WO2007138962A1 - Combustor - Google Patents

Combustor Download PDF

Info

Publication number
WO2007138962A1
WO2007138962A1 PCT/JP2007/060565 JP2007060565W WO2007138962A1 WO 2007138962 A1 WO2007138962 A1 WO 2007138962A1 JP 2007060565 W JP2007060565 W JP 2007060565W WO 2007138962 A1 WO2007138962 A1 WO 2007138962A1
Authority
WO
WIPO (PCT)
Prior art keywords
combustion
ceramic
fuel
combustor
air
Prior art date
Application number
PCT/JP2007/060565
Other languages
French (fr)
Japanese (ja)
Inventor
Saburo Maruko
Tokio Naoi
Shingo Komori
Takahiko Matsuda
Yoshinori Yamazaki
Original Assignee
Nippon Chemical Plant Consultant Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemical Plant Consultant Co., Ltd. filed Critical Nippon Chemical Plant Consultant Co., Ltd.
Priority to CA002649212A priority Critical patent/CA2649212A1/en
Priority to US12/302,775 priority patent/US20090239181A1/en
Priority to EP07743999A priority patent/EP2023040A1/en
Publication of WO2007138962A1 publication Critical patent/WO2007138962A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/02Premix gas burners, i.e. in which gaseous fuel is mixed with combustion air upstream of the combustion zone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C13/00Apparatus in which combustion takes place in the presence of catalytic material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C13/00Apparatus in which combustion takes place in the presence of catalytic material
    • F23C13/06Apparatus in which combustion takes place in the presence of catalytic material in which non-catalytic combustion takes place in addition to catalytic combustion, e.g. downstream of a catalytic element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C3/00Combustion apparatus characterised by the shape of the combustion chamber
    • F23C3/002Combustion apparatus characterised by the shape of the combustion chamber the chamber having an elongated tubular form, e.g. for a radiant tube

Definitions

  • the present invention relates to a combustor for obtaining high-temperature gas, for example, for a fuel reformer of a small fuel cell system for home use.
  • combustion gas generated from this type of combustor should be free of pollutants, that is, NOx and unburned matter, and have a low residual oxygen content due to complete combustion.
  • Air and fuel are mixed at a concentration within the explosion limit range, and this mixed gas is ignited by an ignition means such as an electric spark to form a flame.
  • an ignition means such as an electric spark to form a flame.
  • a combustor that continuously burns the above-mentioned mixed gas of air and fuel.
  • a preheated mixed gas obtained by mixing fuel in preheated air is burned by a combustion catalyst.
  • the outside of the heating tube of the main combustor is always heated above the ignition temperature of the fuel by the auxiliary combustor.
  • a mixed gas of fuel and air is brought into contact with the heated heating tube. 1: Combustor designed to continue combustion.
  • a U-turn is made at the end of the tube to burn the combustion gas that is burned by bringing the mixed gas of fuel and air into contact with the tube heated above the ignition temperature of the fuel.
  • the combustor is designed to continue combustion by heating the pipe. (Japanese Patent Laid-Open No. 10-2 6 3 0 9) and the like are known.
  • the combustor used in this type of device is required to be small and have a small combustion chamber volume, and the temperature of the surrounding wall surface is about 110 to 180 ° C. Because it is necessary to have a low temperature, complete combustion with a low NOX concentration is required, even though the conditions are very disadvantageous to combustion.
  • the small volume of the combustion chamber means that it is susceptible to pressure fluctuations.
  • the fuel flow temporarily stops due to pressure fluctuations, the flame disappears, and combustion stops.
  • steam generation may cease.
  • gaseous fuel and liquid fuel is required in the above-mentioned small-sized home fuel cell system.
  • an auxiliary igniter must be used, but after the start of operation, this auxiliary combustor is made unnecessary in as short a time as possible, and combustion stops even if there is a disturbance such as pressure fluctuation. It is necessary to adopt no method.
  • the present invention has been made in view of the above, and it is possible to obtain a compact combustion gas that is free from the generation of NOX as a pollutant and does not remain unburned, and that is stable even with a slight disturbance.
  • the purpose is to provide a combustor that can To do.
  • the first invention is a combustor in which a ceramic combustion cylinder having an oxidation catalyst function is disposed downstream of a bench-lily single-tube fuel / air mixer equipped with an igniter.
  • the second invention is a combustor according to the first invention, wherein a vortex generator is provided at the tip of a bench-lily single-tube type fuel 'air mixer so that the mixture becomes a vortex in the ceramic combustion cylinder. is there.
  • the downstream end portion of the ceramic combustion cylinder is covered with a cylindrical cover whose head is closed, and a combustion chamber is further provided around the tip of the ceramic combustion cylinder. It is a combustor formed and provided with a combustion gas outflow hole at the cylindrical base end of the cover.
  • a fourth invention is the combustor according to the third invention, wherein a radiation promoting paint is applied to the outer peripheral surface of the cover.
  • a fifth invention is the combustor according to the third or fourth invention, wherein an oxidation catalyst layer is provided between the ceramic combustion cylinder and the base end portion of the cover.
  • the first invention for example, it has a small combustion chamber suitable as a combustor for a boiler used in a fuel reformer of a small-sized domestic fuel cell system that is currently being developed. Combustion efficiency is good and stable combustion is possible A simple combustor can be obtained.
  • the air-fuel mixture sufficiently corrodes the oxidation catalyst, a combustor capable of more stable combustion can be obtained.
  • combustion of the combustion gas flowing out from the ceramic combustion cylinder is further promoted in the combustion chamber constituted by the cover.
  • the radiant heat can be radiated from the outer surface of the cover to the heated part, the heating of the heated part can be promoted.
  • the combustion gas flowing out from the combustion chamber in the cover through the through hole passes through the catalyst layer having an oxidation function, it is assumed that the combustion gas burned in the ceramic combustion cylinder is unburned in the combustion gas. Even if a minute remains, the unburned component can be completely burned while passing through the catalyst layer.
  • FIG. 1 is a cross-sectional view showing a main part of a first embodiment of a combustor according to the present invention.
  • FIG. 2 is a cross-sectional view showing an embodiment of a boiler in which the combustor of the first embodiment of FIG. 1 is used.
  • FIG. 3 is a cross-sectional view showing a second embodiment of a combustor according to the present invention and another embodiment of a boiler provided with the same.
  • FIG. 1 is a cross-sectional view showing the main part of the combustor of the present invention
  • FIG. 2 is a cross-sectional view showing an example of a boiler using the combustor of the present invention.
  • 1 is a boiler body composed of an inner cylinder 2 and an outer cylinder 3 arranged concentrically
  • 4 is a combustor according to the present invention provided at the lower end of the boiler body 1.
  • the high temperature combustion gas generated in the combustor 4 is supplied to the inner surface of the inner cylinder 2 of the boiler body 1 so that the inner surface of the inner cylinder 2 is heated, and the inner cylinder 2 arranged concentrically with the outer cylinder 2
  • the water (evaporation medium) supplied in the heat medium jacket 5 formed between the cylinders 3 is heated to generate high-temperature steam.
  • a boiler lower flange 6 that closes the heating medium jacket 5 for the evaporation medium is coupled to the lower end of the boiler body 1.
  • the combustor 4 is located at the lower end of the boiler body 1 and the cover 10 located at the top of the combustor 4 is located in the inner cylinder 2 of the boiler body 1. It is designed to be joined in the state of rushing into.
  • the combustor 4 includes a combustion unit 11 including a ceramic combustion cylinder 14 from which the combustion gas is ejected, and a fuel supply unit 1 2 for supplying a fuel Z air mixture obtained by mixing fuel and air to the combustion unit 11. It is made up of.
  • Combustion section 11 is located at the uppermost position and has a combustion chamber forming cover 10 that forms combustion chamber 13 inside, and is disposed at the axial center of the cover, and the upper end is opened into combustion chamber 13.
  • the released ceramic combustion cylinder 14 and the outside of the bottom of this ceramic combustion cylinder It is composed of heat insulators 15 5 a, 15 b, 15 c, and a frame 16 surrounding these heat insulators. Is fixed to the combustor flange 7.
  • the cover 10 has a bell shape (or a tea tube cap shape), and is provided in a state of covering the heat insulators 15 a, 15 b, and 15 c.
  • a slit-like through hole (combustion gas outflow hole) 17 that is long in the vertical direction is provided at the end.
  • a catalyst layer 18 made of ceramic small particles having an oxidation function is provided at the height of the through hole 17.
  • the upper end of the ceramic combustion cylinder 14 has a predetermined distance L between the upper surface of the catalyst layer 18 and the upper surface of the catalyst layer 18 in the combustion chamber 13 ⁇ with a predetermined distance L from the ceiling inner surface of the cover 10.
  • Combustion gas that has H and flows out from the upper end of the ceramic combustion cylinder 14 flows from the combustion chamber 1 3 through the catalyst layer 1 8 through the through hole 1 7 into the inner cylinder 2 of the boiler body 1. It ’s like that.
  • the fuel supply unit 12 is fixed to the lower surface of the combustion unit 11 via a packing via a mounting flange 21 provided at the upper end portion thereof via a packing.
  • a Venturi tube type mixer 23 is fixed to the mounting flange 21 so as to penetrate therethrough.
  • the outlet portion of the bench lily single-tube mixer 2 3 is concentric with the ceramic combustion cylinder 14 of the combustion section 11 1 and its outlet diameter is substantially the same as the inner diameter of the ceramic combustion cylinder 14. The outlet end of this is in contact with the lower end of the ceramic combustion cylinder 14.
  • a vortex generator 24 is provided at the contact portion. This eddy current generator 24 directs the mixed air flow from the bench lily single tube mixer 2 3 in the circumferential direction, that is, ceramic fuel. It has a shape that generates a vortex along the inner peripheral surface of the firing tube 14
  • a plurality of fuel injection holes 25 are provided on the circumferential surface of the throat portion of the bench lily single tube mixer 23.
  • the fuel injection hole 25 is connected to the fuel supply port 26 via a fuel handle 25 a provided in the throat portion of the bench lily single pipe mixer 23.
  • An igniter ignition rod conduit 27 is provided at the axial center of the venturi-type mixer 23.
  • the ignition rod conduit 27 has an upper end fixed to the center of the vortex generator 24 and a lower end projecting downward from the venturi-type mixer 23.
  • An ignition rod 28 is inserted into the ignition rod conduit 27 so that its tip protrudes from the ignition rod conduit 27.
  • a cross-shaped pipe fitting 29 is connected to the base end of the Venturi tube mixer 23, and the lower end of the ignition rod conduit 27 is positioned within the pipe fitting 29. Yes.
  • one of the two connection ports in the direction orthogonal to the extension line of the connection port of the pipe joint 29 to the bench lily one-pipe mixer 23 is an igniter power rod connection port, A power rod 30 for the igniter is inserted from the end, and the tip thereof is electrically connected to the ignition rod 28 in the connection pipe 29.
  • a combustion air supply port 3 1 is connected to the other of the two connection ports.
  • a combustion state monitoring port 3 2 that allows the inside of the venturi single-pipe mixer 2 3 to be seen through is connected to the connection port on the extension line of the connection port of the pipe joint 28 with the bench lily single-pipe mixer 2 3. Yes.
  • Combustion air is supplied from the air supply port 3 1 of the fuel supply unit 1 2, and the fuel supplied from the fuel supply port 2 6 is supplied to the throat portion of the venturi single-tube mixer 2 3 from the fuel injection port 2 5.
  • this air and fuel are mixed from this slot to the outlet of the venturi single-pipe mixer 23 to form a fuel / air mixture (hereinafter referred to as a mixture).
  • a mixture fuel / air mixture
  • the air-fuel mixture flowing into the ceramic combustion cylinder 14 becomes a vortex along the inner peripheral surface of the ceramic combustion cylinder 14 by the vortex generator 24.
  • the igniter power rod 30 is energized to form a spark at the tip of the ignition rod 28 to ignite the mixture.
  • the air-fuel mixture starts to burn. After ignition, it is influenced by the mixture ratio of fuel and air in the mixture, but even if the spark is stopped within 2 minutes, the ceramic combustion cylinder 14 is heated above the temperature at which it functions as an oxidation catalyst. If so, the combustion will continue.
  • liquid fuel such as kerosene
  • the fuel itself is supplied at room temperature, but the combustion air is supplied preheated to about 2 ° 0 to 25 ° C.
  • gaseous fuel can also be used.
  • the ignited air-fuel mixture starts to combust, and the combustion gas flows upward along the inner peripheral wall of the ceramic combustion cylinder 14.
  • the ceramic combustion cylinder 14 itself is heated to a temperature higher than the catalyst activation temperature. This result
  • the mixture from the bench-lily single-tube mixer 23 was raised to the catalyst activation temperature or higher.
  • Such combustion becomes intense as it goes upward (downstream) of the ceramic combustion cylinder 14, and most of the air-fuel mixture is combusted at the upper end of the ceramic combustion cylinder 14.
  • the combustion state at this time is affected by the length of the ceramic combustion cylinder 14.
  • the length of the ceramic combustion cylinder 14 is designed such that most of the air-fuel mixture supplied from the fuel supply section 12 is combusted.
  • the material of the ceramic combustion cylinder 14 has the following properties.
  • the necessary conditions for the above-mentioned ceramic combustion cylinder 14 having an oxidation function are: (1) strong thermal shock resistance, (2) low catalyst activation temperature, (3) high emissivity, (4) High mechanical strength at high temperature, (5) High heat conductivity.
  • the ceramics having such properties S i C, S i 3 N 4, Z r 0 2 and Z r O. To which 5 to 20% of other metal oxides are added Is suitable.
  • S i C, S i 3 N 4 S i non-oxide ceramics have a catalytic activity temperature of 640 to 6 45 ° C, but other than this, the above conditions are satisfied. It is.
  • Zr 0 2 alone has a catalyst activation temperature of 4 65 ° C, but C o O, C r 2 0 3 , Mn0 2 , La 2 O 3 , S n0 2 , ⁇ 2 O 3 , T b O 2 ⁇ Pi M g O a mixture from 5% to 20% is capable of decreasing the catalytic activity temperature from 3 3 0 to 4 9 7 ° about C (9th Symposium on catalytic combustion (See “Catalytic Combustion with Zr 0 2 Composite Oxide” published on May 25, 1990).
  • the thermal shock resistance (1) described above is required to be strong is that the amount of heat received from the inside of the ceramic combustion cylinder 14 is large because the combustion speed is high. That is, if the change in the amount of heat received by the ceramic combustion cylinder 14 is large, the temperature change of the ceramic combustion cylinder 14 itself is large, and if the thickness of the ceramic combustion cylinder 14 is increased, the temperature difference inside the ceramic combustion cylinder 14 is large. This is because the ceramic combustion cylinder 14 is destroyed by thermal shock. In order to prevent this, the thermal conductivity of (5) is required to be high. In addition, the high thermal conductivity is suitable for transferring the heat received on the downstream side of the combustion gas to the upstream side, and the high emissivity of (3) exhibits the same effect.
  • Combustion gas generated in the ceramic combustion cylinder 14 flows into the combustion chamber 13 from the tip of the ceramic combustion cylinder 14 and moves downward along the inner surface of the cover 10 constituting this combustion chamber 13. Change the boiler through catalyst hole 1 8 through hole 1 7 It flows out into the inner cylinder 2 of the main body 1.
  • the combustion gas burned at this time may have insufficient combustion if the volume of the passage through which it passes is small and is surrounded by a cold wall, leaving unburned gas in the combustion gas.
  • the combustion gas from the ceramic combustion cylinder 14 flows into the combustion chamber 13, which is a relatively large space formed by the cover 10, and thus burns. Is sufficiently continued to reach a high temperature (1500 to 1700 ° C), and the unburned part of the combustion gas is almost completely combusted.
  • the combustion gas in the combustion chamber 13 changes its flow downward along the inner surface of the cover 10 constituting the combustion chamber 13, passes through the catalyst layer 18, and then passes through the hole 1. 7 flows into the inner cylinder 2 of the boiler body 1 and heats the inner surface of the inner cylinder 2. At this time, the combustion gas comes into contact with the small ceramic particles of the catalyst layer 18 so that the unburned components in the combustion gas are completely burned. The presence of the catalyst layer 18 prevents combustion from stopping due to pressure fluctuations in the fuel and combustion air.
  • the ceramic small particles having an oxidation function constituting the catalyst layer 18 are preferably SiC hollow particles.
  • the inner diameter of the ceramic combustion cylinder 14 is 20 mm.
  • the thickness is 2.5 mm
  • the length is 40 mm
  • the inner diameter of the cover 10 is 5 O mm
  • the dimension of H shown in FIG. Is 10 mm and the dimension of L is 15 mm.
  • the combustor shown in FIG. 1 is an example applied to a boiler body 1 for a steam generator of a household fuel cell system, and the heat medium jacket 5 of the boiler body 1 is filled.
  • the generated water is boiled and the generated steam is led out from the steam pipe connected to the top of the heat medium jacket 5.
  • the cover 10 in order to use the cover 10 for a long period of time, it is necessary to transfer the heat received from the high-temperature gas to the heat medium jacket 5 as much as possible.
  • the cover made of steel is used.
  • a radiation-promoting paint such as a radiation paint with an emissivity of 92% or more
  • Applying a radiation-promoting paint, such as a radiation paint with an emissivity of 92% or more, to the outer peripheral surface of 10 generates combustion gas with a theoretical combustion temperature of 1600 ° C in the combustion section 1 1 Even so, the temperature of the wall of the cover 10 can be 9500 ° C or less, so that the cover 10 can withstand long-term use by applying this radiation promoting paint. It becomes.
  • FIG. 2 shows an embodiment of a boiler using the combustor 4 according to the present invention.
  • a large number of water pipes 3 3, 3 3 are disposed in the inner cylinder 2 of the boiler body 1 and above the combustion section 11. It has a configuration in which a heat exchanging part 3 4 comprising:
  • An exhaust pipe 40 is connected to the inside of the inner cylinder 2.
  • a water receiving tank 3 5 is provided above the heat exchanging section 3 4, and a water supply pipe 3 6 is connected to the water receiving tank 3 5.
  • the inlet 3 3 a of each water pipe 3 3 of the heat exchange section 3 4 is connected to the water receiving tank 3 5, and the outlet is connected to the outlet chamber 3 7.
  • the outlet chamber 37 is a space formed between the upper part of the support plate 39 supporting the heat exchanging part 34 and the bottom of the water receiving tank 35, and the air is discharged from the heat medium jacket 5 of the boiler body 1. What has evaporated in the liquid-mixed state and what has evaporated in the gas-liquid mixed state from the outlet of the heat exchange section 34 The gas and liquid are separated in the outlet chamber 37.
  • the separated liquid medium (hot water) absorbs heat for circulating and evaporating.
  • the vapor of the gas-liquid mixture from which most of the liquid has been separated rises in the space between the inner tube 2 of the boiler body 1 and the outer cylinder part of the water receiving tank 35, and in the upper part of the water receiving tank 35. Gas-liquid separation is performed, and the separated steam is taken out from the steam outlet pipe 41, and the separated hot water is collected in the water receiving tank 35.
  • the heat of the combustion gas flowing into the inner cylinder 2 of the boiler body 1 from the combustion section 1 1 of the combustor 4 directly acts on the heat medium jacket 5 from the inner surface of the inner cylinder 2 and heat
  • the heat exchanged in the exchanging part 34 can also preheat the water supplied to the heat medium jacket 5 and can effectively use the heat of the combustion gas generated in the combusting part 11.
  • the fuel supply section 1 2 is supplied from the venturi one-pipe mixer 2 3 alone.
  • the cover 10 for constituting the combustion chamber 13 can be omitted (the cover 10 is omitted). Examples will be described later).
  • the cover 10 is disposed on the outlet side of the ceramic combustion cylinder 14.
  • the ceramic combustion cylinder 14 If the air-fuel mixture supplied from the venturi-type mixer 2 3 of the fuel supply unit 1 2 can be combusted to a state where there is almost no unburned fuel by appropriately adjusting the length, The cover 10 for constituting the combustion chamber 13 can be omitted.
  • FIG. 3 This is shown in FIG. 3 as a second embodiment.
  • the outlet side of the ceramic combustion cylinder 14 is provided with a large number of guide passages 19 for deriving the combustion gas from the ceramic combustion cylinder 14 radially outward. It is closed with 15 d of insulation.
  • the combustion gas led out of the heat insulator 15 d in the outer circumferential direction is discharged in the upper part of FIG. 3, and a number of vertical descending water pipes 4 are placed in the space between the inner cylinder 2 and the outer cylinder 3.
  • the inner cylinder 2 of the boiler main body 1 in which 2 is arranged at intervals in the circumferential direction and the outer walls of a large number of water pipes 33 arranged in the central region of the boiler main body 1 are heated.
  • the combustion section 11 cannot be expected to reach a temperature at which the ceramic combustion cylinder 14 functions as an oxidation catalyst.
  • the ceramic combustion cylinder 14 is omitted, and instead, in the omitted part, the heat insulator 15 a forms a combustion path having the same diameter as the inner diameter of the ceramic combustion cylinder 14.
  • Such a structure is advantageous in terms of cost because it can save the material cost of the ceramic combustion cylinder.
  • This structure can also be used for heating a reformer or for starting a fuel cell using a solid oxide.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Spray-Type Burners (AREA)

Abstract

A combustor comprising combustion unit (11) and, linked thereto, fuel supply unit (12) for supplying of a fuel/air mixture gas containing a fuel mixed with air, wherein the fuel supply unit consists of venturi tube type mixer (23) with fuel supply aperture (25) disposed along the inner circumferential surface at a throat portion; combustion air supply aperture (31) connected to the base end portion of the venturi tube type mixer; and an igniter disposed so as to generate spark at the distal end portion of the venturi tube type mixer, and wherein the combustion unit consists of frame (16) bonded to a boiler main body, etc. and, supported thereby via heat insulators (15a,15b,15c), ceramic combustion tube (14) with its one end communicating with the distal end portion of the venturi tube type mixer of the fuel supply unit and with its other end protruding into the interior of boiler main body, etc., and wherein the ceramic combustion tube is made of a ceramic functioning as an oxidation catalyst so that compact stable combustion is attained without NOx generation and without unburnt residue.

Description

燃焼器  Combustor
技術分野 Technical field
[0001]  [0001]
本発明は、 例えば家庭用小型燃料電池システムの燃料改質装置用の高温 ガスを得るための燃焼器に関する。 背景技術  The present invention relates to a combustor for obtaining high-temperature gas, for example, for a fuel reformer of a small fuel cell system for home use. Background art
[0002]  [0002]
この種の燃焼器から発生する燃焼ガスは、 公害物質即ち N O X及び未燃 分がないこと、 及び完全燃焼によって残留酸素量が少ないことが望ましい  It is desirable that the combustion gas generated from this type of combustor should be free of pollutants, that is, NOx and unburned matter, and have a low residual oxygen content due to complete combustion.
[0003] [0003]
従来この種の燃焼器にあっては、 (1 ) 空気と燃料を爆発限界範囲内で の濃度で混合し、 この混合ガスを電気スパーク等の着火手段にて着火して 火炎の形成をなし、 その後は上記空気と燃料の混合ガスを継続して燃焼さ せるようにした燃焼器、 (2 ) 予熱された空気中に燃料を混合してなる予 熱混合ガスを燃焼触媒により燃焼させるようにした燃焼器、 (3 ) 主燃焼 器の加熱管の外側を補助燃焼器にて常時燃料の着火温度以上に加熱し、 主 燃焼器では上記加熱された加熱管に燃料と空気の混合ガスを接触させ 1:燃 焼を継続させるようにした燃焼器、 (4 ) 燃料の着火温度以上に加熱され た管に燃料と空気の混合ガスを接触させて燃焼させた燃焼ガスを管の端で Uターンさせて管を加熱することにより燃焼を継続させるようにした燃焼 器 (特開平 1 0— 2 6 3 0 9号公報) 等が知られている。  Conventionally, in this type of combustor, (1) Air and fuel are mixed at a concentration within the explosion limit range, and this mixed gas is ignited by an ignition means such as an electric spark to form a flame. After that, a combustor that continuously burns the above-mentioned mixed gas of air and fuel. (2) A preheated mixed gas obtained by mixing fuel in preheated air is burned by a combustion catalyst. (3) The outside of the heating tube of the main combustor is always heated above the ignition temperature of the fuel by the auxiliary combustor. In the main combustor, a mixed gas of fuel and air is brought into contact with the heated heating tube. 1: Combustor designed to continue combustion. (4) A U-turn is made at the end of the tube to burn the combustion gas that is burned by bringing the mixed gas of fuel and air into contact with the tube heated above the ignition temperature of the fuel. The combustor is designed to continue combustion by heating the pipe. (Japanese Patent Laid-Open No. 10-2 6 3 0 9) and the like are known.
[0004]  [0004]
上記従来の燃焼器では、 現在開発が進められている家庭用小型燃料電池 システムの燃料改質装置に使用するボイラーの燃焼器としては満足できる ものではない。 In the conventional combustor described above, small household fuel cells that are currently being developed It is not satisfactory as a boiler combustor for use in a system fuel reformer.
[0005]  [0005]
その理由は、 この種の装置に用いられる燃焼器にあっては、 小型で燃焼 室の容積が小さいことが要求される上、 周囲の壁面の温度が 1 1 0〜1 8 0 °C程度の低温度であることが必要なために、 非常に燃焼に不利な制約条 件下にありながら、 N O X濃度が低くなった完全燃焼が要求されるからで める。  The reason for this is that the combustor used in this type of device is required to be small and have a small combustion chamber volume, and the temperature of the surrounding wall surface is about 110 to 180 ° C. Because it is necessary to have a low temperature, complete combustion with a low NOX concentration is required, even though the conditions are very disadvantageous to combustion.
[0006]  [0006]
更に、 燃焼室の容積が小さいということは圧力変動を受け易いことを意 味し、 火炎燃焼の場合には、 圧力変動により燃料の流れが一時的に止まつ て火炎が消失して燃焼が停止し、 蒸気の発生がなくなることがあるためで める。  Furthermore, the small volume of the combustion chamber means that it is susceptible to pressure fluctuations. In the case of flame combustion, the fuel flow temporarily stops due to pressure fluctuations, the flame disappears, and combustion stops. However, steam generation may cease.
[0007]  [0007]
このため、 改質触媒部において S Z C (水蒸気/炭素) の比が適性値よ りも低くなって炭素の析出が発生し、 燃料改質装置全体が停止してしまう こととなる。  For this reason, the ratio of S Z C (steam / carbon) becomes lower than the appropriate value in the reforming catalyst section, carbon deposition occurs, and the entire fuel reformer stops.
[0008]  [0008]
さらに、 上記のような家庭用小型燃料電池システムにあっては、 気体燃 料と液体燃料の使用が要求される。 運転のスタート時には補助の点火器を 使用せざるを得ないが、 運転開始後はこの補助燃焼器をできる限り短時間 で必要でない状態にし、 しかも圧力変動等の外乱があっても燃焼が停止し ない方法を採用することが必要である。  Furthermore, the use of gaseous fuel and liquid fuel is required in the above-mentioned small-sized home fuel cell system. At the start of operation, an auxiliary igniter must be used, but after the start of operation, this auxiliary combustor is made unnecessary in as short a time as possible, and combustion stops even if there is a disturbance such as pressure fluctuation. It is necessary to adopt no method.
[0009]  [0009]
本発明は上記のことに鑑みなされたもので、 公害物質である N O Xの発 生及び未燃分の残留がなく、 小型で、 しかも少々の外乱があっても安定し た燃焼ガスを得ることができるようにした燃焼器を提供することを目的と するものである。 The present invention has been made in view of the above, and it is possible to obtain a compact combustion gas that is free from the generation of NOX as a pollutant and does not remain unburned, and that is stable even with a slight disturbance. The purpose is to provide a combustor that can To do.
発明の開示 Disclosure of the invention
[0010]  [0010]
第 1の発明は、 点火器を備えたベンチユリ一管型の燃料 ·空気混合器の 下流に、 酸化触媒機能を有するセラミック燃焼筒を配した燃焼器である。  The first invention is a combustor in which a ceramic combustion cylinder having an oxidation catalyst function is disposed downstream of a bench-lily single-tube fuel / air mixer equipped with an igniter.
[0011]  [0011]
第 2の発明は、 第 1の発明において、 ベンチユリ一管型の燃料 '空気混 合器の先端に、 混合気がセラミック燃焼筒内で渦流となるようにする渦流 発生器を設けた燃焼器である。  The second invention is a combustor according to the first invention, wherein a vortex generator is provided at the tip of a bench-lily single-tube type fuel 'air mixer so that the mixture becomes a vortex in the ceramic combustion cylinder. is there.
[0012]  [0012]
第 3の発明は、 第 1又は第 2の発明において、 セラミック燃焼筒の下流 の先端部分を頭部が閉鎖された円筒状の覆体で覆ってこのセラミック燃焼 筒の先端周囲に更に燃焼室を形成し、 この覆体の円筒状基端部に燃焼ガス 流出孔を設けた燃焼器である。  According to a third invention, in the first or second invention, the downstream end portion of the ceramic combustion cylinder is covered with a cylindrical cover whose head is closed, and a combustion chamber is further provided around the tip of the ceramic combustion cylinder. It is a combustor formed and provided with a combustion gas outflow hole at the cylindrical base end of the cover.
[0013]  [0013]
第 4の発明は、 第 3の発明において、 覆体の外周面に放射促進性の塗料 を塗布した燃焼器である。  A fourth invention is the combustor according to the third invention, wherein a radiation promoting paint is applied to the outer peripheral surface of the cover.
[0014]  [0014]
第 5の発明は、 第 3又は第 4の発明において、 セラミック燃焼筒と覆体 の基端部との間に酸化触媒層を設けた燃焼器である。  A fifth invention is the combustor according to the third or fourth invention, wherein an oxidation catalyst layer is provided between the ceramic combustion cylinder and the base end portion of the cover.
[0015]  [0015]
第 1の発明によれば、 例えば、 現在開発が進んでいる家庭用小型燃料電 池システムの燃料改質装置に使用するボイラーの燃焼器として好適な、 小 型の燃焼室を有していると共に、 燃焼効率が良く且つ安定的に燃焼が可能 な燃焼器を得ることができる。 According to the first invention, for example, it has a small combustion chamber suitable as a combustor for a boiler used in a fuel reformer of a small-sized domestic fuel cell system that is currently being developed. Combustion efficiency is good and stable combustion is possible A simple combustor can be obtained.
[0016]  [0016]
第 2の発明によれば、 混合気が酸化触媒に十分接蝕するため、 より安定 した燃焼が可能な燃焼器を得ることができる。  According to the second invention, since the air-fuel mixture sufficiently corrodes the oxidation catalyst, a combustor capable of more stable combustion can be obtained.
[0017]  [0017]
第 3の発明によれば、 セラミック燃焼筒から流出した燃焼ガスは、 覆体 で構成される燃焼室にてさらにその燃焼が促進される。  According to the third invention, combustion of the combustion gas flowing out from the ceramic combustion cylinder is further promoted in the combustion chamber constituted by the cover.
[0018]  [0018]
第 4の発明によれば、 覆体の外面から放射熱を被加熱部に放射すること ができるので、 被加熱部の加熱を促進することができる。  According to the fourth aspect of the invention, since the radiant heat can be radiated from the outer surface of the cover to the heated part, the heating of the heated part can be promoted.
[0019]  [0019]
第 5の発明によれば、 覆体内の燃焼室から通孔を通って外部に流出する 燃焼ガスが酸化機能を有する触媒層を通るので、 仮にセラミック燃焼筒内 で燃焼した燃焼ガス中に未燃分が残留していたとしても、 この触媒層を通 る間にこの未燃分を完全に燃焼させることができる。 図面の簡単な説明  According to the fifth aspect of the invention, since the combustion gas flowing out from the combustion chamber in the cover through the through hole passes through the catalyst layer having an oxidation function, it is assumed that the combustion gas burned in the ceramic combustion cylinder is unburned in the combustion gas. Even if a minute remains, the unburned component can be completely burned while passing through the catalyst layer. Brief Description of Drawings
[0020]  [0020]
図 1は、 本発明による燃焼器の第 1の実施例の要部を示す断面図である 。  FIG. 1 is a cross-sectional view showing a main part of a first embodiment of a combustor according to the present invention.
図 2は、 図 1の第 1の実施例の燃焼器が使用されたボイラーの一実施例 を示す断面図である。  FIG. 2 is a cross-sectional view showing an embodiment of a boiler in which the combustor of the first embodiment of FIG. 1 is used.
図 3は、 本発明による燃焼器の第 2の実施例と、 それを備えたボイラー の他の実施例とを示す断面図である。 発明を実施するための最良の形態 FIG. 3 is a cross-sectional view showing a second embodiment of a combustor according to the present invention and another embodiment of a boiler provided with the same. BEST MODE FOR CARRYING OUT THE INVENTION
[0021]  [0021]
本発明の第 1の実施の形態を図 1及び図 2に基づいて説明する。 図 1は 本発明の燃焼器の要部を示す断面図、 図 2は本発明の燃焼器を使用したポ イラ一の一例を示す断面図である。  A first embodiment of the present invention will be described with reference to FIG. 1 and FIG. FIG. 1 is a cross-sectional view showing the main part of the combustor of the present invention, and FIG. 2 is a cross-sectional view showing an example of a boiler using the combustor of the present invention.
[0022]  [0022]
図 1において、 1は同心円状に配置された内筒 2と外筒 3とからなるボ イラ一本体、 4はこのボイラー本体 1の下端部に設けた本発明に係る燃焼 器であって、 この燃焼器 4で発生した高温の燃焼ガスがボイラー本体 1の 内筒 2の内面側に供給されることによって内筒 2の内面が加熱されて、 同 心円状に配置された内筒 2と外筒 3の間に形成された熱媒体ジャケッ ト 5 内に供給された水 (蒸発媒体) が加熱されて高温のスチームを発生するよ うになっている。 ボイラー本体 1の下端には蒸発媒体用の熱媒体ジャケッ ト 5を閉じるボイラー下部フランジ 6がー体結合されており、 このボイラ 一下部フランジ 6に燃焼器 4の外周部に一体に設けた燃焼器フランジ 7が ボルト 8, ナット 9にて結合されることにより、 燃焼器 4がボイラー本体 1の下端部に、 燃焼器 4の最上部に位置する覆体 1 0がボイラー本体 1の 内筒 2内に突入した状態で結合されるようになっている。  In FIG. 1, 1 is a boiler body composed of an inner cylinder 2 and an outer cylinder 3 arranged concentrically, and 4 is a combustor according to the present invention provided at the lower end of the boiler body 1. The high temperature combustion gas generated in the combustor 4 is supplied to the inner surface of the inner cylinder 2 of the boiler body 1 so that the inner surface of the inner cylinder 2 is heated, and the inner cylinder 2 arranged concentrically with the outer cylinder 2 The water (evaporation medium) supplied in the heat medium jacket 5 formed between the cylinders 3 is heated to generate high-temperature steam. A boiler lower flange 6 that closes the heating medium jacket 5 for the evaporation medium is coupled to the lower end of the boiler body 1. By connecting the flange 7 with the bolt 8 and the nut 9, the combustor 4 is located at the lower end of the boiler body 1 and the cover 10 located at the top of the combustor 4 is located in the inner cylinder 2 of the boiler body 1. It is designed to be joined in the state of rushing into.
[0023]  [0023]
燃焼器 4は、 上記燃焼ガスが噴出するセラミック燃焼筒 1 4を含む燃焼 部 1 1と、 この燃焼部 1 1に燃料と空気を混合した燃料 Z空気混合気を供 給する燃料供給部 1 2とからなっている。  The combustor 4 includes a combustion unit 11 including a ceramic combustion cylinder 14 from which the combustion gas is ejected, and a fuel supply unit 1 2 for supplying a fuel Z air mixture obtained by mixing fuel and air to the combustion unit 11. It is made up of.
燃焼部 1 1は、 最上方にあって内側に燃焼室 1 3を構成する燃焼室形成 用覆体 1 0と、 この覆体の軸心部に配置され且つ上端を燃焼室 1 3内に解 放したセラミック燃焼筒 1 4と、 このセラミック燃焼筒の下部の外側を囲 繞するようにして配置されたセラミックスにて構成された断熱体 1 5 a, 1 5 b , 1 5 cと、 これらの断熱体を囲繞する枠体 1 6とからなっていて、 枠体 1 6は燃焼器フランジ 7に固定されている。 Combustion section 11 is located at the uppermost position and has a combustion chamber forming cover 10 that forms combustion chamber 13 inside, and is disposed at the axial center of the cover, and the upper end is opened into combustion chamber 13. The released ceramic combustion cylinder 14 and the outside of the bottom of this ceramic combustion cylinder It is composed of heat insulators 15 5 a, 15 b, 15 c, and a frame 16 surrounding these heat insulators. Is fixed to the combustor flange 7.
[0024]  [0024]
上記覆体 1 0は、 釣鐘状 (あるいは茶筒キャップ状) になっていて、 上 記断熱体 1 5 a, 1 5 b, 1 5 cに被せた状態で設けられており、 これの 円筒状基端部には、 上下方向に長いスリッ ト状の通孔 (燃焼ガス流出孔) 1 7が設けてある。 そして、 覆体 1 0の内部には、 上記通孔 1 7の高さま で酸化機能を有するセラミックス小粒子からなる触媒層 1 8が設けられて いる。 上記セラミック燃焼筒 1 4の上端は、 燃焼室 1 3內において、 覆体 1 0の天井内面との間に所定の間隔 Lを有すると共に、 上記触媒層 1 8の 上面に対して所定の高さ Hを有していて、 セラミック燃焼筒 1 4の上端か ら流出する燃焼ガスは燃焼室 1 3から触媒層 1 8間を通って通孔 1 7より ボイラー本体 1の内筒 2内に流出するようになつている。  The cover 10 has a bell shape (or a tea tube cap shape), and is provided in a state of covering the heat insulators 15 a, 15 b, and 15 c. A slit-like through hole (combustion gas outflow hole) 17 that is long in the vertical direction is provided at the end. Inside the cover 10, a catalyst layer 18 made of ceramic small particles having an oxidation function is provided at the height of the through hole 17. The upper end of the ceramic combustion cylinder 14 has a predetermined distance L between the upper surface of the catalyst layer 18 and the upper surface of the catalyst layer 18 in the combustion chamber 13 天井 with a predetermined distance L from the ceiling inner surface of the cover 10. Combustion gas that has H and flows out from the upper end of the ceramic combustion cylinder 14 flows from the combustion chamber 1 3 through the catalyst layer 1 8 through the through hole 1 7 into the inner cylinder 2 of the boiler body 1. It ’s like that.
[0025]  [0025]
燃料供給部 1 2は、 その上端部に設けた取付けフランジ 2 1を介してポ ルト 2 2にて上記燃焼部 1 1の下面にパッキンを介して固定されるように なっている。  The fuel supply unit 12 is fixed to the lower surface of the combustion unit 11 via a packing via a mounting flange 21 provided at the upper end portion thereof via a packing.
取付けフランジ 2 1には、 これを貫通するようにしてベンチュリー管型 混合器 2 3が固着されている。 このベンチユリ一管型混合器 2 3の出口部 は、 上記燃焼部 1 1のセラミック燃焼筒 1 4と同心状で且つその出口径は セラミック燃焼筒 1 4の内径と略同径になっていて、 これの出口端がセラ ミック燃焼筒 1 4の下端に対接するようになつている。 そして、 この対接 部には渦流発生器 2 4が設けてある。 この渦流発生器 2 4は、 ベンチユリ 一管型混合器 2 3からの混合気流を円周方向へ向ける、 即ちセラミック燃 焼筒 1 4の内周面に沿うような渦流を発生させるような形状とされている A Venturi tube type mixer 23 is fixed to the mounting flange 21 so as to penetrate therethrough. The outlet portion of the bench lily single-tube mixer 2 3 is concentric with the ceramic combustion cylinder 14 of the combustion section 11 1 and its outlet diameter is substantially the same as the inner diameter of the ceramic combustion cylinder 14. The outlet end of this is in contact with the lower end of the ceramic combustion cylinder 14. A vortex generator 24 is provided at the contact portion. This eddy current generator 24 directs the mixed air flow from the bench lily single tube mixer 2 3 in the circumferential direction, that is, ceramic fuel. It has a shape that generates a vortex along the inner peripheral surface of the firing tube 14
[0026] [0026]
ベンチユリ一管型混合器 2 3のスロート部の內周面には、 複数の燃料噴 出孔 2 5が設けられている。 この燃料噴出孔 2 5は、 ベンチユリ一管型混 合器 2 3のスロート部に設けた燃料マユホールド 2 5 aを介して燃科供給 口 2 6に接続されている。  A plurality of fuel injection holes 25 are provided on the circumferential surface of the throat portion of the bench lily single tube mixer 23. The fuel injection hole 25 is connected to the fuel supply port 26 via a fuel handle 25 a provided in the throat portion of the bench lily single pipe mixer 23.
ベンチュリー管型混合器 2 3の軸心部には、 点火器の点火棒導管 2 7が 設けてある。 この点火棒導管 2 7は、 その上端部が渦流発生器 2 4の中央 に固着され且つその下端部がベンチュリー管型混合器 2 3の下方へ突出さ せて設けてある。 そして、 この点火棒導管 2 7には、 点火棒 2 8を、 その 先端が点火棒導管 2 7より突出するように嵌挿してある。  An igniter ignition rod conduit 27 is provided at the axial center of the venturi-type mixer 23. The ignition rod conduit 27 has an upper end fixed to the center of the vortex generator 24 and a lower end projecting downward from the venturi-type mixer 23. An ignition rod 28 is inserted into the ignition rod conduit 27 so that its tip protrudes from the ignition rod conduit 27.
[0027]  [0027]
ベンチュリー管型混合器 2 3の基端部にはクロス形の管継手 2 9が接続 ■ されており、 上記点火棒導管 2 7の下端部はこの管継手 2 9内に位置せし められている。 そして、 この管継手 2 9の上記ベンチユリ一管型混合器 2 3との接続口の延長線と直交する方向の二つの接続口の一方が点火器用電 源棒接続口となっていて、 ここから点火器用電源棒 3 0が揷入してあり、 その先端が接続管 2 9内において上記点火棒 2 8に電気的に接続されるよ うになつている。 また、 上記二つの接続口の他方に燃焼用空気供給口 3 1 が接続されている。 さらに、 管継手 2 8のベンチユリ一管型混合器 2 3と の接続口の延長線上の接続口にベンチュリ一管型混合器 2 3内を透視可能 にした燃焼状態監視口 3 2が接続されている。  A cross-shaped pipe fitting 29 is connected to the base end of the Venturi tube mixer 23, and the lower end of the ignition rod conduit 27 is positioned within the pipe fitting 29. Yes. And one of the two connection ports in the direction orthogonal to the extension line of the connection port of the pipe joint 29 to the bench lily one-pipe mixer 23 is an igniter power rod connection port, A power rod 30 for the igniter is inserted from the end, and the tip thereof is electrically connected to the ignition rod 28 in the connection pipe 29. A combustion air supply port 3 1 is connected to the other of the two connection ports. Furthermore, a combustion state monitoring port 3 2 that allows the inside of the venturi single-pipe mixer 2 3 to be seen through is connected to the connection port on the extension line of the connection port of the pipe joint 28 with the bench lily single-pipe mixer 2 3. Yes.
[0028]  [0028]
図 1に示されたボイラー本体 1に対する燃焼器 4の作用を以下に説明す る。 The operation of the combustor 4 on the boiler body 1 shown in Fig. 1 is described below. The
[0029]  [0029]
燃料供給部 1 2の空気供給口 3 1より燃焼用空気を供給すると共に、 燃 料供給口 2 6より供給される燃料を燃料噴出口 2 5よりベンチュリ一管型 混合器 2 3のスロート部に噴出することにより、 この空気と燃料はこのス ロート部よりベンチュリ一管型混合器 2 3の出口に至る間で混合されて燃 料/空気混合気 (以下混合気という) となってベンチユリ一管型混合器 2 3の出口からセラミック燃焼筒 1 4内に流入する。 このとき、 セラミック 燃焼筒 1 4内に流入する混合気は、 渦流発生器 2 4によりセラミック燃焼 筒 1 4の内周面に沿った渦流となっている。 そして、 この状態で点火器用 電源棒 3 0に通電して点火棒 2 8の先端にスパークを形成して上記混合気 を点火する。  Combustion air is supplied from the air supply port 3 1 of the fuel supply unit 1 2, and the fuel supplied from the fuel supply port 2 6 is supplied to the throat portion of the venturi single-tube mixer 2 3 from the fuel injection port 2 5. By blowing out, this air and fuel are mixed from this slot to the outlet of the venturi single-pipe mixer 23 to form a fuel / air mixture (hereinafter referred to as a mixture). It flows into the ceramic combustion cylinder 14 from the outlet of the mold mixer 2 3. At this time, the air-fuel mixture flowing into the ceramic combustion cylinder 14 becomes a vortex along the inner peripheral surface of the ceramic combustion cylinder 14 by the vortex generator 24. In this state, the igniter power rod 30 is energized to form a spark at the tip of the ignition rod 28 to ignite the mixture.
[0030]  [0030]
これにより混合気は燃焼を開始する。 そして、 この点火後は、 混合気の 燃料と空気の混合割合の濃淡にも影響されるが、 2分以内で火花を止めて も、 セラミック燃焼筒 1 4が酸化触媒として機能する温度以上に加熱され ていれば、 上記燃焼は継続する。  As a result, the air-fuel mixture starts to burn. After ignition, it is influenced by the mixture ratio of fuel and air in the mixture, but even if the spark is stopped within 2 minutes, the ceramic combustion cylinder 14 is heated above the temperature at which it functions as an oxidation catalyst. If so, the combustion will continue.
[0031〕  [0031]
上記燃焼に液体燃料 (例えば灯油) を使用する場合には、 この燃料自体 は常温の状態で供給するが、 燃焼用空気は 2 ◦ 0〜2 5 0 °C程度に予熱し て供給する。 この実施例の構成では気体燃料も用いることができる。  When liquid fuel (such as kerosene) is used for the above combustion, the fuel itself is supplied at room temperature, but the combustion air is supplied preheated to about 2 ° 0 to 25 ° C. In the configuration of this embodiment, gaseous fuel can also be used.
[0032]  [0032]
点火された混合気は燃焼を開始し、 その燃焼ガスはセラミック燃焼筒 1 4の内部を、 その内周壁に沿って上方へ流れる。 この結果、 セラミック燃 焼筒 1 4自身は、 触媒活性温度以上に昇温させられることとなる。 この結 果、 セラミック燃焼筒 1 4が昇温させられた時点で点火棒 2 8による点火 を停止しても、 ベンチユリ一管型混合器 2 3からの混合気が触媒活性温度 以上に昇温させられたセラミック燃焼筒 1 4の内周面に接触することによ り、 この混合気に直ちに酸化反応が生じ、 燃焼は継続することとなる。 The ignited air-fuel mixture starts to combust, and the combustion gas flows upward along the inner peripheral wall of the ceramic combustion cylinder 14. As a result, the ceramic combustion cylinder 14 itself is heated to a temperature higher than the catalyst activation temperature. This result As a result, even when the ignition by the ignition rod 28 was stopped when the ceramic combustion cylinder 14 was heated, the mixture from the bench-lily single-tube mixer 23 was raised to the catalyst activation temperature or higher. By contacting the inner peripheral surface of the ceramic combustion cylinder 14, an oxidation reaction immediately occurs in this air-fuel mixture, and combustion continues.
[0033]  [0033]
このような燃焼はセラミック燃焼筒 1 4の上方 (下流側) へ行くに従つ て激しくなり、 セラミック燃焼筒 1 4の上端部で混合気の大部分が燃焼さ せられる。 なお、 このときの燃焼状態はセラミック燃焼筒 1 4の長さによ つて影響される。 このことから、 このセラミック燃焼筒 1 4の長さは燃料 供給部 1 2から供給される混合気の大部分が燃焼させられる長さに設計す る。  Such combustion becomes intense as it goes upward (downstream) of the ceramic combustion cylinder 14, and most of the air-fuel mixture is combusted at the upper end of the ceramic combustion cylinder 14. The combustion state at this time is affected by the length of the ceramic combustion cylinder 14. For this reason, the length of the ceramic combustion cylinder 14 is designed such that most of the air-fuel mixture supplied from the fuel supply section 12 is combusted.
[0034]  [0034]
セラミック燃焼筒 1 4に供給される混合気は一様の濃度に混合されてい るので、 このセラミック燃焼筒 1 4内での燃燒反応は非常に速い。 例えば 、 混合気の理論燃焼温度が 1 4 0 0〜 1 6 0 0 °C位のときには 7ノ1 0 0 0秒位の燃焼速度を示す。 そのため、 セラミック燃焼筒 1 4の材質は以下 に示す性質を有するものが望ましい。  Since the air-fuel mixture supplied to the ceramic combustion cylinder 14 is mixed at a uniform concentration, the combustion reaction in the ceramic combustion cylinder 14 is very fast. For example, when the theoretical combustion temperature of the air-fuel mixture is about 1400 to 1600 ° C., it indicates a combustion speed of about 7 to 100 seconds. Therefore, it is desirable that the material of the ceramic combustion cylinder 14 has the following properties.
[0035]  [0035]
すなわち、 上述した酸化機能を有するセラミック燃焼筒 1 4の必要な条 件とは、 (1 ) 耐熱衝撃性に強いこと、 (2 ) 触媒活性温度が低いこと、 ( 3 ) 放射率が高いこと、 (4 ) 高温度での機械的強度が高いこと、 ( 5 ) 熱伝動度が高いこと、 である。  That is, the necessary conditions for the above-mentioned ceramic combustion cylinder 14 having an oxidation function are: (1) strong thermal shock resistance, (2) low catalyst activation temperature, (3) high emissivity, (4) High mechanical strength at high temperature, (5) High heat conductivity.
[0036]  [0036]
このような性質を有するセラミックスとしては、 S i C , S i 3 N 4 , Z r 0 2及び Z r O。に 5〜 2 0 %の他の金属酸化物を添加したもの等が 適している。 The ceramics having such properties, S i C, S i 3 N 4, Z r 0 2 and Z r O. To which 5 to 20% of other metal oxides are added Is suitable.
[0037]  [0037]
S i C, S i 3N4の S iの非酸化物のセラミックスは触媒活性温度が 6 40〜6 45 °Cと割合髙いが、 それ以外は上記条件を満足するので実用上 充分使用可能である。 また、 Z r 02単体は触媒活性温度が 4 6 5°Cを示 すが、 C o O, C r 23, Mn02, L a 2 O 3, S n02, Ύ 2 O 3, T b O 2及ぴ M g Oを 5 %から 20 %まで混合したものは触媒活性温度を 3 3 0 から 4 9 7°C程度まで低下させることが可能である (第 9回触媒燃焼 に関するシンポジウム (平成 2年 5月 2 5 日) で発表された 「Z r 02複 合酸化物による触媒燃焼」 参照) 。 S i C, S i 3 N 4 S i non-oxide ceramics have a catalytic activity temperature of 640 to 6 45 ° C, but other than this, the above conditions are satisfied. It is. In addition, Zr 0 2 alone has a catalyst activation temperature of 4 65 ° C, but C o O, C r 2 0 3 , Mn0 2 , La 2 O 3 , S n0 2 , Ύ 2 O 3 , T b O 2及Pi M g O a mixture from 5% to 20% is capable of decreasing the catalytic activity temperature from 3 3 0 to 4 9 7 ° about C (9th Symposium on catalytic combustion (See “Catalytic Combustion with Zr 0 2 Composite Oxide” published on May 25, 1990).
[0038]  [0038]
上述の (1 ) の耐熱衝撃性に強いことが必要なのは、 燃焼速度が速いた め、 セラミック燃焼筒 1 4の内側から受ける熱量の変化が大きいことによ るためである。 即ち、 セラミ ック燃焼筒 1 4が受ける熱量の変化が大きい とセラミック燃焼筒 14自身の温度変化が大きく、 セラミック燃焼筒 1 4 の肉厚を厚くするとセラミック燃焼筒 1 4内部の温度差が大きくなって、 セラミック燃焼筒 1 4が熱衝撃で破壊されてしまうからである。 これを防 止するためには、 (5) の熱伝導度が高いことが要求されるのである。 ま た、 熱伝導度が高いことは、 燃焼ガスの下流側で受けた熱を上流側へ伝え るのに適し、 また (3) の放射率の高いことも同様の作用効果を発揮する  The reason why the thermal shock resistance (1) described above is required to be strong is that the amount of heat received from the inside of the ceramic combustion cylinder 14 is large because the combustion speed is high. That is, if the change in the amount of heat received by the ceramic combustion cylinder 14 is large, the temperature change of the ceramic combustion cylinder 14 itself is large, and if the thickness of the ceramic combustion cylinder 14 is increased, the temperature difference inside the ceramic combustion cylinder 14 is large. This is because the ceramic combustion cylinder 14 is destroyed by thermal shock. In order to prevent this, the thermal conductivity of (5) is required to be high. In addition, the high thermal conductivity is suitable for transferring the heat received on the downstream side of the combustion gas to the upstream side, and the high emissivity of (3) exhibits the same effect.
[0039] [0039]
セラミック燃焼筒 14内にて発生した燃焼ガスは、 セラミック燃焼筒 1 4の先端から燃焼室 1 3へ流入し、 この燃焼室 1 3を構成する覆体 1 0の 内面に沿って下方へ方向を変え、 触媒層 1 8を通って通孔 1 7よりボイラ 一本体 1の内筒 2内に流出させられる。 Combustion gas generated in the ceramic combustion cylinder 14 flows into the combustion chamber 13 from the tip of the ceramic combustion cylinder 14 and moves downward along the inner surface of the cover 10 constituting this combustion chamber 13. Change the boiler through catalyst hole 1 8 through hole 1 7 It flows out into the inner cylinder 2 of the main body 1.
[0040]  [0040]
このとき燃焼させられる燃焼ガスは、 これが通過する流路の容積が小さ く且つ冷壁面で囲繞されている場合には燃焼が不十分となり、 この燃焼ガ ス中に未燃分が残ってしまう恐れがあるが、 この燃焼部 1 1では、 セラミ ック燃焼筒 1 4からの燃焼ガスは、 覆体 1 0にて構成された比較的大きな 空間になっている燃焼室 1 3に流入するので燃焼が十分続行されて高温 ( 1 5 0 0〜 1 7 0 0 °C) となり、 燃焼ガスの未燃分は略完全に燃焼させら れる。  The combustion gas burned at this time may have insufficient combustion if the volume of the passage through which it passes is small and is surrounded by a cold wall, leaving unburned gas in the combustion gas. However, in this combustion section 11, the combustion gas from the ceramic combustion cylinder 14 flows into the combustion chamber 13, which is a relatively large space formed by the cover 10, and thus burns. Is sufficiently continued to reach a high temperature (1500 to 1700 ° C), and the unburned part of the combustion gas is almost completely combusted.
[0041]  [0041]
そして、 上記燃焼室 1 3内の燃焼ガスは、 この燃焼室 1 3を構成してい る覆体 1 0の内面に沿って下方へ流れを変え、 触媒層 1 8を通った後、 通 孔 1 7よりボイラー本体 1の内筒 2内に流入し、 この内筒 2の内面を加熱 する。 そして、 このとき燃焼ガスが触媒層 1 8のセラミックス小粒子に接 触することにより、 燃焼ガス中の未燃分が完全燃焼させられる。 そして、 この触媒層 1 8の存在により、 燃科と燃焼用空気の圧力変動により燃焼が 停止するのが防止される。  The combustion gas in the combustion chamber 13 changes its flow downward along the inner surface of the cover 10 constituting the combustion chamber 13, passes through the catalyst layer 18, and then passes through the hole 1. 7 flows into the inner cylinder 2 of the boiler body 1 and heats the inner surface of the inner cylinder 2. At this time, the combustion gas comes into contact with the small ceramic particles of the catalyst layer 18 so that the unburned components in the combustion gas are completely burned. The presence of the catalyst layer 18 prevents combustion from stopping due to pressure fluctuations in the fuel and combustion air.
[0042]  [0042]
上記触媒層 1 8を構成する酸化機能を有するセラミ ックス小粒子は S i Cの中空粒子が有利である。  The ceramic small particles having an oxidation function constituting the catalyst layer 18 are preferably SiC hollow particles.
[0043]  [0043]
上記実施例に示した燃焼器 4について、 家庭用の燃料電池システムのス チーム発生用の燃焼器としての一例としての各部材の寸法をあげれば、 セ ラミック燃焼筒 1 4の内径は 2 0 m m , 厚みは 2 . 5 m m、 長さは 4 0 m mであり、 また覆体 1 0の内径は 5 O m m、 そして図 1に示した Hの寸法 は 1 0 mm、 Lの寸法は 1 5 mmである。 Regarding the combustor 4 shown in the above embodiment, if the dimensions of each member as an example of a combustor for generating steam in a household fuel cell system are given, the inner diameter of the ceramic combustion cylinder 14 is 20 mm. , The thickness is 2.5 mm, the length is 40 mm, and the inner diameter of the cover 10 is 5 O mm, and the dimension of H shown in FIG. Is 10 mm and the dimension of L is 15 mm.
[0044]  [0044]
以上、 図 1に示した燃焼器は、 家庭用の燃料電池システムのスチーム発 生器用のボイラー本体 1に適用した例を示すものであり、 このボイラー本 体 1の熱媒体ジャケッ ト 5に充満している水が沸騰させられ、 発生したス チームが熱媒体ジャケッ ト 5の上部に接続したスチーム管より導出される ものである。 この場合、 覆体 1 0を長期間使用するためには、 高温ガスか ら受けた熱をできる限り熱媒体ジャケット 5側へ伝熱する必要があるが、 この実施例では、 鋼製の覆体 1 0の外周面に放射促進性塗料、 例えば放射 率が 9 2 %以上の放射塗料を塗布することにより、 燃焼部 1 1において理 論燃焼温度が 1 6 0 0 °Cの燃焼ガスを発生しても覆体 1 0の壁部の温度は 9 5 0 °C以下とすることができるので、 この放射促進性塗料を塗布するこ とにより覆体 1 0は長期間の使用に耐えることができることとなる。  As described above, the combustor shown in FIG. 1 is an example applied to a boiler body 1 for a steam generator of a household fuel cell system, and the heat medium jacket 5 of the boiler body 1 is filled. The generated water is boiled and the generated steam is led out from the steam pipe connected to the top of the heat medium jacket 5. In this case, in order to use the cover 10 for a long period of time, it is necessary to transfer the heat received from the high-temperature gas to the heat medium jacket 5 as much as possible. In this embodiment, the cover made of steel is used. Applying a radiation-promoting paint, such as a radiation paint with an emissivity of 92% or more, to the outer peripheral surface of 10 generates combustion gas with a theoretical combustion temperature of 1600 ° C in the combustion section 1 1 Even so, the temperature of the wall of the cover 10 can be 9500 ° C or less, so that the cover 10 can withstand long-term use by applying this radiation promoting paint. It becomes.
[0045]  [0045]
図 2は、 本発明に係る燃焼器 4を用いたボイラーの一実施例を示すもの で、 ボイラー本体 1の内筒 2内で且つ燃焼部 1 1の上方に、 多数の水管 3 3 , 3 3…からなる熱交換部 3 4を配置した構成になっている。 なお、 内 筒 2の内側に排気管 4 0が接続されている。  FIG. 2 shows an embodiment of a boiler using the combustor 4 according to the present invention. A large number of water pipes 3 3, 3 3 are disposed in the inner cylinder 2 of the boiler body 1 and above the combustion section 11. It has a configuration in which a heat exchanging part 3 4 comprising: An exhaust pipe 40 is connected to the inside of the inner cylinder 2.
熱交換部 3 4の上方には水受けタンク 3 5が設けてあり、 この水受けタ ンク 3 5に水の供給管 3 6が接続されている。 そして、 熱交換部 3 4の各 水管 3 3の入口部 3 3 aは水受けタンク 3 5に接続されており、 出口部が 出口室 3 7に接続されている。 この出口室 3 7は熱交換部 3 4を支持する 支持板 3 9の上部と水受けタンク 3 5の底部との間に形成された空間であ つて、 ボイラー本体 1の熱媒体ジャケット 5から気液混合状態で蒸発して きたものと熱交換部 3 4の出口から気液混合状態で蒸発してきたものが共 に出口室 3 7で気液分離される。 そして、 出口室 3 7が導管 3 8で熱媒体 ジャケッ ト 5の下部に連通させられているので、 分離された液状の媒体 ( 熱水) は循環して蒸発するための熱を吸収する。 一方、 液体が大部分分離 された気液混合の蒸気はボイラー本体 1の内管 2と水受けタンク 3 5の外 筒部との間の空間を上昇して水受けタンク 3 5の上部にて気液分離され、 分離された蒸気は蒸気取出し管 4 1から外部に取り出され、 分離された熱 水は水受けタンク 3 5に溜まる。 A water receiving tank 3 5 is provided above the heat exchanging section 3 4, and a water supply pipe 3 6 is connected to the water receiving tank 3 5. The inlet 3 3 a of each water pipe 3 3 of the heat exchange section 3 4 is connected to the water receiving tank 3 5, and the outlet is connected to the outlet chamber 3 7. The outlet chamber 37 is a space formed between the upper part of the support plate 39 supporting the heat exchanging part 34 and the bottom of the water receiving tank 35, and the air is discharged from the heat medium jacket 5 of the boiler body 1. What has evaporated in the liquid-mixed state and what has evaporated in the gas-liquid mixed state from the outlet of the heat exchange section 34 The gas and liquid are separated in the outlet chamber 37. Since the outlet chamber 37 is communicated with the lower part of the heat medium jacket 5 through the conduit 38, the separated liquid medium (hot water) absorbs heat for circulating and evaporating. On the other hand, the vapor of the gas-liquid mixture from which most of the liquid has been separated rises in the space between the inner tube 2 of the boiler body 1 and the outer cylinder part of the water receiving tank 35, and in the upper part of the water receiving tank 35. Gas-liquid separation is performed, and the separated steam is taken out from the steam outlet pipe 41, and the separated hot water is collected in the water receiving tank 35.
[0046]  [0046]
このようなボイラーでは、 燃焼器 4の燃焼部 1 1よりボイラー本体 1の 内筒 2内に流入した燃焼ガスの熱は、 内筒 2の內面から熱媒体ジャケット 5に直接作用すると共に、 熱交換部 3 4にても熱交換されて熱媒体ジャケ ット 5に給水される水を予熱することができ、 燃焼部 1 1に発生した燃焼 ガスの熱を有効に用いることができる。  In such a boiler, the heat of the combustion gas flowing into the inner cylinder 2 of the boiler body 1 from the combustion section 1 1 of the combustor 4 directly acts on the heat medium jacket 5 from the inner surface of the inner cylinder 2 and heat The heat exchanged in the exchanging part 34 can also preheat the water supplied to the heat medium jacket 5 and can effectively use the heat of the combustion gas generated in the combusting part 11.
[0047]  [0047]
上記実施例において、 燃焼器 4の燃焼部 1 1において、 セラミック燃焼 筒 1 4の長さを適当にすることにより、 そこだけで燃料供給部 1 2のベン チユリ一管型混合器 2 3から供給された混合気を未燃分が殆どない状態に まで燃焼させることができる場合には、 燃焼室 1 3を構成するための覆体 1 0を省略することができる (覆体 1 0を省略した実施例については後述 ) 。  In the above embodiment, by appropriately making the length of the ceramic combustion cylinder 14 in the combustion section 11 of the combustor 4, the fuel supply section 1 2 is supplied from the venturi one-pipe mixer 2 3 alone. When the burned air-fuel mixture can be burned to a state where there is almost no unburned portion, the cover 10 for constituting the combustion chamber 13 can be omitted (the cover 10 is omitted). Examples will be described later).
[0048]  [0048]
また、 上記覆体 1 0を備えた場合でも、 この覆体 1 0内に構成される燃 焼室での燃焼が行われて、 燃焼ガス中の未燃分が完全に燃焼させられるな らば、 覆体 1 0の通孔 1 7を塞ぐようにして入れた触媒層 1 8はなくても よい。 [0049] Further, even when the cover 10 is provided, if the combustion in the combustion chamber configured in the cover 10 is performed and the unburned components in the combustion gas are completely burned. The catalyst layer 18 inserted so as to close the through hole 17 of the cover 10 may be omitted. [0049]
以上の実施例においては、 セラミック燃焼筒 1 4の出口側には覆体 1 0 が配設されていたが、 先述のように燃焼器 4の燃焼部 1 1において、 セラ ミック燃焼筒 1 4の長さを適当にすることにより、 そこだけで燃料供給部 1 2のベンチュリー管型混合器 2 3から供給された混合気を未燃分が殆ど ない状態にまで燃焼させることができる場合には、 燃焼室 1 3を構成する ための覆体 1 0を省略することができる。 これを第 2の実施例として、 図 3に示す。 図 3に示す第 2の実施例においては、 セラミック燃焼筒 1 4の 出口側は、 内部にセラミック燃焼筒 1 4からの燃焼ガスを半径方向外側へ 導出するための多数の案内通路 1 9を備えた断熱体 1 5 dで閉鎖されてい る。 この断熱体 1 5 dから円周方向外側に導出された燃焼ガスは、 図 3の 上方に排出される過程において、 内筒 2と外筒 3との間の空間內に多数の 垂直下降水管 4 2が円周方向に間隔をおいて配置されてなるボイラ一本体 1の内筒 2と、 このボイラー本体 1の中央領域に配置された多数の水管 3 3の各外壁を加熱する。  In the above embodiment, the cover 10 is disposed on the outlet side of the ceramic combustion cylinder 14. However, as described above, in the combustion section 11 of the combustor 4, the ceramic combustion cylinder 14 If the air-fuel mixture supplied from the venturi-type mixer 2 3 of the fuel supply unit 1 2 can be combusted to a state where there is almost no unburned fuel by appropriately adjusting the length, The cover 10 for constituting the combustion chamber 13 can be omitted. This is shown in FIG. 3 as a second embodiment. In the second embodiment shown in FIG. 3, the outlet side of the ceramic combustion cylinder 14 is provided with a large number of guide passages 19 for deriving the combustion gas from the ceramic combustion cylinder 14 radially outward. It is closed with 15 d of insulation. The combustion gas led out of the heat insulator 15 d in the outer circumferential direction is discharged in the upper part of FIG. 3, and a number of vertical descending water pipes 4 are placed in the space between the inner cylinder 2 and the outer cylinder 3. The inner cylinder 2 of the boiler main body 1 in which 2 is arranged at intervals in the circumferential direction and the outer walls of a large number of water pipes 33 arranged in the central region of the boiler main body 1 are heated.
[0050]  [0050]
なお、 図 3の第 2の実施例においては、 図 1の第 1の実施例とは異なり 、 セラミック燃焼筒 1 4が酸化触媒として機能する温度以上になることを 期待し得ない燃焼部 1 1の上流領域については、 セラミック燃焼筒 1 4を 省略し、 代わりにその省略した部分には、 断熱体 1 5 aがセラミック燃焼 筒 1 4の内径と同径の燃焼路を形成している。 このような構造は、 セラミ ック燃焼筒の材料費を節約できるので、 コスト的に有利である。 また、 こ の構造は、 改質器の加熱用、 又は固形酸化物を利用する燃料電池のスター ト時の加熱用としても用いることができる。  In the second embodiment shown in FIG. 3, unlike the first embodiment shown in FIG. 1, the combustion section 11 cannot be expected to reach a temperature at which the ceramic combustion cylinder 14 functions as an oxidation catalyst. In the upstream region, the ceramic combustion cylinder 14 is omitted, and instead, in the omitted part, the heat insulator 15 a forms a combustion path having the same diameter as the inner diameter of the ceramic combustion cylinder 14. Such a structure is advantageous in terms of cost because it can save the material cost of the ceramic combustion cylinder. This structure can also be used for heating a reformer or for starting a fuel cell using a solid oxide.

Claims

請求の範囲 The scope of the claims
1 . 点火器を備えたベンチユリ一管型の燃料 ·空気混合器の下流に、 酸化 触媒機能を有するセラミック燃焼筒を配したことを特徴とする燃焼器。 1. A combustor characterized in that a ceramic combustion cylinder having an oxidation catalyst function is arranged downstream of a bench lily single pipe type fuel / air mixer equipped with an igniter.
2 . ベンチユリ一管型の燃料 ·空気混合器の先端に、 混合気がセラミック 燃焼筒內で渦流となるようにする渦流発生器を設けたことを特徴とする請 求項 1記載の燃焼器。 2. The combustor according to claim 1, wherein a vortex generator is provided at the tip of the bench lily single pipe type fuel / air mixer so that the air-fuel mixture becomes a vortex in the ceramic combustion cylinder.
3 . セラミック燃焼筒の下流の先端部分を頭部が閉鎖された円筒状の覆体 で覆ってこのセラミック燃焼筒の先端周囲に更に燃焼室を形成し、 この覆 体の円筒状基端部に燃焼ガス流出孔を設けたことを特徴とする請求項 1又 は 2記載の燃焼器。 3. The downstream end of the ceramic combustion cylinder is covered with a cylindrical cover with the head closed, and a further combustion chamber is formed around the tip of the ceramic combustion cylinder. At the cylindrical base end of the cover The combustor according to claim 1 or 2, further comprising a combustion gas outflow hole.
4 . 覆体の外周面に放射促進性の塗料を塗布したことを特徴とする請求項 3記載の燃焼器。 4. The combustor according to claim 3, wherein a radiation promoting paint is applied to the outer peripheral surface of the cover.
5 . セラミック燃焼筒と覆体の基端部との間に酸化触媒層を設けたことを 特徴とする請求項 3又は 4記載の燃焼器。 5. The combustor according to claim 3, wherein an oxidation catalyst layer is provided between the ceramic combustion cylinder and the base end of the cover.
PCT/JP2007/060565 2006-05-30 2007-05-17 Combustor WO2007138962A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CA002649212A CA2649212A1 (en) 2006-05-30 2007-05-17 Combustor
US12/302,775 US20090239181A1 (en) 2006-05-30 2007-05-17 Combustor
EP07743999A EP2023040A1 (en) 2006-05-30 2007-05-17 Combustor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006150258A JP2007322019A (en) 2006-05-30 2006-05-30 Combustor
JP2006-150258 2006-05-30

Publications (1)

Publication Number Publication Date
WO2007138962A1 true WO2007138962A1 (en) 2007-12-06

Family

ID=38778482

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/060565 WO2007138962A1 (en) 2006-05-30 2007-05-17 Combustor

Country Status (7)

Country Link
US (1) US20090239181A1 (en)
EP (1) EP2023040A1 (en)
JP (1) JP2007322019A (en)
KR (1) KR20090025272A (en)
CN (1) CN101443593A (en)
CA (1) CA2649212A1 (en)
WO (1) WO2007138962A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1397333B1 (en) * 2009-06-26 2013-01-10 Ergo Design S R L BURNER
SE537092C2 (en) 2011-09-08 2015-01-07 Reformtech Heating Holding Ab Burner
US9190676B2 (en) * 2012-09-28 2015-11-17 Fuelcell Energy, Inc. Flame stabilized mixer-eductor-oxidizer for high temperature fuel cells
AT520881B1 (en) * 2018-01-17 2020-04-15 Avl List Gmbh Method for operating a fuel cell system

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6060411A (en) * 1983-09-12 1985-04-08 Matsushita Electric Ind Co Ltd Catalytic combustion apparatus
JPS6117814A (en) * 1984-07-02 1986-01-25 Matsushita Electric Ind Co Ltd Catalytic burner
JPS6426309A (en) 1987-07-21 1989-01-27 Matsushita Electric Works Ltd Box assembly having stepped rim
JPH01200105A (en) * 1988-02-05 1989-08-11 Nippon Chem Plant Consultant:Kk Far infrared ray radiation device
JPH04278108A (en) * 1991-03-04 1992-10-02 Toho Gas Co Ltd Injection tube burner using swirl flow combustion
JPH0733402A (en) * 1993-07-27 1995-02-03 Hitachi Ltd Reformer
JPH08226611A (en) * 1995-02-23 1996-09-03 Nippon Chem Plant Consultant:Kk Burning method of fuel
JP2001342002A (en) * 2000-05-30 2001-12-11 Kansai Electric Power Co Inc:The Fuel reformer
JP2005024181A (en) * 2003-07-02 2005-01-27 Yamaichi Kinzoku Kk Burner

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3666625D1 (en) * 1985-02-21 1989-11-30 Tauranca Ltd Fluid fuel fired burner
US4692306A (en) * 1986-03-24 1987-09-08 Kinetics Technology International Corporation Catalytic reaction apparatus
DE69627313T2 (en) * 1995-12-14 2004-02-12 Matsushita Electric Industrial Co., Ltd., Kadoma CATALYTIC COMBUSTION DEVICE
EP1269074B1 (en) * 2000-03-24 2005-08-10 Webasto Thermosysteme International GmbH Binary burner with venturi tube fuel atomisation and venturi jets for the atomisation of liquid fuel
US6325060B1 (en) * 2000-07-25 2001-12-04 Toyotomi Co. Ltd. Stack-equipped far infrared space heater

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6060411A (en) * 1983-09-12 1985-04-08 Matsushita Electric Ind Co Ltd Catalytic combustion apparatus
JPS6117814A (en) * 1984-07-02 1986-01-25 Matsushita Electric Ind Co Ltd Catalytic burner
JPS6426309A (en) 1987-07-21 1989-01-27 Matsushita Electric Works Ltd Box assembly having stepped rim
JPH01200105A (en) * 1988-02-05 1989-08-11 Nippon Chem Plant Consultant:Kk Far infrared ray radiation device
JPH04278108A (en) * 1991-03-04 1992-10-02 Toho Gas Co Ltd Injection tube burner using swirl flow combustion
JPH0733402A (en) * 1993-07-27 1995-02-03 Hitachi Ltd Reformer
JPH08226611A (en) * 1995-02-23 1996-09-03 Nippon Chem Plant Consultant:Kk Burning method of fuel
JP2001342002A (en) * 2000-05-30 2001-12-11 Kansai Electric Power Co Inc:The Fuel reformer
JP2005024181A (en) * 2003-07-02 2005-01-27 Yamaichi Kinzoku Kk Burner

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Catalytic Combustion by Zr02 compound oxide", 9TH SYMPOSIUM ON CATALYTIC COMBUSTION, 25 May 1990 (1990-05-25)

Also Published As

Publication number Publication date
CA2649212A1 (en) 2007-12-06
KR20090025272A (en) 2009-03-10
CN101443593A (en) 2009-05-27
JP2007322019A (en) 2007-12-13
US20090239181A1 (en) 2009-09-24
EP2023040A1 (en) 2009-02-11

Similar Documents

Publication Publication Date Title
JP4552092B2 (en) Burner device containing porous material
US4435153A (en) Low Btu gas burner
US10801723B2 (en) Prefabricated integrated combustion assemblies and methods of installing the same into a combustion system
US6257868B1 (en) Method and device for the combustion of liquid fuel
JP4690716B2 (en) Fuel cell system
KR20000071445A (en) Catalytic Combuation Apparatus
JP4694955B2 (en) 2-layer combustor
WO2007138962A1 (en) Combustor
JPH11270808A (en) Catalyst combustion device
JPH10153306A (en) Catalyst combustion device
JP4546831B2 (en) Driving method of post-combustion device and post-combustion device
JP3504777B2 (en) Liquid fuel vaporizer
JP4440112B2 (en) Metering device
WO2011009872A1 (en) A vaporizer reactor vessel and burner assembly
JP2001065815A (en) Combustion device
JPH07158875A (en) Gas hot-water supplier
JP2855664B2 (en) Infrared heater
KR200210398Y1 (en) Brown gas burning apparatus using metal fiber
JP3296523B2 (en) Heating device
WO2003064923A1 (en) Fuel with the decomposition and combination of water and combustor using the fuel
JP2684060B2 (en) Liquid tank heating device
JPH1137414A (en) Catalytic burner
JPH035021U (en)
WO1992000490A1 (en) Burner
IE20100456A1 (en) A vaporizer reactor vessel and burner assembly

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07743999

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2649212

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 200780017380.8

Country of ref document: CN

Ref document number: 2007743999

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12302775

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020087031512

Country of ref document: KR