WO2007140698A1 - Procédé de transmission des données et appareil et système correspondants - Google Patents

Procédé de transmission des données et appareil et système correspondants Download PDF

Info

Publication number
WO2007140698A1
WO2007140698A1 PCT/CN2007/001549 CN2007001549W WO2007140698A1 WO 2007140698 A1 WO2007140698 A1 WO 2007140698A1 CN 2007001549 W CN2007001549 W CN 2007001549W WO 2007140698 A1 WO2007140698 A1 WO 2007140698A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
route
transmission
service
source node
Prior art date
Application number
PCT/CN2007/001549
Other languages
English (en)
French (fr)
Inventor
Yanling Lu
Shulan Feng
Original Assignee
Huawei Technologies Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co., Ltd. filed Critical Huawei Technologies Co., Ltd.
Publication of WO2007140698A1 publication Critical patent/WO2007140698A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/70Admission control; Resource allocation
    • H04L47/72Admission control; Resource allocation using reservation actions during connection setup
    • H04L47/724Admission control; Resource allocation using reservation actions during connection setup at intermediate nodes, e.g. resource reservation protocol [RSVP]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/302Route determination based on requested QoS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/15Flow control; Congestion control in relation to multipoint traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/24Traffic characterised by specific attributes, e.g. priority or QoS
    • H04L47/2425Traffic characterised by specific attributes, e.g. priority or QoS for supporting services specification, e.g. SLA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/70Admission control; Resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing

Definitions

  • the present invention relates to the field of wireless communications, and in particular, to a technology for wirelessly transmitting data. Background technique
  • the wireless communication system according to the path of communication between the source and the sink, it can be divided into two structures: one is a network structure in which the source and the sink can directly communicate, such as a cellular structure; and under another structure, according to the situation
  • the communication between the source and the sink may require message forwarding through the intermediate node (hereinafter referred to as the second network as the forwarding network).
  • the two connected nodes indicate that the two nodes can establish a connection through a wireless link.
  • the forwarding network typically presents a network structure.
  • the multi-hop network and Ad hoc network studied in the field of communication now belong to this network structure.
  • the route between the source node and the sink node may not be unique, so this requires routing.
  • routing algorithms Under certain criteria (such as: hop count, interference, transmit energy, quality of service QoS constraint model, etc.), select the optimal path that meets the criteria (the minimum number of hops, Minimal interference, minimum emission energy, etc.). These routing algorithms with different criteria can bring certain benefits to the system. For example, the routing algorithm with the lowest hop count is simple and easy to implement; the least interference algorithm can provide the overall traffic of the system; and the algorithm with the least energy emission can reduce the transmit power of the node. Requirements; A route conforming to the QoS constraint model can satisfy multiple QoS parameter requirements. All of the above algorithms focus on improving the performance of one or several aspects of the system, and do not comprehensively consider the network and other factors, such as different types of services carried by the network.
  • criteria such as: hop count, interference, transmit energy, quality of service QoS constraint model, etc.
  • the QoS parameters of the service include: average rate, maximum/minimum rate, delay, jitter, bit error rate, and so on. Different services have different requirements for these parameters.
  • the QoS parameters of the service include: average rate, maximum/minimum rate, delay, jitter, bit error rate, and so on. Different services have different requirements for these parameters.
  • the impact of the route on the delay is more obvious.
  • the user selects different routes, which directly affects the system interference distribution and space. Resource The utilization rate, such that the average rate of user data, maximum/minimum rate, delay, jitter, and bit error rate are all affected. Since the diversity of services in the forwarding network determines the diversity of QoS, selecting appropriate routes and ensuring the diversity of QoS in the network is a key issue to be solved by the routing algorithm.
  • the criterion is generally based on a criterion as the criterion for routing. For example: minimum hop count, maximum system traffic, minimum transmit energy, minimal interference, and best channel quality.
  • the best routing method of the wireless grid in the prior art adopts a criterion that the intermediate node is the least dominant and the signal strength is the largest, and the specific steps are as follows: First, the wireless network is obtained by the wireless device in the wireless grid. The received signal strength of other wireless devices in the cell; when selecting the route between the two wireless devices, it is determined whether the number of optional routes between the two wireless devices is more than one, and if so, the route with the least number of intermediate nodes is selected, and Determine whether the route is more than one. If yes, select the best route according to the received signal strength of each intermediate node in each route. Otherwise, directly select the route as the best route for the current transmission signal; if there is only one optional route , directly select the route and end the processing.
  • the above-mentioned route-based routing method has the problem of one-sided optimization of certain system performance while reducing the performance of other systems.
  • many factors cannot be taken into account. For example, under the criterion of guaranteed delay, the route with the smallest delay (or the smallest intermediate node) is selected, but a large amount of data is selected.
  • the same route or the same hop will make the interference of the link here particularly large, the channel quality deteriorates, the bit error rate increases, the system traffic decreases, and the user rate is affected.
  • a situation occurs in which the link is idle and no data is available. As shown in FIG.
  • the distributed QoS multicast routing method based on mobile Ad hoc network provides a unified method to meet the QoS requirements in a multi-hop network.
  • the method optimizes the connection parameters by a given objective function.
  • the connection determines connection parameters on at least three protocol layers, including paths, channels, and at least one physical link parameter.
  • a cross-layer integrated collision-free path selection method for determining a route is: first determining a network model of a QoS-constrained multicast routing method, the constraints may be available bandwidth, link transmission delay, packet loss rate, jitter, network Different network feature value metrics such as cost; then determine network state information, which refers to various information related to the current state of the network, and is the basis of the distributed routing method; then the loop detection method is determined.
  • network state information which refers to various information related to the current state of the network, and is the basis of the distributed routing method
  • the loop detection method is determined.
  • the loop since each node independently calculates the feasible path by relying on the locally maintained global information, the loop may be caused by information inconsistency, and all the feasible paths searched by the method are acyclic; finally, the computational complexity is reduced.
  • the routing method with respect to the single criterion has improved in terms of QoS guarantee, but it has a significant disadvantage: it does not consider different QoS requirements of different services, and routes The requirements are also different. Obviously, when different types of service data need to be routed, their routing criteria will change. It is not appropriate to use the same parameters of the same routing criterion or criterion for all service types, and they need to be different in their needs, respectively.
  • the service establishes differentiated routes.
  • the selection of the routing criteria is mainly based on a certain QoS factor, or takes into account multiple QoS factors but does not consider the differentiation of service types, but ignores different services. Types have different requirements for routing caused by different QoS requirements, resulting in insufficient use of network resources and affecting service quality. Summary of the invention
  • Embodiments of the present invention provide a method, device, and system for transmitting data to solve the prior art.
  • the reason is that the route cannot be transmitted according to the differentiated service type, which leads to the problem that the network resources cannot be fully utilized and the quality of the service is affected.
  • a method of transmitting data includes the following steps:
  • the source node determines a service type, obtains a corresponding transmission parameter according to the service type, and generates a route selection request;
  • a device for transmitting data comprising:
  • a data entity configured to generate a routing request and transmit the to-be-sent data
  • a router configured to select a route for transmitting data according to a transmission parameter carried by the routing request generated by the data entity
  • a data transmission unit configured to establish a transmission link according to the route selected by the router, and send the to-be-sent data transmitted by the data entity via the transmission link.
  • a data transmission system comprising:
  • a source node configured to determine a service type and obtain a corresponding transmission parameter according to the service type, and select a route between the source node and the destination node according to the transmission parameter, and the transmission link established according to the selected route and the transmission chain Send data;
  • a destination node configured to receive data sent by the source node from the transmission link.
  • a data transmission system comprising:
  • a source node configured to determine a service type and obtain a corresponding transmission parameter according to the service type, and select a route between the source node and the destination node according to at least the transmission parameter, and send to a transmission link established according to the selected route.
  • a destination node configured to receive data sent by the source node from the transmission link.
  • the embodiment of the present invention selects a route transmission data between a source node and a destination node according to a service type and a network state, and may select different routes for different types of services, thereby adopting the most Excellent routing and transmission of business data, can make full use of system resources, improve business shield and system capacity.
  • FIG. 1 is a schematic structural diagram of a forwarding network in the prior art
  • FIG. 2 is a schematic diagram of a minimum route of an intermediate node in the prior art
  • FIG. 3 is a schematic structural diagram of a data transmission apparatus according to an embodiment of the present invention.
  • FIG. 5A and FIG. 5B are schematic diagrams of routings for selecting route transmission data for different types of services according to an embodiment of the present invention. detailed description
  • the source node determines the service type in the same direction between the source node and the destination node, at least according to the service type. Corresponding transmission parameters and routing based at least on this parameter.
  • the QoS parameters required by the service such as maximum/minimum/average rate, delay, jitter, bit error rate, bit error rate, etc.
  • the transmission parameters may include: QoS parameters, transmission of such services One or any combination of the maximum energy/power consumption, energy/power consumption level, required bandwidth, required security level, etc. consumed.
  • the transmission parameters required for the same type of service can be different.
  • the transmission parameter and the current network state information may be further combined to select a route.
  • the network status information may include one or any combination of a network topology structure, residual energy of related nodes, interference of related links, and load conditions.
  • the data transmission device as a node in the network includes (the data transmission device of the destination node is the same as the source node, and some structures are not shown): the maintenance unit 30, the data entity 31, the router 32, and the data transmission unit 33 and data receiving unit 34.
  • Network status information To include: the resource utilization status of the node and the link status between the nodes.
  • Node resources include power, memory, and processor resources; link conditions between nodes include: hop count between nodes, link propagation loss, link interference, link radio resource utilization, chain The bit error rate of different services, the traffic of the link, and the delay of the link.
  • the data entity 31 is configured to generate data of the sender, initiate a data transmission request and a routing request.
  • the data entity 31 at the transmitting end determines the key parameters of the data transmission based on the attributes of the transmission data and transmits them to the routing selector 32; the data entity 31 at the transmitting end transmits the generated data to the data transmission unit 33.
  • the data entity 31 at the receiving end is responsible for processing the data from the originating end.
  • the router 32 is configured to select an appropriate route according to the network state and data transmission key parameters, and send the determined route to the data transmission unit 33.
  • the router 32 sends parameters such as the amount of data transmitted by each route and/or the manner of dividing the data of different routes to the data transmission unit.
  • the amount of data transmitted may be The absolute size of the output data of the route, or the relative value of the data transmitted by each route, may be randomly, determined, or mixed.
  • the source node selects all routes to the target node; in the distributed routing mode, the source node selects a certain segment of the route, and then sends the transmission parameters to the intermediate node (or the downstream node).
  • the route selected by the router 32 may be a route from the source node to the destination node without passing through the intermediate node, or may be a route from the source node to the destination node after passing through several intermediate nodes, or may be a source node.
  • a route to an intermediate node When the routing selects the route from the source node to an intermediate node, the intermediate node is functionally the destination node in Figure 3. When the intermediate node further selects the route to the next intermediate node or destination node, the intermediate node can be functionally implemented by the source node in FIG.
  • the data transmission unit 33 is configured to receive data sent by the data entity 31, and establish a relay node from the source node according to the route selected by the router 32 and the data volume transmitted by each route, the data division manner, etc. (may not Requires a relay node) to reach the physical link of the destination node or intermediate node, Segment the data and transfer data on different links.
  • the data transmission unit 33 may include a dividing unit (not shown). When the router 32 selects multiple routes for the same service, the dividing unit divides the service data to be sent, and then distributes the divided data to Different transmission links. Of course, the division unit can also be independent of the data transmission unit 33.
  • the data receiving unit 34 is configured to receive data transmitted from the source node or the relay node via one or more routes, and send the data to the data entity 31 corresponding to the local end for processing.
  • the data receiving unit 34 may include a merging unit (not shown). When the data of the source node is transmitted by different routes through the splitting, the merging unit merges the original data of the data of different routes and sends the data to the local end. Data entity 31.
  • the merging unit can also be independent of the data receiving unit 34.
  • the router 32 uses the transmission parameters and the network state information as input to the routing algorithm. Therefore, different service types (the transmission parameters are different), different transmission parameters, and different current network state information may be different. Routing.
  • Step 400 A certain type of data link needs to be established between the source node and the destination node, and the data entity 31 of the source node goes to the router. 32 initiating a routing request, and simultaneously transmitting data (including service data and signaling data), such as maximum delay, bit error rate, maximum/minimum rate, jitter, bandwidth, power consumption, security level, etc. Or any combination, passed to the router 32.
  • data including service data and signaling data
  • Step 410 After receiving the routing request sent by the data entity 31, the router 32 receives the network state information in the maintenance unit 30 (for example, the network topology and the remaining energy of the related node). And the data transmission key parameters, selecting the most appropriate route from the source node to the destination node, and sending the determined route to the data transmission unit 33.
  • the network state information in the maintenance unit 30 for example, the network topology and the remaining energy of the related node.
  • the router 32 may establish multiple routes according to the transmission parameters and network status (for example, to balance the traffic flow or reduce interference), and the router 32 simultaneously sends the data volume transmitted by each route to the data transmission unit. .
  • Step 420 The data transmission unit 33 receives the data transmitted by the data entity 31, and establishes a physical link from the source node to the destination node for data transmission according to the route selected by the route selector 32.
  • the data transfer unit 33 will establish a plurality of physical links, and the split unit divides the data and transmits it.
  • the service flow can be cyclically split and equally sent to different routes.
  • the traffic can be divided into different routes according to the bandwidth ratio of each branch according to the bandwidth of each branch.
  • the physical link from the source node to the destination node may or may not pass through the relay node.
  • Step 430 The data receiving unit 34 in the destination node receives the data and transmits it to the data entity 31 of the local end. If the data of the source node is transmitted through different routes through the segmentation, the data receiving unit 34 merges the data of the different routes and sends the data to the data entity 31 of the local end.
  • the router 32 can determine whether the network state change related to the routing algorithm has exceeded a certain threshold. If the threshold is not exceeded, the route is maintained; if it is exceeded, the service route is used to determine whether to re-select the route. If the route is to be re-selected, the routing and transmission process of step 410 430 is repeated, and the appropriate route is re-selected. It is transmitted to the data transfer unit 33.
  • each time a new service type or a different service instance of the same type is to be transmitted the routing and transmission processes of the above steps 400-430 may be repeated.
  • Each type of data may be transmitted on the same route or it may be transmitted by a different route.
  • voice has higher requirements for delay and jitter, but the bit error rate (BER) is lower, and e-mail requires higher BER and is less sensitive to delay and jitter.
  • BER bit error rate
  • the first route is: A->C -> B
  • the second route is A->D->E->B. It is assumed that the first route has a short delay and the channel fluctuation is not large, but the link shield is poor, and the second route is extended, but the link quality is good. In the prior art, only the first route or the second route is selected to simultaneously transmit voice and e-mail, which makes it difficult to simultaneously satisfy the requirements of both services.
  • the router 32 can select the first route for the service according to the hop limit minimum criterion according to the delay transmission parameter of the voice service and the current network state information; the router 32 according to the BER of the email service The parameter and the current network status information can select a second route for the service according to the link quality optimization principle, so that the requirements of the two services can be simultaneously satisfied.
  • the router 32 of the node A finds that the radio resource utilization rate in the network is low at this time, and the quality of each radio link is high, according to the radio resource utilization of the link, the link traffic and the link. Network status information such as delay, when the QoS minimum requirements and transmission parameters are met, it is found that multiple links can meet the requirements. In this case, multiple routes A->C->B, A->D- can be selected.
  • the selected routing information is transmitted to the data transmission unit 33, and the data transmission unit 33 divides the service according to the routing information, and simultaneously transmits the service by using three routes, thereby ensuring the Real-time transmission of large-volume real-time services.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

传输数据的方法、 装置及系统
技术领域
本发明涉及无线通信领域, 尤其涉及一种无线传输数据的技术。 背景技术
无线通信系统中, 根据信源和信宿之间通信的路径, 可以分为两种结构: 一种是信源和信宿可以直接进行通信的网络结构, 比如蜂窝结构; 另外一种 结构下, 根据情况, 信源和信宿之间通信可能需要通过中间节点进行消息转 发(下文简称第二种网络为转发网络)。 如图 1所示, 相连接的两个节点表示 该两个节点之间可以通过无线链路建立连接, 显然, 转发网络典型的呈现网 状结构。 现在通信领域研究的多跳网络、 Ad hoc网络等属于这种网络结构。 在转发网络中, 由于信源节点和信宿节点之间可能存在多个中间节点, 信源 节点和信宿节点之间的路由可能不是唯一的, 因此, 这就需要进行路由选择。
现有的路由算法有很多种, 思路大致相同: 在一定的判定准则 (如: 跳 数、 干扰、 发射能量、 业务质量 QoS约束模型等) 下, 选择符合准则的最优 路径(跳数最少、 干扰最少、 发射能量最少等)。 这些采用不同准则的路由算 法, 可以为系统带来一定的益处, 比如, 跳数最少的路由算法简单, 便于实 现; 干扰最少算法可以提供系统整体流量; 而发射能量最少算法可以降低节 点的发射功率要求; 符合 QoS约束模型的路由可以满足多个 QoS参数要求。 上述算法中, 都着眼于提高系统的某一个或几个方面性能, 并没有综合考虑 网络和其他方面因素, 比如:网络承载的不同业务种类。
以业务种类因素为例, 在任何网络中要承载某种业务, 必须首先保证业 务的 QoS。 业务的 QoS参数包括: 平均速率、 最大 /最小速率、 时延、 抖动、 误码率等。 不同业务对这些参数的要求是不同的。 在转发网络中, 由于路由 的不确定性, 路由对时延的影响更为明显, 同时, 由于转发网络中的无线链 路和网状结构特点, 用户选择不同路由, 直接影响系统干扰分布、 空间资源 利用状况, 这样用户数据的平均速率、 最大 /最小速率、 时延、 抖动、 误码率 都会受到影响。 由于转发网络中业务的多样性决定了 QoS的多样性, 选择合 适的路由, 保障网络中多样性的 QoS, 是路由算法要解决的重点问题。
在路由算法研究初期, 判定准则一般以一种准则为主作为选取路由的准 则。 比如: 跳数最少、 系统流量最大、 发射能量最少、 干扰最少、 信道质量 最好等。 如, 现有技术中的无线网格的最佳路由选择方法采取以中间节点最 少为主、 以信号强度最大为辅的准则, 其具体步驟为: 首先由无线网格中的 无线设备获取无线网格中其他无线设备的接收信号强度; 在选择两个无线设 备之间的路由时, 判断两个无线设备之间的可选路由是否为一条以上, 如果 是, 则选择中间节点最少的路由, 并判断该路由是否为一条以上, 如果是, 则根据各条路由中各个中间节点的接收信号强度选择最佳路由, 否则, 直接 选择该路由作为当前传输信号的最佳路由; 如果可选路由只有一条, 则直接 选择该路由, 并结束处理。
上述采用一种准则为主的路由方式, 存在片面优化某种系统性能但同时 降低其他系统性能的问题。 实际上, 在无线转发网络中, 在某些情况下, 很 多因素是不能兼顾的, 比如: 在保证时延的准则下, 会选择延迟最小 (或中 间节点最小) 的路由, 但大量的数据选择同一路由或同一跳, 会使此处链路 的干扰特别大, 信道质量恶化, 造成误码率的提高, 系统流量减少, 用户速 率受到影响, 而与此同时, 在网絡的其他地方, 有可能出现链路空闲而无数 据可传的状况。 如图 2所示, 当节点 3、 4、 5、 6与节点 0进行通信时, 如果 采用中间节点最少的路由, 则节点 0和节点 10之间的链路负载就会较大, 而 在网络其他节点处的链路, 如节点 6和节点 7之间的链路负载较少, 可以承 载更多数据。 而如果采用干扰最少 (系统流量最大) 准则时, 系统整体流量 会较大, 但是不能保证用户数据的时延。 所以采用一种准则为主的路由模式, 从整体来看, 并不能充分利用系统的资源。
目前, 出现了综合考虑多种准则的 QoS路由方法, 这些路由方法的基本 思路是以多个 QoS因素作为准则, 试图找到同时满足多个 QoS因素的路由方 法。 如, 基于移动 Ad hoc网络的分布式 QoS多播路由方法提供了一种统一的 方法以满足多跳网络内的 QoS要求, 该方法通过给定目标函数, 对连接参数 综合优化, 来为所请求的连接确定至少三个协议层上的连接参数, 包括路径、 信道以及至少一个物理链路参数。 通过将物理连接参数与恰当设计的约束相 结合, 还可以仔细地考虑干扰的问题, 以便真正确保已有连接和新连接基本 上无干扰的通信。 而一种跨层综合式无冲突中路径选择方法确定路由的步驟 为: 首先确定 QoS约束多播路由方法的网络模型, 约束条件可以是可用带宽、 链路传输延迟、 分组丢失率、 抖动、 网络代价等不同的网络特征值度量; 然 后确定网絡状态信息, 网络状态信息是指与网络当前的状态有关的各种信息, 是分布式路由方法的基础; 随后确定回路检测方法。 在该方法中, 由于各个 节点依靠本地维护的全局信息独立计算可行路径, 因此由于信息不一致可能 造成回路, 该方法所有被搜索的可行路径是无环的; 最后降低计算复杂性。
虽然综合考虑多个准则的 QoS路由方法兼顾了系统多个性能, 相对于单 一准则的路由方法在 QoS保障方面有了改进, 但是其存在一个明显缺点: 没 有考虑不同业务的 QoS要求不同, 对路由的要求也是不同的。 显然, 当不同 种类业务数据需要路由时, 它们的路由准则会发生变化, 对所有业务种类采 用同一种路由准则或准则的相同参数都是不妥的, 需要才 居它们的不同需求, 分别为不同业务建立差异化的路由。
总之, 现有技术在确定传输数据的路由过程中, 对路由准则的选取要么 以某种 QoS因素为主、要么兼顾了多个 QoS因素但不考虑业务种类的差异化, 但都忽略了不同业务类型对 QoS要求不同而引起的对路由的不同要求, 导致 不能充分利用网络资源和影响业务质量。 发明内容
本发明实施例提供一种传输数据的方法、 装置及系统, 以解决现有技术 中因不能根据业务类型的差异化选择路由传输数据, 导致无法充分利用网络 资源和影响业务质量的问题。
一种传输数据的方法, 包括如下步骤:
源节点确定业务类型, 根据该业务类型得到相应的传输参数, 并产生路 由选择请求;
至少根据所述传输参数在所述源节点与目的节点之间选择路由; 以及 根据选择的路由在源节点与目的节点之间建立相应的传输链路, 并通过 所述传输链路传送数据。
一种传输数据的装置, 包括:
数据实体, 用于产生路由选择请求和传送待发送数据;
路由选择器, 用于根据所述数据实体产生的路由选择请求所携带的传输 参数选择传送数据的路由;
数据传输单元, 用于根据所述路由选择器选择的路由建立传输链路, 并 经所述传输链路发送所述数据实体传送来的待发送数据。
一种数据传输系统, 包括:
源节点, 用于确定业务类型和根据业务类型得到相应的传输参数, 并至 少根据所述传输参数在本源节点与目的节点之间选择路由, 根据选择的路由 建立的传输链路和经该传输链路发送数据;
目的节点, 用于从所述传输链路接收源节点发送的数据。
一种数据传输系统, 包括:
源节点, 用于确定业务类型和根据业务类型得到相应的传输参数, 并至 少根据所述传输参数选择在本源节点与目的节点之间选择路由, 以及向根据 选择的路由所建立的传输链路发送数据;
目的节点, 用于从所述传输链路接收源节点发送的数据。
本发明实施例根据业务类型和网络状态在源节点和目的节点之间选择路 由传输数据, 可以针对不同类型业务的差异化选择不同的路由, 从而采用最 优的路由传输业务数据, 能够充分利用系统资源, 提高业务盾量和系统容量。 附图说明
图 1为现有技术中转发网络的结构示意图;
图 2为现有技术中中间节点最少路由示意图;
图 3为本发明实施例中数据传输装置的结构示意图;
图 4为本发明实施例中传输数据的流程图;
图 5A、 图 5B为本发明实施例中选择针对不同类型业务选择路由传输数 据的路由示意图。 具体实施方式
为了在两个节点的同一方向选择传输数据的路由时能充分利用系统资 源, 本实施例在源节点和目的节点之间的同一方向上, 在源节点确定业务类 型后, 至少根据该业务类型获得相应的传输参数并至少依据该参数选择路由。 其中, ^艮据业务类型可以得到业务所需的 QoS参数, 如最大 /最小 /平均速率、 时延、 抖动、 误码率、 误比特率等; 传输参数可以包括: QoS 参数、 传输此 种业务消耗的最大能量 /功耗、 能量 /功耗等级、 所需带宽、 所需安全等级等之 一或任意组合。 同一种业务类型所需的传输参数可以不同。 为了保证业务质 量(QoS ), 进一步可以将所述传输参数和当前的网络状态信息相结合来选择 路由。 网络状态信息可以包括: 网络拓朴结构、 相关节点剩余能量、 相关链 路的干扰和负载情况等之一或任意组合。
以下以根据业务类型所需传输参数和当前的网络状态信息相结合选择路 由为例进行详细说明。
参阅图 3 所示, 网络中作为节点的数据传输装置包括(目的节点的数据 传输装置与源节点相同, 部分结构未示出): 维护单元 30、 数据实体 31、 路 由选择器 32、 数据传输单元 33和数据接收单元 34。
维护单元 30用于维护和更新用于路由选择的网络状态。 网络状态信息可 以包括: 节点的资源利用状况和节点之间的链路状况。 节点的资源包括功率、 存储器、 和处理器资源等; 节点之间的链路状况包括: 节点之间的跳数、 链 路的传播损耗、 链路的干扰、 链路的无线资源利用情况、 链路不同业务的误 码率、 链路的流量和链路的延迟等。
数据实体 31用于产生发送端的数据,发起数据传输请求和路由选择请求。 发送端的数据实体 31根据传输数据属性确定数据传输关键参数, 并传送给路 由选择器 32; 发送端的数据实体 31将产生的数据传送给数据传输单元 33。 接收端的数据实体 31负责处理来自发端的数据。
路由选择器 32用于根据网络状态和数据传输关键参数,选择合适的路由, 并将确定的路由送给数据传输单元 33。在针对同一类型数据建立多条路由时, 路由选择器 32会同时将各路由传输的数据量和 /或不同路由传输数据的分割 方式等参数发给数据传输单元, 这个传输的数据量可能是每条路由输出数据 的绝对大小, 也可能各条路由传输数据的相对值, 分割方式可以是随机、 确 定或混合方式。 在集中式路由选择方式中, 由源节点选择到目标节点的所有 路由; 在分布式的路由选择方式中, 源节点选择某一段路由, 然后向中间节 点(或称下游节点)发送携带传输参数和当前的网络状态信息的路由选择请 求, 由中间节点选择另一段路由, 以此类推, 至到完成源节点到目标节点的 路由逸择。 因此, 路由选择器 32所选择的路由, 可以是从源节点不经过中间 节点直接到达目的节点的路由, 也可以是从源节点经过若干中间节点后到达 目的节点的路由, 还可以是从源节点到某一中间节点的路由。 当路由选择选 择的是源节点到某中间节点的路由时, 中间节点在功能上是图 3 中的目的节 点。 中间节点进一步选择到下一个中间节点或目的节点的路由时, 中间节点 在功能上可以通过图 3中的源节点来实现。
数据传输单元 33用于接收数据实体 31发来的数据, 并根据路由选择器 32所选择的路由和每路由传输的数据量、 数据分割方式等, 建立从源节点经 中继节点(也可能不需要中继节点)达到目的节点或中间节点的物理链路, 对数据进行分割, 在不同链路进行数据传输。 数据传输单元 33中可包括一个 分割单元(图中未示出), 当路由选择器 32针对同一业务选择多条路由时, 该分割单元分割待发送的业务数据, 然后将分割后的数据分发到不同的传输 链路。 当然分割单元也可以独立于数据传输单元 33。 选择多条路由时, 为了 保证各条路由间独立性, 可以选择节点不相交的多条路径(指各条路由除了 共享源节点和目的节点, 相互之间没有其他任何共享节点); 为了选择筒便, 可以选择相交路由(指各条路由之间有共享链路); 介于这两者之间的是多条 链路不相交路由 (指各条路由之间没有任何共享链路, 但可能有共享节点)。 分割单元分割数据时, 可以将业务的所有数据顺序在同一条路由中发送, 不 同路由间重复发送; 可以将业务流循环分割, 等分到不同路由中发送; 可以 根据每条支路的不同带宽, 根据带宽比例分割业务流到不同路由。
数据接收单元 34用于接收经一条或多条路由从源节点或中继节点传来的 数据, 并将其送给本端对应的数据实体 31进行处理。 数据接收单元 34中可 包括一个合并单元(图中未示出), 当源节点的数据通过分割而在不同路由传 输时, 该合并单元合并不同路由的数据恢复数据原有格式后再送给本端的数 据实体 31。 当然, 合并单元也可以独立于数据接收单元 34。
在本实施例中, 路由选择器 32将传输参数和网络状态信息作为路由算法 的输入, 因此, 不同的业务类型 (其传输参数不同)、 不同传输参数和不同的 当前网络状态信息可能会得到不同的路由。
参阅图 4所示, 在源节点和目的节点之间传输数据的一个实例如下: 步骤 400、源节点和目的节点之间需要建立某种类型的数据链接, 源节点 的数据实体 31向路由选择器 32发起路由选择请求, 同时将该数据 (包含业 务数据和信令数据)的传输参数, 例如, 最大时延、 误码率、 最大 /最小速率、 抖动、 带宽、 功耗、 安全等级等之一或任意组合, 传送给路由选择器 32。
步骤 410、路由选择器 32接收到数据实体 31发来的路由选择请求后,根 据维护单元 30中的网络状态信息(例如, 网络拓朴结构、相关节点剩余能量) 和数据传输关键参数, 选择最合适的从源节点到目的节点的路由, 并将确定 的路由送给数据传输单元 33。
针对同一业务数据, 路由选择器 32可能会根据传输参数和网络状态(例 如为了平衡业务流或降低干扰)确立多条路由, 路由选择器 32会同时将各路 由传输的数据量发给数据传输单元。
步骤 420、数据传输单元 33接收数据实体 31传送的数据,并根据路由选 择器 32所选择的路由建立从源节点到目的节点的物理链路进行数据传输。
如果路由选择器 32选择了多条路由, 则数据传输单元 33将建立多条物 理链路, 分割单元将数据分割后再传送。 分割时可以将业务流循环分割, 等 分到不同路由中发送; 也可以^ ^据每条支路的不同带宽, 根据带宽比例分割 业务流到不同路由。
从源节点到目的节点的物理链路可能经中继节点, 也可能不经过中继节 点。
步骤 430、 目的节点中的数据接收单元 34接收数据并将其传送给本端的 数据实体 31。 如果源节点的数据通过分割而通过不同路由传输, 则数据接收 单元 34合并不同路由的数据后再送给本端的数据实体 31。
在一次业务传输过程中, 当网络状态发生变化时, 路由选择器 32可以判 定路由算法相关的网络状态变化是否已经超过一定门限。 如果没有超过一定 门限, 就保持路由; 如果超过, 结合业务特点来判断是否要重现选择路由, 如果要重新选择路由, 则重复上述步骤 410 430的路由选择和传输过程, 重 新选择合适的路由并传送给数据传输单元 33。
当在源节点和目的节点之间建立多种类型数据, 每次有新的业务类型或 同一类型的不同业务实例要传输时, 可重复上述步骤 400 ~ 430的路由选择和 传输过程。 不同的业务类型、 不同传输参数和不同网络状态下会有多种路由, 而在同一种路由方式下, 可以同时存在多条路由。 各类型的数据可能会在同 一路由传输, 也可能会由不同路由传输。 下面以一个具体实例进一步说明本实施例的技术方案。
参阅图 5A所示, 在源节点 A和目的节点 B之间要同时建立两种类型的 业务: 语音和电子邮件。 语音对时延、 抖动的要求较高, 但误比特率(BER ) 要求较低, 而电子邮件对 BER要求较高, 对时延、 抖动不敏感。
在节点 A和 B之间存在两条路由, 第一条路由: A->C -〉 B, 第二条路由 A->D->E->B。 其中, 假定第一条路由时延短、 信道波动不大, 但链路盾量 差, 第二条路由时延长、 但链路质量好。 在现有技术中, 只会选择第一条路 由或第二条路由来同时传输语音和电子邮件, 这样难以同时满足两种业务的 要求。 而采用本发明, 路由选择器 32根据语音业务的时延传输参数和当前的 网络状态信息, 就可以根据跳数最少准则为该业务选择第一条路由; 路由选 择器 32根据电子邮件业务的 BER参数和当前的网络状态信息, 就可以根据 链路质量最优原则为该业务选择第二条路由, 这样可以同时满足两种业务的 要求。 '
参阅图 5B所示, 在节点 A和节点 B之间存在大数据量的实时流媒体业 务, 此业务数据传输量大, 对时延和抖动要求也比较高。 采用本发明, 节点 A 的路由选择器 32发现此时网络中无线资源利用率很低, 同时, 各条无线链路 质量较高, 根据链路的无线资源利用情况、 链路的流量和链路的延迟等网络 状态信息, 在满足 QoS最低要求和传输参数的情况下, 发现有多条链路可以 满足要求, 此时就可以选择多条路由 A->C- >B、 A->D -〉 B和 A->E->B, 并将 选择的路由信息传送给数据传输单元 33,数据传输单元 33根据所述路由信息 将该业务分割, 利用三条路由同时传输该业务, 这样可以保证这种大数据量 的实时业务的实时传输。
在现有技术中, 缺省认为在同一方向对所有业务源节点和目的节点之间 只存在同一种路由, 因此造成了不能充分利用系统资源的缺点。 本发明实施 例中源节点和目的节点之间在同一方向根据业务的传输参数和网络状态可建 立多种路由, 在同一种路由方式下可以进一步釆用多条路由, 相对现有技术, 可以更好的利用网络资源, 保证用户业务质量和提高系统容量。 显然, 本领域的技术人员可以对本发明进行各种改动和变型而不脱离本 发明的精神和范围。 这样, 倘若对本发明的这些修改和变型属于本发明权利 要求及其等同技术的范围之内, 则本发明也意图包含这些改动和变型在内。

Claims

权利要求
1、 一种传输数据的方法, 包括如下步骤:
源节点确定业务类型, 根据该业务类型得到相应的传输参数, 并产生路 由选择请求;
至少才艮据所述传输参数在所述源节点与目的节点之间选择路由; 以及 根据选择的路由在源节点与目的节点之间建立相应的传输链路, 并通过 所述传输链路传送数据。
2、 如权利要求 1所述的方法, 其特征在于, 进一步将所述传输参数结合 当前的网络状态信息, 在所述源节点与目的节点之间选择路由。
3、 如权利要求 2所述的方法, 其特征在于, 针对同一业务选择多条路由 时, 源节点分割待发送的业务数据, 并根据所述多条路由分别将已分割的待 发送业务数据传送到目的节点。
4、 如权利要求 3所述的方法, 其特征在于, 所述目的节点进一步合并从 所述多条路由接收到的业务数据。
5、 如权利要求 3所述的方法, 其特征在于, 选择多条路由时进一步确定 每条路由能够传输的数据量, 源节点依据各条路由能够传输的数据量向对应 的传输链路发送数据。
6、 如权利要求 3所述的方法, 其特征在于, 选择多条路由时进一步确定 对数据的分割方式, 源节点依据分割方式分割业务数据。
7、 如权利要求 1至 6任一项所述的方法, 其特征在于, 在一次业务的传 输过程中, 当网络状态发生变化时重新选择路由和建立相应的传输链路。
8、 如权利要求 7所述的方法, 其特征在于, 所述路由为从源节点经过中 继节点到达到目的节点的路由; 或者, 所述路由为从源节点直接到达目的节 点的路由。
9、 如权利要求 1所述的方法, 其特征在于, 所述传输参数包括: 服务质 量参数、 传输业务消耗的最大能量 /功耗、 能量 /功耗的等级、 所需带宽、 所需 安全等级之一或任意组合。
10、 如权利要求 2所述的方法, 其特征在于, 所述网络状态信息包括: 网络拓朴结构、 相关节点剩余能量、 相关链路的干扰和负载情况之一或任意 组合。
11、 一种传输数据的装置, 包括:
数据实体, 用于产生路由选择请求和传送待发送数据;
路由选择器, 用于根据所述数据实体产生的路由选择清求所携带的传输 参数选择传送数据的路由;
数据传输单元, 用于根据所述路由选择器选择的路由建立传输链路, 并 经所述传输链路发送所述数据实体传送来的待发送数据。
12、 如权利要求 11所述的装置, 其特征在于, 还包括:
维护单元, 用于维护网络状态信息; 其中, 所述路由选择器将所述传输 参数结合当前的网络状态信息选择传送数据的路由。
13、 如权利要求 11所述的装置, 其特征在于, 该装置还包括:
数据接收单元, 用于接收其他装置传送的数据。
14、 如权利要求 11-13任一项所述的装置, 其特征在于, 该装置还包括: 分割单元, 用于在所述路由选择器针对同一业务选择多条路由时, 分割 待发送的业务数据并分发到相应的多条传输链路。
15、 如权利要求 14所述的装置, 其特征在于, 该装置还包括: 合并单元, 用于从多条传输链路接收到同一业务的数据时, 合并从所述 多条传输链路接收到的同一业务的数据。
16、 一种数据传输系统, 其特征在于, 包括:
源节点, 用于确定业务类型和根据业务类型得到相应的传输参数, 并至 少根据所述传输参数在本源节点与目的节点之间选择路由, 根据选择的路由 建立的传输链路和经该传输链路发送数据; 目的节点, 用于从所述传输链路接收源节点发送的数据。
17、 如权利要求 16所述的数据传输系统, 其特征在于, 所述源节点进一 步将所述传输参数结合当前的网络状态信息选择路由。
18、 如权利要求 16所述的数据传输系统, 其特征在于, 针对同一业务选 择多条路由时, 源节点分割待发送的业务数据并根据所述多条路由分别发送 已分割的待发送业务数据; 所述目的节点进一步合并从所述多条路由接收到 的数据。
19、如权利要求 16-18任一项所述的数据传输系统, 其特征在于, 所述源 节点选择从本源节点到目的节点的所有路由; 或者, 所述源节点选择从本源 节点到中间节点的路由, 由中间节点选择后续的路由。
PCT/CN2007/001549 2006-06-08 2007-05-14 Procédé de transmission des données et appareil et système correspondants WO2007140698A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200610083395.1 2006-06-08
CNA2006100833951A CN1984020A (zh) 2006-06-08 2006-06-08 一种传输数据的方法及装置

Publications (1)

Publication Number Publication Date
WO2007140698A1 true WO2007140698A1 (fr) 2007-12-13

Family

ID=38166270

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2007/001549 WO2007140698A1 (fr) 2006-06-08 2007-05-14 Procédé de transmission des données et appareil et système correspondants

Country Status (2)

Country Link
CN (1) CN1984020A (zh)
WO (1) WO2007140698A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102223683A (zh) * 2011-06-07 2011-10-19 中兴通讯股份有限公司 无线传感器网络中的数据传输方法、节点和系统
CN104618232A (zh) * 2015-01-28 2015-05-13 杭州华三通信技术有限公司 广域网业务链路选择方法及装置
CN104618232B (zh) * 2015-01-28 2018-02-09 新华三技术有限公司 广域网业务链路选择方法及装置
WO2021173051A1 (en) * 2020-02-28 2021-09-02 Telefonaktiebolaget Lm Ericsson (Publ) Predicted transmission delay-based routing in multiroute integrated access and backhaul networks

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014047942A1 (zh) * 2012-09-29 2014-04-03 华为技术有限公司 传输数据的方法、用户设备和网络侧设备
CN104468483B (zh) * 2013-09-22 2019-01-22 腾讯科技(深圳)有限公司 数据传输方法及系统、控制装置与节点装置
CN103905542B (zh) * 2014-03-25 2017-05-24 北京邮电大学 物联网数据传输方法及网络节点
WO2016074211A1 (zh) * 2014-11-14 2016-05-19 华为技术有限公司 一种数据转发的方法和控制器
CN105450390B (zh) * 2015-11-12 2018-09-28 苏州大学张家港工业技术研究院 一种数据传输方法及装置
CN107438268B (zh) * 2016-03-31 2021-12-24 阿里巴巴集团控股有限公司 一种用于为移动设备加速无线网络的方法与设备
CN106161240B (zh) * 2016-08-02 2019-08-23 中国联合网络通信集团有限公司 一种确定路由路径的方法及装置
CN108093454A (zh) * 2017-12-07 2018-05-29 中国科学院上海微系统与信息技术研究所 一种跨层路由准则的实现方法
CN110198259B (zh) * 2019-03-12 2021-08-17 腾讯科技(深圳)有限公司 一种数据传输方法、装置及设备
CN110087195B (zh) * 2019-04-22 2021-12-10 希诺麦田技术(深圳)有限公司 无线自组网中数据的传播方法、装置及存储介质
CN112019363B (zh) * 2019-05-30 2021-12-14 华为技术有限公司 确定业务传输需求的方法、设备及系统
CN115484655A (zh) * 2021-05-31 2022-12-16 华为技术有限公司 一种业务报文的转发方法、网络设备以及无线网络
CN113490249B (zh) * 2021-06-15 2023-06-23 中国银行股份有限公司 一种传输路径的确定方法及装置
CN113556285B (zh) * 2021-07-21 2022-08-23 中国联合网络通信集团有限公司 数据的传输方法和装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1349698A (zh) * 1999-05-04 2002-05-15 伊科梅拉股份公司 通过多条通信路由传输数据的系统
CN1744559A (zh) * 2005-10-14 2006-03-08 中国移动通信集团公司 一种通过业务属性或根据业务计费类型实现路由的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1349698A (zh) * 1999-05-04 2002-05-15 伊科梅拉股份公司 通过多条通信路由传输数据的系统
CN1744559A (zh) * 2005-10-14 2006-03-08 中国移动通信集团公司 一种通过业务属性或根据业务计费类型实现路由的方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102223683A (zh) * 2011-06-07 2011-10-19 中兴通讯股份有限公司 无线传感器网络中的数据传输方法、节点和系统
CN104618232A (zh) * 2015-01-28 2015-05-13 杭州华三通信技术有限公司 广域网业务链路选择方法及装置
CN104618232B (zh) * 2015-01-28 2018-02-09 新华三技术有限公司 广域网业务链路选择方法及装置
WO2021173051A1 (en) * 2020-02-28 2021-09-02 Telefonaktiebolaget Lm Ericsson (Publ) Predicted transmission delay-based routing in multiroute integrated access and backhaul networks

Also Published As

Publication number Publication date
CN1984020A (zh) 2007-06-20

Similar Documents

Publication Publication Date Title
WO2007140698A1 (fr) Procédé de transmission des données et appareil et système correspondants
Chen et al. A survey of routing protocols that support QoS in mobile ad hoc networks
US20120030150A1 (en) Hybrid Learning Component for Link State Routing Protocols
Tekaya et al. Multipath routing mechanism with load balancing in ad hoc network
Tekaya et al. Multipath routing with load balancing and QoS in ad hoc network
Asokan A review of Quality of Service (QoS) routing protocols for mobile Ad hoc networks
Gulati et al. A review of qos routing protocols in manets
Giri et al. Multipath routing for admission control and load balancing in wireless mesh networks
CN110831006B (zh) 自组网系统及其数据传输方法
Guo et al. Localized operations for distributed minimum energy multicast algorithm in mobile ad hoc networks
Singh et al. Effective congestion control in MANET
Diamant et al. Routing in multi-modal underwater networks: A throughput-optimal approach
Kaur et al. Analysis of traffic impact on proposed congestion control scheme in AODV
Patil et al. Extended ECDSR protocol for energy efficient MANET
Gulati et al. Load Balanced and Link Break Prediction Routing Protocol for Mobile Ad Hoc Networks.
Jain et al. Performance analysis of node-disjoint multipath routing for mobile ad-hoc networks based on QOS
Banik et al. Design of QoS Routing Framework based on OLSR Protocol
Liu et al. A novel QoS in node-disjoint routing for ad hoc networks
Dalal et al. Routing based Congestion Control Metric: RFR
Prakash et al. Energy aware topology management in ad hoc wireless networks
Hizal et al. lResearch on quality of service based routing protocols for mobile ad hoc networks
Gambhir et al. Optimal path selection routing protocol in MANETs
Sultanuddin et al. Shortest and efficient multipath routing in mobile ad hoc network (manet)
Rajendran Energy Efficient Node Management Techniques using Cross Layer System for Mobile Adhoc Networks
Saravanakumar Bwiee Protocol For Route Discovery And Energy Efficiency In Manet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07721122

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 07721122

Country of ref document: EP

Kind code of ref document: A1