WO2007138915A1 - Recording medium - Google Patents

Recording medium Download PDF

Info

Publication number
WO2007138915A1
WO2007138915A1 PCT/JP2007/060392 JP2007060392W WO2007138915A1 WO 2007138915 A1 WO2007138915 A1 WO 2007138915A1 JP 2007060392 W JP2007060392 W JP 2007060392W WO 2007138915 A1 WO2007138915 A1 WO 2007138915A1
Authority
WO
WIPO (PCT)
Prior art keywords
area
recording
layer
data
recording layer
Prior art date
Application number
PCT/JP2007/060392
Other languages
French (fr)
Japanese (ja)
Inventor
Masahiro Kato
Keiji Katata
Masayoshi Yoshida
Takeshi Koda
Original Assignee
Pioneer Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Corporation filed Critical Pioneer Corporation
Publication of WO2007138915A1 publication Critical patent/WO2007138915A1/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/007Arrangement of the information on the record carrier, e.g. form of tracks, actual track shape, e.g. wobbled, or cross-section, e.g. v-shaped; Sequential information structures, e.g. sectoring or header formats within a track
    • G11B7/00736Auxiliary data, e.g. lead-in, lead-out, Power Calibration Area [PCA], Burst Cutting Area [BCA], control information
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/12Formatting, e.g. arrangement of data block or words on the record carriers
    • G11B20/1217Formatting, e.g. arrangement of data block or words on the record carriers on discs
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/2403Layers; Shape, structure or physical properties thereof
    • G11B7/24035Recording layers
    • G11B7/24038Multiple laminated recording layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B2007/0003Recording, reproducing or erasing systems characterised by the structure or type of the carrier
    • G11B2007/0009Recording, reproducing or erasing systems characterised by the structure or type of the carrier for carriers having data stored in three dimensions, e.g. volume storage
    • G11B2007/0013Recording, reproducing or erasing systems characterised by the structure or type of the carrier for carriers having data stored in three dimensions, e.g. volume storage for carriers having multiple discrete layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B2220/00Record carriers by type
    • G11B2220/20Disc-shaped record carriers
    • G11B2220/23Disc-shaped record carriers characterised in that the disc has a specific layer structure
    • G11B2220/235Multilayer discs, i.e. multiple recording layers accessed from the same side
    • G11B2220/237Multilayer discs, i.e. multiple recording layers accessed from the same side having exactly two recording layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/007Arrangement of the information on the record carrier, e.g. form of tracks, actual track shape, e.g. wobbled, or cross-section, e.g. v-shaped; Sequential information structures, e.g. sectoring or header formats within a track
    • G11B7/0079Zoned data area, e.g. having different data structures or formats for the user data within data layer, Zone Constant Linear Velocity [ZCLV], Zone Constant Angular Velocity [ZCAV], carriers with RAM and ROM areas

Definitions

  • the present invention relates to a technical field of a recording medium such as a DVD.
  • information recording media such as CD-ROM (Compact Disc-Read Only Memory), CD-R (Compact Disc Recordable), and DVD-ROM, as described in Patent Documents 1 and 2, etc.
  • An information recording medium such as a multi-layer or dual-layer optical disc in which a plurality of recording layers are laminated or bonded on the same substrate has been developed.
  • the recording layer located closest to the laser beam irradiation side ie, the side closest to the optical pickup
  • L0 layer the thermal change recording method by heating data etc. to the L0 layer!
  • phase change recording method The recording layer located on the far side of the L0 layer (that is, the side far from the optical pickup force) as viewed from the laser beam irradiation side through the L0 layer or the like (referred to as “L1 layer” in this application as appropriate) By condensing the laser beam, information is recorded on the L1 layer by a thermal change recording method such as heating or a phase change recording method.
  • Patent Documents 1 and 2 further disclose a technique in which a ROM area in which data is recorded in advance by embossed pits or the like is arranged on a multilayer type or dual layer type optical disc. .
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2002-304730
  • Patent Document 2 JP-A-2005-78727
  • the present invention has been made in view of, for example, the conventional problems described above.
  • a pre-recording area can be arranged without reducing the capacity of an area where a user can freely record data as much as possible. It is an object of the present invention to provide a recording medium that makes it possible.
  • a recording medium of the present invention includes a first recording layer including a first area and a second recording layer including a second area, and one of the second areas
  • the end of the first area (for example, the inner peripheral side) is located at a position shifted to the other side (for example, the outer peripheral side) different from the one side than the one end of the first area
  • Adjacent to one end of the second area is a pre-recording area where recording information is recorded in advance.
  • the recording information is recorded in each of the first recording layer and the second recording layer.
  • the first recording layer includes at least a first area
  • the second recording layer includes at least a second area.
  • the user can freely record the record information in at least the first area and the second area.
  • the first area and the second area are areas where recording information can be appropriately recorded.
  • the end on one side of the second area is located at a position where the end force on one side of the first area is also shifted to the other side.
  • the end of one side of the second area is located at a position shifted to the other side of the area partial force of the second recording layer corresponding to the end of one side of the first area.
  • “corresponding” is intended to indicate that it exists at a substantially opposite position (for example, substantially the same radial position) by design, and in an actual recording medium, it is not necessarily opposite due to the influence in the manufacturing process. It is not always in the position to do.
  • “facing” means a relationship that is actually at the same radial position.
  • a pre-recording area in which recording information is recorded in advance, for example, by embossed pits or actual recording, is arranged adjacent to one end of the second area.
  • the end portion on the one side of the second area is located at the position where the area partial force of the second recording layer corresponding to the end portion on the one side of the first area is shifted to the other side. For example, a positional shift with respect to an area (or area address) on a recording medium due to some cause. Even if such a situation occurs, the end on one side of the second area is not located further on the one side than the end on one side of the first area. That is, even when positional deviation or the like occurs, when recording information is recorded in the second area, laser light is irradiated through the first area.
  • the recording conditions of the recording information recorded in the second area can be unified. In other words, it is possible to favorably maintain a recording order that is important in a two-layer or multilayer recording medium.
  • the pre-recording area is arranged adjacent to the second area that is smaller than the first area.
  • the prerecorded area is included in the area excluded from the second area in order to maintain the recording coder even though it is included in the second area where the recorded information can be recorded. Can be placed.
  • pre-recording can be performed while preferably recording information on a two-layer or multilayer recording medium, and reducing as much as possible the capacity of an area where the user can freely record the recording information.
  • the area can be arranged on the recording medium.
  • One aspect of the recording medium of the present invention is that at least one end of the second area on the one side of the second area is at least on the other side of the end on the one side of the first area.
  • each of the second recording layers is located at a position shifted by a tolerance length indicating the sum of an allowable range of positional deviation from the predetermined position of the address to be defined at the predetermined position.
  • the one end portion of the second area is at least a tolerance length shifted to the other side of the area partial force of the second recording layer corresponding to the one end portion of the first area.
  • the “tolerance length” is the tolerance of the positional deviation from the predetermined position of the address to be defined at a predetermined position (for example, a predetermined radial position) in the design in each of the first recording layer and the second recording layer. Indicates the sum of ranges. That is, the “tolerance length” is a predetermined position in the first recording layer where the predetermined address is specified by design and the actually manufactured recording medium.
  • the pre-recording area can be arranged on the recording medium without reducing the capacity of the area where recording can be freely recorded.
  • one end of the second area is located at a position shifted at least by the tolerance length from the second recording layer area corresponding to the one end of the first area to the other side.
  • one end portion of the second area has (0) the focal length of the laser beam for recording the recording information on the recording medium in addition to the tolerance length.
  • the second recording layer is irradiated through the portion. ⁇ but when allowed, it may also be configured to be positioned in the recording information has clearance length shift minus the magnitude of the allowable maximum value of the area portion of the first recording layer is not recorded position
  • the eccentricity deviation is recorded in the area of the laser beam spot size and the recorded information.
  • Each of the first area and the second area is formed in consideration of an allowable value with which laser beams can overlap. Therefore, it is possible to record the recording information on each recording layer more preferably.
  • an end portion on the other side of the second area is located at a position shifted to one side with respect to an end portion on the other side of the first area.
  • the pre-recording area is disposed adjacent to the other end of the second area.
  • the pre-recording area is arranged so as to be adjacent to both end portions of the second area. Is done. Therefore, the recording order can be suitably maintained at the end portions on both sides of the second area (for example, on each of the inner circumference side and the outer circumference side of the recording medium) (that is, the recording order over the entire surface of the recording medium).
  • the other end portion of the second area is located at a position shifted to one side with respect to the other end portion of the first area, and at the other end portion of the second area.
  • the other end of the second area is at least one of the first recording to one side of the other end of the first area.
  • an address to be defined at a predetermined position may be positioned at a position shifted by a tolerance length indicating a sum of an allowable range of positional deviation from the predetermined position. .
  • the recording order can be suitably maintained at both ends of the second area, and the user can record recording information freely.
  • a pre-recording area that minimizes the capacity of the possible area can be arranged on the recording medium.
  • the end on the other side of the second area is located at a position shifted to the one side by the tolerance length from the end on the other side of the first area.
  • the end on the other side is (0) the first recording layer when the laser beam for recording the recording information on the recording medium is focused on the second recording layer.
  • the sum of the allowable maximum values of the relative decentering of the first recording layer and the second recording layer At least a part of the laser beam irradiated to record the recording information on the second recording layer is recorded with the recording information!,!, Through the area portion of the first recording layer.
  • the recorded information is recorded.
  • Has been a ⁇ it be configured so as to be located at a position clearance length shift by subtracting the maximum allowable size of the area portion of the first recording layer! /,.
  • the first area and the second area take into account the tolerance that the laser beam can be overlapped with the area where the laser beam spot size and recorded information are recorded and the laser beam does not overlap. Each is formed. Therefore, it is possible to more suitably record the recording information on each recording layer.
  • dummy information is recorded in advance in the pre-recording area in addition to the recording information.
  • the prerecording area can be arranged by recording dummy information, for example, which is meaningless.
  • the tolerance length is 40 ⁇ m in the radial direction of the recording medium.
  • the allowable range of positional deviation in each recording layer is specified as -20 ⁇ m to +20 ⁇ m. It has been. Therefore, for example, when the positional deviation of the first recording layer is +20 m and the positional deviation of the second recording layer is 20 m, there is a relative distance of 40 m between the first recording layer and the second recording layer. Misalignment occurs. That is, a relative positional shift of 40 m at maximum is allowed between the first recording layer and the second recording layer. Therefore, by forming the first area and the second area based on the tolerance length in consideration of this allowable range, it is possible to suitably enjoy the various benefits described above. Of course, if a different value is defined as an allowable range of misalignment in other standards, it is preferable to use that value instead of 40 ⁇ m.
  • the clearance length is 65 ⁇ m in the radial direction of the recording medium.
  • a DVD-R or DVD-RW which is one standard of a recording medium, has a clearance length of, for example, 65 m. Therefore, by forming the first area and the second area based on the clearance length, it is possible to suitably enjoy the various benefits described above. Of course, if a different value is defined as the clearance in other standards, it is preferable to use that value instead of 65 ⁇ m.
  • the first recording layer includes the one side or the other The recording information is recorded toward the other side, and the recording information is recorded on the second recording layer toward a side different from the side on which the recording information is recorded in the first recording layer.
  • the end on one side of the second area is located at a position shifted to the other side from the end on one side of the first area.
  • a pre-recording area in which recording information is recorded in advance is arranged adjacent to one end of the second area. Therefore, for example, the pre-recording area can be arranged without reducing the capacity of the area where the user can freely record data as much as possible.
  • FIG. 1 is a schematic plan view showing a basic structure of an optical disc according to the present embodiment, a schematic sectional view of the optical disk, and a radial direction associated with the schematic sectional view in the radial direction.
  • FIG. 5 is a schematic conceptual diagram of an area structure.
  • FIG. 2 is a data structure diagram conceptually showing a specific area configuration of the optical disc in the example.
  • FIG. 3 is a schematic conceptual diagram conceptually showing relative tolerance.
  • FIG. 4 is a schematic conceptual diagram conceptually showing an eccentric clearance among the clearances.
  • FIG. 5 is a schematic conceptual diagram conceptually showing spot clearance among clearances.
  • FIG. 6 is a schematic conceptual diagram conceptually showing overlap clearance among clearances.
  • FIG. 7 is an area structure diagram conceptually showing a specific address relationship between a data area and a ROM area on an optical disc.
  • FIG. 8 is a graph used to calculate an address offset.
  • FIG. 9 is a data configuration diagram conceptually showing another specific area configuration on the optical disc.
  • FIG. 10 is a data configuration diagram conceptually showing another specific area configuration on the optical disc.
  • FIG. 11 is a data configuration diagram conceptually showing another specific area configuration on the optical disc.
  • FIG. 1 is a schematic plan view showing the basic structure of the optical disc 100 according to the present embodiment, and is a schematic sectional view of the optical disc 100 and its radial direction associated with the schematic sectional view. It is a schematic conceptual diagram of the area structure in FIG.
  • the optical disc 100 is, for example, a lead-in area 102 or lead-out centered on a center hole 101 on a recording surface on a disc body having a diameter of about 12 cm as in the case of DVD.
  • An area 118, a data area 105 constituting a specific example of “first area” in the present invention, a data area 115 constituting a specific example of “second area” in the present invention, and middle areas 109 and 119 are provided. It has been.
  • a recording layer or the like is laminated on a transparent substrate 110.
  • each recording area of the recording layer for example, tracks such as a groove track and a land track are alternately provided in a spiral shape or a concentric shape around the center hole 101.
  • tracks such as a groove track and a land track are alternately provided in a spiral shape or a concentric shape around the center hole 101.
  • data is divided and recorded in units of ECC blocks.
  • the ECC block is a data management unit in which recorded information can be error-corrected.
  • the present invention is not particularly limited to the optical disc having such three areas.
  • the lead-in area 102, the lead-out area 118, or the middle area 109 (119) does not exist, the data structure described below can be constructed. Also, as will be described later In addition, the lead-in area 102, the lead-out area 118, or the middle area 109 (119) may be further subdivided.
  • the optical disc 100 includes, for example, a LO layer that constitutes an example of the first and second recording layers according to the present invention on a transparent substrate 110.
  • L1 layer has a laminated structure.
  • Data recording / reproduction in the L0 layer is performed or data recording / reproduction in the L1 layer is performed.
  • the optical disc 100 according to the present embodiment corresponds to an opposite track path type optical disc.
  • data is recorded in the data area 115 of the L1 layer after data is recorded in the data area 105 of the L0 layer in principle. That is, by irradiating the laser beam LB through the data area 105 of the L0 layer where data is recorded, the data is recorded in the data area 115 of the L1 layer. In principle, data is recorded in the same manner for the lead-in area 102, the lead-out area 118, and the middle area 109 (119). This mode of data recording is called “recording order”.
  • the optical disc 100 according to the present embodiment may be two-layer single-sided, that is, not limited to dual layers, but may be two-layer double-sided, that is, dual-layer double-side. Furthermore, it is not limited to an optical disc having two recording layers as described above, and may be a multilayer type optical disc having three or more layers.
  • the middle area 109 (119) has been described as having been fixed in position, but in the actual finalization process, the middle area 109 (119) may be arranged on the inner circumference side. . Even in this case, it is preferable that the area arrangement mode described below is satisfied. [0045] (2) Specific area configuration
  • FIG. 2 is a data structure diagram conceptually showing a specific area configuration of the optical disc 100 according to the present embodiment.
  • the end on the inner periphery side of the data area 115 of the L1 layer and the end portion on the inner periphery side of the data area 105 of the LO layer The relative tolerance that constitutes a specific example of the “tolerance length” of More specifically, the LO layer area portion corresponding to the inner circumferential end of the L1 layer data area 115 and the inner circumferential end of the LO layer data area 105 are relatively opposite in the radial direction. Tolerance is away. In other words, the inner end of the data area 115 in the L1 layer is located at a position that is relatively tolerance shifted from the inner end of the data area 105 in the LO layer toward the outer periphery. Yes.
  • the outer peripheral end of the L1 layer data area 115 and the outer peripheral end of the LO layer data area 105 are separated from each other in the radial direction. More specifically, the LO layer area portion corresponding to the outer edge of the L 1 layer data area 115 and the outer edge of the LO data area 105 are relatively opposite in the radial direction. Tolerance is away. In other words, the outer end of the data area 115 in the L1 layer is positioned at a position that is relatively tolerance shifted by directing more toward the inner periphery than the outer end of the data area 105 in the LO layer.
  • the relative tolerance is an allowance of a positional deviation between a position where a predetermined address is originally designed in the LO layer and a position where the predetermined address is actually arranged on the optical disc 100.
  • the sum of the range and the allowable range of positional deviation between the position where the predetermined address in the L1 layer should be originally arranged and the position where the predetermined address on the actual optical disc 100 is arranged is shown.
  • a ROM area 121 constituting a specific example of the “pre-recording area” in the present invention is disposed adjacent to the inner peripheral end of the data area 115 of the L1 layer. That is, the pre-record area 121 is arranged between the data area 115 and the lead-out area 118.
  • a ROM area 122 is disposed adjacent to the outer peripheral end of the data area 115 of the L1 layer. That is, the pre-recording area 122 is arranged between the data area 115 and the middle area 119.
  • Predetermined pre-data is recorded in advance in the ROM areas 121 and 122 when the optical disc 100 is manufactured, for example, by embossed pits or pre-marks.
  • the size (in other words, the length in the radial direction) of the ROM areas 121 and 122 may be the same as the relative tolerance, may be shorter than the relative tolerance, or may be longer than the relative tolerance. Also good. In short, the ROM area is arranged adjacent to the data area 115 which is smaller than the data area 105.
  • the inner peripheral end of the L1 layer data area 115 and the inner peripheral end of the L0 layer data area 105 are In the radial direction, they are separated by the sum of relative tolerance and clearance. More specifically, the area portion of the L0 layer corresponding to the inner peripheral end of the data area 115 of the L1 layer and the end of the inner peripheral side of the data area 105 of the L0 layer are relatively relative to each other in the radial direction. Separated by the sum of tolerance and clearance. In other words, the inner edge of the L1 layer data area 115 is the L0 layer data area.
  • the outer end of the data area 115 in the L1 layer and the outer end of the data area 105 in the L0 layer are in the radial direction by the sum of relative tolerance and clearance in the radial direction. is seperated. More specifically, the area portion of the L0 layer corresponding to the outer peripheral end portion of the data area 115 of the L1 layer and the end portion of the outer peripheral side of the data area 105 of the L0 layer are in the radial direction. In the radial direction, the sum of the relative tolerance and clearance is separated. In other words, the outer peripheral edge of the data area 115 in the L1 layer is directed to the inner peripheral side rather than the outer peripheral edge of the data area 105 in the L0 layer, so that the sum of relative tolerance and clearance is shifted. Located in
  • a ROM area 121 is disposed adjacent to the inner peripheral end of the data area 115 of the L1 layer. That is, the pre-record area 121 is arranged between the data area 115 and the lead-out area 118.
  • a ROM area 122 is arranged adjacent to the ROM area 122. That is, the pre-record area 122 is arranged between the data area 115 and the middle area 119.
  • the size (in other words, the length in the radial direction) of ROM areas 121 and 122 in Fig. 2 (b) may be the same as the sum of relative tolerance and clearance, or from the sum of relative tolerance and clearance. Can be shorter or longer than the sum of relative tolerance and clearance.
  • the clearance in the present embodiment is (i) a clearance related to eccentricity corresponding to a deviation of the center position of the LO layer and L1 layer (hereinafter referred to as “eccentric clearance” as appropriate), GO Based on the sum of the clearances related to the beam spot size of the defocused laser beam (hereinafter referred to as “spot clearance” where appropriate), (iii) when data is recorded on the L1 layer, no data is recorded.
  • the laser beam LB is transmitted when it is allowed to irradiate a part of the laser beam LB to the L1 layer through an area portion of an L0 layer (hereinafter referred to as “unrecorded area” as appropriate).
  • FIG. 3 is a schematic conceptual diagram conceptually showing relative tolerance
  • FIG. 4 is a schematic conceptual diagram conceptually showing an eccentric clearance among clearances
  • FIG. FIG. 6 is a schematic conceptual diagram conceptually showing a spot clearance among clearances
  • FIG. 6 is a schematic conceptual diagram conceptually showing an overlap clearance among clearances.
  • the address “X” is defined as the radial position “r” by design.
  • the layout of the lead-in area 102, the data area 105 (115), the lead-out area 118, and the middle area 109 (119) is defined by design.
  • a manufacturing error of a stamper or the like for forming a land pre-pit or wobble that defines an address in other words, a manufacturing error of a disk master for manufacturing a stamper or the generation of the disk master.
  • "X” due to the radial position error of the cutting machine and uneven track pitch) May not be precisely defined at the radial position "r” that should be originally defined. Or, due to individual differences in the thermal contraction of the disk substrate when manufacturing the optical disk 100, the address “X” may not be accurately defined at the radial position “r” that should be defined originally.
  • the address “X + ⁇ ” may be defined at the radial position “r” where the address “X” should originally be defined.
  • the address “X” may be defined at the radius position “r—Arl”, which is shifted to the inner circumference side by “Arl” from the radius position “r”.
  • This Arl is called a positional shift for each recording layer.
  • This misalignment can occur for each recording layer. That is, the positional deviation in the LO layer and the positional deviation in the L1 layer can occur independently of each other. In this case, it is preferable to define an allowable range of positional deviation from the viewpoint of ensuring a suitable recording operation or reproducing operation.
  • the allowable range of positional deviation is set to 20 ⁇ m to +20 ⁇ m.
  • This allowable range of displacement is referred to as “position tolerance” as appropriate.
  • the relative tolerance may be the sum of the actual positional deviation of the L0 layer and the actual positional deviation of the L1 layer. That is, the relative tolerance of the optical disc 100 is the sum of the maximum value of the positional deviation actually generated in the L0 layer and the maximum value of the positional deviation actually generated in the L1 layer.
  • Eccentricity refers to the relative position of the L0 layer and L1 layer, which is caused by misalignment of the center position of each recording layer, misalignment of the center position when the L0 layer and L1 layer are bonded together, etc. Indicates a misalignment.
  • the track radius of the LO layer corresponding to the track specified by the radius "r” of the L1 layer is set to "r + Ar2". Then, as shown in Fig. 4 (d), even if the relative eccentricity "Ar2" occurs, the track specified by the radius “r” of the L1 layer has the radius "r + Ar2" of the LO layer. It will no longer be outside the defined track.
  • “ ⁇ : 2” introduced in Fig. 4 (c) is the “eccentric clearance”. The maximum allowable relative eccentricity value is used as the eccentric clearance value.
  • the LO layer has a predetermined radius “Ar3”. A beam spot is formed.
  • data is recorded in the L1 layer by irradiating the laser beam LB through the LO layer in which the data is recorded.
  • the focus of the laser beam LB is focused on the address “ ⁇ ” of the L1 layer facing the address “X”.
  • the left half of the laser beam LB is applied to the L1 layer through the LO layer on which data is recorded, while the right half of the laser beam LB passes through the LO layer on which no data is recorded.
  • the L1 layer is irradiated. Therefore, if data is simply recorded on the L1 layer facing the LO layer on which data has already been recorded, data can be suitably recorded on the L1 layer by irradiating the laser beam LB through the LO layer on which the data has been recorded. I can't do it.
  • the focus position of the laser beam LB when data is recorded on the L1 layer is L1 facing the address “X” of the LO layer where the data is recorded. It is necessary to shift from the position indicated by the layer address “Y” to the inner circumference side by a distance corresponding to the radius “Ar3” of the beam spot. Specifically, it is necessary to focus the laser beam LB at the position indicated by the address “ ⁇ — ⁇ 1” shifted inward by the address variable “ ⁇ 1” corresponding to the radius “Ar3” of the beam spot. “Ar3” introduced in Fig. 5 (b) is “spot clearance”. The spot clearance value is the maximum allowable radius of the beam spot. [0064] However, as shown in FIG.
  • part of the laser beam LB when data is recorded in the L1 layer is an area of the LO layer in which the data whose width is indicated by Ar4 is not recorded. Even if it overlaps with the part, data can be suitably recorded in the L1 layer. This is because the laser light LB power on the L1 layer does not fluctuate enough to adversely affect data recording even if a portion of the laser light LB overlaps the LO layer where data has not been recorded. Because. In other words, in order to suitably record data in the L1 layer, it is necessary to irradiate the laser beam LB through the LO layer on which the data is recorded. Strictly speaking, a part of the laser beam LB is not yet recorded.
  • the L1 layer may be irradiated through the LO layer of the recording. Specifically, as shown in FIG. 5 (b), the address “ ⁇ - ⁇ XI” shifted to the inner circumference side by the variable “ ⁇ ⁇ 1” corresponding to the beam spot radius “A r3” is shown. Although it is necessary to focus the laser beam LB on the position, strictly speaking, it is suitable for the L1 layer even if the laser beam LB is focused on the position indicated by the address “ ⁇ — ⁇ ⁇ 2 (however, ⁇ ⁇ 2 ⁇ ⁇ XI)” Can record data. At this time, a part of the laser beam LB may overlap! /, The maximum value force of the width ⁇ r4 is “overlap clearance”.
  • FIG. 7 is an area structure diagram conceptually showing a specific address relationship between the data areas 105 and 115 and the ROM areas 121 and 122 on the optical disc 100
  • FIG. 8 calculates an address offset. It is a graph used for this.
  • the address of the inner edge of the data area 105 of the L0 layer is defined as "A", and the address of the outer edge of the data area 105 of the L0 layer is Set to "X".
  • the address of the L0 layer and the address of the L1 layer are determined to be interpolated with each other at the same radial position. Specifically, it faces the inner edge of the L0 layer data area 105.
  • the address of the area part of the LI layer is defined as “A-bar (in FIG. 7, the force with a horizontal line at the top of A, which is referred to as A-bar in this specification)” and LO
  • the address of the area facing the outer edge of the layer data area 105 is “X-bar” (in FIG.
  • the address of the end portion on the inner circumference side of the data area 115 of the L1 layer is “A + Ofs (A), similarly.
  • the address of the outer edge of the layer data area 115 is “X—Ofs (X),”.
  • the address is determined so that the address of the outer edge of the data area 105 and the address of the outer edge of the data area 115 are in an interpolating relationship. It's okay. Specifically, the address of the outer edge of the data area 115 is defined as “X-bar”.
  • the address of the area portion of the L1 layer facing the outer edge of the data area 105 is “ ⁇ 1 ⁇ + 0 £ 5 ()”. Identified. Further, the address of the area portion of the L1 layer facing the inner peripheral end of the data area 105 is specified by “A_bar + Ofs (X)”. Further, the address of the end portion on the inner peripheral side of the data area 115 is “A ⁇ bar + Ofs (X) + Ofs (A)”.
  • FIG. 7 (a) and FIG. 7 (b) differ only in the manner of address assignment, and the arrangement relationship between the data areas 105 and 115 and the ROM areas 121 and 122 is the same.
  • Fig. 8 (a) shows the outermost circumference of an optical disk with a diameter of 12cm, for example (specifically, the position with a radial position force of 8.6mm, for example, near the outer edge of the data areas 105 and 115).
  • 5 is a graph showing the relationship between the sum of relative tolerance (Tls) and clearance (Cls) and the address offset value (ie, the value obtained by converting the sum of relative tolerance and clearance into a data size).
  • Figure 8 (b) is a graph showing the relationship between the radial position of the optical disc 100 and the address offset value when the sum of relative tolerance and clearance is 105 ⁇ m. is there.
  • the address offset value can be easily calculated by referring to the graphs shown in FIGS. 8 (a) and 8 (b).
  • the data areas 105 and 115, and the RO Addressing of the M areas 121 and 122 can be suitably performed.
  • the size of ROM areas 121 and 122 must also be taken into account when addressing.
  • the address offset value does not necessarily have to be calculated using the graphs shown in FIGS. 8 (a) and 8 (b).
  • Expressions (1) and (2) may be used, or a conversion table may be used. In short, as long as the sum of relative tolerance and clearance can be suitably converted into an address value, the conversion may be performed by any method.
  • the inner peripheral end of the data area 115 is located at a position where the inner peripheral end force of the data area 105 is also shifted to the outer peripheral side.
  • the end force on the outer peripheral side of the data area 105 is located at the position shifted to the inner peripheral side on the outer peripheral side of the data area 115.
  • the ROM areas 121 and 122 are arranged adjacent to the data area 115 that is smaller than the data area 105 in order to maintain the recording order. That is, the ROM areas 121 and 122 are included in the area portion excluded from the data area 115 in order to maintain the recording order, even though the area may be included in the data area 115 where data can be originally recorded. Can be arranged. In other words, it is not necessary to provide ROM areas 121 and 122 in the data areas 105 and 115 again. As a result, ROM areas 121 and 122 can be arranged on the optical disk 100 without reducing the capacity of the area portion where the user can freely record data (that is, the data areas 105 and 115) as much as possible.
  • FIGS. 9 to 11 are data configuration diagrams conceptually showing other specific area configurations on the optical disc 100, respectively.
  • the ROM areas 121 and 122 having a certain size can be secured.
  • the ROM areas 121 and 122 may be smaller than the sum of the relative tolerance and the clearance.
  • the size of the ROM area 121 is “N1”
  • the size of the ROM area 122 is “Ml”.
  • the address at the outer edge of ROM area 122 is the data. It is assumed that there is an interpolation relationship with the address of the outer edge of the area 105.
  • the address of the end portion on the outer peripheral side of the ROM area 122 is “X-bar”. Further, the address of the end portion on the inner peripheral side of the ROM area 122 is “X-bar-Ml”. In addition, the address of the area portion of the L1 layer facing the outer edge of the data area 105 is “X_bar + Ofs (X) —Ml”.
  • the address of the area portion of the L1 layer facing the inner peripheral end of the data area 105 is “A ⁇ bar ⁇ Ml + Ofs (X)”. Further, the address of the outer edge of the ROM area 121 is “A ⁇ bar + Ofs (A) ⁇ Ml + Ofs (X)”. Further, the address of the inner peripheral end of the ROM area 121 is “A_bar + Ofs (A) —Ml + Ofs (X) —N1”. Further, the area portion of the L1 layer where the address is “A-bar” is located further on the inner peripheral side than the inner peripheral end of the data area 105 where the address is “A”.
  • the ROM areas 121 and 122 may be larger than the sum of the relative tolerance and the clearance.
  • the size of the ROM area 121 is “N2,” and the size of the ROM area 122 is “M2.”
  • the address of the outer edge of the ROM area 122 is the outer edge of the data area 105. It is assumed that there is an interpolation relationship with the part address.
  • the address of the end portion on the outer peripheral side of the ROM area 122 is “X-bar”.
  • the address of the end portion on the inner peripheral side of the ROM area 122 is “X-bar-M2”.
  • the address of the area portion of the L1 layer facing the outer edge of the data area 105 is “X_bar + Ofs (X) —M2”.
  • the address of the area portion of the L1 layer facing the inner peripheral end of the data area 105 is “8-1) & 1: -1 ⁇ 2 + 0 £ 5 ()”. Further, the address of the outer peripheral end of the ROM area 121 is “A—bar + Ofs (A) —1 ⁇ 2 + 0 £ 5 ()”. Further, the address of the inner peripheral end of the ROM area 121 is “A_bar + Ofs (A) —M2 + Ofs (X) —N2”. In addition, the area portion of the L1 layer where the address is “A-bar” is located further on the outer peripheral side than the end portion on the inner peripheral side of the data area 105 where the address is “A”.
  • the “pre-recording area” can be formed by actual recording before shipping the disc described for the ROM area. In that case, the recording order cannot be maintained because the L0 layer is unrecorded! /, But it is possible to set the recording power on the assumption that the L0 layer is unrecorded and record. Thereby, the “pre-recording area” of the L1 layer can be suitably formed.
  • the optical disc 100 has been described as an example of the recording medium.
  • the present invention is not limited to the optical disc and its recorder, and other high-density recording or various recordings corresponding to a high transfer rate. It can also be applied to media.
  • the recording medium according to the present invention can be used for a recording medium such as a DVD.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Optical Recording Or Reproduction (AREA)

Abstract

A recording medium (100) is provided with a first recording layer (L0) including a first area (105) and a second recording layer (L1) including a second area (115). One end of the second area is at a position shifted from one end of the first area toward the other end. Prerecording areas (121, 122) whereupon recording information is previously recorded are arranged adjacent to the one end of the second area.

Description

明 細 書  Specification
記録媒体  recoding media
技術分野  Technical field
[0001] 本発明は、例えば DVD等の記録媒体の技術分野に関する。  [0001] The present invention relates to a technical field of a recording medium such as a DVD.
背景技術  Background art
[0002] 例えば、 CD-ROM (Compact Disc -Read Only Memory)、 CD-R (Compact Dis c Recordable)、 DVD— ROM等の情報記録媒体では、特許文献 1及び 2等に記載 されているように、同一基板上に複数の記録層が積層された又は貼り合わされた多 層型又はデュアルレイヤ型の光ディスク等の情報記録媒体が開発されて!ヽる。そして 、このようなデュアルレイヤ型の光ディスクに記録を行う、 DVDレコーダ等の情報記 録装置では、レーザ光の照射側から見て最も手前側(即ち、光ピックアップに近い側 )に位置する記録層(本願では適宜「L0層」と称する)に対して記録用のレーザ光を 集光することで、 L0層に対してデータを加熱などによる熱変化記録方式な!/、しは相 変化記録方式で記録し、 L0層等を介して、レーザ光の照射側から見て L0層の奥側 (即ち、光ピックアップ力 遠い側)〖こ位置する記録層(本願では適宜「L1層」と称す る)に対して該レーザ光を集光することで、 L1層に対して情報を加熱などによる熱変 化記録方式ないしは相変化記録方式で記録することになる。  For example, in information recording media such as CD-ROM (Compact Disc-Read Only Memory), CD-R (Compact Disc Recordable), and DVD-ROM, as described in Patent Documents 1 and 2, etc. An information recording medium such as a multi-layer or dual-layer optical disc in which a plurality of recording layers are laminated or bonded on the same substrate has been developed. In an information recording apparatus such as a DVD recorder for recording on such a dual layer type optical disc, the recording layer located closest to the laser beam irradiation side (ie, the side closest to the optical pickup) is used. (In this application, it is referred to as “L0 layer” as appropriate.) By condensing the laser beam for recording, the thermal change recording method by heating data etc. to the L0 layer! / Or phase change recording method The recording layer located on the far side of the L0 layer (that is, the side far from the optical pickup force) as viewed from the laser beam irradiation side through the L0 layer or the like (referred to as “L1 layer” in this application as appropriate) By condensing the laser beam, information is recorded on the L1 layer by a thermal change recording method such as heating or a phase change recording method.
[0003] 他方で、特許文献 1及び 2には、更に、多層型又はデュアルレイヤ型の光ディスク に対して、エンボスピット等によりデータが予め記録された ROMエリアを配置する技 術が開示されている。  [0003] On the other hand, Patent Documents 1 and 2 further disclose a technique in which a ROM area in which data is recorded in advance by embossed pits or the like is arranged on a multilayer type or dual layer type optical disc. .
[0004] 特許文献 1:特開 2002— 304730号公報  [0004] Patent Document 1: Japanese Patent Application Laid-Open No. 2002-304730
特許文献 2:特開 2005 - 78727号公報  Patent Document 2: JP-A-2005-78727
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] し力しながら、情報記録媒体上にエンボスピット等による ROMエリアやディスク出荷 前にデータが予め記録されたエリア (いずれも本願ではプリ記録エリアと称する)を設 けることは、ユーザが自由に記録可能なエリア部分 (例えば、ユーザデータエリア)の 容量が減少することにつながってしまう。 [0005] However, it is difficult for the user to provide a ROM area such as embossed pits on the information recording medium or an area in which data is recorded in advance before shipping the disk (both referred to as a pre-recording area in the present application). Freely recordable area part (eg user data area) This will lead to a decrease in capacity.
[0006] 本発明は、例えば上述した従来の問題点に鑑みなされたものであり、例えばユーザ が自由にデータを記録可能なエリア部分の容量を極力減少させることなくプリ記録ェ リアを配置することを可能とならしめる記録媒体を提供することを課題とする。  The present invention has been made in view of, for example, the conventional problems described above. For example, a pre-recording area can be arranged without reducing the capacity of an area where a user can freely record data as much as possible. It is an object of the present invention to provide a recording medium that makes it possible.
課題を解決するための手段  Means for solving the problem
[0007] 以下、本発明の記録媒体について説明を進める。 [0007] Hereinafter, the recording medium of the present invention will be described.
[0008] 上記課題を解決するために、本発明の記録媒体は、第 1エリアを含む第 1記録層と 、第 2エリアを含む第 2記録層とを備えており、前記第 2エリアの一方側 (例えば、内周 側)の端部は、前記第 1エリアの一方側の端部よりも一方側とは異なる他方側 (例え ば、外周側)へシフトした位置に位置しており、前記第 2エリアの一方側の端部に隣 接して、記録情報が予め記録されるプリ記録エリアが配置される。  In order to solve the above problems, a recording medium of the present invention includes a first recording layer including a first area and a second recording layer including a second area, and one of the second areas The end of the first area (for example, the inner peripheral side) is located at a position shifted to the other side (for example, the outer peripheral side) different from the one side than the one end of the first area, Adjacent to one end of the second area is a pre-recording area where recording information is recorded in advance.
[0009] 本発明の記録媒体によれば、第 1記録層及び第 2記録層の夫々に記録情報が記 録される。具体的には、第 1記録層には、第 1エリアが少なくとも含まれており、第 2記 録層には、第 2エリアが少なくとも含まれている。ユーザは、少なくとも第 1エリア及び 第 2エリアに対して、自由に記録情報を記録することができる。言い換えれば、第 1ェ リア及び第 2エリアは、記録情報を適宜記録することができるエリアである。  [0009] According to the recording medium of the present invention, the recording information is recorded in each of the first recording layer and the second recording layer. Specifically, the first recording layer includes at least a first area, and the second recording layer includes at least a second area. The user can freely record the record information in at least the first area and the second area. In other words, the first area and the second area are areas where recording information can be appropriately recorded.
[0010] 本発明では特に、第 1エリアの一方側の端部力も他方側へシフトした位置に、第 2 エリアの一方側の端部が位置する。言い換えれば、第 1エリアの一方側の端部に対 応する第 2記録層のエリア部分力 他方側へシフトした位置に、第 2エリアの一方側 の端部が位置する。ここに、「対応する」とは、設計上概ね対向する位置 (例えば、略 同一の半径位置)に存在することを示す趣旨であり、実際の記録媒体においては、 製造工程における影響等により必ずしも対向する位置にあるとは限らない。このとき、 「対向する」とは、実際に同一半径位置にある関係を示す。そして、第 2エリアの一方 側の端部に隣接して、例えばエンボスピットや実際の記録等により記録情報が予め 記録されたプリ記録エリアが配置されて 、る。  [0010] In the present invention, in particular, the end on one side of the second area is located at a position where the end force on one side of the first area is also shifted to the other side. In other words, the end of one side of the second area is located at a position shifted to the other side of the area partial force of the second recording layer corresponding to the end of one side of the first area. Here, “corresponding” is intended to indicate that it exists at a substantially opposite position (for example, substantially the same radial position) by design, and in an actual recording medium, it is not necessarily opposite due to the influence in the manufacturing process. It is not always in the position to do. In this case, “facing” means a relationship that is actually at the same radial position. A pre-recording area in which recording information is recorded in advance, for example, by embossed pits or actual recording, is arranged adjacent to one end of the second area.
[0011] このように、第 1エリアの一方側の端部に対応する第 2記録層のエリア部分力 他方 側へシフトした位置に第 2エリアの一方側の端部が位置して 、るため、例えば何らか の原因に起因して記録媒体上のエリア(或いは、エリアのアドレス)に対する位置ズレ 等が生じていても、第 1エリアの一方側の端部よりも更に一方側に第 2エリアの一方側 の端部が位置することはない。即ち、位置ズレ等が生じていても、第 2エリアに記録情 報を記録する際には、第 1エリアを介してレーザ光が照射される。従って、第 1エリア に記録情報を記録した後に、第 2エリアに記録情報を記録すれば、第 2エリアに記録 された記録情報の記録条件を統一することができる。つまり、 2層型或いは多層型の 記録媒体において重要となってくるレコーディングオーダーを好適に維持することが できる。 [0011] In this way, the end portion on the one side of the second area is located at the position where the area partial force of the second recording layer corresponding to the end portion on the one side of the first area is shifted to the other side. For example, a positional shift with respect to an area (or area address) on a recording medium due to some cause. Even if such a situation occurs, the end on one side of the second area is not located further on the one side than the end on one side of the first area. That is, even when positional deviation or the like occurs, when recording information is recorded in the second area, laser light is irradiated through the first area. Therefore, if recording information is recorded in the second area after recording information in the first area, the recording conditions of the recording information recorded in the second area can be unified. In other words, it is possible to favorably maintain a recording order that is important in a two-layer or multilayer recording medium.
[0012] カロえて、レコーディングオーダーを維持するために第 1エリアよりも小さくされた第 2 エリアに隣接するようにプリ記録エリアが配置される。つまり、本来記録情報を記録す ることができる第 2エリアに含んでもょ 、エリア部分であるにも関わらず、レコーディン グォーダーを維持するために第 2エリアより除かれたエリア部分にプリ記録エリアを配 置することができる。言い換えれば、第 1エリアや第 2エリアの内部に改めてプリ記録 エリアを設ける必要がない。これにより、ユーザが記録情報を自由に記録可能なエリ ァ部分 (即ち、第 1エリアや第 2エリア)の容量を極力減らすことなぐプリ記録エリアを 記録媒体上に配置することができる。  [0012] In order to maintain the recording order, the pre-recording area is arranged adjacent to the second area that is smaller than the first area. In other words, the prerecorded area is included in the area excluded from the second area in order to maintain the recording coder even though it is included in the second area where the recorded information can be recorded. Can be placed. In other words, there is no need to provide a pre-recording area inside the first area or the second area. As a result, it is possible to arrange a pre-recording area on the recording medium without reducing the capacity of the area portion (that is, the first area or the second area) where the user can freely record the recorded information.
[0013] 以上説明したように、 2層型或いは多層型の記録媒体に記録情報を好適に記録し つつ、ユーザが記録情報を自由に記録可能なエリア部分の容量を極力減らすことな ぐプリ記録エリアを記録媒体上に配置することができる。  [0013] As described above, pre-recording can be performed while preferably recording information on a two-layer or multilayer recording medium, and reducing as much as possible the capacity of an area where the user can freely record the recording information. The area can be arranged on the recording medium.
[0014] 本発明の記録媒体の一の態様は、前記第 2エリアの一方側の端部は、前記第 1エリ ァの一方側の端部よりも他方側へ、少なくとも、前記第 1記録層及び前記第 2記録層 の夫々における、所定位置に規定されるべきアドレスの、該所定位置からの位置ズレ の許容範囲の和を示すトレランス長シフトした位置に位置する。  [0014] One aspect of the recording medium of the present invention is that at least one end of the second area on the one side of the second area is at least on the other side of the end on the one side of the first area. In addition, each of the second recording layers is located at a position shifted by a tolerance length indicating the sum of an allowable range of positional deviation from the predetermined position of the address to be defined at the predetermined position.
[0015] この態様では、第 2エリアの一方側の端部は、第 1エリアの一方側の端部に対応す る第 2記録層のエリア部分力 他方側へ、少なくともトレランス長シフトした位置に位 置する。尚、「トレランス長」とは、第 1記録層及び第 2記録層の夫々における、設計上 所定位置 (例えば、所定半径位置)に規定されるべきアドレスの、該所定位置からの 位置ズレの許容範囲の和を示す。即ち、「トレランス長」は、第 1記録層における、所 定のアドレスが設計上規定される位置と、実際に製造された記録媒体における所定 のアドレスの位置との位置ズレの許容範囲と、第 2記録層における、所定のアドレスが 設計上規定される位置と、実際に製造された記録媒体における所定のアドレスの位 置との位置ズレの許容範囲との和となる。 [0015] In this aspect, the one end portion of the second area is at least a tolerance length shifted to the other side of the area partial force of the second recording layer corresponding to the one end portion of the first area. To position. Note that the “tolerance length” is the tolerance of the positional deviation from the predetermined position of the address to be defined at a predetermined position (for example, a predetermined radial position) in the design in each of the first recording layer and the second recording layer. Indicates the sum of ranges. That is, the “tolerance length” is a predetermined position in the first recording layer where the predetermined address is specified by design and the actually manufactured recording medium. The allowable range of positional deviation with respect to the address position, the position of the second recording layer where the predetermined address is specified by design, and the positional deviation between the position of the predetermined address on the actually manufactured recording medium. It is the sum of the allowable range.
[0016] これにより、アドレスの位置ズレ等が生じていても、 2層型或いは多層型の記録媒体 において重要となってくるレコーディングオーダーを好適に維持することができると共 に、ユーザが記録情報を自由に記録可能なエリア部分の容量を極力減らすことなぐ プリ記録エリアを記録媒体上に配置することができる。  [0016] Thereby, even if address misalignment or the like occurs, it is possible to suitably maintain the recording order that is important in a two-layer type or multilayer type recording medium, and the user can record information. The pre-recording area can be arranged on the recording medium without reducing the capacity of the area where recording can be freely recorded.
[0017] 上述の如く第 2エリアの一方側の端部が第 1エリアの一方側の端部に対応する第 2 記録層のエリア部分よりも他方側へ、少なくともトレランス長シフトした位置に位置する 記録媒体の態様では、前記第 2エリアの一方側の端部は、前記トレランス長に加えて 、(0前記記録情報を当該記録媒体に記録するためのレーザ光の焦点が前記第 2記 録層に合わせられている場合の前記第 1記録層上における前記レーザ光のスポット 半径の許容最大値、並びに GO前記第 1記録層と前記第 2記録層との夫々の相対的 な偏芯ズレの許容最大値の和から、(iii)前記記録情報を前記第 2記録層に記録する ために照射される前記レーザ光の少なくとも一部が、前記記録情報が記録されてい ない前記第 1記録層のエリア部分を介して前記第 2記録層に照射されることが許容さ れるときの、前記記録情報が記録されていない前記第 1記録層のエリア部分の大きさ の許容最大値を引いたクリアランス長シフトした位置に位置するように構成してもよ ヽ  [0017] As described above, one end of the second area is located at a position shifted at least by the tolerance length from the second recording layer area corresponding to the one end of the first area to the other side. In an aspect of the recording medium, one end portion of the second area has (0) the focal length of the laser beam for recording the recording information on the recording medium in addition to the tolerance length. The allowable maximum value of the spot radius of the laser beam on the first recording layer and the relative tolerance of the relative eccentricity of the GO between the first recording layer and the second recording layer. From the sum of the maximum values, (iii) at least part of the laser beam irradiated to record the recording information on the second recording layer is an area of the first recording layer where the recording information is not recorded. The second recording layer is irradiated through the portion.ヽ but when allowed, it may also be configured to be positioned in the recording information has clearance length shift minus the magnitude of the allowable maximum value of the area portion of the first recording layer is not recorded position
[0018] この態様によれば、記録媒体の製造工程等において発生するアドレスの位置ズレ に加えて、偏芯ズレゃレーザ光のスポットの大きさや記録情報が記録されて 、な ヽェ リア部分にレーザ光がオーバーラップできる許容値等を考慮して、第 1エリア及び第 2 エリアの夫々が形成されている。従って、より好適に夫々の記録層に好適に記録情 報を記録することができる。 [0018] According to this aspect, in addition to the positional deviation of the address generated in the manufacturing process of the recording medium, the eccentricity deviation is recorded in the area of the laser beam spot size and the recorded information. Each of the first area and the second area is formed in consideration of an allowable value with which laser beams can overlap. Therefore, it is possible to record the recording information on each recording layer more preferably.
[0019] 本発明の記録媒体の他の態様は、前記第 2エリアの他方側の端部は、前記第 1エリ ァの他方側の端部よりも一方側へシフトした位置に位置しており、前記第 2エリアの他 方側の端部に隣接して、前記プリ記録エリアが配置される。  [0019] In another aspect of the recording medium of the present invention, an end portion on the other side of the second area is located at a position shifted to one side with respect to an end portion on the other side of the first area. The pre-recording area is disposed adjacent to the other end of the second area.
[0020] この態様によれば、第 2エリアの両側の端部に隣接するようにプリ記録エリアが配置 される。従って、第 2エリアの両側の端部において(例えば、記録媒体の内周側及び 外周側の夫々において)レコーディングオーダーを好適に維持することができる(つ まり、記録媒体の全面に渡ってレコーディングオーダーを好適に維持することができ る)と共に、ユーザが記録情報を自由に記録可能なエリア部分の容量を極力減らすこ となぐプリ記録エリアを記録媒体上に配置することができる。 [0020] According to this aspect, the pre-recording area is arranged so as to be adjacent to both end portions of the second area. Is done. Therefore, the recording order can be suitably maintained at the end portions on both sides of the second area (for example, on each of the inner circumference side and the outer circumference side of the recording medium) (that is, the recording order over the entire surface of the recording medium). In addition, it is possible to arrange a pre-recording area on the recording medium that minimizes the capacity of the area where the user can freely record the recorded information.
[0021] 上述の如く第 2エリアの他方側の端部が第 1エリアの他方側の端部よりも一方側へ シフトした位置に位置しており、且つ第 2エリアの他方側の端部に隣接してプリ記録 エリアが配置される記録媒体の態様では、前記第 2エリアの他方側の端部は、前記 第 1エリアの他方側の端部よりも一方側へ、少なくとも、前記第 1記録層及び前記第 2 記録層の夫々における、所定位置に規定されるべきアドレスの、該所定位置からの 位置ズレの許容範囲の和を示すトレランス長シフトした位置に位置するように構成し てもよい。 [0021] As described above, the other end portion of the second area is located at a position shifted to one side with respect to the other end portion of the first area, and at the other end portion of the second area. In an aspect of the recording medium in which the pre-recording area is arranged adjacently, the other end of the second area is at least one of the first recording to one side of the other end of the first area. In each of the recording layer and the second recording layer, an address to be defined at a predetermined position may be positioned at a position shifted by a tolerance length indicating a sum of an allowable range of positional deviation from the predetermined position. .
[0022] このように構成すれば、アドレスの位置ズレ等が生じていても、第 2エリアの両側の 端部においてレコーディングオーダーを好適に維持することができると共に、ユーザ が記録情報を自由に記録可能なエリア部分の容量を極力減らすことなぐプリ記録ェ リアを記録媒体上に配置することができる。  [0022] With this configuration, even if address misalignment or the like occurs, the recording order can be suitably maintained at both ends of the second area, and the user can record recording information freely. A pre-recording area that minimizes the capacity of the possible area can be arranged on the recording medium.
[0023] 上述の如く第 2エリアの他方側の端部が第 1エリアの他方側の端部よりも一方側へト レランス長シフトした位置に位置する記録媒体の態様では、前記第 2エリアの他方側 の端部は、前記トレランス長に加えて、(0前記記録情報を当該記録媒体に記録する ためのレーザ光の焦点が前記第 2記録層に合わせられている場合の前記第 1記録 層上における前記レーザ光のスポット半径の許容最大値、並びに (ii)前記第 1記録層 と前記第 2記録層との夫々の相対的な偏芯ズレの許容最大値の和から、(iii)前記記 録情報を前記第 2記録層に記録するために照射される前記レーザ光の少なくとも一 部が、前記記録情報が記録されて!、な!、前記第 1記録層のエリア部分を介して前記 第 2記録層に照射されることが許容されるときの、前記記録情報が記録されて ヽな 、 前記第 1記録層のエリア部分の大きさの許容最大値を引いたクリアランス長シフトした 位置に位置するように構成してもよ!/、。  [0023] As described above, in the aspect of the recording medium in which the end on the other side of the second area is located at a position shifted to the one side by the tolerance length from the end on the other side of the first area, In addition to the tolerance length, the end on the other side is (0) the first recording layer when the laser beam for recording the recording information on the recording medium is focused on the second recording layer. (Ii) the sum of the allowable maximum values of the relative decentering of the first recording layer and the second recording layer (iii) At least a part of the laser beam irradiated to record the recording information on the second recording layer is recorded with the recording information!,!, Through the area portion of the first recording layer. When the second recording layer is allowed to be irradiated, the recorded information is recorded. Has been a ヽ, it be configured so as to be located at a position clearance length shift by subtracting the maximum allowable size of the area portion of the first recording layer! /,.
[0024] このように構成すれば、記録媒体の製造工程等にぉ 、て発生するアドレスの位置 ズレに加えて、偏芯ズレゃレーザ光のスポットの大きさや記録情報が記録されて 、な いエリア部分にレーザ光がオーバーラップできる許容値等を考慮して、第 1エリア及 び第 2エリアの夫々が形成されている。従って、より好適に夫々の記録層に好適に記 録情報を記録することができる。 With this configuration, the position of the address generated during the manufacturing process of the recording medium, etc. In addition to the misalignment, the first area and the second area take into account the tolerance that the laser beam can be overlapped with the area where the laser beam spot size and recorded information are recorded and the laser beam does not overlap. Each is formed. Therefore, it is possible to more suitably record the recording information on each recording layer.
[0025] 本発明の記録媒体の他の態様は、前記プリ記録エリアには、前記記録情報に加え て、ダミー情報が予め記録される。 In another aspect of the recording medium of the present invention, dummy information is recorded in advance in the pre-recording area in addition to the recording information.
[0026] この態様によれば、プリ記録エリアにプリ記録される記録情報の容量が小さくとも、 例えば意味のな 、ダミー情報を記録することで、プリ記録エリアを配置することができ る。 [0026] According to this aspect, even if the capacity of the recording information prerecorded in the prerecording area is small, the prerecording area can be arranged by recording dummy information, for example, which is meaningless.
[0027] 本発明の記録媒体の他の態様は、前記トレランス長は、当該記録媒体の径方向に おける 40 μ mである。  In another aspect of the recording medium of the present invention, the tolerance length is 40 μm in the radial direction of the recording medium.
[0028] この態様によれば、例えば記録媒体の一規格である DVD— Rや DVD— RWにお いては、各記録層における位置ズレの許容範囲がー 20 μ mから + 20 μ mと規定さ れている。従って、たとえば第 1記録層の位置ズレが + 20 m、第 2記録層の位置ズ レが 20 mである場合、第 1記録層と第 2記録層との間においては、 40 mの相 対的な位置ズレが発生する。即ち、第 1記録層と第 2記録層との間においては、最大 40 mの相対的な位置ズレが許容されている。従って、この許容範囲を考慮したトレ ランス長に基づいて第 1エリア及び第 2エリアが形成されることで、上述した各種利益 を好適に享受することができる。もちろん、他の規格において異なる値が位置ズレの 許容範囲として定められていれば、 40 μ mに代えてその値を用いることが好ましい。  [0028] According to this aspect, for example, in DVD-R and DVD-RW which are standard recording media, the allowable range of positional deviation in each recording layer is specified as -20 μm to +20 μm. It has been. Therefore, for example, when the positional deviation of the first recording layer is +20 m and the positional deviation of the second recording layer is 20 m, there is a relative distance of 40 m between the first recording layer and the second recording layer. Misalignment occurs. That is, a relative positional shift of 40 m at maximum is allowed between the first recording layer and the second recording layer. Therefore, by forming the first area and the second area based on the tolerance length in consideration of this allowable range, it is possible to suitably enjoy the various benefits described above. Of course, if a different value is defined as an allowable range of misalignment in other standards, it is preferable to use that value instead of 40 μm.
[0029] 本発明の記録媒体の他の態様は、前記クリアランス長は、当該記録媒体の径方向 における 65 μ mでめる。  In another aspect of the recording medium of the present invention, the clearance length is 65 μm in the radial direction of the recording medium.
[0030] この態様によれば、例えば記録媒体の一規格である DVD— Rや DVD— RWにお いては、例えば 65 mのクリアランス長が定められている。従って、このクリアランス長 に基づいて第 1エリア及び第 2エリアが形成されることで、上述した各種利益を好適に 享受することができる。もちろん、他の規格において異なる値がクリアランスとして定め られていれば、 65 μ mに代えてその値を用いることが好ましい。  [0030] According to this aspect, for example, a DVD-R or DVD-RW, which is one standard of a recording medium, has a clearance length of, for example, 65 m. Therefore, by forming the first area and the second area based on the clearance length, it is possible to suitably enjoy the various benefits described above. Of course, if a different value is defined as the clearance in other standards, it is preferable to use that value instead of 65 μm.
[0031] 本発明の記録媒体の他の態様は、前記第 1記録層には、前記一方側又は前記他 方側に向かって前記記録情報が記録され、前記第 2記録層には前記第 1記録層に おいて前記記録情報が記録される側とは異なる側に向かって前記記録情報が記録 される。 In another aspect of the recording medium of the present invention, the first recording layer includes the one side or the other The recording information is recorded toward the other side, and the recording information is recorded on the second recording layer toward a side different from the side on which the recording information is recorded in the first recording layer.
[0032] この態様によれば、ォポジットトラックパス方式の記録媒体にぉ 、て、上述した各種 利益を享受することができる。  [0032] According to this aspect, the above-described various benefits can be enjoyed with the opposite track path type recording medium.
[0033] 本発明のこのような作用及び他の利得は次に説明する実施例から更に明らかにさ れる。 [0033] These effects and other advantages of the present invention will become more apparent from the embodiments described below.
[0034] 以上説明したように、本発明の記録媒体は、第 2エリアの一方側の端部が、第 1エリ ァの一方側の端部よりも他方側へシフトした位置に位置しており、第 2エリアの一方側 の端部に隣接して、記録情報が予め記録されるプリ記録エリアが配置される。従って 、例えばユーザが自由にデータを記録可能なエリア部分の容量を極力減少させるこ となくプリ記録エリアを配置することができる。  [0034] As described above, in the recording medium of the present invention, the end on one side of the second area is located at a position shifted to the other side from the end on one side of the first area. A pre-recording area in which recording information is recorded in advance is arranged adjacent to one end of the second area. Therefore, for example, the pre-recording area can be arranged without reducing the capacity of the area where the user can freely record data as much as possible.
図面の簡単な説明  Brief Description of Drawings
[0035] [図 1]本実施例に係る光ディスクの基本構造を示した概略平面図であり、且つ該光デ イスクの概略断面図と、該概略断面図に対応付けられた、その半径方向におけるエリ ァ構造の図式的概念図である。  FIG. 1 is a schematic plan view showing a basic structure of an optical disc according to the present embodiment, a schematic sectional view of the optical disk, and a radial direction associated with the schematic sectional view in the radial direction. FIG. 5 is a schematic conceptual diagram of an area structure.
[図 2]本実施例に係る光ディスクの具体的なエリア構成を概念的に示すデータ構造 図である。  FIG. 2 is a data structure diagram conceptually showing a specific area configuration of the optical disc in the example.
[図 3]相対トレランスを概念的に示す図式的概念図である。  FIG. 3 is a schematic conceptual diagram conceptually showing relative tolerance.
[図 4]クリアランスのうちの偏芯クリアランスを概念的に示す図式的概念図である。  FIG. 4 is a schematic conceptual diagram conceptually showing an eccentric clearance among the clearances.
[図 5]クリアランスのうちスポットクリアランスを概念的に示す図式的概念図である。  FIG. 5 is a schematic conceptual diagram conceptually showing spot clearance among clearances.
[図 6]クリアランスのうちオーバーラップクリアランスを概念的に示す図式的概念図で ある。  FIG. 6 is a schematic conceptual diagram conceptually showing overlap clearance among clearances.
[図 7]光ディスク上におけるデータエリア及び ROMエリアの具体的なアドレスの関係 を概念的に示すエリア構造図である。  FIG. 7 is an area structure diagram conceptually showing a specific address relationship between a data area and a ROM area on an optical disc.
[図 8]アドレスオフセットを算出するために用いられるグラフである。  FIG. 8 is a graph used to calculate an address offset.
[図 9]光ディスク上の他の具体的なエリア構成を概念的に示すデータ構成図である。  FIG. 9 is a data configuration diagram conceptually showing another specific area configuration on the optical disc.
[図 10]光ディスク上の他の具体的なエリア構成を概念的に示すデータ構成図である [図 11]光ディスク上の他の具体的なエリア構成を概念的に示すデータ構成図である 符号の説明 FIG. 10 is a data configuration diagram conceptually showing another specific area configuration on the optical disc. FIG. 11 is a data configuration diagram conceptually showing another specific area configuration on the optical disc.
[0036] 100 光ディスク  [0036] 100 optical disc
105、 115 データエリア  105, 115 Data area
121、 122 ROMエリア  121, 122 ROM area
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0037] 以下、本発明を実施するための最良の形態について実施例毎に順に図面に基づ いて説明する。  Hereinafter, the best mode for carrying out the present invention will be described for each embodiment in order with reference to the drawings.
[0038] (1)基本構造  [0038] (1) Basic structure
まず、図 1を参照して、本発明の記録媒体に係る実施例としての光ディスクの基本 構造について説明を進める。ここに、図 1は、本実施例に係る光ディスク 100の基本 構造を示した概略平面図であり、且つ該光ディスク 100の概略断面図と、該概略断 面図に対応付けられた、その半径方向におけるエリア構造の図式的概念図である。  First, the basic structure of an optical disc as an embodiment of the recording medium of the present invention will be described with reference to FIG. FIG. 1 is a schematic plan view showing the basic structure of the optical disc 100 according to the present embodiment, and is a schematic sectional view of the optical disc 100 and its radial direction associated with the schematic sectional view. It is a schematic conceptual diagram of the area structure in FIG.
[0039] 図 1 (a)に示されるように、光ディスク 100は、例えば、 DVDと同じく直径 12cm程度 のディスク本体上の記録面に、センターホール 101を中心として、リードインエリア 10 2又はリードアウトエリア 118、本発明における「第 1エリア」の一具体例を構成するデ 一タエリア 105及び本発明における「第 2エリア」の一具体例を構成するデータエリア 115、並びにミドルエリア 109及び 119が設けられている。そして、光ディスク 100は、 透明基板 110上に記録層等が積層されている。そして、この記録層の各記録領域に は、例えば、センターホール 101を中心にスパイラル状或いは同心円状に、例えば、 グルーブトラック及びランドトラック等のトラックが交互に設けられている。また、このトラ ック上には、データが ECCブロックという単位で分割されて記録される。 ECCブロック は、記録情報がエラー訂正可能なデータ管理単位である。  As shown in FIG. 1 (a), the optical disc 100 is, for example, a lead-in area 102 or lead-out centered on a center hole 101 on a recording surface on a disc body having a diameter of about 12 cm as in the case of DVD. An area 118, a data area 105 constituting a specific example of “first area” in the present invention, a data area 115 constituting a specific example of “second area” in the present invention, and middle areas 109 and 119 are provided. It has been. In the optical disc 100, a recording layer or the like is laminated on a transparent substrate 110. In each recording area of the recording layer, for example, tracks such as a groove track and a land track are alternately provided in a spiral shape or a concentric shape around the center hole 101. On this track, data is divided and recorded in units of ECC blocks. The ECC block is a data management unit in which recorded information can be error-corrected.
[0040] 尚、本発明は、このような三つのエリアを有する光ディスクには特に限定されない。  It should be noted that the present invention is not particularly limited to the optical disc having such three areas.
例えば、リードインエリア 102、リードアウトエリア 118又はミドルエリア 109 (119)が存 在せずとも、以下に説明するデータ構造等の構築は可能である。また、後述するよう に、リードインエリア 102、リードアウトエリア 118又はミドルエリア 109 (119)は更に細 分化された構成であってもよ 、。 For example, even if the lead-in area 102, the lead-out area 118, or the middle area 109 (119) does not exist, the data structure described below can be constructed. Also, as will be described later In addition, the lead-in area 102, the lead-out area 118, or the middle area 109 (119) may be further subdivided.
[0041] 特に、本実施例に係る光ディスク 100は、図 1 (b)に示されるように、例えば、透明 基板 110に、本発明に係る第 1及び第 2記録層の一例を構成する LO層及び L1層が 積層された構造をしている。このような 2層型の光ディスク 100の記録再生時には、図 1 (b)中、下側から上側に向かって照射されるレーザ光 LBの集光位置をいずれの記 録層に合わせるかに応じて、 L0層におけるデータの記録再生が行なわれるか又は L 1層におけるデータの記録再生が行われる。特に、 L0層においては内周側から外周 側に向力つてデータが記録され、他方、 L1層においては外周側から内周側に向か つてデータが記録される。即ち、本実施例に係る光ディスク 100は、ォポジットトラック パス方式の光ディスクに相当する。但し、パラレルトラックパス方式の光ディスクであつ ても、以下に説明する構成を採用することで、以下に述べる各種利益を享受すること ができる。 In particular, as shown in FIG. 1B, the optical disc 100 according to this example includes, for example, a LO layer that constitutes an example of the first and second recording layers according to the present invention on a transparent substrate 110. And L1 layer has a laminated structure. At the time of recording / reproduction of such a two-layer type optical disc 100, depending on which recording layer the condensing position of the laser beam LB irradiated from the lower side to the upper side in FIG. Data recording / reproduction in the L0 layer is performed or data recording / reproduction in the L1 layer is performed. In particular, in the L0 layer, data is recorded from the inner circumference side to the outer circumference side, while in the L1 layer, data is recorded from the outer circumference side to the inner circumference side. That is, the optical disc 100 according to the present embodiment corresponds to an opposite track path type optical disc. However, even in the case of a parallel track path type optical disc, it is possible to enjoy various benefits described below by adopting the configuration described below.
[0042] また、光ディスク 100の特〖こデータエリア 105 (115)においては、原則として、 L0層 のデータエリア 105にデータを記録した後に L1層のデータエリア 115にデータが記 録される。即ち、データが記録された L0層のデータエリア 105を介してレーザ光 LB を照射することで、 L1層のデータエリア 115にデータが記録される。リードインエリア 1 02や、リードアウトエリア 118や、ミドルエリア 109 (119)に関しても原則として、同様 の態様でデータが記録される。このようなデータの記録の態様を、 "レコーディングォ ーダ一"と称する。  [0042] In addition, in the special data area 105 (115) of the optical disc 100, data is recorded in the data area 115 of the L1 layer after data is recorded in the data area 105 of the L0 layer in principle. That is, by irradiating the laser beam LB through the data area 105 of the L0 layer where data is recorded, the data is recorded in the data area 115 of the L1 layer. In principle, data is recorded in the same manner for the lead-in area 102, the lead-out area 118, and the middle area 109 (119). This mode of data recording is called “recording order”.
[0043] また、本実施例に係る光ディスク 100は、 2層片面、即ち、デュアルレイヤに限定さ れるものではなぐ 2層両面、即ちデュアルレイヤーダブルサイドであってもよい。更に 、上述の如く 2層の記録層を有する光ディスクに限られることなぐ 3層以上の多層型 の光ディスクであってもよ 、。  In addition, the optical disc 100 according to the present embodiment may be two-layer single-sided, that is, not limited to dual layers, but may be two-layer double-sided, that is, dual-layer double-side. Furthermore, it is not limited to an optical disc having two recording layers as described above, and may be a multilayer type optical disc having three or more layers.
[0044] また、上述の説明では、ミドルエリア 109 (119)は既にその位置が固定されたように 説明されているが、実際のフアイナライズ処理においては、より内周側に配置されて いてもよい。その際も、以下に説明するエリアの配置の態様を満たしていることが好ま しい。 [0045] (2)具体的エリア構成 [0044] In the above description, the middle area 109 (119) has been described as having been fixed in position, but in the actual finalization process, the middle area 109 (119) may be arranged on the inner circumference side. . Even in this case, it is preferable that the area arrangement mode described below is satisfied. [0045] (2) Specific area configuration
続いて、図 2から図 8を参照して、本実施例に係る光ディスク 100の具体的なエリア 構成について説明を進める。ここでは、図 2を用いて、具体的なエリア構成の概略を 説明するとともに、図 3から図 8を用いて適宜補足的なないしはより詳細な説明を加え る。ここに、図 2は、本実施例に係る光ディスク 100の具体的なエリア構成を概念的に 示すデータ構造図である。  Next, a specific area configuration of the optical disc 100 according to the present embodiment will be described with reference to FIGS. Here, the outline of a specific area configuration will be explained using FIG. 2, and supplementary or more detailed explanation will be added as appropriate using FIGS. FIG. 2 is a data structure diagram conceptually showing a specific area configuration of the optical disc 100 according to the present embodiment.
[0046] 図 2 (a)に示すように、 L1層のデータエリア 115の内周側の端部と、 LO層のデータ エリア 105の内周側の端部とは、径方向において、本発明の「トレランス長」の一具体 例を構成する相対トレランス離れている。より具体的には、 L1層のデータエリア 115 の内周側の端部に対応する LO層のエリア部分と、 LO層のデータエリア 105の内周 側の端部とは、径方向において、相対トレランス離れている。言い換えれば、 L1層の データエリア 115の内周側の端部は、 LO層のデータエリア 105の内周側の端部より も外周側に向カゝつて、相対トレランスシフトした位置に位置している。  As shown in FIG. 2 (a), the end on the inner periphery side of the data area 115 of the L1 layer and the end portion on the inner periphery side of the data area 105 of the LO layer The relative tolerance that constitutes a specific example of the “tolerance length” of More specifically, the LO layer area portion corresponding to the inner circumferential end of the L1 layer data area 115 and the inner circumferential end of the LO layer data area 105 are relatively opposite in the radial direction. Tolerance is away. In other words, the inner end of the data area 115 in the L1 layer is located at a position that is relatively tolerance shifted from the inner end of the data area 105 in the LO layer toward the outer periphery. Yes.
[0047] 更には、 L1層のデータエリア 115の外周側の端部と、 LO層のデータエリア 105の 外周側の端部とは、径方向において、相対トレランス離れている。より具体的には、 L 1層のデータエリア 115の外周側の端部に対応する LO層のエリア部分と、 LO層のデ 一タエリア 105の外周側の端部とは、径方向において、相対トレランス離れている。言 い換えれば、 L1層のデータエリア 115の外周側の端部は、 LO層のデータエリア 105 の外周側の端部よりも内周側に向力つて、相対トレランスシフトした位置に位置してい る。  Furthermore, the outer peripheral end of the L1 layer data area 115 and the outer peripheral end of the LO layer data area 105 are separated from each other in the radial direction. More specifically, the LO layer area portion corresponding to the outer edge of the L 1 layer data area 115 and the outer edge of the LO data area 105 are relatively opposite in the radial direction. Tolerance is away. In other words, the outer end of the data area 115 in the L1 layer is positioned at a position that is relatively tolerance shifted by directing more toward the inner periphery than the outer end of the data area 105 in the LO layer. The
[0048] 尚、相対トレランスとは、 LO層における、設計上所定のアドレスが本来配置されるべ き位置と、実際の光ディスク 100上における所定のアドレスが配置されている位置と の位置ズレの許容範囲と、 L1層における、設計上所定のアドレスが本来配置される べき位置と、実際の光ディスク 100上における所定のアドレスが配置されている位置 との位置ズレの許容範囲との総和を示す。  [0048] It should be noted that the relative tolerance is an allowance of a positional deviation between a position where a predetermined address is originally designed in the LO layer and a position where the predetermined address is actually arranged on the optical disc 100. The sum of the range and the allowable range of positional deviation between the position where the predetermined address in the L1 layer should be originally arranged and the position where the predetermined address on the actual optical disc 100 is arranged is shown.
[0049] カロえて、 L1層のデータエリア 115の内周側の端部に隣接して、本発明における「プ リ記録エリア」の一具体例を構成する ROMエリア 121が配置されている。つまり、デ 一タエリア 115とリードアウトエリア 118との間に、プリ記録エリア 121が配置されてい る。同様に、 L1層のデータエリア 115の外周側の端部に隣接して、 ROMエリア 122 が配置されている。つまり、データエリア 115とミドルエリア 119との間〖こ、プリ記録エリ ァ 122が配置されている。 ROMエリア 121及び 122には、所定のプリデータが、例え ばエンボスピットやプリマーク等により、光ディスク 100の製造時等に予め記録されて いる。 A ROM area 121 constituting a specific example of the “pre-recording area” in the present invention is disposed adjacent to the inner peripheral end of the data area 115 of the L1 layer. That is, the pre-record area 121 is arranged between the data area 115 and the lead-out area 118. The Similarly, a ROM area 122 is disposed adjacent to the outer peripheral end of the data area 115 of the L1 layer. That is, the pre-recording area 122 is arranged between the data area 115 and the middle area 119. Predetermined pre-data is recorded in advance in the ROM areas 121 and 122 when the optical disc 100 is manufactured, for example, by embossed pits or pre-marks.
[0050] ROMエリア 121及び 122の大きさ(言い換えれば、径方向における長さ)は、相対 トレランスと同一であってもよいし、相対トレランスよりも短くてもよいし、相対トレランス よりも長くてもよい。要は、データエリア 105よりも小さくなつたデータエリア 115に隣接 するように ROMエリアが配置される。  [0050] The size (in other words, the length in the radial direction) of the ROM areas 121 and 122 may be the same as the relative tolerance, may be shorter than the relative tolerance, or may be longer than the relative tolerance. Also good. In short, the ROM area is arranged adjacent to the data area 115 which is smaller than the data area 105.
[0051] 或いは、より好ましくは、図 2 (b)に示すように、 L1層のデータエリア 115の内周側の 端部と、 L0層のデータエリア 105の内周側の端部とは、径方向において、相対トレラ ンス及びクリアランスの和だけ離れている。より具体的には、 L1層のデータエリア 115 の内周側の端部に対応する L0層のエリア部分と、 L0層のデータエリア 105の内周 側の端部とは、径方向において、相対トレランス及びクリアランスの和だけ離れている 。言い換えれば、 L1層のデータエリア 115の内周側の端部は、 L0層のデータエリア [0051] Alternatively, more preferably, as shown in FIG. 2 (b), the inner peripheral end of the L1 layer data area 115 and the inner peripheral end of the L0 layer data area 105 are In the radial direction, they are separated by the sum of relative tolerance and clearance. More specifically, the area portion of the L0 layer corresponding to the inner peripheral end of the data area 115 of the L1 layer and the end of the inner peripheral side of the data area 105 of the L0 layer are relatively relative to each other in the radial direction. Separated by the sum of tolerance and clearance. In other words, the inner edge of the L1 layer data area 115 is the L0 layer data area.
105の内周側の端部よりも外周側に向力つて、相対トレランス及びクリアランスの和シ フトした位置に位置して 、る。 It is located at a position where the relative tolerance and the clearance are shifted together, with the force toward the outer peripheral side rather than the inner peripheral end of 105.
[0052] 更には、 L1層のデータエリア 115の外周側の端部と、 L0層のデータエリア 105の 外周側の端部とは、径方向において、相対トレランス及びクリアランスの和だけ径方 向において離れている。より具体的には、 L1層のデータエリア 115の外周側の端部 に対応する L0層のエリア部分と、 L0層のデータエリア 105の外周側の端部とは、径 方向にお 、て、相対トレランス及びクリアランスの和だけ径方向にお 、て離れて 、る。 言い換えれば、 L1層のデータエリア 115の外周側の端部は、 L0層のデータエリア 1 05の外周側の端部よりも内周側に向力つて、相対トレランス及びクリアランスの和シフ トした位置に位置して 、る。  [0052] Further, the outer end of the data area 115 in the L1 layer and the outer end of the data area 105 in the L0 layer are in the radial direction by the sum of relative tolerance and clearance in the radial direction. is seperated. More specifically, the area portion of the L0 layer corresponding to the outer peripheral end portion of the data area 115 of the L1 layer and the end portion of the outer peripheral side of the data area 105 of the L0 layer are in the radial direction. In the radial direction, the sum of the relative tolerance and clearance is separated. In other words, the outer peripheral edge of the data area 115 in the L1 layer is directed to the inner peripheral side rather than the outer peripheral edge of the data area 105 in the L0 layer, so that the sum of relative tolerance and clearance is shifted. Located in
[0053] 加えて、 L1層のデータエリア 115の内周側の端部に隣接して、 ROMエリア 121が 配置されている。つまり、データエリア 115とリードアウトエリア 118との間に、プリ記録 エリア 121が配置されている。同様に、 L1層のデータエリア 115の外周側の端部に 隣接して、 ROMエリア 122が配置されている。つまり、データエリア 115とミドルエリア 119との間に、プリ記録エリア 122が配置されている。図 2 (b)における ROMエリア 1 21及び 122の大きさ(言い換えれば、径方向における長さ)は、相対トレランス及びク リアランスの和と同一であってもよいし、相対トレランス及びクリアランスの和よりも短く てもよ 、し、相対トレランス及びクリアランスの和よりも長くてもょ 、。 In addition, a ROM area 121 is disposed adjacent to the inner peripheral end of the data area 115 of the L1 layer. That is, the pre-record area 121 is arranged between the data area 115 and the lead-out area 118. Similarly, at the outer edge of L1 layer data area 115 A ROM area 122 is arranged adjacent to the ROM area 122. That is, the pre-record area 122 is arranged between the data area 115 and the middle area 119. The size (in other words, the length in the radial direction) of ROM areas 121 and 122 in Fig. 2 (b) may be the same as the sum of relative tolerance and clearance, or from the sum of relative tolerance and clearance. Can be shorter or longer than the sum of relative tolerance and clearance.
[0054] 尚、以下の説明においても、「相対トレランス」について説明を進めている場合であ つても、このような「クリアランス」も考慮することが好ま 、。  [0054] In the following description, it is preferable to consider such "clearance" even when the description of "relative tolerance" is in progress.
[0055] 尚、本実施例におけるクリアランスとは、(i)LO層及び L1層の中心位置等のずれに 相当する偏芯に係るクリアランス (以下、適宜"偏芯クリアランス"と称する)と、 GOデフ オーカスされたレーザ光のビームスポットの大きさに係るクリアランス(以下、適宜"ス ポットクリアランス"と称する)との和から、(iii)データを L1層に記録する際に、データが 未記録である L0層のエリア部分 (以降、適宜"未記録エリア"と称する)を介してレー ザ光 LBの一部が L1層に照射されることが許容されるときの、レーザ光 LBが透過す る L0層の未記録エリアの大きさ(つまり、レーザ光 LB力L0層の未記録エリアにォー バーラップしてもよい幅)の許容最大値 (以降、適宜"オーバーラップクリアランス"と 称する)を引いた値に相当する。  [0055] The clearance in the present embodiment is (i) a clearance related to eccentricity corresponding to a deviation of the center position of the LO layer and L1 layer (hereinafter referred to as "eccentric clearance" as appropriate), GO Based on the sum of the clearances related to the beam spot size of the defocused laser beam (hereinafter referred to as “spot clearance” where appropriate), (iii) when data is recorded on the L1 layer, no data is recorded. The laser beam LB is transmitted when it is allowed to irradiate a part of the laser beam LB to the L1 layer through an area portion of an L0 layer (hereinafter referred to as “unrecorded area” as appropriate). Subtract the maximum allowable value (hereinafter referred to as “overlap clearance” as appropriate) of the size of the unrecorded area of the L0 layer (that is, the laser beam LB force that may overlap the unrecorded area of the L0 layer). It corresponds to the value.
[0056] ここで、相対トレランス及びクリアランスについて、図 3から図 6を参照してより詳細に 説明する。ここに、図 3は、相対トレランスを概念的に示す図式的概念図であり、ここ に、図 4は、クリアランスのうちの偏芯クリアランスを概念的に示す図式的概念図であり 、図 5は、クリアランスのうちのスポットクリアランスを概念的に示す図式的概念図であ り、図 6は、クリアランスのうちのオーバーラップクリアランスを概念的に示す図式的概 念図である。  [0056] Here, the relative tolerance and the clearance will be described in more detail with reference to FIGS. Here, FIG. 3 is a schematic conceptual diagram conceptually showing relative tolerance, FIG. 4 is a schematic conceptual diagram conceptually showing an eccentric clearance among clearances, and FIG. FIG. 6 is a schematic conceptual diagram conceptually showing a spot clearance among clearances, and FIG. 6 is a schematic conceptual diagram conceptually showing an overlap clearance among clearances.
[0057] 図 3 (a)に示すように、設計上、アドレス" X"が半径位置" r"に規定されるとする。こ れにより、設計上リードインエリア 102やデータエリア 105 (115)やリードアウトエリア 1 18やミドルエリア 109 (119)の配置が規定される。このとき、アドレスを規定するランド プリピットな 、しはゥォブルを形成するためのスタンパ等の製造誤差 (言 、換えれば、 スタンパを製造するためのディスク原盤の製造誤差又は該ディスク原盤を生成するた めのカッティングマシンの半径位置誤差やトラックピッチむら等)により、アドレス" X" が本来規定されるべき半径位置" r"に的確に規定されない場合があり得る。或いは、 光ディスク 100を製造する際のディスク基板の熱収縮等における個体差等により、ァ ドレス" X"が本来規定されるべき半径位置" r"に的確に規定されない場合があり得る As shown in FIG. 3A, it is assumed that the address “X” is defined as the radial position “r” by design. As a result, the layout of the lead-in area 102, the data area 105 (115), the lead-out area 118, and the middle area 109 (119) is defined by design. At this time, a manufacturing error of a stamper or the like for forming a land pre-pit or wobble that defines an address (in other words, a manufacturing error of a disk master for manufacturing a stamper or the generation of the disk master). "X" due to the radial position error of the cutting machine and uneven track pitch) May not be precisely defined at the radial position "r" that should be originally defined. Or, due to individual differences in the thermal contraction of the disk substrate when manufacturing the optical disk 100, the address “X” may not be accurately defined at the radial position “r” that should be defined originally.
[0058] 具体的には、図 3 (b)に示すように、本来アドレス" X"が規定されるべき半径位置" r "に、アドレス" X+ ΔΧ"が規定されることがあり得る。このとき、アドレス" X"は、半径 位置" r"よりも" Arl"だけ内周側にシフトした、半径位置 "r— Arl"に規定されること があり得る。この Arlを、記録層毎の位置ズレと称する。この位置ズレは記録層毎に 生じ得る。即ち、 LO層における位置ズレと L1層における位置ズレとは、互いに別個 独立に生じ得る。この場合、好適な記録動作ないしは再生動作を担保するという観 点から、位置ズレの許容範囲を定めることが好ましい。例えば、光ディスク 100の一具 体例である 2層 DVD— Rや 2層 DVD— RWにおいては、位置ズレの許容範囲は、 20 μ mから + 20 μ mと定められている。この位置ズレの許容範囲を、適宜"位置トレ ランス"と称する。この許容範囲に基づいて、 L0層及び L1層の夫々の位置ズレの許 容範囲の和(即ち、 L0層及び L1層の夫々の位置トレランスの和)の最大値が相対ト レランスとなる。この場合であれば、相対トレランスは、 20 + 20=40 mとなる。 Specifically, as shown in FIG. 3B, the address “X + ΔΧ” may be defined at the radial position “r” where the address “X” should originally be defined. At this time, the address “X” may be defined at the radius position “r—Arl”, which is shifted to the inner circumference side by “Arl” from the radius position “r”. This Arl is called a positional shift for each recording layer. This misalignment can occur for each recording layer. That is, the positional deviation in the LO layer and the positional deviation in the L1 layer can occur independently of each other. In this case, it is preferable to define an allowable range of positional deviation from the viewpoint of ensuring a suitable recording operation or reproducing operation. For example, in a two-layer DVD-R or a two-layer DVD-RW that is a specific example of the optical disc 100, the allowable range of positional deviation is set to 20 μm to +20 μm. This allowable range of displacement is referred to as “position tolerance” as appropriate. Based on this allowable range, the maximum value of the sum of the allowable ranges of the positional deviations of the L0 layer and the L1 layer (that is, the sum of the positional tolerances of the L0 layer and the L1 layer) is the relative tolerance. In this case, the relative tolerance is 20 + 20 = 40 m.
[0059] 尚、 L0層の実際の位置ズレと L1層の実際の位置ズレとの和を相対トレランスとして もよい。即ち、 L0層において実際に生じている位置ズレの最大値と、 L1層において 実際に生じている位置ズレの最大値との和を、光ディスク 100の相対トレランスとして ちょい。  Note that the relative tolerance may be the sum of the actual positional deviation of the L0 layer and the actual positional deviation of the L1 layer. That is, the relative tolerance of the optical disc 100 is the sum of the maximum value of the positional deviation actually generated in the L0 layer and the maximum value of the positional deviation actually generated in the L1 layer.
[0060] 図 4 (a)に示すように、 LO層と L1層の間に相対的な偏芯(以下"相対的な偏芯"と 称する)が存在しない光ディスク 100であれば、 L0層の半径" r"に規定されるトラック と、 L1層の半径" r"に規定されるトラックとは、トラックの一周にわたって対向する関係 にある。尚、偏芯とは、各記録層の中心位置のズレや、 L0層及び L1層を貼り合わせ る際の中心位置の位置ズレ等に起因して発生する、 L0層及び L 1層の相対的なズレ を示す。  [0060] As shown in FIG. 4 (a), if the optical disc 100 has no relative eccentricity (hereinafter referred to as "relative eccentricity") between the LO layer and the L1 layer, The track specified by the radius “r” and the track specified by the radius “r” of the L1 layer are in a relationship of facing each other over one track. Eccentricity refers to the relative position of the L0 layer and L1 layer, which is caused by misalignment of the center position of each recording layer, misalignment of the center position when the L0 layer and L1 layer are bonded together, etc. Indicates a misalignment.
[0061] 他方で、図 4 (b)に示すように、相対的な偏芯が存在している光ディスク 100では、 L1層の半径" r"に規定されるトラックと、 L1層の半径" r"に規定されるトラックとは、ト ラックの一周の間で 2点でしか対向しない。即ち、本来対向する位置に規定されるは ずの L0層のトラックと、 L1層のトラックとがほとんどの場所で対向せず、 L0層が L1層 より外周側になる部分と、逆に LO層が L1層より内周側になる部分が生じてしまう。こ こで" Ar2"は相対的な偏芯である。そこで、図 4 (c)に示すように、 L1層の半径" r"に 規定されるトラックに対応した LO層のトラックの半径を" r+ Ar2"とする。すると、図 4 ( d)に示すように、相対的な偏芯" Ar2"が生じても、 L1層の半径" r"に規定されるトラ ックは、 LO層の半径" r+ Ar2"が規定するトラックの外側となることは無くなる。図 4 (c )で導入した" Δι:2"が「偏芯クリアランス」である。そして、相対的な偏芯の許容最大 値をもって偏芯クリアランスの値とする。 [0061] On the other hand, as shown in FIG. 4B, in the optical disc 100 in which relative eccentricity exists, the track defined by the radius “r” of the L1 layer and the radius “r” of the L1 layer The track specified in “ It only faces two points during one round of the rack. In other words, the L0 layer track that is originally defined at the opposite position and the L1 layer track do not face each other in most places, and the L0 layer is on the outer peripheral side of the L1 layer. The part which becomes the inner circumference side from the L1 layer occurs. Here "Ar2" is relative eccentricity. Therefore, as shown in Fig. 4 (c), the track radius of the LO layer corresponding to the track specified by the radius "r" of the L1 layer is set to "r + Ar2". Then, as shown in Fig. 4 (d), even if the relative eccentricity "Ar2" occurs, the track specified by the radius "r" of the L1 layer has the radius "r + Ar2" of the LO layer. It will no longer be outside the defined track. “Δι: 2” introduced in Fig. 4 (c) is the “eccentric clearance”. The maximum allowable relative eccentricity value is used as the eccentric clearance value.
[0062] また、図 5 (a)に示すように、レーザ光 LBが L1層にフォーカスされて 、る(焦点が合 わせられている)場合、 LO層上には、所定半径" Ar3"のビームスポットが形成される 。このとき、上述したように、データが記録された LO層を介してレーザ光 LBを照射す ることで L1層にデータを記録する場合を考える。図 5 (a)に示すように、 LO層のアドレ ス" X"までデータが記録されている場合に、該アドレス" X"に対向する L1層のアドレ ス" γ"にレーザ光 LBのフォーカスを合わせると、レーザ光 LBの左側半分は、データ が記録された LO層を介して L1層に照射されるが、一方でレーザ光 LBの右側半分は 、データが未記録の LO層を介して L1層に照射される。従って、単にデータが記録済 みの LO層に対向する L1層にデータを記録するのみでは、データが記録された LO層 を介してレーザ光 LBを照射することで L1層に好適にデータを記録することはできな い。 Further, as shown in FIG. 5 (a), when the laser beam LB is focused on the L1 layer (focused), the LO layer has a predetermined radius “Ar3”. A beam spot is formed. At this time, as described above, consider the case where data is recorded in the L1 layer by irradiating the laser beam LB through the LO layer in which the data is recorded. As shown in FIG. 5 (a), when data is recorded up to the address “X” of the LO layer, the focus of the laser beam LB is focused on the address “γ” of the L1 layer facing the address “X”. In combination, the left half of the laser beam LB is applied to the L1 layer through the LO layer on which data is recorded, while the right half of the laser beam LB passes through the LO layer on which no data is recorded. The L1 layer is irradiated. Therefore, if data is simply recorded on the L1 layer facing the LO layer on which data has already been recorded, data can be suitably recorded on the L1 layer by irradiating the laser beam LB through the LO layer on which the data has been recorded. I can't do it.
[0063] このため、図 5 (b)に示すように、 L1層にデータを記録する場合のレーザ光 LBのフ オーカス位置は、データが記録された LO層のアドレス" X"に対向する L1層のアドレ ス" Y"が示す位置から、ビームスポットの半径" Ar3"に相当する距離だけ内周側に シフトさせる必要がある。具体的には、ビームスポットの半径" Ar3"に相当するァドレ スの変量" ΔΧ1"だけ内周側にシフトしたアドレス" Υ— ΔΧ1"が示す位置にレーザ 光 LBをフォーカスする必要がある。図 5 (b)で導入した" Ar3"が「スポットクリアランス 」である。このビームスポットの半径の許容最大値をもって、スポットクリアランスの値と する。 [0064] し力しながら、図 6に示すように、 L1層にデータを記録する場合のレーザ光 LBの一 部が、その幅が A r4にて示されるデータが未記録の LO層のエリア部分にオーバーラ ップしていても、 L1層に好適にデータを記録することはできる。これは、データが未 記録の LO層にレーザ光 LBの一部がオーバーラップして 、ても、データの記録に悪 影響を与えるほどには、 L1層上におけるレーザ光 LBのパワーが変動しないからであ る。つまり、 L1層に好適にデータを記録するためには、データが記録された LO層を 介してレーザ光 LBを照射する必要がある力 厳密にはレーザ光 LBの一部が、デー タが未記録の LO層を介して L1層に照射されてもよい。具体的には、図 5 (b)に示し たように、ビームスポットの半径" A r3"に相当するアドレスの変量" Δ Χ1"だけ内周側 にシフトしたアドレス" Υ—Δ XI"が示す位置にレーザ光 LBをフォーカスする必要が あるが、厳密には、アドレス" Υ— Δ Χ2 (但し、 Δ Χ2く Δ XI) "が示す位置にレーザ 光 LBをフォーカスしても、 L1層に好適にデータを記録することができる。このときの、 レーザ光 LBの一部がオーバーラップしてもよ!/、幅 Δ r4の最大値力 「オーバーラッ プクリアランス」である。 Therefore, as shown in FIG. 5 (b), the focus position of the laser beam LB when data is recorded on the L1 layer is L1 facing the address “X” of the LO layer where the data is recorded. It is necessary to shift from the position indicated by the layer address “Y” to the inner circumference side by a distance corresponding to the radius “Ar3” of the beam spot. Specifically, it is necessary to focus the laser beam LB at the position indicated by the address “Υ—ΔΧ1” shifted inward by the address variable “ΔΧ1” corresponding to the radius “Ar3” of the beam spot. “Ar3” introduced in Fig. 5 (b) is “spot clearance”. The spot clearance value is the maximum allowable radius of the beam spot. [0064] However, as shown in FIG. 6, part of the laser beam LB when data is recorded in the L1 layer is an area of the LO layer in which the data whose width is indicated by Ar4 is not recorded. Even if it overlaps with the part, data can be suitably recorded in the L1 layer. This is because the laser light LB power on the L1 layer does not fluctuate enough to adversely affect data recording even if a portion of the laser light LB overlaps the LO layer where data has not been recorded. Because. In other words, in order to suitably record data in the L1 layer, it is necessary to irradiate the laser beam LB through the LO layer on which the data is recorded. Strictly speaking, a part of the laser beam LB is not yet recorded. The L1 layer may be irradiated through the LO layer of the recording. Specifically, as shown in FIG. 5 (b), the address “Υ-ΔXI” shifted to the inner circumference side by the variable “Δ Δ1” corresponding to the beam spot radius “A r3” is shown. Although it is necessary to focus the laser beam LB on the position, strictly speaking, it is suitable for the L1 layer even if the laser beam LB is focused on the position indicated by the address “Υ— Δ Χ2 (however, Δ Χ2 Δ ΔXI)” Can record data. At this time, a part of the laser beam LB may overlap! /, The maximum value force of the width Δr4 is “overlap clearance”.
[0065] 図 4における" A r2"を改めて LO層と L1層の間の相対的な偏芯ズレの許容最大値 とし、図 5における" A r3"を改めてレーザ光 LBが L1層にフォーカスした際の LO層に おけるビームスポットの半径の許容最大値とすれば、図 6における" A r4"を改めてレ 一ザ光 LB力LO層の未記録エリアにオーバーラップしてもよい幅の最大値とすれば、 図 2におけるクリアランスは、 " Δ Γ2+ Δ Γ3 - Δ Γ4"に相当する。  [0065] “A r2” in FIG. 4 is changed to the maximum allowable relative eccentricity between the LO layer and L1 layer, and “A r3” in FIG. 5 is changed again to focus the laser beam LB on the L1 layer. If the maximum allowable value of the radius of the beam spot in the LO layer is determined, the maximum value of the width that may overlap the unrecorded area of the laser light LB force LO layer is changed from “A r4” in FIG. If so, the clearance in Fig. 2 is equivalent to "Δ Γ2 + Δ Γ3-Δ Γ4".
[0066] 続いて、図 7及び図 8を参照して、光ディスク 100上におけるデータエリア 105及び 115並びに ROMエリア 121及び 122の具体的なアドレスの関係について説明する。 ここに、図 7は、光ディスク 100上におけるデータエリア 105及び 115並びに ROMェ リア 121及び 122の具体的なアドレスの関係を概念的に示すエリア構造図であり、図 8は、アドレスオフセットを算出するために用いられるグラフである。  Next, with reference to FIG. 7 and FIG. 8, a specific address relationship between the data areas 105 and 115 and the ROM areas 121 and 122 on the optical disc 100 will be described. FIG. 7 is an area structure diagram conceptually showing a specific address relationship between the data areas 105 and 115 and the ROM areas 121 and 122 on the optical disc 100, and FIG. 8 calculates an address offset. It is a graph used for this.
[0067] 図 7 (a)に示すように、 L0層のデータエリア 105の内周側の端部のアドレスを" A"と 定め、 L0層のデータエリア 105の外周側の端部のアドレスを" X"と定める。そして、 L 0層のアドレスと、 L1層のアドレスとは、同一の半径位置において互いに補間関係に あるものと定める。具体的には、 L0層のデータエリア 105の内周側の端部に対向す る LI層のエリア部分のアドレスを" A— bar (図 7中では、 Aの上部に横線を付してい る力 これを本明細書中においては、 A— barと称する)"と定め、 LO層のデータエリ ァ 105の外周側の端部に対向するエリア部分のアドレスを" X— bar (図 7中では、 X の上部に横線を付している力 これを本明細書中においては、 X— barと称する)"と 定める。更に、アドレスが" A"にて示される半径位置における相対トレランス及びタリ ァランスの和の長さをデータサイズに変換した値を Ofs (A)とし、アドレスが" X"にて 示される半径位置における相対トレランス及びクリアランスの和の長さをデータサイズ に変換した値を Of s (X)とする。 [0067] As shown in FIG. 7 (a), the address of the inner edge of the data area 105 of the L0 layer is defined as "A", and the address of the outer edge of the data area 105 of the L0 layer is Set to "X". The address of the L0 layer and the address of the L1 layer are determined to be interpolated with each other at the same radial position. Specifically, it faces the inner edge of the L0 layer data area 105. The address of the area part of the LI layer is defined as “A-bar (in FIG. 7, the force with a horizontal line at the top of A, which is referred to as A-bar in this specification)” and LO The address of the area facing the outer edge of the layer data area 105 is “X-bar” (in FIG. 7, the force with a horizontal line at the top of X X-bar)). Further, the value obtained by converting the sum of the relative tolerance and the tailorance at the radial position indicated by the address “A” into the data size is defined as Ofs (A), and at the radial position indicated by the address “X”. Of s (X) is the value obtained by converting the sum of relative tolerance and clearance into data size.
[0068] この場合、図 7 (a)に示すように、 L1層のデータエリア 115の内周側の端部のアドレ スは、 "A+Ofs (A),,となる。同様に、 L1層のデータエリア 115の外周側の端部のァ ドレスは、 "X— Ofs (X),,となる。  In this case, as shown in FIG. 7 (a), the address of the end portion on the inner circumference side of the data area 115 of the L1 layer is “A + Ofs (A), similarly. The address of the outer edge of the layer data area 115 is “X—Ofs (X),”.
[0069] また、図 7 (b)に示すように、データエリア 105の外周側の端部のアドレスと、データ エリア 115の外周側の端部のアドレスとが補間関係にあるようにアドレスを定めてもよ い。具体的には、データエリア 115の外周側の端部のアドレスを" X— bar"と定める。  [0069] Further, as shown in FIG. 7 (b), the address is determined so that the address of the outer edge of the data area 105 and the address of the outer edge of the data area 115 are in an interpolating relationship. It's okay. Specifically, the address of the outer edge of the data area 115 is defined as “X-bar”.
[0070] この場合、図 7 (b)に示すように、データエリア 105の外周側の端部に対向する L1 層のエリア部分のアドレスは、 " —1^ +0£5 ( )"にて特定される。また、データエリ ァ 105の内周側の端部に対向する L1層のエリア部分のアドレスは、 "A_bar+Ofs ( X) "にて特定される。また、データエリア 115の内周側の端部のアドレスは、 "A— bar + Ofs (X) +Ofs (A) "となる。  In this case, as shown in FIG. 7 (b), the address of the area portion of the L1 layer facing the outer edge of the data area 105 is “−1 ^ + 0 £ 5 ()”. Identified. Further, the address of the area portion of the L1 layer facing the inner peripheral end of the data area 105 is specified by “A_bar + Ofs (X)”. Further, the address of the end portion on the inner peripheral side of the data area 115 is “A−bar + Ofs (X) + Ofs (A)”.
[0071] 尚、図 7 (a)及び図 7 (b)は、アドレスの割り当ての態様が異なるに過ぎず、データェ リア 105及び 115、並びに ROMエリア 121及び 122の配置関係は同一である。  Note that FIG. 7 (a) and FIG. 7 (b) differ only in the manner of address assignment, and the arrangement relationship between the data areas 105 and 115 and the ROM areas 121 and 122 is the same.
[0072] 0£3 (八)及び0£3 ( )は、図 8 (a)及び図 8 (b)に示すグラフに基づいて算出される 。図 8 (a)は、例えば直径が 12cmの光ディスクの最外周側(具体的には、半径位置 力 8. 6mmの位置であって、例えばデータエリア 105及び 115の外周側の端部付 近)における、相対トレランス (Tls)及びクリアランス(Cls)の和と、アドレスオフセット 値 (即ち、相対トレランス及びクリアランスの和をデータサイズに変換した値)との関係 を示すグラフである。図 8 (b)は、相対トレランス及びクリアランスの和が 105 μ mであ るときの、光ディスク 100の半径位置と、アドレスオフセット値との関係を示すグラフで ある。 [0072] 0 £ 3 (eight) and 0 £ 3 () are calculated based on the graphs shown in Figs. 8 (a) and 8 (b). Fig. 8 (a) shows the outermost circumference of an optical disk with a diameter of 12cm, for example (specifically, the position with a radial position force of 8.6mm, for example, near the outer edge of the data areas 105 and 115). 5 is a graph showing the relationship between the sum of relative tolerance (Tls) and clearance (Cls) and the address offset value (ie, the value obtained by converting the sum of relative tolerance and clearance into a data size). Figure 8 (b) is a graph showing the relationship between the radial position of the optical disc 100 and the address offset value when the sum of relative tolerance and clearance is 105 μm. is there.
[0073] 図 8 (a)に示すグラフは、例えば  [0073] The graph shown in FIG.
Ofs = 5. 4668 X (Tls + Cls) · · · 式(1)  Ofs = 5. 4668 X (Tls + Cls) · · · · Equation (1)
の関係を有している。このため、例えば Tls=40 μ mであり、 Cls = 65 μ mである場 合には、データエリア 105及び 115の外周側の端部付近におけるアドレスオフセット 値(即ち、図 7 (a)及び図 7 (b)における Ofs (X)は、 5. 4668 X 105 = 575ECCブロ ックとなる。  Have the relationship. For this reason, for example, when Tls = 40 μm and Cls = 65 μm, the address offset value near the outer edge of the data areas 105 and 115 (ie, FIG. 7 (a) and FIG. Ofs (X) in 7 (b) becomes 5.4668 X 105 = 575ECC block.
[0074] 図 8 (b)に示すグラフは、例えば  [0074] The graph shown in FIG.
Ofs = 9. 8254 X半径位置 · · · 式(2)  Ofs = 9. 8254 X radius position · · · · Equation (2)
の関係を有している。このため、データエリア 105及び 115の内周側の端部付近にお けるアドレスオフセット値(即ち、図 7 (a)及び図 7 (b)における Of s (A)は、 9. 8254 X 23. 6 = 233ECCブロックとなる。同様に、データエリア 105及び 115の外周側の端 部付近におけるアドレスオフセット値 (即ち、図 7 (a)及び図 7 (b)における Ofs (X)は 、 9. 8254 X 58. 6 = 575ECCブロックとなる。  Have the relationship. For this reason, the address offset value in the vicinity of the inner peripheral edge of the data areas 105 and 115 (that is, Of s (A) in FIGS. 7A and 7B is 9.8254 X 23. 6 = 233 ECC blocks Similarly, the address offset value near the outer edge of the data areas 105 and 115 (that is, Ofs (X) in FIGS. 7A and 7B is 9.8254). X 58. 6 = 575 ECC blocks.
[0075] このように、図 8 (a)及び図 8 (b)に示すグラフを参照することで、アドレスオフセット 値を容易に算出することができ、その結果、データエリア 105及び 115、並びに RO Mエリア 121及び 122のアドレッシングを好適に行うことができる。アドレッシングの際 には、 ROMエリア 121及び 122のサイズをも考慮する必要があることは言うまでもな い。 As described above, the address offset value can be easily calculated by referring to the graphs shown in FIGS. 8 (a) and 8 (b). As a result, the data areas 105 and 115, and the RO Addressing of the M areas 121 and 122 can be suitably performed. Needless to say, the size of ROM areas 121 and 122 must also be taken into account when addressing.
[0076] アドレスオフセット値は、必ずしも図 8 (a)及び図 8 (b)に示すグラフを用いて算出す る必要はない。式(1)及び式(2)を用いても良いし、変換テーブルを用いてもよい。 要は、相対トレランスとクリアランスの和をアドレス値に好適に変換することができれば 、その変換はどのような方法であってもよい。  The address offset value does not necessarily have to be calculated using the graphs shown in FIGS. 8 (a) and 8 (b). Expressions (1) and (2) may be used, or a conversion table may be used. In short, as long as the sum of relative tolerance and clearance can be suitably converted into an address value, the conversion may be performed by any method.
[0077] 以上説明したように、データエリア 105の内周側の端部力も外周側へシフトした位 置にデータエリア 115の内周側の端部が位置している。加えて、データエリア 105の 外周側の端部力 内周側へシフトした位置にデータエリア 115の外周側の端部が位 置している。このため、例えば何らかの原因に起因してアドレスの位置ズレ(更には、 偏心等)等が生じていたとしても、データエリア 115にデータを記録する際には、デー タエリア 105を介してレーザ光 LBが照射される。従って、データエリア 105にデータ を記録した後に、データエリア 115にデータを記録すれば、データエリア 115に記録 されたデータの記録条件を統一することができる。つまり、 2層型或いは多層型の記 録媒体において重要となってくるレコーディングオーダーを好適に維持することがで きる。 As described above, the inner peripheral end of the data area 115 is located at a position where the inner peripheral end force of the data area 105 is also shifted to the outer peripheral side. In addition, the end force on the outer peripheral side of the data area 105 is located at the position shifted to the inner peripheral side on the outer peripheral side of the data area 115. For this reason, for example, even if there is an address misalignment (further, eccentricity, etc.) due to some cause, when data is recorded in the data area 115, the data Laser light LB is irradiated through the data area 105. Therefore, if data is recorded in the data area 115 after the data is recorded in the data area 105, the recording conditions of the data recorded in the data area 115 can be unified. In other words, it is possible to favorably maintain a recording order that is important in a two-layer or multilayer recording medium.
[0078] カロえて、レコーディングオーダーを維持するためにデータエリア 105よりも小さくされ たデータエリア 115に隣接するように ROMエリア 121及び 122が配置される。つまり 、本来データを記録することができるデータエリア 115に含んでもよいエリア部分であ るにも関わらず、レコーディングオーダーを維持するためにデータエリア 115より除か れたエリア部分に ROMエリア 121及び 122を配置することができる。言い換えれば、 データエリア 105及び 115の内部に改めて ROMエリア 121及び 122を設ける必要が ない。これにより、ユーザがデータを自由に記録可能なエリア部分 (即ち、データエリ ァ 105及び 115)の容量を極力減らすことなぐ ROMエリア 121及び 122を光デイス ク 100上に配置することができる。  The ROM areas 121 and 122 are arranged adjacent to the data area 115 that is smaller than the data area 105 in order to maintain the recording order. That is, the ROM areas 121 and 122 are included in the area portion excluded from the data area 115 in order to maintain the recording order, even though the area may be included in the data area 115 where data can be originally recorded. Can be arranged. In other words, it is not necessary to provide ROM areas 121 and 122 in the data areas 105 and 115 again. As a result, ROM areas 121 and 122 can be arranged on the optical disk 100 without reducing the capacity of the area portion where the user can freely record data (that is, the data areas 105 and 115) as much as possible.
[0079] (3)他の具体的エリア構成  [0079] (3) Other specific area configurations
続いて、図 9から図 11を参照して、他の具体的エリア構成について説明する。ここ に、図 9から図 11は夫々、光ディスク 100上の他の具体的なエリア構成を概念的に示 すデータ構成図である。  Next, another specific area configuration will be described with reference to FIGS. FIGS. 9 to 11 are data configuration diagrams conceptually showing other specific area configurations on the optical disc 100, respectively.
[0080] 図 9に示すように、 ROMエリア 121及び 122の全面〖こ、データの記録や再生を行う 際に参照される管理データや制御データ等を含む必要データが記録されていなくと もよい。より具体的には、 ROMエリア 121及び 122の一部に必要データが記録され ており、 ROMデータエリア 121及び 122の他の一部に、記録や再生を行う際には用 V、られな 、ダミーデータ(例えば、 00hデータ等)が記録されて 、てもよ 、。  [0080] As shown in FIG. 9, it is not necessary to record the entire ROM areas 121 and 122 and necessary data including management data and control data that are referred to when recording and reproducing data. . More specifically, necessary data is recorded in a part of the ROM areas 121 and 122, and the other part of the ROM data areas 121 and 122 is used for recording and playback. Dummy data (for example, 00h data etc.) may be recorded.
[0081] これにより、 ROMエリア 121及び 122に記録されるべきデータの容量が少ない場 合であっても、一定の大きさの ROMエリア 121及び 122を確保することができる。  As a result, even when the amount of data to be recorded in the ROM areas 121 and 122 is small, the ROM areas 121 and 122 having a certain size can be secured.
[0082] 図 10に示すように、 ROMエリア 121及び 122は、相対トレランスとクリアランスとの 和よりも小さくともよい。ここで、 ROMエリア 121のサイズを" N1"とし、 ROMエリア 12 2のサイズを" Ml "とする。更に、 ROMエリア 122の外周側の端部のアドレスがデー タエリア 105の外周側の端部のアドレスと補間関係にあるものとする。 [0082] As shown in FIG. 10, the ROM areas 121 and 122 may be smaller than the sum of the relative tolerance and the clearance. Here, the size of the ROM area 121 is “N1”, and the size of the ROM area 122 is “Ml”. Furthermore, the address at the outer edge of ROM area 122 is the data. It is assumed that there is an interpolation relationship with the address of the outer edge of the area 105.
[0083] この場合、 ROMエリア 122の外周側の端部のアドレスは、 "X— bar"となる。また、 ROMエリア 122の内周側の端部のアドレスは、 "X— bar— Ml"となる。また、データ エリア 105の外周側の端部に対向する L1層のエリア部分のアドレスは、 "X_bar+ Ofs (X)— Ml"となる。 In this case, the address of the end portion on the outer peripheral side of the ROM area 122 is “X-bar”. Further, the address of the end portion on the inner peripheral side of the ROM area 122 is “X-bar-Ml”. In addition, the address of the area portion of the L1 layer facing the outer edge of the data area 105 is “X_bar + Ofs (X) —Ml”.
[0084] 他方、データエリア 105の内周側の端部に対向する L1層のエリア部分のアドレスは 、 "A— bar— Ml + Ofs (X) "となる。また、 ROMエリア 121の外周側の端部のアドレ スは、 "A— bar+Ofs (A)—Ml + Ofs (X) "となる。また、 ROMエリア 121の内周側 の端部のアドレスは、 "A_bar+Ofs (A)— Ml + Ofs (X)— N1"となる。また、アド レスが" A— bar"となる L1層のエリア部分は、アドレスが" A"であるデータエリア 105 の内周側の端部よりも更に内周側に位置する。  On the other hand, the address of the area portion of the L1 layer facing the inner peripheral end of the data area 105 is “A−bar−Ml + Ofs (X)”. Further, the address of the outer edge of the ROM area 121 is “A−bar + Ofs (A) −Ml + Ofs (X)”. Further, the address of the inner peripheral end of the ROM area 121 is “A_bar + Ofs (A) —Ml + Ofs (X) —N1”. Further, the area portion of the L1 layer where the address is “A-bar” is located further on the inner peripheral side than the inner peripheral end of the data area 105 where the address is “A”.
[0085] 図 11〖こ示すよう〖こ、 ROMエリア 121及び 122は、相対トレランスとクリアランスとの 和よりも大きくともよい。ここで、 ROMエリア 121のサイズを" N2,,とし、 ROMエリア 12 2のサイズを" M2"とする。更に、 ROMエリア 122の外周側の端部のアドレスがデー タエリア 105の外周側の端部のアドレスと補間関係にあるものとする。  [0085] As shown in FIG. 11, the ROM areas 121 and 122 may be larger than the sum of the relative tolerance and the clearance. Here, the size of the ROM area 121 is “N2,” and the size of the ROM area 122 is “M2.” Further, the address of the outer edge of the ROM area 122 is the outer edge of the data area 105. It is assumed that there is an interpolation relationship with the part address.
[0086] この場合、 ROMエリア 122の外周側の端部のアドレスは、 "X— bar"となる。また、 ROMエリア 122の内周側の端部のアドレスは、 "X— bar— M2"となる。また、データ エリア 105の外周側の端部に対向する L1層のエリア部分のアドレスは、 "X_bar+ Ofs (X)— M2"となる。  In this case, the address of the end portion on the outer peripheral side of the ROM area 122 is “X-bar”. The address of the end portion on the inner peripheral side of the ROM area 122 is “X-bar-M2”. Further, the address of the area portion of the L1 layer facing the outer edge of the data area 105 is “X_bar + Ofs (X) —M2”.
[0087] 他方、データエリア 105の内周側の端部に対向する L1層のエリア部分のアドレスは 、 "八—1)&1:—1^2 + 0£5 ( )"となる。また、 ROMエリア 121の外周側の端部のアドレ スは、 "A— bar+Ofs (A)—1^2 + 0£5 ( )"となる。また、 ROMエリア 121の内周側 の端部のアドレスは、 "A_bar+Ofs (A)— M2 + Ofs (X)— N2"となる。また、アド レスが" A— bar"となる L1層のエリア部分は、アドレスが" A"であるデータエリア 105 の内周側の端部よりも更に外周側に位置する。  On the other hand, the address of the area portion of the L1 layer facing the inner peripheral end of the data area 105 is “8-1) & 1: -1 ^ 2 + 0 £ 5 ()”. Further, the address of the outer peripheral end of the ROM area 121 is “A—bar + Ofs (A) —1 ^ 2 + 0 £ 5 ()”. Further, the address of the inner peripheral end of the ROM area 121 is “A_bar + Ofs (A) —M2 + Ofs (X) —N2”. In addition, the area portion of the L1 layer where the address is “A-bar” is located further on the outer peripheral side than the end portion on the inner peripheral side of the data area 105 where the address is “A”.
[0088] 図 10及び図 11に示すように、 ROMエリア 121及び 122の大きさに関わらず、デー タエリア 105及び 115、並びに ROMエリア 121及び 122のアドレスは、同一の数式 により示される。これは、 ROMエリア 121又は 122のサイズが 0である場合(即ち、 M 1 = 0、 M2 = 0、 N1 = 0又は N2 = 0である場合)も同様である。このため、 ROMエリ ァ 121及び 122のサイズを任意に設定することができつつも、アドレスの割り当てを比 較的容易に行うことができる。 As shown in FIGS. 10 and 11, the addresses of the data areas 105 and 115 and the ROM areas 121 and 122 are represented by the same mathematical formula regardless of the sizes of the ROM areas 121 and 122. This is the case when the size of ROM area 121 or 122 is 0 (ie M The same applies if 1 = 0, M2 = 0, N1 = 0 or N2 = 0). For this reason, while the sizes of the ROM areas 121 and 122 can be arbitrarily set, the address assignment can be performed relatively easily.
[0089] 「プリ記録エリア」の一具体例として ROMエリアについて説明した力 ディスクを出 荷する前に、実際の記録による「プリ記録エリア」を形成することもできる。その場合、 L0層が未記録であるためレコーディングオーダーを維持することができな!/、が、 L0 層が未記録であることを前提とした記録パワーを設定して記録することは可能であり、 それにより、 L1層の「プリ記録エリア」を好適に形成することができる。  As a specific example of the “pre-recording area”, the “pre-recording area” can be formed by actual recording before shipping the disc described for the ROM area. In that case, the recording order cannot be maintained because the L0 layer is unrecorded! /, But it is possible to set the recording power on the assumption that the L0 layer is unrecorded and record. Thereby, the “pre-recording area” of the L1 layer can be suitably formed.
[0090] 尚、上述の実施例では、記録媒体の一例として光ディスク 100について説明したが 、本発明は、光ディスク及びそのレコーダに限られるものではなぐ他の高密度記録 或いは高転送レート対応の各種記録媒体にも適用可能である。  In the above-described embodiment, the optical disc 100 has been described as an example of the recording medium. However, the present invention is not limited to the optical disc and its recorder, and other high-density recording or various recordings corresponding to a high transfer rate. It can also be applied to media.
[0091] 本発明は、上述した実施例に限られるものではなぐ請求の範囲及び明細書全体 力 読み取れる発明の要旨或いは思想に反しない範囲で適宜変更可能であり、その ような変更を伴なう記録媒体もまた本発明の技術的範囲に含まれるものである。 産業上の利用可能性  [0091] The present invention is not limited to the above-described embodiments, but can be modified as appropriate without departing from the spirit or idea of the invention which can be read. Recording media are also included in the technical scope of the present invention. Industrial applicability
[0092] 本発明に係る記録媒体は、例えば DVD等の記録媒体に利用可能である。 The recording medium according to the present invention can be used for a recording medium such as a DVD.

Claims

請求の範囲 The scope of the claims
[1] 第 1エリアを含む第 1記録層と、第 2エリアを含む第 2記録層とを備えており、  [1] a first recording layer including a first area and a second recording layer including a second area;
前記第 2エリアの一方側の端部は、前記第 1エリアの一方側の端部よりも一方側と は異なる他方側へシフトした位置に位置しており、  The one end of the second area is located at a position shifted to the other side different from the one end than the one end of the first area;
前記第 2エリアの一方側の端部に隣接して、記録情報が予め記録されるプリ記録ェ リアが配置されることを特徴とする記録媒体。  A recording medium, wherein a pre-recording area in which recording information is recorded in advance is disposed adjacent to one end of the second area.
[2] 前記第 2エリアの一方側の端部は、前記第 1エリアの一方側の端部よりも他方側へ 、少なくとも、前記第 1記録層及び前記第 2記録層の夫々における、所定位置に規定 されるべきアドレスの、該所定位置からの位置ズレの許容範囲の和を示すトレランス 長シフトした位置に位置することを特徴とする請求の範囲第 1項に記載の記録媒体。  [2] The one end of the second area is at a predetermined position at least in each of the first recording layer and the second recording layer to the other side of the one end of the first area. 2. The recording medium according to claim 1, wherein the recording medium is located at a position shifted by a tolerance length indicating a sum of an allowable range of positional deviation from the predetermined position of the address to be defined in the above.
[3] 前記第 2エリアの一方側の端部は、前記トレランス長に加えて、(0前記記録情報を 当該記録媒体に記録するためのレーザ光の焦点が前記第 2記録層に合わせられて いる場合の前記第 1記録層上における前記レーザ光のスポット半径の許容最大値、 並びに (ii)前記第 1記録層と前記第 2記録層との夫々の相対的な偏芯ズレの許容最 大値の和から、(iii)前記記録情報を前記第 2記録層に記録するために照射される前 記レーザ光の少なくとも一部が、前記記録情報が記録されて!、な!、前記第 1記録層 のエリア部分を介して前記第 2記録層に照射されることが許容されるときの、前記記 録情報が記録されていない前記第 1記録層のエリア部分の大きさの許容最大値を引 いたクリアランス長シフトした位置に位置することを特徴とする請求の範囲第 2項に記 載の記録媒体。  [3] In addition to the tolerance length, (0) the end of the second area on one side is (0) the laser beam for recording the recording information on the recording medium is focused on the second recording layer. An allowable maximum value of the spot radius of the laser beam on the first recording layer, and (ii) an allowable maximum of relative eccentric deviation between the first recording layer and the second recording layer. From the sum of the values, (iii) at least part of the laser beam irradiated for recording the recording information on the second recording layer records the recording information! When the second recording layer is allowed to be irradiated through the area portion of the recording layer, an allowable maximum value of the size of the area portion of the first recording layer where the recording information is not recorded is set. It is located at a position shifted by the pulled clearance length. Recording medium described in item 2.
[4] 前記第 2エリアの他方側の端部は、前記第 1エリアの他方側の端部よりも一方側へ シフトした位置に位置しており、  [4] The other end of the second area is located at a position shifted to one side with respect to the other end of the first area.
前記第 2エリアの他方側の端部に隣接して、前記プリ記録エリアが配置されることを 特徴とする請求の範囲第 1項に記載の記録媒体。  The recording medium according to claim 1, wherein the pre-recording area is arranged adjacent to an end portion on the other side of the second area.
[5] 前記第 2エリアの他方側の端部は、前記第 1エリアの他方側の端部よりも一方側へ 、少なくとも、前記第 1記録層及び前記第 2記録層の夫々における、所定位置に規定 されるべきアドレスの、該所定位置からの位置ズレの許容範囲の和を示すトレランス 長シフトした位置に位置することを特徴とする請求の範囲第 4項に記載の記録媒体。 [5] The other end of the second area is located at a predetermined position at least in each of the first recording layer and the second recording layer to one side of the other end of the first area. 5. The recording medium according to claim 4, wherein the recording medium is located at a position shifted by a tolerance length indicating a sum of an allowable range of positional deviation from the predetermined position of the address to be defined in the above.
[6] 前記第 2エリアの他方側の端部は、前記トレランス長に加えて、(0前記記録情報を 当該記録媒体に記録するためのレーザ光の焦点が前記第 2記録層に合わせられて いる場合の前記第 1記録層上における前記レーザ光のスポット半径の許容最大値、 並びに (ii)前記第 1記録層と前記第 2記録層との夫々の相対的な偏芯ズレの許容最 大値の和から、(m)前記記録情報を前記第 2記録層に記録するために照射される前 記レーザ光の少なくとも一部が、前記記録情報が記録されて!、な!、前記第 1記録層 のエリア部分を介して前記第 2記録層に照射されることが許容されるときの、前記記 録情報が記録されていない前記第 1記録層のエリア部分の大きさの許容最大値を引 いたクリアランス長シフトした位置に位置することを特徴とする請求の範囲第 5項に記 載の記録媒体。 [6] In addition to the tolerance length, (0) the laser beam for recording the recording information on the recording medium is focused on the second recording layer in addition to the tolerance length. An allowable maximum value of the spot radius of the laser beam on the first recording layer, and (ii) an allowable maximum of relative eccentric deviation between the first recording layer and the second recording layer. From the sum of the values, (m) at least part of the laser beam irradiated to record the recording information on the second recording layer is recorded on the recording information! When the second recording layer is allowed to be irradiated through the area portion of the recording layer, an allowable maximum value of the size of the area portion of the first recording layer where the recording information is not recorded is set. It is located at a position shifted by the pulled clearance length. Serial mounting of the recording medium.
[7] 前記プリ記録エリアには、前記記録情報に加えて、ダミー情報が予め記録されるこ とを特徴とする請求の範囲第 1項に記載の記録媒体。  7. The recording medium according to claim 1, wherein dummy information is recorded in advance in the pre-recording area in addition to the recording information.
[8] 前記トレランス長は、当該記録媒体の径方向における 40 μ mであることを特徴とす る請求の範囲第 2項に記載の記録媒体。 8. The recording medium according to claim 2, wherein the tolerance length is 40 μm in the radial direction of the recording medium.
[9] 前記クリアランス長は、当該記録媒体の径方向における 65 μ mであることを特徴と する請求の範囲第 3項に記載の記録媒体。 [9] The recording medium according to claim 3, wherein the clearance length is 65 μm in the radial direction of the recording medium.
[10] 前記第 1記録層には、前記一方側又は前記他方側に向かって前記記録情報が記 録され、前記第 2記録層には前記第 1記録層にお!/、て前記記録情報が記録される側 とは異なる側に向かって前記記録情報が記録されることを特徴とする請求の範囲第 1 項に記載の記録媒体。 [10] The recording information is recorded on the first recording layer toward the one side or the other side, and the recording information is recorded on the first recording layer in the second recording layer. 2. The recording medium according to claim 1, wherein the recording information is recorded toward a side different from a side on which is recorded.
PCT/JP2007/060392 2006-06-01 2007-05-21 Recording medium WO2007138915A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-153264 2006-06-01
JP2006153264 2006-06-01

Publications (1)

Publication Number Publication Date
WO2007138915A1 true WO2007138915A1 (en) 2007-12-06

Family

ID=38778434

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/060392 WO2007138915A1 (en) 2006-06-01 2007-05-21 Recording medium

Country Status (1)

Country Link
WO (1) WO2007138915A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002023542A1 (en) * 2000-09-13 2002-03-21 Matsushita Electric Industrial Co., Ltd. Optical information recording medium and optical information recording method, optical information recording device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002023542A1 (en) * 2000-09-13 2002-03-21 Matsushita Electric Industrial Co., Ltd. Optical information recording medium and optical information recording method, optical information recording device

Similar Documents

Publication Publication Date Title
JP4714303B2 (en) Information recording medium and reproducing method
JP4063858B2 (en) Information recording apparatus and method, and computer program for recording control
JP4462182B2 (en) Optical disc apparatus and optimum recording power value determination method for optical disc
JP4780786B2 (en) Recording medium, recording apparatus, recording method, and computer program
JPWO2005116995A1 (en) Information recording medium, information recording apparatus and method, and computer program for recording control
KR101096552B1 (en) Recording medium, recording device, recording method and computer program
JP2009093690A (en) Optical disk drive, information recording method and medium
WO2007138915A1 (en) Recording medium
JP2002329330A (en) Information recording medium, information reproducing device, and information reproducing method
WO2013172285A1 (en) Optical recording device and optical recording method
JP4627762B2 (en) Information recording medium, information recording apparatus and method, and computer program for recording control
KR100852226B1 (en) Recording device, recording method and computer program
JP4042865B2 (en) Recording apparatus, recording method, and computer program
US7704580B2 (en) Information recording medium
JP5433661B2 (en) Optical disc apparatus and information recording method
WO2006075699A1 (en) Information recording device and method, and computer program for controlling recording

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07743826

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07743826

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP