WO2007141345A1 - Dispositif de supervision et de stimulation destine a lutter contre l'apnee du sommeil - Google Patents

Dispositif de supervision et de stimulation destine a lutter contre l'apnee du sommeil Download PDF

Info

Publication number
WO2007141345A1
WO2007141345A1 PCT/EP2007/055723 EP2007055723W WO2007141345A1 WO 2007141345 A1 WO2007141345 A1 WO 2007141345A1 EP 2007055723 W EP2007055723 W EP 2007055723W WO 2007141345 A1 WO2007141345 A1 WO 2007141345A1
Authority
WO
WIPO (PCT)
Prior art keywords
stimulation
agent
newborn
monitoring
processing means
Prior art date
Application number
PCT/EP2007/055723
Other languages
English (en)
Inventor
Alfredo Hernandez
Julio Cruz
Guy Garrault
Original Assignee
Universite De Rennes 1
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR0605145A external-priority patent/FR2908623A1/fr
Application filed by Universite De Rennes 1 filed Critical Universite De Rennes 1
Publication of WO2007141345A1 publication Critical patent/WO2007141345A1/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4806Sleep evaluation
    • A61B5/4818Sleep apnoea
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H20/00ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
    • G16H20/30ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to physical therapies or activities, e.g. physiotherapy, acupressure or exercising
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H40/00ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
    • G16H40/60ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
    • G16H40/67ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for remote operation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/02Operational features
    • A61B2560/0266Operational features for monitoring or limiting apparatus function
    • A61B2560/0271Operational features for monitoring or limiting apparatus function using a remote monitoring unit
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • A61B5/7275Determining trends in physiological measurement data; Predicting development of a medical condition based on physiological measurements, e.g. determining a risk factor

Definitions

  • the field of the invention is that of monitoring (or "monitoring”, according to a terminology more English-speaking but commonly accepted in the technical field of the invention) physiological signals of individuals, and more specifically newborns.
  • the invention thus relates to the control of rapné / bradychardie in newborns, and in particular premature newborns.
  • the prior art discloses systems for remote monitoring of cardiac signals, for example, enabling a patient, from home, to transmit the ECG signals (electrocardiogram) acquired by himself on his person by means of a housing. equipped with sensors, via a communication network, for example the Internet, to his or her doctors.
  • ECG signals electrocardiogram
  • the ECG data is communicated (most often in a completely secure manner) by the device, also called housing, equipping the patient, to one or more client applications or remote servers, executed, for example, on the computer terminal. medical staff in charge of the follow-up.
  • a first disadvantage of this type of system is related to the fact that it is the patient himself who must, according to a given prescription, set up the sensors, then initiate the transmission of data, to the medical staff, the latter taking cognizance, most often, physiological information transmitted by the patient, in time
  • Monitoring adapted to a hospital context have been proposed. They are based on the implementation of a housing equipped with sensors able to communicate by means of a wired connection, with a cardiac monitoring station allowing the doctor, for example through an application developed in JAVA programming language, handling, processing and analysis of the patient's ECG physiological signals.
  • the aforementioned solution has been extended in the form of a 12-channel remote monitoring system, relying on the Internet network, including for the exchange of physiological data of the intra-hospital ECG type.
  • Such a system has also been made compatible with the various connectors of equipment for the acquisition and communication of physiological data, so as to make it more generic and more rational in terms of manufacturing costs.
  • Such a system according to the prior art still has the disadvantage of being limited in terms of real-time processing of data acquired on a patient and therefore remain unsuitable for use in an emergency context.
  • a major drawback of such a technical solution lies in the fact that all the data processing takes place only at the level of the software application and, without prior knowledge of any physiological specificities of the patient. Consequently, such a solution remains difficult to implement in contexts of an emergency nature since it does not allow proactive behavior of the system in real time. It is only after delocalized processing by the monitoring application that alerts or actions can be triggered, in a period which may sometimes prove to be too long, or incompatible with the measures that it would be necessary to take. at the level of the monitored patient.
  • An object of the invention is to provide a device adapted to newborns, for the fight against apnea / bradychardia.
  • a further object of the invention is to provide such a device that is simple to implement, both from the point of view of software and hardware, while being low cost or at least reasonable.
  • a particular object of the invention in a particular embodiment, is to provide such a device that can simultaneously monitor a large number of newborns.
  • a device for supervising and stimulating at least one newborn suitable for apnea of the sleep comprising at least one acquisition sensor of at least one signal representative of the heart rate of said neonate, means for processing said at least one signal and kinesthetic stimulation means of said newborn.
  • said processing means deliver to said stimulation means a variable control signal, making it possible to control the amplitude and / or the frequency of the stimulation applied to the newborn, since said processing means detect a variation or an abnormal change in said heart rate.
  • the invention is based on a new approach to stimulating newborns, based on stimulation adapted to a given situation. It is no longer an "all-or-nothing" approach according to the prior art, but a consideration of the situation, taking into account, for example, previously stored information and databases. knowledge, for optimize in real time the stimulation provided, depending on the detected bradychardia.
  • said control signal can take at least two values, a value controlling a sufficient stimulation to wake up the newborn and a value controlling stimulation not waking the newborn.
  • the invention proposes that certain stimulations be subliminal only, so as not to cause awakening. This approach makes it possible to combat the morbidity due to lack of sleep.
  • said processing means take account, for the generation of said control signal, of an evolution of said signal or signals representative of the heart rate over a predetermined period of time.
  • said processing means take into account, for the generation of said control signal, reference data relating to said newborn and / or to a set of newborns stored in a database.
  • said processing means comprise learning means implementing: remote means for recording said at least one signal representative of the heart rate and the events detected; means for calculating at least one criterion for variability in the evolution of said at least one signal representative of the heart rate.
  • said processing means may in particular comprise means for comparing said at least one variability criterion with at least one predetermined threshold of detection and / or presumption of the occurrence of an abnormal event in said newborn, of so that when said at least one threshold of presumption and / or detection is crossed, said control signal is appropriately generated.
  • said processing means are housed partly in at least one acquisition box installed near a newborn and for another part in at least one remote computer terminal, putting in place in particular a visualization application. In this case, said processing means and said terminal communicate advantageously via a wireless link.
  • said processing means implement at least one multi-agent execution environment, comprising at least the four types of software agents belonging to the group comprising: a principal agent, providing global management operation of said device;
  • a communication agent able to establish a transmission protocol between said processing means and at least one computer terminal
  • a data acquisition agent able to read at least some data acquired by at least one acquisition card
  • an application agent able to carry out the processing of at least some of said data acquired by said acquisition agent.
  • said sensors advantageously comprise three ECG sensors for each newborn.
  • the device of the invention comprises a plurality of housings each intended for a newborn, each comprising at least one sensor and stimulation means, said housings cooperating with a computer terminal comprising means for storing data.
  • FIG. 1 schematically illustrates the principle of the device of the invention
  • FIG. 2 illustrates a multi-agent structure for implementing an embodiment of the invention
  • FIG. 3 illustrates an example of means for implementing a multi-agent environment, comprising a microcontroller and integrable in the autonomous and self-adaptive remote monitoring system of FIG. 2;
  • FIG. 4 is a general representation of a remote monitoring system according to the invention.
  • FIG. 6 presents a general hardware architecture of an intelligent remote monitoring system according to the invention
  • FIG. 7 is an illustration of the multi-agent execution environment for the microcontroller of the system of FIG. 5;
  • FIG. 8 shows a set of agents involved in the software architecture of a remote monitoring system according to the invention.
  • FIG. 9 gives an illustration of the main interface of a visualization and multi-patient remote monitoring console
  • FIG. 10 shows a multi-agent architecture of a monitoring station according to the invention
  • - Figures 11 and 12 show different hardware components implemented in a remote monitoring system according to the invention
  • FIG. 13 gives an overall view of a human-machine monitoring interface fitted to a remote monitoring station according to the invention.
  • It comprises one or more sensors 11, intended to be placed in the body of the newborn. These sensors 11 deliver measurement signals 12 representative of a measurement of a physiological information, for example a
  • ECG ECG.
  • three ECG measurements are thus obtained.
  • processing means 13 for example a microcontroller, which determine a control (advantageously comprising two components 14A and 14F) of stimulation means 15.
  • the processing means 13 take into account the previous measurements, stored in a memory or on a server 16, and general data 17, such as rule bases for example.
  • the commands 14A and 14F are therefore variable, for example beat to beat, and may in particular increase if the bradycardia increases, and decrease if the bradychardia decreases. They are chosen in particular so as to be weak enough not to wake up the newborn (subliminal stimulation), when the situation does not justify it.
  • intelligent agent we mean a computer object (program) that performs tasks in the manner of an automaton, according to the state of its environment and the "behaviors" associated with it.
  • the agents 61 are capable of a certain autonomy and, in particular, can "dialogue” with other agents (having complementary behaviors) to perform complex tasks.
  • Multi-agent architectures are particularly useful for facilitating the integration of knowledge into IT applications.
  • the technical approach adopted authorizes the creation of a new complete multi-agent environment, applicable to an electronic device equipped with a microcontroller 71 and makes it possible to propose a new electronic architecture facilitating the development of the hardware. and software embedded in the hardware, or "firmware", as well as the integration of knowledge.
  • one or more intelligent devices 80 for monitoring and stimulating a set of patients 83; an application 81 for visualizing, configuring, processing and controlling all the devices 80 that can operate on one or more computers 82 at the same time, locally or remotely.
  • one or more devices may be connected to patient 90 and operate in one of three ways:
  • An autonomous modality 93 in which each device 91 acquires the data 94, performs the signal processing locally, or adaptively applies therapy 94 and records certain events in its local memory.
  • a master-slave modality 95 in which each device 92 (slave) carries out data acquisition and wireless transmission 97 to one or more computers 98 (masters).
  • the application 99 on the master computer allows, among other things, the viewing, recording, signal processing 99b and the automatic or manual control of the therapy applied by the device.
  • each intelligent device 100 consists of four interconnected electronic cards 101, 102, 103, 104: a commercially available "processor card” 101, which contains a microcontroller 105 ATMegal28, RAM and Flash memories , RTC clock, etc. ;
  • an "acquisition card” 102 specific to the problem being addressed, which enables the acquisition of the physiological data and their analog-digital conversion
  • a "communications card” 103 that allows communication between different devices and the master application
  • a "motherboard” 104 developed by the inventors, which performs the following functions: o Interface 106 between the different cards by means of serial or parallel protocols, o Management 108 of the additional analog and digital inputs and outputs, o Management of the supply of the device 109 (batteries, DC power supply).
  • a multi-agent execution environment 111 also called a "framework” and a function library in C or C ++ language, adapted for use in microcontrollers, were first created, using a simplified message communications protocol, which still allows communication with standards such as FIPA-ACL.
  • the developed environment manages the exchange of messages between the different agents and establishes the order of execution of the different behaviors of the agents, using a FIFO approach.
  • the execution of the behaviors is based on the "life cycle" of the agents, defined by the FIPA, and includes the states of initialization, activation and waiting.
  • the behaviors of an agent can be executed only during the activation state.
  • agents 121, 122, 123, 124 adapted for the main tasks of the device have been defined and implemented: principal, responsible for the overall management of the device and, in particular, the functionalities of the motherboard; it manages the power supply of the device, the control of the real-time clock (RTC), the non-volatile memory and the inputs / outputs of the motherboard (buttons, diodes (still called “leds"), actuators (still called “Actuators”)).
  • RTC real-time clock
  • this agent contains a list of possible clinical applications with the hardware (also called “hardware”) available in the device.
  • a communication agent 122 which establishes a transmission protocol between the device 100 and the computer. This protocol allows error checking and a variable data size, regardless of the means of transmission used (USB, bluetooth, etc.); a data acquisition agent 123, which has cyclic type behaviors capable of reading the data acquired from the different acquisition cards integrated in the device; a clinical application agent 124, which performs the treatment of the acquired data, the detection of events or the adaptation of the therapy, depending on the clinical application for which it was designed.
  • An essential and additional advantage of such a multi-agent execution environment 111 concerns its relatively easy implementation within one or more microcontrollers embedded in the device according to the invention.
  • the primary agent and the communication agent are created. If there are monitoring applications available in the communications rank of the device, the master agent transmits to all these applications (using the communication agent) the characteristics of the devices, which include a unique identifier and a list possible clinical applications with the hardware available in the device. For example, a device with 3 ECG pathways may be useful for monitoring the bradycardia of newborns, but also to detect certain cardiac arrhythmias in patients who have suffered a myocardial infarction. The methods of signal processing and the possible therapeutic actions applied to the patient will be different for these two applications.
  • the principal agent waits for user input to define the operation mode (autonomous, master-slave or hybrid) and the desired clinical application (ie bradycardias, arrhythmias, etc.).
  • This interaction with the user can be performed either directly on the device by means of the push buttons or through the graphical interface of the application.
  • the primary agent then creates a data acquisition agent corresponding to the available acquisition hardware and a clinical application agent, depending on the user's choice to start the monitoring process. These agents will send messages continuously during data monitoring.
  • the clinical application agent contains, among other things, a behavior associated with the analysis of the data received from the acquisition agent and a behavior that controls, through the main agent, the operation of the digital and analog outputs of the device . This last behavior is particularly useful for the application of therapeutic stimulation or the generation of alarms. Due to the fact that these two behaviors work concurrently, the application of the stimulation can be continuously modified and optimized according to predefined parameters or physiological knowledge included in the clinical application agent.
  • FIG. 9 an example of a main interface 131 and a monitoring interface 132 of a multi-patient viewing and supervision console 130 is presented.
  • Such a console is developed using the standard multi-agent environment JADE (registered trademark), which allows the automatic adaptation of the graphical interfaces 131 and 132 (developed in object-oriented language JAVA - registered trademark) according to the application clinic.
  • JADE registered trademark
  • Such a console 130 advantageously makes it possible to view, record and process all or part of the physiological data acquired from one or more patients simultaneously.
  • Such a console 130 also advantageously offers the possibility of estimating in real time, the optimal stimulation to bring to the patient, once one or more alarms have been triggered.
  • This console 130 according to the invention offers the additional major benefit of allowing the simultaneous supervision and monitoring of a large number of hospitalized patients in real time, which also contributes to reducing the material and human costs in the patients. hospitals and / or maternities.
  • the multi-agent architecture of the station (software) is presented. The main agents defined are:
  • the main agent 141 which manages the entire application and the multi-patient display console 146. It also allows the creation of graphical interfaces according to the context, for example, for the creation of a list of possible clinical applications, according to the detected intelligent monitoring devices.
  • the central agent 142 which makes it possible to export the most relevant information of each patient 143 to the central multi-patient visualization console, to follow the main monitored parameters, the alarms and the detections of the risk events of the patient. all patients followed.
  • the monitor agent 144 responsible for creating the user interface 145 specific to a patient, a clinical problem and a given monitoring device. He is also responsible for recording data and distributing analysis and communication tasks to other agents.
  • the graphical interface 145 created by the monitor 144 operates in real time and presents the acquired signals 133, the detected parameters 134, their temporal evolution, etc.
  • the acquisition agent 147 is an "intermediate agent", which carries out the transfer of information with the "communication" agent of the intelligent device 123 according to the invention, by translating the FIPA-ACL messages.
  • This agent 147 has a graphical interface which facilitates access to the parameters of the associated device 135. This interface is displayed via the monitor agent 144.
  • the processing agent 1400 is responsible for analyzing the data from the acquisition agent 147 (in the master-slave operating mode). In the behaviors of this agent 1400, it is possible to easily implement the various methods of information processing, by means of the use of a C ++ library coupled to the application by a 1401 JNI interface (" Java Native Interface "in English or” Java Native Interface “in French - with” Java ", registered trademark).
  • the method and / or system according to the invention can be applied to the detection and treatment of bradycardias in preterm infants. It is recalled that, unfortunately, apnea and bradycardia are dangerous for the premature newborn, which sometimes requires invasive resuscitation maneuvers, which induce an extension of the length of hospitalization.
  • Such apneas are also involved in long-term neurological morbidity (frequent awakenings).
  • the use of the remote monitoring system according to the invention advantageously allows the early detection and characterization (autonomous or hybrid) of the bradycardias, then the application of an adaptive stimulation (beat to beat) which allows:
  • AAMI / ANSI (AAMI EC 13-92) and available on the market (MCC ECGBoard), was chosen.
  • Communications with other devices or with the master application is based on "BlueTooth" technology, using an OEM 164 card. These two cards 160 and 164 are connected by serial link
  • the motherboard 165 also allows the application of auditive stimulation 1600, with a built-in speaker. It may also include means 168 for visual stimulation, of the diode (“LED”) type.
  • LED diode
  • the proposed system falls within the general framework of distributed intelligent monitoring and responds to the growing need to perform continuous (tele) monitoring of physiological data of healthy or pathological subjects and to provoke an optimal adaptive action (possibly therapeutic), according to the state of health of the patient, locally or remotely.
  • the "intelligent" aspect of the system is associated with the fact that it is able to adapt to the surveillance context and to the clinical problem studied, while allowing to dynamically optimize stimulation on the patient.
  • One of the main originalities of this system is associated with the proposal of a multi-agent architecture, embedded in the microcontroller, to facilitate the introduction of knowledge, the communication with others devices or applications of information processing and application development on this architecture.
  • bradycardias are defined by a drop in heart rate of at least 33% from baseline. If bradycardias are frequent events, which may occur alone or more often (80% of cases) associated with apnea and / or desaturation, they place the newborn in immediate danger in the absence of appropriate intervention. . Experience shows that intervention times remain long for babies in distress, even if they are performed very efficiently.
  • the application of the proposed system in this context allows: i) real-time remote and wireless ECG recording of prematurity, ii) extraction of its cardiac variability curve, iii) early detection of bradycardia and iv) adaptive activation of a kinesthetic stimulator.
  • the expected results are particularly important clinically as it is considered that automatic detection and stimulation of newborns should minimize the risk of prolonged and / or profound apnea-bradycardia, decrease the use of resuscitation or intubation maneuvers and shorten the duration of hospitalization.
  • the proposed system consists of the following elements:
  • an application for viewing, configuring, processing and controlling the set of devices which can operate on one or more computers at the same time, locally or remotely.
  • one or more devices can be connected to the patient and operate in one of three ways:
  • An autonomous mode in which each device acquires the data, carries out the processing of the signals locally, applies or not a Adaptive therapy and records certain events in its local memory.
  • each device realizes data acquisition and transmission to one or more computers (masters).
  • masters computers
  • the application on the master computer allows, among other things, viewing, recording, signal processing and automatic or manual control of the therapy applied by the device.
  • FIG. 5 shows two possibilities for monitoring newborns with the proposed system: the autonomous mode and the master-slave mode.
  • Two modes of operation of the proposed system on the left an autonomous application in which the intelligent devices realize the acquisition, the treatment and the stimulation without interaction with the outside; on the right a master-slave application in which the processing and the decision-making are carried out in the computer (master application).
  • Each intelligent device consists of four interconnected electronic cards (Figure 6):
  • processor card available on the market, which contains an ATMegal28 microcontroller, RAM and Flash memories, RTC clock, etc.
  • motherboard developed by us, which performs the following functions: - Interface between the different cards by means of serial or parallel protocols,
  • This modular hardware architecture facilitates the generalization of the device to several different applications, by a simple change of cards.
  • the motherboard allows the connection of a set of cards specific to the problem dealt with.
  • a prototype is presented figure 12, for the detection of the bradycardias of the newborn.
  • main cards In the center, there are three interconnected main cards and superimposed (motherboard 171, processor card 172 and ECG card 173).
  • the various functions of the device acquisition, communication, stimulation, etc.
  • microcontroller processor card
  • embedded program firmware
  • the development of this type of embedded software is often tedious and difficult to generalize.
  • One of the originalities of the approach presented here lies in the proposal of a multi-agent architecture, implemented on the microcontroller.
  • An intelligent agent is a computer object (program) that performs tasks in the manner of a PLC, depending on the state of its environment and the "behaviors" associated with it. They are capable of a certain autonomy and, in particular, can "dialogue” with other agents (with complementary behaviors) to perform complex tasks. Multi-agent architectures are particularly useful for facilitating the integration of knowledge into IT applications.
  • the developed environment manages the exchange of messages between the different agents and establishes the order of execution of the different behaviors of the agents, using a FIFO approach.
  • the execution of the behaviors is based on the "life cycle" of the agents, defined by the FIPA, and includes the states of initialization, activation and waiting.
  • the behaviors of an agent can be executed only during the activation state.
  • the main agent responsible for the overall management of the device and, in particular, the functionalities of the motherboard; It manages the power supply of the device, the control of the real-time clock (RTC), the nonvolatile memory and the inputs / outputs of the motherboard (buttons, LEDs, actuators).
  • this agent contains a list of possible clinical applications with the hardware available in the device; -
  • the communication agent which establishes a transmission protocol between the device and the computer. This protocol allows an error check and a variable data size, regardless of the means of transmission used (USB, bluetooth, etc.);
  • the data acquisition agent which has cyclic type behaviors capable of reading the data acquired from the different acquisition cards integrated in the device;
  • the clinical application agent which performs the treatment of acquired data, the detection of events or the adaptation of the therapy, depending on the clinical application for which it was designed. It is important to emphasize that a given device may have several agents of different clinical applications.
  • the primary agent and the communication agent are created. If there are monitoring applications available in the communication rank of the device, the master agent transmits to all these applications (using the communication agent) the characteristics of the devices, which include a unique identifier and a list possible clinical applications with the hardware available in the device.
  • the principal agent waits for a user input to define the operation mode (autonomous, master-slave or hybrid) and the desired clinical application (ie bradycardias, arrhythmias, etc.). This interaction with the user can be performed either directly on the device by means of the push buttons or through the graphical interface of the application.
  • the primary agent then creates a data acquisition agent corresponding to the available acquisition hardware and a clinical application agent, depending on the user's choice to start the monitoring process. These agents will send messages continuously during data monitoring.
  • the clinical application agent contains, among other things, a behavior associated with the analysis of the data received from the acquisition agent and a behavior that controls, through the main agent, the operation of the digital and analog outputs of the device . This last behavior is particularly useful for the application of therapeutic stimulation or the generation of alarms. Due to the fact that these two behaviors work concurrently, the application of the therapy can be continuously modified and optimized according to predefined parameters or physiological knowledge included in the clinical application agent ("therapy" behavior).
  • the data acquisition agent receives the ECG signals from the card and transmits this information to a specific clinical application agent (bradycardia agent).
  • the latter contains behaviors allowing: i) to detect bradycardias (based on algorithms presented in the literature or proposed in the laboratory) and U) to stimulate the newborn in an adaptive way, according to the observed response. More particularly, kinesthetic stimulation is performed at different amplitudes and frequencies, depending on the evolution of the state of the newborn and its response to the stimulation applied.
  • the adaptive definition of this therapy can be achieved by a transfer function, a rule base, an interval cutting optimization algorithm (such as the golden section), a "black box” model or a physiological model, linking the measured heart rate to the optimal stimulation parameters.
  • an intelligent monitoring multi-platform intelligent monitoring application has been developed, also using a multi-agent approach.
  • JADE Java Agent Development
  • JADE Java Agent Development
  • FIPA-ACL open-source multi-agent system development environment
  • syntax validation tools for messages between agents.
  • the information processing methods included in the platform are developed in C ++ and associated with the station using JNI interfaces.
  • the application can operate on one or more computers at the same time, locally or remotely and allows: automatic adaptation of the graphical interface according to the clinical application context and available and detected devices; viewing, recording and processing of data received from the devices; - initial configuration and control of the set of devices;
  • the multi-agent architecture of the station is shown in Figure 10.
  • the main agents defined are: the main agent, which manages the entire application and the multi-patient visualization console. It also allows the creation of graphic interfaces depending on the context, for example, for the creation of a list of possible clinical applications, depending on the detected intelligent monitoring devices.
  • the central agent which allows you to export the most relevant information from each patient to the central multi-patient visualization console, to monitor the main monitored parameters, alarms and detections of risk events for all patients followed.
  • the monitor agent responsible for creating the specific patient-specific user interface, clinical problem, and monitoring device. He is also responsible for recording data and distributing analysis and communication tasks to other agents.
  • the graphical interface created by the monitor works in real time and presents the acquired signals, the detected parameters, their temporal evolution, etc.
  • the acquisition agent is an "intermediate agent", which carries out the transfer of information with the "communication" agent of the intelligent device, by translating the FIPA-ACL messages (used in the application) in the format of the protocol that we have developed for the microcontroller.
  • This agent has a graphical interface that facilitates access to the parameters of the associated device. This interface and is displayed through the monitor agent.
  • the processing agent is responsible for analyzing the data from the acquisition agent (in the master-slave operating mode). In the behaviors of this agent, it is possible to easily implement the various methods of information processing proposed in the laboratory, by means of the use of a C ++ library coupled to the application by a JNI interface.
  • AT The application 180 starts, the main agent is created. It detects the different possible clinical applications by interrogation of 181 available intelligent devices and a 182 knowledge base, or base of Géranipales, which represents the different clinical problems treated by the application.
  • This agent presents a graphical interface with a context sensitive palette 185, which lists the possible clinical applications according to the set of devices.
  • VS VS
  • the user selected in this palette 185 the desired application and a dialogue box 186 allows him to integrate patient data, or select a patient already available in the database 187 patient data.
  • the databases 187 and data 182 are implemented on a MySQL (registered trademark) manager.
  • the different agents are created for each clinical application and for each patient: a central agent (which communicates with the multi-patient central viewing console 180) and the acquisition, treatment and monitor agents.
  • the user can view the acquired signals 189 and the detected parameters of the patient 1800, activate and modify the parameters of the various signal processing methods 1801 and manually configure or control the device 1802.
  • the inventors' knowledge there is currently no other technology available to manufacturers that makes it possible to include in the microcontroller of a medical device the knowledge specific to the problem addressed and having the characteristics of genericity and ease of use described in this document.
  • Compared to the specific application in bradycardia several embedded neonatal stimulation applications have been proposed. None of these applications proposes an adaptive stimulation capable of, for example, increasing the stimulation amplitude for larger bradycardias and to decrease this stimulation for weaker bradycardias.
  • the main advantage of this invention is associated with the use of a multi-agent environment, implemented in the embedded software ("firmware") of a microcontroller, allowing easy communication with a standard multi-agent system, defined at software level (computer).
  • firmware firmware
  • This approach facilitates the integration of problem-specific knowledge into the device and the communication between the different devices and a master application.
  • it significantly reduces the development time of firmware and software.
  • Another advantage is associated with the generality of the hardware design, which facilitates the extension to other applications by simply changing the card. This aspect also reduces the time and costs of hardware development.
  • the proposed adaptive stimulation has several advantages over a "classic" fixed stimulation.
  • Such adaptive stimulation achieves an interesting compromise between the minimum amplitude necessary to obtain a response (thus favoring the rest periods, strongly disturbed by the current methods) and a greater amplitude (allowing a faster response and a decrease duration of bradycardia).

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Veterinary Medicine (AREA)
  • Pathology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Epidemiology (AREA)
  • Primary Health Care (AREA)
  • Cardiology (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Business, Economics & Management (AREA)
  • General Business, Economics & Management (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

L'invention concerne un dispositif de supervision et de stimulation d'au moins un nouveau-né propice à l'apnée du sommeil, comprenant au moins un capteur d'acquisition d'au moins un signal représentatif de la fréquence cardiaque dudit nouveau-né, des moyens de traitement dudit au moins un signal et des moyens de stimulation kinesthésique dudit nouveau-né. Lesdits moyens de traitement délivrent auxdits moyens de stimulation un signal de commande variable, permettant de contrôler l'amplitude et/ou la fréquence de la stimulation appliquée au nouveau-né, dès lors que lesdits moyens de traitement détectent une variation ou une modification anormale de ladite fréquence cardiaque.

Description

DISPOSITIF DE SUPERVISION ET DE STIMULATION DESTINE A LUTTER CONTRE L' APNEE DU
SOMMEIL
1. Domaine de l'invention
Le domaine de l'invention est celui de la surveillance (ou « monitoring », selon une terminologie plus anglophone mais communément admise dans le 5 domaine technique de l'invention) des signaux physiologiques d'individus, et plus précisément de nouveaux-nés.
L'invention concerne ainsi la lutte contre rapnée/bradychardie chez les nouveaux-nés, et notamment les nouveaux-nés prématurés.
2. Etat de la technique
10 On connaît de l'art antérieur des systèmes de télé monitoring de signaux cardiaques par exemple, permettant à un patient, depuis son domicile, de transmettre les signaux ECG (électrocardiogramme) acquis par lui-même sur sa personne au moyen d'un boîtier muni de capteurs, via un réseau de communication, par exemple Internet, à son ou ses médecins.
15 Ainsi, les données ECG sont communiquées (le plus souvent de façon entièrement sécurisée) par le dispositif, encore appelé boîtier, équipant le patient, à une ou plusieurs applications clientes ou serveurs distants, exécutées, par exemple, sur le terminal d'ordinateur du personnel médical en charge du suivi.
Si ce type de solution technique reste adapté pour certains patients atteints
20 de pathologies cardiaques autorisant un suivi à distance, un premier inconvénient de ce type de système est lié au fait que c'est le patient lui-même qui doit, selon une prescription donnée, mettre en place les capteurs, puis initier la transmission des données, vers le personnel médical, ce dernier prenant connaissance, le plus souvent, des informations physiologiques transmises par le patient, en temps
25 différé.
En conséquence, un tel système est parfaitement inadapté à un contexte de télé monitoring appliqué à un nouveau-né, qui est dans l'incapacité physique de pouvoir participer activement. Il n'est par ailleurs pas adapter pour gérer une problématique d'urgence, par exemple lors d'une apnée du sommeil pouvant
30 survenir de manière intempestive chez le nouveau-né. Pour pallier un tel inconvénient, des solutions de surveillance, ou
« monitoring », (il convient de noter que le terme « surveillance » et son équivalent « monitoring », communément admis dans le domaine de l'invention, sont employés indifféremment l'un pour l'autre dans la suite de la description) adaptées à un contexte hospitalier ont été proposées. Elles s'appuient sur la mise en œuvre d'un boîtier muni de capteurs aptes à communiquer au moyens d'une connexion filaire, avec une station de monitoring cardiaque permettant au médecin, par exemple grâce à une application développée en langage de programmation JAVA, la manipulation, le traitement et l'analyse des signaux physiologiques ECG du patient.
Cependant, une telle approche a pour principal inconvénient de nécessiter la mise en œuvre d'une architecture matérielle lourde et coûteuse, en ce qu'elle imposant d'implanter autant de boîtiers de capteurs que de patients à surveiller, et relier tous ces boîtiers d'acquisition des signaux ECG, par des câbles « réseaux » à une ou plusieurs stations de monitoring.
De plus, une telle approche selon l'art antérieur reste aussi le plus souvent inadaptée à des contextes d'urgence médicale.
La solution précitée a été étendue sous la forme d'un système de télé monitoring à 12 voies, s 'appuyant sur le réseau Internet, y compris pour ce qui concerne les échanges de données physiologiques du type ECG intra hospitalières.
Un tel système a été en outre rendu compatible avec les différentes connectiques d'appareillage permettant l'acquisition et la communication de données physiologiques, de façon à le rendre plus générique et plus rationnel en termes de coûts de fabrication. Un tel système selon l'art antérieur possède cependant encore pour inconvénient d'être limité en termes de traitement en temps réel des données acquises sur un patient et donc de rester inadapté pour une utilisation dans un contexte d'urgence.
Pour tenter de pallier ces différents inconvénients des solutions techniques connues de l'art antérieur, encore une autre solution a été proposée. Elle repose, sur la mise en œuvre, sur le patient, d'un ensemble de capteurs communicants sans fils, directement reliés via un boîtier de communication sans fil au moyen d'une connexion temps réel sans fil, à une station ou un terminal exécutant une application logicielle de traitement avancé des signaux physiologiques (ECG par exemple) reçus du patient.
Un inconvénient essentiel d'une telle solution technique réside dans le fait que tout le traitement des données s'effectue uniquement au niveau de l'application logicielle et, sans connaissance a priori des éventuelles spécificités physiologiques du patient. En conséquence, une telle solution reste difficile à mettre en œuvre dans des contextes à caractère d'urgence puisque ne permettant pas un comportement proactif du système en temps réel. C'est en effet uniquement après traitement délocalisé par l'application de monitoring que des alertes ou actions peuvent être déclenchées, dans un délai qui peut s'avérer parfois être trop long, ou bien incompatible avec les mesures qu'il serait nécessaire de prendre au niveau du patient monitoré.
Par ailleurs, tous ces systèmes connus posent un problème crucial dans l'application de la lutte contre l'apnée des nouveaux-nés. En effet, lorsqu'une apnée / bradychardie est détectée, il faut agir immédiatement, ce qui suppose la présence d'un personnel spécialisé nombreux. On a pensé automatiser ces systèmes, en produisant une action (son ou mouvement par exemple), conduisant à réveiller le nouveau-né pour qu'il reprenne sa respiration et son rythme cardiaque. Cependant, ces systèmes présentent un autre inconvénient, puisqu'ils conduisent à réveiller souvent le nouveau-né, ce qui est nocif à sa santé, en particulier pour les prématurés. On sait en effet qu'une durée prolongée de sommeil est particulièrement favorable au développement moteur des nouveaux-nés. 3. Objectif de l'invention
L'invention décrite ici propose notamment de pallier les inconvénients des solutions techniques de l'art antérieur. Un objectif de l'invention consiste à fournir un dispositif adaptés aux nouveaux-nés, pour la lutte contre l'apnée / bradychardie.
Un autre objectif de l'invention est de fournir un tel dispositif, qui optimise le confort, la santé et le développement des nouveaux-nés. Un autre objectif de l'invention est de fournir un tel dispositif, qui soient plus efficaces que les techniques connues, en particulier dans des situations d'urgence.
Un objectif supplémentaire de l'invention consiste à fournir un tel dispositif qui soit simple de mise en œuvre, tant du point de vue logiciel que matériel, tout en étant de coût faible ou tout le moins raisonnable.
Un objectif particulier de l'invention, dans un mode de réalisation particulier, est de fournir un tel dispositif qui permettent de surveiller simultanément, un grand nombre de nouveaux-nés.
4. Présentation de l'invention Ces objectifs, ainsi que d'autres qui apparaîtront par la suite, sont atteints à l'aide d'un dispositif de supervision et de stimulation d'au moins un nouveau-né propice à l'apnée du sommeil, comprenant au moins un capteur d'acquisition d'au moins un signal représentatif de la fréquence cardiaque dudit nouveau-né, des moyens de traitement dudit au moins un signal et des moyens de stimulation kinesthésique dudit nouveau-né.
Selon l'invention, lesdits moyens de traitement délivrent auxdits moyens de stimulation un signal de commande variable, permettant de contrôler l'amplitude et/ou la fréquence de la stimulation appliquée au nouveau-né, dès lors que lesdits moyens de traitement détectent une variation ou une modification anormale de ladite fréquence cardiaque.
Ainsi, l'invention repose sur une approche nouvelle de la stimulation des nouveaux-nés, reposant sur une stimulation adaptée à une situation donnée. Il ne s'agit plus d'une approche de type « tout-ou-rien » selon l'art antérieur, mais d'une prise en compte de la situation, en tenant compte par exemple d'informations préalablement stockées et de bases de connaissance, pour optimiser en temps réel la stimulation apportée, en fonction de la bradychardie détectée.
Avantageusement, ledit signal de commande peut prendre au moins deux valeurs, une valeur commandant une stimulation suffisante pour réveiller le nouveau-né et une valeur commandant une stimulation ne réveillant pas le nouveau-né.
En d'autres termes, l'invention propose que certaines stimulations soient uniquement subliminales, de façon à ne pas provoquer de réveil. Cette approche permet notamment de lutter contre la morbidité due au manque de sommeil. Selon un mode de réalisation préférentiel de l'invention, lesdits moyens de traitement tiennent compte, pour la génération dudit signal de commande, d'une évolution du ou desdits signaux représentatifs de la fréquence cardiaque sur une période de temps prédéterminé.
Avantageusement, lesdits moyens de traitement tiennent compte, pour la génération dudit signal de commande, de données de référence relatives audit nouveau-né et/ou à un ensemble de nouveaux-nés stockées dans une base de données.
Préférentiellement, lesdits moyens de traitement comprennent des moyens d'apprentissage mettant en œuvre : - des moyens d'enregistrement à distance dudit au moins un signal représentatif de la fréquence cardiaque et des événements détectés ; - des moyens de calcul d'au moins un critère de variabilité de l'évolution dudit au moins un signal représentatif de la fréquence cardiaque. Dans ce cas, lesdits moyens de traitement peuvent notamment comprendre des moyens de comparaison dudit au moins un critère de variabilité avec au moins un seuil prédéterminé de détection et/ou de présomption de la survenue d'un événement anormal chez ledit nouveau-né, de façon que lorsque ledit au moins un seuil de présomption et/ou de détection est franchi, ledit signal de commande est généré de façon adaptée. Selon un mode de réalisation particulier, lesdits moyens de traitement sont logés pour une part dans au moins un boîtier d'acquisition installé à proximité d'un nouveau-né et pour une autre part dans au moins un terminal d'ordinateur distant, mettant en œuvre notamment une application de visualisation. Dans ce cas, lesdits moyens de traitement et ledit terminal communiquent avantageusement par l'intermédiaire d'une liaison sans fil.
Dans une mise en œuvre particulière, lesdits moyens de traitement mettent en œuvre au moins un environnement d'exécution multi-agents, comprenant au moins les quatre types d'agents logiciels appartenant au groupe comprenant : - un agent dit principal, assurant une gestion globale du fonctionnement dudit dispositif ;
- un agent de communication, apte à établir un protocole de transmission entre lesdits moyens de traitement et au moins un terminal d'ordinateur ;
- un agent d'acquisition de données, apte à la lecture d'au moins certaines données acquises par au moins une carte d'acquisition ;
- un agent d'application, apte à réaliser le traitement d'au moins certaines desdites données acquises par ledit agent d'acquisition.
Cette approche multi-agents s'avère particulièrement simple et efficace, et adaptée à des mises en œuvre variables selon les situations rencontrées. Selon un aspect particulier, lesdits capteurs comprennent avantageusement trois capteurs ECG pour chaque nouveau-né.
De façon avantageuse, le dispositif de l'invention comprend une pluralité de boîtiers destinés chacun à un nouveau-né, comprenant chacun au moins un capteur et des moyens de stimulation, lesdits boîtiers coopérant avec un terminal d'ordinateur comprenant des moyens de stockage de données.
Ceci permet une mise en œuvre efficace en milieu hospitalier, permettant de surveiller simultanément plusieurs nouveaux-nés. 5. Figures
D'autres caractéristiques et avantages de l'invention apparaîtront plus clairement à la lecture de la description suivante d'un mode de réalisation préférentiel, donné à titre de simple exemple illustratif et non limitatif, et des dessins annexés, parmi lesquels :
— la figure 1 illustre schématiquement le principe du dispositif de l'invention ; - la figure 2 illustre une structure multi-agents pour la mise en œuvre d'un mode de réalisation de l'invention ;
— la figure 3 illustre un exemple de moyens pour la mise en œuvre d'un environnement multi-agents, comprenant un microcontrôleur et intégrable dans le système de télé monitoring autonome et auto adaptatif de la figure 2 ;
— la figure 4 est une représentation générale d'un système de télé monitoring selon l'invention ;
— la figure 5 présente différents modes de fonctionnement d'un système de télé monitoring selon l'invention ; — la figure 6 présente une architecture matérielle générale d'un système de télé monitoring intelligent selon l'invention ;
— la figure 7 est une illustration de l'environnement d'exécution multi-agents pour le microcontrôleur du système de la figure 5 ;
— la figure 8 présente un ensemble d'agents intervenant dans l'architecture logicielle d'un système de télé-monitoring selon l'invention ;
— la figure 9 donne une illustration de l'interface principale d'une console de visualisation et de télé-monitoring multi-patients ;
— la figure 10 présente une architecture multi-agents d'une station de monitoring selon l'invention ; - les figures 11 et 12 présentent différents composants matériels mis en œuvre dans un système de télé monitoring selon l'invention ;
— la figure 13 donne une vue globale d'une interface homme-machine de monitoring équipant une station de télé-monitoring selon l'invention.
6. description d'un mode de réalisation 6.1. principe général L'invention propose donc une approche nouvelle de la lutte contre les apnées chez les nouveaux-nés, reposant en particulier sur une approche adaptive, selon laquelle la stimulation est adaptée, notamment en amplitude et/ou en fréquence, en fonction de mesures physiologiques et de données de référence. La figure 1 illustre la structure d'un dispositif selon l'invention.
Il comprend un ou plusieurs capteurs 11, destinés à être placés dans sur le corps du nouveau-né. Ces capteurs 11 délivrent des signaux de mesure 12 représentatifs d'une mesure d'une information physiologique, par exemple un
ECG. Dans un mode de réalisation particulier, trois mesures d'ECG sont ainsi obtenus.
Ces signaux 12 sont transmis à des moyens de traitement 13, par exemple un micro-contrôleur, qui déterminent une commande (comprenant avantageusement deux composantes 14A et 14F) de moyens de stimulation 15
(vibreur tactile), assurant une stimulation adaptée, c'est-à-dire présentant une amplitude 14A et une fréquence 14F adaptées à chaque situation particulière.
Les moyens de traitement 13 tiennent compte des mesures précédentes, stockées dans une mémoire ou sur un serveur 16, et de données générales 17, telles des bases de règles par exemple.
Les commandes 14A et 14F sont donc variables, par exemple battement à battement, et peuvent notamment augmenter si la bradychardie augmente, et diminuer si la bradychardie diminue. Elles sont notamment choisies de façon à être suffisamment faibles pour ne pas réveiller le nouveau-né (stimulation subliminale), lorsque la situation ne le justifie pas.
6.2 mise en œuyre de l'invention à l'aide d'une architecture multi-agents II s'agit notamment de permettre l'application de thérapies adaptatives sur le nouveau-né, ou patient, de mieux gérer les tâches réalisées par le dispositif, de distribuer les tâches en fonction de leur complexité/priorité, de simplifier le développement matériel et logiciel (« firmware » (logiciel embarqué dans le matériel) et « software » (logiciel exécuté dans l'ordinateur)). En relation avec la figure 2, une architecture 60 multi-agents 61 est retenue pour une mise en œuvre de la solution selon l'invention.
Par agent intelligent, on entend un objet informatique (programme) qui accomplit des tâches à la manière d'un automate, en fonction de l'état de son environnement et des «comportements» qui lui sont associés.
Les agents 61 sont capables d'une certaine autonomie et, en particulier, peuvent « dialoguer » avec d'autres agents (ayant des comportements complémentaires) pour accomplir des tâches complexes.
Les architectures multi-agents sont particulièrement utiles pour faciliter l'intégration de connaissances dans des applications informatiques.
En relation avec la figure 3, l'approche technique retenue autorise la création d'un nouvel environnement multi-agents complet, applicable à un dispositif électronique doté d'un microcontrôleur 71 et permet de proposer une nouvelle architecture électronique facilitant le développement du matériel 70 et du logiciel embarqué dans le matériel, ou « firmware », ainsi que l'intégration de connaissances.
Cela se traduit par l'avènement d'un nouveau système de télé-monitoring intelligent apte à communiquer sans fil, à la fois autonome et auto-adaptatif pour le monitoring de signaux physiologiques, par exemple ECG acquis sur un patient monitoré.
Elle se traduit aussi par la mise en œuvre d'un nouveau procédé d'adaptation automatique de l'activité du système en fonction du contexte et d'un nouveau système complet (matériel & logiciel embarqué dans le matériel
(firmware) & logiciel) permettant la surveillance, la détection et l'interruption par stimulation adaptative des bradycardies des nouveaux-nés.
En relation avec la figure 4, le système proposé est composé des éléments suivants :
- un ou plusieurs dispositifs 80 intelligents de surveillance et de stimulation d'un ensemble de patients 83 ; - une application 81 de visualisation, configuration, traitement et contrôle de l'ensemble des dispositifs 80, pouvant fonctionner sur un ou plusieurs ordinateurs 82 au même temps, localement ou à distance.
En relation avec la figure 5, typiquement, un ou plusieurs dispositifs (fonctionnant en tant que maître 91, ou esclave 92) peuvent être connectés au patient 90 et fonctionner dans l'une de trois modalités suivantes :
- Une modalité autonome 93, dans laquelle chaque dispositif 91, acquiert les données 94, réalise le traitement des signaux localement, applique ou non une thérapie de façon adaptative 94 et enregistre certains événements dans sa mémoire locale.
- Une modalité maître-esclave 95, dans laquelle chaque dispositif 92 (esclave) réalise l'acquisition de données et la transmission sans fils 97 vers un ou plusieurs ordinateurs 98 (maîtres). L'application 99 sur l'ordinateur maître permet, entre autres, la visualisation, l'enregistrement, le traitement des signaux 99b et la commande automatique ou manuelle de la thérapie appliquée par le dispositif.
- Une modalité hybride (qui n'est pas présentée dans la figure), où le dispositif est capable de répondre à un certain nombre d'événements pathologiques et/ou physiologiques (et adapte la thérapie en conséquence), mais communique 96 avec une application maître pour des décisions plus difficiles à prendre, nécessitant, par exemple, des moyens de calcul plus importants ou l'accès à des bases de données ou de connaissances. En relation avec la figure 6, chaque dispositif 100 intelligent est constitué de quatre cartes 101, 102, 103, 104 électroniques interconnectées : - une « carte processeur » 101, disponible sur le marché, qui contient un microcontrôleur 105 ATMegal28, mémoires RAM et Flash, horloge RTC, etc. ;
- une « carte d'acquisition » 102, spécifique au problème traité, qui permet l'acquisition des données physiologiques et leur conversion analogique-numérique ; - une « carte de communications » 103 qui permet la communication entre différents dispositifs et l'application maître ;
- une « carte mère » 104, développé par les inventeurs, qui réalise les fonctions suivantes : o Interface 106 entre les différentes cartes au moyen de protocoles série ou parallèle, o Gestion 108 des entrées et sorties analogiques et numériques supplémentaires, o Gestion de l'alimentation du dispositif 109 (batteries, alimentation DC).
En relation avec la figure 7, un environnement 110 d'exécution multi- agents 111 (encore appelé « framework ») et une librairie de fonctions en langage C ou C++, adaptés à une utilisation en microcontrôleurs, ont tout d'abord été créés, en utilisant un protocole de communications de messages simplifié, qui permet tout de même la communication avec des standards comme le FIPA-ACL. L'environnement développé gère l'échange de messages entre les différents agents et établi l'ordre d'exécution des différents comportements des agents, en utilisant une approche FIFO. L'exécution des comportements est basée sur le « cycle de vie » des agents, défini par la FIPA, et comprend les états d'initialisation, d'activation et d'attente. Les comportements d'un agent peuvent être exécutés uniquement pendant l'état d'activation.
En relation avec la figure 8, une fois l'environnement 110 d'exécution multi-agents développé, quatre types d'agents 121, 122, 123, 124 adaptés pour les principales tâches du dispositif ont été définis et implémentés : - Un agent 121 principal, responsable de la gestion globale du dispositif et, en particulier, des fonctionnalités de la carte mère ; il gère l'alimentation du dispositif, le contrôle de l'horloge temps réel (RTC), la mémoire non-volatile et les entrées/sorties de la carte mère (boutons, diodes (encore appelées « leds »), actionneurs (encore appelés « actuateurs »)). De plus, cet agent contient une liste d'applications cliniques possibles avec le matériel informatique (encore appelé « hardware ») disponible dans le dispositif.
Un agent 122 de communication, qui établi un protocole de transmission entre le dispositif 100 et l'ordinateur. Ce protocole permet une vérification d'erreurs et une taille de données variable, indépendamment du moyen de transmission utilisé (USB, bluetooth(marque déposée), etc..) ; un agent 123 d'acquisition de données, qui dispose de comportements de type cyclique capable de lire les données acquises des différentes 102 cartes d'acquisition intégrées dans le dispositif ; un agent 124 d'application clinique, qui réalise le traitement des données acquises, la détection d'événements ou encore l'adaptation de la thérapie, en fonction de l'application clinique pour laquelle il a été conçu.
Un avantage essentiel et supplémentaire d'un tel environnement 110 d'exécution multi-agents 111 (framework) concerne son implémentation relativement aisée au sein d'un ou de plusieurs microcontrôleurs embarqués dans le dispositif selon l'invention.
Il est important de souligner qu'un dispositif donné peut avoir plusieurs agents 124 d'applications cliniques différentes.
Au moment du démarrage de l'environnement d'exécution, l'agent principal et l'agent de communication sont créés. S'il y a des applications de monitoring disponibles dans le rang de communications du dispositif, l'agent principal transmet à toutes ces applications (au moyen de l'agent de communication) les caractéristiques des dispositifs, qui incluent un identificateur unique et une liste d'applications cliniques possibles avec le matériel informatique (hardware) disponible dans le dispositif. Par exemple, un dispositif avec 3 voies ECG peut être utile pour le suivi des bradycardies des nouveaux-nés, mais aussi pour détecter certaines arythmies cardiaques sur des patients ayant souffert d'un infarctus du myocarde. Les méthodes de traitement du signal et les éventuelles actions thérapeutiques appliquées sur le patient seront différentes pour ces deux applications. Après initialisation, l'agent principal attend une entrée de l'utilisateur pour définir la modalité d'opération (autonome, maître- esclave ou hybride) et l'application clinique souhaitée (i.e. bradycardies, arythmies, etc.). Cette interaction avec l'utilisateur peut être réalisée soit directement sur le dispositif au moyen des boutons poussoirs, soit au travers de l'interface graphique de l'application. L'agent principal crée ensuite un agent acquisition de données correspondant au matériel d'acquisition disponible et un agent d'application clinique, en fonction du choix de l'utilisateur pour démarrer le processus de monitoring. Ces agents vont émettre des messages en continu pendant le monitoring des données. L'agent application clinique contient, entre autres, un comportement associé à l'analyse des données reçues de l'agent d'acquisition et un comportement qui commande, au travers de l'agent principal, le fonctionnement des sorties numériques et analogiques du dispositif. Ce dernier comportement est particulièrement utile pour l'application d'une stimulation thérapeutique ou la génération d'alarmes. Dû au fait que ces deux comportements travaillent de façon concurrente, l'application de la stimulation peut être modifiée en continu et optimisée selon des paramètres prédéfinis ou des connaissances physiologiques incluses dans l'agent d'application clinique.
En relation avec la figure 9, on présente un exemple d'interface 131 principale et d'interface 132 de monitoring d'une console 130 de visualisation et de supervision multi-patients.
Une telle console est développée au moyen de l'environnement multi- agents standards JADE (marque déposée), lequel autorise l'adaptation automatique des interfaces graphiques 131 et 132 (développées en langage orienté objet JAVA - marque déposée) en fonction de l'application clinique visée. Une telle console 130 permet avantageusement de visualiser, d'enregistrer et de traiter tout ou partie des données physiologiques acquises auprès d'un ou de plusieurs patients, simultanément.
Elle permet en outre de configurer et de contrôler les différents dispositifs intelligents de surveillance des patients, tout en assurant la gestion des bases 187,
182 de données de patients et de connaissance (respectivement).
Une telle console 130 offre en outre de façon avantageuse, la possibilité d'estimer en temps réel, la stimulation optimale à apporter au patient, dès lors qu'une ou plusieurs alarmes ont été déclenchées. Cette console 130 selon l'invention offre pour principal intérêt supplémentaire de permettre la supervision et le monitoring simultanés et en temps réel, d'un grand nombre de patients hospitalisés, ce qui contribue en outre à favoriser la diminution des coûts matériel et humain dans les hôpitaux et/ou les maternités. En relation avec la figure 10, on présente l'architecture multi-agents de la station (logiciel). Les principaux agents définis sont :
- L'agent 141 principal, qui gère la globalité de l'application et la console 146 de visualisation multi-patients. Il permet également la création des interfaces graphiques en fonction du contexte, par exemple, pour la création d'une liste d'applications cliniques possibles, en fonction des dispositifs intelligents de monitoring détectés.
- L'agent 142 central, qui permet d'exporter les informations les plus pertinentes de chaque patient 143 vers la console centrale de visualisation multi-patient, de suivre les principaux paramètres surveillés, les alarmes et les détections des événements à risque de l'ensemble des patients suivis.
- L'agent 144 moniteur, responsable de la création de l'interface 145 d'utilisateur spécifique à un patient, un problème clinique et un dispositif de monitoring donnés. Il est responsable aussi de l'enregistrement des données et de la répartition des tâches d'analyse et de communication avec les autres agents. L'interface 145 graphique créée par le moniteur 144 fonctionne en temps réel et présente les signaux 133 acquis, les paramètres détectés 134, leur évolution temporelle, etc.
- L'agent 147 acquisition est un « agent intermédiaire », qui réalise le transfert d'information avec l'agent « communication » du dispositif 123 intelligent selon l'invention, en traduisant les messages FIPA-ACL
(utilisés dans l'application) dans le format du protocole développé pour le microcontrôleur, dans le cadre de la présente invention. Cet agent 147 dispose d'une interface graphique qui facilite l'accès aux paramètres du dispositif associé 135. Cette interface est affichée par l'intermédiaire de 1 ' agent moniteur 144.
- L'agent 1400 de traitement est responsable de l'analyse des données provenant de l'agent 147 acquisition (dans le mode de fonctionnement maître-esclave). Dans les comportements de cet agent 1400, il est possible d'implémenter de façon aisée les différentes méthodes de traitement de l'information, au moyen de l'utilisation d'une librairie C++ couplée à l'application par une interface 1401 JNI (« Java Native Interface » en anglais ou « Interface native Java » en français - avec « Java », marque déposée).
Il convient de noter que, dans un mode de réalisation particulier, le procédé et/ou le système selon l'invention peuvent être appliqués, à la détection et au traitement des bradycardies chez le nouveau-né prématuré. On rappelle en effet que malheureusement, les apnées-bradycardies sont dangereuses pour le nouveau-né prématuré, ce qui impose parfois des manœuvres de réanimations invasives, lesquelles induisent une prolongation des durées d'hospitalisation.
De telles apnées sont en outre impliquées dans la morbidité neurologique à long terme (réveils fréquents).
Or, force est de constater aujourd'hui que la détection de telles apnées par scope et par stimulation manuelle impose des délais trop longs d'intervention. De plus, la détection et la stimulation asservie par ordinateur, par exemple de type PC, (amplitude fixe) proposées par certains systèmes de l'art antérieur imposent de toujours réveiller le nouveau-né.
Ainsi, l'utilisation du système de télé monitoring selon l'invention permet avantageusement la détection précoce et la caractérisation (autonome ou hybride) des bradycardies, puis l'application d'une stimulation adaptative (battement à battement) qui permet :
- L'optimisation de la stimulation (si possible subliminale)
- L'augmentation de l'intensité de stimulation pour des bradycardies importantes
- La diminution de l'intensité de stimulation pour des bradycardies plus faibles.
En relation avec la figure 11, pour l'exemple de la détection des bradycardies chez le nouveau-né, une carte 160 d'acquisition de 3 voies d' électrocardiographie (ECG), avec les labels EN 60601 (type BF) et
AAMI/ANSI (AAMI EC 13-92) et disponible sur le marché (MCC ECGBoard), a été choisie.
Les communications avec les autres dispositifs ou avec l'application maître est basée sur la technologie « BlueTooth » (marque déposée), en utilisant une carte 164 OEM. Ces deux cartes 160 et 164 sont connectées par liaison série
161, 162, 163 à la carte 165 mère et, ensuite, à la carte 166 processeur, avec, par exemple, un microcontrôleur ATmega 128. Un stimulateur 167 kinesthésique
(vibreur tactile), par exemple de la marque « Audiological Engineering » (marque déposée) est appliqué sur la peau du nouveau-né et connecté à la sortie analogique de la carte mère. La carte 165 mère permet également l'application d'une stimulation 1600 auditive, avec un haut-parleur intégré. Elle peut aussi embarquer des moyens 168 de stimulation visuelle, du type diodes (« leds »).
Il est important de souligner que dans ce document, une application particulière de ce système pour la détection précoce des grandes bradycardies du nouveau-né prématuré est présentée. En effet, l'ensemble du système a été déjà développé au stade de prototype pour cette application.
De plus, en termes de clientèle visée, il n'existe actuellement aucun système automatique fonctionnel en unité de soins intensifs en néonatalité. Les retombées économiques et industrielles attendues sont donc potentiellement importantes dans le cadre des centres hospitaliers ou des clinique privées.
En termes de santé publique et sur le plan clinique, l'inhibition rapide des bradycardies par la stimulation devrait permettre de diminuer le recours à des manœuvres de réanimation et à l'intubation pour ventilation assistée, de réduire la durée des hospitalisations et la fréquence des besoins de monitoring à domicile et donc d'améliorer la qualité de vie des bébés. 6,3 Détails complémentaires de mise en œuyre de l'architecture multi-agents
Le système proposé rentre dans le cadre général du monitoring intelligent distribué et répond au besoin croissant de réaliser une (télé)surveillance continue des données physiologiques des sujets sains ou pathologiques et de provoquer une action adaptative optimale (éventuellement thérapeutique), en fonction de l'état de santé du patient, localement ou à distance. L'aspect « intelligent » du système est associé au fait qu'il est capable de s'adapter au contexte de surveillance et à la problématique clinique étudiée, tout en permettant d'optimiser, de façon dynamique, une stimulation sur le patient.
L'une des principales difficultés rencontrées actuellement pour le développement de ce type de dispositif est associée à l'intégration des connaissances spécifiques au problème, pour détecter les événements à risque ou définir et/ou appliquer la thérapie optimale. Cette problématique est particulièrement importante lors de l'implémentation de ces procédés dans un microcontrôleur embarqué dans le dispositif.
L'une des principales originalités de ce système est associé à la proposition d'une architecture multi-agents, embarquée dans le microcontrôleur, pour faciliter l'introduction des connaissances, la communication avec d'autres dispositifs ou des applications de traitement de l'information et le développement d'applications sur cette architecture.
L'exemple d'application présenté dans ce document est basé sur la surveillance des bradycardies du nouveau-né prématuré. Ces bradycardies sont définies par une chute de la fréquence cardiaque d'au moins 33% par rapport au rythme de base. Si les bradycardies sont des événements fréquents, qui peuvent survenir isolément ou plus souvent (80% des cas) associées à une apnée et/ou une désaturation, elles mettent le nouveau-né en danger vital immédiat en l'absence d'une intervention adaptée. L'expérience montre que les délais d'intervention restent longs pour les bébés en détresse, même s'ils sont effectués avec beaucoup d'efficacité.
L'application du système proposé dans ce contexte permet : i) l'enregistrement temps réel à distance et sans fils de l'ECG du prématuré, ii) l'extraction de sa courbe de variabilité cardiaque, iii) la détection précoce des bradycardies et iv) l'activation adaptative d'un stimulateur kinesthésique. Les résultats attendus sont particulièrement importants sur le plan clinique puisqu'on estime que la détection et la stimulation automatiques des nouveau-nés doivent permettre de réduire au minimum le risque d'apnée-bradycardie prolongée et/ou profonde, de diminuer le recours à des manœuvres de réanimation ou d'intubation et de raccourcir la durée des hospitalisations.
Le système proposé est composé des éléments suivants :
- un ou plusieurs dispositifs intelligents de surveillance et de stimulation ;
- une application de visualisation, configuration, traitement et contrôle de l'ensemble de dispositifs, pouvant fonctionner sur un ou plusieurs ordinateurs au même temps, localement ou à distance.
Typiquement, un ou plusieurs dispositifs peuvent être connectés au patient et fonctionner dans l'une de trois modalités suivantes :
- Une modalité autonome, dans laquelle chaque dispositif acquière les données, réalise le traitement des signaux localement, applique ou non une thérapie de façon adaptative et enregistre certains événements dans sa mémoire locale.
- Une modalité maître-esclave, dans laquelle chaque dispositif (esclave) réalise l'acquisition de données et la transmission vers un ou plusieurs ordinateurs (maîtres). L'application sur l'ordinateur maître permet, entre autres, la visualisation, l'enregistrement, le traitement des signaux et la commande automatique ou manuelle de la thérapie appliquée par le dispositif.
- Une modalité hybride, où le dispositif est capable de répondre à un certain nombre d'événements pathologiques (et adapte la thérapie en conséquence), mais communique avec une application maître pour des décisions plus difficiles à prendre, nécessitant, par exemple, des moyens de calcul plus importants ou l'accès à des bases de données ou de connaissances. La figure 5 montre deux possibilités de surveillance de nouveaux-nés avec le système proposé : la modalité autonome et la modalité maître-esclave.
Deux modes de fonctionnement du système proposé : à gauche une application autonome dans laquelle les dispositifs intelligents réalisent l'acquisition, le traitement et la stimulation sans interaction avec l'extérieur ; à droite une application maître-esclave dans laquelle le traitement et les prises de décisions sont effectuées dans l'ordinateur (application maître).
On présente ci-après plus en détails les différents composants du système selon l'invention.
Chaque dispositif intelligent est constitué de quatre cartes électroniques interconnectées (figure 6) :
- une « carte processeur », disponible sur le marché, qui contient un microcontrôleur ATMegal28, mémoires RAM et Flash, horloge RTC, etc.
- une « carte d'acquisition », spécifique au problème traité, qui permet l'acquisition des données physiologiques et leur conversion analogique- numérique ; - une « carte de communications » qui permet la communication entre différents dispositifs et l'application maître ;
- une « carte mère », développé par nos soins, qui réalise les fonctions suivantes : - Interface entre les différentes cartes au moyen de protocoles série ou parallèle,
Gestion des entrées et sorties analogiques et numériques supplémentaires,
Gestion de l'alimentation du dispositif (batteries, alimentation DC).
Cette architecture matérielle (hardware) modulaire facilite la généralisation du dispositif à plusieurs applications différentes, par un simple changement des cartes.
La carte mère permet la connexion d'un ensemble de cartes spécifiques au problème traité.
Pour l'exemple de la détection des bradycardies chez le nouveau-né, nous avons choisi une carte d'acquisition de 3 voies d' électrocardiographie (ECG), avec les labels EN 60601 (type BF) et AAMI/ANSI (AAMI EC 13-92) et disponible sur le marché (MCC ECGBoard). Les communications avec les autres dispositifs ou avec l'application maître est basée sur la technologie BlueTooth, en utilisant une carte OEM. Ces deux cartes sont connectées par liaison série à la carte mère et, ensuite, à la carte processeur. Un stimulateur kinesthésique (vibreur tactile) de la marque Audiological Engineering est appliqué sur la peau du nouveau-né et connecté à la sortie analogique de la carte mère. La carte mère permet également l'application d'une stimulation auditive, avec un haut-parleur intégré. Un prototype est présenté figure 12, pour la détection des bradycardies du nouveau-né. Au centre, on distingue les trois cartes principales interconnectées et superposées (carte mère 171, carte processeur 172 et carte ECG 173). Les différentes fonctions du dispositif (acquisition, communication, stimulation, etc) sont implémentées dans le microcontrôleur (carte processeur) au moyen d'un programme embarqué (firmware). Le développement de ce type de logiciel embarqué est souvent fastidieux et difficile à généraliser. L'une des originalités de l'approche présentée ici réside dans la proposition d'une architecture multi-agents, implémentée sur le microcontrôleur.
L'application d'architectures multi-agents pour le monitoring intelligent en temps réel de processus continus a été un sujet de recherche actif pendant cette dernière décennie. Un agent intelligent est un objet informatique (programme) qui accomplit des tâches à la manière d'un automate, en fonction de l'état de son environnement et des « comportements » qui lui sont associés. Ils sont capables d'une certaine autonomie et, en particulier, peuvent « dialoguer » avec d'autres agents (ayant des comportements complémentaires) pour accomplir des tâches complexes. Les architectures multi-agents sont particulièrement utiles pour faciliter l'intégration de connaissances dans des applications informatiques.
Plusieurs langages d'échange de messages ont été proposées et des nouveaux standards ont récemment émergé, comme le « Knowledge Query and Manipulation Language » (KQML), et plus récemment, le standard FIPA-ACL (ACL pour Agent Communication Language). Cependant, aucune de ces architectures n'est adaptée aux contraintes associées à la programmation en microcontrôleur. Nous avons donc développé un environnement d'exécution multi-agents (framework) et une librairie de fonctions C adaptés à une utilisation en microcontrôleurs, en utilisant un protocole de communications de messages simplifié, qui permet tout de même la communication avec des standards comme le FIPA-ACL.
L'environnement développé gère l'échange de messages entre les différents agents et établi l'ordre d'exécution des différents comportements des agents, en utilisant une approche FIFO. L'exécution des comportements est basée sur le « cycle de vie » des agents, défini par la FIPA, et comprend les états d'initialisation, d'activation et d'attente. Les comportements d'un agent peuvent être exécutés uniquement pendant l'état d'activation. Une fois l'environnement d'exécution développé, nous avons défini et implémenté quatre types d'agents adaptés pour les principales tâches du dispositif (figure 8) :
- l'agent principal, responsable de la gestion globale du dispositif et, en particulier, des fonctionnalités de la carte mère ; il gère l'alimentation du dispositif, le contrôle de l'horloge temps réel (RTC), la mémoire non- volatile et les entrées/sorties de la carte mère (boutons, leds, actuateurs). De plus, cet agent contient une liste d'applications cliniques possibles avec le hardware disponible dans le dispositif ; - l'agent de communication, qui établi un protocole de transmission entre le dispositif et l'ordinateur. Ce protocole permet une vérification d'erreurs et une taille de données variable, indépendamment du moyen de transmission utilisé (USB, bluetooth, etc..) ;
- l'agent d'acquisition de données, qui dispose de comportements de type cyclique capable de lire les données acquises des différentes cartes d'acquisition intégrées dans le dispositif ;
- l'agent d'application clinique, qui réalise le traitement des données acquises, la détection d'événements ou encore l'adaptation de la thérapie, en fonction de l'application clinique pour laquelle il a été conçu. II est important de souligner qu'un dispositif donné peut avoir plusieurs agents d'applications cliniques différentes.
Au moment du démarrage de l'environnement d'exécution, l'agent principal et l'agent de communication sont créés. S'il y a des applications de monitoring disponibles dans le rang de communications du dispositif, l'agent principal transmet a toutes ces applications (au moyen de l'agent de communication) les caractéristiques des dispositifs, qui incluent un identificateur unique et une liste d'applications cliniques possibles avec le hardware disponible dans le dispositif.
Après initialisation, l'agent principal attend une entrée de l'utilisateur pour définir la modalité d'opération (autonome, maître- esclave ou hybride) et l'application clinique souhaitée (i.e. bradycardies, arythmies, etc.). Cette interaction avec l'utilisateur peut être réalisée soit directement sur le dispositif au moyen des boutons poussoirs, soit au travers de l'interface graphique de l'application. L'agent principal crée ensuite un agent acquisition de données correspondant au matériel d'acquisition disponible et un agent d'application clinique, en fonction du choix de l'utilisateur pour démarrer le processus de monitoring. Ces agents vont émettre des messages en continu pendant le monitoring des données.
L'agent application clinique contient, entre autres, un comportement associé à l'analyse des données reçues de l'agent d'acquisition et un comportement qui commande, au travers de l'agent principal, le fonctionnement des sorties numériques et analogiques du dispositif. Ce dernier comportement est particulièrement utile pour l'application d'une stimulation thérapeutique ou la génération d'alarmes. Dû au fait que ces deux comportements travaillent de façon concurrente, l'application de la thérapie peut être modifiée en continu et optimisée selon des paramètres prédéfinis ou des connaissances physiologiques incluses dans l'agent d'application clinique (comportement « thérapie »).
Pour l'exemple de bradycardie présenté auparavant, l'agent d'acquisition de données reçoit les signaux ECG de la carte et transmet ces informations à un agent spécifique d'application clinique (agent bradycardie).
Ce dernier contient des comportements permettant : i) de détecter des bradycardies (en se basant sur des algorithmes présentés dans la littérature ou proposés au laboratoire) et U) de stimuler le nouveau-né de façon adaptative, en fonction de la réponse observée. Plus particulièrement, une stimulation kinesthésique est réalisée à différentes amplitudes et fréquences, en fonction de l'évolution de l'état du nouveau-né et de sa réponse à la stimulation appliquée. La définition adaptative de cette thérapie peut être obtenue par une fonction de transfert, une base de règles, un algorithme d'optimisation par découpage d'intervalles (tel que la section dorée), un modèle type « boîte noire » ou un modèle physiologique, reliant la fréquence cardiaque mesurée aux paramètres optimaux de stimulation.
A titre d'exemple illustratif de mise en œuvre de l'invention, une application de monitoring intelligent multi-plateforme de monitoring intelligent a été développé, en utilisant également une approche multi-agent.
Cette application est codée en Java et utilise les librairies du projet JADE (Java Agent Developement), qui est un environnement de développement de systèmes multi-agents, à code ouvert (encore appelés « open-source » selon une terminologie plus anglophone). JADE offre en particulier un support avancé de la norme FIPA-ACL, ainsi que des outils de validation syntaxique des messages entre agents. Les méthodes de traitement de l'information incluses dans la plateforme sont développées en C++ et associées à la station au moyen d'interfaces JNI. L'application peut fonctionner sur un ou plusieurs ordinateurs au même temps, localement ou à distance et permet : l'adaptation automatique de l'interface graphique en fonction du contexte d'application clinique et des dispositifs disponibles et détectés ; la visualisation, l'enregistrement et le traitement de données reçues des dispositifs ; - la configuration initiale et le contrôle de l'ensemble de dispositifs ;
- la gestion des basses de données patient et des basses de connaissances ;
- la détection d'événements en utilisant des méthodes plus complexes que celles implémentées dans le dispositif ; l'estimation d'une thérapie optimale et adaptative et la commande à distance des dispositifs.
L'architecture multi-agent de la station est présentée figure 10. Les principaux agents définis sont : l'agent principal, qui gère la globalité de l'application et la console de visualisation multi-patients. Il permet également la création des interfaces graphiques en fonction du contexte, par exemple, pour la création d'une liste d'applications cliniques possibles, en fonction des dispositifs intelligents de monitoring détectés.
L'agent central, qui permet d'exporter les informations les plus pertinentes de chaque patient vers la console centrale de visualisation multi-patient, de suivre les principaux paramètres surveillés, les alarmes et les détections des événements à risque de l'ensemble des patients suivis. L'agent moniteur, responsable de la création de l'interface d'utilisateur spécifique à un patient, un problème clinique et un dispositif de monitoring donnés. Il est responsable aussi de l'enregistrement des données et de la répartition des tâches d'analyse et de communication avec les autres agents. L'interface graphique créée par le moniteur fonctionne en temps réel et présente les signaux acquis, les paramètres détectés, leur évolution temporelle, etc. L'agent acquisition est un « agent intermédiaire », qui réalise le transfert d'information avec l'agent « communication » du dispositif intelligent, en traduisant les messages FIPA-ACL (utilisés dans l'application) dans le format du protocole que nous avons développé pour le microcontrôleur. Cet agent dispose d'une interface graphique qui facilite l'accès aux paramètres du dispositif associé. Cette interface et est affichée par l'intermédiaire de l'agent moniteur.
L'agent de traitement est responsable de l'analyse des données provenant de l'agent acquisition (dans le mode de fonctionnement maître-esclave). Dans les comportements de cet agent, il est possible d'implémenter de façon aisée les différentes méthodes de traitement de l'information proposées au laboratoire, au moyen de l'utilisation d'une librairie C++ couplée à l'application par une interface JNI.
Une présentation succincte de l'utilisation de l'application 180 est proposée ci-dessous :
(A). Au démarrage de l'application 180, l'agent principal est créé. Il détecte les différentes applications cliniques possibles par interrogation des dispositifs 181 intelligents disponibles et d'une base 182 de connaissances, ou base de Géranipales, qui représente les différents problèmes cliniques traités par l'application.
(B). Cet agent présente une interface 183 graphique avec une palette 185 sensible au contexte, qui liste les applications cliniques possibles en fonction de l'ensemble de dispositifs.
(C). L'utilisateur choisi dans cette palette 185 l'application souhaitée et une boîte 186 de dialogue lui permet d'intégrer les données du patient, ou de sélectionner un patient déjà disponible dans la base 187 de données patients. Les bases 187 de données et de connaissances 182 sont implémentées sur un gestionnaire MySQL (marque déposée).
(D). Les différents agents sont créés pour chaque application clinique et pour chaque patient : un agent central (qui assure la communication avec la console 180 centrale de visualisation multi-patients) et les agents d'acquisition, de traitement et moniteur.
Une fois l'application 188 de monitoring initiée, l'utilisateur peut visualiser les signaux 189 acquis et les paramètres détectés du patient 1800, activer et modifier les paramètres des différentes méthodes de traitement de signaux 1801 et configurer ou piloter manuellement le dispositif 1802. A la connaissance des inventeurs, il n'existe pas actuellement chez les industriels d'autre technologie permettant d'inclure dans le microcontrôleur d'un dispositif médical les connaissances spécifiques au problème traité et présentant les caractéristiques de généricité et de facilité d'utilisation décrites dans ce document. Par rapport à l'application spécifique en bradycardie, plusieurs applications embarquées de stimulation du nouveau-né ont été proposées .Aucune de ces applications ne propose une stimulation adaptative capable, par exemple d'augmenter l'amplitude de stimulation pour des bradycardies plus importantes et de diminuer cette stimulation pour des bradycardies plus faibles. Ainsi, d'un point de vue technologique, le principal avantage de cette invention est associé à l'utilisation d'un environnement multi-agent, implémenté dans le logiciel embarqué (« firmware ») d'un microcontrôleur, permettant une communication aisée avec un système multi-agent standard, défini au niveau logiciel (ordinateur). Cette approche facilite l'intégration des connaissances spécifiques au problème dans le dispositif et la communication entre les différents dispositifs et une application maître. De plus, elle réduit de façon importante les temps de développement du logiciel embarqué (« firmware ») et du logiciel. Un autre avantage est associé à la généricité de la conception du matériel informatique (« hardware »), qui facilite l'extension à d'autres applications par un simple changement de carte. Cet aspect permet de réduire également le temps et les coûts de développement matériel.
Concernant l'application en bradycardie des nouveaux-nés, la stimulation adaptative proposée présente plusieurs avantages sur une stimulation fixe « classique ». Une telle stimulation adaptative réalise un compromis intéressant entre l'amplitude minimale nécessaire pour obtenir une réponse (favorisant ainsi les périodes de repos, fortement perturbées par les méthodes actuelles) et une amplitude plus importante (permettant d'obtenir une réponse plus rapide et une diminution de la durée de la bradycardie). De plus, il n'existe actuellement aucun système automatique fonctionnel en unité de soins intensifs en néonatalité.

Claims

REVENDICATIONS
1. Dispositif de supervision et de stimulation d'au moins un nouveau-né propice à l'apnée du sommeil, comprenant au moins un capteur d'acquisition d'au moins un signal représentatif de la fréquence cardiaque dudit nouveau-né, des moyens de traitement dudit au moins un signal et des moyens de stimulation kinesthésique dudit nouveau-né, caractérisé en ce que lesdits moyens de traitement délivrent auxdits moyens de stimulation un signal de commande variable, permettant de contrôler l'amplitude et/ou la fréquence de la stimulation appliquée au nouveau-né, dès lors que lesdits moyens de traitement détectent une variation ou une modification anormale de ladite fréquence cardiaque.
2. Dispositif de supervision et de stimulation selon la revendication 1, caractérisé en ce que ledit signal de commande peut prendre au moins deux valeurs, une valeur commandant une stimulation suffisante pour réveiller le nouveau-né et une valeur commandant une stimulation ne réveillant pas le nouveau-né.
3. Dispositif de supervision et de stimulation selon l'une quelconque des revendications 1 et 2, caractérisé en ce que lesdits moyens de traitement tiennent compte, pour la génération dudit signal de commande, d'une évolution du ou desdits signaux représentatifs de la fréquence cardiaque sur une période de temps prédéterminé.
4. Dispositif de supervision et de stimulation selon l'une quelconque des revendications 1 à 3, caractérisé en ce que lesdits moyens de traitement tiennent compte, pour la génération dudit signal de commande, de données de référence relatives audit nouveau-né et/ou à un ensemble de nouveaux-nés stockées dans une base de données.
5. Dispositif de supervision et de stimulation selon l'une quelconque des revendications 1 à 4, caractérisé en ce que lesdits moyens de traitement comprennent des moyens d'apprentissage mettant en œuvre : - des moyens d'enregistrement à distance dudit au moins un signal représentatif de la fréquence cardiaque et des événements détectés ;
- des moyens de calcul d'au moins un critère de variabilité de l'évolution dudit au moins un signal représentatif de la fréquence cardiaque.
6. Dispositif de supervision et de stimulation selon la revendication 5, caractérisé en ce que lesdits moyens de traitement comprennent des moyens de comparaison dudit au moins un critère de variabilité avec au moins un seuil prédéterminé de détection et/ou de présomption de la survenue d'un événement anormal chez ledit nouveau-né, de façon que lorsque ledit au moins un seuil de présomption et/ou de détection est franchi, ledit signal de commande est généré de façon adaptée.
7. Dispositif de supervision et de stimulation selon l'une quelconque des revendications 1 à 6, caractérisé en ce que lesdits moyens de traitement sont logés pour une part dans au moins un boîtier d'acquisition installé à proximité d'un nouveau-né et pour une autre part dans au moins un terminal d'ordinateur distant, mettant en œuvre notamment une application de visualisation.
8. Dispositif de supervision et de stimulation selon la revendication 7, caractérisé en ce que lesdits moyens de traitement et ledit terminal communiquent par l'intermédiaire d'une liaison sans fil.
9. Dispositif de supervision et de stimulation selon l'une quelconque des revendications 1 à 8, caractérisé en ce que lesdits moyens de traitement mettent en œuvre au moins un environnement (110) d'exécution multi-agents, comprenant au moins les quatre types d'agents logiciels appartenant au groupe comprenant :
- un agent (121) dit principal, assurant une gestion globale du fonctionnement dudit dispositif ;
- un agent (122) de communication, apte à établir un protocole de transmission entre lesdits moyens de traitement et au moins un terminal d'ordinateur ;
- un agent (123) d'acquisition de données, apte à la lecture d'au moins certaines données acquises par au moins une carte (102) d'acquisition ; - un agent (124) d'application, apte à réaliser le traitement d'au moins certaines desdites données acquises par ledit agent (123) d'acquisition.
10. Dispositif de supervision et de stimulation selon l'une quelconque des revendications 1 à 9, caractérisé en ce que lesdits capteurs comprennent trois capteurs ECG pour chaque nouveau-né.
11. Dispositif de supervision et de stimulation selon l'une quelconque des revendications 1 à 10, caractérisé en ce qu'il comprend une pluralité de boîtiers destinés chacun à un nouveau-né, comprenant chacun au moins un capteur et des moyens de stimulation, lesdits boîtiers coopérant avec un terminal d'ordinateur comprenant des moyens de stockage de données.
PCT/EP2007/055723 2006-06-09 2007-06-11 Dispositif de supervision et de stimulation destine a lutter contre l'apnee du sommeil WO2007141345A1 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
FR0605145 2006-06-09
FR0605145A FR2908623A1 (fr) 2006-06-09 2006-06-09 Dispositif integre adaptatif de surveillance et de stimilation sur base de signaux physiologiques, par exemple sur base de frequence cardiaque, procede et programme d'ordinateur correspondants
FR0606706 2006-07-21
FR0606706A FR2908624A1 (fr) 2006-06-09 2006-07-21 Dispositif integre auto-adaptatif de surveillance et de stimulation sur base de signaux physiologiques,par exemple sur base de frequence cardiaque,procede et programme d'ordinateur correspondants

Publications (1)

Publication Number Publication Date
WO2007141345A1 true WO2007141345A1 (fr) 2007-12-13

Family

ID=38324183

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/055723 WO2007141345A1 (fr) 2006-06-09 2007-06-11 Dispositif de supervision et de stimulation destine a lutter contre l'apnee du sommeil

Country Status (2)

Country Link
FR (1) FR2908624A1 (fr)
WO (1) WO2007141345A1 (fr)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2905006A1 (fr) 2014-02-11 2015-08-12 Sorin CRM SAS Dispositif de discrimination des stades de sommeil d'un patient.
EP2904969A1 (fr) 2014-02-11 2015-08-12 Sorin CRM SAS Dispositif de traitement du syndrome d'apnée du sommeil chez un patient par stimulation kinesthésique
US20160113571A1 (en) * 2014-10-27 2016-04-28 Sorin Crm Sas Active medical device for the selective and early treatment of hypopneas
FR3028742A1 (fr) * 2014-11-24 2016-05-27 Inserm (Institut Nat De La Sante Et De La Rech Medicale) Dispositif de stimulation vibrotactile
WO2016083998A1 (fr) 2014-11-24 2016-06-02 Inserm (Institut National De La Sante Et De La Recherche Medicale) Dispositif de stimulation vibrotactile
EP3031491A1 (fr) 2014-12-08 2016-06-15 Sorin CRM SAS Système de traitement d'un trouble respiratoire par stimulation kinesthésique, avec sélection des stratégies de stimulation
EP3031492A1 (fr) 2014-12-08 2016-06-15 Sorin CRM SAS Système de traitement d'un trouble respiratoire par stimulation kinesthésique, avec contrôle de stabilisation de la stimulation
EP3031437A1 (fr) 2014-12-08 2016-06-15 Sorin CRM SAS Dispositif d'optimisation d'un traitement du syndrome d'apnée du sommeil par stimulation kinesthésique
EP3111991A1 (fr) * 2015-06-29 2017-01-04 Sorin CRM SAS Système de traitement par stimulation, notamment de stimulation du nerf vague, par mise en oeuvre d'un modèle de transition d'états autoadaptable en fonction des niveaux physiques ou physiologiques
US9981132B2 (en) 2015-06-29 2018-05-29 Sorin Crm Sas System for stimulation therapy of the vagus nerve by implementation of a state transition model with a learning phase
US10092756B2 (en) 2015-06-29 2018-10-09 Sorin Crm Sas System for stimulation therapy of the vagus nerve by implementation of a state transition model
US10099056B2 (en) 2015-06-29 2018-10-16 Sorin Crm Sas System for stimulation therapy of the vagus nerve by implementation of a state transition model operating at multiple temporal or spatial resolutions

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114040710A (zh) * 2019-06-26 2022-02-11 太空实验室健康护理有限公司 使用身体穿戴传感器的数据修改所监测的生理数据

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4813427A (en) * 1986-02-17 1989-03-21 Hellige Gmbh Apparatus and method for preventing hypoxic damage
US5555891A (en) * 1994-05-20 1996-09-17 Hartford Hospital Vibrotactile stimulator system for detecting and interrupting apnea in infants
WO1996028093A1 (fr) * 1995-03-09 1996-09-19 St. Elizabeth's Medical Center Of Boston, Inc. Appareil et procede de reduction de la frequence et de la duree d'evenements apneiques
US6425861B1 (en) * 1998-12-04 2002-07-30 Respironics, Inc. System and method for monitoring and controlling a plurality of polysomnographic devices

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7025730B2 (en) * 2003-01-10 2006-04-11 Medtronic, Inc. System and method for automatically monitoring and delivering therapy for sleep-related disordered breathing
WO2004075714A2 (fr) * 2003-02-28 2004-09-10 Cornel Lustig Systeme et procede pour influer sur la structure du sommeil par des stimulations non intrusives ne provocant pas le reveil
US6964641B2 (en) * 2003-12-24 2005-11-15 Medtronic, Inc. Implantable medical device with sleep disordered breathing monitoring
US20060097879A1 (en) * 2004-10-26 2006-05-11 Lippincott Kathy J SIDS and apnea monitoring system
EP1827212B1 (fr) * 2004-11-02 2010-09-22 Medtronic, Inc. Procede permettant de conserver des donnees dans un dispositif medical implantable

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4813427A (en) * 1986-02-17 1989-03-21 Hellige Gmbh Apparatus and method for preventing hypoxic damage
US5555891A (en) * 1994-05-20 1996-09-17 Hartford Hospital Vibrotactile stimulator system for detecting and interrupting apnea in infants
WO1996028093A1 (fr) * 1995-03-09 1996-09-19 St. Elizabeth's Medical Center Of Boston, Inc. Appareil et procede de reduction de la frequence et de la duree d'evenements apneiques
US6425861B1 (en) * 1998-12-04 2002-07-30 Respironics, Inc. System and method for monitoring and controlling a plurality of polysomnographic devices

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10251809B2 (en) 2014-02-11 2019-04-09 Sorin Crm Sas Device for the treatment of sleep apnea syndrome in a patient by kinesthetic stimulation
EP2904969A1 (fr) 2014-02-11 2015-08-12 Sorin CRM SAS Dispositif de traitement du syndrome d'apnée du sommeil chez un patient par stimulation kinesthésique
US10307328B2 (en) 2014-02-11 2019-06-04 Sorin Crm Sas Device for discrimination of stages of a patient's sleep
EP2905006A1 (fr) 2014-02-11 2015-08-12 Sorin CRM SAS Dispositif de discrimination des stades de sommeil d'un patient.
US20160113571A1 (en) * 2014-10-27 2016-04-28 Sorin Crm Sas Active medical device for the selective and early treatment of hypopneas
EP3017752A1 (fr) 2014-10-27 2016-05-11 Sorin CRM SAS Dispositif médical actif pour le traitement sélectif et précoce des hypopnées
WO2016083999A1 (fr) 2014-11-24 2016-06-02 Inserm (Institut Medical De La Sante Et De La Recherche Medicale) Dispositif de stimulation vibrotactile
US20230021272A1 (en) * 2014-11-24 2023-01-19 Inserm (Institut National De La Sante Et De La Recherche Medicale) Vibrotactile stimulation device
US11160724B2 (en) 2014-11-24 2021-11-02 Universite De Rennes I Vibrotactile stimulation device
FR3028742A1 (fr) * 2014-11-24 2016-05-27 Inserm (Institut Nat De La Sante Et De La Rech Medicale) Dispositif de stimulation vibrotactile
WO2016083998A1 (fr) 2014-11-24 2016-06-02 Inserm (Institut National De La Sante Et De La Recherche Medicale) Dispositif de stimulation vibrotactile
US10292898B2 (en) 2014-12-08 2019-05-21 Sorin Crm Sas Device for optimization of sleep apnea syndrome therapy by kinesthetic stimulation
EP3031492A1 (fr) 2014-12-08 2016-06-15 Sorin CRM SAS Système de traitement d'un trouble respiratoire par stimulation kinesthésique, avec contrôle de stabilisation de la stimulation
EP3031437A1 (fr) 2014-12-08 2016-06-15 Sorin CRM SAS Dispositif d'optimisation d'un traitement du syndrome d'apnée du sommeil par stimulation kinesthésique
EP3031491A1 (fr) 2014-12-08 2016-06-15 Sorin CRM SAS Système de traitement d'un trouble respiratoire par stimulation kinesthésique, avec sélection des stratégies de stimulation
US10299984B2 (en) 2014-12-08 2019-05-28 Sorin Crm Sas System for respiratory disorder therapy with stabilization control of stimulation
US10292897B2 (en) 2014-12-08 2019-05-21 Sorin Crm Sas System for respiratory disorder therapy with selection of stimulation strategies
EP3111991A1 (fr) * 2015-06-29 2017-01-04 Sorin CRM SAS Système de traitement par stimulation, notamment de stimulation du nerf vague, par mise en oeuvre d'un modèle de transition d'états autoadaptable en fonction des niveaux physiques ou physiologiques
US10124173B2 (en) 2015-06-29 2018-11-13 Sorin Crm Sas System for stimulation therapy of the vagus nerve by implementation of a self-adaptive state transition model based on physical or physiological levels
US10099056B2 (en) 2015-06-29 2018-10-16 Sorin Crm Sas System for stimulation therapy of the vagus nerve by implementation of a state transition model operating at multiple temporal or spatial resolutions
US10092756B2 (en) 2015-06-29 2018-10-09 Sorin Crm Sas System for stimulation therapy of the vagus nerve by implementation of a state transition model
US9981132B2 (en) 2015-06-29 2018-05-29 Sorin Crm Sas System for stimulation therapy of the vagus nerve by implementation of a state transition model with a learning phase

Also Published As

Publication number Publication date
FR2908624A1 (fr) 2008-05-23

Similar Documents

Publication Publication Date Title
WO2007141345A1 (fr) Dispositif de supervision et de stimulation destine a lutter contre l'apnee du sommeil
JP7299245B2 (ja) 観察可能な健康状態の兆候のためのロボット対話
Tartarisco et al. Personal Health System architecture for stress monitoring and support to clinical decisions
FR3054694A1 (fr) Procede et dispositif de determination a distance de besoins d'assistance medicale
WO2017147552A1 (fr) Système et procédé de méta-apprentissage multiformat, multi-domaine et multi-algorithme permettant de surveiller la santé humaine et de dériver un état et une trajectoire de santé
CN107658016B (zh) 用于老年保健陪伴的Nounou智能监护系统
Yan et al. A home-based health information acquisition system
WO2018222589A1 (fr) Système et méthode de traitement de troubles au moyen d'un système de réalité virtuelle
Porkodi et al. Healthcare robots enabled with IoT and artificial intelligence for elderly patients
WO2020106858A1 (fr) Système de surveillance de traitement
JP7423759B2 (ja) クラスタベースの睡眠分析の方法、睡眠改善のためのモニタリングデバイスおよび睡眠改善システム
FR2908623A1 (fr) Dispositif integre adaptatif de surveillance et de stimilation sur base de signaux physiologiques, par exemple sur base de frequence cardiaque, procede et programme d'ordinateur correspondants
Maeder Digital technology trends supporting assisted independent living of ageing population
Saravanakumar et al. Iob: sensors for wearable monitoring and enhancing health care systems
EP3649629B1 (fr) Systeme, dispositif et procede pour surveiller de maniere personnalisee l'etat de sante d'au moins un patient a risque
Raykar IoT Enabled Mobility Based Healthcare Monitoring and Implementation of Prediction Model
Khaparkar et al. A Smart Tele-Healthcare System for Real-Time Health Monitoring and Remote Consultation
Perumal Smart Health Care For Monitoring Elderly People Using Iomt And Ml
WO2018067585A1 (fr) Système de surveillance à distance de patient
Tamilselvi et al. Digital companion for elders in tracking health and intelligent recommendation support using deep learning
Singh et al. IoT Based Healthcare Monitoring for Driver's Community
Yuan Context-aware real-time assistant architecture for pervasive healthcare
WO2023180157A1 (fr) Systèmes et procédés de détection du stress
Buzzi Breaking interaction barriers: monitoring elderly in natural settings exploiting everyday objects
Martínez-Pérez et al. Artificial intelligence techniques applied to patient care and monitoring

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07765361

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07765361

Country of ref document: EP

Kind code of ref document: A1