring and method of repairing the same WO2007141883A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008520117A JPWO2007141883A1 (en) 2006-06-06 2006-06-06 Electrical wiring formation method and repair method thereof
PCT/JP2006/311686 WO2007141883A1 (en) 2006-06-06 2006-06-06 Method of forming electrical wiring and method of repairing the same
TW096116789A TW200820856A (en) 2006-06-06 2007-05-11 Method of forming electrical wiring and method of repairing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/311686 WO2007141883A1 (en) 2006-06-06 2006-06-06 Method of forming electrical wiring and method of repairing the same

Publications (1)

Publication Number Publication Date
WO2007141883A1 true WO2007141883A1 (en) 2007-12-13

Family

ID=38801154

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/311686 WO2007141883A1 (en) 2006-06-06 2006-06-06 Method of forming electrical wiring and method of repairing the same

Country Status (3)

Country Link
JP (1) JPWO2007141883A1 (en)
TW (1) TW200820856A (en)
WO (1) WO2007141883A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009283547A (en) * 2008-05-20 2009-12-03 Dainippon Printing Co Ltd Forming method and forming apparatus for conductive pattern, and conductive substrate
JP2009290112A (en) * 2008-05-30 2009-12-10 Fujifilm Corp Conductive inorganic film, method for manufacturing thereof, wiring board, and semiconductor device
JP2010219076A (en) * 2009-03-12 2010-09-30 Dainippon Printing Co Ltd Method of manufacturing conductive substrate and the conductive substrate
CN102573311A (en) * 2010-12-16 2012-07-11 日本麦可罗尼克斯股份有限公司 Wire forming device
NL1039815C2 (en) * 2012-09-21 2014-03-24 Stichting Dutch Polymer Inst Atmospheric plasma sintering.
CN110798990A (en) * 2019-11-22 2020-02-14 广东工业大学 Repair method of fine circuit
CN111615868A (en) * 2018-09-17 2020-09-01 株式会社考恩斯特 Method for forming fine wiring by laser chemical vapor deposition
CN113382977A (en) * 2019-01-29 2021-09-10 花王株式会社 Method for removing organic matter component from ceramic molded body

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI697953B (en) * 2018-06-28 2020-07-01 雷立強光電科技股份有限公司 Cleaning method
TWI760059B (en) * 2021-01-12 2022-04-01 國立陽明交通大學 Method for repairing a circuit of electronic device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003167526A (en) * 2001-11-29 2003-06-13 Matsushita Electric Works Ltd Method for connecting circuit body to panel for flat panel display, and flat panel display
JP2004134596A (en) * 2002-10-10 2004-04-30 Sharp Corp Method for correcting defect of conduction part
JP2004218055A (en) * 2003-01-17 2004-08-05 Harima Chem Inc Method of depositing conductive gold film substituted for electroless gold plating film using conductive gold paste
JP2005135982A (en) * 2003-10-28 2005-05-26 Matsushita Electric Works Ltd Circuit board and manufacturing method therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003167526A (en) * 2001-11-29 2003-06-13 Matsushita Electric Works Ltd Method for connecting circuit body to panel for flat panel display, and flat panel display
JP2004134596A (en) * 2002-10-10 2004-04-30 Sharp Corp Method for correcting defect of conduction part
JP2004218055A (en) * 2003-01-17 2004-08-05 Harima Chem Inc Method of depositing conductive gold film substituted for electroless gold plating film using conductive gold paste
JP2005135982A (en) * 2003-10-28 2005-05-26 Matsushita Electric Works Ltd Circuit board and manufacturing method therefor

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009283547A (en) * 2008-05-20 2009-12-03 Dainippon Printing Co Ltd Forming method and forming apparatus for conductive pattern, and conductive substrate
JP2009290112A (en) * 2008-05-30 2009-12-10 Fujifilm Corp Conductive inorganic film, method for manufacturing thereof, wiring board, and semiconductor device
JP2010219076A (en) * 2009-03-12 2010-09-30 Dainippon Printing Co Ltd Method of manufacturing conductive substrate and the conductive substrate
CN102573311A (en) * 2010-12-16 2012-07-11 日本麦可罗尼克斯股份有限公司 Wire forming device
NL1039815C2 (en) * 2012-09-21 2014-03-24 Stichting Dutch Polymer Inst Atmospheric plasma sintering.
WO2014046536A1 (en) * 2012-09-21 2014-03-27 Stichting Dutch Polymer Institute Atmospheric plasma sintering
CN111615868A (en) * 2018-09-17 2020-09-01 株式会社考恩斯特 Method for forming fine wiring by laser chemical vapor deposition
CN111615868B (en) * 2018-09-17 2023-11-21 苏州科韵激光科技有限公司 Fine wiring forming method using laser chemical vapor deposition
CN113382977A (en) * 2019-01-29 2021-09-10 花王株式会社 Method for removing organic matter component from ceramic molded body
CN110798990A (en) * 2019-11-22 2020-02-14 广东工业大学 Repair method of fine circuit

Also Published As

Publication number Publication date
JPWO2007141883A1 (en) 2009-10-15
TW200820856A (en) 2008-05-01

Similar Documents

Publication Publication Date Title
WO2007141883A1 (en) Method of forming electrical wiring and method of repairing the same
JP3365511B2 (en) Method and apparatus for joining with brazing material
JP3312377B2 (en) Method and apparatus for joining with brazing material
US6444943B2 (en) Method and apparatus for controlling plasma flow
AU2014349815B2 (en) Method for generating an atmospheric plasma jet and atmospheric plasma minitorch device
Noh et al. Femtosecond and nanosecond laser sintering of silver nanoparticles on a flexible substrate
JP4322728B2 (en) Water treatment system
JP3899597B2 (en) Atmospheric pressure plasma generation method and apparatus, and surface treatment method
TW201110214A (en) Method for the removal of surface oxides by electron attachment
JP2009092850A (en) Circuit defect repairing method and device of liquid crystal display
JP2006520088A (en) Method and apparatus for pretreatment of substrates to be bonded
WO2016208110A1 (en) Optical treatment device and optical treatment method
JP4164967B2 (en) Plasma processing apparatus and plasma processing method
JP2008231471A (en) Film-forming method using progressive plasma, plasma-baked substrate, and apparatus for forming film with plasma
JP2002094221A (en) Normal pressure pulse plasma treatment method and its device
WO2012063474A1 (en) Plasma treatment device and plasma treatment method
Tseng et al. Single-step fiber laser reduction and patterning of graphene oxide films for ceramic-based heaters
TW201628047A (en) Apparatus for the plasma treatment of surfaces and a method for treating surfaces with plasma
JP2005129692A (en) Device and method for treating electronic component
JP2009123533A (en) Conductive inorganic film and method of manufacturing the same, wiring board, and semiconductor device
JP2010067839A (en) Method and device for reforming surface by micro electric discharge
JPH04362178A (en) Manufacture of completely or patially coated gold layer
JPWO2005038080A1 (en) NOZZLE WITH NANO-SIZE HEATER, ITS MANUFACTURING METHOD, AND MICRO THIN FILM
TW201533270A (en) Apparatus and method for processing of metal surfaces with an etching liquid
JP4816034B2 (en) Processing method and processing apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06747275

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008520117

Country of ref document: JP

122 Ep: pct application non-entry in european phase

Ref document number: 06747275

Country of ref document: EP

Kind code of ref document: A1