WO2007138968A1 - Hydroelectric power generator - Google Patents

Hydroelectric power generator Download PDF

Info

Publication number
WO2007138968A1
WO2007138968A1 PCT/JP2007/060581 JP2007060581W WO2007138968A1 WO 2007138968 A1 WO2007138968 A1 WO 2007138968A1 JP 2007060581 W JP2007060581 W JP 2007060581W WO 2007138968 A1 WO2007138968 A1 WO 2007138968A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve body
partition wall
flow path
power generation
shaft portion
Prior art date
Application number
PCT/JP2007/060581
Other languages
French (fr)
Japanese (ja)
Inventor
Shogo Tanaka
Yukinobu Yumita
Shinichi Yoshikawa
Original Assignee
Nidec Sankyo Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec Sankyo Corporation filed Critical Nidec Sankyo Corporation
Publication of WO2007138968A1 publication Critical patent/WO2007138968A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K17/00Safety valves; Equalising valves, e.g. pressure relief valves
    • F16K17/02Safety valves; Equalising valves, e.g. pressure relief valves opening on surplus pressure on one side; closing on insufficient pressure on one side
    • F16K17/04Safety valves; Equalising valves, e.g. pressure relief valves opening on surplus pressure on one side; closing on insufficient pressure on one side spring-loaded
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B11/00Parts or details not provided for in, or of interest apart from, the preceding groups, e.g. wear-protection couplings, between turbine and generator
    • F03B11/004Valve arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B15/00Controlling
    • F03B15/02Controlling by varying liquid flow
    • F03B15/04Controlling by varying liquid flow of turbines
    • F03B15/06Regulating, i.e. acting automatically
    • F03B15/18Regulating, i.e. acting automatically for safety purposes, e.g. preventing overspeed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B3/00Machines or engines of reaction type; Parts or details peculiar thereto
    • F03B3/02Machines or engines of reaction type; Parts or details peculiar thereto with radial flow at high-pressure side and axial flow at low-pressure side of rotors, e.g. Francis turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K15/00Check valves
    • F16K15/02Check valves with guided rigid valve members
    • F16K15/06Check valves with guided rigid valve members with guided stems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Definitions

  • the present invention relates to a hydroelectric power generation apparatus that generates power using tap water or the like.
  • An automatic water faucet device configured to automatically flow water from a faucet when a sensor is sensed when a hand is put out below the faucet is becoming widespread.
  • a small hydroelectric generator is installed in the middle of the tap water flow path, and the device that stores the electric power obtained by the hydroelectric generator and supplies this electric power to the sensor circuit of the automatic water faucet has been devised. ing.
  • Such a hydroelectric power generation apparatus has a problem in that, when the amount of water supplied to the turbine chamber increases, the rotation speed of the turbine becomes too high and rattling. Therefore, a first flow path for power generation provided with a water turbine chamber in which a water turbine for power generation is arranged, and a second flow path for bypass configured in parallel to the water turbine room are configured, and a valve mechanism Therefore, it is proposed that when the fluid pressure rises, the second flow path is switched to the open state (see, for example, Patent Document 1).
  • such a valve mechanism opens and closes a partition wall 219 ”having an opening 38 ⁇ constituting a second flow path for bypass and an opening 38 ⁇ .
  • a shaft portion 97 that supports the valve body 90 so as to be displaceable in the direction approaching and separating from the partition wall 219 "by fitting the valve body 90 ⁇ on the distal end side into a hole 98 formed in the valve body 90 ,
  • a coil panel 95 ⁇ that urges the valve body in a direction to close the opening 38 ⁇ against the fluid pressure.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2003-129930
  • an object of the present invention is to provide a hydraulic power generation apparatus in which a valve mechanism that opens and closes a bypass flow path can smoothly open and close.
  • a first flow path for power generation including a water turbine chamber in which a power generation water turbine is arranged, and a bypass configuration configured in parallel to the water turbine chamber
  • the valve mechanism includes the second flow path.
  • a partition wall having an opening constituting the valve, a valve body for opening and closing the opening, a support mechanism for supporting the valve body so as to be displaceable in a direction approaching and separating from the partition wall, and a fluid pressure.
  • the support mechanism includes a shaft portion formed on one side of the valve body and the partition wall, Even when the relative position of the shaft portion changes, the receiving portion has a constant support dimension between the shaft portion and the shaft portion. Characterized in that it comprises a.
  • the receiving part is, for example, a cylindrical part through which the shaft part passes.
  • the support mechanism for the valve body is constituted by the shaft portion and a receiving portion such as a cylindrical portion through which the shaft portion passes, so that the support dimension is long. For this reason, the valve body can be supported in a stable posture. Further, in the support mechanism, even if the relative position of the shaft portion and the receiving portion changes with the movement of the valve body, the support dimension does not change and remains long. The body can be supported in a stable state, and the valve body moves smoothly. Therefore, the bypass channel can be smoothly opened and closed according to the set fluid pressure.
  • the opening is formed around a position where the receiving portion or the shaft portion is formed with respect to the partition wall.
  • the shaft portion is formed in the valve body, and the receiving portion projects a surface force located on the upstream side in the second flow path of both surfaces of the partition wall.
  • the receiving portion is formed on the valve body, and the shaft portion is formed on the partition.
  • a configuration in which the surface force located on the downstream side in the second flow path protrudes may be employed.
  • one of the contact surface of the valve body with the partition wall and the contact surface of the partition wall with the valve body is made of fluorine rubber or fluorine resin. It is desirable that the surface of the sealing member be provided with fine irregularities! With this configuration, even when a chemically stable fluorine rubber or fluorine resin is used as the seal member, it is possible to avoid a situation in which the valve body does not come out of contact with the partition wall.
  • the contact surface of the valve body with the partition wall and the contact surface of the partition wall with the valve body, the other contact surface may be a smooth surface.
  • the contact surface on the other side can be formed as a smooth surface, so that fluid leakage can be reliably prevented.
  • the urging member is a coil panel, and a positioning portion for a stopper that supports one end of the coil is formed at a tip portion of the shaft portion. I hope.
  • a first power generation passage having a water turbine chamber in which a power generation turbine is disposed, and a second bypass passage configured in parallel to the water turbine chamber.
  • the valve mechanism constitutes the second flow path.
  • a partition wall provided with a plurality of openings, a valve body for opening and closing the opening, a support mechanism for supporting the valve body so as to be displaceable in a direction approaching and separating from the partition wall, and a pile of fluid pressure.
  • a biasing member that biases the valve body in a direction to close the opening and the support mechanism is a partition wall having the plurality of openings, and is sandwiched by the plurality of openings. It is formed to support the valve body at a position.
  • the support mechanism that supports the valve body so as to be displaceable in a direction approaching and separating from the partition wall is a partition wall including a plurality of openings, and the plurality of openings serve as the support mechanism. Therefore, the valve body can be supported by the support mechanism provided on the partition wall, and the support dimension of the valve body can be increased.
  • the valve body can be supported in a stable posture. In the present invention, if a plurality of the plurality of openings are formed in the circumferential direction around the support mechanism formed in the partition wall, the valve body supported by the support mechanism is provided in the circumferential direction. Similarly, fluid can be bypassed and stable operation can be achieved.
  • the support mechanism for the valve body is constituted by the shaft portion and a receiving portion such as a cylindrical portion through which the shaft portion passes, and the partition wall sandwiched by the plurality of openings is provided on the partition wall. Since the support mechanism for supporting the valve body is provided, the support dimension can be increased. For this reason, the valve body can be supported in a stable posture. Also, in the support mechanism, even if the relative position of the shaft part and the receiving part changes as the valve body moves, the support dimensions do not change and remain long. In this case, the valve body can be supported in a stable state, and the valve body moves smoothly. Therefore, the bypass channel can be smoothly opened and closed according to the set fluid pressure.
  • FIG. 1 (a) and (b) are a plan view and a cross-sectional view taken along line AA ⁇ of a hydroelectric power generation apparatus to which the present invention is applied.
  • FIG. 2 is a plan view showing a configuration of a main body case used in the hydroelectric generator shown in FIG.
  • (a), (b), and (c) are a plan view, a front view, and a bottom view showing a configuration of a cover used in the hydroelectric generator shown in FIG.
  • FIG. 4 (a), (b), and (c) are a plan view, a front view, and a bottom view showing a configuration of a cover that can be used in the hydroelectric generator shown in FIG.
  • FIG. 5 (a), (b), and (c) are perspective views of the power generation turbine used in the hydroelectric generator shown in Fig. 1 when viewed from the first radial bearing side force.
  • FIG. 6 is a plan view of the second radial bearing side force and a cross-sectional view along B-B ′.
  • FIG. 6 (a) and (b) are an enlarged view showing the configuration of the valve mechanism shown in FIG. 1 (b) and an explanatory view when the partition wall is viewed from the fluid inlet side.
  • FIG. 7 is a graph showing the relationship between the flow rate poured into the power generation turbine of the hydroelectric generator shown in FIG. 1 and the rotational speed of the power generation turbine at that time.
  • 8 is a configuration diagram showing the configuration of another valve mechanism that can be used in the hydroelectric generator shown in FIG.
  • FIG. 9 is a cross-sectional view showing a configuration of a valve body used in a conventional hydroelectric generator.
  • FIG. 1 (a) and 1 (b) are a plan view and a cross-sectional view taken along the line AA ′ of the hydroelectric generator to which the present invention is applied.
  • the ⁇ - ⁇ 'line does not pass through the injection port formation position.
  • the left part of (b) also shows the injection port.
  • the hydroelectric generator 1 shown in Figs. 1 (a) and (b) is a small hydroelectric generator disposed in the middle of the channel of tap water, and the electric power obtained by the hydroelectric generator 1 is obtained. It is used for purposes such as storing electricity and supplying this power to the sensor circuit of an automatic faucet device.
  • the hydroelectric generator 1 according to the present embodiment includes a resin-made main body case 21 constituting a flow path to be described later, a cover 23 covering the upper surface of the main body case 21, and a stainless cup-shaped partition plate 2 covering the cover 23. 5 and an annular case 27 sandwiching the stator portion 6 between the partition plate 25 and the flange portion of the partition plate 25, and an upper case 29 made of resin covering the upper portion of the annular case 27.
  • the cut plate 25 is fixed to the main body case 21 with screws.
  • an EPDM seal 281 is stacked on the bottom surface of the main body case 21, and a rubber O-ring 282 is disposed between the partition plate 25 and the main body case 21 !.
  • the body case 21 is provided with a fluid inlet 31 and a fluid outlet 32 that open on opposite sides, and a direction force from the fluid inlet 31 to the fluid outlet 32 is located in the middle of the first flow path 110.
  • the main body case 21 and the cover 23 form a water injection section described later, and a water turbine chamber 35 is formed between the main body case 21 and the cutting plate 25.
  • the lower end and the upper end are upright, respectively, with a support shaft 4 press-fitted and fixed in the shaft fixing holes of the body case 21 and the partition plate 25.
  • the support shaft 4 has a cylindrical power turbine. 5 is rotatably supported.
  • a bush 45 made of resin is fitted to the support shaft 4, and the power generation water turbine 5 is supported by the upper half portion of the support shaft 4 exposed from the sleeve 45. In addition, the power generation water turbine 5 is prevented from being displaced in the vertical direction by a washer attached to the support shaft 4.
  • a cylindrical permanent magnet 55 is fixed to the outer peripheral surface of the upper half portion located in the cylindrical portion 251 of the partition plate 25.
  • annular stator assemblies 61 and 62 are arranged around the cylindrical portion 251 of the partition plate 25, and the permanent magnet 55 and the stator portion 6 constitute a power generation unit.
  • the stator section 6 is composed of two-phase stator sets 61 and 62 that are arranged so as to overlap in the axial direction.
  • Each of the two stator sets 61 and 62 has a structure in which the outer stator core, the coil wound around the coil bobbin, and the inner stator core are stacked, and the outer stator core is arranged along the inner periphery of the coil bobbin.
  • the pole teeth and the pole teeth of the inner stator core alternate Are lined up.
  • the winding start portion and winding end portion of the coil are connected to the connector 69 through the terminal 67 and the wire 68 of the terminal block 66.
  • the upper case 29 is formed with a hood portion 291 that covers the terminal block 66, and has a structure that prevents water from entering the stator portion 6.
  • the second flow path 120 for directional bias is formed in the fluid outlet 32 without the water flowing in from the fluid inlet 31 passing through the water turbine chamber 35.
  • the second flow path 120 is configured with a valve mechanism 9 described later with reference to FIG.
  • FIG. 2 is a plan view showing the configuration of the main body case used in the hydroelectric generator shown in FIG.
  • FIGS. 3A, 3B, and 3C are a plan view, a front view, and a bottom view, respectively, showing the configuration of the cover used in the hydroelectric generator shown in FIG.
  • FIGS. 4 (a), 4 (b), and 4 (c) are a plan view, a front view, and a bottom view, respectively, showing a configuration of another cover that can be used for the hydroelectric generator shown in FIG.
  • a partition wall 219 is erected so as to face the fluid inlet 31.
  • An annular channel 33 is formed around the chamber 35.
  • the annular flow path 33 has a bottom surface, an inner peripheral surface, an outer peripheral surface, and an upper surface, respectively, the annular partition wall 211 of the main body case 21, the annular inner vertical wall 212 of the main body case 21, and the annular shape of the main body case 21
  • the inner vertical wall 212 has notches for forming the outlets 34 at four locations in the circumferential direction.
  • an inclined surface 330 (shaded portion in FIG. 2) is formed in a part of the annular flow path 33.
  • the cover 23 has a ring shape, and the lower surface of the ring portion 230 of the cover 23 is shown in FIG. Ribs 231 (protrusions) that fit into the four injection ports 34 and adjust the opening area of each of the injection ports 34 are formed at portions corresponding to the four injection ports 34 of the main body case 21. Further, by providing the rib 231 with a taper 23 la, the protruding dimension is adjusted. Accordingly, when the upper surface of the main body case 21 is covered with the cover 23, four injection ports 3 4 are formed that inject water at high speed from the annular flow path 33 toward the blades 57 of the power generation water turbine 5.
  • a cover 23 ' having a structure in which no rib is formed on the ring portion 230 as shown in FIG. 4 may be used. In this way, the amount of water injected from the injection port 34 can be adjusted by replacing the cover having a different rib shape depending on the application.
  • FIGs. 5 (a), (b), and (c) are perspective views of the power generation turbine used in the hydroelectric power generation device shown in Fig. 1 when the first radial bearing side force is seen.
  • FIG. 3 is a plan view of the radial bearing side force and a BB ′ cross-sectional view.
  • the hydroelectric generator 1 of this embodiment is! A cylindrical body 50 projecting at equal angular intervals, a cylindrical first radial bearing 51 located at one end of the through hole 501 of the cylindrical body 50 (a lower side where the main body case 21 is located), and a through hole 501 on the other side end (upper side where the cylindrical portion 251 of the partition plate 25 is located) and a cylindrical second radial bearing 52 located at the bottom, and a shaft hole 510 of the first radial bearing 51,
  • the power generation turbine 5 is rotatably supported around the support shaft 4 by fitting the support shaft 4 shown in FIG. 1 (b) into the shaft hole 520 of the second radial bearing 52.
  • the cylindrical body 50 has a large diameter at the lower end where the blades 57 are formed, and a small diameter at the upper half, and a cylindrical permanent magnet 55 is fixed to the small diameter portion.
  • the plurality of blades 57 are respectively positioned on the first blade 571 on the second radial bearing 52 side and on the first radial bearing 51 side in the axial direction.
  • the second blade 572 is divided into two, and the outer peripheral end of the second blade 572 is connected by a cylindrical plate portion 58 parallel to the axial direction of the cylindrical body 50.
  • the outer end surface of the cylindrical plate portion 58 is located at the same radial distance as the outer peripheral end of the first blade 571.
  • the four power outlets 34 are formed around the power generation water turbine 5 at equiangular intervals for the power generation water turbine 5 configured as described above. ing.
  • the four injection ports 3 4 are opened by force in a direction straddling both the first blade 571 and the cylindrical plate portion 58.
  • Each of the two injection ports 34 is configured to inject water across the first blade 571 and the cylindrical plate portion 58. That is, a part of the water ejected from the ejection port 34 directly hits the first blade 571 as shown by the arrow L1, while the remaining water ejected from the ejection port 34 is the cylindrical plate portion.
  • the number of injection ports 34 formed in the water injection section and the number of blades 57 are in a prime relationship, and the condition that one is an integral multiple of the other is avoided. For example, in this embodiment, there are four injection ports 34, while the number of blades 57 is seven.
  • the water flowing from the fluid inlet 31 collides with the partition wall and flows into the upper annular flow path 33, and then the blades 57 of the power generation turbine 5 from the four outlets 34. It is injected towards.
  • the power generation water turbine 5 rotates, and accordingly, the permanent magnet 55 also rotates, so that an induced voltage is generated in the coil of the stator portion 6.
  • the water that has finished turning the power generation turbine 5 falls downward and is discharged through the fluid outlet 32.
  • the induced voltage generated in the stator section 6 is guided to an external circuit through the connector 69, converted into direct current by this circuit, rectified and charged to the battery.
  • 6 (a) and 6 (b) are an enlarged view showing the configuration of the valve mechanism 9 shown in FIG. 1 (b) and an explanatory view when the partition 219 is viewed from the fluid inlet side in FIG. 6 (a). is there.
  • the water that has also flowed into the fluid inlet 3 is directed to the fluid outlet 32 without passing through the turbine chamber 35.
  • the second flow path 120 is formed. That is, the partition wall 219 facing the fluid inlet 31 is formed with a recess 219a that is recessed toward the fluid outlet 32, and the bottom of the recess 219a is formed in the circumferential direction as shown in FIG.
  • a plurality of aligned openings 38 are formed so that the fluid inlet 31 and the fluid outlet 32 can communicate with each other.
  • valve mechanism 9 is configured for the opening 38, and the valve mechanism 9 closes the opening 38 (second flow path) when the fluid pressure is low, and the fluid pressure is When raised, the opening 38 (second flow path) is switched to the closed force open state.
  • the partition wall 219 protrudes toward the upstream surface of the second flow path 120 toward the bottom force fluid inlet 31 side of the recess 219a.
  • a cylindrical tube portion 217 (receiving portion) is formed, and four openings 38 are arranged around the tube portion 217.
  • the valve mechanism 9 includes a valve body 90.
  • the valve body 90 includes a valve portion 901 that overlaps the back surface side of the partition wall 219 (the downstream side Z fluid outlet 32 side in the second flow path 120). , Central force of valve part 901 is also fluid inlet 3 1 is provided, and a shaft portion 902 having a round bar shape protruding toward the side 1 is provided, and the shaft portion 902 penetrates the cylindrical portion 217.
  • the shaft portion 902 and the cylindrical portion 217 constitute a support mechanism 99 for the valve body 90, and this support mechanism 99 is sandwiched between the four openings 38; Specifically, it is arranged at the center position of the four openings 38.
  • a seal member 96 made of fluorine-based rubber or fluorine-based resin is affixed to a portion of the valve portion 901 that comes into contact with the back surface side of the partition wall 219.
  • the surface of the seal member 96 is provided with fine irregularities, and such irregularities are formed by blasting the seal member 96 or by blasting the mold when the seal member 96 is molded. Can do.
  • the surface of the partition wall 219 that contacts the seal member 96 is a smooth surface.
  • a projection 903 having a smaller diameter than the base end side is formed at the distal end portion of the shaft portion 902.
  • a step 905 formed by the projection 903 is tightened by a push nut 91.
  • Sha 92 is fixed.
  • a coil panel 95 is mounted around the shaft portion 902. The coil panel 95 is in a compressed state with both ends supported by the washer 92 and the portion around the cylindrical portion 217 of the partition wall 219.
  • valve element 90 is urged toward the fluid inlet 31 by the coil panel 95, so that the valve portion 901 abuts against the partition wall 219 via the seal member 96. Yes. For this reason, when the pressure of the water flowing in from the fluid inlet 31 is low, the opening 38 is closed. However, if the pressure of the water flowing in from the fluid inlet 31 becomes so high that the washer 92 and the valve portion 901 receive a water pressure larger than the biasing force of the coil panel 95, the valve body 90 will resist the biasing force of the coil panel 95. As a result, the valve 901 is displaced toward the fluid inlet 32, and the force on the back side of the partition wall 219 is also separated, so that the bypass opening 38 is opened.
  • the valve mechanism 9 configured in the second flow path 120 for bypassing has the support mechanism 99 for the valve body 90 in the fluid input from the partition wall 219.
  • the fitting part (supporting dimension) is long because it has a cylindrical part 217 extending toward the port 31 and a shaft part 902 that protrudes from the valve body 90 toward the fluid inlet 31 and penetrates the cylindrical part 217. . For this reason, the valve body 90 can be supported in a stable posture.
  • the shaft portion 902 penetrates the tube portion 217, even if the relative position between the tube portion 217 and the shaft portion 902 changes with the movement of the valve body 90, the tube portion 217 and the shaft portion 902 do not move. Since the fitting dimension remains long, the valve body 90 can be stably supported even when the valve body 90 is in any position, and the valve body 90 moves smoothly. Therefore, the second flow path 120 for the no-pass can be smoothly opened and closed according to the set fluid pressure.
  • the partition wall 219 has a recess 219a that is recessed toward the fluid outlet 32, and an opening 38 is formed at the bottom of the recess 219a.
  • this recess 219a water flowing from the fluid inlet 31 can be made to act vertically on the valve portion 901 that closes the opening 38. Therefore, blurring of the valve body 90 and the coil panel 95 can be suppressed.
  • the contact surface of the partition wall 219 with the valve portion 901 is formed as a smooth surface, while the valve portion 901 has a seal portion made of fluoro rubber or fluoro resin at a position where it contacts the partition wall 219.
  • Material 96 is interposed. For this reason, when the fluid pressure of water supplied from the fluid inlet 31 is less than a predetermined pressure, the valve member 901 and the opening 38 can be reliably closed by the seal member 96.
  • the surface roughness of the seal member 96 is optimized by providing fine irregularities on the surface of the seal member 96, the water pressure supplied from the fluid inlet 31 exceeds a predetermined pressure. The seal member 96 is not attracted to the partition wall 219 and is smoothly separated. Therefore, the second flow path 120 for the no-pass can be smoothly opened and closed.
  • the step portion 905 that defines the position of the washer 92 is formed at the tip end portion of the shaft portion 902, the coil panel 95 can be attached to the shaft portion 902 in a state of a predetermined length. wear. Therefore, since the load at which the valve body 90 starts to open (starting load) can be set appropriately, the valve body 90 operates appropriately.
  • FIG. Figure 7 shows that the hydroelectric generator shown in Figure 1 It is a graph which shows the relationship between the flow volume poured into the power generation turbine and the rotation speed of the power generation turbine at that time.
  • the starting loads of the coil panel 95 in the valve mechanism 9 to which the present embodiment is applied are 175gr, 215gr, 220gr
  • the graph shows the relationship between the flow rate poured into the power generation turbine of each hydroelectric generator and the number of rotations of the power generation turbine at that time, using lines I to VI in order of those set to 225gr and 280gr .
  • the number of rotations of the power generation turbine is reduced without the bypass (as indicated by line I).
  • the flow rate poured into the power generation turbine changes from lOLZmin to 25LZmin.
  • the rotational speed of the power generation turbine is stable at around 3000-4000rpm. Therefore, according to the valve mechanism 9 to which the present invention is applied, the switching operation of the closing state force and the opening state can be smoothly performed, and the amount of water supplied to the water turbine chamber 35 can be always kept constant. I understand. Therefore, according to the present invention, it is possible to prevent the occurrence of rotational noise or the like of the power generation water turbine 5.
  • FIG. 8 is an explanatory view showing a modification of the valve mechanism according to the present invention.
  • a shaft portion 902 ' may be formed on the downstream surface of the second flow path 120, and a cylindrical portion 217' (receiving portion) may be formed on the valve body 90 '.
  • the washer 92 ' may be positioned by the step 905' formed on the shaft 90 'and the push nut 91', and the coil panel 95 'may be disposed between the washer 92' and the valve portion 901 /.
  • a sealing member 96 made of fluoro rubber or fluoro resin is attached to a portion of the force partition wall 219 in which the sealing member 96 is attached to the valve body 90 in contact with the valve body 90. It may be attached. Also in this case, it is preferable to optimize the surface roughness of the seal member 96 by subjecting the surface of the seal member 96 to blasting.
  • the shaft portion 902 In configuring the support mechanism 99 of the valve mechanism 9, the shaft portion 902, Forces with cylinders 217, 21 through which 902 'penetrates as receiving parts Even when the relative position with shaft parts 902, 90 ⁇ changes, receiving parts with a constant support dimension between shaft parts 902, 902'
  • a configuration in which the periphery of the shaft portion is partially supported for example, a configuration in which the periphery of the shaft portion is supported at a plurality of locations, a configuration in which the groove and the protrusion are engaged, and the like may be employed. .
  • the hydroelectric generator according to the present invention is a hydroelectric generator that generates electricity using movement of water such as tap water, and operates stably even when the amount of water supplied to the turbine chamber increases. It is useful as a power generator that needs to be performed.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Safety Valves (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

A hydroelectric power generator where a valve mechanism for opening and closing a bypass flow path operates smoothly. In the hydroelectric power generator (1), bypass openings (38) are formed in a separation wall (219), the valve mechanism (9) having a valve body (90) is formed at the center of the openings (38), and a shaft (902) of the valve body (90) penetrates a tube (217) projecting from the separation wall (219). In the valve mechanism (9), a support mechanism (99) is constructed from the tube (217) and the shaft (902). The length over which the tube (217) and the shaft (902) are fitted to each other is kept long even if relative positions of the tube (217) and the shaft (902) vary as the valve body (90) moves, so that the valve body (90) can be stably supported independent of its position.

Description

水力発電装置  Hydroelectric generator
技術分野  Technical field
[0001] 本発明は、水道水などを利用して発電を行う水力発電装置に関するものである。  [0001] The present invention relates to a hydroelectric power generation apparatus that generates power using tap water or the like.
背景技術  Background art
[0002] 蛇口の下方位置に手を差し出したとき、それをセンサが感知すると、蛇口から水を 自動的に流すように構成した自動水栓装置が普及しつつある。また、水道水の流路 の途中位置に小型の水力発電装置を設けるとともに、この水力発電装置によって得 た電力を蓄え、この電力を自動水栓装置のセンサ回路などに供給する装置も案出さ れている。  [0002] An automatic water faucet device configured to automatically flow water from a faucet when a sensor is sensed when a hand is put out below the faucet is becoming widespread. In addition, a small hydroelectric generator is installed in the middle of the tap water flow path, and the device that stores the electric power obtained by the hydroelectric generator and supplies this electric power to the sensor circuit of the automatic water faucet has been devised. ing.
[0003] このような水力発電装置にぉ 、て、水車室に供給される水量が増大すると、水車の 回転速度が高くなりすぎてがたつくなどの問題点がある。そこで、発電用水車が配置 された水車室を備えた発電用の第 1の流路と、水車室に対して並列に構成されたバ ィパス用の第 2の流路とを構成し、弁機構によって、流体圧が上昇したときに第 2の流 路を閉状態力も開状態に切り換えることが提案されている (例えば、特許文献 1参照)  [0003] Such a hydroelectric power generation apparatus has a problem in that, when the amount of water supplied to the turbine chamber increases, the rotation speed of the turbine becomes too high and rattling. Therefore, a first flow path for power generation provided with a water turbine chamber in which a water turbine for power generation is arranged, and a second flow path for bypass configured in parallel to the water turbine room are configured, and a valve mechanism Therefore, it is proposed that when the fluid pressure rises, the second flow path is switched to the open state (see, for example, Patent Document 1).
[0004] このような弁機構は、例えば、図 9に示すように、バイパス用の第 2の流路を構成す る開口部 38〃を備えた隔壁 219" と、開口部 38〃を開閉するための弁体 90〃 と、 この弁体 90,, に形成された穴 98 に先端側に嵌ることにより弁体 90 を隔壁 219 " に接近する方向および離間方向に変位可能に支持する軸部 97〃 と、流体圧に抗 して開口部 38〃を閉鎖する方向に弁体を付勢するコイルパネ 95〃 とによって構成 できる。 For example, as shown in FIG. 9, such a valve mechanism opens and closes a partition wall 219 ”having an opening 38〃 constituting a second flow path for bypass and an opening 38〃. And a shaft portion 97 that supports the valve body 90 so as to be displaceable in the direction approaching and separating from the partition wall 219 "by fitting the valve body 90〃 on the distal end side into a hole 98 formed in the valve body 90 , And a coil panel 95〃 that urges the valve body in a direction to close the opening 38〃 against the fluid pressure.
特許文献 1 :特開 2003— 129930号公報  Patent Document 1: Japanese Unexamined Patent Publication No. 2003-129930
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] し力しながら、図 9に示すような弁機構では、弁体 90 が開口部 38 を塞いでいる 状態で軸部 97〃 が弁体 90〃の穴 98〃 に浅く嵌っているだけであるため、弁体 90 に傾きが発生しやすぐこのような傾きが発生すると、開口部 38〃を滑らかに開閉で きなくなるという問題点がある。 [0005] However, in the valve mechanism as shown in Fig. 9, the shaft portion 97〃 is only slightly fitted into the hole 98〃 of the valve body 90〃 with the valve body 90 blocking the opening 38. Because the valve body 90 If such a tilt occurs immediately, the opening 38〃 cannot be opened and closed smoothly.
[0006] 以上の問題に鑑みて、本発明の課題は、バイパス流路を開閉する弁機構が滑らか に開閉動作を行うことのできる水力発電装置を提供することにある。 [0006] In view of the above problems, an object of the present invention is to provide a hydraulic power generation apparatus in which a valve mechanism that opens and closes a bypass flow path can smoothly open and close.
課題を解決するための手段  Means for solving the problem
[0007] 上記課題を解決するために、本発明では、発電用水車が配置された水車室を備え た発電用の第 1の流路と、前記水車室に対して並列に構成されたバイパス用の第 2 の流路と、流体圧が上昇したときに前記第 2の流路を閉状態から開状態に切り換える 弁機構とを有する水力発電装置において、前記弁機構は、前記第 2の流路を構成す る開口部を備えた隔壁と、前記開口部を開閉するための弁体と、該弁体を前記隔壁 に接近する方向および離間方向に変位可能に支持する支持機構と、流体圧に抗し て前記開口部を閉鎖する方向に前記弁体を付勢する付勢部材とを備え、前記支持 機構は、前記弁体および前記隔壁のうちの一方側に形成された軸部と、当該軸部と の相対的な位置が変化したときでも当該軸部との間の支持寸法が一定の受け部とを 備えていることを特徴とする。本発明において、前記受け部は、例えば、前記軸部が 貫通する筒部である。 [0007] In order to solve the above-described problem, in the present invention, a first flow path for power generation including a water turbine chamber in which a power generation water turbine is arranged, and a bypass configuration configured in parallel to the water turbine chamber In the hydroelectric generator having the second flow path and a valve mechanism that switches the second flow path from the closed state to the open state when the fluid pressure rises, the valve mechanism includes the second flow path. A partition wall having an opening constituting the valve, a valve body for opening and closing the opening, a support mechanism for supporting the valve body so as to be displaceable in a direction approaching and separating from the partition wall, and a fluid pressure. And a biasing member that biases the valve body in a direction to close the opening, and the support mechanism includes a shaft portion formed on one side of the valve body and the partition wall, Even when the relative position of the shaft portion changes, the receiving portion has a constant support dimension between the shaft portion and the shaft portion. Characterized in that it comprises a. In the present invention, the receiving part is, for example, a cylindrical part through which the shaft part passes.
[0008] 本発明では、弁体に対する支持機構は、軸部と、この軸部が貫通する筒部などの 受け部とによって構成されているため、支持寸法が長い。このため、弁体を安定した 姿勢で支持することができる。また、支持機構では、弁体の移動にともなって軸部と 受け部の相対位置が変化しても、支持寸法が変わらず、長いままであるので、弁体 がいずれの位置にあっても弁体を安定した状態で支持でき、かつ、弁体は滑らかに 移動する。それ故、設定した流体圧に応じて、バイパス用の流路を滑らかに開閉する ことができる。  [0008] In the present invention, the support mechanism for the valve body is constituted by the shaft portion and a receiving portion such as a cylindrical portion through which the shaft portion passes, so that the support dimension is long. For this reason, the valve body can be supported in a stable posture. Further, in the support mechanism, even if the relative position of the shaft portion and the receiving portion changes with the movement of the valve body, the support dimension does not change and remains long. The body can be supported in a stable state, and the valve body moves smoothly. Therefore, the bypass channel can be smoothly opened and closed according to the set fluid pressure.
[0009] 本発明において、前記開口部は、前記隔壁に対する前記受け部あるいは前記軸 部の形成位置の周りに形成されて 、る。  In the present invention, the opening is formed around a position where the receiving portion or the shaft portion is formed with respect to the partition wall.
[0010] 本発明において、前記軸部は前記弁体に形成され、前記受け部は、前記隔壁の両 面のうち、前記第 2の流路における上流側に位置する面力も突出している構成を採 用することができる。また、前記受け部は前記弁体に形成され、前記軸部は、前記隔 壁の両面のうち、前記第 2の流路における下流側に位置する面力 突出している構 成を採用してもよい。 [0010] In the present invention, the shaft portion is formed in the valve body, and the receiving portion projects a surface force located on the upstream side in the second flow path of both surfaces of the partition wall. Can be adopted. Further, the receiving portion is formed on the valve body, and the shaft portion is formed on the partition. Of the both surfaces of the wall, a configuration in which the surface force located on the downstream side in the second flow path protrudes may be employed.
[0011] 本発明において、前記弁体の前記隔壁との当接面、および前記隔壁の前記弁体と の当接面のうちの一方の当接面は、フッ素系ゴムあるいはフッ素系榭脂からなるシー ル部材で構成され、当該シール部材の表面には微細な凹凸が付与されて!、ることが 望ましい。このように構成すると、シール部材として化学的に安定なフッ素系ゴムある いはフッ素系榭脂を用いた場合でも、弁体が隔壁に密着したまま離れなくなるという 事態を回避できる。  In the present invention, one of the contact surface of the valve body with the partition wall and the contact surface of the partition wall with the valve body is made of fluorine rubber or fluorine resin. It is desirable that the surface of the sealing member be provided with fine irregularities! With this configuration, even when a chemically stable fluorine rubber or fluorine resin is used as the seal member, it is possible to avoid a situation in which the valve body does not come out of contact with the partition wall.
[0012] 本発明では、前記弁体の前記隔壁との当接面、および前記隔壁の前記弁体との当 接面のうちの他方の当接面は、平滑面で構成されていることが好ましい。弁体と隔壁 とが密着したまま離れなくなるという事態を回避できれば、他方側の当接面について は平滑面で形成できるので、流体の漏れを確実に防止することができる。  In the present invention, the contact surface of the valve body with the partition wall and the contact surface of the partition wall with the valve body, the other contact surface may be a smooth surface. preferable. If the situation where the valve body and the partition wall cannot be separated from each other can be avoided, the contact surface on the other side can be formed as a smooth surface, so that fluid leakage can be reliably prevented.
[0013] 本発明にお 、て、前記付勢部材はコイルパネであり、前記軸部の先端部には、前 記コイルの一方端を支持する止め具の位置決め部が形成されて 、ることが望まし 、。  In the present invention, the urging member is a coil panel, and a positioning portion for a stopper that supports one end of the coil is formed at a tip portion of the shaft portion. I hope.
[0014] また、他の本発明は、発電用水車が配置された水車室を備えた発電用の第 1の流 路と、前記水車室に対して並列に構成されたバイパス用の第 2の流路と、流体圧が 上昇したときに前記第 2の流路を閉状態力 開状態に切り換える弁機構とを有する水 力発電装置において、前記弁機構は、前記第 2の流路を構成する複数の開口部を 備えた隔壁と、前記開口部を開閉するための弁体と、該弁体を前記隔壁に接近する 方向および離間方向に変位可能に支持する支持機構と、流体圧に杭して前記開口 部を閉鎖する方向に前記弁体を付勢する付勢部材とを備え、前記支持機構は、前 記複数の開口部を備えた隔壁であって、該複数の開口部によって挟まれる位置に前 記弁体を支持するように形成されたことを特徴とする。  [0014] Further, another aspect of the present invention provides a first power generation passage having a water turbine chamber in which a power generation turbine is disposed, and a second bypass passage configured in parallel to the water turbine chamber. In the hydroelectric generator having a flow path and a valve mechanism that switches the second flow path to a closed state force open state when the fluid pressure rises, the valve mechanism constitutes the second flow path. A partition wall provided with a plurality of openings, a valve body for opening and closing the opening, a support mechanism for supporting the valve body so as to be displaceable in a direction approaching and separating from the partition wall, and a pile of fluid pressure. And a biasing member that biases the valve body in a direction to close the opening, and the support mechanism is a partition wall having the plurality of openings, and is sandwiched by the plurality of openings. It is formed to support the valve body at a position.
[0015] 上記本発明によれば、弁体を隔壁に接近する方向および離間方向に変位可能に 支持する支持機構は、複数の開口部を備えた隔壁であって、該複数の開口部によつ て挟まれる位置に前記弁体を支持するように形成されて 、るので、隔壁に設けた支 持機構によって弁体を支持することができ、弁体の支持寸法を長く構成することがで き、弁体を安定した姿勢で支持することができる。 [0016] 上記本発明において、前記複数の開口部を、前記隔壁に形成された支持機構を 中心に周方向に複数形成するようにしておけば、支持機構によって支持される弁体 に周方向に同様に流体をバイパスさせることができ、安定した動作をさせることができ る。 [0015] According to the present invention, the support mechanism that supports the valve body so as to be displaceable in a direction approaching and separating from the partition wall is a partition wall including a plurality of openings, and the plurality of openings serve as the support mechanism. Therefore, the valve body can be supported by the support mechanism provided on the partition wall, and the support dimension of the valve body can be increased. The valve body can be supported in a stable posture. In the present invention, if a plurality of the plurality of openings are formed in the circumferential direction around the support mechanism formed in the partition wall, the valve body supported by the support mechanism is provided in the circumferential direction. Similarly, fluid can be bypassed and stable operation can be achieved.
発明の効果  The invention's effect
[0017] 本発明では、弁体に対する支持機構は、軸部と、この軸部が貫通する筒部などの 受け部とによって構成されているため、また、複数の開口部によって挟まれる隔壁に 前記弁体を支持する支持機構を設けているため、支持寸法を長くすることができる。 このため、弁体を安定した姿勢で支持することができる。また、支持機構では、弁体 の移動にともなって軸部と受け部の相対位置が変化しても、支持寸法が変わらず、 長!、ままであるので、弁体が!/、ずれの位置にあっても弁体を安定した状態で支持で き、かつ、弁体は滑らかに移動する。それ故、設定した流体圧に応じて、バイパス用 の流路を滑らかに開閉することができる。  [0017] In the present invention, the support mechanism for the valve body is constituted by the shaft portion and a receiving portion such as a cylindrical portion through which the shaft portion passes, and the partition wall sandwiched by the plurality of openings is provided on the partition wall. Since the support mechanism for supporting the valve body is provided, the support dimension can be increased. For this reason, the valve body can be supported in a stable posture. Also, in the support mechanism, even if the relative position of the shaft part and the receiving part changes as the valve body moves, the support dimensions do not change and remain long. In this case, the valve body can be supported in a stable state, and the valve body moves smoothly. Therefore, the bypass channel can be smoothly opened and closed according to the set fluid pressure.
図面の簡単な説明  Brief Description of Drawings
[0018] [図 1] (a)、(b)は、本発明を適用した水力発電装置の平面図、および A—A^ 断面 図である。  [0018] [Fig. 1] (a) and (b) are a plan view and a cross-sectional view taken along line AA ^ of a hydroelectric power generation apparatus to which the present invention is applied.
[図 2]図 1に示す水力発電装置に用いた本体ケースの構成を示す平面図である。  2 is a plan view showing a configuration of a main body case used in the hydroelectric generator shown in FIG.
[図 3] (a)、(b)、(c)は、図 1に示す水力発電装置に用いたカバーの構成を示す平面 図、正面図、および底面図である。  3] (a), (b), and (c) are a plan view, a front view, and a bottom view showing a configuration of a cover used in the hydroelectric generator shown in FIG.
[図 4] (a)、(b)、(c)は、図 1に示す水力発電装置に用いることの可能なカバーの構 成を示す平面図、正面図および底面図である。  [FIG. 4] (a), (b), and (c) are a plan view, a front view, and a bottom view showing a configuration of a cover that can be used in the hydroelectric generator shown in FIG.
[図 5] (a)、(b)、(c)は、図 1に示す水力発電装置に用いた発電用水車を第 1のラジ アル軸受側力 みたときの斜視図、この発電用水車を第 2のラジアル軸受側力 みた ときの平面図、および B— B' 断面図である。  [Fig. 5] (a), (b), and (c) are perspective views of the power generation turbine used in the hydroelectric generator shown in Fig. 1 when viewed from the first radial bearing side force. FIG. 6 is a plan view of the second radial bearing side force and a cross-sectional view along B-B ′.
[図 6] (a)、 (b)は、図 1 (b)に示す弁機構の構成を示す拡大図、および隔壁を流体入 口側から見たときの説明図である。  [FIG. 6] (a) and (b) are an enlarged view showing the configuration of the valve mechanism shown in FIG. 1 (b) and an explanatory view when the partition wall is viewed from the fluid inlet side.
[図 7]図 1に示す水力発電装置が有する発電用水車に注がれる流量と、その時の発 電用水車の回転数との関係を示すグラフである。 [図 8]図 1に示す水力発電装置に使用可能な別の弁機構の構成を示す構成図である FIG. 7 is a graph showing the relationship between the flow rate poured into the power generation turbine of the hydroelectric generator shown in FIG. 1 and the rotational speed of the power generation turbine at that time. 8 is a configuration diagram showing the configuration of another valve mechanism that can be used in the hydroelectric generator shown in FIG.
[図 9]従来の水力発電装置に用いられる弁体の構成を示す断面図である。 FIG. 9 is a cross-sectional view showing a configuration of a valve body used in a conventional hydroelectric generator.
符号の説明  Explanation of symbols
[0019] 1 水力発電装置 [0019] 1 Hydroelectric generator
5 発電用水車  5 Power generation turbine
9 弁機構  9 Valve mechanism
21 本体ケース  21 Body case
23 カバー  23 Cover
31 流体入口  31 Fluid inlet
32 流体出口  32 Fluid outlet
35 水車室  35 watermill
38 開口部  38 opening
90 弁体  90 Disc
95 コイルパネ  95 Coil panel
96 シール部材  96 Seal member
99 支持機構  99 Support mechanism
901 弁部  901 Valve
902 軸部  902 Shaft
110 第 1の流路  110 First channel
120 第 2の流路  120 Second channel
217 筒部 (受け部)  217 Tube (receiving part)
219 隔壁  219 Bulkhead
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0020] 以下に、図面を参照して、本発明を適用した水力発電装置について説明する。 Hereinafter, a hydroelectric generator to which the present invention is applied will be described with reference to the drawings.
[0021] (全体構成) [0021] (Overall configuration)
図 1 (a)、 (b)は、本発明を適用した水力発電装置の平面図、および A— A' 断面 図である。なお、図 1において、 Α-Α' 線は、射出口の形成位置を通らないが、図 1 (b)の左部分には、射出口につ 、ても図示してある。 1 (a) and 1 (b) are a plan view and a cross-sectional view taken along the line AA ′ of the hydroelectric generator to which the present invention is applied. In Fig. 1, the Α-Α 'line does not pass through the injection port formation position. The left part of (b) also shows the injection port.
[0022] 図 1 (a)、 (b)に示す水力発電装置 1は、水道水の流路の途中位置などに配置され る小型の水力発電装置であり、この水力発電装置 1によって得た電力を蓄え、この電 力を自動水栓装置のセンサ回路などに供給する用途などに用いられる。本形態の水 力発電装置 1は、後述する流路を構成する榭脂製の本体ケース 21、この本体ケース 21の上面を覆うカバー 23、このカバー 23を覆うステンレス製のカップ状の仕切り板 2 5と、この仕切り板 25のフランジ部との間にステータ部 6を挟む環状ケース 27と、環状 ケース 27の上方に被さる榭脂製の上ケース 29とを有しており、上ケース 29および仕 切り板 25はネジにより本体ケース 21に固定されている。また、本体ケース 21の底面 には EPDM製のシール 281が重ねられ、仕切り板 25と本体ケース 21との間には、ゴ ム製の Oリング 282が配置されて!、る。  [0022] The hydroelectric generator 1 shown in Figs. 1 (a) and (b) is a small hydroelectric generator disposed in the middle of the channel of tap water, and the electric power obtained by the hydroelectric generator 1 is obtained. It is used for purposes such as storing electricity and supplying this power to the sensor circuit of an automatic faucet device. The hydroelectric generator 1 according to the present embodiment includes a resin-made main body case 21 constituting a flow path to be described later, a cover 23 covering the upper surface of the main body case 21, and a stainless cup-shaped partition plate 2 covering the cover 23. 5 and an annular case 27 sandwiching the stator portion 6 between the partition plate 25 and the flange portion of the partition plate 25, and an upper case 29 made of resin covering the upper portion of the annular case 27. The cut plate 25 is fixed to the main body case 21 with screws. Further, an EPDM seal 281 is stacked on the bottom surface of the main body case 21, and a rubber O-ring 282 is disposed between the partition plate 25 and the main body case 21 !.
[0023] 本体ケース 21には、相対向する側面で開口する流体入口 31および流体出口 32を 備えており、流体入口 31から流体出口 32に向力 第 1の流路 110の途中位置には、 本体ケース 21とカバー 23とにより、後述する注水部が構成され、本体ケース 21と仕 切り板 25との間に水車室 35が構成されている。水車室 35では、下端部および上端 部が各々、本体ケース 21および仕切り板 25の軸固定穴に圧入固定された支軸 4が 直立しており、支軸 4には、円筒状の発電用水車 5が回転可能に支持されている。支 軸 4には、榭脂製のスリーブ 45が嵌められており、発電用水車 5は、支軸 4のうち、ス リーブ 45から露出している上半部で支持されている。なお、発電用水車 5は、支軸 4 に装着されたヮッシャなどにより上下方向への変位が防止されている。  [0023] The body case 21 is provided with a fluid inlet 31 and a fluid outlet 32 that open on opposite sides, and a direction force from the fluid inlet 31 to the fluid outlet 32 is located in the middle of the first flow path 110. The main body case 21 and the cover 23 form a water injection section described later, and a water turbine chamber 35 is formed between the main body case 21 and the cutting plate 25. In the water turbine chamber 35, the lower end and the upper end are upright, respectively, with a support shaft 4 press-fitted and fixed in the shaft fixing holes of the body case 21 and the partition plate 25. The support shaft 4 has a cylindrical power turbine. 5 is rotatably supported. A bush 45 made of resin is fitted to the support shaft 4, and the power generation water turbine 5 is supported by the upper half portion of the support shaft 4 exposed from the sleeve 45. In addition, the power generation water turbine 5 is prevented from being displaced in the vertical direction by a washer attached to the support shaft 4.
[0024] 発電用水車 5において仕切り板 25の円筒部 251内に位置する上半部には、外周 面に円筒状の永久磁石 55が固着されている。また、仕切り板 25の円筒部 251の周り には環状のステータ組 61、 62が配置されており、永久磁石 55およびステータ部 6に よって発電部が構成されて!、る。  In the water turbine 5 for power generation, a cylindrical permanent magnet 55 is fixed to the outer peripheral surface of the upper half portion located in the cylindrical portion 251 of the partition plate 25. In addition, annular stator assemblies 61 and 62 are arranged around the cylindrical portion 251 of the partition plate 25, and the permanent magnet 55 and the stator portion 6 constitute a power generation unit.
[0025] ステータ部 6は、軸線方向に重ねて配置された 2つの相のステータ組 61、 62で構 成されている。 2つのステータ組 61、 62のいずれにおいても、外ステータコア、コイル ボビンに卷回されたコイル、および内ステータコアが重ねられた構造を有しており、コ ィルボビンの内周に沿って、外ステータコアの極歯と内ステータコアの極歯が交互に 並んでいる。また、コイルの巻き始め部分および巻き終わり部分は、端子台 66の端子 67およびワイヤー 68を介してコネクタ 69に接続されている。なお、上ケース 29には、 端子台 66を覆うフード部 291が形成されており、ステータ部 6に水が浸入するのを防 止する構造になっている。 [0025] The stator section 6 is composed of two-phase stator sets 61 and 62 that are arranged so as to overlap in the axial direction. Each of the two stator sets 61 and 62 has a structure in which the outer stator core, the coil wound around the coil bobbin, and the inner stator core are stacked, and the outer stator core is arranged along the inner periphery of the coil bobbin. The pole teeth and the pole teeth of the inner stator core alternate Are lined up. In addition, the winding start portion and winding end portion of the coil are connected to the connector 69 through the terminal 67 and the wire 68 of the terminal block 66. The upper case 29 is formed with a hood portion 291 that covers the terminal block 66, and has a structure that prevents water from entering the stator portion 6.
[0026] また、本形態の水力発電装置 1には、流体入口 31から流入した水が水車室 35を通 らずに流体出口 32に向力 バイノ ス用の第 2の流路 120が形成されており、この第 2 の流路 120には、図 6を参照して後述する弁機構 9が構成されている。  [0026] Further, in the hydroelectric generator 1 of the present embodiment, the second flow path 120 for directional bias is formed in the fluid outlet 32 without the water flowing in from the fluid inlet 31 passing through the water turbine chamber 35. The second flow path 120 is configured with a valve mechanism 9 described later with reference to FIG.
[0027] (注水部の構成)  [0027] (Composition of water injection part)
図 2は、図 1に示す水力発電装置に用いた本体ケースの構成を示す平面図である 。図 3 (a)、 (b)、 (c)は、それぞれ、図 1に示す水力発電装置に用いたカバーの構成 を示す平面図、正面図および底面図である。図 4 (a)、(b)、 (c)は、それぞれ、図 1に 示す水力発電装置に用いることの可能な別のカバーの構成を示す平面図、正面図 および底面図である。  FIG. 2 is a plan view showing the configuration of the main body case used in the hydroelectric generator shown in FIG. FIGS. 3A, 3B, and 3C are a plan view, a front view, and a bottom view, respectively, showing the configuration of the cover used in the hydroelectric generator shown in FIG. FIGS. 4 (a), 4 (b), and 4 (c) are a plan view, a front view, and a bottom view, respectively, showing a configuration of another cover that can be used for the hydroelectric generator shown in FIG.
[0028] 図 1および図 2に示すように、本形態の水力発電装置 1において、本体ケース 21で は、流体入口 31に対向するように隔壁 219が起立しており、その上方には、水車室 3 5の周りに環状流路 33が形成されている。ここで、環状流路 33は、底面、内周面、外 周面、および上面が各々、本体ケース 21の環状の仕切り壁 211、本体ケース 21の 環状の内側垂直壁 212、本体ケース 21の環状の外側垂直壁 213、および図 3に示 すカバー 23により規定されている。また、内側垂直壁 212には、周方向の 4箇所に射 出口 34を構成するための切り欠きが形成されている。さらに、環状流路 33内の一部 には、傾斜面 330 (図 2中の斜線部)が形成されている。  [0028] As shown in Figs. 1 and 2, in the hydroelectric generator 1 of the present embodiment, in the main body case 21, a partition wall 219 is erected so as to face the fluid inlet 31. An annular channel 33 is formed around the chamber 35. Here, the annular flow path 33 has a bottom surface, an inner peripheral surface, an outer peripheral surface, and an upper surface, respectively, the annular partition wall 211 of the main body case 21, the annular inner vertical wall 212 of the main body case 21, and the annular shape of the main body case 21 The outer vertical wall 213 and the cover 23 shown in FIG. The inner vertical wall 212 has notches for forming the outlets 34 at four locations in the circumferential direction. Further, an inclined surface 330 (shaded portion in FIG. 2) is formed in a part of the annular flow path 33.
[0029] これに対して、図 3 (a)、 (b)、 (c)に示すように、カバー 23はリング状を成し、カバー 23のリング部 230の下面のうち、図 2に示す本体ケース 21の 4つの射出口 34に対応 する部分には、 4つの射出口 34に嵌って射出口 34の各々の開口面積を調整するリ ブ 231 (突起)が形成されている。また、リブ 231にテーパ 23 laを設けることで、その 突出寸法が調節されている。従って、本体ケース 21の上面にカバー 23を被せると、 環状流路 33から発電用水車 5の羽根 57に向けて水を高速噴射する 4つの射出口 3 4が構成される。 [0030] なお、図 4に示すような、リング部 230にリブを形成しない構成のカバー 23' を用い てもよい。このように、リブの形状が異なるカバーを用途に応じて付け替えることにより 、射出口 34から射出される水の量を調整することができる。 [0029] On the other hand, as shown in FIGS. 3 (a), (b), and (c), the cover 23 has a ring shape, and the lower surface of the ring portion 230 of the cover 23 is shown in FIG. Ribs 231 (protrusions) that fit into the four injection ports 34 and adjust the opening area of each of the injection ports 34 are formed at portions corresponding to the four injection ports 34 of the main body case 21. Further, by providing the rib 231 with a taper 23 la, the protruding dimension is adjusted. Accordingly, when the upper surface of the main body case 21 is covered with the cover 23, four injection ports 3 4 are formed that inject water at high speed from the annular flow path 33 toward the blades 57 of the power generation water turbine 5. [0030] Note that a cover 23 'having a structure in which no rib is formed on the ring portion 230 as shown in FIG. 4 may be used. In this way, the amount of water injected from the injection port 34 can be adjusted by replacing the cover having a different rib shape depending on the application.
[0031] (発電用水車 5の構成)  [0031] (Configuration of power generation turbine 5)
図 5 (a)、(b)、(c)は、図 1に示す水力発電装置に用いた発電用水車を第 1のラジ アル軸受側力 みたときの斜視図、この発電用水車を第 2のラジアル軸受側力 みた ときの平面図、および B— B' 断面図である。  Figs. 5 (a), (b), and (c) are perspective views of the power generation turbine used in the hydroelectric power generation device shown in Fig. 1 when the first radial bearing side force is seen. FIG. 3 is a plan view of the radial bearing side force and a BB ′ cross-sectional view.
[0032] 図 5 (a)、 (b)、 (c)に示すように、本形態の水力発電装置 1にお!/ヽて、発電用水車 5 は、外周面力も複数枚の羽根 57が等角度間隔で張り出す円筒体 50と、この円筒体 50の貫通穴 501の一方側端部 (本体ケース 21が位置する下方側)に位置する円筒 状の第 1のラジアル軸受 51と、貫通穴 501の他方側端部 (仕切り板 25の円筒部 251 が位置する上方側)〖こ位置する円筒状の第 2のラジアル軸受 52とを備えており、第 1 のラジアル軸受 51の軸穴 510、および第 2のラジアル軸受 52の軸穴 520に対して、 図 1 (b)に示す支軸 4が嵌ることにより、発電用水車 5は支軸 4の周りで回転可能に支 持されている。円筒体 50は、羽根 57が形成された下端部は大径である一方、上半 部は小径であり、この小径部分に円筒状の永久磁石 55が固定されている。  [0032] As shown in Figs. 5 (a), (b), and (c), the hydroelectric generator 1 of this embodiment is! A cylindrical body 50 projecting at equal angular intervals, a cylindrical first radial bearing 51 located at one end of the through hole 501 of the cylindrical body 50 (a lower side where the main body case 21 is located), and a through hole 501 on the other side end (upper side where the cylindrical portion 251 of the partition plate 25 is located) and a cylindrical second radial bearing 52 located at the bottom, and a shaft hole 510 of the first radial bearing 51, The power generation turbine 5 is rotatably supported around the support shaft 4 by fitting the support shaft 4 shown in FIG. 1 (b) into the shaft hole 520 of the second radial bearing 52. The cylindrical body 50 has a large diameter at the lower end where the blades 57 are formed, and a small diameter at the upper half, and a cylindrical permanent magnet 55 is fixed to the small diameter portion.
[0033] 本形態において、発電用水車 5は、複数枚の羽根 57が各々、軸線方向において 第 2のラジアル軸受 52側に位置する第 1の羽根 571と、第 1のラジアル軸受 51側に 位置する第 2の羽根 572とに 2分割されており、第 2の羽根 572の外周端は、円筒体 50の軸線方向と平行な円筒板部 58により連結されている。ここで、円筒板部 58の外 端面は、第 1の羽根 571の外周端と同一の半径距離の位置にある。  [0033] In the present embodiment, in the power generation water turbine 5, the plurality of blades 57 are respectively positioned on the first blade 571 on the second radial bearing 52 side and on the first radial bearing 51 side in the axial direction. The second blade 572 is divided into two, and the outer peripheral end of the second blade 572 is connected by a cylindrical plate portion 58 parallel to the axial direction of the cylindrical body 50. Here, the outer end surface of the cylindrical plate portion 58 is located at the same radial distance as the outer peripheral end of the first blade 571.
[0034] このように構成した発電用水車 5に対しては、図 5 (b)、(c)に示すように、 4つの射 出口 34が発電用水車 5の周りに等角度間隔に形成されている。また、 4つの射出口 3 4は、第 1の羽根 571および円筒板部 58の双方に跨る方向に向力つて開口しており 、図 5 (c)に矢印 Ll、 L2で示すように、 4つの射出口 34は各々、第 1の羽根 571と円 筒板部 58とに跨って水を射出するように構成されている。すなわち、射出口 34から 射出された水の一部は、矢印 L1で示すように、第 1の羽根 571に直接、ぶっかる一 方、射出口 34から射出された水の残りは、円筒板部 58の外周面にぶつ力るようにな つている。ここで、注水部に形成した射出口 34の数と羽根 57の枚数とは、素の関係 にあり、一方が他方の整数倍となる条件を避けてある。例えば、本形態では、射出口 34は 4つであるのに対して、羽根 57の枚数は 7枚である。 [0034] As shown in FIGS. 5 (b) and 5 (c), the four power outlets 34 are formed around the power generation water turbine 5 at equiangular intervals for the power generation water turbine 5 configured as described above. ing. In addition, the four injection ports 3 4 are opened by force in a direction straddling both the first blade 571 and the cylindrical plate portion 58. As shown by arrows Ll and L2 in FIG. Each of the two injection ports 34 is configured to inject water across the first blade 571 and the cylindrical plate portion 58. That is, a part of the water ejected from the ejection port 34 directly hits the first blade 571 as shown by the arrow L1, while the remaining water ejected from the ejection port 34 is the cylindrical plate portion. Do n’t hit the 58 ’s outer surface. It is. Here, the number of injection ports 34 formed in the water injection section and the number of blades 57 are in a prime relationship, and the condition that one is an integral multiple of the other is avoided. For example, in this embodiment, there are four injection ports 34, while the number of blades 57 is seven.
[0035] (発電動作)  [0035] (Power generation operation)
このように構成した水力発電装置 1において、流体入口 31から流れ込んだ水は、隔 壁にぶつ力つて上方の環状流路 33に流れ込んだ後、 4つの射出口 34から発電用水 車 5の羽根 57に向けて射出される。その結果、発電用水車 5が回転し、それに伴い、 永久磁石 55も回転することにより、ステータ部 6のコイルに誘起電圧が発生する。発 電用水車 5を回し終えた水は、下方に落下し、そこ力 流体出口 32を経て排出され る。また、ステータ部 6で発生した誘起電圧は、コネクタ 69を介して外部の回路に導 かれ、この回路で直流に変換された後、整流され電池に充電される。  In the hydroelectric generator 1 configured as described above, the water flowing from the fluid inlet 31 collides with the partition wall and flows into the upper annular flow path 33, and then the blades 57 of the power generation turbine 5 from the four outlets 34. It is injected towards. As a result, the power generation water turbine 5 rotates, and accordingly, the permanent magnet 55 also rotates, so that an induced voltage is generated in the coil of the stator portion 6. The water that has finished turning the power generation turbine 5 falls downward and is discharged through the fluid outlet 32. The induced voltage generated in the stator section 6 is guided to an external circuit through the connector 69, converted into direct current by this circuit, rectified and charged to the battery.
[0036] (バイパス用の第 2の流路および弁機構 9の構成)  (Configuration of second flow path for bypass and valve mechanism 9)
図 6 (a)、(b)はそれぞれ、図 1 (b)に示す弁機構 9の構成を示す拡大図、および図 6 (a)において隔壁 219を流体入口側から見たときの説明図である。  6 (a) and 6 (b) are an enlarged view showing the configuration of the valve mechanism 9 shown in FIG. 1 (b) and an explanatory view when the partition 219 is viewed from the fluid inlet side in FIG. 6 (a). is there.
[0037] 図 1および図 6 (a)に示すように、本形態における水力発電装置 1には、流体入口 3 1力も流入した水が水車室 35を通らずに流体出口 32に向力 バイパス用の第 2の流 路 120が形成されている。すなわち、流体入口 31に対向する隔壁 219には流体出 口 32に向けて窪んだ凹部 219aが形成されており、この凹部 219aの底部には、図 6 ( b)に示すように、周方向に並んだ複数の開口部 38が流体入口 31と流体出口 32とを 連通可能に形成されている。  [0037] As shown in FIGS. 1 and 6 (a), in the hydroelectric generator 1 in this embodiment, the water that has also flowed into the fluid inlet 3 is directed to the fluid outlet 32 without passing through the turbine chamber 35. The second flow path 120 is formed. That is, the partition wall 219 facing the fluid inlet 31 is formed with a recess 219a that is recessed toward the fluid outlet 32, and the bottom of the recess 219a is formed in the circumferential direction as shown in FIG. A plurality of aligned openings 38 are formed so that the fluid inlet 31 and the fluid outlet 32 can communicate with each other.
[0038] また、開口部 38に対しては弁機構 9が構成されており、弁機構 9は、流体圧が低い ときには開口部 38 (第 2の流路)を閉鎖しておき、流体圧が上昇したときに開口部 38 (第 2の流路)を閉状態力 開状態に切り換える。このような弁機構 9を構成するにあ たって、本形態では、隔壁 219には、第 2の流路 120における上流側の面に、凹部 2 19aの底部力 流体入口 31側に向けて突出する円筒状の筒部 217 (受け部)が形成 されており、この筒部 217の周りに 4つの開口部 38が配置されている。また、弁機構 9 は弁体 90を備えており、この弁体 90は、隔壁 219の裏面側(第 2の流路 120におけ る下流側 Z流体出口 32の側)に重なる弁部 901と、弁部 901の中央力も流体入口 3 1の側に突出した丸棒状の軸部 902とを備えており、軸部 902は筒部 217を貫通して いる。このようにして、弁機構 9では、軸部 902と筒部 217とによって、弁体 90に対す る支持機構 99が構成され、この支持機構 99は、 4つの開口部 38によって挟ま; ^立 置に配置されており、具体的には 4つの開口部 38の中心位置に配置されている。 [0038] Further, the valve mechanism 9 is configured for the opening 38, and the valve mechanism 9 closes the opening 38 (second flow path) when the fluid pressure is low, and the fluid pressure is When raised, the opening 38 (second flow path) is switched to the closed force open state. In configuring the valve mechanism 9, in this embodiment, the partition wall 219 protrudes toward the upstream surface of the second flow path 120 toward the bottom force fluid inlet 31 side of the recess 219a. A cylindrical tube portion 217 (receiving portion) is formed, and four openings 38 are arranged around the tube portion 217. The valve mechanism 9 includes a valve body 90. The valve body 90 includes a valve portion 901 that overlaps the back surface side of the partition wall 219 (the downstream side Z fluid outlet 32 side in the second flow path 120). , Central force of valve part 901 is also fluid inlet 3 1 is provided, and a shaft portion 902 having a round bar shape protruding toward the side 1 is provided, and the shaft portion 902 penetrates the cylindrical portion 217. In this way, in the valve mechanism 9, the shaft portion 902 and the cylindrical portion 217 constitute a support mechanism 99 for the valve body 90, and this support mechanism 99 is sandwiched between the four openings 38; Specifically, it is arranged at the center position of the four openings 38.
[0039] ここで、弁部 901において隔壁 219の裏面側に当接する部分には、フッ素系ゴムあ るいはフッ素系榭脂製のシール部材 96が貼られている。また、シール部材 96の表面 には微細な凹凸が付与されており、このような凹凸は、シール部材 96に対するブラス ト処理、あるいはシール部材 96を成形する際の金型に対するブラスト処理により形成 することができる。また、隔壁 219において、シール部材 96と当接する面は、平滑面 で構成されている。 Here, a seal member 96 made of fluorine-based rubber or fluorine-based resin is affixed to a portion of the valve portion 901 that comes into contact with the back surface side of the partition wall 219. The surface of the seal member 96 is provided with fine irregularities, and such irregularities are formed by blasting the seal member 96 or by blasting the mold when the seal member 96 is molded. Can do. Further, the surface of the partition wall 219 that contacts the seal member 96 is a smooth surface.
[0040] また、弁体 90において、軸部 902の先端部には、その基端側より小径の突起 903 が形成され、この突起 903より形成された段部 905には、プッシュナット 91によりヮッ シャ 92が固定されている。また、軸部 902の周りにはコイルパネ 95が装着されており 、コイルパネ 95は、ヮッシャ 92と隔壁 219の筒部 217の周りの部分とによって両端部 が各々支持され、圧縮された状態にある。  In the valve body 90, a projection 903 having a smaller diameter than the base end side is formed at the distal end portion of the shaft portion 902. A step 905 formed by the projection 903 is tightened by a push nut 91. Sha 92 is fixed. A coil panel 95 is mounted around the shaft portion 902. The coil panel 95 is in a compressed state with both ends supported by the washer 92 and the portion around the cylindrical portion 217 of the partition wall 219.
[0041] このように構成した弁機構 9では、弁体 90がコイルパネ 95によって流体入口 31に 向けて付勢されて 、るので、弁部 901がシール部材 96を介して隔壁 219に当接して いる。このため、流体入口 31から流入した水の圧力が低い場合には、開口部 38は閉 鎖されている。但し、流体入口 31から流入した水の圧力が高くなつてヮッシャ 92およ び弁部 901がコイルパネ 95の付勢力よりも大きな水圧を受けると、弁体 90は、コイル パネ 95の付勢力に抗して流体入口 32の側に変位し、弁部 901が隔壁 219の裏面側 力も離間するので、バイパス用の開口部 38は開放される。それ故、流体入口 31から 流入した水の圧力が低い場合には、流入した水の全てが環状流路 33を介して水車 室 35に導かれ、発電に寄与する一方、流体入口 31から流入した水の圧力が高い場 合には、流入した水の一部がノ ィパス用の開口部 38を通ってそのまま流体出口 32 に向かう。それ故、発電用水車 5の回転速度が高くなりすぎてがたつくなどの問題を 回避できる。  In the valve mechanism 9 configured as described above, the valve element 90 is urged toward the fluid inlet 31 by the coil panel 95, so that the valve portion 901 abuts against the partition wall 219 via the seal member 96. Yes. For this reason, when the pressure of the water flowing in from the fluid inlet 31 is low, the opening 38 is closed. However, if the pressure of the water flowing in from the fluid inlet 31 becomes so high that the washer 92 and the valve portion 901 receive a water pressure larger than the biasing force of the coil panel 95, the valve body 90 will resist the biasing force of the coil panel 95. As a result, the valve 901 is displaced toward the fluid inlet 32, and the force on the back side of the partition wall 219 is also separated, so that the bypass opening 38 is opened. Therefore, when the pressure of water flowing in from the fluid inlet 31 is low, all of the flowing water is led to the water turbine chamber 35 via the annular flow path 33 and contributes to power generation, while flowing in from the fluid inlet 31. When the water pressure is high, a part of the flowing water passes through the opening 38 for the no-pass and goes to the fluid outlet 32 as it is. Therefore, it is possible to avoid problems such as rattling due to the rotational speed of the power generation turbine 5 becoming too high.
[0042] (本形態の主な効果) 以上説明したように、本形態の水力発電装置 1にお!、てバイパス用の第 2の流路 1 20に構成した弁機構 9では、弁体 90に対する支持機構 99が、隔壁 219から流体入 口 31に向けて延びた筒部 217と、弁体 90から流体入口 31に向けて突出して筒部 2 17を貫通する軸部 902とを備えているため、嵌め合い寸法 (支持寸法)が長い。この ため、弁体 90を安定した姿勢で支持することができる。また、軸部 902は筒部 217を 貫通しているため、弁体 90の移動に伴って筒部 217と軸部 902との相対位置が変化 しても、筒部 217と軸部 902との嵌め合い寸法が長いままであるので、弁体 90がいず れの位置にあっても弁体を安定した状態で支持でき、かつ、弁体 90は滑らかに移動 する。それ故、設定した流体圧に応じて、ノ ィパス用の第 2の流路 120を滑らかに開 閉することができる。 [0042] (Main effects of this embodiment) As described above, in the hydraulic power generation device 1 according to the present embodiment, the valve mechanism 9 configured in the second flow path 120 for bypassing has the support mechanism 99 for the valve body 90 in the fluid input from the partition wall 219. The fitting part (supporting dimension) is long because it has a cylindrical part 217 extending toward the port 31 and a shaft part 902 that protrudes from the valve body 90 toward the fluid inlet 31 and penetrates the cylindrical part 217. . For this reason, the valve body 90 can be supported in a stable posture. Further, since the shaft portion 902 penetrates the tube portion 217, even if the relative position between the tube portion 217 and the shaft portion 902 changes with the movement of the valve body 90, the tube portion 217 and the shaft portion 902 do not move. Since the fitting dimension remains long, the valve body 90 can be stably supported even when the valve body 90 is in any position, and the valve body 90 moves smoothly. Therefore, the second flow path 120 for the no-pass can be smoothly opened and closed according to the set fluid pressure.
[0043] また、隔壁 219には、流体出口 32に向けて窪んだ凹部 219aが形成されており、こ の凹部 219aの底部に開口部 38が形成されている。この凹部 219aにより、流体入口 31から流入する水を、開口部 38を塞ぐ弁部 901に対して垂直に作用させることがで きる。それ故、弁体 90やコイルパネ 95のブレを抑えることができる。  [0043] In addition, the partition wall 219 has a recess 219a that is recessed toward the fluid outlet 32, and an opening 38 is formed at the bottom of the recess 219a. By this recess 219a, water flowing from the fluid inlet 31 can be made to act vertically on the valve portion 901 that closes the opening 38. Therefore, blurring of the valve body 90 and the coil panel 95 can be suppressed.
[0044] さらに、隔壁 219の弁部 901との当接面を平滑面で構成する一方、弁部 901にお いて隔壁 219と当接する箇所には、フッ素ゴム製あるいはフッ素榭脂製のシール部 材 96を介在させている。このため、流体入口 31から供給される水の流体圧が所定圧 未満の時は、シール部材 96で弁部 901と開口部 38を確実に塞いだ状態にできる。 し力も、シール部材 96の表面には微細な凹凸を付与してシール部材 96の表面粗さ を最適化してあるため、流体入口 31から供給される水の流体圧が所定圧以上になつ たとき、シール部材 96は、隔壁 219に吸着せず、スムーズに離間する。それ故、ノ ィ パス用の第 2の流路 120を滑らかに開閉することができる。  [0044] Further, the contact surface of the partition wall 219 with the valve portion 901 is formed as a smooth surface, while the valve portion 901 has a seal portion made of fluoro rubber or fluoro resin at a position where it contacts the partition wall 219. Material 96 is interposed. For this reason, when the fluid pressure of water supplied from the fluid inlet 31 is less than a predetermined pressure, the valve member 901 and the opening 38 can be reliably closed by the seal member 96. In addition, since the surface roughness of the seal member 96 is optimized by providing fine irregularities on the surface of the seal member 96, the water pressure supplied from the fluid inlet 31 exceeds a predetermined pressure. The seal member 96 is not attracted to the partition wall 219 and is smoothly separated. Therefore, the second flow path 120 for the no-pass can be smoothly opened and closed.
[0045] さらにまた、軸部 902の先端部にヮッシャ 92の位置を規定する段部 905が形成され ているため、コイルパネ 95を所定の長さ寸法の状態で軸部 902に装着することがで きる。それ故、弁体 90が開き始める荷重 (始動荷重)を適切に設定することができる ため、これにより弁体 90は適切に作動する。  [0045] Furthermore, since the step portion 905 that defines the position of the washer 92 is formed at the tip end portion of the shaft portion 902, the coil panel 95 can be attached to the shaft portion 902 in a state of a predetermined length. wear. Therefore, since the load at which the valve body 90 starts to open (starting load) can be set appropriately, the valve body 90 operates appropriately.
[0046] (流量と発電用水車の回転数との関係の評価結果)  [0046] (Evaluation result of relationship between flow rate and rotation speed of water turbine for power generation)
図 7を用いてさらに本形態の効果を説明する。図 7は、図 1に示す水力発電装置が 有する発電用水車に注がれる流量と、その時の発電用水車の回転数との関係を示 すグラフである。 The effect of this embodiment will be further described with reference to FIG. Figure 7 shows that the hydroelectric generator shown in Figure 1 It is a graph which shows the relationship between the flow volume poured into the power generation turbine and the rotation speed of the power generation turbine at that time.
[0047] 図 7では、水力発電装置において、バイパスが無い (第 2の流路を形成しない)もの 、本形態を適用した弁機構 9におけるコイルパネ 95の始動荷重をそれぞれ、 175gr 、 215gr、 220gr、 225gr、 280grに設定したものを順に線 I〜VIによって、それぞれ の水力発電装置が有する発電用水車に注がれる流量と、その時の発電用水車の回 転数との関係をグラフに示している。図 7に示すように、水力発電装置において、発 電用水車に注がれる流量が lOLZminから 25LZminへと変化すると、バイパスの 無いものでは (線 Iで示す結果)、発電用水車の回転数が流量に比例して増加するの に対して、本形態を適用した弁機構 9を有するものでは (線 I〜VIで示す結果)、発電 用水車に注がれる流量が lOLZminから 25LZminへと変化しても、発電用水車の 回転数は 3000〜4000rpm近傍で安定している。それ故、本発明を適用した弁機構 9によれば、閉状態力も開状態の切り換え動作を滑らかに行うことができ、水車室 35 に供給される水の量を常に一定に保つことができることが分かる。よって、本発明によ れば、発電用水車 5の回転ノイズなどの発生を防止することができる。  [0047] In FIG. 7, in the hydroelectric power generation device without bypass (not forming the second flow path), the starting loads of the coil panel 95 in the valve mechanism 9 to which the present embodiment is applied are 175gr, 215gr, 220gr, The graph shows the relationship between the flow rate poured into the power generation turbine of each hydroelectric generator and the number of rotations of the power generation turbine at that time, using lines I to VI in order of those set to 225gr and 280gr . As shown in Fig. 7, in the hydroelectric power generator, when the flow rate poured into the power generation turbine changes from lOLZmin to 25LZmin, the number of rotations of the power generation turbine is reduced without the bypass (as indicated by line I). In contrast to the flow rate that increases in proportion to the flow rate, with the valve mechanism 9 to which this embodiment is applied (results shown by lines I to VI), the flow rate poured into the power generation turbine changes from lOLZmin to 25LZmin. However, the rotational speed of the power generation turbine is stable at around 3000-4000rpm. Therefore, according to the valve mechanism 9 to which the present invention is applied, the switching operation of the closing state force and the opening state can be smoothly performed, and the amount of water supplied to the water turbine chamber 35 can be always kept constant. I understand. Therefore, according to the present invention, it is possible to prevent the occurrence of rotational noise or the like of the power generation water turbine 5.
[0048] (弁機構 9の変形例)  [0048] (Variation of valve mechanism 9)
図 8は、本発明に係る弁機構の変形例を示す説明図である。上記実施の形態で構 成した弁機構 9の支持機構 99では、隔壁 219の方に筒部 217を形成し、弁体 90の 方に軸部 902を形成した力 図 8に示すように、隔壁 219^ において第 2の流路 120 における下流側の面に軸部 902' を形成し、弁体 90' の方に筒部 217' (受け部) を形成してもよい。この場合も、軸部 90^ に形成した段部 905^ とプッシュナット 91 ' によりヮッシャ 92' を位置決めし、ヮッシャ 92' と弁部 901/ との間にコイルパネ 9 5' を配置すればよい。  FIG. 8 is an explanatory view showing a modification of the valve mechanism according to the present invention. In the support mechanism 99 of the valve mechanism 9 configured in the above embodiment, the force in which the cylindrical portion 217 is formed toward the partition wall 219 and the shaft portion 902 is formed toward the valve body 90, as shown in FIG. In 219 ^, a shaft portion 902 'may be formed on the downstream surface of the second flow path 120, and a cylindrical portion 217' (receiving portion) may be formed on the valve body 90 '. In this case as well, the washer 92 'may be positioned by the step 905' formed on the shaft 90 'and the push nut 91', and the coil panel 95 'may be disposed between the washer 92' and the valve portion 901 /.
[0049] また、図 6および図 8に示す例では、弁体 90にシール部材 96を取り付けた力 隔壁 219において弁体 90と当接する部分にフッ素ゴム製あるいはフッ素榭脂製のシール 部材 96を取り付けてもよい。この場合も、シール部材 96の表面にはブラスト処理を施 してシール部材 96の表面粗さを最適化することが好ましい。  In the example shown in FIGS. 6 and 8, a sealing member 96 made of fluoro rubber or fluoro resin is attached to a portion of the force partition wall 219 in which the sealing member 96 is attached to the valve body 90 in contact with the valve body 90. It may be attached. Also in this case, it is preferable to optimize the surface roughness of the seal member 96 by subjecting the surface of the seal member 96 to blasting.
[0050] さらに、上記形態では、弁機構 9の支持機構 99を構成するにあたって、軸部 902、 902' が貫通する筒部 217、 21 を受け部とした力 軸部 902、 90^ との相対的 な位置が変化したときでも軸部 902、 902' との間の支持寸法が一定の受け部であ れば、軸部の周りを部分的に支持する構成、例えば、軸部の周りを複数箇所で支持 する構成や、溝と突条部とが係合した構成などを採用してもよい。 [0050] Furthermore, in the above embodiment, in configuring the support mechanism 99 of the valve mechanism 9, the shaft portion 902, Forces with cylinders 217, 21 through which 902 'penetrates as receiving parts Even when the relative position with shaft parts 902, 90 ^ changes, receiving parts with a constant support dimension between shaft parts 902, 902' In that case, a configuration in which the periphery of the shaft portion is partially supported, for example, a configuration in which the periphery of the shaft portion is supported at a plurality of locations, a configuration in which the groove and the protrusion are engaged, and the like may be employed. .
産業上の利用可能性 Industrial applicability
本発明に係る水力発電装置は、水道水などの水の動きを利用して発電を行う水力発 電装置であって、水車室に供給される水量が増大する場合があっても安定した動作 を行なうことが必要な発電装置として有用である。 The hydroelectric generator according to the present invention is a hydroelectric generator that generates electricity using movement of water such as tap water, and operates stably even when the amount of water supplied to the turbine chamber increases. It is useful as a power generator that needs to be performed.

Claims

請求の範囲 The scope of the claims
[1] 発電用水車が配置された水車室を備えた発電用の第 1の流路と、前記水車室に対 して並列に構成されたバイパス用の第 2の流路と、流体圧が上昇したときに前記第 2 の流路を閉状態力 開状態に切り換える弁機構とを有する水力発電装置において、 前記弁機構は、前記第 2の流路を構成する開口部を備えた隔壁と、前記開口部を開 閉するための弁体と、該弁体を前記隔壁に接近する方向および離間方向に変位可 能に支持する支持機構と、流体圧に杭して前記開口部を閉鎖する方向に前記弁体 を付勢する付勢部材とを備え、前記支持機構は、前記弁体および前記隔壁のうちの 一方側に形成された軸部と、当該軸部との相対的な位置が変化したときでも当該軸 部との間の支持寸法が一定の受け部とを備えていることを特徴とする水力発電装置  [1] A first flow path for power generation including a water turbine chamber in which a water turbine for power generation is disposed, a second flow path for bypass configured in parallel to the water turbine chamber, and a fluid pressure A hydraulic power generation apparatus having a valve mechanism that switches the second flow path to a closed force open state when the lift is raised, the valve mechanism includes a partition wall having an opening that constitutes the second flow path; A valve body for opening and closing the opening, a support mechanism that supports the valve body so as to be displaceable in a direction approaching and separating from the partition wall, and a direction in which the opening is closed by piled on fluid pressure A biasing member that biases the valve body, and the support mechanism changes a relative position between the shaft portion formed on one side of the valve body and the partition wall and the shaft portion. The hydroelectric power generator is provided with a receiving portion having a constant support dimension between the shaft portion and the shaft portion.
[2] 請求項 1において、前記受け部は、前記軸部が貫通する筒部であることを特徴とす る水力発電装置。 [2] The hydroelectric generator according to claim 1, wherein the receiving portion is a cylindrical portion through which the shaft portion passes.
[3] 請求項 1または 2において、前記開口部は、前記隔壁に対する前記受け部あるいは 前記軸部の形成位置の周りに形成されていることを特徴とする水力発電装置。  [3] The hydroelectric power generator according to claim 1 or 2, wherein the opening is formed around a position where the receiving portion or the shaft portion is formed with respect to the partition wall.
[4] 請求項 1ないし 3のいずれかにおいて、前記軸部は前記弁体に形成され、前記受 け部は、前記隔壁の両面のうち、前記第 2の流路における上流側に位置する面から 突出していることを特徴とする水力発電装置。 [4] In any one of claims 1 to 3, the shaft portion is formed in the valve body, and the receiving portion is a surface located on the upstream side in the second flow path among both surfaces of the partition wall. A hydroelectric generator characterized by protruding from.
[5] 請求項 1ないし 3のいずれかにおいて、前記受け部は前記弁体に形成され、前記 軸部は、前記隔壁の両面のうち、前記第 2の流路における下流側に位置する面から 突出していることを特徴とする水力発電装置。 [5] In any one of claims 1 to 3, the receiving portion is formed in the valve body, and the shaft portion is a surface located on the downstream side in the second flow path among both surfaces of the partition wall. A hydroelectric generator characterized by protruding.
[6] 請求項 1ないし 5のいずれかにおいて、前記弁体の前記隔壁との当接面、および前 記隔壁の前記弁体との当接面のうちの一方の当接面は、フッ素系ゴムあるいはフッ 素系榭脂からなるシール部材で構成され、当該シール部材の表面には微細な凹凸 が付与されて ヽることを特徴とする水力発電装置。 [6] In any one of claims 1 to 5, one of the contact surface of the valve body with the partition wall and the contact surface of the partition wall with the valve body is a fluorine-based material. A hydroelectric power generation device comprising a sealing member made of rubber or fluorine-based resin, and having fine irregularities on the surface of the sealing member.
[7] 請求項 6において、前記弁体の前記隔壁との当接面、および前記隔壁の前記弁体 との当接面のうちの他方の当接面は、平滑面で構成されていることを特徴とする水力 発電装置。 [7] In Claim 6, the other contact surface of the contact surface of the valve body with the partition wall and the contact surface of the partition wall with the valve body is a smooth surface. A hydroelectric generator characterized by
[8]
Figure imgf000017_0001
、て、前記付勢部材はコイルパネであり、前記軸 部の先端部には、前記コイルの一方端を支持する止め具の位置決め部が形成され て!ヽることを特徴とする水力発電装置。
[8]
Figure imgf000017_0001
The biasing member is a coil panel, and a positioning portion for a stopper that supports one end of the coil is formed at the tip of the shaft! A hydroelectric generator characterized by squeezing.
[9] 発電用水車が配置された水車室を備えた発電用の第 1の流路と、前記水車室に対 して並列に構成されたバイパス用の第 2の流路と、流体圧が上昇したときに前記第 2 の流路を閉状態力 開状態に切り換える弁機構とを有する水力発電装置において、 前記弁機構は、前記第 2の流路を構成する複数の開口部を備えた隔壁と、前記開口 部を開閉するための弁体と、該弁体を前記隔壁に接近する方向および離間方向に 変位可能に支持する支持機構と、流体圧に杭して前記開口部を閉鎖する方向に前 記弁体を付勢する付勢部材とを備え、前記支持機構は、前記複数の開口部を備え た隔壁であって、該複数の開口部によって挟まれる位置に前記弁体を支持するよう に形成されたことを特徴とする水力発電装置。  [9] A first flow path for power generation including a water turbine chamber in which a water turbine for power generation is disposed, a second flow path for bypass configured in parallel to the water turbine chamber, and a fluid pressure A hydraulic power generation device having a valve mechanism for switching the second flow path to a closed force open state when the lift is raised, wherein the valve mechanism includes a plurality of openings constituting the second flow path. A valve body for opening and closing the opening, a support mechanism for supporting the valve body so as to be displaceable in a direction approaching and separating from the partition wall, and a direction in which the opening is closed by piled on fluid pressure And a biasing member for biasing the valve body, wherein the support mechanism is a partition wall having the plurality of openings, and supports the valve body at a position sandwiched by the plurality of openings. A hydroelectric generator characterized by being formed as described above.
[10] 請求項 9において、前記複数の開口部は、前記隔壁に形成された支持機構を中心 に周方向に複数形成されて ヽることを特徴とする水力発電装置。  [10] The hydroelectric power generator according to claim 9, wherein a plurality of the plurality of openings are formed in a circumferential direction around a support mechanism formed in the partition wall.
[11] 請求項 10において、前記支持機構は、前記弁体および前記隔壁のうちの一方側 に形成された軸部と、前記弁体および前記隔壁のうちの他方側に形成された前記軸 部を変位可能に当接する受け部とを備えていることを特徴とする水力発電装置。  [11] In Claim 10, the support mechanism includes a shaft portion formed on one side of the valve body and the partition wall, and the shaft portion formed on the other side of the valve body and the partition wall. A hydroelectric generator comprising: a receiving portion that abuts so as to be displaceable.
[12] 請求項 11において、前記受け部は、前記軸部が貫通する筒部であることを特徴と する水力発電装置。  12. The hydroelectric power generator according to claim 11, wherein the receiving part is a cylindrical part through which the shaft part passes.
[13] 請求項 9において、前記弁体の前記隔壁との当接面、および前記隔壁の前記弁体 との当接面のうちの一方の当接面は、フッ素系ゴムあるいはフッ素系榭脂からなるシ 一ル部材で構成されていることを特徴とする水力発電装置。  [13] In Claim 9, one of the contact surfaces of the valve body with the partition wall and the contact surfaces of the partition wall with the valve body is fluorinated rubber or fluorinated resin. A hydroelectric power generator comprising a seal member made of
[14] 請求項 13において、前記シール部材の表面には微細な凹凸が付与されていること を特徴とする水力発電装置。  [14] The hydroelectric power generator according to claim 13, wherein fine irregularities are provided on a surface of the seal member.
PCT/JP2007/060581 2006-05-30 2007-05-24 Hydroelectric power generator WO2007138968A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-150092 2006-05-30
JP2006150092A JP4825054B2 (en) 2006-05-30 2006-05-30 Hydroelectric generator

Publications (1)

Publication Number Publication Date
WO2007138968A1 true WO2007138968A1 (en) 2007-12-06

Family

ID=38778488

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/060581 WO2007138968A1 (en) 2006-05-30 2007-05-24 Hydroelectric power generator

Country Status (2)

Country Link
JP (1) JP4825054B2 (en)
WO (1) WO2007138968A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55152971A (en) * 1979-05-11 1980-11-28 Mitsubishi Heavy Ind Ltd Relief valve
JPS5821961Y2 (en) * 1978-03-08 1983-05-10 松下電器産業株式会社 safety valve
JPH01118260U (en) * 1988-02-03 1989-08-10
JPH09203473A (en) * 1995-11-20 1997-08-05 Inax Corp Check valve device
JP2594407Y2 (en) * 1993-08-26 1999-04-26 カヤバ工業株式会社 Oil damper
JP2003515039A (en) * 1999-11-16 2003-04-22 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Apparatus for generating voltage for components of gas-heated water heaters
JP2003129930A (en) * 2001-10-25 2003-05-08 Sankyo Seiki Mfg Co Ltd Hydraulic power generating device
JP2005299634A (en) * 2004-03-18 2005-10-27 Kakudai:Kk Hydraulic power generation device and water supply system equipped therewith

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5952284A (en) * 1982-09-18 1984-03-26 株式会社ナニワプロセス Display panel and making thereof
JP3660286B2 (en) * 2001-09-14 2005-06-15 株式会社キッツ Drainage vent

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5821961Y2 (en) * 1978-03-08 1983-05-10 松下電器産業株式会社 safety valve
JPS55152971A (en) * 1979-05-11 1980-11-28 Mitsubishi Heavy Ind Ltd Relief valve
JPH01118260U (en) * 1988-02-03 1989-08-10
JP2594407Y2 (en) * 1993-08-26 1999-04-26 カヤバ工業株式会社 Oil damper
JPH09203473A (en) * 1995-11-20 1997-08-05 Inax Corp Check valve device
JP2003515039A (en) * 1999-11-16 2003-04-22 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Apparatus for generating voltage for components of gas-heated water heaters
JP2003129930A (en) * 2001-10-25 2003-05-08 Sankyo Seiki Mfg Co Ltd Hydraulic power generating device
JP2005299634A (en) * 2004-03-18 2005-10-27 Kakudai:Kk Hydraulic power generation device and water supply system equipped therewith

Also Published As

Publication number Publication date
JP2007321809A (en) 2007-12-13
JP4825054B2 (en) 2011-11-30

Similar Documents

Publication Publication Date Title
US7825531B2 (en) Hydraulic power generating device and manufacturing method therefor
JP4696855B2 (en) Fuel pump
EP1296049B1 (en) Bypass intake amount controller
JP2007182992A (en) Pressure regulating valve
WO2007138968A1 (en) Hydroelectric power generator
JP2012031807A (en) Fuel pump
JP4751747B2 (en) Hydroelectric generator
JP2007228669A (en) Cooling device for electric motors
JP6806365B2 (en) Control valve unit
JP4394852B2 (en) Hydroelectric generator
JP2007187145A (en) Fuel pump
JP2009068394A (en) Axial-flow generator
JP4751746B2 (en) Hydroelectric power generation apparatus and manufacturing method thereof
JP2007159191A (en) Motor
WO2008001501A1 (en) Hydroelectric power generation device
JP5071029B2 (en) Fluid control valve
CN112189108B (en) Flow path switching valve
JP2003286923A (en) Check valve, and fuel pump module using the same
JP4317388B2 (en) Hydroelectric generator
JP5004730B2 (en) Axial flow generator
JP5013086B2 (en) Faucet generator
JP2019015268A (en) Pressure control device and fuel supply device
WO2011096281A1 (en) Electricity generator for faucet
JPH11294624A (en) Flow switch
JP2006063953A (en) Fuel pump

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07744015

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07744015

Country of ref document: EP

Kind code of ref document: A1