WO2007138304A1 - 1, 3, 4 -oxadiazole derivatives as dgat1 inhibitors - Google Patents

1, 3, 4 -oxadiazole derivatives as dgat1 inhibitors Download PDF

Info

Publication number
WO2007138304A1
WO2007138304A1 PCT/GB2007/001981 GB2007001981W WO2007138304A1 WO 2007138304 A1 WO2007138304 A1 WO 2007138304A1 GB 2007001981 W GB2007001981 W GB 2007001981W WO 2007138304 A1 WO2007138304 A1 WO 2007138304A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
compound
pharmaceutically
fluoro
amino
Prior art date
Application number
PCT/GB2007/001981
Other languages
French (fr)
Inventor
Craig Johnstone
Alleyn Plowright
Original Assignee
Astrazeneca Ab
Astrazeneca Uk Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to CN2007800202196A priority Critical patent/CN101460470B/en
Priority to EP07732997A priority patent/EP2041099A1/en
Priority to US12/302,192 priority patent/US8003676B2/en
Priority to NZ572585A priority patent/NZ572585A/en
Priority to CA002651663A priority patent/CA2651663A1/en
Priority to MX2008015226A priority patent/MX2008015226A/en
Application filed by Astrazeneca Ab, Astrazeneca Uk Limited filed Critical Astrazeneca Ab
Priority to BRPI0712796-0A priority patent/BRPI0712796A2/en
Priority to AU2007266890A priority patent/AU2007266890B2/en
Priority to JP2009512663A priority patent/JP2009538891A/en
Publication of WO2007138304A1 publication Critical patent/WO2007138304A1/en
Priority to NO20084663A priority patent/NO20084663L/en
Priority to IL195125A priority patent/IL195125A0/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D271/00Heterocyclic compounds containing five-membered rings having two nitrogen atoms and one oxygen atom as the only ring hetero atoms
    • C07D271/02Heterocyclic compounds containing five-membered rings having two nitrogen atoms and one oxygen atom as the only ring hetero atoms not condensed with other rings
    • C07D271/101,3,4-Oxadiazoles; Hydrogenated 1,3,4-oxadiazoles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D271/00Heterocyclic compounds containing five-membered rings having two nitrogen atoms and one oxygen atom as the only ring hetero atoms
    • C07D271/02Heterocyclic compounds containing five-membered rings having two nitrogen atoms and one oxygen atom as the only ring hetero atoms not condensed with other rings
    • C07D271/101,3,4-Oxadiazoles; Hydrogenated 1,3,4-oxadiazoles
    • C07D271/1131,3,4-Oxadiazoles; Hydrogenated 1,3,4-oxadiazoles with oxygen, sulfur or nitrogen atoms, directly attached to ring carbon atoms, the nitrogen atoms not forming part of a nitro radical
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/4245Oxadiazoles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/04Anorexiants; Antiobesity agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/12Antidiuretics, e.g. drugs for diabetes insipidus

Definitions

  • the present invention relates to compounds which inhibit acetyl CoA(acetyl coenzyme A):diacylglycerol acyltransferase (DGATl) activity, processes for their preparation, pharmaceutical compositions containing them as the active ingredient, methods for the treatment of disease states associated with DGATl activity, to their use as medicaments and to their use in the manufacture of medicaments for use in the inhibition of DGATl in warm-blooded animals such as humans.
  • DGATl acetyl CoA(acetyl coenzyme A):diacylglycerol acyltransferase
  • this invention relates to compounds useful for the treatment of type II diabetes, insulin resistance, impaired glucose tolerance and obesity in warm-blooded animals such as humans, more particularly to the use of these compounds in the manufacture of medicaments for use in the treatment of type II diabetes, insulin resistance, impaired glucose tolerance and obesity in warm-blooded animals such as humans.
  • DGAT Acyl CoA:diacylglycerol acyltransferase
  • DGAT genes Two DGAT genes have been cloned and characterised. Both of the encoded proteins catalyse the same reaction although they share no sequence homology.
  • the DGATl gene was identified from sequence database searches because of its similarity to acyl CoAxholesterol acyltransferase (ACAT) genes. [Cases et al (1998) Identification of a gene encoding an acyl CoA: diacylglycerol acyltransferase, a key enzyme in triacylglycerol synthesis. Proc. Natl. Acad. Sci. USA 95: 13018-13023].
  • DGATl activity has been found in many mammalian tissues, including adipocytes.
  • DGATl is known to be significantly up-regulated during adipocyte differentiation.
  • DGATl knockout ⁇ Dgatl '1' mice are viable and capable of synthesizing triglycerides, as evidenced by normal fasting serum triglyceride levels and normal adipose tissue composition.
  • Dgatl '1' mice have less adipose tissue than wild-type mice at baseline and are resistant to diet-induced obesity.
  • Metabolic rate is -20% higher in Dgatl ⁇ ! ⁇ mice than in wild-type mice on both regular and high-fat diets [Smith et al (2000) Obesity resistance and multiple mechanisms of triglyceride synthesis in mice lacking DGAT.
  • Dgatl '1' mice When Dgatl '1' mice are crossed with ob/ob mice, these mice exhibit the ob/ob phenotype [Chen et al (2002) Increased insulin and leptin sensitivity in mice lacking acyl CoA:diacylglycerol acyltransferase J. Clin. Invest. 109:1049-1055] indicating that the Dgatl '1' phenotype requires an intact leptin pathway. When Dgatl '1' mice are crossed with Agouti mice a decrease in body weight is seen with normal glucose levels and 70% reduced insulin levels compared to wild type, agouti or ob/ob/ Dgatl '1' mice.
  • each R is independently selected from fluoro, chloro, cyano, methyl, ethyl, methoxy, ethoxy, trifluoromethyl, trifluoromethoxy and difluoromethoxy; n is 1, 2 or 3.
  • formula (I) includes compounds wherein the carboxy group and the oxy link are in either a cis or a trans arrangement across the cyclohexyl ring, in relation to each other.
  • a compound of formula (I) may form stable acid or basic salts, and in such cases administration of a compound as a salt may be appropriate, and pharmaceutically acceptable salts may be made by conventional methods such as those described following.
  • Suitable pharmaceutically-acceptable salts include acid addition salts such as methanesulfonate, tosylate, ⁇ -glycerophosphate, fumarate, hydrochloride, citrate, maleate, tartrate and (less preferably) hydrobromide. Also suitable are salts formed with phosphoric and sulfuric acid.
  • suitable salts are base salts such as a Group (I) (alkali metal) salt, a Group (II) (alkaline earth) metal salt, an organic amine salt for example triethylamine, morpholine, JV-methylpiperidine, iV-ethylpiperidine, procaine, dibenzylamine, JV,iV-dibenzylethylamine, tris-(2-hydroxyethyl)amine, JV-methyl d-glucaniine and amino acids such as lysine.
  • a Group (I) (alkali metal) salt such as a Group (I) (alkali metal) salt, a Group (II) (alkaline earth) metal salt
  • an organic amine salt for example triethylamine, morpholine, JV-methylpiperidine, iV-ethylpiperidine, procaine, dibenzylamine, JV,iV-dibenzylethylamine, tris-
  • salts which are less soluble in the chosen solvent may be preferred whether pharmaceutically-acceptable or not.
  • Prodrugs of compounds of formula (I), or salts thereof are also within the scope of the invention.
  • Various forms of prodrugs are known in the art.
  • prodrug derivatives see: a) Design of Prodrugs, edited by H. Bundgaard, (Elsevier, 1985) and Methods in Enzymology, Vol. 42, p. 309-396, edited by K. Widder, et al. (Academic Press, 1985); b) A Textbook of Drug Design and Development, edited by Krogsgaard-Larsen and
  • H. Bundgaard Chapter 5 "Design and Application of Prodrugs", by H. Bundgaard p. 113-191 (1991); c) H. Bundgaard, Advanced Drug Delivery Reviews, 8, 1-38 (1992); d) H. Bundgaard, et al., Journal of Pharmaceutical Sciences, 77, 285 (1988); and e) N. Kakeya, et ⁇ /., Chem Pharm Bull, 32, 692 (1984).
  • prodrugs examples include in vivo cleavable esters of a compound of the invention.
  • An in vivo cleavable ester of a compound of the invention containing a carboxy group is, for example, a pharmaceutically-acceptable ester which is cleaved in the human or animal body to produce the parent acid.
  • Suitable pharmaceutically-acceptable esters for carboxy include (l- ⁇ C)alkyl esters, for example methyl or ethyl; (l-6C)alkoxymethyl esters, for example methoxymethyl; (1- 6C)alkanoyloxymethyl esters, for example pivaloyloxymethyl; phthalidyl esters; (3- 8C)cycloalkoxycarbonyloxy(l-6C)alkyl esters, for example 1-cyclohexylcarbonyloxy ethyl; l,3-dioxolan-2-ylmethyl esters, for example 5-methyl-l,3-dioxolan-2-ylmethyl; (l-6C)alkoxycarbonyloxy ethyl esters, for example 1-methoxycarbonyloxy ethyl; aminocarbonylmethyl esters and mono- or di- N-((l- 6C)alkyl) versions thereof, for example N,N-dimethylaminocarbonylmethyl
  • An in vivo cleavable ester of a compound of the invention containing a hydroxy group is, for example, a pharmaceutically-acceptable ester which is cleaved in the human or animal body to produce the parent hydroxy group.
  • Suitable pharmaceutically acceptable esters for hydroxy include (l-6C)alkanoyl esters, for example acetyl esters; and benzoyl esters wherein the phenyl group may be substituted with aminomethyl or N- substituted mono- or di- (l- ⁇ C)alkyl aminomethyl, for example 4-aminomethylbenzoyl esters and 4-N,N-dimethylaminomethylbenzoyl esters.
  • carboxy group and oxy links are in a trans configuration across the cyclohexyl ring, to give a compound of formula (IB):
  • salts particularly pharmaceutically-acceptable salts of compounds of formulae (I), (IA) and (IB).
  • pro-drags particularly in- vivo cleavable esters, of compounds of formulae (I), (IA) and (IB).
  • salts particularly pharmaceutically-acceptable salts of pro-drugs of compounds of formulae (I), (IA) and (IB).
  • substituents in compounds of formulae (I) 5 (IA) and (IB) are as follows. Such values may be used where appropriate with any of the other values, definitions, claims or embodiments defined hereinbefore or hereinafter.
  • n 1, 2 or 3 and each R is fluoro.
  • R is selected from fluoro and trifluoromethyl
  • n 1 5) n is 2
  • a compound of formula (I) and its salts may be prepared by any process known to be applicable to the preparation of chemically related compounds. Such processes, when used to prepare a compound of the formula (I), or a pharmaceutically-acceptable salt thereof, are provided as a further feature of the invention.
  • the present invention also provides that the compounds of the formula (I) and salts thereof, can be prepared by a process a) to b) as follows (wherein all variables are as hereinbefore defined for a compound of formula (I) unless otherwise stated): a) reaction of an amine of formula (2) with a carboxylate salt of formula (3), wherein R p is (l-4C)alkyl group (such as methyl, ethyl, isopropy, or tert-butyl), followed by hydrolysis of the R p group;
  • Compounds of formula (2) may be made by application of standard synthetic methods well known in the art.
  • compounds of formula (2) may be prepared by reduction of a compound of formula (2A).
  • Ester (5a) may be made by alkaline hydrolysis of ester (5a) as prepared using a published procedure (J. Het. Chem. 1977, 14, 1385-1388). Ester (5a) may be made by cyclisation of a compound of formula (5b) (where X is O or S) in a similar manner as described in process b) for compounds of formula (4).
  • Compounds of formula (2) may be coupled with compounds of formula (3) under standard conditions for formation of amide bonds.
  • an appropriate coupling reaction such as a carbodiimide coupling reaction performed with EDAC, optionally in the presence of DMAP, in a suitable solvent such as DCM, chloroform or DMF at room temperature.
  • R p group may be removed by any process known in the art for ester hydrolysis.
  • Process b) Compounds of formula (4) and (5b) where X is S may be made by reaction of an aminocarbonyl acylhydrazine or ethoxycarbonyl acylhydrazine with a thioisocyanate or thioisocyanate equivalent such as aminothiocarbonylimidazole in a suitable solvent such as DMF or MeCN at a temperature between 0 and 100 0 C.
  • a suitable solvent such as DMF or MeCN
  • reaction of an aniline with methyl chlorooxoacetate in the presence of pyridine in a suitable solvent such as DCM followed by reaction with hydrazine in a suitable solvent such as ethanol at a temperature between 0 and 100 0 C .
  • the compound of formula (4) may then be cyclised using, for example agents such as carbonyldiimidazole, or tosyl chloride and a suitable base (such as triethylamine), under conditions known in the art.
  • agents such as carbonyldiimidazole, or tosyl chloride and a suitable base (such as triethylamine), under conditions known in the art.
  • Iso(thio)cyanates R 1 - NCX (where X is O or S) are commercially available or may be made by reaction of the acid chlorides R ⁇ NH 2 with for example (thio)phosgene or a (thio)phosgene equivalent followed by a suitable base (such as triethylamine).
  • the R p group may be removed by any process known in the art for ester hydrolysis. It will be appreciated that certain of the various ring substituents in the compounds of the present invention, for example R, may be introduced by standard aromatic substitution reactions or generated by conventional functional group modifications either prior to or immediately following the processes mentioned above, and as such are included in the process aspect of the invention. Such reactions may convert one compound of the formula (I) into another compound of the formula (I).
  • Such reactions and modifications include, for example, introduction of a substituent by means of an aromatic substitution reaction, reduction of substituents, alkylation of substituents and oxidation of substituents.
  • the reagents and reaction conditions for such procedures are well known in the chemical art.
  • aromatic substitution reactions include the introduction of a nitro group using concentrated nitric acid, the introduction of an acyl group using, for example, an acyl halide and Lewis acid (such as aluminium trichloride) under Friedel Crafts conditions; the introduction of an alkyl group using an alkyl halide and Lewis acid (such as aluminium trichloride) under Friedel Crafts conditions; and the introduction of a halogen group.
  • modifications include the reduction of a nitro group to an amino group by for example, catalytic hydrogenation with a nickel catalyst or treatment with iron in the presence of hydrochloric acid with heating; oxidation of alkylthio to alkanesulfmyl or alkanesulfonyl.
  • the necessary starting materials for the procedures such as those described above may be made by procedures which are selected from standard organic chemical techniques, techniques which are analogous to the synthesis of known, structurally similar compounds, techniques which are described or illustrated in the references given above, or techniques which are analogous to the above described procedure or the procedures described in the examples.
  • the reader is further referred to Advanced Organic Chemistry, 5 th Edition, by Jerry March and Michael Smith, published by John Wiley & Sons 2001, for general guidance on reaction conditions and reagents.
  • Protecting groups may be removed by any convenient method as described in the literature or known to the skilled chemist as appropriate for the removal of the protecting group in question, such methods being chosen so as to effect removal of the protecting group with minimum disturbance of groups elsewhere in the molecule.
  • reactants include, for example, groups such as amino, carboxy or hydroxy it may be desirable to protect the group in some of the reactions mentioned herein.
  • a suitable protecting group for a hydroxy group is, for example, an acyl group, for example an alkanoyl group such as acetyl, an aroyl group, for example benzoyl, a silyl group such as trimethylsilyl or an arylmethyl group, for example benzyl.
  • the deprotection conditions for the above protecting groups will necessarily vary with the choice of protecting group.
  • an acyl group such as an alkanoyl or an aroyl group may be removed, for example, by hydrolysis with a suitable base such as an alkali metal hydroxide, for example lithium or sodium hydroxide.
  • a silyl group such as trimethylsilyl or SEM may be removed, for example, by fluoride or by aqueous acid; or an arylmethyl group such as a benzyl group may be removed, for example, by hydrogenation in the presence of a catalyst such as palladium-on-carbon.
  • a suitable protecting group for an amino group is, for example, an acyl group, for example an alkanoyl group such as acetyl, an alkoxycarbonyl group, for example a methoxycarbonyl, ethoxycarbonyl or tert-butoxycarbonyl group, an arylmethoxycarbonyl group, for example benzyloxycarbonyl, or an aroyl group, for example benzoyl.
  • the deprotection conditions for the above protecting groups necessarily vary with the choice of protecting group.
  • an acyl group such as an alkanoyl or alkoxycarbonyl group or an aroyl group may be removed for example, by hydrolysis with a suitable base such as an alkali metal hydroxide, for example lithium or sodium hydroxide.
  • a suitable base such as an alkali metal hydroxide, for example lithium or sodium hydroxide.
  • an acyl group such as a t-butoxycarbonyl group may be removed, for example, by treatment with a suitable acid as hydrochloric, sulfuric or phosphoric acid or trifluoroacetic acid and an arylmethoxycarbonyl group such as a benzyloxycarbonyl group may be removed, for example, by hydrogenation over a catalyst such as palladium-on-carbon, or by treatment with a Lewis acid for example boron tris(trifluoroacetate).
  • a suitable alternative protecting group for a primary amino group is, for example, a phthaloyl group which may be removed by treatment with an alkylamine, for example dimethylaminopropylamine or 2-hydroxyethylamine, or with hydrazine.
  • a suitable protecting group for a carboxy group is, for example, an esterifying group, for example a methyl or an ethyl group which may be removed, for example, by hydrolysis with a base such as sodium hydroxide, or for example a t-butyl group which may be removed, for example, by treatment with an acid, for example an organic acid such as trifluoroacetic acid, or for example a benzyl group which may be removed, for example, by hydrogenation over a catalyst such as palladium-on-carbon.
  • Resins may also be used as a protecting group.
  • the protecting groups may be removed at any convenient stage in the synthesis using conventional techniques well known in the chemical art, or they may be removed during a later reaction step or work-up.
  • an optically active form of a compound of the invention When an optically active form of a compound of the invention is required, it may be obtained by carrying out one of the above procedures using an optically active starting material (formed, for example, by asymmetric induction of a suitable reaction step), or by resolution of a racemic form of the compound or intermediate using a standard procedure, or by chromatographic separation of diastereoisomers (when produced). Enzymatic techniques may also be useful for the preparation of optically active compounds and/or intermediates.
  • a pure regioisomer of a compound of the invention when required, it may be obtained by carrying out one of the above procedures using a pure regioisomer as a starting material, or by resolution of a mixture of the regioisomers or intermediates using a standard procedure.
  • a pharmaceutical composition which comprises a compound of formula (I) as defined hereinbefore or a pharmaceutically-acceptable salt thereof, in association with a pharmaceutically-acceptable excipient or carrier.
  • compositions of the invention may be in a form suitable for oral use (for example as tablets, lozenges, hard or soft capsules, aqueous or oily suspensions, emulsions, dispersible powders or granules, syrups or elixirs), for topical use (for example as creams, ointments, gels, or aqueous or oily solutions or suspensions), for administration by inhalation (for example as a finely divided powder or a liquid aerosol), for administration by insufflation (for example as a finely divided powder) or for parenteral administration (for example as a sterile aqueous or oily solution for intravenous, subcutaneous, intramuscular or intramuscular dosing or as a suppository for rectal dosing).
  • oral use for example as tablets, lozenges, hard or soft capsules, aqueous or oily suspensions, emulsions, dispersible powders or granules, syrups or elixir
  • compositions of the invention may be obtained by conventional procedures using conventional pharmaceutical excipients, well known in the art.
  • compositions intended for oral use may contain, for example, one or more colouring, sweetening, flavouring and/or preservative agents.
  • Suitable pharmaceutically acceptable excipients for a tablet formulation include, for example, inert diluents such as lactose, sodium carbonate, calcium phosphate or calcium carbonate, granulating and disintegrating agents such as corn starch or algenic acid; binding agents such as starch; lubricating agents such as magnesium stearate, stearic acid or talc; preservative agents such as ethyl or propyl p_-hydroxybenzoate, and anti-oxidants, such as ascorbic acid.
  • Tablet formulations may be uncoated or coated either to modify their disintegration and the subsequent absorption of the active ingredient within the gastrointestinal tract, or to improve their stability and/or appearance, in either case, using conventional coating agents and procedures well known in the art.
  • Compositions for oral use may be in the form of hard gelatin capsules in which the active ingredient is mixed with an inert solid diluent, for example, calcium carbonate, calcium phosphate or kaolin, or as soft gelatin capsules in which the active ingredient is mixed with water or an oil such as peanut oil, liquid paraffin, or olive oil.
  • an inert solid diluent for example, calcium carbonate, calcium phosphate or kaolin
  • water or an oil such as peanut oil, liquid paraffin, or olive oil.
  • Aqueous suspensions generally contain the active ingredient in finely powdered form together with one or more suspending agents, such as sodium carboxymethylcellulose, methylcellulose, hydroxypropylmethylcellulose, sodium alginate, polyvinyl-pyrrolidone, gum tragacanth and gum acacia; dispersing or wetting agents such as lecithin or condensation products of an alkylene oxide with fatty acids (for example polyoxethylene stearate), or condensation products of ethylene oxide with long chain aliphatic alcohols, for example heptadecaethyleneoxycetanol, or condensation products of ethylene oxide with partial esters derived from fatty acids and a hexitol such as polyoxyethylene sorbitol monooleate, or condensation products of ethylene oxide with long chain aliphatic alcohols, for example heptadecaethyleneoxycetanol, or condensation products of ethylene oxide with partial esters derived from fatty acids and a hexitol such as polyoxyethylene sorbitol
  • the aqueous suspensions may also contain one or more preservatives (such as ethyl or propyl p_-hydroxybenzoate, anti-oxidants (such as ascorbic acid), colouring agents, flavouring agents, and/or sweetening agents (such as sucrose, saccharine or aspartame).
  • Oily suspensions may be formulated by suspending the active ingredient in a vegetable oil (such as arachis oil, olive oil, sesame oil or coconut oil) or in a mineral oil (such as liquid paraffin).
  • the oily suspensions may also contain a thickening agent such as beeswax, hard paraffin or cetyl alcohol. Sweetening agents such as those set out above, and flavouring agents may be added to provide a palatable oral preparation. These compositions may be preserved by the addition of an anti-oxidant such as ascorbic acid.
  • Dispersible powders and granules suitable for preparation of an aqueous suspension by the addition of water generally contain the active ingredient together with a dispersing or wetting agent, suspending agent and one or more preservatives. Suitable dispersing or wetting agents and suspending agents are exemplified by those already mentioned above. Additional excipients such as sweetening, flavouring and colouring agents, may also be present.
  • the pharmaceutical compositions of the invention may also be in the form of oil-in- water emulsions.
  • the oily phase may be a vegetable oil, such as olive oil or arachis oil, or a mineral oil, such as for example liquid paraffin or a mixture of any of these.
  • Suitable emulsifying agents may be, for example, naturally-occurring gums such as gum acacia or gum tragacanth, naturally-occurring phosphatides such as soya bean, lecithin, an esters or partial esters derived from fatty acids and hexitol anhydrides (for example sorbitan monooleate) and condensation products of the said partial esters with ethylene oxide such as polyoxyethylene sorbitan monooleate.
  • the emulsions may also contain sweetening, flavouring and preservative agents.
  • Syrups and elixirs may be formulated with sweetening agents such as glycerol, propylene glycol, sorbitol, aspartame or sucrose, and may also contain a demulcent, preservative, flavouring and/or colouring agent.
  • sweetening agents such as glycerol, propylene glycol, sorbitol, aspartame or sucrose, and may also contain a demulcent, preservative, flavouring and/or colouring agent.
  • compositions may also be in the form of a sterile injectable aqueous or oily suspension, which may be formulated according to known procedures using one or more of the appropriate dispersing or wetting agents and suspending agents, which have been mentioned above.
  • a sterile injectable preparation may also be a sterile injectable solution or suspension in a non-toxic parenterally-acceptable diluent or solvent, for example a solution in 1,3-butanediol.
  • Compositions for administration by inhalation may be in the form of a conventional pressurised aerosol arranged to dispense the active ingredient either as an aerosol containing finely divided solid or liquid droplets.
  • Conventional aerosol propellants such as volatile fluorinated hydrocarbons or hydrocarbons may be used and the aerosol device is conveniently arranged to dispense a metered quantity of active ingredient.
  • the amount of active ingredient that is combined with one or more excipients to produce a single dosage form will necessarily vary depending upon the host treated and the particular route of administration.
  • a formulation intended for oral administration to humans will generally contain, for example, from 0.5 mg to 2 g of active agent compounded with an appropriate and convenient amount of excipients which may vary from about 5 to about 98 percent by weight of the total composition.
  • Dosage unit forms will generally contain about 1 mg to about 500 mg of an active ingredient.
  • a compound of formula (I), (IA) and/or (IB) or a pharmaceutically acceptable salt thereof as defined hereinbefore for use in a method of treatment of the human or animal body by therapy.
  • a further feature of the present invention is a compound of formula (I), (IA) and/or (IB) or a pharmaceutically-acceptable salt thereof for use as a medicament.
  • this is a compound of formula (I), (IA) and/or (IB) or a pharmaceutically-acceptable salt thereof, for use as a medicament for producing an inhibition of DGATl activity in a warm-blooded animal such as a human being.
  • this is a compound of formula (I), (IA) and/or (IB) or a pharmaceutically-acceptable salt thereof, for use as a medicament for treating diabetes mellitus and/or obesity in a warm-blooded animal such as a human being.
  • a compound of formula (I), (IA) and/or (IB) or a pharmaceutically-acceptable salt thereof in the manufacture of a medicament for use in the treatment of diabetes mellitus and/or obesity in a warm-blooded animal such as a human being.
  • a pharmaceutical composition which comprises a compound of formula (I), (IA) and/or (IB) as defined hereinbefore or a pharmaceutically-acceptable salt thereof, in association with a pharmaceutically-acceptable excipient or carrier for use in producing an inhibition of DGATl activity in an warm-blooded animal, such as a human being.
  • a pharmaceutical composition which comprises a compound of formula (I), (IA) and/or (IB) as defined hereinbefore or a pharmaceutically-acceptable salt thereof, in association with a pharmaceutically-acceptable excipient or carrier for use in the treatment of diabetes mellitus and/or obesity in an warm-blooded animal, such as a human being.
  • a method for producing an inhibition of DGATl activity in a warm-blooded animal, such as a human being in need of such treatment which comprises administering to said animal an effective amount of a compound of formula (I), (IA) and/or (IB) or a pharmaceutically-acceptable salt thereof as defined hereinbefore.
  • a method of treating diabetes mellitus and/or obesity in a warm-blooded animal, such as a human being, in need of such treatment which comprises administering to said animal an effective amount of a compound of formula (I), (IA) and/or (IB) or a pharmaceutically-acceptable salt thereof as defined hereinbefore.
  • a daily dose in the range of 1-50 mg/kg is employed.
  • the daily dose will necessarily be varied depending upon the host treated, the particular route of administration, and the severity of the illness being treated.
  • the optimum dosage may be determined by the practitioner who is treating any particular patient.
  • a compound of the invention may therefore be useful for the prevention, delay or treatment of a range of disease states including diabetes mellitus, more specifically type 2 diabetes mellitus (T2DM) and complications arising there from (for example retinopathy, neuropathy and nephropathy), impaired glucose tolerance (IGT), conditions of impaired fasting glucose, metabolic acidosis, ketosis, dysmetabolic syndrome, arthritis, osteoporosis, obesity and obesity related disorders, (which include peripheral vascular disease, (including intermittent claudication), cardiac failure and certain cardiac myopathies, myocardial ischaemia, cerebral ischaemia and reperfusion, hyperlipidaemias, atherosclerosis, infertility and polycystic ovary syndrome); the compounds of the invention may also be useful for muscle weakness, diseases of the skin such as acne, various immunomodulatory diseases (such as psori), retinopathy, neuropathy and nephropathy), impaired glucose tolerance (IGT), conditions of
  • the compounds of the present invention are of interest for the prevention, delay or treatment of diabetes mellitus and/or obesity and/or obesity related disorders.
  • the compounds of the invention are used for prevention, delay or treatment of diabetes mellitus.
  • the compounds of the invention are used for prevention, delay or treatment of obesity.
  • the compounds of the invention are used for prevention, delay or treatment of obesity related disorders.
  • the inhibition of DGATl activity described herein may be applied as a sole therapy or in combination with one or more other substances and/or treatments for the indication being treated. Such conjoint treatment may be achieved by way of the simultaneous, sequential or separate administration of the individual components of the treatment. Simultaneous treatment may be in a single tablet or in separate tablets.
  • such conjoint treatment may be beneficial in the treatment of metabolic syndrome [defined as abdominal obesity (as measured by waist circumference against ethnic and gender specific cut-points) plus any two of the following: hypertriglyceridemia (> 150 mg/dl; 1.7mmol/l); low HDLc ( ⁇ 40 mg/dl or ⁇ 1.03mmol/l for men and ⁇ 50 mg/dl or 1.29 mmol/1 for women) or on treatment for low HDL (high density lipoprotein); hypertension (SBP > 130 mmHg DBP > 85 mmHg) or on treatment for hypertension; and hyperglycemia (fasting plasma glucose > 100 mg/dl or 5.6 mmol/1 or impaired glucose tolerance or pre-existing diabetes mellitus) - International Diabetes Federation & input from IAS/NCEP].
  • hypertriglyceridemia > 150 mg/dl; 1.7mmol/l
  • low HDLc ⁇ 40 mg/dl or ⁇ 1.03mmol/l for men and ⁇ 50 mg/dl or
  • Such conjoint treatments may include the following main categories: 1) Anti-obesity therapies such as those that cause weight loss by effects on food intake, nutrient absorption or energy expenditure, such as orlistat, sibutramine and the like. 2) Insulin secretagogues including sulphonylureas (for example glibenclamide, glipizide), prandial glucose regulators (for example repaglinide, nateglinide);
  • Agents that improve incretin action for example dipeptidyl peptidase IV inhibitors, and GLP-I agonists;
  • Insulin sensitising agents including PPARgamma agonists (for example pioglitazone and rosiglitazone), and agents with combined PPARalpha and gamma activity;
  • Agents that modulate hepatic glucose balance for example metformin, fructose 1, 6 bisphosphatase inhibitors, glycogen phopsphorylase inhibitors, glycogen synthase kinase inhibitors, glucokinase activators); 6) Agents designed to reduce the absorption of glucose from the intestine (for example acarbose);
  • Agents designed to treat the complications of prolonged hyperglycaemia for example aldose reductase inhibitors);
  • Anti- dyslipidaemia agents such as, HMG-CoA reductase inhibitors (eg statins);
  • PPAR ⁇ -agonists for example, PPAR ⁇ -agonists (fibrates, eg gemfibrozil); bile acid sequestrants (cholestyramine); cholesterol absorption inhibitors (plant stanols, synthetic inhibitors); bile acid absorption inhibitors (IBATi) and nicotinic acid and analogues (niacin and slow release formulations);
  • Antihypertensive agents such as, ⁇ -blockers (eg atenolol, inderal); ACE inhibitors (eg lisinopril); Calcium antagonists (eg. nifedipine); Angiotensin receptor antagonists (eg candesartan), ⁇ antagonists and diuretic agents (eg. furosemide, benzthiazide); 11) Haemostasis modulators such as, antithrombotics, activators of fibrinolysis and antiplatelet agents; thrombin antagonists; factor Xa inhibitors; factor Vila inhibitors); antiplatelet agents (eg. aspirin, clopidogrel); anticoagulants (heparin and Low molecular weight analogues, hirudin) and warfarin; 12) Agents which antagonise the actions of glucagon; and
  • Anti-inflammatory agents such as non-steroidal anti-inflammatory drugs (eg. aspirin) and steroidal anti-inflammatory agents (eg. cortisone).
  • non-steroidal anti-inflammatory drugs eg. aspirin
  • steroidal anti-inflammatory agents eg. cortisone
  • compounds of formula (I) and their pharmaceutically-acceptable salts are also useful as pharmacological tools in the development and standardisation of in vitro and in vivo test systems for the evaluation of the effects of inhibitors of DGATl activity in laboratory animals such as cats, dogs, rabbits, monkeys, rats and mice, as part of the search for new therapeutic agents.
  • the in vitro assay to identify DGATl inhibitors uses human DGATl expressed in insect cell membranes as the enzyme source (Proc. Natl. Acad. Sci. 1998, 95,
  • sf9 cells were infected with recombinant baculo virus containing human DGATl coding sequences and harvested after 48 h. Cells were lysed by sonication and membranes isolated by centrifuging at 28000 rpm for 1 h at 4 °C on a 41% sucrose gradient. The membrane fraction at the interphase was collected, washed, and stored in liquid nitrogen.
  • DGATl activity was assayed by a modification of the method described by Coleman (Methods in Enzymology 1992, 209, 98-102).
  • Compound at 1-10 ⁇ M was incubated with 0.4 ⁇ g membrane protein, 5 mM MgCl 2 , and 10 O ⁇ M 1,2 dioleoyl-r ⁇ -glycerol in a total assay volume of 200 ⁇ l in plastic tubes.
  • the reaction was started by adding 14 C oleoyl coenzyme A (30 ⁇ M final concentration) and incubated at room temperature for 30 minutes.
  • the reaction was stopped by adding 1.5 mL 2-propanol:heptane:water (80:20:2).
  • Radioactive triolein product was separated into the organic phase by adding ImL heptane and 0.5 niL 0.1 M carbonate buffer pH 9.5.
  • DGATl activity was quantified by counting aliquots of the upper heptane layer by liquid scintillography.
  • the compounds generally show activity with IC 50 ⁇ 100nM, preferably ⁇ 50 nM, more preferably ⁇ 10 nM.
  • the lipids were extracted into the organic phase using a heptane:propan-2-ol:water (80:20:2) mixture followed by aliquots of water and heptane according to the method of Coleman (Methods in Enzymology, 1992, 209, 98-104).
  • the organic phase was collected and the solvent evaporated under a stream of nitrogen.
  • MCF7 Human mammary epithelial cells were cultured to confluency in 6 well plates in foetal calf serum containing media. For the experiment, the medium was changed to serum-free medium and the cells pre-incubated with compound solubilised in DMSO (final concentration 0.1%) for 30 minutes. De novo lipogenesis was measured by the addition of 50 ⁇ M sodium acetate plus 3 ⁇ Ci/mL 14 C-sodium acetate to each well for a further 3 h (J. Biol. Chem., 1976, 251, 6462-6464). The cells were washed in phosphate buffered saline and solubilised in 1% sodium dodecyl sulfate.
  • the ability of compounds to inhibit ACAT can be measured using a modification of the enzyme assay described in Billheimer (1985) Methods in Enzymology, 111, 286-293.
  • the test assesses the ability of a test compound to inhibit the esterif ⁇ cation of cholesterol by measuring the amount of radiolabeled cholesteryl oleate formed from radiolabeled oleoyl CoA.
  • Compound was incubated with 10 ⁇ g membrane protein and 267 ⁇ M cholesterol. After a 5 minute pre-incubation at 37 0 C the reaction was started by adding 14 C oleoyl coenzyme A (50 ⁇ M final concentration) and incubated at 37 0 C for a further 30 minutes.
  • the reaction was stopped by adding 2-propanol:heptane (12:1). Radioactive cholesteryl ester product was separated into the organic phase by adding heptane and IM carbonate buffer pH 9.5. ACAT activity was quantified by counting aliquots of the upper heptane layer by liquid scintillography.
  • the selectivity of a compound to inhibit DGAT over inhibition of ACAT may be defined as the ratio of IC 50 values generated in the DGAT and ACAT enzyme assays for a particular compound. For example, Example 1 demonstrated 70 fold selectivity,
  • temperatures are given in degrees Celsius ( 0 C); operations were carried out at room or ambient temperature, that is, at a temperature in the range of 18-25 °C and under an atmosphere of an inert gas such as argon;
  • organic solutions were dried over anhydrous magnesium sulfate; evaporation of solvent was carried out using a rotary evaporator under reduced pressure (600-4000 Pa; 4.5-30 mmHg) with a bath temperature of up to 60 °C;
  • chromatography means flash chromatography on silica gel; where a Biotage cartridge is referred to this means a cartridge containing KP-SILTM silica, 6 ⁇ A, particle size 32-63 rnM, supplied by Biotage, a division of Dyax Corp., 1500 Avon Street Extended,
  • NMR data ( 1 H) is in the form of delta values for major diagnostic protons, given in parts per million (ppm) relative to tetramethylsilane (TMS), determined at 300 or 400 MHz (unless otherwise stated) using perdeuterio dimethyl sulfoxide (DMSO-J 6 ) as solvent, unless otherwise stated; peak multiplicities are shown thus: s, singlet; d, doublet; dd, doublet of doublets; dt, doublet of triplets; dm, doublet of multiplets; t, triplet, q, quartet; m, multiplet; br, broad; (vii) chemical symbols have their usual meanings; SI units and symbols are used; (viii) solvent ratios are given in volume : volume (v/v) terms;
  • phase separation cartridges where phase separation cartridges are stated then ISOLUTE Phase Separator 70ml columns, supplied by Argonaut Technologies, New Road, Hengoed, Mid Glamorgan, CF82 8AU, United Kingdom, were used;
  • a SiliCycle cartridge where a SiliCycle cartridge is referred to this means a cartridge containing Ultra Pure Silica Gel particle size 230-400 mesh, 40 -63 um pore size, supplied by SiliCycle Chemical Division, 1200 Ave St-Jean-Baptiste, Suite 114, Quebec City, Quebec, G2E 5E8, CANADA;
  • xi ⁇ where an Isco Companion is referred to then a Combiflash companion chromatography instrument, supplied by ISOC Inc. Address Teledyne ISOC Inc, 4700 Superior Street, Lincoln, NE 68504, USA, was used;
  • a microwave where a microwave is referred to this means a Biotage Initiator sixty or Smith Creator microwave, supplied by Biotage, a division of Dyax Corp., 1500 Avon Street Extended, Charlottesville, VA 22902, USA;
  • Example 1 c/s-4-(3-Fluoro-4- ⁇ f 5-(2,4,5-trifluoro-phenylaminoHl ,3,41 oxadiazole-2- carbonyll-amino ⁇ -phenoxy)-cvclohexanecarboxylic acid
  • the mixture was concentrated in vacuo, acidified with a IM aqueous solution of citric acid and then filtered to leave a solid.
  • the solid was washed with water, dried and recrystallised from ethanol (30 mL) to give the title compound as a white solid (700 mg, 64%).
  • 2,4,5-Trifluorophenyl isothiocyanate 600 mg, 3.0 mmol was added in one portion to a stirred suspension of 4-[3-fluoro-4-(hydrazinooxalyl-amino)-phenoxy]-cyclohexane- carboxylic acid ethyl ester (920 mg, 2.5 mmol) in DMA (10 mL) and the reaction mixture was stirred at ambient temperature for 1 h. EDCI (720 mg, 3.76 mmol) was added and the mixture was heated at 9O 0 C for 10 mins in a microwave. The reaction mixture was concentrated in vacuo to leave a residue. Water was added and the mixture was filtered and dried under high vacuum to leave the title compound (Intermediate 1) as a pale yellow powder (1.2 g, 92%).
  • Example 2 c/5-4-(3-FIuoro-4-([5-(3,4,5-trifluoro-phenyIamino)-fl,3 ⁇ 41oxadiazoIe-2- carbonvU-amino ⁇ -phenox ⁇ )-eyclohexaneearboxyIic acid
  • Example 4 ⁇ m «5 l -4-f3-FIuoro-4-ff5-[(2,4,5-trifluoroDhenyl)amino11,3,4-oxadiazole-2- carbonyllaminolphenoxylcyclohexane-l-carboxylic acid

Abstract

Compounds of formula (I), or salts thereof, which inhibit acetyl CoA(acetyl coenzyme A):diacylglycerol acyltransferase (DGAT1) activity are provided, wherein: n is 1, 2 or 3 and each R is independently selected from fluoro, chloro, cyano, methyl, ethyl, methoxy, ethoxy, trifluoromethyl, trifluoromethoxy and difluoromethoxy; together with processes for their preparation, pharmaceutical compositions containing them and their use as medicaments.

Description

CHEMICAL COMPOUNDS
The present invention relates to compounds which inhibit acetyl CoA(acetyl coenzyme A):diacylglycerol acyltransferase (DGATl) activity, processes for their preparation, pharmaceutical compositions containing them as the active ingredient, methods for the treatment of disease states associated with DGATl activity, to their use as medicaments and to their use in the manufacture of medicaments for use in the inhibition of DGATl in warm-blooded animals such as humans. In particular this invention relates to compounds useful for the treatment of type II diabetes, insulin resistance, impaired glucose tolerance and obesity in warm-blooded animals such as humans, more particularly to the use of these compounds in the manufacture of medicaments for use in the treatment of type II diabetes, insulin resistance, impaired glucose tolerance and obesity in warm-blooded animals such as humans.
Acyl CoA:diacylglycerol acyltransferase (DGAT) is found in the microsomal fraction of cells. It catalyzes the final reaction in the glycerol phosphate pathway, considered to be the main pathway of triglyceride synthesis in cells by facilitating the joining of a diacylglycerol with a fatty acyl CoA, resulting in the formation of triglyceride. Although it is unclear whether DGAT is rate-limiting for triglyceride synthesis, it catalyzes the only step in the pathway that is committed to producing this type of molecule [Lehner & Kuksis (1996) Biosynthesis of triacylglycerols. Prog. Lipid Res. 35: 169-201].
Two DGAT genes have been cloned and characterised. Both of the encoded proteins catalyse the same reaction although they share no sequence homology. The DGATl gene was identified from sequence database searches because of its similarity to acyl CoAxholesterol acyltransferase (ACAT) genes. [Cases et al (1998) Identification of a gene encoding an acyl CoA: diacylglycerol acyltransferase, a key enzyme in triacylglycerol synthesis. Proc. Natl. Acad. Sci. USA 95: 13018-13023]. DGATl activity has been found in many mammalian tissues, including adipocytes.
Because of the previous lack of molecular probes, little is known about the regulation of DGATl. DGATl is known to be significantly up-regulated during adipocyte differentiation.
Studies in gene knockout mice has indicated that modulators of the activity of DGATl would be of value in the treatment of type II diabetes and obesity. DGATl knockout {Dgatl'1') mice, are viable and capable of synthesizing triglycerides, as evidenced by normal fasting serum triglyceride levels and normal adipose tissue composition. Dgatl'1' mice have less adipose tissue than wild-type mice at baseline and are resistant to diet-induced obesity. Metabolic rate is -20% higher in Dgatl~!~ mice than in wild-type mice on both regular and high-fat diets [Smith et al (2000) Obesity resistance and multiple mechanisms of triglyceride synthesis in mice lacking DGAT. Nature Genetics 25: 87-90]. Increased physical activity in Dgatl" " mice partially accounts for their increased energy expenditure. The Dgatl"1" mice also exhibit increased insulin sensitivity and a 20% increase in glucose disposal rate. Leptin levels are 50% decreased in the Dgatl'1' mice in line with the 50% decrease in fat mass.
When Dgatl'1' mice are crossed with ob/ob mice, these mice exhibit the ob/ob phenotype [Chen et al (2002) Increased insulin and leptin sensitivity in mice lacking acyl CoA:diacylglycerol acyltransferase J. Clin. Invest. 109:1049-1055] indicating that the Dgatl'1' phenotype requires an intact leptin pathway. When Dgatl'1' mice are crossed with Agouti mice a decrease in body weight is seen with normal glucose levels and 70% reduced insulin levels compared to wild type, agouti or ob/ob/ Dgatl'1' mice.
Transplantation of adipose tissue from Dgatl'1' mice to wild type mice confers resistance to diet-induced obesity and improved glucose metabolism in these mice [Chen et al (2003) Obesity resistance and enhanced glucose metabolism in mice transplanted with white adipose tissue lacking acyl CoA:diacylglycerol acyltransferase J. Clin. Invest. I l l: 1715-1722].
International Patent Applications WO2004/047755 (Tularik and Japan Tobacco) and WO2005/013907 (Japan Tobacco and Amgen) describe fused bicyclic nitrogen-containing heterocycles which are inhibitors of DGAT-I . JP2004-67635 (Otsuka Pharmaceuticals) describes thiazoleamido substituted phenyl compounds which are further substituted with alkylphosphonates and which inhibit DGAT-I. WO2004/100881 (Bayer) describes biphenylamino compounds substituted with imidazole, oxazole or thiazole which inhibit DGAT-I.
Our co-pending International Application PCT/GB2005/004726 describes oxadiazole compounds which inhibit DGAT-I, including two compounds similar to the compounds of formula (I) below. Some of the compounds in PCT/GB2005/004726 also show activity against the ACAT enzyme. Accordingly, the present invention provides a compound of formula (I)
Figure imgf000004_0001
(I) or a salt thereof, wherein: each R is independently selected from fluoro, chloro, cyano, methyl, ethyl, methoxy, ethoxy, trifluoromethyl, trifluoromethoxy and difluoromethoxy; n is 1, 2 or 3.
We have found that compounds such as those of formula (I) above have good DGAT activity and advantageous physicochemical properties (for example solubility) and/or advantageous pharmacokinetic properties
It will be appreciated that formula (I) includes compounds wherein the carboxy group and the oxy link are in either a cis or a trans arrangement across the cyclohexyl ring, in relation to each other.
For the avoidance of doubt it is to be understood that where in this specification a group is qualified by 'hereinbefore defined' or 'defined hereinbefore' the said group encompasses the first occurring and broadest definition as well as each and all of the particular definitions for that group.
If not stated elsewhere, suitable optional substituents for a particular group are those as stated for similar groups herein. A compound of formula (I) may form stable acid or basic salts, and in such cases administration of a compound as a salt may be appropriate, and pharmaceutically acceptable salts may be made by conventional methods such as those described following.
Suitable pharmaceutically-acceptable salts include acid addition salts such as methanesulfonate, tosylate, α-glycerophosphate, fumarate, hydrochloride, citrate, maleate, tartrate and (less preferably) hydrobromide. Also suitable are salts formed with phosphoric and sulfuric acid. In another aspect suitable salts are base salts such as a Group (I) (alkali metal) salt, a Group (II) (alkaline earth) metal salt, an organic amine salt for example triethylamine, morpholine, JV-methylpiperidine, iV-ethylpiperidine, procaine, dibenzylamine, JV,iV-dibenzylethylamine, tris-(2-hydroxyethyl)amine, JV-methyl d-glucaniine and amino acids such as lysine. There may be more than one cation or anion depending on the number of charged functions and the valency of the cations or anions.
However, to facilitate isolation of the salt during preparation, salts which are less soluble in the chosen solvent may be preferred whether pharmaceutically-acceptable or not.
Within the present invention it is to be understood that a compound of the formula (I) or a salt thereof may exhibit the phenomenon of tautomerism and that the formulae drawings within this specification can represent only one of the possible tautomeric forms. It is to be understood that the invention encompasses any tautomeric form which inhibits DGATl activity and is not to be limited merely to any one tautomeric form utilised within the formulae drawings.
Prodrugs of compounds of formula (I), or salts thereof, are also within the scope of the invention. Various forms of prodrugs are known in the art. For examples of such prodrug derivatives, see: a) Design of Prodrugs, edited by H. Bundgaard, (Elsevier, 1985) and Methods in Enzymology, Vol. 42, p. 309-396, edited by K. Widder, et al. (Academic Press, 1985); b) A Textbook of Drug Design and Development, edited by Krogsgaard-Larsen and
H. Bundgaard, Chapter 5 "Design and Application of Prodrugs", by H. Bundgaard p. 113-191 (1991); c) H. Bundgaard, Advanced Drug Delivery Reviews, 8, 1-38 (1992); d) H. Bundgaard, et al., Journal of Pharmaceutical Sciences, 77, 285 (1988); and e) N. Kakeya, et α/., Chem Pharm Bull, 32, 692 (1984).
Examples of such prodrugs are in vivo cleavable esters of a compound of the invention. An in vivo cleavable ester of a compound of the invention containing a carboxy group is, for example, a pharmaceutically-acceptable ester which is cleaved in the human or animal body to produce the parent acid. Suitable pharmaceutically-acceptable esters for carboxy include (l-όC)alkyl esters, for example methyl or ethyl; (l-6C)alkoxymethyl esters, for example methoxymethyl; (1- 6C)alkanoyloxymethyl esters, for example pivaloyloxymethyl; phthalidyl esters; (3- 8C)cycloalkoxycarbonyloxy(l-6C)alkyl esters, for example 1-cyclohexylcarbonyloxy ethyl; l,3-dioxolan-2-ylmethyl esters, for example 5-methyl-l,3-dioxolan-2-ylmethyl; (l-6C)alkoxycarbonyloxy ethyl esters, for example 1-methoxycarbonyloxy ethyl; aminocarbonylmethyl esters and mono- or di- N-((l- 6C)alkyl) versions thereof, for example N,N-dimethylaminocarbonylmethyl esters and N-ethylaminocarbonylmethyl esters; and may be formed at any carboxy group in the compounds of this invention. An in vivo cleavable ester of a compound of the invention containing a hydroxy group is, for example, a pharmaceutically-acceptable ester which is cleaved in the human or animal body to produce the parent hydroxy group. Suitable pharmaceutically acceptable esters for hydroxy include (l-6C)alkanoyl esters, for example acetyl esters; and benzoyl esters wherein the phenyl group may be substituted with aminomethyl or N- substituted mono- or di- (l-όC)alkyl aminomethyl, for example 4-aminomethylbenzoyl esters and 4-N,N-dimethylaminomethylbenzoyl esters. It will be appreciated by those skilled in the art that certain compounds of formula (I) contain asymmetrically substituted carbon and/or sulfur atoms, and accordingly may exist in, and be isolated in, optically-active and racemic forms. Some compounds may exhibit polymorphism. It is to be understood that the present invention encompasses any racemic, optically-active, polymorphic or stereoisomeric form, or mixtures thereof, which form possesses properties useful in the inhibition of DGATl activity, it being well known in the art how to prepare optically-active forms (for example, by resolution of the racemic form by recrystallization techniques, by synthesis from optically-active starting materials, by chiral synthesis, by enzymatic resolution, by biotransformation, or by chromatographic separation using a chiral stationary phase) and how to determine efficacy for the inhibition of DGATl activity by the standard tests described hereinafter. It is also to be understood that certain compounds of the formula (I) and salts thereof can exist in solvated as well as unsolvated forms such as, for example, hydrated forms. It is to be understood that the invention encompasses all such solvated forms which inhibit DGATl activity.
As stated before, we have discovered a range of compounds that have good DGATl inhibitory activity. They have good physical and/or pharmacokinetic properties in general. The following compounds possess preferred pharmaceutical and/or physical and/or pharmacokinetic properties. They may also possess good selectivity over ACAT. In one aspect, the carboxy group and oxy links are in a cis configuration across the cyclohexyl ring, to give a compound of formula (IA):
Figure imgf000007_0001
(IA)
In another aspect, the carboxy group and oxy links are in a trans configuration across the cyclohexyl ring, to give a compound of formula (IB):
Figure imgf000007_0002
(IB) References hereinbefore or hereinafter to a compound of formula (I) should be taken to apply also to compounds of formulae (IA) and (IB).
In one embodiment of the invention there are provided compounds of formulae (I), (IA) and (IB), in an alternative embodiment there are provided salts, particularly pharmaceutically-acceptable salts of compounds of formulae (I), (IA) and (IB). In a further embodiment, there are provided pro-drags, particularly in- vivo cleavable esters, of compounds of formulae (I), (IA) and (IB). In a further embodiment, there are provided salts, particularly pharmaceutically-acceptable salts of pro-drugs of compounds of formulae (I), (IA) and (IB). Particular values of substituents in compounds of formulae (I)5 (IA) and (IB) are as follows. Such values may be used where appropriate with any of the other values, definitions, claims or embodiments defined hereinbefore or hereinafter.
1) n is 1, 2 or 3 and each R is fluoro.
2) when n >1, at least one R is fluoro.
3) R is selected from fluoro and trifluoromethyl
4) n is 1 5) n is 2
6) n is 3
Further preferred compounds of the invention are each of the Examples, each of which provides a further independent aspect of the invention. In further aspects, the present invention also comprises any two or more compounds of the Examples.
In a further aspect of the invention, there is provided any one or more of the following, or salts thereof:
4-(3 -fluoro-4- { [5 -(2,4, 5 -trifluoro-phenylamino)- [ 1,3,4] oxadiazole-2-carbonyl] -amino } - phenoxy)-cyclohexanecarboxylic acid;
4-(3-fluoro-4-{[5-(3,4,5-trifluoro-phenylamino)-[l,3,4]oxadiazole-2-carbonyl]-amino}- phenoxy)-cyclohexanecarboxylic acid; or any of the compounds named in Examples 1 to 5.
Process
A compound of formula (I) and its salts may be prepared by any process known to be applicable to the preparation of chemically related compounds. Such processes, when used to prepare a compound of the formula (I), or a pharmaceutically-acceptable salt thereof, are provided as a further feature of the invention.
In a further aspect the present invention also provides that the compounds of the formula (I) and salts thereof, can be prepared by a process a) to b) as follows (wherein all variables are as hereinbefore defined for a compound of formula (I) unless otherwise stated): a) reaction of an amine of formula (2) with a carboxylate salt of formula (3), wherein Rp is (l-4C)alkyl group (such as methyl, ethyl, isopropy, or tert-butyl), followed by hydrolysis of the Rp group;
Figure imgf000008_0001
(2) (3) b) cyclisation of a compound of formula (4) (where X is S or O) wherein R is (1- 4C)alkyl group followed by hydrolysis of the Rp group;
Figure imgf000009_0001
(4) and thereafter if necessary:
1) removing any protecting groups; and/or
2) forming a (pharmaceutically-acceptable) salt.
Process a)
Compounds of formula (2) may be made by application of standard synthetic methods well known in the art. In particular, compounds of formula (2) may be prepared by reduction of a compound of formula (2A).
Figure imgf000009_0002
(2A)
Compounds of formula (2A) may be made by SNAT chemistry as illustrated in Scheme 1, wherein Rp is for example an alkyl group and X is for example fluoro. When X is fluoro competitive displacement of the 2- and 4-fluoro substituents may result in a mixture of products. However, the required product can be readily separated by standard techniques.
Figure imgf000010_0001
(2)
Scheme 1
Compounds of formula (3) may be made by alkaline hydrolysis of ester (5a) as prepared using a published procedure (J. Het. Chem. 1977, 14, 1385-1388). Ester (5a) may be made by cyclisation of a compound of formula (5b) (where X is O or S) in a similar manner as described in process b) for compounds of formula (4).
Figure imgf000010_0002
An alternative method for making compounds of formula (5a) is illustrated below:
Figure imgf000010_0003
Compounds of formula (2) may be coupled with compounds of formula (3) under standard conditions for formation of amide bonds. For example using an appropriate coupling reaction, such as a carbodiimide coupling reaction performed with EDAC, optionally in the presence of DMAP, in a suitable solvent such as DCM, chloroform or DMF at room temperature.
The Rp group may be removed by any process known in the art for ester hydrolysis. Process b) Compounds of formula (4) and (5b) where X is S may be made by reaction of an aminocarbonyl acylhydrazine or ethoxycarbonyl acylhydrazine with a thioisocyanate or thioisocyanate equivalent such as aminothiocarbonylimidazole in a suitable solvent such as DMF or MeCN at a temperature between 0 and 100 0C. The preparation of aminocarbonyl acylhydrazines from anilines and of ethoxycarbonyl acylhydrazines is well known in the art. For example reaction of an aniline with methyl chlorooxoacetate in the presence of pyridine in a suitable solvent such as DCM followed by reaction with hydrazine in a suitable solvent such as ethanol at a temperature between 0 and 100 0C .
The compound of formula (4) may then be cyclised using, for example agents such as carbonyldiimidazole, or tosyl chloride and a suitable base (such as triethylamine), under conditions known in the art.
Iso(thio)cyanates R1- NCX (where X is O or S) are commercially available or may be made by reaction of the acid chlorides R^NH2 with for example (thio)phosgene or a (thio)phosgene equivalent followed by a suitable base (such as triethylamine). The Rp group may be removed by any process known in the art for ester hydrolysis. It will be appreciated that certain of the various ring substituents in the compounds of the present invention, for example R, may be introduced by standard aromatic substitution reactions or generated by conventional functional group modifications either prior to or immediately following the processes mentioned above, and as such are included in the process aspect of the invention. Such reactions may convert one compound of the formula (I) into another compound of the formula (I). Such reactions and modifications include, for example, introduction of a substituent by means of an aromatic substitution reaction, reduction of substituents, alkylation of substituents and oxidation of substituents. The reagents and reaction conditions for such procedures are well known in the chemical art. Particular examples of aromatic substitution reactions include the introduction of a nitro group using concentrated nitric acid, the introduction of an acyl group using, for example, an acyl halide and Lewis acid (such as aluminium trichloride) under Friedel Crafts conditions; the introduction of an alkyl group using an alkyl halide and Lewis acid (such as aluminium trichloride) under Friedel Crafts conditions; and the introduction of a halogen group. Particular examples of modifications include the reduction of a nitro group to an amino group by for example, catalytic hydrogenation with a nickel catalyst or treatment with iron in the presence of hydrochloric acid with heating; oxidation of alkylthio to alkanesulfmyl or alkanesulfonyl.
If not commercially available, the necessary starting materials for the procedures such as those described above may be made by procedures which are selected from standard organic chemical techniques, techniques which are analogous to the synthesis of known, structurally similar compounds, techniques which are described or illustrated in the references given above, or techniques which are analogous to the above described procedure or the procedures described in the examples. The reader is further referred to Advanced Organic Chemistry, 5th Edition, by Jerry March and Michael Smith, published by John Wiley & Sons 2001, for general guidance on reaction conditions and reagents.
It will be appreciated that some intermediates to compounds of the formula (I) are also novel and these are provided as separate independent aspects of the invention. In particular, compounds of formula (4) form a further aspect of the invention. Furthermore, ester derivatives of compounds of formula (I) form a further aspect of the invention.
It will also be appreciated that in some of the reactions mentioned herein it may be necessary/desirable to protect any sensitive groups in compounds. The instances where protection is necessary or desirable are known to those skilled in the art, as are suitable methods for such protection. Conventional protecting groups may be used in accordance with standard practice (for illustration see T.W. Greene, Protective Groups in Organic Synthesis, John Wiley and Sons, 1991).
Protecting groups may be removed by any convenient method as described in the literature or known to the skilled chemist as appropriate for the removal of the protecting group in question, such methods being chosen so as to effect removal of the protecting group with minimum disturbance of groups elsewhere in the molecule.
Thus, if reactants include, for example, groups such as amino, carboxy or hydroxy it may be desirable to protect the group in some of the reactions mentioned herein. Examples of a suitable protecting group for a hydroxy group is, for example, an acyl group, for example an alkanoyl group such as acetyl, an aroyl group, for example benzoyl, a silyl group such as trimethylsilyl or an arylmethyl group, for example benzyl. The deprotection conditions for the above protecting groups will necessarily vary with the choice of protecting group. Thus, for example, an acyl group such as an alkanoyl or an aroyl group may be removed, for example, by hydrolysis with a suitable base such as an alkali metal hydroxide, for example lithium or sodium hydroxide. Alternatively a silyl group such as trimethylsilyl or SEM may be removed, for example, by fluoride or by aqueous acid; or an arylmethyl group such as a benzyl group may be removed, for example, by hydrogenation in the presence of a catalyst such as palladium-on-carbon.
A suitable protecting group for an amino group is, for example, an acyl group, for example an alkanoyl group such as acetyl, an alkoxycarbonyl group, for example a methoxycarbonyl, ethoxycarbonyl or tert-butoxycarbonyl group, an arylmethoxycarbonyl group, for example benzyloxycarbonyl, or an aroyl group, for example benzoyl. The deprotection conditions for the above protecting groups necessarily vary with the choice of protecting group. Thus, for example, an acyl group such as an alkanoyl or alkoxycarbonyl group or an aroyl group may be removed for example, by hydrolysis with a suitable base such as an alkali metal hydroxide, for example lithium or sodium hydroxide. Alternatively an acyl group such as a t-butoxycarbonyl group may be removed, for example, by treatment with a suitable acid as hydrochloric, sulfuric or phosphoric acid or trifluoroacetic acid and an arylmethoxycarbonyl group such as a benzyloxycarbonyl group may be removed, for example, by hydrogenation over a catalyst such as palladium-on-carbon, or by treatment with a Lewis acid for example boron tris(trifluoroacetate). A suitable alternative protecting group for a primary amino group is, for example, a phthaloyl group which may be removed by treatment with an alkylamine, for example dimethylaminopropylamine or 2-hydroxyethylamine, or with hydrazine.
A suitable protecting group for a carboxy group is, for example, an esterifying group, for example a methyl or an ethyl group which may be removed, for example, by hydrolysis with a base such as sodium hydroxide, or for example a t-butyl group which may be removed, for example, by treatment with an acid, for example an organic acid such as trifluoroacetic acid, or for example a benzyl group which may be removed, for example, by hydrogenation over a catalyst such as palladium-on-carbon. Resins may also be used as a protecting group. The protecting groups may be removed at any convenient stage in the synthesis using conventional techniques well known in the chemical art, or they may be removed during a later reaction step or work-up.
The skilled organic chemist will be able to use and adapt the information contained and referenced within the above references, and accompanying Examples therein and also the examples herein, to obtain necessary starting materials, and products.
The removal of any protecting groups and the formation of a pharmaceutically-acceptable salt are within the skill of an ordinary organic chemist using standard techniques. Furthermore, details on the these steps has been provided hereinbefore.
When an optically active form of a compound of the invention is required, it may be obtained by carrying out one of the above procedures using an optically active starting material (formed, for example, by asymmetric induction of a suitable reaction step), or by resolution of a racemic form of the compound or intermediate using a standard procedure, or by chromatographic separation of diastereoisomers (when produced). Enzymatic techniques may also be useful for the preparation of optically active compounds and/or intermediates.
Similarly, when a pure regioisomer of a compound of the invention is required, it may be obtained by carrying out one of the above procedures using a pure regioisomer as a starting material, or by resolution of a mixture of the regioisomers or intermediates using a standard procedure.
According to a further aspect of the invention there is provided a pharmaceutical composition which comprises a compound of formula (I) as defined hereinbefore or a pharmaceutically-acceptable salt thereof, in association with a pharmaceutically-acceptable excipient or carrier.
The compositions of the invention may be in a form suitable for oral use (for example as tablets, lozenges, hard or soft capsules, aqueous or oily suspensions, emulsions, dispersible powders or granules, syrups or elixirs), for topical use (for example as creams, ointments, gels, or aqueous or oily solutions or suspensions), for administration by inhalation (for example as a finely divided powder or a liquid aerosol), for administration by insufflation (for example as a finely divided powder) or for parenteral administration (for example as a sterile aqueous or oily solution for intravenous, subcutaneous, intramuscular or intramuscular dosing or as a suppository for rectal dosing).
The compositions of the invention may be obtained by conventional procedures using conventional pharmaceutical excipients, well known in the art. Thus, compositions intended for oral use may contain, for example, one or more colouring, sweetening, flavouring and/or preservative agents.
Suitable pharmaceutically acceptable excipients for a tablet formulation include, for example, inert diluents such as lactose, sodium carbonate, calcium phosphate or calcium carbonate, granulating and disintegrating agents such as corn starch or algenic acid; binding agents such as starch; lubricating agents such as magnesium stearate, stearic acid or talc; preservative agents such as ethyl or propyl p_-hydroxybenzoate, and anti-oxidants, such as ascorbic acid. Tablet formulations may be uncoated or coated either to modify their disintegration and the subsequent absorption of the active ingredient within the gastrointestinal tract, or to improve their stability and/or appearance, in either case, using conventional coating agents and procedures well known in the art.
Compositions for oral use may be in the form of hard gelatin capsules in which the active ingredient is mixed with an inert solid diluent, for example, calcium carbonate, calcium phosphate or kaolin, or as soft gelatin capsules in which the active ingredient is mixed with water or an oil such as peanut oil, liquid paraffin, or olive oil. Aqueous suspensions generally contain the active ingredient in finely powdered form together with one or more suspending agents, such as sodium carboxymethylcellulose, methylcellulose, hydroxypropylmethylcellulose, sodium alginate, polyvinyl-pyrrolidone, gum tragacanth and gum acacia; dispersing or wetting agents such as lecithin or condensation products of an alkylene oxide with fatty acids (for example polyoxethylene stearate), or condensation products of ethylene oxide with long chain aliphatic alcohols, for example heptadecaethyleneoxycetanol, or condensation products of ethylene oxide with partial esters derived from fatty acids and a hexitol such as polyoxyethylene sorbitol monooleate, or condensation products of ethylene oxide with long chain aliphatic alcohols, for example heptadecaethyleneoxycetanol, or condensation products of ethylene oxide with partial esters derived from fatty acids and a hexitol such as polyoxyethylene sorbitol monooleate, or condensation products of ethylene oxide with partial esters derived from fatty acids and hexitol anhydrides, for example polyethylene sorbitan monooleate. The aqueous suspensions may also contain one or more preservatives (such as ethyl or propyl p_-hydroxybenzoate, anti-oxidants (such as ascorbic acid), colouring agents, flavouring agents, and/or sweetening agents (such as sucrose, saccharine or aspartame). Oily suspensions may be formulated by suspending the active ingredient in a vegetable oil (such as arachis oil, olive oil, sesame oil or coconut oil) or in a mineral oil (such as liquid paraffin). The oily suspensions may also contain a thickening agent such as beeswax, hard paraffin or cetyl alcohol. Sweetening agents such as those set out above, and flavouring agents may be added to provide a palatable oral preparation. These compositions may be preserved by the addition of an anti-oxidant such as ascorbic acid.
Dispersible powders and granules suitable for preparation of an aqueous suspension by the addition of water generally contain the active ingredient together with a dispersing or wetting agent, suspending agent and one or more preservatives. Suitable dispersing or wetting agents and suspending agents are exemplified by those already mentioned above. Additional excipients such as sweetening, flavouring and colouring agents, may also be present.
The pharmaceutical compositions of the invention may also be in the form of oil-in- water emulsions. The oily phase may be a vegetable oil, such as olive oil or arachis oil, or a mineral oil, such as for example liquid paraffin or a mixture of any of these. Suitable emulsifying agents may be, for example, naturally-occurring gums such as gum acacia or gum tragacanth, naturally-occurring phosphatides such as soya bean, lecithin, an esters or partial esters derived from fatty acids and hexitol anhydrides (for example sorbitan monooleate) and condensation products of the said partial esters with ethylene oxide such as polyoxyethylene sorbitan monooleate. The emulsions may also contain sweetening, flavouring and preservative agents.
Syrups and elixirs may be formulated with sweetening agents such as glycerol, propylene glycol, sorbitol, aspartame or sucrose, and may also contain a demulcent, preservative, flavouring and/or colouring agent.
The pharmaceutical compositions may also be in the form of a sterile injectable aqueous or oily suspension, which may be formulated according to known procedures using one or more of the appropriate dispersing or wetting agents and suspending agents, which have been mentioned above. A sterile injectable preparation may also be a sterile injectable solution or suspension in a non-toxic parenterally-acceptable diluent or solvent, for example a solution in 1,3-butanediol.
Compositions for administration by inhalation may be in the form of a conventional pressurised aerosol arranged to dispense the active ingredient either as an aerosol containing finely divided solid or liquid droplets. Conventional aerosol propellants such as volatile fluorinated hydrocarbons or hydrocarbons may be used and the aerosol device is conveniently arranged to dispense a metered quantity of active ingredient.
For further information on formulation the reader is referred to Chapter 25.2 in Volume 5 of Comprehensive Medicinal Chemistry (Corwin Hansen; Chairman of Editorial Board), Pergamon Press 1990.
The amount of active ingredient that is combined with one or more excipients to produce a single dosage form will necessarily vary depending upon the host treated and the particular route of administration. For example, a formulation intended for oral administration to humans will generally contain, for example, from 0.5 mg to 2 g of active agent compounded with an appropriate and convenient amount of excipients which may vary from about 5 to about 98 percent by weight of the total composition. Dosage unit forms will generally contain about 1 mg to about 500 mg of an active ingredient. For further information on Routes of Administration and Dosage Regimes the reader is referred to Chapter 25.3 in Volume 5 of Comprehensive Medicinal Chemistry (Corwin Hansch; Chairman of Editorial Board), Pergamon Press 1990.
According to a further aspect of the present invention there is provided a compound of formula (I), (IA) and/or (IB) or a pharmaceutically acceptable salt thereof as defined hereinbefore for use in a method of treatment of the human or animal body by therapy.
We have found that compounds of the present invention inhibit DGATl activity and are therefore of interest for their blood glucose-lowering effects.
A further feature of the present invention is a compound of formula (I), (IA) and/or (IB) or a pharmaceutically-acceptable salt thereof for use as a medicament.
Conveniently this is a compound of formula (I), (IA) and/or (IB) or a pharmaceutically-acceptable salt thereof, for use as a medicament for producing an inhibition of DGATl activity in a warm-blooded animal such as a human being.
Particularly this is a compound of formula (I), (IA) and/or (IB) or a pharmaceutically-acceptable salt thereof, for use as a medicament for treating diabetes mellitus and/or obesity in a warm-blooded animal such as a human being.
Thus according to a further aspect of the invention there is provided the use of a compound of formula (I), (IA) and/or (IB) or a pharmaceutically-acceptable salt thereof in the manufacture of a medicament for use in the production of an inhibition of DGATl activity in a warm-blooded animal such as a human being.
Thus according to a further aspect of the invention there is provided the use of a compound of formula (I), (IA) and/or (IB) or a pharmaceutically-acceptable salt thereof in the manufacture of a medicament for use in the treatment of diabetes mellitus and/or obesity in a warm-blooded animal such as a human being. According to a further aspect of the invention there is provided a pharmaceutical composition which comprises a compound of formula (I), (IA) and/or (IB) as defined hereinbefore or a pharmaceutically-acceptable salt thereof, in association with a pharmaceutically-acceptable excipient or carrier for use in producing an inhibition of DGATl activity in an warm-blooded animal, such as a human being. According to a further aspect of the invention there is provided a pharmaceutical composition which comprises a compound of formula (I), (IA) and/or (IB) as defined hereinbefore or a pharmaceutically-acceptable salt thereof, in association with a pharmaceutically-acceptable excipient or carrier for use in the treatment of diabetes mellitus and/or obesity in an warm-blooded animal, such as a human being. According to a further feature of the invention there is provided a method for producing an inhibition of DGATl activity in a warm-blooded animal, such as a human being, in need of such treatment which comprises administering to said animal an effective amount of a compound of formula (I), (IA) and/or (IB) or a pharmaceutically-acceptable salt thereof as defined hereinbefore. According to a further feature of the invention there is provided a method of treating diabetes mellitus and/or obesity in a warm-blooded animal, such as a human being, in need of such treatment which comprises administering to said animal an effective amount of a compound of formula (I), (IA) and/or (IB) or a pharmaceutically-acceptable salt thereof as defined hereinbefore. As stated above the size of the dose required for the therapeutic or prophylactic treatment of a particular disease state will necessarily be varied depending on the host treated, the route of administration and the severity of the illness being treated. Preferably a daily dose in the range of 1-50 mg/kg is employed. However the daily dose will necessarily be varied depending upon the host treated, the particular route of administration, and the severity of the illness being treated. Accordingly the optimum dosage may be determined by the practitioner who is treating any particular patient. As stated above compounds defined in the present invention are of interest for their ability to inhibit the activity of DGATl. A compound of the invention may therefore be useful for the prevention, delay or treatment of a range of disease states including diabetes mellitus, more specifically type 2 diabetes mellitus (T2DM) and complications arising there from (for example retinopathy, neuropathy and nephropathy), impaired glucose tolerance (IGT), conditions of impaired fasting glucose, metabolic acidosis, ketosis, dysmetabolic syndrome, arthritis, osteoporosis, obesity and obesity related disorders, (which include peripheral vascular disease, (including intermittent claudication), cardiac failure and certain cardiac myopathies, myocardial ischaemia, cerebral ischaemia and reperfusion, hyperlipidaemias, atherosclerosis, infertility and polycystic ovary syndrome); the compounds of the invention may also be useful for muscle weakness, diseases of the skin such as acne, various immunomodulatory diseases (such as psoriasis), HIV infection, inflammatory bowel syndrome and inflammatory bowel disease such as Crohn's disease and ulcerative colitis.
In particular, the compounds of the present invention are of interest for the prevention, delay or treatment of diabetes mellitus and/or obesity and/or obesity related disorders. In one aspect, the compounds of the invention are used for prevention, delay or treatment of diabetes mellitus. In another aspect, the compounds of the invention are used for prevention, delay or treatment of obesity. In a further aspect, the compounds of the invention are used for prevention, delay or treatment of obesity related disorders. The inhibition of DGATl activity described herein may be applied as a sole therapy or in combination with one or more other substances and/or treatments for the indication being treated. Such conjoint treatment may be achieved by way of the simultaneous, sequential or separate administration of the individual components of the treatment. Simultaneous treatment may be in a single tablet or in separate tablets. For example such conjoint treatment may be beneficial in the treatment of metabolic syndrome [defined as abdominal obesity (as measured by waist circumference against ethnic and gender specific cut-points) plus any two of the following: hypertriglyceridemia (> 150 mg/dl; 1.7mmol/l); low HDLc (<40 mg/dl or <1.03mmol/l for men and <50 mg/dl or 1.29 mmol/1 for women) or on treatment for low HDL (high density lipoprotein); hypertension (SBP > 130 mmHg DBP > 85 mmHg) or on treatment for hypertension; and hyperglycemia (fasting plasma glucose > 100 mg/dl or 5.6 mmol/1 or impaired glucose tolerance or pre-existing diabetes mellitus) - International Diabetes Federation & input from IAS/NCEP].
Such conjoint treatments may include the following main categories: 1) Anti-obesity therapies such as those that cause weight loss by effects on food intake, nutrient absorption or energy expenditure, such as orlistat, sibutramine and the like. 2) Insulin secretagogues including sulphonylureas (for example glibenclamide, glipizide), prandial glucose regulators (for example repaglinide, nateglinide);
3) Agents that improve incretin action (for example dipeptidyl peptidase IV inhibitors, and GLP-I agonists);
4) Insulin sensitising agents including PPARgamma agonists (for example pioglitazone and rosiglitazone), and agents with combined PPARalpha and gamma activity;
5) Agents that modulate hepatic glucose balance (for example metformin, fructose 1, 6 bisphosphatase inhibitors, glycogen phopsphorylase inhibitors, glycogen synthase kinase inhibitors, glucokinase activators); 6) Agents designed to reduce the absorption of glucose from the intestine (for example acarbose);
7) Agents that prevent the reabsorption of glucose by the kidney (SGLT inhibitors);
8) Agents designed to treat the complications of prolonged hyperglycaemia (for example aldose reductase inhibitors); 9) Anti- dyslipidaemia agents such as, HMG-CoA reductase inhibitors (eg statins);
PPARα-agonists (fibrates, eg gemfibrozil); bile acid sequestrants (cholestyramine); cholesterol absorption inhibitors (plant stanols, synthetic inhibitors); bile acid absorption inhibitors (IBATi) and nicotinic acid and analogues (niacin and slow release formulations);
10) Antihypertensive agents such as, β-blockers (eg atenolol, inderal); ACE inhibitors (eg lisinopril); Calcium antagonists (eg. nifedipine); Angiotensin receptor antagonists (eg candesartan), α antagonists and diuretic agents (eg. furosemide, benzthiazide); 11) Haemostasis modulators such as, antithrombotics, activators of fibrinolysis and antiplatelet agents; thrombin antagonists; factor Xa inhibitors; factor Vila inhibitors); antiplatelet agents (eg. aspirin, clopidogrel); anticoagulants (heparin and Low molecular weight analogues, hirudin) and warfarin; 12) Agents which antagonise the actions of glucagon; and
13) Anti-inflammatory agents, such as non-steroidal anti-inflammatory drugs (eg. aspirin) and steroidal anti-inflammatory agents (eg. cortisone).
In addition to their.use in therapeutic medicine, compounds of formula (I) and their pharmaceutically-acceptable salts are also useful as pharmacological tools in the development and standardisation of in vitro and in vivo test systems for the evaluation of the effects of inhibitors of DGATl activity in laboratory animals such as cats, dogs, rabbits, monkeys, rats and mice, as part of the search for new therapeutic agents.
As indicated above, all of the compounds, and their corresponding pharmaceutically-acceptable salts, are useful in inhibiting DGATl . The ability of the compounds of formula (I), and their corresponding pharmaceutically-acceptable acid addition salts, to inhibit DGATl may be demonstrated employing the following enzyme assay: Human Enzyme Assay
The in vitro assay to identify DGATl inhibitors uses human DGATl expressed in insect cell membranes as the enzyme source (Proc. Natl. Acad. Sci. 1998, 95,
13018-13023). Briefly, sf9 cells were infected with recombinant baculo virus containing human DGATl coding sequences and harvested after 48 h. Cells were lysed by sonication and membranes isolated by centrifuging at 28000 rpm for 1 h at 4 °C on a 41% sucrose gradient. The membrane fraction at the interphase was collected, washed, and stored in liquid nitrogen.
DGATl activity was assayed by a modification of the method described by Coleman (Methods in Enzymology 1992, 209, 98-102). Compound at 1-10 μM was incubated with 0.4 μg membrane protein, 5 mM MgCl2, and 10 OμM 1,2 dioleoyl-rø-glycerol in a total assay volume of 200 μl in plastic tubes. The reaction was started by adding 14C oleoyl coenzyme A (30μM final concentration) and incubated at room temperature for 30 minutes. The reaction was stopped by adding 1.5 mL 2-propanol:heptane:water (80:20:2). Radioactive triolein product was separated into the organic phase by adding ImL heptane and 0.5 niL 0.1 M carbonate buffer pH 9.5. DGATl activity was quantified by counting aliquots of the upper heptane layer by liquid scintillography.
Using this assay the compounds generally show activity with IC50 <100nM, preferably < 50 nM, more preferably <10 nM. Example 1 showed an IC50 = 4 nM.
The ability of the compounds of formula (I), and their corresponding pharmaceutically-acceptable acid salts, to inhibit DGATl may further be demonstrated employing the following whole cell assays 1) and 2):
1) Measurement of Triglyceride Synthesis in 3T3 Cells Mouse adipocyte 3T3 cells were cultured to confluency in 6 well plates in new bom calf serum containing media. Differentiation of the cells was induced by incubating in medium containing 10% foetal calf serum, 1 μg/mL insulin, 0.25 μM dexamethasone and 0.5 niM isobutylmethyl xanthine. After 48 h the cells were maintained in medium containing 10% foetal calf serum and 1 μg/mL insulin for a further 4-6 days. For the experiment, the medium was changed to serum-free medium and the cells pre-incubated with compound solubilised in DMSO (final concentration 0.1%) for 30 minutes. De novo lipogenesis was measured by the addition of 0.25 niM sodium acetate plus 1 μCi/mL 14C-sodium acetate to each well for a further 2 h (J. Biol. Chem., 1976, 251, 6462-6464). The cells were washed in phosphate buffered saline and solubilised in 1% sodium dodecyl sulfate. An aliquot was removed for protein determination using a protein estimation kit (Perbio) based on the method of Lowry (J. Biol. Chem., 1951, 193, 265-275). The lipids were extracted into the organic phase using a heptane:propan-2-ol:water (80:20:2) mixture followed by aliquots of water and heptane according to the method of Coleman (Methods in Enzymology, 1992, 209, 98-104). The organic phase was collected and the solvent evaporated under a stream of nitrogen. The extracts solubilised in iso-hexane:acetic acid (99:1) and lipids separated via normal phase high performance liquid chromatography (HPLC) using a Lichrospher diol-5, 4 x 250 mm column and a gradient solvent system of iso-hexane:acetic acid (99:1) and iso-hexane:propan-2-ol:acetic acid (85:15:1), flow rate of 1 mL/minute according to the method of Silversand and Haux (1997). Incorporation of radiolabel into the triglyceride fraction was analysed using a Radiomatic Flo-one Detector (Packard) connected to the HPLC machine. 2) Measurement of Triglyceride Synthesis in MCF7 Cells
Human mammary epithelial (MCF7) cells were cultured to confluency in 6 well plates in foetal calf serum containing media. For the experiment, the medium was changed to serum-free medium and the cells pre-incubated with compound solubilised in DMSO (final concentration 0.1%) for 30 minutes. De novo lipogenesis was measured by the addition of 50 μM sodium acetate plus 3 μCi/mL 14C-sodium acetate to each well for a further 3 h (J. Biol. Chem., 1976, 251, 6462-6464). The cells were washed in phosphate buffered saline and solubilised in 1% sodium dodecyl sulfate. An aliquot was removed for protein determination using a protein estimation kit (Perbio) based on the method of Lowry (J. Biol. Chem., 1951, 193, 265-275). The lipids were extracted into the organic phase using a heptane:propan-2-ol:water (80:20:2) mixture followed by aliquots of water and heptane according to the method of Coleman (Methods in Enzymology, 1992, 209, 98-104). The organic phase was collected and the solvent evaporated under a stream of nitrogen. The extracts solubilised in iso-hexane:acetic acid (99:1) and lipids separated via normal phase high performance liquid chromatography (HPLC) using a Lichrospher diol-5, 4 x 250 mm column and a gradient solvent system of iso-hexane:acetic acid (99:1) and iso-hexane:propan-2-ol:acetic acid (85:15:1), flow rate of 1 mL/minute according to the method of Silversand and Haux (J. Chromat. B, 1997, 703, 7-14). Incorporation of radiolabel into the triglyceride fraction was analysed using a Radiomatic Flo-one Detector (Packard) connected to the HPLC machine.
3) The ability of compounds to inhibit ACAT can be measured using a modification of the enzyme assay described in Billheimer (1985) Methods in Enzymology, 111, 286-293. The test assesses the ability of a test compound to inhibit the esterifϊcation of cholesterol by measuring the amount of radiolabeled cholesteryl oleate formed from radiolabeled oleoyl CoA. Compound was incubated with 10 μg membrane protein and 267μM cholesterol. After a 5 minute pre-incubation at 370C the reaction was started by adding 14C oleoyl coenzyme A (50μM final concentration) and incubated at 370C for a further 30 minutes. The reaction was stopped by adding 2-propanol:heptane (12:1). Radioactive cholesteryl ester product was separated into the organic phase by adding heptane and IM carbonate buffer pH 9.5. ACAT activity was quantified by counting aliquots of the upper heptane layer by liquid scintillography. The selectivity of a compound to inhibit DGAT over inhibition of ACAT may be defined as the ratio of IC50 values generated in the DGAT and ACAT enzyme assays for a particular compound. For example, Example 1 demonstrated 70 fold selectivity,
In the above other pharmaceutical composition, process, method, use and medicament manufacture features, the alternative and preferred embodiments of the compounds of the invention described herein also apply.
Examples The invention will now be illustrated by the following Examples in which, unless stated otherwise:
(i) temperatures are given in degrees Celsius (0C); operations were carried out at room or ambient temperature, that is, at a temperature in the range of 18-25 °C and under an atmosphere of an inert gas such as argon; (ii) organic solutions were dried over anhydrous magnesium sulfate; evaporation of solvent was carried out using a rotary evaporator under reduced pressure (600-4000 Pa; 4.5-30 mmHg) with a bath temperature of up to 60 °C;
(iii) chromatography means flash chromatography on silica gel; where a Biotage cartridge is referred to this means a cartridge containing KP-SIL™ silica, 6θA, particle size 32-63 rnM, supplied by Biotage, a division of Dyax Corp., 1500 Avon Street Extended,
Charlottesville, VA 22902, USA;
(iv) in general, the course of reactions was followed by TLC and reaction times are given for illustration only;
(v) yields are given for illustration only and are not necessarily those which can be obtained by diligent process development; preparations were repeated if more material was required;
(vi) where given, NMR data (1H) is in the form of delta values for major diagnostic protons, given in parts per million (ppm) relative to tetramethylsilane (TMS), determined at 300 or 400 MHz (unless otherwise stated) using perdeuterio dimethyl sulfoxide (DMSO-J6) as solvent, unless otherwise stated; peak multiplicities are shown thus: s, singlet; d, doublet; dd, doublet of doublets; dt, doublet of triplets; dm, doublet of multiplets; t, triplet, q, quartet; m, multiplet; br, broad; (vii) chemical symbols have their usual meanings; SI units and symbols are used; (viii) solvent ratios are given in volume : volume (v/v) terms;
(ix) mass spectra (MS) (loop) were recorded on a Micromass Platform LC equipped with HP 1100 detector; unless otherwise stated the mass ion quoted is (MH+); (x) LCMS (liquid chromatography-mass spectrometry) were recorded on a system comprising Waters 2790 LC equipped with a Waters 996 Photodiode array detector and Micromass ZMD MS, using a Phenomenex® Gemini 5u Cl 8 HOA 50x2 mm column and eluting with a flow rate of 1.1 ml/min with 5% ( Water/ Acetonitrile (1:1) + 1% formic acid) and a gradient increasing from 0-95% of acetonitrile over the first 4 minutes, the balance (95-0%) being water and where HPLC Retention Times are reported these are in minutes in this system unless otherwise stated; unless otherwise stated the mass ion quoted is (MH+);
(xi) where phase separation cartridges are stated then ISOLUTE Phase Separator 70ml columns, supplied by Argonaut Technologies, New Road, Hengoed, Mid Glamorgan, CF82 8AU, United Kingdom, were used;
(xii) where a SiliCycle cartridge is referred to this means a cartridge containing Ultra Pure Silica Gel particle size 230-400 mesh, 40 -63 um pore size, supplied by SiliCycle Chemical Division, 1200 Ave St-Jean-Baptiste, Suite 114, Quebec City, Quebec, G2E 5E8, CANADA; (xiϋ) where an Isco Companion is referred to then a Combiflash companion chromatography instrument, supplied by ISOC Inc. Address Teledyne ISOC Inc, 4700 Superior Street, Lincoln, NE 68504, USA, was used;
(xiv) where a microwave is referred to this means a Biotage Initiator sixty or Smith Creator microwave, supplied by Biotage, a division of Dyax Corp., 1500 Avon Street Extended, Charlottesville, VA 22902, USA;
(xv) where GCMS is referred to then a Gas Chromatography -Mass Spectrometry analysis was carried out on a QP-2010 GC-MS system fitted with an AOC 2Oi autosampler and controlled by 'GCMS solutions' software, version 2.0, supplied by Shimadzu, Milton Keynes, MKl 2 5RE, UK; the GC column was a DB-5MS of length 25 m, 0.32 mm i.d. with a film thickness of 0.52 μm supplied by J & W Scientific, Folsom, CA, USA; (xvi) where a centrifuge is referred to this means a Genevac EZ-2plus, supplied by Genevac Limited, The Soveriegn Centre, Farthing Road, Ipswich, IPl 5AP, UK; (xvii) where chiral chromatography is referred to this is carried generally out using a 20μm Merck 50mm Chiralpak AD column, (Chiral Stationary Phase supplied by Chiral Technologies Europe, Pare d'Innovation, Bd. Gonthier d'Andernach, 67404 Illkirch Cedex, France), using MeCN/2-propanol/AcOH (90/10/0.1) as eluent, flow rate 80 mL/min, wavelength 300nm, using a Gilson prep HPLC instrument (200ml heads); (xviii) melting points were determined using a Buchi 530 apparatus and are uncorrected; (xix) The following abbreviations may be used below or in the process section hereinbefore:
DMF dimethylformamide D DCCMM dichloromethane
MeOH methanol
THF tetrahydrofuran
DMSO dimethylsulfoxide
EDCI (EDAC) 1 -ethyl-3 -(3 -dimethylaminopropyl)carbodi-imide hydrochloride
CH3CN or MeCN acetonitrile h hour min minute
NaOH sodium hydroxide A AccOOHH acetic acid
DMA dimethyl acetamide
MgSO4 magnesium sulfate
HCl hydrochloric acid
All final example names were derived using ACD NAME computer package. Example 1 : c/s-4-(3-Fluoro-4- { f 5-(2,4,5-trifluoro-phenylaminoHl ,3,41 oxadiazole-2- carbonyll-amino}-phenoxy)-cvclohexanecarboxylic acid
Figure imgf000027_0001
A solution of lithium hydroxide (965 nig, 23.0 mmol) in water (5 mL) was added in one portion to a solution of 4-(3-fluoro-4-{[5-(2,4,5-trifluoro-phenylamino)-[l,3,4]oxadiazole- 2-carbonyl] -amino }-phenoxy)-cyclohexanecarboxy lie acid ethyl ester (Intermediate 1, 1.2 g, 2.3 mmol) in a 1:1 mixture of THF and methanol (50 mL) and the mixture was stirred at ambient temperature for 4 h. The mixture was concentrated in vacuo, acidified with a IM aqueous solution of citric acid and then filtered to leave a solid. The solid was washed with water, dried and recrystallised from ethanol (30 mL) to give the title compound as a white solid (700 mg, 64%).
1H NMR S 1.6-1.9 (8H, m), 2.35-2.44 (IH, m), 4.5-4.63 (IH, m), 6.85 (IH, dd), 6.98 (IH5 dd), 7.35-7.46 (IH, m), 7.65-7.78 (IH, m), 8.1-8.26 (IH, m), 10.6 (IH, s), 11.05 (IH, s), 12.08 (IH, s); MS m/e MH+ 495.
Intermediate 1 : c/5-4-(3-FIuoro-4-{[5-(2,4,5-trifluoro-phenyIamino)-[l,3,41- oxadiazole-2-carbonyll-amino)-phenoxy)-cvclohexanecarboxylic acid ethyl ester
i) c/s-4-(3-Fluoro-4-nitro-phenoxy)-cyclohexanecarboxylic acid ethyl ester
Figure imgf000027_0002
Sodium hydride (60% dispersion in mineral oil, 5.05 g, 126 mmol) was added in one portion to a stirred solution of ethyl 4-hydroxycyclohexanecarboxylate (20.7 g, 120 mmol) and 2,4-difluoronitrobenzene (19.1g, 120.2 mmol) in DMA (100 mL) at 4°C and the mixture was stirred at 40C for 1 h and then the reaction mixture was warmed to ambient temperature and stirred for 24 h. The reaction mixture was cooled to 0°C and then water and ethyl acetate were added. The layers were separated and the organic layer was washed with brine, dried (MgSO4) and concentrated in vacuo to leave a yellow oil. The oil was purified by column chromatography, using a gradient of 20-50% ethyl acetate in isohexane as eluent, to give the title compound as a pale yellow solid (4.1 g, 11%). 1H NMR δ 1.19 (3H3 1), 1.63-1.9 (9H, m), 4.07 (2H, q), 4.72-4.8 (IH, m), 6.99 (IH, dd), 7.22 (IH, dd), 8.13 (IH5 dd); MS m/e MH+ 312.
ii) c/s-4-(4-Amino-3-fluoro-phenoxy)-cycIohexanecarboxyIic acid ethyl ester.
Figure imgf000028_0001
Palladium (10 wt. %) on carbon (500 mg) was added in one portion to a solution of 4-(3- fluoro-4-nitro-phenoxy)-cyclohexanecarboxylic acid ethyl ester (2.6 g, 8.35 mmol) in ethanol (75 mL) and the mixture was stirred under a hydrogen atmosphere for 6 h. The reaction mixture was filtered and concentrated in vacuo to leave a residue. The residue was purified by column chromatography, using a gradient of 20-50% EtOAc and isohexane as eluent, to give the title compound as a pale yellow solid (2.0 g, 85%) 1H NMR δ 1.18 (3H, t), 1.53-1.67 (4H, m), 1.69-1.82 (4H, m), 2.38-2.48 (IH, m), 4.07 (2H, q), 4.26-4.33 (IH, m), 4.65 (2H, s), 6.54 (IH, dd), 6.69 (IH, dd), 7.0 (IH, dd); MS m/e MH+ 282.
iii) c/5-4-[3-Fluoro-4-(methoxyoxalyl-amino)-phenoxy]-cycIohexanecarboxylic acid ethyl ester
Figure imgf000028_0002
Methyl chlorooxoacetate (1.18 g, 9.6 mmol) was added in one portion to a stirred solution of 4-(4-amino-3-fluoro-phenoxy)-cyclohexanecarboxylic acid ethyl ester (1.8 g, 6.4 mmol) and pyridine (1.55 mL, 19.2 mmol) in DCM (50 niL) at 4°C and the reaction mixture was stirred at ambient temperature for 2 h. The reaction mixture was evaporated in vacuo to leave a residue and ethyl acetate was added. Water was added and the layers were separated. The organic layer was washed with brine, dried (MgSO4) and concentrated in vacuo to give the title compound as a colourless oil that was used without further purification; MS m/e (M-H)' 366.
iv) c/s-4-[3-Fluoro-4-(hydrazinooxalyl-amino)-phenoxy]-cyclohexanecarboxylic acid ethyl ester
Figure imgf000029_0001
Hydrazine monohydrate (458 mg, 9.15 mmol) was added in one portion to a solution of 4- [3-fluoro-4-(methoxyoxalyl-amino)-phenoxy]-cyclohexanecarboxylic acid ethyl ester (2.8 g, 7.62 mmol) in ethanol (75 mL) and the mixture was stirred at ambient temperature for 2h. The mixture was filtered, washed with ethanol and dried to give the title compound as a white solid (2.35g, 84%). 1H NMR δ: 1.19 (3H, t), 1.61-1.86 (8H, m), 4.08 (2H, q), 4.43-4.53 (IH, m), 4.64 (2H5 s), 6.81 (IH, dd), 6.98 (IH, dd), 7.46 (IH, dd), 10.1 (IH, s), 10.27 (lH,s); MS m/e (M-H)" 366. v) c/s-4-(3-Fluoro-4-{[5-(2,4,5-trifluoro-phenylamino)-[l,3,4]oxadiazole-2-carbonyI]- amino}-phenoxy)-cyclohexanecarboxylic acid ethyl ester
Figure imgf000030_0001
2,4,5-Trifluorophenyl isothiocyanate (600 mg, 3.0 mmol) was added in one portion to a stirred suspension of 4-[3-fluoro-4-(hydrazinooxalyl-amino)-phenoxy]-cyclohexane- carboxylic acid ethyl ester (920 mg, 2.5 mmol) in DMA (10 mL) and the reaction mixture was stirred at ambient temperature for 1 h. EDCI (720 mg, 3.76 mmol) was added and the mixture was heated at 9O0C for 10 mins in a microwave. The reaction mixture was concentrated in vacuo to leave a residue. Water was added and the mixture was filtered and dried under high vacuum to leave the title compound (Intermediate 1) as a pale yellow powder (1.2 g, 92%).
1H NMR δ 1.2 (3H, t), 1.62-1.88 (8H, m), 2.4-2.5 (IH, m), 4.08 (2H5 q), 4.55-4.63 (IH, m), 6.83 (IH, dd), 6.99 (IH, dd), 7.38 (IH, dd), 7.68-7.79 (IH, m), 8.12-8.26 (IH, m), 10.6 (lH, s), 11.1 (IH, S)J MS nVe MH+ 523.
Example 2: c/5-4-(3-FIuoro-4-([5-(3,4,5-trifluoro-phenyIamino)-fl,3<41oxadiazoIe-2- carbonvU-amino}-phenoxγ)-eyclohexaneearboxyIic acid
Figure imgf000030_0002
A solution of lithium hydroxide (1.61 g, 38.3 mmol) in water (10 mL) was added in one portion to a solution of 4-(3-fluoro-4-{[5-(3,4,5-trifluoro-phenylaniino)-[l,3,4]oxadiazole- 2-carbonyl]-amino}-phenoxy)-cyclohexanecarboxylic acid ethyl ester (Intermediate 2, 2.0 g, 3.83 mmol) in a 1 : 1 mixture of THF and methanol (60 mL) was added and the mixture stirred at ambient temperature for 4 h. The mixture was concentrated in vacuo, acidified with a IM aqueous solution of citric acid and then filtered to leave a solid. The solid was washed with water, dried and recrystallised from ethanol (30 mL) to give the title compound as a white solid (1.1 g, 58%).
1H NMR δ 1.66-1.95 (8H, m), 2.38-2.53 (IH, m), 4.58-4.68 (IH, m), 6.9 (IH, dd), 7.04 (IH, dd), 7.47 (IH, dd), 7.49-7.6 (2H, m), 10.7 (IH, s), 11.5 (IH, s), 12.1 (IH, s); MS m/e MH+ 495.
Intermediate 2 ; c/5-4-(3-Flttoro-4-{[5-(3,4,5-trifluoro-phenylamino)-fl,3.l41-oxadiazole- 2-carbonvIl-aminol-phenoxyVcvcIohexanecarboxylie acid ethyl ester
Figure imgf000031_0001
3,4,5-Trifluorophenyl isothiocyanate (897 mg, 4.74 mmol) was added in one portion to a stirred suspension of 4-[3-fluoro-4-(hydrazinooxalyl-amino)-phenoxy]- cyclohexanecarboxylic acid ethyl ester (1.45 g, 3.95 mmol) in DMA (20 mL) and the reaction mixture was stirred at ambient temperature for 1 h. EDCI (1.14 g, 5.92 mmol) was then added and the mixture stirred at ambient temperature for 2 h. The reaction mixture was concentrated in vacuo to leave a residue. Water was added and the mixture was filtered and dried under high vacuum to give the title compound (Intermediate 2) as a pale yellow powder (2.0 g, 95%).
1H NMR δ 1.2 (3H, t), 1.64-1.88 (8H, m), 2.45-2.6 (IH, m), 4.1 (2H, q), 4.54-4.6 (IH, m), 6.84 (IH, dd), 7.0 (IH, dd), 7.36-7.53 (3H, m), 10.62 (IH, s), 11.45 (IH, s); MS m/e MH+ 523. Example 3 : cw-4-f3-Fluoro-4-[[5-[(4-fluorophenyl)aminoll,3,4-oxadiazole-2- carbonyllaminolphenoxylcvclohexane-l-carboxylic acid
Figure imgf000032_0001
Prepared from intermediate 3 in an analogous manner to that described for Example 1. 1H NMR: δ 1.6-1.9 (8H, m), 2.35-2.45 (IH, m), 4.54-4.62 (IH, m), 6.83 (IH, dd), 6.99 (IH, dd), 7.2-7.3 (2H, m), 7.4 (IH, dd), 7.58-7.68 (2H, m), 10.75 (IH, s), 11.05 (IH, s), 12.2 (IH, s); MS m/e MH" 457.
Intermediate 3: Ethyl cw-4-f3-fluoro-4-[[5-[(4-fluorophenvI)aminoU,3,4-oxadiazole-2- carbonyl] aminol phenoxyi cyclohexane-l-carboxylate
Figure imgf000032_0002
Prepared in an analogous manner to that described for Intermediate 1 part v).
1H NMR: δ 1.09 (3H, t), 1.6-1.9 (8H, m), 2.4-2.5 (IH, m), 4.07 (2H, q), 4.5-4.62 (IH, m), 6.81 (IH, dd), 6.96 (IH, dd), 7.2-7.3 (2H, m), 7.39 (IH, dd), 7.57-7.69 (2H, m), 10.56 (IH, s), 10.94 (IH, s); MS m/e MH+ 487. Example 4 : ^m«5l-4-f3-FIuoro-4-ff5-[(2,4,5-trifluoroDhenyl)amino11,3,4-oxadiazole-2- carbonyllaminolphenoxylcyclohexane-l-carboxylic acid
Figure imgf000033_0001
Prepared from intermediate 4 in an analogous manner to that described for Example 1. 1H NMR: δ 1.08 (3H, t), 1.32-1.62 (4H, m), 1.89-2.0 (2H, m), 2.02-2.14 (2H, m), 2.2-2.32 (IH, m), 4.27-4.4 (IH, m), 6.83 (IH, dd), 6.97 (IH, dd), 7.33-7.44 (IH, m), 7.63-7.75 (IH, m), 8.09-8.24 (IH, m), 10.6 (IH, s), 11.05 (IH, s), 12.1 (IH, s); MS m/e MH+ 495.
Intermediate 4: Ethyl /*rαn5-4-[3-fluoro-4-[[5-[(2,4,5-trifluorophenyl)aminoll.,3<4- oxadiazole-2-carbonyll amino] phenoxyl cyelohexane-l-carboxylate i) Ethyl ^m«5-4-(3-fluoro-4-nitro-phenoxy)cyclohexane-l-carboxyIate
Figure imgf000033_0002
To a stirred solution of ethyl 4-hydroxycyclohexanecarboxylate (20.7 g, 120.19 mmol) and 2,4-difluoronitrobenzene (19.125 g, 120.19 mmol) in DMF at ~5 0C was added NaH (5.05 g, 126.2 mmol) in one portion, resulting in a slow exotherm to ~10 0C. The reaction was stirred at 5 0C for 1 hour then allowed to warm to ambient temperature and stirred for 24 hr. The reaction was cooled to 0 0C and quenched with water (-400 mL). The mixture was extracted with EtOAc (3 x -150 mL), the organic layers combined, washed with brine (2 x -100 mL), dried (MgSO4), filtered and evaporated to an orange oil (36g). The crude residue was purified by preparative HPLC (silica, 4:1 ethyl acetate dsohexane) to give the title compound (4.5 g, 12 %) as a pale orange oil.
1H NMR: δ 1.19 (3H, t), 1.39-1.53 (4H, m), 1.9-2.0 (2H, m), 2.04-2.13 (2H, m), 2.31-2.41 (IH, m), 4.08 (2H, q), 4.51-4.61 (IH, m), 6.99 (IH, dd), 7.25 (IH, dd), 8.12 (IH, dd); MS m/e MH+ 312. ii) Ethyl ^/"fl«s-4-(4-amino-3-fluoro-phenoxy)cyclohexane-l-carboxyIate
Figure imgf000034_0001
Prepared in an analogous manner to that described for Intermediate 1 part ii).
1H NMR: δ 1.19 (3H, t), 1.27-1.4 (2H, m), 1.42-1.55 (2H, m), 1.86-1.95 (2H, m), 1.96-2.05 (2H, m), 2.25-2.38 (IH, m), 4.01-4.13 (IH5 m), 4.07 (2H, q), 4.63 (2H, s), 6.54 (IH, dd), 6.69 (IH, dd), 6.7 (IH, dd).
iii) Ethyl trans-4- [3-fluoro-4- [(methoxycarbonylformyl)amino] phenoxy] cyclohexane- 1-carboxylate
Figure imgf000034_0002
Prepared in an analogous manner to that described for intermediate 1 part iii). MS m/e MH" 366.
iv) Ethyl trans-4- [3-fluoro-4- [(hy drazinecarbonylformyl)amino] phenoxy] cyclohexane- 1-carboxylate
Figure imgf000034_0003
Prepared in an analogous manner to that described for intermediate 1 part iv). 1H NMR: δ 1.2 (3H, t), 1.34-1.46 (2H, m), 1.48-1.61 (2H, m), 1.88-1.98 (2H, m), 2.01-2.11 (2H, m), 2.3-2.4 (IH, m), 4.07 (2H, q), 4.3-4.4 (IH, m), 4.64 (2H, s), 6.8 (IH, dd), 6.98 (IH, dd), 7.45 (IH, dd), 10.1 (IH, s), 10.3 (IH, s); MS m/e MH" 366. v) Ethyl ^/αns-4-[3-fluoro-4-[[5-[(2,4,5-trifluorophenyl)amino]l,3,4-oxadiazole-2- carbonyl]amino]phenoxy]cyclohexane-l-carboxylate
Figure imgf000035_0001
Prepared in an analogous manner to that described for intermediate 1 part v). 1H NMR: δ 1.08 (3H, t), 1.13-1.55 (4H, m), 1.79-1.91 (2H, m), 1.92-2.05 (2H5 m), 2.16- 2.37 (IH, m), 3.98 (2H, q), 4.2-3.35 (IH, m), 6.73 (IH5 dd), 6.9 (IH5 dd), 7.28 (IH, dd), 7.55-7.65 (IH5 m), 8.0-8.15 (IH, m), 10.52 (IH5 s); MS m/e MH+ 523.
Example 5 : frflw^-4-[3-fluoro-4-[[5-[(4-fluorophenyl)aminoll,3..4-oxadiazoIe-2- carbonyll amino] phenoxyi cyclohexane-l-carboxylic acid
Figure imgf000035_0002
Prepared from intermediate 5 in an analogous manner to that described for Example 1. 1H NMR: δ 1.3-1.62 (4H5 m), 1.85-2.12 (4H5 m), 2.17-2.33 (IH5 m), 4.24-4.4 (IH, m), 6.8 (IH5 dd), 6.97 (IH5 dd), 7.2-7.3 (2H, m), 7.37 (IH, dd), 7.54-7.68 (2H, m), 10.53 (IH, s), 10.97 (IH5 s), 12.07 (IH5 s); MS m/e MH" 457.
Intermediate 5: Ethyl ^m/i5-4-[3-fluoro-4-f[5-f(4-fluorophenyl)aminoll,3,4-oxadiazoIe- 2-carbonyli aminol phenoxyl eyclohexane-l-carboxylate
Figure imgf000035_0003
Prepared in an analogous manner to that described for intermediate 4 part v). 1HNMR: δ 1.19 (3H, t), 1.32-1.43 (4H, m), 1.88-2.12 (4H, m), 2.28-2.41 (IH, m), 4.05 (2H, q), 4.28-4.42 (IH, m), 6.81 (IH, dd), 6.96 (IH, dd), 7.2-7.3 (2H, m), 7.39 (IH, dd), 7.57-7.69 (2H, m), 10.56 (IH, s), 10.94 (IH, s); MS m/e MH+ 487.

Claims

Claims
1. A compound of formula (I)
Figure imgf000037_0001
(I) or a salt thereof, wherein: each R is independently selected from fluoro, chloro, cyano, methyl, ethyl, methoxy, ethoxy, trifluoromethyl, trifluoromethoxy and difluoromethoxy; n is 1, 2 or 3.
2. A compound of formula (I) as claimed in claim 1, or a salt thereof, which is a compound of formula (IA).
Figure imgf000037_0002
(IA)
3. A compound of formula (I) as claimed in claim 1, or a salt thereof, which is a compound of formula (IB).
Figure imgf000037_0003
(IB)
4. A compound as claimed in claim 1 which is selected from cz5-4-(3-Fluoro-4-{[5-(2,4,5-trifluoro-phenylamino)-[l,3,4]oxadiazole-2-carbonyl]- amino } -phenoxy)-cy clohexanecarboxylic acid; cw-4-(3-Fluoro-4-{[5-(3,4,5-trifluoro-phenylamino)-[l,3,4]oxadiazole-2-carbonyl]- amino}-phenoxy)-cyclohexanecarboxylic acid; c/1s'-4-[3-Fluoro-4-[[5-[(4-fluorophenyl)amino]l,3,4-oxadiazole-2- carbonyl] amino]phenoxy] cyclohexane- 1 -carboxy lie acid; trαrø-4-[3-Fluoro-4-[[5-[(2,4,5-trifluorophenyl)amino]l,3,4-oxadiazole-2- carbonyl] aminojphenoxy] cyclohexane- 1 -carboxy lie acid; trørø-4-[3-fluoro-4-[[5-[(4-fluorophenyl)amino] 1 ,3,4-oxadiazole-2- carbonyl]amino]phenoxy]cyclohexane- 1 -carboxy lie acid; or a pharmaceutically-acceptable salt of any of these.
5. A compound according to any one of the preceding claims or a pharmaceutically-acceptable salt thereof for use as a medicament.
6. A compound according to any one of the preceding claims or a pharmaceutically-acceptable salt thereof for use as a medicament for treating diabetes mellitus and/or obesity in a warm-blooded animal such as a human being
7. A method for producing an inhibition of DGATl activity in a warm-blooded animal, such as a human being, in need of such treatment which comprises administering to said animal an effective amount of a compound of formula (I) as claimed in any one of claims 1 to 4 or a pharmaceutically-acceptable salt thereof.
8. A method of treating diabetes mellitus and/or obesity in a warm-blooded animal, such as a human being, in need of such treatment which comprises administering to said animal an effective amount of a compound of formula (I) as claimed in any one of claims 1 to 4 or a pharmaceutically-acceptable salt thereof.
9. The use of a compound according to any one of claims 1 to 4 or a pharmaceutically-acceptable salt or prodrug thereof in the manufacture of a medicament for use in the production of an inhibition of DGATl activity in a warm-blooded animal such as a human being.
10. The use as claimed in Claim 9 wherein the medicament is for use in the treatment of diabetes mellitus and/or obesity in a warm-blooded animal such as a human being.
11. A pharmaceutical composition which comprises a compound of formula (I) as claimed in any one of claims 1 to 4 or a pharmaceutically-acceptable salt thereof, in association with a pharmaceutically-acceptable excipient or carrier.
12. A process for preparing a compound according to claim 1 which comprises one of the following steps (wherein all variables are as hereinbefore defined for a compound of formula (I) unless otherwise stated): a) reaction of an amine of formula (2) with a carboxylate salt of formula (3), wherein Rp is (l-4C)alkyl group (such as methyl, ethyl, isopropy, or tert-butyl), followed by hydrolysis of the Rp group;
Figure imgf000039_0001
(2) (3) b) cyclisation of a compound of formula (4) (where X is S or O) wherein R is (1- 4C)alkyl group followed by hydrolysis of the Rp group;
Figure imgf000039_0002
(4) and thereafter if necessary: 1) removing any protecting groups; and/or
2) forming a (pharmaceutically-acceptable) salt.
PCT/GB2007/001981 2006-05-30 2007-05-29 1, 3, 4 -oxadiazole derivatives as dgat1 inhibitors WO2007138304A1 (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
EP07732997A EP2041099A1 (en) 2006-05-30 2007-05-29 1, 3, 4 -oxadiazole derivatives as dgat1 inhibitors
US12/302,192 US8003676B2 (en) 2006-05-30 2007-05-29 1,3,4-oxadiazole derivatives as DGAT1 inhibitors
NZ572585A NZ572585A (en) 2006-05-30 2007-05-29 1,3,4-Oxadiazole derivatives as DGAT1 inhibitors
CA002651663A CA2651663A1 (en) 2006-05-30 2007-05-29 Chemical compounds
MX2008015226A MX2008015226A (en) 2006-05-30 2007-05-29 1, 3, 4 -oxadiazole derivatives as dgat1 inhibitors.
CN2007800202196A CN101460470B (en) 2006-05-30 2007-05-29 1,3, 4-oxadiazole derivatives as DGAT1 inhibitors
BRPI0712796-0A BRPI0712796A2 (en) 2006-05-30 2007-05-29 compound, methods for producing an inhibition of dgat1 activity in a warm-blooded animal, for treating diabetes mellitus and / or obesity in a warm-blooded animal, use of a compound, pharmaceutical composition, and process for a compound
AU2007266890A AU2007266890B2 (en) 2006-05-30 2007-05-29 1, 3, 4 -oxadiazole derivatives as DGAT1 inhibitors
JP2009512663A JP2009538891A (en) 2006-05-30 2007-05-29 1,3,4-oxadiazole derivatives as DGAT1 inhibitors
NO20084663A NO20084663L (en) 2006-05-30 2008-11-05 1,3,4-oxadiazole derivatives as DGAT1 inhibitors
IL195125A IL195125A0 (en) 2006-05-30 2008-11-05 1,3,4-oxadiazole derivatives as dgat1 inhibitors

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US80929706P 2006-05-30 2006-05-30
US60/809,297 2006-05-30

Publications (1)

Publication Number Publication Date
WO2007138304A1 true WO2007138304A1 (en) 2007-12-06

Family

ID=38308729

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/GB2007/001981 WO2007138304A1 (en) 2006-05-30 2007-05-29 1, 3, 4 -oxadiazole derivatives as dgat1 inhibitors

Country Status (14)

Country Link
US (1) US8003676B2 (en)
EP (1) EP2041099A1 (en)
JP (1) JP2009538891A (en)
KR (1) KR20090010092A (en)
CN (1) CN101460470B (en)
AU (1) AU2007266890B2 (en)
BR (1) BRPI0712796A2 (en)
CA (1) CA2651663A1 (en)
IL (1) IL195125A0 (en)
MX (1) MX2008015226A (en)
NO (1) NO20084663L (en)
NZ (1) NZ572585A (en)
WO (1) WO2007138304A1 (en)
ZA (1) ZA200809689B (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009081195A1 (en) * 2007-12-20 2009-07-02 Astrazeneca Ab Carbamoyl compounds as dgat1 inhibitors 190
WO2010023609A1 (en) * 2008-08-25 2010-03-04 Piramal Life Sciences Limited Oxazole, oxadiazole and thiazole derivatives as diacylglycerol acyltranferase inhibitors
WO2010070343A1 (en) * 2008-12-19 2010-06-24 Astrazeneca Ab 1,3,4-oxadiazole derivatives and their uses to treat diabetes
US7749997B2 (en) 2005-12-22 2010-07-06 Astrazeneca Ab Pyrimido [4,5-B] -Oxazines for use as DGAT inhibitors
US7795283B2 (en) 2004-12-14 2010-09-14 Astrazeneca Ab Oxadiazole derivative as DGAT inhibitors
WO2010108051A2 (en) 2009-03-20 2010-09-23 Ligand Pharmaceuticals Inhibitors of diacylglycerol o-acyltransferase 1(dgat-1) and uses thereof
WO2010122968A1 (en) 2009-04-21 2010-10-28 アステラス製薬株式会社 Diacylethylenediamine compound
US7879850B2 (en) 2007-09-28 2011-02-01 Novartis Ag Organic compounds
US8003676B2 (en) 2006-05-30 2011-08-23 Astrazeneca Ab 1,3,4-oxadiazole derivatives as DGAT1 inhibitors
US8084478B2 (en) 2006-05-30 2011-12-27 Asstrazeneca Ab Substituted 5- phenylamino- 1, 3, 4-oxadiazol-2-ylcarbonylamino-4-phenoxy-cyclohexane carboxylic acid as inhibitors of acetyl coenzyme A diacylglycerol acyltransferase
US8188092B2 (en) 2009-06-19 2012-05-29 Astrazeneca Ab Substituted pyrazines as DGAT-1 inhibitors
WO2012120054A1 (en) 2011-03-08 2012-09-13 Sanofi Di- and tri-substituted oxathiazine derivates, method for the production thereof, use thereof as medicine and drug containing said derivatives and use thereof
WO2012120053A1 (en) 2011-03-08 2012-09-13 Sanofi Branched oxathiazine derivatives, method for the production thereof, use thereof as medicine and drug containing said derivatives and use thereof
WO2012120055A1 (en) 2011-03-08 2012-09-13 Sanofi Di- and tri-substituted oxathiazine derivates, method for the production thereof, use thereof as medicine and drug containing said derivatives and use thereof
WO2012120052A1 (en) 2011-03-08 2012-09-13 Sanofi Oxathiazine derivatives substituted with carbocycles or heterocycles, method for producing same, drugs containing said compounds, and use thereof
WO2012120056A1 (en) 2011-03-08 2012-09-13 Sanofi Tetrasubstituted oxathiazine derivatives, method for producing them, their use as medicine and drug containing said derivatives and the use thereof
US8835451B2 (en) 2006-03-31 2014-09-16 Novartis Ag Compounds

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090016629A (en) * 2006-06-08 2009-02-16 아스트라제네카 아베 Benzimidazoles and their use for the treatemnt of diabetes
RU2010102990A (en) * 2007-08-17 2011-09-27 Астразенека Аб (Se) Oxadiazole derivatives as DGAT inhibitors
FR2963005B1 (en) * 2010-07-23 2012-08-17 Sanofi Aventis DERIVATIVES OF OXADIAZOLES AND PYRIDAZINES, THEIR PREPARATION AND THEIR THERAPEUTIC APPLICATION
CN103059014B (en) * 2011-10-21 2016-05-18 北京韩美药品有限公司 Novel heteroary aminoderivative
CN107667025B (en) 2015-06-22 2020-10-16 大陆汽车有限责任公司 Transparent display with controllable shielded display

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004100881A2 (en) * 2003-05-09 2004-11-25 Bayer Pharmaceuticals Corporation Preparation and use of aryl alkyl acid derivatives for the treatment of obesity
WO2006064189A1 (en) * 2004-12-14 2006-06-22 Astrazeneca Ab Oxadiazole derivatives as dgat inhibitors

Family Cites Families (78)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3245989A (en) * 1962-12-15 1966-04-12 Acraf 3-aminophenyl-5-aminoloweralkyl-1, 2, 4-oxadiazoles
US4983731A (en) * 1989-03-17 1991-01-08 Nebraska Department Of Economic Development Separation and purification of sugar esters
US5491172A (en) * 1993-05-14 1996-02-13 Warner-Lambert Company N-acyl sulfamic acid esters (or thioesters), N-acyl sulfonamides, and N-sulfonyl carbamic acid esters (or thioesters) as hypercholesterolemic agents
IL109431A (en) 1993-05-14 2001-01-11 Warner Lambert Co Pharmaceutical compositions containing n-acyl sulfamic acid esters (or thioesters), n-acyl sulfonamides, and n-sulfonyl carbamic acid esters (or thioesters), for regulating plasma cholesterol concentration, and certain such novel compounds
US20030167483A1 (en) * 1998-06-24 2003-09-04 Farese Robert V. Diacylglycerol O-acyltransferase
US6608185B1 (en) * 1999-03-25 2003-08-19 Kitasato Institute Substances KF-1040T4A,KF-1040T4B, KF-1040T5A, and KF-1040T5B, and process for producing same
TW518218B (en) 1999-05-27 2003-01-21 Merck Patent Gmbh Pharmaceutical compositions comprising 1-[4-(5-cyanoindol-3-yl)butyl]-4-(2-carbamoylbenzofuran-5-yl)piperazine or its physiologically acceptable salts for use in the treatment of sub-type anxiety disorders
GB0021670D0 (en) * 2000-09-04 2000-10-18 Astrazeneca Ab Chemical compounds
CA2369967A1 (en) 2001-02-12 2002-08-12 Joseph Anthony Cornicelli Methods of treating nuclear factor-kappa b mediated diseases and disorders
JP2002284741A (en) 2001-03-23 2002-10-03 Kitasato Inst:The Roselipin derivative
DE10223273A1 (en) 2002-05-24 2003-12-04 Aventis Pharma Gmbh New (((oxazolylalkyl)-cycloalkyl)-alkyl)-benzoic acid derivatives, are peroxisome proliferator activated receptor agonists or antagonists used e.g. for treating lipid metabolism disorders, type II diabetes, syndrome X and obesity
DK1425014T3 (en) * 2001-08-31 2007-04-10 Sanofi Aventis Deutschland Diarylcycloalkyl derivatives, processes for their preparation and their use as PPAR activators
US20090286791A1 (en) 2001-11-27 2009-11-19 Takeda Pharmaceutical Company Limited Amide Compounds
FR2840301B1 (en) 2002-05-29 2007-03-23 Sanofi Synthelabo PHENYL-CYCLOHEXYL-PROPANOLAMINE DERIVATIVES, THEIR PREPARATION AND THEIR USE IN THERAPEUTICS
MXPA05000279A (en) * 2002-07-09 2005-03-31 Squibb Bristol Myers Co Substituted heterocyclic derivatives useful as antidiabetic and antiobesity agents and method.
US20060004010A1 (en) 2002-07-10 2006-01-05 Hiromu Habashita Ccr4 antagonist and medical use thereof
EP1523475B1 (en) 2002-07-12 2009-12-23 Sanofi-Aventis Deutschland GmbH Heterocyclically substituted benzoylureas, method for their production and their use as medicaments
JP4164645B2 (en) 2002-08-09 2008-10-15 株式会社大塚製薬工場 DGAT inhibitor
US20040087590A1 (en) 2002-08-23 2004-05-06 University Of Connecticut Novel biphenyl and biphenyl-like cannabinoids
AU2003287178A1 (en) 2002-10-10 2004-05-04 Smithkline Beecham Corporation Chemical compounds
WO2004047755A2 (en) 2002-11-22 2004-06-10 Japan Tobacco Inc. Fused bicyclic nitrogen-containing heterocycles
CA2851462A1 (en) 2003-01-08 2004-07-29 University Of Washington Antibacterial agents
JP4847314B2 (en) 2003-04-07 2011-12-28 コーティカル・ピーティーワイ・リミテッド Novel methods for treating inflammatory diseases
CA2525547C (en) 2003-05-14 2012-07-03 Torreypines Therapeutics, Inc. Compounds and uses thereof in modulating amyloid beta
WO2005013907A2 (en) 2003-08-07 2005-02-17 Japan Tobacco Inc. Pyrrolo[1,2-b]pyridazine derivatives
EP1661889A4 (en) 2003-09-05 2009-08-05 Ono Pharmaceutical Co Chemokine receptor antagonist and medical use thereof
US20050143464A1 (en) 2003-09-22 2005-06-30 Use-Techno Corporation Insulin secretion potentiator
JP4956191B2 (en) 2003-10-17 2012-06-20 インサイト コーポレーション Substituted cyclic hydroxamates as inhibitors of matrix metalloproteinases
GB0325192D0 (en) * 2003-10-29 2003-12-03 Astrazeneca Ab Method of use
WO2005046670A1 (en) 2003-11-11 2005-05-26 The Skinny Drink Company Composition for prevention and treatment of obesity, cardiovascular and coronary artery disease
WO2005065683A1 (en) * 2003-12-22 2005-07-21 Eli Lilly And Company Triazole, oxadiazole and thiadiazole derivative as ppar modulators for the treatment of diabetes
JP2005206492A (en) 2004-01-21 2005-08-04 Sankyo Co Ltd Sulfonamide compound
JP2007519605A (en) 2004-01-30 2007-07-19 日本たばこ産業株式会社 Appetite suppressant
US8039674B2 (en) 2004-06-23 2011-10-18 Ono Pharmaceutical Co., Ltd. Compound having S1P receptor binding potency and use thereof
TW200606137A (en) * 2004-07-02 2006-02-16 Sankyo Co Urea derivatives
WO2006019020A1 (en) 2004-08-16 2006-02-23 Sankyo Company, Limited Substituted ureas
ES2357015T3 (en) 2004-10-15 2011-04-15 Bayer Healthcare Llc PREPARATION AND USE OF BIFENIL-4-ILCARBONYLAMINO ACID DERIVATIVES FOR THE TREATMENT OF OBESITY.
WO2006054370A1 (en) 2004-11-16 2006-05-26 Use-Techno Corporation Gluconeogenesis inhibiting agent
WO2006082952A1 (en) 2005-02-01 2006-08-10 Takeda Pharmaceutical Company Limited Amide compound
MX2007009210A (en) 2005-02-07 2007-08-17 Hoffmann La Roche Inhibitors of diacylglycerol acyltransferase (dgat).
MX2007013049A (en) 2005-04-19 2008-01-11 Bayer Pharmaceuticals Corp Aryl alkyl acid derivatives for and use thereof.
CN101171231A (en) 2005-05-10 2008-04-30 霍夫曼-拉罗奇有限公司 Diacylglycerol acyltransferase inhibitors
CA2610188A1 (en) 2005-06-11 2006-12-21 Astrazeneca Ab Oxadiazole derivatives as dgat inhibitors
WO2007007588A1 (en) 2005-07-08 2007-01-18 Ono Pharmaceutical Co., Ltd. Compound having cyclic group with planarity as core
EP1912634A4 (en) 2005-07-29 2010-06-09 Bayer Healthcare Llc Preparation and use of biphenyl amino acid derivatives for the treatment of obesity
JP2007131584A (en) 2005-11-11 2007-05-31 Sankyo Co Ltd New benzoxazole derivative
US7714126B2 (en) * 2005-11-28 2010-05-11 Via Pharmaceuticals, Inc. Diacylglycerol acyltransferase inhibitors
JP2007191471A (en) 2005-12-21 2007-08-02 Sankyo Co Ltd Medicine containing urea derivative
AR058562A1 (en) * 2005-12-22 2008-02-13 Astrazeneca Ab PIRIMIDO DERIVATIVES [4,5 B] (1,4) OXAZINES, OBTAINING PROCEDURES AND ITS USE AS COA AND DGAT ACETIL INHIBITORS 1
WO2007074753A1 (en) 2005-12-27 2007-07-05 Daiichi Sankyo Company, Limited Pharmaceutical comprising substituted urea derivative
EP2402318A1 (en) 2006-03-31 2012-01-04 Novartis AG DGAT inhibitors
EA014718B1 (en) 2006-04-21 2011-02-28 Эли Лилли Энд Компани Biphenyl amidelactam derivatives as inhibitors of 11-beta-hydroxysteroid dehydrogenase 1
WO2007137107A2 (en) 2006-05-19 2007-11-29 Abbott Laboratories Inhibitors of diacylglycerol o-acyltransferase type 1 enzyme
WO2007137103A2 (en) 2006-05-19 2007-11-29 Abbott Laboratories Inhibitors of diacylglycerol o-acyltransferase type 1 enzyme
US8003676B2 (en) 2006-05-30 2011-08-23 Astrazeneca Ab 1,3,4-oxadiazole derivatives as DGAT1 inhibitors
US8084478B2 (en) * 2006-05-30 2011-12-27 Asstrazeneca Ab Substituted 5- phenylamino- 1, 3, 4-oxadiazol-2-ylcarbonylamino-4-phenoxy-cyclohexane carboxylic acid as inhibitors of acetyl coenzyme A diacylglycerol acyltransferase
US20090209602A1 (en) * 2006-06-06 2009-08-20 Roger John Butlin Chemical compounds
KR20090016629A (en) * 2006-06-08 2009-02-16 아스트라제네카 아베 Benzimidazoles and their use for the treatemnt of diabetes
GB0611507D0 (en) * 2006-06-10 2006-07-19 Astrazeneca Ab Chemical compounds
GB0611506D0 (en) * 2006-06-10 2006-07-19 Astrazeneca Ab Chemical compounds
GB0611552D0 (en) 2006-06-12 2006-07-19 Astrazeneca Ab Chemical compounds
US20120065196A1 (en) 2006-07-21 2012-03-15 Shuji Kitamura Amide compounds
US7569590B2 (en) * 2006-09-19 2009-08-04 Bristol-Myers Squibb Company Use of thianecarboxamides as dgat inhibitors
KR100811100B1 (en) 2006-09-27 2008-03-06 한국생명공학연구원 Pharmaceutical composition for the prevention and treatment of metabolic disorder containing benzazole derivatives as an active ingredient
KR100795462B1 (en) 2006-09-27 2008-01-16 한국생명공학연구원 Indol derivatives, the method for preparing thereof and pharmaceutical composition for the prevention and treatment of metabolic disorder containing the same as an active ingredient
BRPI0717845A2 (en) 2006-10-04 2015-06-16 Hoffmann La Roche Use of compounds, pharmaceutical compositions and methods for the treatment and / or prophylaxis of diseases that can be treated with HDL-cholesterol elevating agents and compounds.
US20080255155A1 (en) 2006-10-18 2008-10-16 Stephane Raeppel Kinase inhibitors and uses thereof
PE20080888A1 (en) 2006-10-18 2008-08-26 Novartis Ag HETEROCYCLIC COMPOUNDS AS ACIL-TRANSFERASE INHIBITORS OF ACIL-CoA-DIACIL-GLYCEROL 1 (DGAT1)
CA2668744C (en) 2006-11-17 2015-09-15 Queen's University At Kingston Compounds and methods for treating protein folding disorders
CA2670736A1 (en) 2006-11-29 2008-06-05 Abbott Laboratories Inhibitors of diacylglycerol o-acyltransferase type 1 enzyme
KR20090098877A (en) 2006-12-11 2009-09-17 노파르티스 아게 Method of preventing or treating myocardial ischemia
US20100093733A1 (en) 2007-02-15 2010-04-15 Prosidion Limited Amide and urea derivatives for the treatment of metabolic diseases
GB0707662D0 (en) 2007-04-20 2007-05-30 Astrazeneca Ab Chemical compounds
EP2142521A1 (en) * 2007-04-30 2010-01-13 Abbott Laboratories Inhibitors of diacylglycerol o-acyltransferase type 1 enzyme
US8058299B2 (en) * 2007-05-22 2011-11-15 Via Pharmaceuticals, Inc. Diacylglycerol acyltransferase inhibitors
CN101932562B (en) * 2007-12-20 2013-06-12 阿斯利康(瑞典)有限公司 Carbamoyl compounds as dgat1 inhibitors 190
JP2010132590A (en) 2008-12-03 2010-06-17 Astellas Pharma Inc Oxadiazole compound
TW201024271A (en) * 2008-12-19 2010-07-01 Astrazeneca Ab Chemical compounds 553

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004100881A2 (en) * 2003-05-09 2004-11-25 Bayer Pharmaceuticals Corporation Preparation and use of aryl alkyl acid derivatives for the treatment of obesity
WO2006064189A1 (en) * 2004-12-14 2006-06-22 Astrazeneca Ab Oxadiazole derivatives as dgat inhibitors

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7795283B2 (en) 2004-12-14 2010-09-14 Astrazeneca Ab Oxadiazole derivative as DGAT inhibitors
US7749997B2 (en) 2005-12-22 2010-07-06 Astrazeneca Ab Pyrimido [4,5-B] -Oxazines for use as DGAT inhibitors
US8017603B2 (en) 2005-12-22 2011-09-13 Astrazeneca Ab Pyrimido [4,5-B]-oxazines for use as DGAT inhibitors
US8835451B2 (en) 2006-03-31 2014-09-16 Novartis Ag Compounds
US8912208B2 (en) 2006-03-31 2014-12-16 Novartis Ag (4-{4-[5-(benzooxazol-2-ylamino)-pyridin-2-yl]-phenyl}-cyclohexyl)-acetic acid useful for treating or preventing conditions or disorders associated with DGAT1 activity
US8003676B2 (en) 2006-05-30 2011-08-23 Astrazeneca Ab 1,3,4-oxadiazole derivatives as DGAT1 inhibitors
US8084478B2 (en) 2006-05-30 2011-12-27 Asstrazeneca Ab Substituted 5- phenylamino- 1, 3, 4-oxadiazol-2-ylcarbonylamino-4-phenoxy-cyclohexane carboxylic acid as inhibitors of acetyl coenzyme A diacylglycerol acyltransferase
US8217065B2 (en) 2007-09-28 2012-07-10 Novartis Ag Organic compounds
US7879850B2 (en) 2007-09-28 2011-02-01 Novartis Ag Organic compounds
WO2009081195A1 (en) * 2007-12-20 2009-07-02 Astrazeneca Ab Carbamoyl compounds as dgat1 inhibitors 190
US7994179B2 (en) 2007-12-20 2011-08-09 Astrazeneca Ab Carbamoyl compounds as DGAT1 inhibitors 190
WO2010023609A1 (en) * 2008-08-25 2010-03-04 Piramal Life Sciences Limited Oxazole, oxadiazole and thiazole derivatives as diacylglycerol acyltranferase inhibitors
US8835428B2 (en) 2008-08-25 2014-09-16 Piramal Enterprises Limited Diacylglycerol acyltransferase inhibitors
WO2010070343A1 (en) * 2008-12-19 2010-06-24 Astrazeneca Ab 1,3,4-oxadiazole derivatives and their uses to treat diabetes
WO2010108051A2 (en) 2009-03-20 2010-09-23 Ligand Pharmaceuticals Inhibitors of diacylglycerol o-acyltransferase 1(dgat-1) and uses thereof
US9340566B2 (en) 2009-03-20 2016-05-17 Metabasis Therapeutics, Inc. Inhibitors of diacylglycerol O-acyltransferase 1 (DGAT-1) and uses thereof
US8962618B2 (en) 2009-03-20 2015-02-24 Metabasis Therapeutics, Inc. Inhibitors of diacylglycerol O-acyltransferase 1 (DGAT-1) and uses thereof
US10034891B2 (en) 2009-03-20 2018-07-31 Metabasis Therapeutics, Inc. Inhibitors of diacylglycerol O-acyltransferase 1 (DGAT-1) and uses thereof
EP2805951A2 (en) 2009-03-20 2014-11-26 Metabasis Therapeutics, Inc. Inhibitors of diacylglycerol o-acyltransferase 1 (DGAT-1) and uses thereof
EP3366686A2 (en) 2009-03-20 2018-08-29 Metabasis Therapeutics, Inc. Inhibitors of diacylglycerol o-acyltransferase 1 (dgat-1) and uses thereof
US10709718B2 (en) 2009-03-20 2020-07-14 Metabasis Therapeutics, Inc. Inhibitors of diacylglycerol O-acyltransferase 1 (DGAT-1) and uses thereof
EP2423182A4 (en) * 2009-04-21 2012-11-07 Astellas Pharma Inc Diacylethylenediamine compound
CN102405209A (en) * 2009-04-21 2012-04-04 安斯泰来制药株式会社 Diacylethylenediamine compound
EP2423182A1 (en) * 2009-04-21 2012-02-29 Astellas Pharma Inc. Diacylethylenediamine compound
WO2010122968A1 (en) 2009-04-21 2010-10-28 アステラス製薬株式会社 Diacylethylenediamine compound
US8188092B2 (en) 2009-06-19 2012-05-29 Astrazeneca Ab Substituted pyrazines as DGAT-1 inhibitors
WO2012120056A1 (en) 2011-03-08 2012-09-13 Sanofi Tetrasubstituted oxathiazine derivatives, method for producing them, their use as medicine and drug containing said derivatives and the use thereof
WO2012120052A1 (en) 2011-03-08 2012-09-13 Sanofi Oxathiazine derivatives substituted with carbocycles or heterocycles, method for producing same, drugs containing said compounds, and use thereof
WO2012120055A1 (en) 2011-03-08 2012-09-13 Sanofi Di- and tri-substituted oxathiazine derivates, method for the production thereof, use thereof as medicine and drug containing said derivatives and use thereof
WO2012120053A1 (en) 2011-03-08 2012-09-13 Sanofi Branched oxathiazine derivatives, method for the production thereof, use thereof as medicine and drug containing said derivatives and use thereof
WO2012120054A1 (en) 2011-03-08 2012-09-13 Sanofi Di- and tri-substituted oxathiazine derivates, method for the production thereof, use thereof as medicine and drug containing said derivatives and use thereof

Also Published As

Publication number Publication date
JP2009538891A (en) 2009-11-12
AU2007266890A1 (en) 2007-12-06
NO20084663L (en) 2008-12-12
CA2651663A1 (en) 2007-12-06
NZ572585A (en) 2011-02-25
KR20090010092A (en) 2009-01-28
CN101460470A (en) 2009-06-17
US8003676B2 (en) 2011-08-23
CN101460470B (en) 2011-05-18
ZA200809689B (en) 2010-04-28
EP2041099A1 (en) 2009-04-01
IL195125A0 (en) 2011-08-01
BRPI0712796A2 (en) 2012-10-02
US20100029727A1 (en) 2010-02-04
AU2007266890B2 (en) 2011-02-17
MX2008015226A (en) 2008-12-12

Similar Documents

Publication Publication Date Title
AU2007266890B2 (en) 1, 3, 4 -oxadiazole derivatives as DGAT1 inhibitors
EP2041100B1 (en) Substituted 5- phenylamino- 1, 3, 4-oxadiaz0l-2-ylcarbonylamino-4-phenoxy-cyclohexane carboxylic acid as inhibitors of acetyl coenzyme a diacylglycerol acyltransferase
US20100173958A1 (en) Compounds for the inhibition of dgat1 activity
US20090215779A1 (en) Oxadiazole derivatives as dgat inhibitors
US20100160397A1 (en) Oxazole derivatives and their use in the treatment of diabetes and obesity
AU2007255180B2 (en) Benzimidazoles and their use for the treatment of diabetes
US20090209602A1 (en) Chemical compounds
WO2008129319A1 (en) Salts of oxadiazole derivatives as dgat inhibitors

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780020219.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07732997

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 572585

Country of ref document: NZ

WWE Wipo information: entry into national phase

Ref document number: 2651663

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2007266890

Country of ref document: AU

Ref document number: 9460/DELNP/2008

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: MX/a/2008/015226

Country of ref document: MX

Ref document number: 2009512663

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020087029466

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2007266890

Country of ref document: AU

Date of ref document: 20070529

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2007732997

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12302192

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0712796

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20081127