WO2007141353A1 - System, and quantum key parallel distribution method by means of subcarrier multiplexing - Google Patents

System, and quantum key parallel distribution method by means of subcarrier multiplexing Download PDF

Info

Publication number
WO2007141353A1
WO2007141353A1 PCT/ES2007/000323 ES2007000323W WO2007141353A1 WO 2007141353 A1 WO2007141353 A1 WO 2007141353A1 ES 2007000323 W ES2007000323 W ES 2007000323W WO 2007141353 A1 WO2007141353 A1 WO 2007141353A1
Authority
WO
WIPO (PCT)
Prior art keywords
radio frequency
quantum key
frequency subcarriers
receiver
optical signal
Prior art date
Application number
PCT/ES2007/000323
Other languages
Spanish (es)
French (fr)
Inventor
José CAPMANY FRANCOY
Arturo Ortigosa Blanch
Original Assignee
Universidad Politecnica De Valencia
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad Politecnica De Valencia filed Critical Universidad Politecnica De Valencia
Publication of WO2007141353A1 publication Critical patent/WO2007141353A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2575Radio-over-fibre, e.g. radio frequency signal modulated onto an optical carrier
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/0816Key establishment, i.e. cryptographic processes or cryptographic protocols whereby a shared secret becomes available to two or more parties, for subsequent use
    • H04L9/0852Quantum cryptography
    • H04L9/0858Details about key distillation or coding, e.g. reconciliation, error correction, privacy amplification, polarisation coding or phase coding

Definitions

  • the present invention applies to the field of telecommunications, in particular optical communications, which deals with secure information transmission systems. Its application extends to the industrial sectors that use these networks for the transmission of data, and more specifically, to the industrial sectors that use said networks for the transmission of data in a secure manner, by encrypting the information based on the laws of quantum mechanics
  • the second type of system proposed by Townsend et al in 1993, was based on the use of delays in the sent photons and their analysis through the use of balanced fiber interferometers.
  • the main problem to work with these systems is to ensure that fiber interferometers do not get out of order due to mechanical and environmental factors.
  • the third type of QKD system was proposed in 1999 by J. M. Mérolla et al. ["Quantum cryptographic device using single-photon phase modulation", Physical Review A, VoI. 60, Num. 3, September 1999].
  • Said system encodes the information in the side bands that appear in a light signal modulated by a radiofrequency wave. In this way, and using four different phases to encode the zeros and some of the key, these systems can be used to implement the BB84 protocol.
  • Subcarrier multiplexing is a technique used in other fields, such as microwave photonics for the remote control of antennas and the optical processing of radio signals, in which several radiofrequency carriers simultaneously modulate the same energy source, usually a laser diode
  • the present invention seeks to solve the problem of the low bit transfer rate present in the systems used to date.
  • the present invention relates to a new frequency coding and transmission / reception system and method, in which the light is modulated not only by a radio frequency signal, but by a set of radio frequency signals or subcarriers, using the subcarrier multiplexing model.
  • Said system is formed by a transmitter and a receiver.
  • known subcarrier multiplexing techniques are adapted to frequency coded QKD ["Quantum Key Distribution"] systems to generate in parallel different quantum keys each associated with the phase of a radiofrequency signal, and thus improve the key sending rate between the transmitter and the receiver by combining the information received encoded in the phase of different radio frequency subcarriers.
  • the invention allows to increase the degree of security between transmitter and receiver.
  • Said transmitter comprises a light source that provides an optical carrier at an optical frequency; N radio frequency generators each generating a respective radio frequency subcarrier, where N is a natural number and N> 1, and which include means for randomly and independently varying the relative phase of said radio frequency subcarriers between several phase values; means for encoding a qubit in said relative phase of each radio frequency subcarrier; means for combining the generated radio frequency subcarriers, forming a combined signal; and means for modulating the optical carrier to the optical frequency by said combined signal, so that an optical signal multiplexed by N radio frequency subcarriers is obtained.
  • a receiver for a quantum key distribution system comprising: means for receiving an optical signal multiplexed by N radio frequency subcarriers, where N is a natural number and N>1; N radiofrequency generators that each generate a respective radiofrequency signal, where N is a natural number and N> 1 and that include means for randomly and independently varying the relative phase of each of said radiofrequency signals between several phase values; means to combine radio frequency signals forming a combined signal; means for modulating said optical signal received by said combined signal, so that the generated radio frequency signals interfere with the radio frequency subcarriers multiplexing the received optical signal; means for filtering and detecting the result of said interference; where each radio frequency subcarrier that multiplexes the received optical signal has a qubit encoded in its relative phase.
  • one aspect of the invention relates to a quantum key distribution system comprising the aforementioned transmitter and receiver.
  • Another aspect of the invention is a quantum key transmission method comprising the steps of: generating an optical carrier at an optical frequency; generate N radio frequency subcarriers, where N is a natural number and N> 1; randomly and independently vary the relative phase of said radio frequency subcarriers; encode a qubit in said relative phase of each radio frequency subcarrier; combine the radio frequency subcarriers and form a combined signal; and modulating the optical carrier to the optical frequency by said combined signal, so that an optical signal multiplexed by N radio frequency subcarriers is obtained.
  • a subject of the invention is also a quantum key reception method comprising the steps of: receiving an optical signal multiplexed by N radio frequency subcarriers, where N is a natural number and N> 1; generate N radio frequency signals where
  • N is a natural number and N>1; randomly and independently vary the relative phase of each of said radio frequency signals; combine the signals of radiofrequency generated in the previous stage and form a combined signal; modulate the optical signal received by said combined signal, so that the radio frequency signals interfere with the radio frequency subcarriers multiplexing the received optical signal; filter and detect the result of such interference; where each of the radio frequency subcarriers multiplexing the received optical signal has a qubit encoded in its relative phase.
  • Figure 1 shows a transmitter for a quantum key distribution system according to the present invention.
  • FIG. 2 shows in detail one of the conventional radio frequency subcarrier generators used.
  • Figure 3 shows a transmitter for a subcarrier multiplexing system with two subcarriers, as well as the frequency response of the output of said transmitter.
  • Figure 4 represents a receiver for a quantum key distribution system according to the present invention.
  • Figure 5 represents another receiver for a quantum key distribution system according to the present invention.
  • Figure 6 represents another receiver for a quantum key distribution system according to the present invention.
  • Figure 7 represents another receiver for a quantum key distribution system according to the present invention.
  • Figure 8 shows a scheme that explains the concept of overlapping Bragg networks.
  • Figure 9 shows a quantum key distribution system according to the present invention.
  • Figures 10, 11 and 12 show an example of quantum key transmission and reception simulation according to the present invention, using the BB84 protocol with two frequencies.
  • the quantum key parallel distribution system based on subcarrier multiplexing that is the object of the The present invention is formed by a transmitter (1) that includes N signal generators or radio frequency subcarriers (Gi, G 2 , ..., G N ), where N is a natural number and N> 1.
  • Each of the radio frequency subcarrier generators comprises a voltage controlled oscillator (in English, VCO), which provides independent control of the phase of the subcarrier it generates.
  • the radio frequency subcarrier Ai generated by the subcarrier generator Gi has a frequency Q 1 ⁇ ⁇ Q and a phase O 1
  • the radio frequency subcarrier A2 generated by the subcarrier generator G 2 has a frequency ⁇ 2 " ⁇ 0 and a phase O 2 , etc.
  • each radio frequency subcarrier (Ai, A 2 , ..., A N ) by means of the active control of their respective phase (O 1 , ⁇ 2 , ...), the information is encoded of a qubit or quantum bit, which as already explained, is defined as a quantum unit of information measurement that can take two determined values that can be identified as "0" and "1".
  • each radio frequency subcarrier (Ai, A 2 , ..., A N ) has a qubit encoded.
  • a non-limiting example of the coding of qubits in the subcarrier phase is given below.
  • the transmitter (1) randomly and independently varies the phase (O 1 , O 2 , ...) of the electrical signals used to direct the modulator between several phase values.
  • phase values (0, ⁇ / 2, ⁇ and 3 ⁇ / 2) are chosen, which form a pair of conjugate bases (0, ⁇ ) and ( ⁇ / 2, 3 ⁇ / 2).
  • they may choose another number of phase values, such as two, eight or others.
  • This is because the transmission of the quantum key is controlled by a protocol that can be associated with schemes of two states, four states or more. There are many protocols that control and impose the patterns of transmission and reception of quantum key. Among the best known are the protocol BB84 and B92. A non-limiting example of the transmission and reception of quantum key according to one of these protocols is provided below.
  • FIG 2 shows in detail one of the conventional radio frequency (Gi) subcarrier generators used and referred to in Figure 1 as "VCOs".
  • Each of said radio frequency subcarrier generators (Gi, G 2 , ..., G N ) comprises at least one radio frequency oscillator (3), a random bit generator (4) and a voltage controlled radio frequency offset ( 5).
  • the radio frequency oscillator (3) oscillates around a radio frequency ⁇ .
  • the voltage-controlled radio frequency phase shifter (5) controlled by the random bit generator (4), varies the phase of the oscillator radio frequency signal (3).
  • the random bit generator (4) allows the phase ⁇ of the radio frequency subcarrier produced by the subcarrier generator (VCO) to be randomly varied between a certain number of phase values.
  • This number of phase values is four in a particular embodiment of the present invention: 0, ⁇ / 2, ⁇ and 3 ⁇ / 2, but may be different in other embodiments (for example, but not limited to, two: 0 and ⁇ ) .
  • the radio frequency subcarrier generated by the VCO has a frequency ⁇ ⁇ a> 0 and a phase ⁇ . This radio frequency subcarrier it subsequently contributes to the subcarrier-modulated optical signal with two side bands centered on ⁇ or ⁇ ⁇ , and on ⁇ or + ⁇ . and a phase ⁇ present in each of the two lateral bands.
  • each subcarrier generator at a different radio frequency comprising a radio frequency oscillator (3), a random bit generator (4) and a voltage controlled radiofrequency phase shifter (5), create a quantum key.
  • Said quantum key will be transmitted around the oscillator radiofrequency frequency (3), and the qubits will be given by the set of phase values generated by the voltage controlled radio frequency offset (5), which is controlled by the generator random bits (4).
  • a set of phase values will be identified with the qubit value "0" and different ones will be identified with the qubit value "1".
  • the random phase values are four: 0, ⁇ / 2, ⁇ and 3 ⁇ / 2.
  • the values of phase 0 and ⁇ / 2 correspond to qubits of value "0”
  • the values of phase ⁇ and 3 ⁇ / 2 correspond to qubits of value "1”.
  • a linearizer (7) can be placed, which ensures that the response of the modulator (8) is always within a linear area and that the modulator (8) does not generate higher order bands.
  • the light modulator (8) modulates an optical carrier ⁇ 0 provided by a light source (9).
  • a light source 9
  • any type of known modulator can be used, as well as any type of constellation.
  • the system supports phase, amplitude, or more general light modulators in which phase and amplitude components exist.
  • the modulation scheme is not limited to one input and one output, but the system supports configurations with more than one output and / or input.
  • Said optical carrier ⁇ 0 is, in principle, any wavelength belonging to the commonly used transmission windows, that is, the first transmission window (around 850 nm), the second transmission window (around 1310 nm ) or the third transmission window (around 1550 nm).
  • the optical carrier ⁇ ) 0 is provided from a light source that can be, for example, a laser diode emitting at the corresponding wavelength, but the light source is not limited to said laser diode, but can Be any other.
  • Figure 3 shows an example transmitter for a system with multiplexing of subcarrier, as well as the frequency response of the output of said transmitter, in which two radio frequency subcarriers (Ai, A 2 ) modulate an optical carrier of co 0 optical frequency.
  • the spectrum of the multiplexed subcarrier signal (10) is represented on the right side of Figure 3, and comprises a central band, corresponding to the frequency of the optical carrier CO 0 and lateral bands on both sides of the carrier, corresponding to the two radio frequency subcarriers.
  • Each radio frequency subcarrier ⁇ frequency it contributes to the signal modulated with two components at the frequencies (D 0 -Q 1 and in y or + ⁇ ( .
  • each of the subcarriers is defined by its frequency (which in the spectrum of Figure 3 is represented by ⁇ 15 ⁇ 2 ) and its relative phase, in which the information of each qubit or quantum bit is encoded.
  • said optical signal ⁇ 0 multiplexed by the radio frequency subcarriers (Ai, A 2 , ..., A N ) is emitted (10) so that it travels along an optical transmission medium , which is preferably optical fiber, but in a particular embodiment it may be, for example, free space or any other means of optical transmission.
  • This transmitter (1) therefore provides two possibilities:
  • this transmitter (1) provides the possibility of simultaneously transmitting several totally independent quantum keys associated with each subcarrier (Ai, A 2 , ..., A N ).
  • each qubit forms an independent quantum key.
  • the transmitter (1) allows at least one of the qubits encoded in the radio frequency signals (Ai, A 2 , ..., A N ) to correspond to a quantum key independent of the other quantum keys associated with the rest of qubits encoded in the rest of radio frequency signals (Ai, A 2 , ..., A N ).
  • each subcarrier is associated with a different quantum key, and that respective subcarrier associated with each respective quantum key is used to send, one by one, each of the qubits that form said quantum key. That is, at each instant of time a qubit is transmitted in each of the subcarriers, and after a certain number of transmissions, the sending of each of the quantum keys is completed.
  • this transmitter (1) provides the possibility of transmitting a single larger quantum key.
  • the quantum key is formed by several qubits that are transmitted in parallel, each encoding in a subcarrier, so that the entire quantum key is transmitted faster, increasing the transmission speed of said key. That is, the transmitter (1) allows sending simultaneously
  • the transmitter (1) allows all or part of the qubits encoded in each of the subcarriers to be part of the same quantum key. In the event that the quantum key is formed by a number of qubits greater than the number of subcarriers, this process is repeated until the complete transmission of the quantum key is completed.
  • the system allows the different keys that are sent simultaneously to fulfill some previously determined relationship between them, so that the receiver uses groups. of keys to different radio frequencies or combinations thereof, thus increasing the security between transmitter and receiver.
  • FIG 4 represents a receiver (2) for a quantum key distribution system according to the present invention.
  • This receiver (2) receives an optical signal (10 ') modulated by N radio frequency subcarriers, where N is a natural number and N> 1.
  • the receiver (2) therefore has means to receive this optical signal (10 ').
  • Each of the radio frequency subcarriers multiplexing the optical carrier has a quantum bit or qubit encoded in its relative phase. As explained above, each of these qubits can belong to a quantum key independent of the other quantum keys associated with the rest of qubits encoded in the rest of radio frequency subcarriers, or correspond to the same quantum key transmitted simultaneously (in parallel) .
  • the receiver (2) also comprises N radio frequency generators (Gi ', G 2 ', -, G N '), where N is a natural number and N> 1, similar to those used in the transmitter (1), which generate radio frequency signals or subcarriers (B 1 , B 2 , ..., B N ) similar to those generated in the transmitter (1).
  • phase values between which the phase is varied can be, without this being a limitation, two phase values (0, ⁇ ) or four phase values (0, ⁇ / 2, ⁇ and 3 ⁇ / 2), may be other phase values.
  • radio frequency signals (Bi, B 2 , ..., B N ) generated in the receiver (2) are combined in a signal combiner (6 '), obtaining a combined signal (B ⁇ ) and used to modulate a the optical signal received (10 ').
  • a linearizer (V) can be placed between the signal combiner (6 ') and the modulator (8'), which ensures that the response of the modulator (8 ') is always within a linear zone and that the modulator (8') does not generate higher order bands.
  • the modulator (8 ') modulates said optical signal received (10') by said combined signal (B ⁇ ), so that the radiofrequency signals (Bi, B 2 , ..., B N ) generated interfere with the subcarriers of radio frequency multiplexing the received optical signal (10 ').
  • the result of interference (H ') at different frequencies is filtered and detected independently.
  • phase values or others both in the transmitter and in the receiver, depends on the quantum key transmission protocol chosen.
  • the BB84 protocol uses four phase values (0, ⁇ / 2, ⁇ and 3 ⁇ / 2) in the transmitter and two phase values (0, ⁇ ) in the receiver, while the B92 protocol uses two values of phase (0, ⁇ ) in the transmission and two (0, ⁇ ) in the reception.
  • Other protocols may use, for example, six phase values in the transmission and / or reception, or a number of different phase values.
  • the transmitter modulates the optical carrier with two RF signals, Q 1 and ⁇ 2 , with electrical phases ⁇ A1 and ⁇ A2 respectively.
  • the emitter sends the qubits using the relative phase of the bands chosen randomly between 4 phase values (0, ⁇ ) and ( ⁇ / 2, 3 ⁇ / 2), which form a pair of conjugate bases.
  • the signal When the signal reaches the receiver, it modulates the signal at the same frequencies that the transmitter has used, but with different phases ⁇ B ⁇ and ⁇ B2 respectively, which vary randomly between the values (0, ⁇ ).
  • Figure 10 shows the simulation of the optical spectrum (frequencies relative to ⁇ 0 in GHz) the simplest case, which is the one in which the emitter decides to encode both RF tones with the same value.
  • ⁇ A ⁇ - ⁇ B ⁇ is 0 or ⁇ and, therefore, only two of the four bands are present at the detection in the receiver. Thus, it is clear how the two keys can be sent independently without one interfering with the other.
  • the filtering stage comprises a circulator (12) followed by 2N + 1 commercial generic bandpass filters (where N is the number of radio frequency signals generated by N radio frequency generators where N a natural number and N> 1, and where the 2N + 1 bandpass filters (13) are designed to allow the passage of the 2N + 1 frequency components that form the received optical signal (10 ').
  • commercial generic bandpass filters they are, for example, filters
  • the filtering step comprises a circulator (12) followed by 2N + 1 Bragg networks recorded in fiber and arranged in parallel (14), where N is the number of radiofrequency signals generated by N radio frequency generators and where the 2N + 1 bandpass filters (13) are designed to allow the passage of the 2N + 1 frequency components that form the received optical signal (10 ').
  • Each of the Bragg networks is centered on each of the frequencies corresponding to the generated sidebands.
  • Bragg fiber optic networks act as a pass-band optical filter and can be manufactured in the region of interest. In addition, like conventional filters, it has tuning capability.
  • the filtering stage comprises a circulator followed by different Bragg networks recorded in fiber and arranged in series (15), where N is the number of radiofrequency signals generated by N radiofrequency generators and where the 2N + 1 bandpass filters (13) are designed to allow the 2N + 1 frequency components that form the received optical signal (10 ') to pass -
  • the signal reflected by each of the Bragg networks is recovered thanks to the circulator ( 12).
  • Each of the Bragg networks is centered on each of the frequencies corresponding to the generated sidebands.
  • the filtering stage comprises a circulator (12) followed by different superimposed Bragg networks recorded in fiber and arranged in series (16).
  • the signal reflected by each of the Bragg networks is recovered thanks to the circulator.
  • Each of the overlapping Bragg networks is centered on each of the frequencies corresponding to the generated sidebands.
  • Figure 8 illustrates a scheme explaining the Bragg networks concept superimposed.
  • the resulting superimposed Bragg network (16) is the equivalent of the sum of the different Bragg networks.
  • the detection stage (18) used is based on avalanche photodiodes and / or photon counters.
  • transmitter (1) and receiver (2) are able to distill a quantum key, formed by one or more qubits, valid and secure to apply to your communication.
  • This key distillation stage carried out by a key distillation software.
  • the transmitter sends N ⁇ 0 "and" 1 "encoded in the RF phase.
  • the values of phase 0 and ⁇ / 2 encode the ⁇ 0" and the phase values ⁇ and 3 ⁇ / 2 encode the "1".
  • the signal When the signal reaches the receiver, it modulates the signal at the same frequency and with random phase values, such as ⁇ / 2 and ⁇ .
  • the sender and receiver use the BB84 protocol with only two RF tones (figures 10 to 12), depending on the value of the phase difference between transmitter and receiver ⁇ , the band is detected or not. Since the protocol is known, and also because the receiver knows the phase values that he has used, the key sent by the sender can be calculated.
  • the transmitter randomly sends a zero "0" encoded in the phase 0 value.
  • the phase difference is ⁇ , which means that the receiver has detected only the minor band of the carrier.
  • the sender randomly sends a "1" encoded in the phase value ⁇ .
  • phase value
  • the receiver Upon reaching the receiver, it randomly chooses a phase value ⁇ / 2. Therefore, the phase difference is ⁇ / 2, which means that the receiver may have detected both modulation bands. With this information, the receiver discards said qubit, since it cannot identify with certainty what value the sender has sent.
  • Figure 9 shows a parallel quantum key distribution system based on subcarrier multiplexing formed by a transmitter (1), an optical transmission medium (17) and a receiver (2).
  • each of the transmitted and received encoded qubits can be part of a quantum key independent of the rest of the quantum keys associated with the rest of the encoded qubits, or each of the transmitted and received encoded qubits can be part of the same quantum key, transmitting each qubit in a different subcarrier, in parallel.
  • the transmitter (1) sends qubits that form independent keys for the different channels associated to each radio frequency subcarrier.
  • the receiver (2) receives the different keys and uses a protocol agreed with the transmitter (1) previously to, by comparing quantum keys, evaluate the degree of privacy of the communication.
  • This protocol by which bases between sender and receiver are agreed can consist, for example, of operations of logical sum, use of control qubits, or other modes determined by the protocol in question.
  • the message to be protected is exchanged, encoded with the key that is exchanged securely in the quantum key distribution system.
  • information on the bases used by the transmitter (1) is also exchanged to carry out the process of extending privacy between transmitter and receiver and distilling the password. This information is shared once the password has been sent through the secure channel.
  • the unsecured channel may be a telephone line, an optical fiber, free space, or any means of transmission or communication between transmitter and receiver known to those skilled in the art.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Security & Cryptography (AREA)
  • Theoretical Computer Science (AREA)
  • Optical Communication System (AREA)

Abstract

Transmitter, receiver and system formed by the transmitter and receiver, and method for parallel quantum key distribution transmission and reception using subcarrier multiplexing. Known subcarrier multiplexing techniques are adapted to frequency-encoded QKD systems in order to generate and to send, in parallel, qubits that form part of different keys or of one and the same quantum key. Each qubit is encoded in the phase of a radiofrequency subcarrier. The key-sending rate between transmitter and receiver is improved.

Description

SISTEMA Y PROCEDIMIENTO DE DISTRIBUCIÓN EN PARALELO DE CLAVE CUÁNTICA MEDIANTE MULTIPLEXACIÓN DE SUBPORTADORA SYSTEM AND DISTRIBUTION PROCEDURE IN PARALLEL OF QUANTILE KEY BY MULTIPLEXATION OF SUBPORTERS
D E S C R I P C I Ó ND E S C R I P C I Ó N
CAMPO DE LA INVENCIÓNFIELD OF THE INVENTION
La presente invención se aplica al campo de las telecomunicaciones, en particular de las comunicaciones ópticas, que trata los sistemas de transmisión segura de información. Su aplicación se extiende a los sectores industriales que emplean dichas redes para la transmisión de datos, y más concretamente, a los sectores industriales que emplean dichas redes para la transmisión de datos de forma segura, mediante el cifrado de la información basado en las leyes de la mecánica cuántica.The present invention applies to the field of telecommunications, in particular optical communications, which deals with secure information transmission systems. Its application extends to the industrial sectors that use these networks for the transmission of data, and more specifically, to the industrial sectors that use said networks for the transmission of data in a secure manner, by encrypting the information based on the laws of quantum mechanics
ANTECEDENTES DE LA INVENCIÓNBACKGROUND OF THE INVENTION
El aumento del comercio electrónico ha hecho que acciones tan habituales como el uso de un cajero automático o la compra de articulos por Internet estén basadas en complicadas técnicas de cifrado de la información. Hoy en dia estas técnicas se basan o bien en compartir una clave secreta entre transmisor y receptor, o bien en la llamada criptografía con clave pública, cuya seguridad se basa en la dificultad que implica el separar números grandes en sus factores primos. La primera de estas alternativas entraña la dificultad de que dicha clave permanezca secreta y sólo transmisor y receptor sean conocedores de ella. A su vez, la segunda alternativa es cada vez menos segura debido a la presencia de ordenadores cada vez más potentes, que agilizan el procesado matemático. Por todo ello, así como por la proliferación del uso de las técnicas de cifrado, se hace necesario buscar nuevas técnicas para codificar la información y asegurar así su privacidad.The increase in e-commerce has made such common actions as the use of an ATM or the purchase of items online be based on complicated information encryption techniques. Today these techniques are based either on sharing a secret key between transmitter and receiver, or on the so-called public key cryptography, whose security is based on the difficulty of separating large numbers into their prime factors. The first of these alternatives entails the difficulty that said code remains secret and only transmitter and receiver are aware of it. In turn, the second alternative is less and less secure due to the presence of increasingly powerful computers, which speed up the processing mathematical. For all these reasons, as well as for the proliferation of the use of encryption techniques, it is necessary to look for new techniques to encode the information and thus ensure your privacy.
En 1984, Charles Bennet y Gilíes Brassard propusieron una nueva técnica, el protocolo conocido como BB84, en la que teóricamente la clave está protegida totalmente de ataques. Así, se definen los bits cuánticos o qubits como unidades cuánticas de medida de información que pueden tomar dos valores determinados que pueden identificarse como "0" y "1". Dicha técnica proponía codificar los ceros y unos de las claves clásicas en el estado de polarización de fotones individuales. Gracias a las leyes de la mecánica cuántica dichos bits cuánticos o qubits no pueden ser interceptados, ya que si un espía los midiera, su estado cambiaría inmediatamente, porque un sistema cuántico no puede ser medido sin perturbar al sistema en sí. Del mismo modo, el teorema de la imposibilidad de clonación indica que la persona que ataca el enlace no puede conservar una copia exacta de la clave que manda el transmisor y mandarle una copia al receptor.In 1984, Charles Bennet and Gilíes Brassard proposed a new technique, the protocol known as BB84, in which the key is theoretically protected from attacks. Thus, quantum bits or qubits are defined as quantum units of information measurement that can take two determined values that can be identified as "0" and "1". This technique proposed to code the zeros and some of the classic keys in the polarization state of individual photons. Thanks to the laws of quantum mechanics, these quantum bits or qubits cannot be intercepted, since if a spy measured them, their status would change immediately, because a quantum system cannot be measured without disturbing the system itself. Similarly, the cloning impossibility theorem indicates that the person attacking the link cannot keep an exact copy of the key sent by the transmitter and send a copy to the receiver.
Desde 1984 se han desarrollado varios sistemas de distribución de clave cuántica (QKD en su acrónimo en inglés) . Las tecnologías fotónicas han demostrado ser un medio adecuado para la implementación de sistemas QKD para la distribución de claves entre usuarios a varios cientos de kilómetros. Hasta la fecha, se puede considerar que existen tres tipos principales de sistemas basados en técnicas fotónicas:Since 1984, several quantum key distribution systems (QKD) have been developed. Photonic technologies have proven to be an adequate means for the implementation of QKD systems for the distribution of keys among users several hundred kilometers away. To date, three main types of systems based on photonic techniques can be considered:
En 1992 Bennet y colaboradores demostraron la utilización de la polarización de los fotones en un sistema QKD. Este sistema se enfrenta al problema de conservar la polarización de los estados a través del enlace de fibra óptica.In 1992 Bennet et al. Demonstrated the use of photon polarization in a QKD system. This system faces the problem of preserving the polarization of states through the fiber optic link
El segundo tipo de sistema, propuesto por Townsend y colaboradores en 1993, se basaba en el uso de retardos en los fotones enviados y su análisis mediante el uso de interferómetros de fibra balanceados. El principal problema para trabajar con estos sistemas consiste en conseguir que los interferómetros de fibra no se desajusten debido a factores mecánicos y ambientales.The second type of system, proposed by Townsend et al in 1993, was based on the use of delays in the sent photons and their analysis through the use of balanced fiber interferometers. The main problem to work with these systems is to ensure that fiber interferometers do not get out of order due to mechanical and environmental factors.
El tercer tipo de sistema QKD fue propuesto en 1999 por J. M. Mérolla y colaboradores ["Quantum cryptographic device using single-photon phase modulation", Physical Review A, VoI. 60, Num. 3, September 1999] . Dicho sistema codifica la información en las bandas laterales que aparecen en una señal de luz modulada por una onda de radiofrecuencia. De esta manera, y utilizando cuatro fases distintas para codificar los ceros y unos de la clave, estos sistemas pueden utilizarse para implementar el protocolo BB84.The third type of QKD system was proposed in 1999 by J. M. Mérolla et al. ["Quantum cryptographic device using single-photon phase modulation", Physical Review A, VoI. 60, Num. 3, September 1999]. Said system encodes the information in the side bands that appear in a light signal modulated by a radiofrequency wave. In this way, and using four different phases to encode the zeros and some of the key, these systems can be used to implement the BB84 protocol.
Un problema común a estos sistemas es que permiten una tasa de transferencia de bits muy baja. La clave es codificada en estados cuánticos (normalmente fotones) de forma que, para preservar la seguridad del sistema, sólo un fotón puede llevar la información de cada qubit. Debido a la dificultad de crear fuentes de fotones que garanticen la emisión de un único fotón cada vez, se debe recurrir a fuentes semiclásicas donde la energía es reducida a niveles tales que la probabilidad de que un pulso lleve sólo un fotón desciende al 20%. En consecuencia, aproximadamente el 80% de los pulsos enviados están vacíos de información. Si a este hecho se le añade la necesidad de utilizar en el destino un protocolo de destilación de clave, la tasa de transferencia de bits se reduce aún más. - A -A common problem with these systems is that they allow a very low bit rate. The key is encoded in quantum states (usually photons) so that, to preserve the security of the system, only one photon can carry the information of each qubit. Due to the difficulty of creating photon sources that guarantee the emission of a single photon at a time, semiclassical sources must be used where the energy is reduced to levels such that the probability that a pulse carries only one photon drops to 20%. Consequently, approximately 80% of the pulses sent are empty of information. If the need to use a key distillation protocol at the destination is added to this, the bit transfer rate is further reduced. - TO -
Por otra parte, es conocida la técnica de la multiplexación de subportadoras . La multiplexación de subportadoras es una técnica usada en otros campos, como la fotónica de microondas para el control remoto de antenas y el procesado óptico de señales de radio, en la que varias portadoras de radiofrecuencia modulan simultáneamente a una misma fuente de energia, normalmente un diodo láser.On the other hand, the subcarrier multiplexing technique is known. Subcarrier multiplexing is a technique used in other fields, such as microwave photonics for the remote control of antennas and the optical processing of radio signals, in which several radiofrequency carriers simultaneously modulate the same energy source, usually a laser diode
OBJETO DE LA INVENCIÓNOBJECT OF THE INVENTION
La presente invención trata de resolver el problema de la baja tasa de transferencia de bits presente en los sistemas utilizados hasta la fecha. Asi, la presente invención se refiere a un nuevo sistema y procedimiento de codificación en frecuencia y transmisión/ recepción, en el que la luz es modulada no sólo por una señal de radiofrecuencia, sino por un conjunto de señales o subportadoras de radiofrecuencia, usando el modelo de multiplexación de subportadora. Dicho sistema está formado por un transmisor y un receptor. En la presente invención se adaptan las técnicas conocidas de multiplexación de subportadora a los sistemas QKD ["Quantum Key Distribution"] codificados en frecuencia para generar en paralelo distintas claves cuánticas asociadas cada una a la fase de una señal de radiofrecuencia, y de esta forma mejorar la tasa de envío de clave entre el transmisor y el receptor combinando la información recibida codificada en la fase de diferentes subportadoras de radiofrecuencia.The present invention seeks to solve the problem of the low bit transfer rate present in the systems used to date. Thus, the present invention relates to a new frequency coding and transmission / reception system and method, in which the light is modulated not only by a radio frequency signal, but by a set of radio frequency signals or subcarriers, using the subcarrier multiplexing model. Said system is formed by a transmitter and a receiver. In the present invention known subcarrier multiplexing techniques are adapted to frequency coded QKD ["Quantum Key Distribution"] systems to generate in parallel different quantum keys each associated with the phase of a radiofrequency signal, and thus improve the key sending rate between the transmitter and the receiver by combining the information received encoded in the phase of different radio frequency subcarriers.
Además de la ventaja anterior, si se envían simultáneamente diferentes claves que cumplan alguna relación entre ellas, de forma que el receptor pueda utilizar grupos de claves a diferentes radiofrecuencias o combinaciones de éstas, la invención permite aumentar el grado de seguridad entre transmisor y receptor.In addition to the previous advantage, if different keys are sent simultaneously that meet any relationship between them, so that the receiver can use groups of keys at different radio frequencies or combinations of these, the invention allows to increase the degree of security between transmitter and receiver.
RESUMEN DE LA INVENCIÓNSUMMARY OF THE INVENTION
Uno de los aspectos de la presente invención se refiere a un transmisor para un sistema de distribución de clave cuántica. Dicho transmisor comprende una fuente de luz que proporciona una portadora óptica a una frecuencia óptica; N generadores de radiofrecuencia que generan cada uno una subportadora de radiofrecuencia respectiva, donde N es un número natural y N>1, y que incluyen medios para variar aleatoria e independientemente la fase relativa de dichas subportadoras de radiofrecuencia entre varios valores de fase; medios para codificar un qubit en dicha fase relativa de cada subportadora de radiofrecuencia; medios para combinar las subportadoras de radiofrecuencia generadas, formando una señal combinada; y medios para modular la portadora óptica a la frecuencia óptica por dicha señal combinada, de forma que se obtiene una señal óptica multiplexada por N subportadoras de radiofrecuencia .One of the aspects of the present invention relates to a transmitter for a quantum key distribution system. Said transmitter comprises a light source that provides an optical carrier at an optical frequency; N radio frequency generators each generating a respective radio frequency subcarrier, where N is a natural number and N> 1, and which include means for randomly and independently varying the relative phase of said radio frequency subcarriers between several phase values; means for encoding a qubit in said relative phase of each radio frequency subcarrier; means for combining the generated radio frequency subcarriers, forming a combined signal; and means for modulating the optical carrier to the optical frequency by said combined signal, so that an optical signal multiplexed by N radio frequency subcarriers is obtained.
Otro de los aspectos de la presente invención se refiere a un receptor para un sistema de distribución de clave cuántica que comprende: medios para recibir una señal óptica multiplexada por N subportadoras de radiofrecuencia, donde N es un número natural y N>1; N generadores de radiofrecuencia que generan cada uno una señal de radiofrecuencia respectiva, donde N es un número natural y N>1 y que incluyen medios para variar aleatoria e independientemente la fase relativa de cada una de dichas señales de radiofrecuencia entre varios valores de fase; medios para combinar las señales de radiofrecuencia formando una señal combinada; medios para modular dicha señal óptica recibida por dicha señal combinada, de forma que las señales de radiofrecuencia generadas interfieren con las subportadoras de radiofrecuencia que multiplexan a la señal óptica recibida; medios de filtrado y de detección del resultado de dicha interferencia; donde cada subportadora de radiofrecuencia que multiplexa a la señal óptica recibida tiene codificado un qubit en su fase relativa.Another aspect of the present invention relates to a receiver for a quantum key distribution system comprising: means for receiving an optical signal multiplexed by N radio frequency subcarriers, where N is a natural number and N>1; N radiofrequency generators that each generate a respective radiofrequency signal, where N is a natural number and N> 1 and that include means for randomly and independently varying the relative phase of each of said radiofrequency signals between several phase values; means to combine radio frequency signals forming a combined signal; means for modulating said optical signal received by said combined signal, so that the generated radio frequency signals interfere with the radio frequency subcarriers multiplexing the received optical signal; means for filtering and detecting the result of said interference; where each radio frequency subcarrier that multiplexes the received optical signal has a qubit encoded in its relative phase.
Además, un aspecto de la invención se refiere a un sistema de distribución de clave cuántica que comprenda el transmisor y el receptor anteriormente mencionados.In addition, one aspect of the invention relates to a quantum key distribution system comprising the aforementioned transmitter and receiver.
Otro aspecto de la invención trata de un procedimiento de transmisión de clave cuántica que comprende las etapas de: generar una portadora óptica a una frecuencia óptica; generar N subportadoras de radiofrecuencia, donde N es un número natural y N>1; variar aleatoria e independientemente la fase relativa de dichas subportadoras de radiofrecuencia; codificar un qubit en dicha fase relativa de cada subportadora de radiofrecuencia; combinar las subportadoras de radiofrecuencia y formar una señal combinada; y modular la portadora óptica a la frecuencia óptica por dicha señal combinada, de forma que se obtenga una señal óptica multiplexada por N subportadoras de radiofrecuencia.Another aspect of the invention is a quantum key transmission method comprising the steps of: generating an optical carrier at an optical frequency; generate N radio frequency subcarriers, where N is a natural number and N> 1; randomly and independently vary the relative phase of said radio frequency subcarriers; encode a qubit in said relative phase of each radio frequency subcarrier; combine the radio frequency subcarriers and form a combined signal; and modulating the optical carrier to the optical frequency by said combined signal, so that an optical signal multiplexed by N radio frequency subcarriers is obtained.
La invención tiene también por objeto un procedimiento de recepción de clave cuántica que comprende las etapas de: recibir una señal óptica multiplexada por N subportadoras de radiofrecuencia, donde N es un número natural y N>1; generar N señales de radiofrecuencia, dondeA subject of the invention is also a quantum key reception method comprising the steps of: receiving an optical signal multiplexed by N radio frequency subcarriers, where N is a natural number and N> 1; generate N radio frequency signals where
N es un número natural y N>1; variar aleatoria e independientemente la fase relativa de cada una de dichas señales de radiofrecuencia; combinar las señales de radiofrecuencia generadas en la etapa anterior y formar una señal combinada; modular la señal óptica recibida por dicha señal combinada, de forma que las señales de radiofrecuencia interfieren con las subportadoras de radiofrecuencia que multiplexan a la señal óptica recibida; filtrar y detectar el resultado de dicha interferencia; donde cada una de las subportadoras de radiofrecuencia que multiplexan a la señal óptica recibida tienen codificado un qubit en su fase relativa.N is a natural number and N>1; randomly and independently vary the relative phase of each of said radio frequency signals; combine the signals of radiofrequency generated in the previous stage and form a combined signal; modulate the optical signal received by said combined signal, so that the radio frequency signals interfere with the radio frequency subcarriers multiplexing the received optical signal; filter and detect the result of such interference; where each of the radio frequency subcarriers multiplexing the received optical signal has a qubit encoded in its relative phase.
BREVE DESCRIPCIÓN DE LAS FIGURASBRIEF DESCRIPTION OF THE FIGURES
Con objeto de ayudar a una mejor comprensión de las caracteristicas del invento de acuerdo con un ejemplo preferente de realización práctica del mismo y para complementar esta descripción, se acompaña como parte integrante de la misma un juego de dibujos, cuyo carácter es ilustrativo y no limitativo. En estos dibujos:In order to help a better understanding of the features of the invention according to a preferred example of practical realization thereof and to complement this description, a set of drawings is attached as an integral part thereof, the character of which is illustrative and not limiting . In these drawings:
La figura 1 muestra un transmisor para un sistema de distribución de clave cuántica según la presente invención.Figure 1 shows a transmitter for a quantum key distribution system according to the present invention.
La figura 2 muestra en detalle uno de los generadores de subportadoras de radiofrecuencia convencionales empleados.Figure 2 shows in detail one of the conventional radio frequency subcarrier generators used.
La figura 3 muestra un transmisor para un sistema con multiplexación de subportadora con dos subportadoras, así como la respuesta en frecuencia de la salida de dicho transmisor.Figure 3 shows a transmitter for a subcarrier multiplexing system with two subcarriers, as well as the frequency response of the output of said transmitter.
La figura 4 representa un receptor para un sistema de distribución de clave cuántica según la presente invención. La figura 5 representa otro receptor para un sistema de distribución de clave cuántica según la presente invención.Figure 4 represents a receiver for a quantum key distribution system according to the present invention. Figure 5 represents another receiver for a quantum key distribution system according to the present invention.
La figura 6 representa otro receptor para un sistema de distribución de clave cuántica según la presente invención.Figure 6 represents another receiver for a quantum key distribution system according to the present invention.
La figura 7 representa otro receptor para un sistema de distribución de clave cuántica según la presente invención.Figure 7 represents another receiver for a quantum key distribution system according to the present invention.
La figura 8 muestra un esquema que explica el concepto de redes de Bragg superpuestas.Figure 8 shows a scheme that explains the concept of overlapping Bragg networks.
La figura 9 muestra un sistema de distribución de clave cuántica según la presente invención.Figure 9 shows a quantum key distribution system according to the present invention.
Las figuras 10, 11 y 12 muestran un ejemplo de simulación de transmisión y recepción de clave cuántica según la presente invención, usando el protocolo BB84 con dos frecuencias.Figures 10, 11 and 12 show an example of quantum key transmission and reception simulation according to the present invention, using the BB84 protocol with two frequencies.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓNDETAILED DESCRIPTION OF THE INVENTION
Como puede apreciarse en la figura 1, el sistema de distribución en paralelo de clave cuántica basado en la multiplexación de subportadora que es objeto de la presente invención está formado por un transmisor (1) que incluye N generadores de señales o subportadoras de radiofrecuencia (Gi, G2, ..., GN) , donde N es un número natural y N>1. Cada uno de los generadores de subportadoras de radiofrecuencia comprende una oscilador controlado por tensión (en inglés, VCO) , que proporciona un control independiente de la fase de la subportadora que genera. Asi, la subportadora de radiofrecuencia Ai generada por el generador de subportadora Gi presenta una frecuencia Q1 << ωQ y una fase O1, la subportadora de radiofrecuencia A2 generada por el generador de subportadora G2 presenta una frecuencia Ω2 « ω0 y una fase O2, etc.As can be seen in Figure 1, the quantum key parallel distribution system based on subcarrier multiplexing that is the object of the The present invention is formed by a transmitter (1) that includes N signal generators or radio frequency subcarriers (Gi, G 2 , ..., G N ), where N is a natural number and N> 1. Each of the radio frequency subcarrier generators comprises a voltage controlled oscillator (in English, VCO), which provides independent control of the phase of the subcarrier it generates. Thus, the radio frequency subcarrier Ai generated by the subcarrier generator Gi has a frequency Q 1 << ω Q and a phase O 1 , the radio frequency subcarrier A2 generated by the subcarrier generator G 2 has a frequency Ω 20 and a phase O 2 , etc.
En la fase relativa de cada una de dichas subportadoras de radiofrecuencia (Ai, A2, ..., AN) , mediante el control activo de su fase respectiva (O1, Φ2,...), se codifica la información de un qubit o bit cuántico, que como ya se ha explicado, se define como una unidad cuántica de medida de información que puede tomar dos valores determinados que pueden identificarse como "0" y "1". Asi, cada subportadora de radiofrecuencia (Ai, A2, ..., AN) lleva codificado un qubit. Más adelante se proporciona un ejemplo no limitante de la codificación de los qubits en la fase de las subportadoras.In the relative phase of each of said radio frequency subcarriers (Ai, A 2 , ..., A N ), by means of the active control of their respective phase (O 1 , Φ 2 , ...), the information is encoded of a qubit or quantum bit, which as already explained, is defined as a quantum unit of information measurement that can take two determined values that can be identified as "0" and "1". Thus, each radio frequency subcarrier (Ai, A 2 , ..., A N ) has a qubit encoded. A non-limiting example of the coding of qubits in the subcarrier phase is given below.
El transmisor (1) varia aleatoria e independientemente la fase (O1, O2,...) de las señales eléctricas usadas para dirigir el modulador entre varios valores de fase. En una realización particular, se eligen cuatro valores de fase (0, π/2, π y 3π/2), los cuales forman un par de bases conjugadas (0, π) y (π/2, 3π/2) . Sin embargo, en otras realizaciones particulares, pueden elegirse otro número de valores de fase, tales como dos, ocho u otros. Esto se debe a que la transmisión de la clave cuántica se controla por un protocolo que puede estar asociado a esquemas de dos estados, de cuatro estados o más. Existen muchos protocolos que controlan e imponen las pautas de transmisión y recepción de clave cuántica. Entre los más conocidos destacan el protocolo BB84 y el B92. Más adelante se proporciona un ejemplo no limitante de la transmisión y recepción de clave cuántica según uno de estos protocolos.The transmitter (1) randomly and independently varies the phase (O 1 , O 2 , ...) of the electrical signals used to direct the modulator between several phase values. In a particular embodiment, four phase values (0, π / 2, π and 3π / 2) are chosen, which form a pair of conjugate bases (0, π) and (π / 2, 3π / 2). However, in other particular embodiments, they may choose another number of phase values, such as two, eight or others. This is because the transmission of the quantum key is controlled by a protocol that can be associated with schemes of two states, four states or more. There are many protocols that control and impose the patterns of transmission and reception of quantum key. Among the best known are the protocol BB84 and B92. A non-limiting example of the transmission and reception of quantum key according to one of these protocols is provided below.
La figura 2 muestra en detalle uno de los generadores de subportadoras de radiofrecuencia (Gi) convencionales empleados y referidos en la figura 1 como "VCOs". Cada uno de dichos generadores de subportadoras de radiofrecuencia (Gi, G2, ..., GN) comprende al menos un oscilador de radiofrecuencia (3) , un generador de bits aleatorio (4) y un desfasador de radiofrecuencia controlado por voltaje (5). El oscilador de radiofrecuencia (3) oscila en torno a una frecuencia de radiofrecuencia Ω . El desfasador de radiofrecuencia controlado por voltaje (5), controlado por el generador de bits aleatorio (4), varia la fase de la señal de radiofrecuencia del oscilador (3) . El generador de bits aleatorio (4) permite variar aleatoriamente la fase Φ de la subportadora de radiofrecuencia producida por el generador de subportadoras (VCO) entre un cierto número de valores de fase. Este número de valores de fase es cuatro en una realización particular de la presente invención: 0, π/2, π y 3π/2, pero puede ser diferente en otras realizaciones (por ejemplo, pero no limitativamente, dos: 0 y π) . Asi, la subportadora de radiofrecuencia generada por el VCO presenta una frecuencia Ω << a>0 y una fase Φ . Esta subportadora de radiofrecuencia contribuye posteriormente a la señal óptica modulada en subportadora con dos bandas laterales centradas en ωo~Ω, y en ωo+Ω. y una fase Φ presente en cada una de las dos bandas laterales.Figure 2 shows in detail one of the conventional radio frequency (Gi) subcarrier generators used and referred to in Figure 1 as "VCOs". Each of said radio frequency subcarrier generators (Gi, G 2 , ..., G N ) comprises at least one radio frequency oscillator (3), a random bit generator (4) and a voltage controlled radio frequency offset ( 5). The radio frequency oscillator (3) oscillates around a radio frequency Ω. The voltage-controlled radio frequency phase shifter (5), controlled by the random bit generator (4), varies the phase of the oscillator radio frequency signal (3). The random bit generator (4) allows the phase Φ of the radio frequency subcarrier produced by the subcarrier generator (VCO) to be randomly varied between a certain number of phase values. This number of phase values is four in a particular embodiment of the present invention: 0, π / 2, π and 3π / 2, but may be different in other embodiments (for example, but not limited to, two: 0 and π) . Thus, the radio frequency subcarrier generated by the VCO has a frequency Ω <<a> 0 and a phase Φ. This radio frequency subcarrier it subsequently contributes to the subcarrier-modulated optical signal with two side bands centered on ω or ~ Ω, and on ω or + Ω. and a phase Φ present in each of the two lateral bands.
Asi, cada generador de subportadora a una radiofrecuencia diferente (Gi, G2, ..., GN) , que comprende un oscilador de radiofrecuencia (3), un generador de bits aleatorio (4) y un desfasador de radiofrecuencia controlado por voltaje (5), crea una clave cuántica. Dicha clave cuántica será transmitida en torno a la frecuencia de radiofrecuencia del oscilador (3) , y los qubits vendrán dados por el conjunto de valores de fase generados mediante el desfasador de radiofrecuencia controlado por voltaje (5) , que está controlado por el generador de bits aleatorio (4) . De esta forma, y dependiendo del protocolo utilizado entre emisor y receptor, un conjunto de valores de fase serán identificados con el valor de qubit "0" y otros distintos serán identificados con el valor de qubit "1". En una realización particular, pero no limitante, de la presente invención, en la que emisor y receptor implementan su comunicación basada en el protocolo BB84, los valores aleatorios de fase son cuatro: 0, π/2, π y 3π/2. Además, y en virtud de lo estipulado en dicho protocolo, los valores de fase 0 y π/2 corresponden a qubits de valor "0", y los valores de fase π y 3π/2 corresponden a qubits de valor "1".Thus, each subcarrier generator at a different radio frequency (Gi, G 2 , ..., G N ), comprising a radio frequency oscillator (3), a random bit generator (4) and a voltage controlled radiofrequency phase shifter (5), create a quantum key. Said quantum key will be transmitted around the oscillator radiofrequency frequency (3), and the qubits will be given by the set of phase values generated by the voltage controlled radio frequency offset (5), which is controlled by the generator random bits (4). In this way, and depending on the protocol used between sender and receiver, a set of phase values will be identified with the qubit value "0" and different ones will be identified with the qubit value "1". In a particular, but not limiting, embodiment of the present invention, in which sender and receiver implement their communication based on the BB84 protocol, the random phase values are four: 0, π / 2, π and 3π / 2. In addition, and by virtue of what is stipulated in said protocol, the values of phase 0 and π / 2 correspond to qubits of value "0", and the values of phase π and 3π / 2 correspond to qubits of value "1".
Volviendo a la figura 1, las señales o subportadorasReturning to figure 1, the signals or subcarriers
(Ai, A2, ..., AN) generadas por cada generador de señales de radiofrecuencia (Gi, G2, ..., GN) son combinadas mediante un combinador de señales (6) sin generar términos de intermodulación. La señal de salida (Aτ) del combinador de señales (6) se conecta a un modulador de luz (8) .(Ai, A 2 , ..., A N ) generated by each radio frequency signal generator (Gi, G 2 , ..., G N ) are combined by a signal combiner (6) without generating intermodulation terms. The output signal (A τ ) of the combiner Signal (6) is connected to a light modulator (8).
Entre el combinador de señales (6) y el moduladorBetween the signal combiner (6) and the modulator
(8) puede situarse un linearizador (7), que se encarga de que la respuesta del modulador (8) esté siempre dentro de una zona lineal y de que el modulador (8) no genere bandas de órdenes superiores.(8) A linearizer (7) can be placed, which ensures that the response of the modulator (8) is always within a linear area and that the modulator (8) does not generate higher order bands.
El modulador de luz (8) modula a una portadora óptica ω0 proporcionada por una fuente de luz (9) . Para modular la portadora óptica ω0 puede emplearse cualquier tipo de modulador conocido, asi como cualquier tipo de constelación. El sistema soporta moduladores de luz de fase, de amplitud, u otros más generales en los que existan componentes de fase y de amplitud. Además, el esquema de modulación no se limita a una entrada y una salida, sino que el sistema admite configuraciones con más de una salida y/o entrada.The light modulator (8) modulates an optical carrier ω 0 provided by a light source (9). To modulate the optical carrier ω 0 any type of known modulator can be used, as well as any type of constellation. The system supports phase, amplitude, or more general light modulators in which phase and amplitude components exist. In addition, the modulation scheme is not limited to one input and one output, but the system supports configurations with more than one output and / or input.
Dicha portadora óptica ω0 es, en principio, cualquier longitud de onda perteneciente a las ventanas de transmisión utilizadas habitualmente, es decir, la primera ventana de transmisión (en torno a 850 nm) , la segunda ventana de transmisión (en torno a 1310 nm) o la tercera ventana de transmisión (en torno a 1550 nm) . La portadora óptica ύ)0 se proporciona a partir de una fuente de luz que puede ser, por ejemplo, un diodo láser que emite a la longitud de onda correspondiente, pero la fuente de luz no está limitada a dicho diodo láser, sino que puede ser otra cualquiera.Said optical carrier ω 0 is, in principle, any wavelength belonging to the commonly used transmission windows, that is, the first transmission window (around 850 nm), the second transmission window (around 1310 nm ) or the third transmission window (around 1550 nm). The optical carrier ύ) 0 is provided from a light source that can be, for example, a laser diode emitting at the corresponding wavelength, but the light source is not limited to said laser diode, but can Be any other.
La figura 3 muestra un ejemplo de transmisor para un sistema con multiplexación de subportadora, así como la respuesta en frecuencia de la salida de dicho transmisor, en el que dos subportadoras de radiofrecuencia (Ai, A2) modulan a una portadora óptica de frecuencia óptica co0. El espectro de la señal multiplexada en subportadora (10) se representa en la parte derecha de la figura 3, y comprende una banda central, correspondiente a la frecuencia de la portadora óptica CO0 y unas bandas laterales a ambos lados de la portadora, correspondientes a las dos subportadoras de radiofrecuencia. Cada subportadora de radiofrecuencia de frecuencia Ω; contribuye a la señal modulada con dos componentes a las frecuencias (D0-Q1 y en íyo( . Como puede observarse, cada una de las subportadoras está definida por su frecuencia (que en el espectro de la figura 3 se representa por Ω15Ω2 ) y su fase relativa, en la que se codifica la información de cada qubit o bit cuántico.Figure 3 shows an example transmitter for a system with multiplexing of subcarrier, as well as the frequency response of the output of said transmitter, in which two radio frequency subcarriers (Ai, A 2 ) modulate an optical carrier of co 0 optical frequency. The spectrum of the multiplexed subcarrier signal (10) is represented on the right side of Figure 3, and comprises a central band, corresponding to the frequency of the optical carrier CO 0 and lateral bands on both sides of the carrier, corresponding to the two radio frequency subcarriers. Each radio frequency subcarrier Ω frequency ; it contributes to the signal modulated with two components at the frequencies (D 0 -Q 1 and in y or + Ω ( . As can be seen, each of the subcarriers is defined by its frequency (which in the spectrum of Figure 3 is represented by Ω 15 Ω 2 ) and its relative phase, in which the information of each qubit or quantum bit is encoded.
Por último, volviendo a la figura 1, dicha señal óptica ω0 multiplexada por las subportadoras de radiofrecuencia (Ai, A2, ..., AN) es emitida (10) para que viaje a lo largo de un medio de transmisión óptico, que preferentemente es fibra óptica, pero en una realización particular puede ser, por ejemplo, el espacio libre o cualquier otro medio de transmisión óptico.Finally, returning to Figure 1, said optical signal ω 0 multiplexed by the radio frequency subcarriers (Ai, A 2 , ..., A N ) is emitted (10) so that it travels along an optical transmission medium , which is preferably optical fiber, but in a particular embodiment it may be, for example, free space or any other means of optical transmission.
Este transmisor (1) proporciona, por tanto, dos posibilidades :This transmitter (1) therefore provides two possibilities:
Por una parte, este transmisor (1) proporcional la posibilidad de transmitir simultáneamente varias claves cuánticas totalmente independientes asociadas a cada subportadora (Ai, A2, ..., AN) . En este caso, cada qubit forma una clave cuántica independiente. Dicho de otro modo, el transmisor (1) permite que al menos uno de los qubits codificados en las señales de radiofrecuencia (Ai, A2, ..., AN) corresponda a una clave cuántica independiente de las demás claves cuánticas asociadas al resto de qubits codificados en el resto de señales de radiofrecuencia (Ai, A2, ..., AN) .On the one hand, this transmitter (1) provides the possibility of simultaneously transmitting several totally independent quantum keys associated with each subcarrier (Ai, A 2 , ..., A N ). In this case, each qubit forms an independent quantum key. In other words, the transmitter (1) allows at least one of the qubits encoded in the radio frequency signals (Ai, A 2 , ..., A N ) to correspond to a quantum key independent of the other quantum keys associated with the rest of qubits encoded in the rest of radio frequency signals (Ai, A 2 , ..., A N ).
En una realización particular, se asocia cada subportadora con una clave cuántica diferente, y se usa esa respectiva subportadora asociada a cada respectiva clave cuántica para enviar, uno a uno, cada uno de los qubits que forman dicha clave cuántica. Es decir, en cada instante de tiempo se transmite un qubit en cada una de las subportadoras, y tras un determinado número de transmisiones, se completa el envió de cada una de las claves cuánticas.In a particular embodiment, each subcarrier is associated with a different quantum key, and that respective subcarrier associated with each respective quantum key is used to send, one by one, each of the qubits that form said quantum key. That is, at each instant of time a qubit is transmitted in each of the subcarriers, and after a certain number of transmissions, the sending of each of the quantum keys is completed.
Por otra parte, este transmisor (1) proporciona la posibilidad de transmitir una sola clave cuántica de mayor tamaño. En este caso, la clave cuántica está formada por varios qubits que se transmiten en paralelo, codificando cada uno en una subportadora, de forma que la clave cuántica completa se transmite más rápido, aumentando la velocidad de transmisión de dicha clave. Es decir, el transmisor (1) permite enviar simultáneamenteOn the other hand, this transmitter (1) provides the possibility of transmitting a single larger quantum key. In this case, the quantum key is formed by several qubits that are transmitted in parallel, each encoding in a subcarrier, so that the entire quantum key is transmitted faster, increasing the transmission speed of said key. That is, the transmitter (1) allows sending simultaneously
(en paralelo) diferentes qubits pertenecientes a una misma clave cuántica, para que el receptor los agregue posteriormente. De esta forma se supera la limitación de la tasa de envió de bits inherente a los sistemas que conforman el estado de le técnica. Dicho de otro modo, el transmisor (1) permite que todos o parte de los qubits codificados en cada una de las subportadoras formen parte de una misma clave cuántica. En el caso de que la clave cuántica esté formada por un número de qubits mayor que el número de subportadoras, se repite este proceso hasta que se complete la transmisión completa de la clave cuántica.(in parallel) different qubits belonging to the same quantum key, so that the receiver adds them later. In this way the limitation of the bit send rate inherent in the systems that conform the state of the art is overcome. In other words, the transmitter (1) allows all or part of the qubits encoded in each of the subcarriers to be part of the same quantum key. In the event that the quantum key is formed by a number of qubits greater than the number of subcarriers, this process is repeated until the complete transmission of the quantum key is completed.
Además, el sistema permite que las diferentes claves que se envian simultáneamente cumplan alguna relación entre ellas previamente determinada, de manera que el receptor utilice grupos . de claves a diferentes radiofrecuencias o combinaciones de éstas, aumentando asi la seguridad entre transmisor y receptor.In addition, the system allows the different keys that are sent simultaneously to fulfill some previously determined relationship between them, so that the receiver uses groups. of keys to different radio frequencies or combinations thereof, thus increasing the security between transmitter and receiver.
La figura 4 representa un receptor (2) para un sistema de distribución de clave cuántica según la presente invención. A este receptor (2) llega una señal óptica (10' ) modulada por N subportadoras de radiofrecuencia, donde N es un número natural y N>1. El receptor (2) dispone, por tanto, de medios para recibir esta señal óptica (10'). Cada una de las subportadoras de radiofrecuencia que multiplexan a la portadora óptica tiene codificado un bit cuántico o qubit en su fase relativa. Como se ha explicado anteriormente, cada uno de estos qubits puede pertenecer a una clave cuántica independiente de las demás claves cuánticas asociadas al resto de qubits codificados en el resto de subportadoras de radiofrecuencia, o corresponder a una misma clave cuántica transmitida simultáneamente (en paralelo) .Figure 4 represents a receiver (2) for a quantum key distribution system according to the present invention. This receiver (2) receives an optical signal (10 ') modulated by N radio frequency subcarriers, where N is a natural number and N> 1. The receiver (2) therefore has means to receive this optical signal (10 '). Each of the radio frequency subcarriers multiplexing the optical carrier has a quantum bit or qubit encoded in its relative phase. As explained above, each of these qubits can belong to a quantum key independent of the other quantum keys associated with the rest of qubits encoded in the rest of radio frequency subcarriers, or correspond to the same quantum key transmitted simultaneously (in parallel) .
El receptor (2) comprende también N generadores de radiofrecuencia (Gi' , G2' , -, GN' ) , donde N es un número natural y N>1, similares a los empleados en el transmisor (1) , que generan señales o subportadoras de radiofrecuencia (B1, B2, ..., BN) similares a las generadas en el transmisor (1) . Las fases de las señales o subportadoras de radiofrecuencia generadas en el receptorThe receiver (2) also comprises N radio frequency generators (Gi ', G 2 ', -, G N '), where N is a natural number and N> 1, similar to those used in the transmitter (1), which generate radio frequency signals or subcarriers (B 1 , B 2 , ..., B N ) similar to those generated in the transmitter (1). The phases of the signals or radio frequency subcarriers generated at the receiver
(2) son también variadas de forma aleatoria e independiente entre diferentes valores de fase. En realizaciones particulares de la invención, estos valores entre los que se varia la fase pueden ser, sin que esto sea una limitación, dos valores de fase (0, π) o cuatro valores de fase (0, π/2, π y 3π/2) , pudiendo ser otros valores de fase.(2) they are also varied randomly and independently between different phase values. In particular embodiments of the invention, these values between which the phase is varied can be, without this being a limitation, two phase values (0, π) or four phase values (0, π / 2, π and 3π / 2), may be other phase values.
Estas señales de radiofrecuencia (Bi, B2, ..., BN) generadas en el receptor (2) se combinan en un combinador de señales (6') , obteniéndose una señal combinada (Bτ) y se utilizan para modular a la señal óptica recibida (10') . Al igual que en el transmisor (1), en el receptor (2) se puede situar un linearizador (V) entre el combinador de señales (6') y el modulador (8'), que se encarga de que la respuesta del modulador (8') esté siempre dentro de una zona lineal y de que el modulador (8') no genere bandas de órdenes superiores. El modulador (8') modula dicha señal óptica recibida (10') por dicha señal combinada (Bτ) , de forma que las señales de radiofrecuencia (Bi, B2, ..., BN) generadas interfieren con las subportadoras de radiofrecuencia que multiplexan a la señal óptica recibida (10' ) . El resultado de la interferencia (H' ) a diferentes frecuencias es filtrado y detectado independientemente.These radio frequency signals (Bi, B 2 , ..., B N ) generated in the receiver (2) are combined in a signal combiner (6 '), obtaining a combined signal (B τ ) and used to modulate a the optical signal received (10 '). As in the transmitter (1), in the receiver (2) a linearizer (V) can be placed between the signal combiner (6 ') and the modulator (8'), which ensures that the response of the modulator (8 ') is always within a linear zone and that the modulator (8') does not generate higher order bands. The modulator (8 ') modulates said optical signal received (10') by said combined signal (B τ ), so that the radiofrequency signals (Bi, B 2 , ..., B N ) generated interfere with the subcarriers of radio frequency multiplexing the received optical signal (10 '). The result of interference (H ') at different frequencies is filtered and detected independently.
El hecho de tomar unos valores de fase u otros, tanto en el transmisor como en el receptor, depende del protocolo de transmisión de clave cuántica elegido. Por ejemplo, el protocolo BB84 utiliza cuatro valores de fase (0, π/2, π y 3π/2) en el transmisor y dos valores de fase (0, π) en el receptor, mientras que el protocolo B92 utiliza dos valores de fase (0, π) en la transmisión y dos (0, π) en la recepción. Otros protocolos pueden utilizar, por ejemplo, seis valores de fase en la transmisión y/o recepción, o un número de valores de fase diferentes.The fact of taking some phase values or others, both in the transmitter and in the receiver, depends on the quantum key transmission protocol chosen. For example, the BB84 protocol uses four phase values (0, π / 2, π and 3π / 2) in the transmitter and two phase values (0, π) in the receiver, while the B92 protocol uses two values of phase (0, π) in the transmission and two (0, π) in the reception. Other protocols may use, for example, six phase values in the transmission and / or reception, or a number of different phase values.
A continuación se muestra un ejemplo de una simulación de transmisión y recepción de clave cuántica en el que el que emisor y receptor usan el protocolo BB84 con solo dos subportadoras de RF (radiofrecuencia) :Below is an example of a quantum key transmission and reception simulation in which the sender and receiver use the BB84 protocol with only two RF (radio frequency) subcarriers:
El emisor modula la portadora óptica con dos señales de RF, Q1 y Ω2 , con fases eléctricas φA1 y φA2 respectivamente. El emisor manda los qubits usando la fase relativa de las bandas escogida de manera aleatoria entre 4 valores de fase (0, π) y (π/2, 3π/2) , que forman un par de bases conjugadas. Cuando la señal llega al receptor, éste modula la señal a las mismas frecuencias que ha usado el emisor, pero con fases distintas φ y φB2 respectivamente, que varian aleatoriamente entre los valores (0, π) .The transmitter modulates the optical carrier with two RF signals, Q 1 and Ω 2 , with electrical phases φ A1 and φ A2 respectively. The emitter sends the qubits using the relative phase of the bands chosen randomly between 4 phase values (0, π) and (π / 2, 3π / 2), which form a pair of conjugate bases. When the signal reaches the receiver, it modulates the signal at the same frequencies that the transmitter has used, but with different phases φ and φ B2 respectively, which vary randomly between the values (0, π).
La figura 10 muestra la simulación del espectro óptico (frecuencias relativas a ω0 en GHz) el caso más simple, que es aquél en el que el emisor decide codificar ambos tonos de RF con el mismo valor. La simulación corresponde al caso en el que Q1 =2 GHz y Ω2 =3 GHz. En este caso, φÁl = φA1 y ambas bandas laterales se comportan de igual manera. Cuando la fase relativa Aφ =Figure 10 shows the simulation of the optical spectrum (frequencies relative to ω 0 in GHz) the simplest case, which is the one in which the emitter decides to encode both RF tones with the same value. The simulation corresponds to the case where Q 1 = 2 GHz and Ω 2 = 3 GHz. In this case, φ Ál = φ A1 and both side bands behave in the same way. When the relative phase Aφ =
(<PA ~ ΨB) usada por el emisor y el receptor es 0 ó π, la portadora y, o bien las dos bandas superiores o las dos bandas inferiores, son detectadas. Cuando {φA - φB) = ± π/2, la portadora y las cuatro bandas son detectadas.(<P A ~ Ψ B ) used by the sender and receiver is 0 or π, the carrier and, either the upper two bands or the lower two bands, are detected. When {φ A - φ B ) = ± π / 2, the carrier and the four bands are detected.
Sin embargo, una de las ventajas del sistema de la presente invención radica en la posibilidad de mandar claves independientes en cada frecuencia. Asi se muestra en la figura 11, donde la diferencia de fase relativaHowever, one of the advantages of the system The present invention lies in the possibility of sending independent keys in each frequency. This is shown in Figure 11, where the relative phase difference
- φ ) es 0 ó π y, por lo tanto, sólo dos de las cuatro bandas están presentes en la detección en el receptor. Asi, se aprecia claramente cómo las dos claves pueden ser enviadas independientemente sin que una interfiera en la otra. - φ ) is 0 or π and, therefore, only two of the four bands are present at the detection in the receiver. Thus, it is clear how the two keys can be sent independently without one interfering with the other.
Por ultimo, la figura 12 muestra el caso en el que la diferencia relativa de fase ( φAl - φ ) es 0 ó π para una de las frecuencias y ( φ - φ) = ± π/2 para la otra. Una vez más se aprecia la independencia entre claves.Finally, Figure 12 shows the case in which the relative phase difference (φ Al - φ ) is 0 or π for one of the frequencies and (φ - φ ) = ± π / 2 for the other. Once again the independence between keys is appreciated.
Volviendo a la figura 4, como medios de filtrado y detección, la presente invención proporciona diversas alternativas .Turning to Figure 4, as filtering and detection means, the present invention provides various alternatives.
Como una primera alternativa, como muestra la figura 4, la etapa de filtrado comprende un circulador (12) seguido de 2N+1 filtros paso de banda genéricos comerciales (donde N es el número de señales de radiofrecuencia generadas por N generadores de radiofrecuencia siendo N un número natural y N>1, y donde los 2N+1 filtros paso banda (13) están diseñado para permitir el paso de las 2N+1 componentes frecuenciales que forman la señal óptica recibida (10' ) . Filtros paso de banda genéricos comerciales son, por ejemplo, los filtrosAs a first alternative, as shown in Figure 4, the filtering stage comprises a circulator (12) followed by 2N + 1 commercial generic bandpass filters (where N is the number of radio frequency signals generated by N radio frequency generators where N a natural number and N> 1, and where the 2N + 1 bandpass filters (13) are designed to allow the passage of the 2N + 1 frequency components that form the received optical signal (10 '). Commercial generic bandpass filters they are, for example, filters
Fabry-Pérot (13) .Fabry-Pérot (13).
Alternativamente, como muestra la figura 5, la etapa de filtrado comprende un circulador (12) seguido de 2N+1 redes de Bragg grabadas en fibra y dispuestas en paralelo (14), donde N es el número de señales de radiofrecuencia generadas por N generadores de radiofrecuencia y donde los 2N+1 filtros paso banda (13) están diseñado para permitir el paso de las 2N+1 componentes frecuenciales que forman la señal óptica recibida (10'). Cada una de las redes de Bragg está centrada en cada una de las frecuencias correspondientes a las bandas laterales generadas. Las redes de Bragg en fibra óptica actúan como filtro óptico paso-banda y pueden fabricarse en la región de interés. Además, al igual que los filtros convencionales, tiene capacidad de sintonización.Alternatively, as shown in Figure 5, the filtering step comprises a circulator (12) followed by 2N + 1 Bragg networks recorded in fiber and arranged in parallel (14), where N is the number of radiofrequency signals generated by N radio frequency generators and where the 2N + 1 bandpass filters (13) are designed to allow the passage of the 2N + 1 frequency components that form the received optical signal (10 '). Each of the Bragg networks is centered on each of the frequencies corresponding to the generated sidebands. Bragg fiber optic networks act as a pass-band optical filter and can be manufactured in the region of interest. In addition, like conventional filters, it has tuning capability.
Alternativamente, como muestra la figura 6, la etapa de filtrado comprende un circulador seguido de distintas redes de Bragg grabadas en fibra y dispuestas en serie (15) , donde N es el número de señales de radiofrecuencia generadas por N generadores de radiofrecuencia y donde los 2N+1 filtros paso banda (13) están diseñado para permitir el paso de las 2N+1 componentes frecuenciales que forman la señal óptica recibida (10')- La señal reflejada por cada una de las redes de Bragg se recupera gracias al circulador (12) . Cada una de las redes de Bragg está centrada en cada una de las frecuencias correspondientes a las bandas laterales generadas.Alternatively, as shown in Figure 6, the filtering stage comprises a circulator followed by different Bragg networks recorded in fiber and arranged in series (15), where N is the number of radiofrequency signals generated by N radiofrequency generators and where the 2N + 1 bandpass filters (13) are designed to allow the 2N + 1 frequency components that form the received optical signal (10 ') to pass - The signal reflected by each of the Bragg networks is recovered thanks to the circulator ( 12). Each of the Bragg networks is centered on each of the frequencies corresponding to the generated sidebands.
Alternativamente, como muestra la figura 7, la etapa de filtrado comprende un circulador (12) seguido de distintas redes de Bragg superpuestas grabadas en fibra y dispuestas en serie (16) . La señal reflejada por cada una de las redes de Bragg se recupera gracias al circulador. Cada una de las redes de Bragg superpuestas está centrada en cada una de las frecuencias correspondientes a las bandas laterales generadas.Alternatively, as shown in Figure 7, the filtering stage comprises a circulator (12) followed by different superimposed Bragg networks recorded in fiber and arranged in series (16). The signal reflected by each of the Bragg networks is recovered thanks to the circulator. Each of the overlapping Bragg networks is centered on each of the frequencies corresponding to the generated sidebands.
La figura 8 ilustra un esquema que explica el concepto de redes de Bragg superpuestas. La rede de Bragg superpuesta resultante (16) es el equivalente a la suma de las distintas redes de Bragg.Figure 8 illustrates a scheme explaining the Bragg networks concept superimposed. The resulting superimposed Bragg network (16) is the equivalent of the sum of the different Bragg networks.
La etapa de detección (18) utilizada se basa en fotodiodos de avalancha y/o contadores de fotones.The detection stage (18) used is based on avalanche photodiodes and / or photon counters.
Para conocer la información enviada por el transmisor (1) , se observa el patrón de detección, que no es sino la relación de eventos de detección que ha ocurrido en cada uno de los detectores. A partir del patrón de detección (los fotones detectados por los medios de detección (D) ) y mediante el intercambio de cierta información por un canal público no seguro, transmisor (1) y receptor (2) son capaces de destilar una clave cuántica, formada por uno o más qubits, válida y segura para aplicar a su comunicación. Esta etapa de destilación de clave, llevada a cabo por un software de destilación de clave.To know the information sent by the transmitter (1), the detection pattern is observed, which is nothing more than the relation of detection events that has occurred in each of the detectors. From the detection pattern (the photons detected by the detection means (D)) and by exchanging certain information through an unsecured public channel, transmitter (1) and receiver (2) are able to distill a quantum key, formed by one or more qubits, valid and secure to apply to your communication. This key distillation stage, carried out by a key distillation software.
A continuación se muestra un ejemplo que ilustra el envió práctico de qubits usando el protocolo BB84, asi como la destilación de dicha clave cuántica:Below is an example that illustrates the practical sending of qubits using the BB84 protocol, as well as the distillation of said quantum key:
Emisor Em 0 0 1 1 0 0 0 0 1 1 1 0 0 1 0 1 0Emitter Em 0 0 1 1 0 0 0 0 1 1 1 0 0 1 0 1 0
Fase Em 0 0 180 180 90 90 90 90 180 180 270 0 90 270 0 270 0 180Phase Em 0 0 180 180 90 90 90 90 180 180 270 0 90 270 0 270 0 180
Fase Rcpt 180 180 90 180 180 180 180 180 180 90 180 180 90 90 90 180 180 180Rcpt phase 180 180 90 180 180 180 180 180 180 90 180 180 90 90 90 180 180 180
Diferencia -180 -180 90 0 -90 -90 -90 -90 0 90 90 -180 0 180 -90 90 -180 0Difference -180 -180 90 0 -90 -90 -90 -90 0 90 90 -180 0 180 -90 90 -180 0
Medida -180 -180 ? 0 -? -? -? -? 0 ? ? -180 0 180 -? ? -180 0Measure -180 -180? 0 -? -? -? -? 0? ? -180 0 180 -? ? -180 0
Comparac 0 0 180 180 0 90 270 0 180Comparison 0 0 180 180 0 90 270 0 180
Clave recuperada 0 0 1 1 0 0 1Password recovered 0 0 1 1 0 0 1
El emisor manda 0" y "1" codificados en la fase de RF. Asi los valores de fase 0 y π/2 codifican a los λλ0" y los valores de fase π y 3π/2 codifican a los "1".The transmitter sends 0 "and" 1 "encoded in the RF phase. Thus the values of phase 0 and π / 2 encode the λλ 0" and the phase values π and 3π / 2 encode the "1".
Cuando la señal llega al receptor, éste modula la señal a la misma frecuencia y con valores de fase aleatorios, como por ejemplo π/2 y π.When the signal reaches the receiver, it modulates the signal at the same frequency and with random phase values, such as π / 2 and π.
Tal y como se ha explicado en el ejemplo de simulación de transmisión y recepción de clave cuántica en el que el que emisor y receptor usan el protocolo BB84 con solo dos tonos de RF (figuras 10 a 12), según el valor de que tome la diferencia de fases entre emisor y receptor Áφ , se detecta o no la banda. Dado que el protocolo es conocido, y dado también que el receptor conoce los valores de fase que ha empleado él mismo, se puede calcular la clave que ha mandado el emisor.As explained in the example of quantum key transmission and reception simulation in which the sender and receiver use the BB84 protocol with only two RF tones (figures 10 to 12), depending on the value of the phase difference between transmitter and receiver Áφ, the band is detected or not. Since the protocol is known, and also because the receiver knows the phase values that he has used, the key sent by the sender can be calculated.
A continuación se analizan, como ejemplo, los casos del segundo y el tercer qubit. En el segundo qubit, el emisor manda aleatoriamente un cero "0" codificado en el valor de fase 0. Al llegar al receptor, éste escoge aleatoriamente un valor de fase π. Por lo tanto, la diferencia de fase es de π, lo cual significa que el receptor ha detectado únicamente la banda menor de la portadora. Con esta información, y dado también que el receptor sabe que él mismo ha usado la fase π, puede concluir que el emisor ha utilizado la fase 0 y, por lo tanto, que el emisor ha enviado un cero "0".Next, the cases of the second and third qubit are analyzed as an example. In the second qubit, the transmitter randomly sends a zero "0" encoded in the phase 0 value. Upon reaching the receiver, it randomly chooses a phase value π. Therefore, the phase difference is π, which means that the receiver has detected only the minor band of the carrier. With this information, and also given that the receiver knows that he has used the π phase, he can conclude that the sender has used phase 0 and, therefore, that the sender has sent a zero "0".
En el tercer qubit, el emisor manda aleatoriamente un uno "1" codificado en el valor de fase π. Al llegar al receptor, éste escoge aleatoriamente un valor de fase π/2. Por lo tanto, la diferencia de fase es de π/2, lo cual significa que el receptor puede haber detectado ambas bandas de modulación. Con esta información, el receptor descarta dicho qubit, ya que no puede identificar con seguridad qué valor ha enviado el emisor.In the third qubit, the sender randomly sends a "1" encoded in the phase value π. Upon reaching the receiver, it randomly chooses a phase value π / 2. Therefore, the phase difference is π / 2, which means that the receiver may have detected both modulation bands. With this information, the receiver discards said qubit, since it cannot identify with certainty what value the sender has sent.
La figura 9 muestra un sistema de distribución en paralelo de clave cuántica basado en la multiplexación de subportadora formado por una transmisor (1) , un medio de transmisión óptico (17) y un receptor (2).Figure 9 shows a parallel quantum key distribution system based on subcarrier multiplexing formed by a transmitter (1), an optical transmission medium (17) and a receiver (2).
Como ya se indicó en la etapa de transmisión, cada uno de los qubits codificados transmitidos y recibidos pueden formar parte de una clave cuántica independiente del resto de claves cuánticas asociadas al resto de qubits codificados, o cada uno de los qubits codificados transmitidos y recibidos pueden formar parte de una misma clave cuántica, transmitiéndose cada qubit en una subportadora diferente, en paralelo.As indicated in the transmission stage, each of the transmitted and received encoded qubits can be part of a quantum key independent of the rest of the quantum keys associated with the rest of the encoded qubits, or each of the transmitted and received encoded qubits can be part of the same quantum key, transmitting each qubit in a different subcarrier, in parallel.
Como ya se ha indicado anteriormente, a la hora de generar las claves y asociarlas a cada subportadora de radiofrecuencia, es posible imponer que cumplan alguna relación entre ellas, creando asi grupos de claves a diferentes radiofrecuencias o combinaciones de éstas. El receptor (2) puede asi utilizar estos grupos de claves a diferentes radiofrecuencias o combinaciones de éstas, para aumentar la seguridad entre transmisor y receptor. Es decir, este sistema permite añadir un elemento extra de seguridad: el transmisor (1) manda qubits que forman claves independientes por los distintos canales asociados a cada subportadora de radiofrecuencia. El receptor (2) recibe las distintas claves y usa un protocolo pactado con el transmisor (1) con anterioridad para, mediante la comparación de claves cuánticas, evaluar el grado de privacidad de la comunicación. Este protocolo por el que se pactan unas bases entre emisor y receptor puede consistir, por ejemplo, en operaciones de suma lógica, uso de qubits de control, u otros modos determinados por el protocolo de que se trate.As already indicated above, when generating the keys and associating them with each radiofrequency subcarrier, it is possible to impose that they fulfill some relationship between them, thus creating groups of keys to different radio frequencies or combinations thereof. The receiver (2) can thus use these groups of keys at different radio frequencies or combinations thereof, to increase the security between transmitter and receiver. That is, this system allows the addition of an extra security element: the transmitter (1) sends qubits that form independent keys for the different channels associated to each radio frequency subcarrier. The receiver (2) receives the different keys and uses a protocol agreed with the transmitter (1) previously to, by comparing quantum keys, evaluate the degree of privacy of the communication. This protocol by which bases between sender and receiver are agreed can consist, for example, of operations of logical sum, use of control qubits, or other modes determined by the protocol in question.
En el sistema descrito, de forma segura sólo se intercambia la clave, mientras que en el canal no seguro se intercambia el propio mensaje que se desea proteger, codificado con la clave que se intercambia de forma segura en el sistema de distribución de clave cuántica. En el sistema no seguro se intercambia también información de las bases utilizadas por el transmisor (1) para realizar el proceso de ampliación de privacidad entre transmisor y receptor y destilar la clave. Esta información se comparte una vez que la clave ha sido enviada por el canal seguro. El canal no seguro puede ser una linea telefónica, una fibra óptica, el espacio libre, o cualquier medio de transmisión o comunicación entre transmisor y receptor de los conocidos por el experto en la materia.In the described system, only the key is securely exchanged, while in the non-secure channel the message to be protected is exchanged, encoded with the key that is exchanged securely in the quantum key distribution system. In the unsecured system, information on the bases used by the transmitter (1) is also exchanged to carry out the process of extending privacy between transmitter and receiver and distilling the password. This information is shared once the password has been sent through the secure channel. The unsecured channel may be a telephone line, an optical fiber, free space, or any means of transmission or communication between transmitter and receiver known to those skilled in the art.
A la vista de esta descripción y juego de figuras, el experto en la materia podrá entender que la invención ha sido descrita según algunas realizaciones preferentes de la misma, pero que múltiples variaciones pueden ser introducidas en dichas realizaciones preferentes, sin salir del objeto de la invención tal y como ha sido reivindicada . In view of this description and set of figures, the person skilled in the art may understand that the invention has been described according to some preferred embodiments thereof, but that multiple variations can be introduced in said preferred embodiments, without departing from the object of the invention as claimed.

Claims

RE I V I N D I C A C I O N E S RE IVINDICATIONS
1.- Transmisor (1) para un sistema de distribución de clave cuántica que comprende:1.- Transmitter (1) for a quantum key distribution system comprising:
- una fuente de luz (9) que proporciona una portadora óptica a una frecuencia ω0 ;- a light source (9) that provides an optical carrier at a frequency ω 0 ;
- N generadores de radiofrecuencia (Gi, G2, ..., GN) que generan cada uno una subportadora de radiofrecuencia respectiva (Ai, A2, ..., AN) , donde N es un número natural y N>1, y que incluyen medios (4, 5) para variar aleatoria e independientemente la fase relativa de dichas subportadoras de radiofrecuencia (Ai, A2, ..., AN) entre varios valores de fase; caracterizado por:- N radio frequency generators (Gi, G 2 , ..., G N ) each generating a respective radio frequency subcarrier (Ai, A 2 , ..., A N ), where N is a natural number and N> 1, and which include means (4, 5) for randomly and independently varying the relative phase of said radio frequency subcarriers (Ai, A 2 , ..., A N ) between various phase values; characterized by:
- medios (3, 4, 5) para codificar un qubit en dicha fase relativa de cada subportadora de radiofrecuencia (Ai, A2, -, AN) ; medios (6) para combinar las subportadoras de radiofrecuencia generadas (Ai, A2, ..., AN) , formando una señal combinada (Aτ) ;- means (3, 4, 5) for encoding a qubit in said relative phase of each radio frequency subcarrier (Ai, A 2 , -, A N ); means (6) for combining the generated radio frequency subcarriers (Ai, A 2 , ..., A N ), forming a combined signal (A τ );
- medios (8) para modular la portadora óptica a la frecuencia ω0 por dicha señal combinada (Aτ) , de forma que se obtiene una señal óptica multiplexada por N subportadoras de radiofrecuencia.- means (8) for modulating the optical carrier at the frequency ω 0 by said combined signal (A τ ), so that an optical signal multiplexed by N radio frequency subcarriers is obtained.
2.- Transmisor (1) según la reivindicación 1, caracterizado por medios (7) para linealizar la respuesta del modulador (8) y para evitar que el modulador (8) genere bandas de órdenes superiores.2. Transmitter (1) according to claim 1, characterized by means (7) to linearize the response of the modulator (8) and to prevent the modulator (8) from generating higher order bands.
3.- Transmisor (1) según cualquiera de las reivindicaciones anteriores, caracterizado por el hecho de que al menos uno de los qubits codificados en las subportadoras de radiofrecuencia (Ai, A2, ..., AN) forma parte de una clave cuántica independiente de las demás claves cuánticas de las que el resto de qubits codificados en el resto de subportadoras de radiofrecuencia (Ai, A2, ..., AN) forman parte.3. Transmitter (1) according to any of the preceding claims, characterized in that at least one of the qubits encoded in the radio frequency subcarriers (Ai, A 2 , ..., A N ) is part of a key quantum independent of the others quantum keys of which the rest of qubits encoded in the rest of radio frequency subcarriers (Ai, A2, ..., A N ) are part.
4.- Transmisor (1) según la reivindicación 3, caracterizado por el hecho de que los N qubits codificados en las N subportadoras de radiofrecuencia (Ai, A2, ..., AN) forman parte de N claves cuánticas independientes entre si.4. Transmitter (1) according to claim 3, characterized in that the N qubits encoded in the N radio frequency subcarriers (Ai, A 2 , ..., A N ) are part of N independent quantum keys .
5.- Transmisor (1) según cualquiera de las reivindicaciones 1 ó 2, caracterizado por el hecho de que al menos dos de los qubits codificados en las subportadoras de radiofrecuencia (Ai, A2, ..., AN) forman parte de una misma clave cuántica.5. Transmitter (1) according to any one of claims 1 or 2, characterized in that at least two of the qubits encoded in the radio frequency subcarriers (Ai, A 2 , ..., A N ) are part of The same quantum key.
6.- Transmisor (1) según la reivindicación 5, caracterizado por el hecho de que los N qubits codificados en las N subportadoras de radiofrecuencia (Ai, A2, ..., AN) forman parte de una única clave cuántica.6. Transmitter (1) according to claim 5, characterized in that the N qubits encoded in the N radio frequency subcarriers (Ai, A 2 , ..., A N ) are part of a single quantum key.
7.- Transmisor (1) según cualquiera de las reivindicaciones anteriores, caracterizado por el hecho de que las diferentes claves cuánticas que se envian a través de qubits codificados en las subportadoras de radiofrecuencia (Ai, A2, ..., AN) cumplen alguna relación entre ellas previamente determinada.7. Transmitter (1) according to any of the preceding claims, characterized in that the different quantum keys that are sent through qubits encoded in the radio frequency subcarriers (Ai, A 2 , ..., A N ) they fulfill some previously determined relationship between them.
8.- Transmisor (1) según cualquiera de las reivindicaciones anteriores, caracterizado medios para hacer viajar la señal óptica (10) a través de un medio de transmisión óptico.8. Transmitter (1) according to any of the preceding claims, characterized by means for traveling the optical signal (10) through an optical transmission means.
9.- Transmisor (1) según cualquiera de las reivindicaciones anteriores, caracterizado por el hecho de que cada generador de subportadoras de radiofrecuencia (Gi, G2, -, GN) comprende al menos un oscilador de radiofrecuencia (3), un generador de bits aleatorio (4) y un desfasador de radiofrecuencia controlado por voltaje9. Transmitter (1) according to any of the preceding claims, characterized in that each generator of radio frequency subcarriers (Gi, G 2 , -, G N ) comprises at least one radio frequency oscillator (3), a random bit generator (4) and a voltage controlled radiofrequency phase shifter
(5) .(5) .
10.- Receptor (2) para un sistema de distribución de clave cuántica que comprende:10.- Receiver (2) for a quantum key distribution system comprising:
- medios para recibir una señal óptica (10' ) multiplexada por N subportadoras de radiofrecuencia, donde N es un número natural y N>1;- means for receiving an optical signal (10 ') multiplexed by N radio frequency subcarriers, where N is a natural number and N> 1;
- N generadores de radiofrecuencia (Gi' , G2' , ..., GN' ) que generan cada uno una subportadora de radiofrecuencia respectiva (Bi, B2, ..., BN) , donde N es un número natural y N>1 y que incluyen medios para variar aleatoria e independientemente la fase relativa de cada una de dichas subportadoras de radiofrecuencia (Bi, B2, ..., BN) entre varios valores de fase; medios (6') para combinar las subportadoras de radiofrecuencia (Bi, B2, ..., BN) formando una señal combinada (Bτ) ;- N radio frequency generators (Gi ', G 2 ', ..., G N ') each generating a respective radio frequency subcarrier (Bi, B 2 , ..., B N ), where N is a natural number and N> 1 and which include means for randomly and independently varying the relative phase of each of said radio frequency subcarriers (Bi, B 2 , ..., B N ) between several phase values; means (6 ') for combining the radio frequency subcarriers (Bi, B 2 , ..., B N ) forming a combined signal (B τ );
- medios (8' ) para modular dicha señal óptica recibida (10') por dicha señal combinada (Bτ) , de forma que las subportadoras de radiofrecuencia (Bi, B2, ..., BN) generadas interfieren con las subportadoras de radiofrecuencia que multiplexan a la señal óptica recibida (10');- means (8 ') for modulating said optical signal received (10') by said combined signal (B τ ), so that the radio frequency subcarriers (Bi, B 2 , ..., B N ) generated interfere with the subcarriers radio frequency multiplexing the received optical signal (10 ');
- medios de filtrado (12, 13, 14, 15, 16) y de detección (D) del resultado de dicha interferencia; caracterizado por el hecho de que cada subportadora de radiofrecuencia que multiplexa a la señal óptica recibida (10') tiene codificado un qubit en su fase relativa.- means for filtering (12, 13, 14, 15, 16) and for detecting (D) the result of said interference; characterized in that each radio frequency subcarrier multiplexing the received optical signal (10 ') has a qubit encoded in its relative phase.
11.- Receptor (2) según la reivindicación 10, caracterizado por el hecho de que los medios de filtrado (12, 13, 14, 15, 16) comprenden un circulador (2) y 2N+1 filtros paso banda (13) , donde N es el número de subportadoras de radiofrecuencia generadas por N generadores de radiofrecuencia, siendo N un número natural y N>1, y donde los 2N+1 filtros paso banda (13) están diseñados para permitir el paso de las 2N+1 componentes frecuenciales que forman la señal óptica recibida (10' ) .11. Receiver (2) according to claim 10, characterized in that the filtering means (12, 13, 14, 15, 16) comprise a circulator (2) and 2N + 1 band pass filters (13), where N is the number of radio frequency subcarriers generated by N Radio frequency generators, N being a natural number and N> 1, and where the 2N + 1 bandpass filters (13) are designed to allow the 2N + 1 frequency components that form the received optical signal (10 ') to pass through.
12.- Receptor (2) según la reivindicación 11, caracterizado por el hecho de que los 2N+1 filtros paso banda (13) son filtros Fabry-Pérot.12. Receiver (2) according to claim 11, characterized in that the 2N + 1 band pass filters (13) are Fabry-Perot filters.
13.- Receptor (2) según la reivindicación 11, caracterizado por el hecho de que los 2N+1 filtros paso banda (13) comprenden 2N+1 redes de Bragg grabadas en fibra y dispuestas en paralelo (14).13. - Receiver (2) according to claim 11, characterized in that the 2N + 1 bandpass filters (13) comprise 2N + 1 fiber-recorded Bragg networks arranged in parallel (14).
14.- Receptor (2) según la reivindicación 11, caracterizado por el hecho de que los 2N+1 filtros paso banda (13) comprenden 2N+1 redes de Bragg grabadas en fibra y dispuestas en serie (15) .14. Receiver (2) according to claim 11, characterized in that the 2N + 1 bandpass filters (13) comprise 2N + 1 fiber-recorded Bragg networks and arranged in series (15).
15.- Receptor (2) según la reivindicación 11, caracterizado por el hecho de que los 2N+1 filtros paso banda (13) comprenden una pluralidad de redes de Bragg superpuestas grabadas en fibra y dispuestas en serie15. Receiver (2) according to claim 11, characterized in that the 2N + 1 band pass filters (13) comprise a plurality of superimposed Bragg networks recorded in fiber and arranged in series
(16) .(16).
16.- Receptor (2) según cualquiera de las reivindicaciones 10 a 15, caracterizado por el hecho de que la etapa de detección (18) comprende fotodiodos de avalancha y/o contadores de fotones.16. - Receiver (2) according to any of claims 10 to 15, characterized in that the detection stage (18) comprises avalanche photodiodes and / or photon counters.
17.- Receptor (2) según cualquiera de las reivindicaciones 10 a 16, caracterizado por el hecho de que al menos uno de los qubits codificados en la fase relativa de una subportadora de radiofrecuencia que multiplexa a la señal óptica recibida (10') forma parte de una clave cuántica independiente de las demás claves cuánticas de las que el resto de qubits codificados en las fases relativas del resto de subportadoras de radiofrecuencia que multiplexan a la señal óptica recibida forman parte.17. Receiver (2) according to any of claims 10 to 16, characterized in that at least one of the qubits encoded in the relative phase of a radio frequency subcarrier that multiplexed to the received optical signal (10 ') is part of a quantum key independent of the other quantum keys of which the rest of qubits encoded in the relative phases of the remaining radio frequency subcarriers multiplexing the received optical signal are part.
18.- Receptor (2) según la reivindicación 17, caracterizado por el hecho de que los N qubits codificados en las fases relativas de las subportadoras de radiofrecuencia que multiplexan a la señal óptica recibida (10') forman parte de N claves cuánticas independientes entre si.18. Receiver (2) according to claim 17, characterized in that the N qubits encoded in the relative phases of the radio frequency subcarriers multiplexing the received optical signal (10 ') form part of N independent quantum keys between yes.
19.- Receptor (2) según cualquiera de las reivindicaciones 10 a 16, caracterizado por el hecho de que al menos dos de los qubits codificados en las fases relativas de las respectivas subportadoras de radiofrecuencia que multiplexan a la señal óptica recibida (10') forman parte de una misma clave cuántica.19. Receiver (2) according to any of claims 10 to 16, characterized in that at least two of the qubits encoded in the relative phases of the respective radio frequency subcarriers multiplexing the received optical signal (10 ') They are part of the same quantum key.
20.- Receptor (2) según la reivindicación 19, caracterizado por el hecho de que los N qubits codificados en las fases relativas de las subportadoras de radiofrecuencia que multiplexan a la señal óptica recibida (10' ) forman parte de una única clave cuántica.20. Receiver (2) according to claim 19, characterized in that the N qubits encoded in the relative phases of the radio frequency subcarriers multiplexing the received optical signal (10 ') form part of a single quantum key.
21.- Receptor (2) según cualquiera de las reivindicaciones 10 a 20, caracterizado por medios para destilar, a partir de los fotones detectados por los medios de detección (D) , la clave o claves cuánticas que forman los qubits recibidos.21. Receiver (2) according to any of claims 10 to 20, characterized by means for distilling, from the photons detected by the detection means (D), the quantum key or keys that form the received qubits.
22.- Receptor (2) según la reivindicación 21, caracterizado por el hecho de que el receptor (2) usa un protocolo previamente determinado para comparar dichas claves cuánticas y evaluar el grado de privacidad de la comunicación.22.- Receiver (2) according to claim 21, characterized in that the receiver (2) uses a previously determined protocol to compare said quantum keys and evaluate the degree of communication privacy.
23.- Sistema de distribución de clave cuántica que comprende un transmisor (1) según cualquiera de las reivindicaciones 1 a 9 y un receptor (2) según cualquiera de las reivindicaciones 10 a 22.23. A quantum key distribution system comprising a transmitter (1) according to any one of claims 1 to 9 and a receiver (2) according to any of claims 10 to 22.
24.- Procedimiento de transmisión de clave cuántica que comprende las etapas de:24.- Quantum key transmission procedure that includes the steps of:
- generar una portadora óptica a una frecuencia ω0 ;- generate an optical carrier at a frequency ω 0 ;
- generar N subportadoras de radiofrecuencia (Ai, A2, ..., AN) , donde N es un número natural y N>1;- generate N radio frequency subcarriers (Ai, A 2 , ..., A N ), where N is a natural number and N>1;
- variar (4, 5) aleatoria e independientemente la fase relativa de dichas subportadoras de radiofrecuencia (Ai,- vary (4, 5) randomly and independently the relative phase of said radio frequency subcarriers (Ai,
A2, ..., AN) ; caracterizado por las etapas de:A 2 , ..., A N ); characterized by the stages of:
- codificar (3, 4, 5) un qubit en dicha fase relativa de cada subportadora de radiofrecuencia (Ai, A2, ..., AN) ; - combinar (6) las subportadoras de radiofrecuencia (Ai, A2, ..., AN) y formar una señal combinada (Aτ) ;- encoding (3, 4, 5) a qubit in said relative phase of each radio frequency subcarrier (Ai, A2, ..., A N ); - combine (6) the radio frequency subcarriers (Ai, A 2 , ..., A N ) and form a combined signal (A τ );
- modular (8) la portadora óptica a la frecuencia ω0 por dicha señal combinada (Aτ) , de forma que se obtenga una señal óptica multiplexada por N subportadoras de radiofrecuencia.- modulate (8) the optical carrier at the frequency ω 0 by said combined signal (A τ ), so that an optical signal multiplexed by N radio frequency subcarriers is obtained.
25.- Procedimiento de transmisión de clave cuántica según la reivindicación 24, caracterizado por el hecho de que al menos uno de los qubits codificados en las subportadoras de radiofrecuencia (Ai, A2, ..., AN) forma parte de una clave cuántica independiente de las demás claves cuánticas de las que el resto de qubits codificados en el resto de subportadoras de radiofrecuencia (Ai, A2, ..., AN) forman parte. 25. A quantum key transmission method according to claim 24, characterized in that at least one of the qubits encoded in the radio frequency subcarriers (Ai, A 2 , ..., A N ) is part of a key quantum independent of the other quantum keys of which the rest of qubits encoded in the rest of radio frequency subcarriers (Ai, A 2 , ..., A N ) are part.
26.- Procedimiento de transmisión de clave cuántica según la reivindicación 25, caracterizado por el hecho de que los N qubits codificados en las N subportadoras de radiofrecuencia (Ai, A2, ..., AN) forman parte de N claves cuánticas independientes entre si.26.- Quantum key transmission method according to claim 25, characterized in that the N qubits encoded in the N radio frequency subcarriers (Ai, A 2 , ..., A N ) are part of N independent quantum keys each.
27.- Procedimiento de transmisión de clave cuántica según la reivindicación 24, caracterizado por el hecho de que al menos dos de los qubits codificados en las subportadoras de radiofrecuencia (Ai, A2, ..., AN) forman parte de una misma clave cuántica.27.- Quantum key transmission method according to claim 24, characterized in that at least two of the qubits encoded in the radio frequency subcarriers (Ai, A 2 , ..., A N ) are part of the same quantum key
28.- Procedimiento de transmisión de clave cuántica según la reivindicación 27, caracterizado por el hecho de que los N qubits codificados en las N subportadoras de radiofrecuencia (Ai, A2, ..., AN) forman parte de una única clave cuántica.28.- Quantum key transmission method according to claim 27, characterized in that the N qubits encoded in the N radio frequency subcarriers (Ai, A 2 , ..., A N ) form part of a single quantum key .
29.- Procedimiento de transmisión de clave cuántica según cualquiera de las reivindicaciones 24 a 28, caracterizado por la etapa de hacer viajar a la señal modulada resultante (10) a través de un medio de transmisión óptico.29.- Method of quantum key transmission according to any of claims 24 to 28, characterized by the step of traveling the resulting modulated signal (10) through an optical transmission means.
30. Procedimiento de recepción de clave cuántica que comprende las etapas de: recibir una señal óptica (10' ) multiplexada por N subportadoras de radiofrecuencia, donde N es un número natural y N>1; - generar N subportadoras de radiofrecuencia (Bi, B2, ...,30. Quantum key reception method comprising the steps of: receiving an optical signal (10 ') multiplexed by N radio frequency subcarriers, where N is a natural number and N>1; - generate N radio frequency subcarriers (Bi, B 2 , ...,
BN) , donde N es un número natural y N>1;B N ), where N is a natural number and N>1;
- variar aleatoria e independientemente la fase relativa de cada una de dichas subportadoras de radiofrecuencia (Bi, B2, ..., BN) ; - combinar las subportadoras de radiofrecuencia (Bi, B2,- randomly and independently varying the relative phase of each of said radio frequency subcarriers (Bi, B 2 , ..., B N ); - combine the radio frequency subcarriers (Bi, B 2 ,
..., BN) generadas en la etapa anterior y formar una señal combinada (BT) ;..., B N ) generated in the previous stage and form a signal combined (B T );
- modular la señal óptica recibida (10' ) por dicha señal combinada (BT) , de forma que las subportadoras de radiofrecuencia (Bi, B2, ..., BN) interfieren con las subportadoras de radiofrecuencia que multiplexan a la señal óptica recibida (10' ) ;- modulate the received optical signal (10 ') by said combined signal (B T ), so that the radio frequency subcarriers (Bi, B2, ..., B N ) interfere with the radio frequency subcarriers multiplexing the optical signal received (10 ');
- filtrar (12, 13, 14, 15, 16) y detectar (18) el resultado de dicha interferencia; caracterizado por el hecho de que cada una de las subportadoras de radiofrecuencia que multiplexan a la señal óptica recibida (10' ) tiene codificado un qubit en su fase relativa.- filter (12, 13, 14, 15, 16) and detect (18) the result of said interference; characterized in that each of the radio frequency subcarriers multiplexing the received optical signal (10 ') has a qubit encoded in its relative phase.
31. Procedimiento de recepción de clave cuántica según la reivindicación 30, caracterizado por el hecho de que al menos uno de los qubits codificados en la fase relativa de una subportadora de radiofrecuencia que multiplexa a la señal óptica recibida (10') forma parte de una clave cuántica independiente de las demás claves cuánticas de las que el resto de qubits codificados en las fases relativas del resto de subportadoras de radiofrecuencia que multiplexan a la señal óptica recibida forman parte.31. A quantum key reception method according to claim 30, characterized in that at least one of the qubits encoded in the relative phase of a radio frequency subcarrier multiplexing the received optical signal (10 ') is part of a quantum key independent of the other quantum keys of which the rest of qubits encoded in the relative phases of the rest of radio frequency subcarriers multiplexing the received optical signal are part.
32. Procedimiento de recepción de clave cuántica según la reivindicación 31, caracterizado por el hecho de que los N qubits codificados en las fases relativas de las subportadoras de radiofrecuencia que multiplexan a la señal óptica recibida (10') forman parte de N claves cuánticas independientes entre si.32. Quantum key reception method according to claim 31, characterized in that the N qubits encoded in the relative phases of the radio frequency subcarriers multiplexing the received optical signal (10 ') form part of N independent quantum keys each.
33. Procedimiento de recepción de clave cuántica según la reivindicación 30, caracterizado por el hecho de que al menos dos de los qubits codificados en las fases relativas de las respectivas subportadoras de radiofrecuencia que multiplexan a la señal óptica recibida (10' ) forman parte de una misma clave cuántica. 33. A quantum key reception method according to claim 30, characterized in that at least two of the qubits encoded in the relative phases of the respective radio frequency subcarriers multiplexing the received optical signal (10 ') form part of The same quantum key.
34. Procedimiento de recepción de clave cuántica según la reivindicación 33, caracterizado por el hecho de que los N qubits codificados en las fases relativas de las subportadoras de radiofrecuencia que multiplexan a la señal óptica recibida (10') forman parte de una única clave cuántica.34. Quantum key reception method according to claim 33, characterized in that the N qubits encoded in the relative phases of the radio frequency subcarriers multiplexing the received optical signal (10 ') form part of a single quantum key .
35. Procedimiento de recepción de clave cuántica según cualquiera de las reivindicaciones 30 a 34, caracterizado por la etapa de destilar la clave o claves cuánticas formadas por los qubits.35. Method of receiving quantum key according to any of claims 30 to 34, characterized by the step of distilling the quantum key or keys formed by the qubits.
36. Procedimiento de recepción de clave cuántica según la reivindicación 35, caracterizado por la etapa de usar un protocolo previamente determinado para comparar dichas claves cuánticas y evaluar el grado de privacidad de la comunicación . 36. The procedure for receiving a quantum key according to claim 35, characterized by the step of using a previously determined protocol to compare said quantum keys and assess the degree of privacy of the communication.
PCT/ES2007/000323 2006-06-02 2007-05-31 System, and quantum key parallel distribution method by means of subcarrier multiplexing WO2007141353A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES200601578A ES2302433B2 (en) 2006-06-02 2006-06-02 SYSTEM AND DISTRIBUTION PROCEDURE IN PARALLEL OF QUANTIC KEY BY MULTIPLEXATION OF SUBPORTERS.
ESP200601578 2006-06-02

Publications (1)

Publication Number Publication Date
WO2007141353A1 true WO2007141353A1 (en) 2007-12-13

Family

ID=38801082

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2007/000323 WO2007141353A1 (en) 2006-06-02 2007-05-31 System, and quantum key parallel distribution method by means of subcarrier multiplexing

Country Status (2)

Country Link
ES (1) ES2302433B2 (en)
WO (1) WO2007141353A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104393957A (en) * 2014-11-27 2015-03-04 苏州大学 X state based quantum parallel multiple controllable dense coding method
US10164724B2 (en) 2016-09-26 2018-12-25 International Business Machines Corporation Microwave combiner and distributer for quantum signals using frequency-division multiplexing

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08139701A (en) * 1994-11-15 1996-05-31 Nippon Telegr & Teleph Corp <Ntt> Quantum cipher system
JP2003018094A (en) * 2001-04-25 2003-01-17 Mitsubishi Electric Corp Optical signal output device, optical signal transmission system and optical signal transmission method
GB2392063A (en) * 2002-05-31 2004-02-18 Corning Inc Quantum cryptology which involves passing a received pulse pair through a polarization beam splitter and then two interferometers and detectors
JP2006180307A (en) * 2004-12-24 2006-07-06 Japan Science & Technology Agency Quantum encryption communication system
US20060222180A1 (en) * 2002-10-15 2006-10-05 Elliott Brig B Chip-scale transmitter for quantum cryptography
WO2007036011A1 (en) * 2005-09-30 2007-04-05 Nortel Networks Limited Double phase encoding quantum key distribution

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08139701A (en) * 1994-11-15 1996-05-31 Nippon Telegr & Teleph Corp <Ntt> Quantum cipher system
JP2003018094A (en) * 2001-04-25 2003-01-17 Mitsubishi Electric Corp Optical signal output device, optical signal transmission system and optical signal transmission method
GB2392063A (en) * 2002-05-31 2004-02-18 Corning Inc Quantum cryptology which involves passing a received pulse pair through a polarization beam splitter and then two interferometers and detectors
US20060222180A1 (en) * 2002-10-15 2006-10-05 Elliott Brig B Chip-scale transmitter for quantum cryptography
JP2006180307A (en) * 2004-12-24 2006-07-06 Japan Science & Technology Agency Quantum encryption communication system
WO2007036011A1 (en) * 2005-09-30 2007-04-05 Nortel Networks Limited Double phase encoding quantum key distribution

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104393957A (en) * 2014-11-27 2015-03-04 苏州大学 X state based quantum parallel multiple controllable dense coding method
US10164724B2 (en) 2016-09-26 2018-12-25 International Business Machines Corporation Microwave combiner and distributer for quantum signals using frequency-division multiplexing
US10567100B2 (en) 2016-09-26 2020-02-18 International Business Machines Corporation Microwave combiner and distributer for quantum signals using frequency-division multiplexing
US11139903B2 (en) 2016-09-26 2021-10-05 International Business Machines Corporation Microwave combiner and distributer for quantum signals using frequency-division multiplexing

Also Published As

Publication number Publication date
ES2302433A1 (en) 2008-07-01
ES2302433B2 (en) 2009-07-28

Similar Documents

Publication Publication Date Title
JP7021272B2 (en) Secure communication network
JP5384781B2 (en) Secret communication system and method for generating shared secret information
EP3243294B1 (en) Communication with everlasting security from short-term-secure encrypted quantum communication
Merolla et al. Single-photon interference in sidebands of phase-modulated light for quantum cryptography
US9473301B2 (en) Systems and methods for telecommunication using high-dimensional temporal quantum key distribution
JP5631743B2 (en) Quantum cryptography equipment
US7620182B2 (en) QKD with classical bit encryption
US8964989B2 (en) Method for adding nodes to a quantum key distribution system
US20140098955A1 (en) Quantum enabled security for optical communications
WO2007105833A1 (en) Quantum encryption transmission system and optical circuit
ES2340000T3 (en) SYSTEM AND PROCEDURE FOR THE SECURE TRANSMISSION OF BINARY CODE BY CODING IN PHASE AND INTENSITY.
ES2302433B2 (en) SYSTEM AND DISTRIBUTION PROCEDURE IN PARALLEL OF QUANTIC KEY BY MULTIPLEXATION OF SUBPORTERS.
ES2425693B1 (en) QUANTIC KEY DISTRIBUTION SYSTEM BASED ON FREQUENCY MODULATION AND DIFFERENTIAL PHASE
Zia-Ul-Mustafa et al. Quantum key distribution for visible light communications: A review
Rawal et al. Quantum-safe cryptography and security
JP2007511178A (en) Quantum cryptography based on coherent state via wavelength division multiplexing communication network with optical amplification
Gabdulhakov et al. Frequency coded quantum key distribution channel based on photon amplitude-phase modulation
Russell Application of quantum key distribution
Dajani et al. The relevance of quantum cryptography in modern networking systems.
Teja et al. A Secure Communication through Quantum Key Distribution Protocols
Wen et al. Quantum key distribution networks layer model
Grzywak et al. Quantum cryptography: opportunities and challenges
Cincotti On the security of spectrally encoded quantum-encryption protocols
Lance et al. What is Quantum Key Distribution (QKD)?

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07788571

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 07788571

Country of ref document: EP

Kind code of ref document: A1