WO2007138135A1 - Bioadhesive nanoparticles for administration of biologically active molecules - Google Patents

Bioadhesive nanoparticles for administration of biologically active molecules Download PDF

Info

Publication number
WO2007138135A1
WO2007138135A1 PCT/ES2007/000309 ES2007000309W WO2007138135A1 WO 2007138135 A1 WO2007138135 A1 WO 2007138135A1 ES 2007000309 W ES2007000309 W ES 2007000309W WO 2007138135 A1 WO2007138135 A1 WO 2007138135A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanoparticles
thiamine
antigen
biologically active
biodegradable polymer
Prior art date
Application number
PCT/ES2007/000309
Other languages
Spanish (es)
French (fr)
Inventor
Hesham H. A. Salman
Carlos Gamazo De La Rasilla
Maite AGÜEROS BAZO
Juan Manuel Irache Garreta
Original Assignee
Instituto Científico Y Tecnológico De Navarra, S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Instituto Científico Y Tecnológico De Navarra, S.A. filed Critical Instituto Científico Y Tecnológico De Navarra, S.A.
Publication of WO2007138135A1 publication Critical patent/WO2007138135A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1629Organic macromolecular compounds
    • A61K9/1641Organic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, poloxamers
    • A61K9/1647Polyesters, e.g. poly(lactide-co-glycolide)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5192Processes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers
    • A61K9/5138Organic macromolecular compounds; Dendrimers obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyvinyl pyrrolidone, poly(meth)acrylates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders

Definitions

  • the invention relates to bioadhesive nanoparticles, based on a biodegradable polymer and thiamine, manufacturing processes, formulations containing them and their applications.
  • biodegradable polymeric nanoparticles have been proposed as new transport systems for drugs or biologically active molecules.
  • the most important characteristics that they offer to the biologically active molecule that they incorporate are: (i) protection against possible physical-chemical and / or enzymatic degradation (increase in their half-life in the organism); (ii) controlled release of the incorporated drug (sustained effects that reduce the number of doses); (iii) interaction / adhesion with the surface of the mucosa where absorption or drug action takes place (increased bioavailability); and (iv) in the case of vaccination, they facilitate the presentation of the incorporated antigen to the antigen presenting cells.
  • the oral route is the most convenient and popular route for drug administration.
  • bioavailability of a certain active molecule depends (i) on the characteristics of the drug molecule and its pharmaceutical form of administration, and (ii) on the physiological conditions present in the gastrointestinal tract, such as the presence of enzymes. proteolytic, peristaltic movements and presystemic metabolism.
  • the use of polymeric nanoparticles can be a good strategy to overcome some of these obstacles. In principle, these transporters have a large specific surface so that their interaction with the biological support (the gastrointestinal mucosa) is facilitated.
  • the control of drug release allows the effect of molecules with low biological half-lives to be prolonged over time.
  • nanoparticles can be captured by Peyer's plate cells and lymphoid tissue follicles. This phenomenon allows the drug to be directed towards the lymphatic route and, in the case of vaccines, to facilitate its antigen presentation.
  • conventional nanodeparticles based on biodegradable polymers have some important disadvantages with respect to their oral use: (i) some instability in gastrointestinal fluids, (ii) a low degree of intestinal absorption and (iii) a tropism or non-specific adhesion in the gastrointestinal mucosa.
  • a possible strategy to minimize these inconveniences associated with the use of conventional nanoparticles is based on the use of nanoparticles coated with certain ligands with specificity for certain mucosal receptors.
  • the main ligands proposed for the preparation of these nanoparticle-ligand conjugates have been, so far: (i) antibodies; (ii) adhesins, invasins or other bacterial proteins; (iii) carbohydrates; (iv) vitamin B 12 ; and lectins.
  • lectins appear to be the most versatile ligands. These molecules are proteins or glycoproteins, of non-immunogenic origin, capable of specifically recognizing sugars located in the glycoconjugates.
  • Another possible ligand may be thiamine.
  • Thiamine or vitamin Bl
  • the thiamine absorption process is quite complicated; although a mechanism based on the existence of a receptor (associated with a proton pump) that is located in the basolateral membranes of the jejuno and the ileum. Recently, it has been described that, in humans, the thiamine transporter is expressed throughout the entire gastrointestinal tract, although mostly in the apical membrane of the brush border tc ".
  • thiamine may be a good ligand to facilitate the binding or association of nanoparticles to the blood brain barrier and to interact with breast tumor cells.
  • thiamine may be a good ligand to facilitate the binding or association of nanoparticles to the blood brain barrier and to interact with breast tumor cells.
  • thiamine may be a good ligand to facilitate the binding or association of nanoparticles to the blood brain barrier and to interact with breast tumor cells.
  • thiamine may be a good ligand to facilitate the binding or association of nanoparticles to the blood brain barrier and to interact with breast tumor cells.
  • thiamine may be a good ligand to facilitate the binding or association of nanoparticles to the blood brain barrier and to interact with breast tumor cells.
  • thiamine may be a good ligand to facilitate the binding or association of nanoparticles to the blood brain barrier and to interact with breast tumor cells.
  • thiamine may be a good ligand to facilitate the binding or association of nanoparticles to the blood brain barrier and to interact with breast
  • particulate adjuvants in the form of emulsions, microparticles, ISCOMS or liposomes has been previously evaluated by various research groups [Singh and O ⁇ agan, Int. J. Parasitology, 33 (2003) 469-478].
  • antigen presenting cells The capture of antigens by "antigen presenting cells” is increased when they are associated with or included in polymer particles.
  • Biodegradable and biocompatible polyesters have been used in humans and animals for years as controlled antigen release systems.
  • micro- and nanoparticles are effective in inducing cellular and cytotoxic immune responses in mice.
  • oral immunization with microparticles induces potent mucosal and systemic immune responses against encapsulated antigens. This ability is a consequence of its internalization by specialized cells of the lymphoid tissue of the mucous membranes. Immunization via mucous membranes with different particulate systems has proven effective against different pathogens, such as Bordetella pertussis, Chlamidia trachomatis, Salmonella typhimurium and Brucella sp.
  • Specific allergen immunotherapy has been defined as repeated administration of allergens to patients with IgE-mediated health disorders, with the purpose of providing protection against allergic symptoms and inflammatory reactions associated with natural exposure to these allergens.
  • ThI ThI response
  • Th2 response a functional predominance of the ThI response with respect to the Th2 response
  • This modulation towards ThI is also applicable in other processes, such as control by vaccination against bacterial intracellular parasites (e.g., Brucella or Salmonellá).
  • Nanoparticles of copolymer of polyvinyl methyl ether and maleic anhydride (PVM / MA) [WO02 / 069938], optionally pegylated [ES2246694], useful as drug carriers have been described.
  • PVM / MA nanoparticles as immune stimulating substances has been described.
  • the doses should always be much higher (up to 200 times) than those normally used subcutaneously .
  • the gastrointestinal mucosa acts as a barrier very little permeable to the absorption of these macromolecules.
  • the object of the present invention is to provide nanoparticles that solve the aforementioned problems, that is, that can be administered orally and are stable and specific, that have good bioadhesive characteristics to interact with the mucous membranes, that are capable of transporting a wide group of active molecules that release the active molecule in a controlled manner.
  • these nanoparticles are intended to act as adjuvants in vaccines and immunotherapy, enhancing the immune response of antigens or allergens. It has now been found, surprisingly, that such problems can be solved by nanoparticles formed by a biodegradable polymer and thiamine.
  • nanoparticles comprising or consisting of (i) a copolymer of polyvinyl methyl ether (PVM) and maleic anhydride (MA) and (ii) thiamine, in addition to being easy to produce, provide excellent bioadhesion characteristics and size, which makes them suitable for administration through different pathways of biologically active compounds or molecules.
  • the nanoparticles provided by this invention that, optionally, contain a biologically active molecule, for example, an allergen or an antigen, have the ability to stimulate or enhance the immune response when administered to a subject, which allows its use in immunotherapy and vaccines.
  • the invention relates to nanoparticles comprising a biodegradable polymer and thiamine or its derivatives.
  • said biodegradable polymer is a copolymer of methyl vinyl ether and maleic anhydride (PVM / MA).
  • the thiamine is completely or partially covering the surface of the nanoparticles comprising said biodegradable polymer.
  • the weight ratio between thiamine and the biodegradable polymer is between 1:10 and 1: 500, preferably between 1:10 and 1: 100, more preferably around 1:40.
  • the nanoparticles provided by this invention can be used for the transport of biologically active molecules.
  • said nanoparticles can include one or more biologically active molecules, whose Chemical nature may vary within a wide range of possibilities, including, but not limited to, peptides, proteins, nucleic acids (eg, DNA, RNA, etc.), nucleosides, nucleotides, oligonucleotides, polynucleotides, etc.
  • Said biologically active molecule can be a drug or compound with therapeutic or diagnostic activity, eg, an antitumor agent, a central nervous system protector, a glucocorticoid, etc., an antigen for vaccination or an allergen for immunotherapy, among others. Therefore, the nanoparticles provided by this invention can be used in the preparation of pharmaceutical compositions.
  • the invention in another aspect, relates to a pharmaceutical composition
  • a pharmaceutical composition comprising said previously described nanoparticles and a biologically active molecule, wherein said biologically active molecule is a molecule capable of preventing, alleviating or curing a disease or a molecule with diagnostic application, together with a pharmaceutically acceptable carrier or excipient.
  • said composition is a pharmaceutical composition intended for administration orally or parenterally. If desired, said pharmaceutical composition may be in the form of a lyophilisate.
  • the invention in another aspect, relates to a vaccine or composition for immunotherapy comprising a therapeutically effective amount of the nanoparticles provided by this invention, previously described, and an antigen or allergen, together with a pharmaceutically acceptable carrier, adjuvant or excipient.
  • the invention in another aspect, relates to a product comprising, separately, a) an antigen or an allergen; and b) a composition comprising said nanoparticles based on a biodegradable polymer and thiamine, as a composition that enhances the immune response against said antigen or allergen, as a combination for simultaneous administration or sequence! to a subject, in the induction or stimulation of an immune response against said antigen or allergen in said subject.
  • the invention relates to the use of nanoparticles comprising a biodegradable copolymer and thiamine previously described in the preparation of a pharmaceutical composition for the selective stimulation of the ThI immune response, or in the preparation of a pharmaceutical composition for selective stimulation of the Th2 immune response, or in the development of a Pharmaceutical composition for balanced stimulation of Thl and Th2 immune responses.
  • the invention relates to a process for the production of nanoparticles comprising a biodegradable copolymer and thiamine previously described comprising: a) the desolvation of an organic solution comprising a biodegradable polymer, with a hydroalcoholic solution, for form the nanoparticles; b) simultaneous incubation of previously formed biodegradable polymer nanoparticles with thiamine in an aqueous solution; and c) the removal of organic solvents, whereby an aqueous suspension of nanoparticles comprising a biodegradable polymer and thiamine is obtained.
  • said nanoparticles can be stabilized by the use of crosslinking agents.
  • the concentration of the biodegradable polymer in said nanoparticles is between 0.001 and 10% w / v and that of thiamine between 0.001 and 5% w / v.
  • these can be incorporated either in the organic phase where the biodegradable polymer has previously dissolved, before desolvation, or, subsequently, in the aqueous suspension of the nanoparticles already formed so that it Produce your association.
  • FIG. 1 is a photograph of the result of a scanning electron microscopy analysis for a lyophilized sample of thiamine coated nanoparticles (T-NP).
  • Figure 2 is a diagram showing the fluorescent marker release
  • Figure 3 is formed by diagrams showing the distribution of nanoparticles in the gastrointestinal tract of laboratory animals, after oral administration of a 10 mg dose of nanoparticles labeled with RBITC.
  • Figure 3 a is a diagram showing the distribution of thiamine coated nanoparticles (T-NP);
  • Figure 3b is a diagram showing the distribution of control nanoparticles (NP);
  • Figure 3 c is a diagram showing the distribution of thiamine-coated nanoparticles (T-NP) mixed with 5 mg of free thiamine.
  • the X axis represents the different segments of the gastrointestinal tract [Stomach: Sto; portions of the small intestine: II, 12, 13, 14; blind: Ce]; the Y axis represents the adhered fraction of nanoparticles to the mucosa (mg); and the Z axis represents the time after administration (0.5, 1, 3 and 8 hours).
  • Figure 5 is a set of photographs that allow visualization of nanoparticles in normal ileum tissue (M) and in Peyer's plates (PP) by fluorescence microscopy, specifically, thiamine coated nanoparticles (T-
  • NP in the normal mucosa
  • control nanoparticles in normal mucosa
  • NP control nanoparticles in normal mucosa
  • the antibodies were quantified by ELISA starting with a 1:40 dilution of serum, followed by serial double dilutions. Immunization was performed on day 0 by single administration of either 20 ⁇ g of OVA in the different formulations subcutaneously (a, b), or 100 ⁇ g of OVA in the different formulations orally (c, d).
  • the formulations were OVA-T-NP (?), OVA-NP (?), And free OVA (?).
  • Antibody titers were determined in the animals' serum on days 0, 7, 14, 28 and 42.
  • the invention relates to nanoparticles, hereinafter nanoparticles of the invention, comprising (i) a biodegradable polymer and (ii) thiamine or a derivative thereof.
  • the nanoparticles of the invention have adequate physicochemical, bioadhesion and specificity characteristics when administered orally, which makes them into drug transport systems or antigen or allergen presenting systems of great interest.
  • the nanoparticles of the invention can prolong the residence time in the mucosa after oral administration or through another mucosa of the organism.
  • Said nanoparticles can be used to administer biologically active molecules and improve their bioavailability, including drugs with narrow absorption windows, as well as drugs originating in biotechnology and compounds or molecules used to enhance or induce immune responses in a subject.
  • nanoparticle refers to a structure formed by a biodegradable polymer modified on its surface by thiamine bonding, or a derivative thereof, which, optionally, can be crosslinked by the addition of a crosslinking agent.
  • the binding of thiamine, or a derivative thereof, to the biodegradable polymer can be a covalent bond.
  • the reaction between the biodegradable polymer and the thiamine, and, optionally, the subsequent crosslinking generates characteristic, independent and observable physical entities, the average size of which is less than 1 micrometer ( ⁇ m).
  • average size is meant the average diameter of the nanoparticle population that moves together in an aqueous medium. The average size of These systems can be measured by standard procedures known to those skilled in the art, and which are described, by way of illustration, in the experimental part that accompanies the examples described below.
  • the nanoparticles of the invention are characterized by having an average particle size of less than 1 ⁇ m, preferably having an average size between 1 and 999 nm, more preferably between 10 and 900 nm, even more preferably between 100 and 400 nm.
  • the average particle size is mainly influenced by the amount of thiamine, or its derivative, added (the greater the amount of thiamine or the derivative thereof increases the size of the nanoparticle), by the amount and molecular weight of the biodegradable polymer (the greater the size or molecular weight of the biodegradable polymer, the average size of the nanoparticle is increased), and by some parameters of the production process of said nanoparticles, such as the stirring speed and the temperature in the incubation stage with the aqueous phase It contains thiamine.
  • the nanoparticles of the invention comprise a biodegradable polymer and thiamine or a derivative thereof.
  • biodegradable refers to polymers that dissolve or degrade in a period of time that is acceptable for the desired application, in this case in vivo therapy, once they are exposed to a physiological solution. pH between 4 and 9, at a temperature between 25 ° C and 40 0 C.
  • biodegradable polymer known in the state of the art that results in the formation of nanoparticles
  • said biodegradable polymers include polyhydroxy acids, such as polylactic acid, polyglycolic acid, etc., and copolymers thereof, eg, poly (lactic-co-glycolic acid) [PLGA], etc .; polyanhydrides; polyesters; and polysaccharides, eg, chitosan, etc.
  • the molecular weight of said biodegradable polymer can vary within a wide range as long as it satisfies the established conditions of forming nanoparticles and being biodegradable.
  • the biodegradable polymer used is the copolymer of methyl vinyl ether and maleic anhydride in anhydride form (PVM / MA), commercially referred to as Gantrez® AN.
  • PVM / MA methyl vinyl ether and maleic anhydride in anhydride form
  • Gantrez® AN commercially referred to as Gantrez® AN.
  • PVM / MA has a molecular weight between 100 and 2,400 kDa, preferably between 200 and 2,000 kDa, more preferably between 180 and 250 kDa.
  • This biodegradable polymer (PVM / MA) can react with different hydrophilic substances, due to the presence of its anhydrous groups, without having to resort to the usual organic reagents (glutaraldehyde, carbodiimide derivatives, etc.) that possess an important toxicity.
  • the PVM / MA copolymer In an aqueous medium, the PVM / MA copolymer is insoluble, but its anhydride groups are hydrolyzed giving rise to carboxylic groups. The dissolution is slow and depends on the conditions in which it occurs. Due to the availability of functional groups in PVM / MA, covalent binding of molecules with nucleophilic groups, such as hydroxide or amino, takes place by simple incubation in an aqueous medium.
  • the nanoparticles of the invention comprise, in addition to the biodegradable polymer, thiamine or a derivative thereof.
  • Thiamine also called vitamin Bl, or 3 - [(4-amino-2-methyl-5-pyrimidinyl) methyl] -5- (2-hydroxyethyl) -4-methylthiazolium chloride, is a known product.
  • thiamine derivatives being understood as such, compounds structurally related to thiamine, such as their salts, among which are their addition salts, for example, their acid addition salts.
  • thiamine addition salts include thiamine hydrochloride, thiamine monophosphate chloride dihydrate; thiamine pyrophosphate; oxythiamine chloride hydrochloride; piritiamine hydrobromide, etc., all of them known compounds.
  • the nanoparticles of the invention comprise thiamine or thiamine hydrochloride.
  • the thiamine, or the derivative thereof, can be found totally or partially coating the surface of the nanoparticles comprising the biodegradable polymer.
  • the ratio thiamine (or derivative thereof): biodegradable polymer, by weight, in the nanoparticle of the invention may vary within a wide range; however, in a particular embodiment, said weight ratio is comprised between
  • nanoparticles of the invention with a ratio of approximately 0.025 mg thiamine / mg biodegradable polymer provides a very efficient adhesion (bonding) capability.
  • the nanoparticles of the invention may have a surface charge (measured by the Z potential) that varies depending on the structure of the biodegradable polymer and on the proportion thereof with respect to the thiamine or derivative thereof.
  • the contribution of the positive charge is attributed, among others, to the amino groups present in the thiamine or its derivative.
  • the magnitude of the surface charge of the nanoparticles of the invention can vary within a wide range.
  • nanoparticles of the invention have been obtained, based on PVM / MA copolymer and thiamine, with a Z potential of about -34.0 + 1.9 mV (Example 1, Table 1), while in another particular embodiment, nanoparticles of the invention (based on PVM / MA copolymer and thiamine) loaded with ovalbumin (OVA) have been obtained, with a Z potential of about -28.6 ⁇ 6.2 mV (Example 3, Table 3).
  • the nanoparticles of the invention can be obtained by conventional methods known to those skilled in the art.
  • the nanoparticles of the invention can be obtained by incubating the previously formed biodegradable polymer nanoparticles with an aqueous solution of thiamine or a derivative thereof, which makes it possible to obtain mostly biodegradable polymer nanoparticles in which the thiamine, or its derivative, is attached to the surface of the nanoparticles.
  • the biodegradable polymer present in the nanoparticles of the invention is a PVM / MA copolymer, the preparation of which is described, for example, in WO 02/069938.
  • the nanoparticles can be obtained from the biodegradable polymer by a process comprising the dissolution of said biodegradable polymer in an organic solvent (eg, acetone, etc.) and subsequent desolvation after the addition of an appropriate solvent, for example, a solvent or a mixture of solvents miscible with the solution of the biodegradable polymer, such as an ethanol-water mixture, obtaining a suspension of nanoparticles from which the organic solvents are removed by conventional methods, for example, by evaporation under reduced pressure, and, then water is added, so an aqueous suspension of nanoparticles is obtained.
  • an organic solvent eg, acetone, etc.
  • an appropriate solvent for example, a solvent or a mixture of solvents miscible with the solution of the biodegradable polymer, such as an ethanol-water mixture
  • the ratio, by volume, organic phase: hydroalcoholic solution (ethanol / water) can vary within a wide range; however, in a particular embodiment, said ratio is between 1: 1 and 1: 10 (v: v).
  • the biodegradable polymer nanoparticles are modified on their surface efficiently with thiamine or with a derivative thereof, by incubation, at room temperature, for an appropriate period of time.
  • an aqueous solution of thiamine or a derivative thereof is added to said previously obtained suspension of nanoparticles.
  • pharmaceutical grade water is used.
  • concentration of the biodegradable polymer and that of thiamine, or its derivative can vary within a wide range; however, in a particular embodiment, the concentration of the biodegradable polymer is between 0.001 and 10% w / v and that of thiamine, or between it, between 0.001 and 5% w / v.
  • the thiamine amino groups react with functional groups eventually present in the biodegradable polymer, which leads to the formation of bonds between the biodegradable polymer and thiamine.
  • the association of thiamine with the nanoparticles of the biodegradable polymer is evident due to the significant decrease in the negative surface charge of the nanoparticles (see, for example, Table 1).
  • the thiamine amino groups react with the anhydride groups of the PVM / MA copolymer, a reaction that can easily occur by simply incubating the thiamine with the aqueous suspension of the nanoparticles, which leads to bond formation.
  • the nanoparticles of the invention can be purified by conventional methods, for example, by centrifugation, ultracentrifugation, tangential filtration, or evaporation, including the use of vacuum.
  • a crosslinking agent can be added to improve the stability of the nanoparticles of the invention, as described in WO 02/069938.
  • crosslinking agents include diamine compounds, for example 1.3 diaminopropane, simple polysaccharides or saccharides, proteins and, in general, any molecule having functional groups. capable of reacting with the functional groups present in the biodegradable polymer, for example, anhydride groups present in the PVM / MA copolymer.
  • the nanoparticles of the invention can be lyophilized by conventional methods. From a pharmacological point of view, it is important to be able to have nanoparticles in lyophilized form since this improves their stability during long-term storage and conservation, in addition to reducing the volume of the product to be handled.
  • the nanoparticles of the invention can be lyophilized in the presence of a usual cryoprotectant agent such as glucose, sucrose, mannitol, trehalose, glycerol, lactose, sorbitol, polyvinyl pyrridone, etc., preferably, sucrose or mannitol; at a concentration within a wide range, preferably between 0.1% and 10% by weight.
  • the nanoparticles of the invention have a high ability to associate biologically active molecules, which makes them a drug transport system or presentation of very appropriate antigens and allergens. Therefore, in another aspect, the invention relates to a pharmaceutical composition comprising nanoparticles of the invention and at least one biologically active molecule.
  • said biologically active molecule will be inside the nanoparticle of the invention; however, it could happen that some biologically active molecule was also attached to the surface of the nanoparticle although most of said molecules will be inside (e.g., encapsulated) of the nanoparticles of the invention.
  • biologically active molecule refers to any substance used in the treatment, cure, prevention or diagnosis of a disease or that used to improve the physical and mental well-being of humans and animals.
  • said term includes both drugs and antigens and allergens.
  • the nanoparticles of the invention can incorporate one or more biologically active molecules regardless of the solubility characteristics thereof. The association capacity will therefore depend on the incorporated molecule, but, in general, said capacity is high for both hydrophilic molecules and molecules of marked hydrophobic character.
  • the pharmaceutical composition of the invention comprises nanoparticles of the invention containing one or more different drugs.
  • Illustrative, non-limiting examples of such drugs include analgesic, anti-inflammatory, antitumor, neuroprotective, antiallergic, anti-asthmatic, antibiotic agents (eg, antibacterial, antifungal, antiviral, antiparasitic, etc.), pulmonary surfactants, etc.
  • the pharmaceutical composition of the invention comprises nanoparticles of the invention containing one or more different antigens for vaccination purposes or one or more different allergens for immunotherapeutic purposes.
  • the term "antigen" refers to any substance capable of being recognized by the immune system of a subject and / or capable of inducing in a subject a humoral immune response or a cellular immune response that leads to the activation of B and / or T lymphocytes when introduced into a subject; by way of illustration, said term includes any immunogenic, native or recombinant product, obtained from a higher organism or from a microorganism, for example, a bacterium, a virus, a parasite, a protozoan, a fungus, etc., which contains one or more antigenic determinants, for example, structural components of said organisms; toxins, for example, exotoxins, etc.
  • antigen includes: "microbial” antigens, that is, microorganism antigens, including, but not limited to, viruses, bacteria, fungi and infectious parasites; said antigens include the intact microorganism as well as parts, fragments and derivatives thereof, either of natural or artificial origin, as well as synthetic or recombinant products that are identical or similar to the natural antigens of a microorganism and induce a specific immune response for that microorganism; in this sense, a compound is similar to a natural antigen of a microorganism if it induces an immune response (humoral and / or cellular) like that of the natural antigen of that microorganism; said antigens are used routinely by those skilled in the art; Y “tumor” antigens, that is, substances, for example, peptides, associated with a tumor or a cancer ("microbial" antigens, that is, substances, for example, peptides, associated with a tumor or a cancer ("microbial" antigen
  • allergen refers to a substance to which a subject is sensitive and causes an immune reaction, for example, allergenic extracts of pollens, allergenic extracts of insects, allergenic extracts of food or products.
  • food components present in saliva, tweezers or stingers of insects that induce a sensitivity reaction in a subject, components present in plants that induce a sensitivity reaction in a subject, etc., for example, protein extracts of pollens, such as grass pollen, allergic extracts of perennial Lolium, allergic extracts of olea (olive), etc .; Protein extracts of insects, such as dust mites, etc .; allergenic extracts of food components, etc.
  • any allergen can be used in the preparation of the nanoparticles loaded with allergen of the composition of the invention; however, in a particular embodiment, said allergen is ovalbumin (OVA), a protein widely used as an experimental allergenic model.
  • OVA ovalbumin
  • Illustrative, non-limiting examples of said biologically active molecules that may contain the nanoparticles of the invention include bacterial: cytoplasmic, periplasmic, cell envelope antigens (eg, inner membrane proteins, outer membrane proteins, lipopolysaccharides and mixed complexes, proteins associated to the cell wall, etc.), etc .; surface structure antigens (eg, fimbriae, glycocalyx, flagellar, etc.), including those of intracellular pathogens, such as Brucella sp., Salmonella sp., etc .; eukaryotic microorganism antigens, both soluble and superficial; viral antigens, for example, matrix, capsid, envelope, internal (including enzymatic), allergens of animal species (mites, etc.), of plants (grasses, etc.), etc.
  • cell envelope antigens eg, inner membrane proteins, outer membrane proteins, lipopolysaccharides and mixed complexes, proteins associated to the cell wall, etc.
  • said biologically active molecule is a polysaccharide, a protein, a peptide or a lipid.
  • said biologically active molecule is a nucleic acid (eg, DNA, RNA, etc.), a nucleoside, a nucleotide, an oligonucleotide, a polynucleotide, etc.
  • the nanoparticles of the invention are used to modify the distribution of the associated biologically active molecule and / or of the conventional nanoparticles when administered by a route that gives access to some mucosa of the organism (including oral, rectal, nasal, vaginal or ocular).
  • pharmaceutical compositions include any liquid composition (suspension or dispersion of the nanoparticles) for oral, oral, sublingual, topical, ocular, nasal, vaginal or parenteral administration; any composition in the form of gel, ointment, cream or balm for topical, ocular, nasal or vaginal administration; or any solid composition (tablets, capsules) for oral administration.
  • the pharmaceutical composition is administered orally.
  • said pharmaceutical composition is administered parenterally.
  • the pharmaceutical compositions described will comprise the excipients suitable for each formulation.
  • binders, disintegrants, lubricants, fillers, enteric coating, etc. will be included if necessary.
  • Oral solid formulations are prepared in conventional manner by mixing, dry or wet granulation and incorporating the nanoparticles of the invention.
  • the pharmaceutical compositions may also be adapted for parenteral administration, in the form of, for example, sterile lyophilized solutions, suspensions or products, in the appropriate dosage form; in this case, said pharmaceutical compositions will include suitable excipients, such as buffers, surfactants, etc. In any case, the excipients will be chosen based on the pharmaceutical form of administration selected.
  • the proportion of the biologically active molecule incorporated into the nanoparticle of the invention can vary within a wide range, for example, it can be up to 25% by weight with respect to the total weight of the nanoparticles. However, the appropriate proportion will depend in each case on the biologically active molecules incorporated.
  • incorporation of the biologically active molecule into the nanoparticles of the invention can be done as described in WO 02/069938, by incorporation into the solution of the biodegradable polymer before the formation of nanoparticles, or subsequently added to the aqueous suspension of the nanoparticles already formed.
  • a) Hydrophobic biologically active molecules addition in the organic phase (eg, acetone) and joint incubation / solubilization with the biodegradable polymer for a period variable time (up to 1 hour) under agitation (mechanical, magnetic or ultrasonic stirrer); and b) Biologically active bi-hydrophilic molecules: either by addition in the organic phase (eg, acetone) and joint incubation with the biodegradable polymer for a variable period of time (up to 1 hour) under stirring (mechanical, magnetic or ultrasonic agitator) until obtaining a fine suspension in the organic solvent [this procedure has been used successfully to encapsulate a model protein (ovalbumin, about 44 kDa protein); incorporation was efficient allowing high encapsulation of the model protein; or by addition in the aqueous phase to incubate with the preformed nanoparticles (this is the case used to encapsulate the
  • the nanoparticles of the invention produce a stimulatory or potentiating effect of the immune response after administration to a subject and can therefore be used as an adjuvant in vaccines or in immunotherapy
  • the nanoparticles of the invention have the ability to stimulate the two immune response pathways (ThI or Th2), so it can be used in vaccine or immunotherapeutic formulations.
  • a vaccine formulation it is generally required, depending on the pathogenic mechanisms of the organism from which the antigen (intracellular or extracellular, toxin dependent, scourge dependent, etc.), a stimulation of the ThI response ( intracellular, as in the case of Brucella, Salmonella, etc.) or Th2 response (extracellular, as in the case of Staphylococcus, Escherichia coli, enterotoxigenic bacteria, etc.).
  • ThI response intracellular, as in the case of Brucella, Salmonella, etc.
  • Th2 response extracellular, as in the case of Staphylococcus, Escherichia coli, enterotoxigenic bacteria, etc.
  • a tolerance induction is required for an immunotherapeutic formulation by the presence of the two types of response, that is, inducing ThI and Th2 responses in a balanced manner.
  • the formulations will contain nanoparticles of biodegradable polymer and thiamine, and encapsulated therein or totally or partially coating the surface thereof the antigen or
  • the invention relates to a vaccine or composition for immunotherapy comprising a therapeutically effective amount of the nanoparticles of the invention and an antigen or allergen, together with a pharmaceutically acceptable carrier or excipient.
  • the antigen or allergen may be contained within said nanoparticles and / or at least partially covering the surface of said nanoparticles.
  • the allergen or antigen present in the nanoparticles of the invention may be at least partially covering the surface of said nanoparticles and / or contained within said nanoparticles.
  • said allergen or antigen is coating all or part of the surface of said nanoparticles.
  • said vaccine or composition for immunotherapy can be found in any pharmaceutical form of administration by any appropriate route, for example, oral, rectal, nasal, sublingual, etc.
  • said vaccine or composition for immunotherapy is in a pharmaceutical form of oral administration
  • said vaccine or composition for immunotherapy is in a form Pharmaceutical administration parenterally, for example, intramuscularly (im), subcutaneously (s. ⁇ ), intravenously (iv), intraperitoneally (ip), intradermally (id), etc.
  • the dose of nanoparticles loaded with an antigen or with an allergen may vary within a wide range, for example, between about 0.01 and about 10 mg per kg of body weight, preferably, between 0.1 and 2 mg per kg of body weight.
  • the nanoparticles of the invention do not incorporate the antigen or allergen, but these are empty and are administered in combination with vaccine or immunotherapeutic compositions containing the antigen or allergen, respectively, producing a stimulatory effect of the immune response. after administration of said vaccine or immunotherapeutic composition and empty nanoparticles.
  • a further aspect of the invention is a product comprising, separately, a) an antigen or an allergen; and b) a composition comprising said nanoparticles based on a biodegradable polymer and thiamine, as a composition that enhances the immune response against said antigen or allergen, as a combination for simultaneous or sequential administration to a subject, in the induction or stimulation of a response immune against said antigen or allergen in said subject.
  • the combined administration of said vaccine or immunotherapeutic composition and of the empty nanoparticles can be carried out simultaneously or sequentially, separated in time, in any order, that is, the vaccine or immunotherapeutic composition can be administered first and, subsequently, the empty nanoparticles or vice versa.
  • said vaccine or immunotherapeutic composition and said empty nanoparticles can be administered simultaneously.
  • the vaccine or immunotherapeutic composition and the empty nanoparticles can be administered in the same composition or in different compositions.
  • PVM / MA and coated with thiamine that, optionally, contain an antigen and demonstrate the ability of said nanoparticles to specifically adhere to the gastrointestinal mucosa and, if necessary, act as an adjuvant in immunotherapy or vaccination.
  • the general method of production of thiamine coated PVM / MA nanoparticles is a variant of the general procedure described above [Arbos et al., J. Control. Relay, 83 (2002) 321-330].
  • This process comprises dissolving said copolymer in acetone followed by the addition of ethanol. A similar volume of water was added to the resulting solution, so that nanoparticles formed instantly in the medium, under the appearance of a milky suspension. Then, the organic solvents (ethanol and acetone) were removed by evaporation under reduced pressure, the particles being in a stable aqueous suspension.
  • the thiamine was incorporated into the aqueous phase that facilitates the desolvation of the polymer, leaving the reaction to act for a certain time.
  • the next step consisted of the incubation between the formed nanoparticles and the thiamine.
  • the crosslinking agent which, in this case, has been 1,3-diaminopropane (10 ⁇ g / mg polymer) can be added.
  • the purification of the nanoparticles was carried out by ultracentrifugation. Finally, the purified nanoparticles were lyophilized for long-term storage and preservation.
  • the size and zeta potential of the nanoparticles was determined in a Zetamaster (Malvern Instruments / Optilas, Spain).
  • the morphology of the nanoparticles was studied by scanning electron microscopy in a Zeiss DSM940 (Oberkochen, Germany).
  • the amount of thiamine associated with the nanoparticles was quantified by high performance liquid chromatography (HPLC), according to the procedure described by [Batifoulier et al., J. Chromatogr. B Analyt. Technol Biomed Life Sci., 816 (2005) 67-72].
  • the analysis was carried out on a model 1100 series LC chromatograph (Agilent, Waldbornn, Germany) coupled to a diode-array ultraviolet (UV) detection system.
  • the data was analyzed on a Hewlett-Packard computer using the Chem-Station G2171 program.
  • a Zobrax NH 2 reverse phase column (4.6 mm x 150 mm; 5 ⁇ m; Agilent) heated to 40 0 C was used.
  • FGS gastric medium
  • FIS simulated intestinal medium
  • the protein content [active ingredient (in this case ovalbumin)] encapsulated in the thiamine-coated nanoparticles was determined by testing with microbicinconinic acid (Micro BCA, Pierce, USA). For this, the nanoparticles were digested, at 37 ° C for 24 h, with a solution of sodium lauryl sulfate (3%) in 0.1 M NaOH. Polyacrylamide gel electrophoresis with sodium dodecyl sulfate (SDS-PAGE) was used for corroborate the content in OVA.
  • OVA-T-NP nanoparticles
  • DMF dimethylformamide
  • acetone 1: 1 v / v
  • the amount of OVA was estimated by calculating the average density of the band in the SDS-PAGE gel using the Micro Lnage ® program (Version 4.0; Olympus Optical Co., USA).
  • the calibration line was performed with OVA (0.25-2.5 ⁇ g protein / well).
  • AUC adh or area under the curve represents the fraction adhered against time (expressed as a quantity of adherent marker with respect to time) and was evaluated by the trapezoid method up to I 2 (the last sampling point), and allows quantify the intensity of the bioadhesive phenomenon.
  • T max represents the time at which maximum adhesion occurs.
  • MRT adh is the average residence time of the adhered fraction of nanoparticles and allows the relative duration of adhesive interactions to be evaluated, taking as a limit the last sampling point. The calculations were performed using the WinNonlin 1.5 program (Pharsight Corporation, USA).
  • Fluorescence microscopy studies The visualization of the distribution of thiamine coated nanoparticles was carried out by fluorescence microscopy.
  • the laboratory animals received an oral dose of 10 mg of nanoparticles labeled with RBITC.
  • the animals were sacrificed and different portions of the small intestine were removed and washed with PBS. Said portions of approximately 0.5 cm in length were treated with Sakura Tissue-Tek Oct® Compound (Sakura, Holland) and frozen in liquid nitrogen.
  • Different tissue samples were cut in sections of 5 ⁇ m in a cryostat (2800 Frigocut E, Germany), fixed to supports coated with poly-L-lysine (Sigma, Spain) and stored at - 20 0 C before viewing by microscopy of fluorescence.
  • mice (20 ⁇ 1 g) (Har ⁇ an, Spain) were divided into 6 different groups of 10 animals each.
  • the administration strategy was based on the single administration of a subcutaneous or oral dose.
  • each animal received a volume of 200 ⁇ L containing 100 ⁇ g of ovalbumin, free or encapsulated in thiamine coated nanoparticles (OVA-T-NP) or in conventional nanoparticles (OVA-NP).
  • OVA-T-NP thiamine coated nanoparticles
  • OVA-NP thiamine coated nanoparticles
  • OVA-NP thiamine coated nanoparticles
  • OVA-NP conventional nanoparticles
  • Serum anti-OVA antibodies were analyzed by ELISA with anti-IgG t and anti-IgG 2a conjugates (Sigma-Aldrich Chemie, Germany). Briefly, 96 well plates (EB, Thermo Labsystems, Vantaa, Finland) were used to perform this test, where 1 ⁇ g of ovalbumin dissolved in carbonate-bicarbonate regulatory solution (0.05 M, pH 9.6) was fixed ) at 4 ° C for 24 hours. Subsequently, the plates were blocked by incubation for 1 h at 37 ° C with 1% bovine serum albumin in a solution of 0.05% PBS-Tween 20 (PBS-T).
  • PBS-T PBS-Tween 20
  • Stool anti-OVA antibodies were analyzed by ELISA with anti-IgA conjugates.
  • OVA after coating the plates with OVA, they were blocked by adding, and incubating for 1 h at room temperature, 200 ⁇ L of a PBS-T solution containing 3% skim milk.
  • the stool extract was added to two plates and serial dilutions were made in PBS-T. Said plates were incubated for 4 h at 37 ° C. Finally, after washing, the wells were incubated with the peroxidase-labeled anti-IgA conjugate (Nordic rmmunological Labs, The Netherlands).
  • Bioadhesion data and physicochemical characteristics were compared using the Mann-Whitney U-test non-parametric test and the t-test.
  • Table 1 summarizes the main physicochemical characteristics of the nanoparticles obtained.
  • the control nanoparticles (NP) show a size close to 200 nm with a negative surface charge of -51 mV.
  • the thiamine-coated nanoparticles (T-NP) were significantly higher (close to 400 nm) and showed a significantly less negative zeta potential.
  • These nanoparticles (T-NP) showed an associated amount of thiamine of 15 ⁇ g / mg nanoparticles (Table 1).
  • Table 1 summarizes the main physicochemical characteristics of the nanoparticles obtained.
  • the control nanoparticles (NP) show a size close to 200 nm with a negative surface charge of -51 mV.
  • the thiamine-coated nanoparticles (T-NP) were significantly higher (close to 400 nm) and showed a significantly less negative zeta potential.
  • These nanoparticles (T-NP) showed an associated amount of thiamine of 15
  • the thiamine-coated nanoparticles showed a very homogeneous population of spherical particles ( Figure 1).
  • Figure 3 shows the distribution in the gastrointestinal tract of the adhered fractions of thiamine-coated nanoparticles (T-NP) ( Figure 3 a) or control nanoparticles (NP) ( Figure 3b). It can be seen that, within 30 minutes of the administration of the nanoparticle formulations, both types (NP and T-NP) showed the same ability to adhere to the mucosa of the gastrointestinal tract, mainly in the stomach area and the upper regions of the small intestine (duodenum). However, 1 h after administration of the nanoparticles, the thiamine-coated nanoparticles (T-NP) showed significantly greater bioadhesive capacity and a more homogeneous distribution than the control nanoparticles (NP).
  • the amount of thiamine-coated nanoparticles (T-NP) found adhered to the mucosa was approximately 45% of the administered dose (Figure 3).
  • the thiamine-coated nanoparticles (T-NP) showed maximum adhesion (65% of the administered dose) and an important tropism for the animal's ileum (portions 13 and 14 in Figure 3 to).
  • Bioadhesion curves were obtained by representing the total amount of nanoparticles adhered to the gastrointestinal tract as a function of time after administration (Figure 4).
  • the comparison of bioadhesion profiles for the different formulations allows us to observe that the control nanoparticles (NP) show a maximum of bioadhesion 30 minutes after their administration [Figure 4, (?)]. Subsequently, the amount of control nanoparticles (NP) attached is falling over time.
  • T-NP thiamine-coated nanoparticles
  • AUC at dh parameter that measures the intensity of bioadhesive interactions
  • NP control nanoparticles
  • TNP-COM represents the values obtained when the thiamine coated nanoparticles (T-NP) were co-administered with 5 mg of the free vitamin
  • AUC a dh (mg.h): Area under the bioadhesion curve
  • FIG. 5 shows several photographs that allow us to observe the distribution of nanoparticles in ileum samples, 2 hours after oral administration of 10 mg of nanoparticles in rats.
  • Control nanoparticles (NP) were mainly detected in the outer layer of the ileum (mucus that covers the mucosa), confirming the low affinity of these transporters for the intestinal mucosa ( Figure 5b).
  • thiamine-coated nanoparticles (T-NP) were widely distributed and showed a very large affinity for the micro villi of the intestine ( Figure 5a).
  • T-NP thiamine-coated nanoparticles
  • OVA ovalbumin
  • OVA OVA was dispersed in 2 mL of water with the help of ultrasound (Microson TM) or in an ultrasonic bath for 1 minute under cooling.
  • This suspension was added to a solution of 100 mg of the copolymer of methyl vinyl ether and maleic anhydride (PVM / MA) [Gantrez® AN 119] in 3 mL of acetone.
  • PVM / MA copolymer of methyl vinyl ether and maleic anhydride
  • 10 mL of ethanol and 10 mL of deionized water were added. The resulting mixture was allowed to homogenize for 5 minutes.
  • the nanoparticle suspension was evaporated under reduced pressure (Büchi R-144, Switzerland) until both organic solvents were removed and the final volume was adjusted with water to 10 mL.
  • the nanoparticles obtained have encapsulated OVA (OVA-NP).
  • OVA-NP encapsulated OVA
  • the resulting suspension was subjected to purification by ultracentrifugation (20 minutes at 27,000 x g). The supernatants were removed and the residue was resuspended in water or in a 5% aqueous sucrose solution. Finally, the resulting nanoparticle suspension was lyophilized, thereby keeping all its properties intact.
  • the resulting suspension was subjected to magnetic stirring for 1 hour at room temperature and purified by centrifugation at 27,000 xg for 20 minutes, collecting the supernatants to quantify the thiamine bound to the nanoparticles. Subsequently, 100 ⁇ L of a 1% v / v solution of 1,3-diaminopropane was added, subjecting the whole to magnetic stirring for 5 minutes. The resulting suspension was subjected to purification by ultracentrifugation (20 minutes at 27,000 xg). The supernatants were removed and the residue was resuspended in water or in a 5% aqueous sucrose solution. Finally, the resulting nanoparticle suspension was lyophilized, thereby keeping all its properties intact.
  • Table 3 summarizes the main physicochemical characteristics of the resulting nanoparticles (OVA-NP and OVA-T-NP).
  • OVA-T-NP formulation showed a significantly larger size (412 nm) than the control nanoparticles (280 nm).
  • the presence of OVA slightly affects the amount of thiamine attached to the surface of the nanoparticles.
  • the presence of this protein (OVA) decreased by 20% the amount of vitamin (thiamine) bound (12 ⁇ g / mg vs 15 ⁇ g / mg).
  • the amount of encapsulated OVA was determined, in this case, by densitometry of the bands of this protein in the SDS-PAGE gel, using the Microlmage® Version 4 program.
  • the amount of OVA was, for OVA-NP and OVA-T - NP, of 12.1 ⁇ 1.4 and 11.6 ⁇ 2.3 ⁇ g / mg nanoparticles, respectively.
  • Figure 6 shows the titers of IgG2a and IgGl after oral or subcutaneous immunization of Balb / C mice with a single dose of the different treatments (OVA-NP, OVA-T-NP and free protein).
  • Table 4 summarizes the values of the areas under the curves of the immune response.
  • AUCs areas under curves
  • AUCs are expressed as arbitrary units (title x time)
  • the OVA-NP nanoparticles After oral administration, the OVA-NP nanoparticles also showed a predominantly Th2 type profile (Figure 6).
  • the oral ThI response was very low (AUC of 1.5; AUQ h2 is 7 times higher than AUCa 11 , see Table 4) and, at the same time, the antibody response induced by oral administration was lower than that described after subcutaneous administration.
  • ThI-type responses may be related to the high tropism of the T-NP nanoparticles by the regions. distal of the small intestine, as well as its capture by the Peyer plates rich in antigen presenting cells ( Figures 3-5).
  • FIG. 7 shows the evolution of anti-OVA antibodies of the IgA type in the feces of mice immunized by the s.c. or oral
  • immunization with nanoparticles regardless of the route of administration, induced the production of high levels of IgA.
  • thiamine-coated nanoparticles (T-NP) induced the secretion of significantly higher levels of intestinal IgA than conventional nanoparticles.
  • this difference was 64 times greater for the OVA-T-NP nanoparticles than for the OVA-NP nanoparticles.
  • This phenomenon may be related to the effective capture of the T-NP nanoparticles by the Peyer plates of the gastrointestinal tract and their passage to the lymphocytes responsible for the synthesis and secretion at the level of IgA mucous membranes.
  • T-NP thiamine-coated nanoparticles
  • these polymeric transporters are capable of reaching Peyer's plates and potentiating a high induction of antibodies against the transported antigen.
  • the response that is generated is humoral (Th2) and cellular (ThI), which may be of interest for vaccination against numerous pathogens and for immunotherapy for the treatment of allergies.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical & Material Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Epidemiology (AREA)
  • Nanotechnology (AREA)
  • Optics & Photonics (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Immunology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

The invention relates to nanoparticles for the administration of biologically active molecules comprising a biodegradable polymer, preferably the copolymer of methyl vinyl ether and maleic anhydride (MVE/MA), and thiamine. Such nanoparticles are simply produced having excellent characteristics of bioadhesion, size and zeta potential, rendering them suitable for the administration of active molecules. The procedure of obtainment of such nanoparticles is realised by simple incubation for a short period of time, the nanoparticles being preformed in an aqueous medium. The biologically active molecule may be incorporated during the process of formation of the nanoparticles by desolvation or through modification with thiamine. By oral route said nanoparticles develop bioadhesive interactions with the gastrointestinal mucous membrane, including the lymphoid tissue associated with mucous membranes (Peyer's patches), and are therefore useful for increasing the oral bioavailability of various drugs or inducing immune responses in mucous membranes. Thus when such nanoparticles contain an antigen within the matrix thereof the resultant mixture is capable of inducing strong immune responses to the encapsulated antigen. Such stimulating effect on immune response is useful in vaccination and immunotherapy.

Description

NANOPARTÍCULAS BIO ADHESIVAS PARA LA ADMINISTRACIÓN DE MOLÉCULAS BIOLÓGICAMENTE ACTIVAS BIO ADHESIVE NANOPARTICLES FOR THE ADMINISTRATION OF BIOLOGICALLY ACTIVE MOLECULES
CAMPO DE LA INVENCIÓNFIELD OF THE INVENTION
La invención se relaciona con nanopartículas bioadhesivas, a base de un polímero biodegradáble y tiamina, procedimientos para su fabricación, formulaciones que las contienen y sus aplicaciones.The invention relates to bioadhesive nanoparticles, based on a biodegradable polymer and thiamine, manufacturing processes, formulations containing them and their applications.
ANTECEDENTES DELAINVENCIÓNBACKGROUND OF THE INVENTION
En los últimos años las nanopartículas poliméricas biodegradables han sido propuestas como nuevos sistemas transportadores de fármacos o moléculas biológicamente activas. En el caso de la administración de fármacos a través de mucosas, las características más importantes que ofrecen a la molécula biológicamente activa que incorporan son: (i) protección frente a una posible degradación físico- química y/o enzimática (incremento de su vida media en el organismo); (ii) liberación controlada del fármaco incorporado (efectos sostenidos que permiten disminuir el número de tomas); (iii) interacción/adhesión con la superficie de la mucosa donde tiene lugar la absorción o la acción del fármaco (incremento de su biodisponibilidad); y (iv) en el caso de vacunación, facilitan la presentación del antígeno incorporado a las células presentadoras de antígeno.In recent years biodegradable polymeric nanoparticles have been proposed as new transport systems for drugs or biologically active molecules. In the case of the administration of drugs through mucous membranes, the most important characteristics that they offer to the biologically active molecule that they incorporate are: (i) protection against possible physical-chemical and / or enzymatic degradation (increase in their half-life in the organism); (ii) controlled release of the incorporated drug (sustained effects that reduce the number of doses); (iii) interaction / adhesion with the surface of the mucosa where absorption or drug action takes place (increased bioavailability); and (iv) in the case of vaccination, they facilitate the presentation of the incorporated antigen to the antigen presenting cells.
La vía oral es la ruta más conveniente y popular para la administración de fármacos. Sin embargo, la biodisponibilidad de una determinada molécula activa depende (i) de las características de la molécula del fármaco y de su forma farmacéutica de administración, y (ii) de las condiciones fisiológicas presentes en el tracto gastrointestinal, tales como la presencia de enzimas proteolíticas, los movimientos peristálticos y el metabolismo presistémico. El uso de nanopartículas poliméricas puede ser una buena estrategia para superar algunos de estos obstáculos. En principio, estos transportadores poseen una gran superficie específica con lo que su interacción con el soporte biológico (la mucosa gastrointestinal) está facilitada. Igualmente, el control de la liberación del fármaco, permite prolongar en el tiempo el efecto de moléculas con semi-vidas biológicas bajas. Por otra parte, las nanopartículas pueden ser captadas por las células de las placas de Peyer y por los folículos de tejido linfoide. Este fenómeno permite direccionar el fármaco hacia la vía linfática y, en el caso de vacunas, facilitar su presentación antigénica. Sin embargo, las nanopartículas convencionales a base de polímeros biodegradables presentan algunas desventajas importantes con respecto a su uso por vía oral: (i) cierta inestabilidad en los líquidos gastrointestinales, (ii) un bajo grado de absorción intestinal y (iii) un tropismo o adhesión no especifica en la mucosa gastrointestinal.The oral route is the most convenient and popular route for drug administration. However, the bioavailability of a certain active molecule depends (i) on the characteristics of the drug molecule and its pharmaceutical form of administration, and (ii) on the physiological conditions present in the gastrointestinal tract, such as the presence of enzymes. proteolytic, peristaltic movements and presystemic metabolism. The use of polymeric nanoparticles can be a good strategy to overcome some of these obstacles. In principle, these transporters have a large specific surface so that their interaction with the biological support (the gastrointestinal mucosa) is facilitated. Likewise, the control of drug release allows the effect of molecules with low biological half-lives to be prolonged over time. On the other hand, nanoparticles can be captured by Peyer's plate cells and lymphoid tissue follicles. This phenomenon allows the drug to be directed towards the lymphatic route and, in the case of vaccines, to facilitate its antigen presentation. However, conventional nanodeparticles based on biodegradable polymers have some important disadvantages with respect to their oral use: (i) some instability in gastrointestinal fluids, (ii) a low degree of intestinal absorption and (iii) a tropism or non-specific adhesion in the gastrointestinal mucosa.
Una posible estrategia para minimizar estos inconvenientes asociados al uso de nanopartículas convencionales, se basa en la utilización de nanopartículas recubiertas con determinados ligandos con especificidad por determinados receptores del la mucosa. Los principales ligandos propuestos para la preparación de estos conjugados nanopartícula-ligando han sido, hasta el momento: (i) anticuerpos; (ii) adhesinas, invasinas u otras proteínas bacterianas; (iii) carbohidratos; (iv) vitamina B12; y lectinas. De entre todos estos tipos de ligandos, las lectinas parecen ser los ligandos más versátiles. Estas moléculas son proteínas o glicoproteínas, de origen no inmunogénico, capaces de reconocer específicamente azúcares localizados en los glicoconjugados.A possible strategy to minimize these inconveniences associated with the use of conventional nanoparticles is based on the use of nanoparticles coated with certain ligands with specificity for certain mucosal receptors. The main ligands proposed for the preparation of these nanoparticle-ligand conjugates have been, so far: (i) antibodies; (ii) adhesins, invasins or other bacterial proteins; (iii) carbohydrates; (iv) vitamin B 12 ; and lectins. Among all these types of ligands, lectins appear to be the most versatile ligands. These molecules are proteins or glycoproteins, of non-immunogenic origin, capable of specifically recognizing sugars located in the glycoconjugates.
Diferentes estudios han demostrado la adhesión específica a determinadas zonas del tracto gastrointestinal mediante conjugados entre partículas y lectinas. Así, por ejemplo, se ha visto que la lectina del tomate (Lycopersicon esculentum) posee buena afinidad por la mucosa del intestino. Sin embargo, los conjugados con esta lectina tienen muy poca afinidad por las placas de Peyer. Tras la administración en ratas de conjugados se ha observado un retraso del tránsito intestinal y, además, un aumento en su absorción. Igualmente, conjugados a base de ácido poliláctico y las lectinas de L. esculentum y Lotus tetragonobolus han permitido el aumento de la fracción de partículas adheridas al tracto intestinal.Different studies have demonstrated specific adhesion to certain areas of the gastrointestinal tract by conjugates between particles and lectins. Thus, for example, it has been seen that tomato lectin (Lycopersicon esculentum) has a good affinity for the intestine mucosa. However, conjugates with this lectin have very low affinity for Peyer's plaques. After administration in conjugate rats, a delay in intestinal transit has been observed and, in addition, an increase in their absorption. Likewise, conjugates based on polylactic acid and the lectins of L. esculentum and Lotus tetragonobolus have allowed the increase in the fraction of particles attached to the intestinal tract.
Otro posible ligando puede ser la tiamina. La tiamina (o vitamina Bl) es esencial para el normal desarrollo de las funciones celulares y el crecimiento. Los mamíferos no pueden sintetizar esta vitamina y, por ello, debe ser obtenida vía absorción intestinal desde los alimentos procesados o tras su síntesis por la microflora del intestino grueso. El proceso de absorción de la tiamina es bastante complicado; aunque se ha propuesto un mecanismo basado en la existencia de un receptor (asociado a una bomba de protones) que se encuentra localizado en las membranas basolaterales del jejuno y del íleon. Recientemente, se ha descrito que, en humanos, el transportador de tiamina se expresa a lo largo de todo el tracto gastrointestinal, aunque de forma mayoritaria en la membrana apical del tcborde en cepillo".Another possible ligand may be thiamine. Thiamine (or vitamin Bl) is essential for the normal development of cell functions and growth. Mammals cannot synthesize this vitamin and, therefore, must be obtained via intestinal absorption from processed foods or after synthesis by microflora of the large intestine. The thiamine absorption process is quite complicated; although a mechanism based on the existence of a receptor (associated with a proton pump) that is located in the basolateral membranes of the jejuno and the ileum. Recently, it has been described that, in humans, the thiamine transporter is expressed throughout the entire gastrointestinal tract, although mostly in the apical membrane of the brush border tc ".
El uso de tiamina como ligando de nanopartículas ha sido investigado en los últimos años. Así, se ha descrito que la tiamina puede ser un buen ligando para facilitar la unión o la asociación de las nanopartículas a la barrera hematoencefálica y para interaccionar con células de tumor de mama. Sin embargo, hasta la fecha no se tiene conocimiento del uso de la tiamina como ligando para dirigir nanopartículas destinadas a la administración oral de moléculas biológicamente activas, incluyendo su uso como adyuvantes para vacunación e inmunoterapia.The use of thiamine as a nanoparticle ligand has been investigated in recent years. Thus, it has been described that thiamine may be a good ligand to facilitate the binding or association of nanoparticles to the blood brain barrier and to interact with breast tumor cells. However, to date there is no knowledge of the use of thiamine as a ligand to direct nanoparticles intended for oral administration of biologically active molecules, including their use as adjuvants for vaccination and immunotherapy.
Uso de adyuvantes en vacunaciónUse of adjuvants in vaccination
El empleo de adyuvantes particulados en forma de emulsiones, micropartículas, ISCOMS o liposomas ha sido evaluado anteriormente por diversos grupos de investigación [Singh and OΗagan, Int. J. Parasitology, 33 (2003) 469-478].The use of particulate adjuvants in the form of emulsions, microparticles, ISCOMS or liposomes has been previously evaluated by various research groups [Singh and OΗagan, Int. J. Parasitology, 33 (2003) 469-478].
La captura de antígenos por "células presentadoras de antígenos" se incrementa cuando estos se asocian con partículas poliméricas o se incluyen dentro de ellas. Poliésteres biodegradables y biocompatibles se emplean en humanos y animales desde hace años como sistemas de liberación controlada de antígenos. En contraposición a los adyuvantes de aluminio, las micro- y nanopartículas son efectivas en la inducción de respuestas inmunitarias celulares y citotóxicas en ratón. En ratón, la inmunización oral con micropartículas induce potentes respuestas inmunitarias a nivel de mucosas y sistémicas frente a los antígenos encapsulados. Esta capacidad es consecuencia de su internalización por células especializadas del tejido linfoide de las mucosas. La inmunización por vía de las mucosas con diferentes sistemas particulados ha demostrado su eficacia frente a distintos patógenos, como Bordetella pertussis, Chlamidia trachomatis, Salmonella typhimurium y Brucella sp.The capture of antigens by "antigen presenting cells" is increased when they are associated with or included in polymer particles. Biodegradable and biocompatible polyesters have been used in humans and animals for years as controlled antigen release systems. In contrast to aluminum adjuvants, micro- and nanoparticles are effective in inducing cellular and cytotoxic immune responses in mice. In mice, oral immunization with microparticles induces potent mucosal and systemic immune responses against encapsulated antigens. This ability is a consequence of its internalization by specialized cells of the lymphoid tissue of the mucous membranes. Immunization via mucous membranes with different particulate systems has proven effective against different pathogens, such as Bordetella pertussis, Chlamidia trachomatis, Salmonella typhimurium and Brucella sp.
Uso de adyuvantes en inmunoterapia El tratamiento de las enfermedades alérgicas puede abordarse fundamentalmente de tres maneras distintas: (i) evitando todo contacto con el alérgeno; (ii) utilizando fármacos antihistamínicos, y (iii) mediante inmunoterapia. Teniendo en cuenta que las dos primeras medidas son, en ocasiones, no aplicables, la inmunoterapia sería el método más adecuado de control.Use of adjuvants in immunotherapy The treatment of allergic diseases can be approached fundamentally in three different ways: (i) avoiding all contact with the allergen; (ii) using antihistamine drugs, and (iii) by immunotherapy. Given that the first two measures are sometimes not applicable, immunotherapy would be the most appropriate method of control.
La inmunoterapia específica con alérgenos ha sido definida como la administración repetida de alérgenos a pacientes con trastornos de salud mediados por IgE, con el propósito de proporcionar protección contra los síntomas alérgicos y las reacciones inflamatorias asociadas con la exposición natural a estos alérgenos.Specific allergen immunotherapy has been defined as repeated administration of allergens to patients with IgE-mediated health disorders, with the purpose of providing protection against allergic symptoms and inflammatory reactions associated with natural exposure to these allergens.
Esta alternativa de tratamiento está dirigida a potenciar un predominio funcional de la respuesta ThI respecto a la respuesta Th2, lo cual hará que se inhiba la sintomatología alérgica. Esta modulación hacia ThI es también aplicable en otros procesos, tales como el control mediante vacunación frente a parásitos intracelulares bacterianos (e.g., Brucella o Salmonellá).This treatment alternative is aimed at enhancing a functional predominance of the ThI response with respect to the Th2 response, which will cause allergic symptoms to be inhibited. This modulation towards ThI is also applicable in other processes, such as control by vaccination against bacterial intracellular parasites (e.g., Brucella or Salmonellá).
Se han descrito nanopartículas de copolímero de polivinil metil éter y anhídrido maleico (PVM/MA) [WO02/069938], opcionalmente pegiladas [ES2246694], útiles como vehículos de fármacos. Asimismo, se ha descrito el uso de dichas nanopartículas de PVM/MA como sustancias estimuladoras de la respuesta inmune.Nanoparticles of copolymer of polyvinyl methyl ether and maleic anhydride (PVM / MA) [WO02 / 069938], optionally pegylated [ES2246694], useful as drug carriers have been described. Likewise, the use of said PVM / MA nanoparticles as immune stimulating substances has been described.
No obstante, aunque se ha descrito el empleo de diversos vectores de origen no biológico, por ejemplo, nanopartículas, como adyuvantes en inmunoterapia o en vacunas para la administración de antígenos y/o alérgenos, sigue existiendo la necesidad de proporcionar adyuvantes alternativos a los existentes con el fin de aumentar el arsenal de posibilidades para la elaboración de vacunas y composiciones para inmunoterapia. Ventajosamente, dichos adyuvantes deberían ser útiles para su empleo en inmunización o inmunoterapia por vía oral sin necesidad de tener que utilizar dosis de alérgeno o antígeno muy elevadas. Como es conocido, a pesar de sus potenciales ventajas, la inmunización oral con fines terapéuticos o profilácticos tiene que hacer frente a diferentes obstáculos, ya que la dosis de principio activo inmunogénico o alergénico requerido para un efecto clínico beneficioso es extremadamente grande debido a una pérdida de potencia del inmunógeno. Así, debido a la, en general, poca estabilidad del alérgeno o del antígeno en el tracto gastrointestinal (condiciones de pH y presencia de enzimas hidrolíticas), las dosis deben ser siempre muy superiores (hasta 200 veces) a las utilizadas normalmente por vía subcutánea. Además, la mucosa gastrointestinal actúa como una barrera muy poco permeable a la absorción de estas macromoléculas. COMPENDIO DE LA INVENCIÓNHowever, although the use of various vectors of non-biological origin has been described, for example, nanoparticles, as adjuvants in immunotherapy or in vaccines for the administration of antigens and / or allergens, there is still a need to provide alternative adjuvants to existing ones. in order to increase the arsenal of possibilities for the development of vaccines and compositions for immunotherapy. Advantageously, said adjuvants should be useful for use in oral immunization or immunotherapy without having to use very high doses of allergen or antigen. As is known, despite its potential advantages, oral immunization for therapeutic or prophylactic purposes has to face different obstacles, since the dose of immunogenic or allergenic active ingredient required for a beneficial clinical effect is extremely large due to a loss. of immunogen potency. Thus, due to, in general, poor stability of the allergen or antigen in the gastrointestinal tract (pH conditions and presence of hydrolytic enzymes), the doses should always be much higher (up to 200 times) than those normally used subcutaneously . In addition, the gastrointestinal mucosa acts as a barrier very little permeable to the absorption of these macromolecules. SUMMARY OF THE INVENTION
El objeto de la presente invención es proporcionar nanopartículas que solucionen los problemas mencionados anteriormente, es decir, que puedan ser administradas por vía oral y sean estables y específicas, que tengan buenas características bioadhesivas para interaccionar con las mucosas, que sean capaces de transportar un amplio grupo de moléculas activas y que liberen la molécula activa de forma controlada. Como característica adicional se pretende que dichas nanopartículas actúen como adyuvantes en vacunas e inmunoterapia potenciando la respuesta inmune de antígenos o alérgenos. Ahora se ha encontrado, sorprendentemente, que dichos problemas pueden resolverse mediante unas nanopartículas formadas por un polímero biodegradable y tiamina. En particular, se ha encontrado que nanopartículas que comprenden o consisten en (i) un copolímero de polivinil metil éter (PVM) y anhídrido maleico (MA) y (ii) tiamina, además de ser fáciles de producir, proporcionan excelentes características de bioadhesión y tamaño, lo que las hace adecuadas para la administración a través de diferentes vías de compuestos o moléculas biológicamente activas. Asimismo, se ha podido demostrar que las nanopartículas proporcionadas por esta invención que, opcionalmente, contienen una molécula biológicamente activa, por ejemplo, un alérgeno o un antígeno, tienen la capacidad de estimular o potenciar la respuesta inmunitaria cuando se administran a un sujeto, lo que permite su empleo en inmunoterapia y vacunas.The object of the present invention is to provide nanoparticles that solve the aforementioned problems, that is, that can be administered orally and are stable and specific, that have good bioadhesive characteristics to interact with the mucous membranes, that are capable of transporting a wide group of active molecules that release the active molecule in a controlled manner. As an additional feature, these nanoparticles are intended to act as adjuvants in vaccines and immunotherapy, enhancing the immune response of antigens or allergens. It has now been found, surprisingly, that such problems can be solved by nanoparticles formed by a biodegradable polymer and thiamine. In particular, it has been found that nanoparticles comprising or consisting of (i) a copolymer of polyvinyl methyl ether (PVM) and maleic anhydride (MA) and (ii) thiamine, in addition to being easy to produce, provide excellent bioadhesion characteristics and size, which makes them suitable for administration through different pathways of biologically active compounds or molecules. Likewise, it has been shown that the nanoparticles provided by this invention that, optionally, contain a biologically active molecule, for example, an allergen or an antigen, have the ability to stimulate or enhance the immune response when administered to a subject, which allows its use in immunotherapy and vaccines.
Por tanto, en un aspecto, la invención se relaciona con nanopartículas que comprenden un polímero biodegradable y tiamina o sus derivados. En una realización particular, dicho polímero biodegradable es un copolímero de metil vinil éter y anhídrido maleico (PVM/MA). En otra realización particular, la tiamina se encuentra recubriendo total o parcialmente la superficie de las nanopartículas que comprenden dicho polímero biodegradable. En otra realización particular, la relación en peso entre la tiamina y el polímero biodegradable está comprendida entre 1:10 y 1:500, preferentemente, entre 1:10 y 1:100, más preferentemente alrededor de 1:40. Las nanopartículas proporcionadas por esta invención pueden ser utilizadas para el transporte de moléculas biológicamente activas. En este sentido, dichas nanopartículas pueden incluir una o más moléculas biológicamente activas, cuya naturaleza química puede variar dentro de un amplio abanico de posibilidades, incluyendo, pero sin limitarse a, péptidos, proteínas, ácidos nucleicos (e.g., ADN, ARN, etc.), nucleósidos, nucleótidos, oligonucleótidos, polinucleótidos, etc. Dicha molécula biológicamente activa puede ser un fármaco o compuesto con actividad terapéutica o de diagnóstico, e.g., un agente antitumoral, un protector del sistema nervioso central, un glucocorticoide, etc., un antígeno para vacunación o un alérgeno para inmunoterapia, entre otros. Por tanto, las nanopartículas proporcionadas por esta invención se pueden utilizar en la elaboración de composiciones farmacéuticas.Therefore, in one aspect, the invention relates to nanoparticles comprising a biodegradable polymer and thiamine or its derivatives. In a particular embodiment, said biodegradable polymer is a copolymer of methyl vinyl ether and maleic anhydride (PVM / MA). In another particular embodiment, the thiamine is completely or partially covering the surface of the nanoparticles comprising said biodegradable polymer. In another particular embodiment, the weight ratio between thiamine and the biodegradable polymer is between 1:10 and 1: 500, preferably between 1:10 and 1: 100, more preferably around 1:40. The nanoparticles provided by this invention can be used for the transport of biologically active molecules. In this sense, said nanoparticles can include one or more biologically active molecules, whose Chemical nature may vary within a wide range of possibilities, including, but not limited to, peptides, proteins, nucleic acids (eg, DNA, RNA, etc.), nucleosides, nucleotides, oligonucleotides, polynucleotides, etc. Said biologically active molecule can be a drug or compound with therapeutic or diagnostic activity, eg, an antitumor agent, a central nervous system protector, a glucocorticoid, etc., an antigen for vaccination or an allergen for immunotherapy, among others. Therefore, the nanoparticles provided by this invention can be used in the preparation of pharmaceutical compositions.
En otro aspecto, la invención se relaciona con una composición farmacéutica que comprende dichas nanopartículas previamente descritas y una molécula biológicamente activa, en donde dicha molécula biológicamente activa es una molécula capaz de prevenir, aliviar o curar una enfermedad o una molécula con aplicación en diagnóstico, junto con un vehículo o excipiente farmacéuticamente aceptable. En una realización particular, dicha composición es una composición farmacéuticas destinada para su administración por vía oral o por vía parenteral. Si se desea, dicha composición farmacéutica puede estar en forma de un liofilizado.In another aspect, the invention relates to a pharmaceutical composition comprising said previously described nanoparticles and a biologically active molecule, wherein said biologically active molecule is a molecule capable of preventing, alleviating or curing a disease or a molecule with diagnostic application, together with a pharmaceutically acceptable carrier or excipient. In a particular embodiment, said composition is a pharmaceutical composition intended for administration orally or parenterally. If desired, said pharmaceutical composition may be in the form of a lyophilisate.
En otro aspecto, la invención se relaciona con una vacuna o composición para inmunoterapia que comprende una cantidad terapéuticamente eficaz de las nanopartículas proporcionadas por esta invención, previamente descritas, y un antígeno o alérgeno, junto con un vehículo, adyuvante o excipiente farmacéuticamente aceptable.In another aspect, the invention relates to a vaccine or composition for immunotherapy comprising a therapeutically effective amount of the nanoparticles provided by this invention, previously described, and an antigen or allergen, together with a pharmaceutically acceptable carrier, adjuvant or excipient.
En otro aspecto, la invención se relaciona con un producto que comprende, de forma separada, a) un antígeno o un alérgeno; y b) una composición que comprende dichas nanopartículas basadas en un polímero biodegradable y tiamina, como composición potenciadora de la respuesta inmune frente a dicho antígeno o alérgeno, como combinación para su administración simultánea o secuencia! a un sujeto, en la inducción o estimulación de una respuesta inmune frente a dicho antígeno o alérgeno en dicho sujeto.In another aspect, the invention relates to a product comprising, separately, a) an antigen or an allergen; and b) a composition comprising said nanoparticles based on a biodegradable polymer and thiamine, as a composition that enhances the immune response against said antigen or allergen, as a combination for simultaneous administration or sequence! to a subject, in the induction or stimulation of an immune response against said antigen or allergen in said subject.
En otro aspecto, la invención se relaciona con el uso de las nanopartículas que comprenden un copolímero biodegradable y tiamina previamente descritas en la elaboración de una composición farmacéutica para la estimulación selectiva de la respuesta inmune de ThI, o en la elaboración de una composición farmacéutica para la estimulación selectiva de la respuesta inmune de Th2, o en la elaboración de una composición farmacéutica para la estimulación equilibrada de las respuestas inmunes de Thl yTh2.In another aspect, the invention relates to the use of nanoparticles comprising a biodegradable copolymer and thiamine previously described in the preparation of a pharmaceutical composition for the selective stimulation of the ThI immune response, or in the preparation of a pharmaceutical composition for selective stimulation of the Th2 immune response, or in the development of a Pharmaceutical composition for balanced stimulation of Thl and Th2 immune responses.
En un aspecto adicional, la invención se relaciona con un procedimiento para la producción de las nanopartículas que comprenden un copolímero biodegradable y tiamina previamente descritas que comprende: a) la desolvatación de una solución orgánica que comprende un polímero biodegradable, con una solución hidroalcohólica, para formar las nanopartículas; b) la incubación simultánea de las nanopartículas de polímero biodegradable previamente formadas con tiamina en una solución acuosa; y c) la eliminación de los disolventes orgánicos, con lo que se obtiene una suspensión acuosa de nanopartículas que comprenden un polímero biodegradable y tiamina. Si se desea, dichas nanopartículas pueden estabilizarse mediante el empleo de agentes reticulantes. En una realización particular, la concentración del polímero biodegradable en dichas nanopartículas está comprendida entre 0,001 y 10% p/v y la de la tiamina entre 0,001 y 5% p/v. Para la obtención de nanopartículas cargadas moléculas biológicamente activas, éstas se pueden incorporar bien en la fase orgánica donde previamente se ha disuelto el polímero biodegradable, antes de su desolvatación, o bien, posteriormente, en la suspensión acuosa de las nanopartículas ya formadas para que se produzca su asociación.In a further aspect, the invention relates to a process for the production of nanoparticles comprising a biodegradable copolymer and thiamine previously described comprising: a) the desolvation of an organic solution comprising a biodegradable polymer, with a hydroalcoholic solution, for form the nanoparticles; b) simultaneous incubation of previously formed biodegradable polymer nanoparticles with thiamine in an aqueous solution; and c) the removal of organic solvents, whereby an aqueous suspension of nanoparticles comprising a biodegradable polymer and thiamine is obtained. If desired, said nanoparticles can be stabilized by the use of crosslinking agents. In a particular embodiment, the concentration of the biodegradable polymer in said nanoparticles is between 0.001 and 10% w / v and that of thiamine between 0.001 and 5% w / v. To obtain biologically active molecules loaded nanoparticles, these can be incorporated either in the organic phase where the biodegradable polymer has previously dissolved, before desolvation, or, subsequently, in the aqueous suspension of the nanoparticles already formed so that it Produce your association.
BREVE DESCRIPCIÓN DE LAS FIGURASBRIEF DESCRIPTION OF THE FIGURES
La Figura 1 es una fotografía del resultado de un análisis por microscopía electrónica de barrido para una muestra liofilizada de nanopartículas recubiertas de tiamina (T-NP). La Figura 2 es un diagrama que muestra la liberación del marcador fluorescenteFigure 1 is a photograph of the result of a scanning electron microscopy analysis for a lyophilized sample of thiamine coated nanoparticles (T-NP). Figure 2 is a diagram showing the fluorescent marker release
(rodamina B isotiocianato, RBITC) desde las nanopartículas recubiertas de tiamina (T- NP) y de las nanopartículas control (NP) tras su incubación en medios gástrico simulado (FGS) e intestinal simulado (FIS). Los datos se expresan como media ± SD (n=3).(rhodamine B isothiocyanate, RBITC) from thiamine coated nanoparticles (T-NP) and control nanoparticles (NP) after incubation in simulated gastric (FGS) and simulated intestinal (FIS) media. Data are expressed as mean ± SD (n = 3).
La Figura 3 está formada por unos diagramas que muestran la distribución de nanopartículas en el tracto gastrointestinal de animales de laboratorio, tras la administración por vía oral de una dosis de 10 mg de nanopartículas marcadas con RBITC. La Figura 3 a es un diagrama que muestra la distribución de nanopartículas recubiertas con tiamina (T-NP); la Figura 3b es un diagrama que muestra la distribución de nanopartículas control (NP); y la Figura 3 c es un diagrama que muestra la distribución de nanopartículas recubiertas con tiamina (T-NP) mezcladas con 5 mg de tiamina libre. El eje X representa los diferentes segmentos del tracto gastrointestinal [Estómago: Sto; porciones del intestino delgado: II, 12, 13, 14; ciego: Ce]; el eje Y representa la fracción adherida de nanopartículas a la mucosa (mg); y el eje Z representa el tiempo tras la administración (0,5, 1, 3 y 8 horas). Cada valor está representado por la media (n=3; SD fue inferior al 20% de la media). La Figura 4 es un gráfico que muestra las curvas de bioadhesión para las nanopartículas recubiertas de tiamina (T-NP) (¡ ), las nanopartículas control (NP) (? ), y T-NP co-administrada con 5 mg de tiamina libre (? ). Los datos representan la media ± SD (n=3).Figure 3 is formed by diagrams showing the distribution of nanoparticles in the gastrointestinal tract of laboratory animals, after oral administration of a 10 mg dose of nanoparticles labeled with RBITC. Figure 3 a is a diagram showing the distribution of thiamine coated nanoparticles (T-NP); Figure 3b is a diagram showing the distribution of control nanoparticles (NP); and Figure 3 c is a diagram showing the distribution of thiamine-coated nanoparticles (T-NP) mixed with 5 mg of free thiamine. The X axis represents the different segments of the gastrointestinal tract [Stomach: Sto; portions of the small intestine: II, 12, 13, 14; blind: Ce]; the Y axis represents the adhered fraction of nanoparticles to the mucosa (mg); and the Z axis represents the time after administration (0.5, 1, 3 and 8 hours). Each value is represented by the mean (n = 3; SD was less than 20% of the average). Figure 4 is a graph showing the bioadhesion curves for thiamine-coated nanoparticles (T-NP) (¡), control nanoparticles (NP) (?), And T-NP co-administered with 5 mg of free thiamine (?) The data represent the mean ± SD (n = 3).
La Figura 5 es un conjunto de fotografías que permiten visualizar las nanopartículas en tejido de íleon normal (M) y en las placas de Peyer (PP) mediante microscopía de fluorescencia, en concreto, las nanopartículas recubiertas de tiamina (T-Figure 5 is a set of photographs that allow visualization of nanoparticles in normal ileum tissue (M) and in Peyer's plates (PP) by fluorescence microscopy, specifically, thiamine coated nanoparticles (T-
NP) en la mucosa normal (a); las nanopartículas control (NP) en mucosa normal (b); lasNP) in the normal mucosa (a); control nanoparticles (NP) in normal mucosa (b); the
T-NP en PP (c); y NP en PP (d).T-NP in PP (c); and NP in PP (d).
La Figura 6 está compuesta por un conjunto de gráficas que muestran el perfil sérico de anticuerpos anti-OVA de tipo IgG2a e IgGl en ratones BALB/c (n =10). Los anticuerpos fueron cuantificados por ELISA comenzando con una dilución 1:40 del suero, seguida por diluciones dobles seriadas. La inmunización se realizó el día 0 mediante administración única bien de 20 μg de OVA en las diferentes formulaciones por vía subcutánea (a, b), o bien de 100 μg de OVA en las diferentes formulaciones por vía oral (c, d). Las formulaciones fueron OVA-T-NP (? ), OVA-NP (?), y OVA libre (? ). Los títulos de anticuerpos fueron determinados en el suero de los animales los días 0, 7, 14, 28 y 42. Los títulos se determinaron como la dilución final de la muestra con valores de absorbancia medios superiores a 0,2, comparando con los obtenidos en suero de animales no inmunizados. La Figura 7 está compuesta por un conjunto de gráficas que muestran el perfil fecal de IgA secretora anti-OVA en ratones BALB/c (n =10). La inmunización se realizó el día 0 mediante administración única bien de 20 μg de OVA en las diferentes formulaciones por vía subcutánea (a, c), o bien de 100 μg OVA por vía oral (c, d). Las formulaciones fueron OVA-T-NP (? ), OVA-NP (?), y OVA libre (? ). Los títulos de anticuerpos fueron determinados en el suero de los animales los días 0, 7, 14, 28 y 42. Los títulos se determinaron como la dilución final de la muestra con valores de absorbancia medios superiores a 0,2, comparando con los obtenidos en suero de animales no inmunizados.Figure 6 is composed of a set of graphs showing the serum profile of anti-OVA antibodies of type IgG2a and IgGl in BALB / c mice (n = 10). The antibodies were quantified by ELISA starting with a 1:40 dilution of serum, followed by serial double dilutions. Immunization was performed on day 0 by single administration of either 20 µg of OVA in the different formulations subcutaneously (a, b), or 100 µg of OVA in the different formulations orally (c, d). The formulations were OVA-T-NP (?), OVA-NP (?), And free OVA (?). Antibody titers were determined in the animals' serum on days 0, 7, 14, 28 and 42. The titres were determined as the final dilution of the sample with average absorbance values greater than 0.2, compared with those obtained. in serum of non-immunized animals. Figure 7 is composed of a set of graphs showing the fecal profile of anti-OVA secretory IgA in BALB / c mice (n = 10). Immunization was performed on day 0 by single administration either of 20 μg of OVA in the different formulations subcutaneously (a, c), or 100 μg OVA orally (c, d). The formulations were OVA-T-NP (?), OVA-NP (?), And free OVA (?). Antibody titers were determined in the animals' serum on days 0, 7, 14, 28 and 42. The titres were determined as the final dilution of the sample with average absorbance values greater than 0.2, compared with those obtained. in serum of non-immunized animals.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓNDETAILED DESCRIPTION OF THE INVENTION
En un aspecto, la invención se relaciona con unas nanopartículas, en adelante nanopartículas de la invención, que comprenden (i) un polímero biodegradable y (ii) tiamina o un derivado de la misma.In one aspect, the invention relates to nanoparticles, hereinafter nanoparticles of the invention, comprising (i) a biodegradable polymer and (ii) thiamine or a derivative thereof.
Las nanopartículas de la invención poseen unas adecuadas características físico- químicas, de bioadhesión y especificidad cuando se administran por vía oral, lo que las convierte en sistemas transportadores de fármacos o en sistemas presentadores de antígenos o alérgenos, de gran interés. De hecho, las nanopartículas de la invención pueden prolongar el tiempo de residencia en la mucosa tras su administración oral o a través de otra mucosa del organismo. Dichas nanopartículas pueden ser utilizadas para administrar moléculas biológicamente activas y mejorar su biodisponibilidad, incluyendo fármacos con ventanas estrechas de absorción, así como fármacos originarios de la biotecnología y compuestos o moléculas utilizados para potenciar o inducir respuestas inmunes en un sujeto.The nanoparticles of the invention have adequate physicochemical, bioadhesion and specificity characteristics when administered orally, which makes them into drug transport systems or antigen or allergen presenting systems of great interest. In fact, the nanoparticles of the invention can prolong the residence time in the mucosa after oral administration or through another mucosa of the organism. Said nanoparticles can be used to administer biologically active molecules and improve their bioavailability, including drugs with narrow absorption windows, as well as drugs originating in biotechnology and compounds or molecules used to enhance or induce immune responses in a subject.
Tal como aquí se utiliza, el término "nanopartícula" se refiere a una estructura formada por un polímero biodegradable modificada en su superficie mediante la unión de tiamina, o un derivado de la misma, que, opcionalmente, puede estar reticulado mediante la adición de un agente reticulante. La unión de la tiamina, o un derivado de la misma, al polímero biodegradable puede ser una unión covalente. La reacción entre el polímero biodegradable y la tiamina, y, opcionalmente, la subsiguiente reticulación, genera entidades físicas características, independientes y observables, cuyo tamaño medio es menor de 1 micrómetro (μm). Por "tamaño medio" se entiende el diámetro promedio de la población de nanopartículas que se mueve conjuntamente en un medio acuoso. El tamaño medio de estos sistemas se puede medir por procedimientos estándar conocidos por los expertos en la materia, y que se describen, a modo ilustrativo, en la parte experimental que acompaña a los ejemplos descritos más abajo.As used herein, the term "nanoparticle" refers to a structure formed by a biodegradable polymer modified on its surface by thiamine bonding, or a derivative thereof, which, optionally, can be crosslinked by the addition of a crosslinking agent. The binding of thiamine, or a derivative thereof, to the biodegradable polymer can be a covalent bond. The reaction between the biodegradable polymer and the thiamine, and, optionally, the subsequent crosslinking, generates characteristic, independent and observable physical entities, the average size of which is less than 1 micrometer (μm). By "average size" is meant the average diameter of the nanoparticle population that moves together in an aqueous medium. The average size of These systems can be measured by standard procedures known to those skilled in the art, and which are described, by way of illustration, in the experimental part that accompanies the examples described below.
Las nanopartículas de la invención se caracterizan por presentar un tamaño medio de partícula inferior a 1 μm, preferentemente presentan un tamaño medio comprendido entre 1 y 999 nm, más preferentemente entre 10 y 900 nm, aún más preferentemente entre 100 y 400 nm. El tamaño medio de las partículas se ve influenciado principalmente por la cantidad de tiamina, o su derivado, adicionada (a mayor cantidad de tiamina o derivado de la misma se incrementa el tamaño de la nanopartícula), por la cantidad y peso molecular del polímero biodegradable (a mayor cantidad o peso molecular del polímero biodegradable el tamaño medio de la nanopartícula se incrementa), y por algunos parámetros del procedimiento de producción de dichas nanopartículas, tales como la velocidad de agitación y la temperatura en la etapa de incubación con la fase acuosa que contiene la tiamina. Las nanopartículas de la invención comprenden un polímero biodegradable y tiamina o un derivado de la misma. El término "biodegradable", tal como aquí se utiliza, se refiere a polímeros que se disuelven o degradan en un periodo de tiempo que es aceptable para la aplicación deseada, en este caso terapia in vivo, una vez que se exponen a una solución fisiológica de pH comprendido entre 4 y 9, a una temperatura comprendida entre 25°C y 400C. Prácticamente cualquier polímero biodegradable conocido en el estado de la técnica que dé lugar a la formación de nanopartículas puede ser utilizado para la puesta en práctica de la presente invención. Ejemplos ilustrativos, no limitativos, de dichos polímeros biodegradables incluyen polihidroxiácidos, tales como ácido poliláctico, ácido poliglicólico, etc., y copolímeros de éstos, e.g., poli(ácido láctico-co-glicólico) [PLGA], etc.; polianhídridos; poliésteres; y polisacáridos, e.g., quitosano, etc. El peso molecular de dicho polímero biodegradable puede variar dentro de un amplio intervalo siempre y cuando satisfaga las condiciones establecidas de formar nanopartículas y ser biodegradable.The nanoparticles of the invention are characterized by having an average particle size of less than 1 μm, preferably having an average size between 1 and 999 nm, more preferably between 10 and 900 nm, even more preferably between 100 and 400 nm. The average particle size is mainly influenced by the amount of thiamine, or its derivative, added (the greater the amount of thiamine or the derivative thereof increases the size of the nanoparticle), by the amount and molecular weight of the biodegradable polymer (the greater the size or molecular weight of the biodegradable polymer, the average size of the nanoparticle is increased), and by some parameters of the production process of said nanoparticles, such as the stirring speed and the temperature in the incubation stage with the aqueous phase It contains thiamine. The nanoparticles of the invention comprise a biodegradable polymer and thiamine or a derivative thereof. The term "biodegradable", as used herein, refers to polymers that dissolve or degrade in a period of time that is acceptable for the desired application, in this case in vivo therapy, once they are exposed to a physiological solution. pH between 4 and 9, at a temperature between 25 ° C and 40 0 C. Virtually any biodegradable polymer known in the state of the art that results in the formation of nanoparticles can be used for the implementation of the present invention Illustrative, non-limiting examples of said biodegradable polymers include polyhydroxy acids, such as polylactic acid, polyglycolic acid, etc., and copolymers thereof, eg, poly (lactic-co-glycolic acid) [PLGA], etc .; polyanhydrides; polyesters; and polysaccharides, eg, chitosan, etc. The molecular weight of said biodegradable polymer can vary within a wide range as long as it satisfies the established conditions of forming nanoparticles and being biodegradable.
En una realización particular, el polímero biodegradable utilizado es el copolímero de metil vinil éter y anhídrido maleico en forma anhídrido (PVM/MA), denominado comercialmente Gantrez® AN. Ventajosamente, dicho copolímero deIn a particular embodiment, the biodegradable polymer used is the copolymer of methyl vinyl ether and maleic anhydride in anhydride form (PVM / MA), commercially referred to as Gantrez® AN. Advantageously, said copolymer of
PVM/MA tiene un peso molecular comprendido entre 100 y 2.400 kDa, preferentemente entre 200 y 2.000 kDa, más preferentemente entre 180 y 250 kDa. Este polímero biodegradable (PVM/MA) resulta particularmente ventajoso ya que se utiliza ampliamente en tecnología farmacéutica debido a su baja toxicidad (DL50 = 8-9 g/kg por vía oral) y excelente biocompatibilidad. Además, es fácil de obtener, tanto por la cantidad como por su precio. Este polímero biodegradable (PVM/MA) puede reaccionar con distintas sustancias hidrófilas, debida a la presencia de sus grupos anhídridos, sin tener que recurrir a los reactivos orgánicos usuales (glutaraldehído, derivados de carbodiimida, etc.) que poseen una toxicidad importante. En un medio acuoso, el copolímero PVM/MA es insoluble, pero sus grupos anhídrido se hidrolizan dando lugar a unos grupos carboxílicos. La disolución es lenta y depende de las condiciones en que se produce. Debido a la disponibilidad de grupos funcionales en PVM/MA, la unión covalente de moléculas con grupos nucleofílicos, tales como hidróxido o amino, tiene lugar por simple incubación en un medio acuoso.PVM / MA has a molecular weight between 100 and 2,400 kDa, preferably between 200 and 2,000 kDa, more preferably between 180 and 250 kDa. This biodegradable polymer (PVM / MA) is particularly advantageous since it is widely used in pharmaceutical technology due to its low toxicity (LD 50 = 8-9 g / kg orally) and excellent biocompatibility. In addition, it is easy to obtain, both for quantity and price. This biodegradable polymer (PVM / MA) can react with different hydrophilic substances, due to the presence of its anhydrous groups, without having to resort to the usual organic reagents (glutaraldehyde, carbodiimide derivatives, etc.) that possess an important toxicity. In an aqueous medium, the PVM / MA copolymer is insoluble, but its anhydride groups are hydrolyzed giving rise to carboxylic groups. The dissolution is slow and depends on the conditions in which it occurs. Due to the availability of functional groups in PVM / MA, covalent binding of molecules with nucleophilic groups, such as hydroxide or amino, takes place by simple incubation in an aqueous medium.
Las nanopartículas de la invención comprenden, además del polímero biodegradable, tiamina o un derivado de la misma. La tiamina, también denominada vitamina Bl, o 3-[(4-amino-2-metil-5-pirimidinil)metil]-5-(2-hidroxietil)-4-metil- tiazolio cloruro, es un producto conocido. No obstante, también es posible emplear derivados de tiamina, entendiéndose como tales, compuestos estructuralmente relacionados con la tiamina, tales como sus sales, entre las que se encuentran sus sales de adición, por ejemplo, sus sales de adición de ácido. Ejemplos ilustrativos, no limitativos, de dichas sales de adición de tiamina incluyen tiamina hidrocloruro, tiamina monofosfato cloruro dihidratada; tiamina pirofosfato; oxitiamina cloruro hidrocloruro; piritiamina hidrobromuro, etc., todos ellos compuestos conocidos. En una realización particular, las nanopartículas de la invención comprenden tiamina o tiamina hidrocloruro.The nanoparticles of the invention comprise, in addition to the biodegradable polymer, thiamine or a derivative thereof. Thiamine, also called vitamin Bl, or 3 - [(4-amino-2-methyl-5-pyrimidinyl) methyl] -5- (2-hydroxyethyl) -4-methylthiazolium chloride, is a known product. However, it is also possible to use thiamine derivatives, being understood as such, compounds structurally related to thiamine, such as their salts, among which are their addition salts, for example, their acid addition salts. Illustrative, non-limiting examples of said thiamine addition salts include thiamine hydrochloride, thiamine monophosphate chloride dihydrate; thiamine pyrophosphate; oxythiamine chloride hydrochloride; piritiamine hydrobromide, etc., all of them known compounds. In a particular embodiment, the nanoparticles of the invention comprise thiamine or thiamine hydrochloride.
La tiamina, o el derivado de la misma, pueden encontrarse recubriendo total o parcialmente la superficie de las nanopartículas que comprenden el polímero biodegradable.The thiamine, or the derivative thereof, can be found totally or partially coating the surface of the nanoparticles comprising the biodegradable polymer.
La relación tiamina (o derivado de la misma) :polímero biodegradable, en peso, en la nanopartícula de la invención puede variar dentro de un amplio intervalo; no obstante, en una realización particular, dicha relación ponderal está comprendida entreThe ratio thiamine (or derivative thereof): biodegradable polymer, by weight, in the nanoparticle of the invention may vary within a wide range; however, in a particular embodiment, said weight ratio is comprised between
1:10 y 1:500, preferentemente entre 1:10 y 1:100, más preferentemente alrededor de 1 :40. En una realización concreta, nanopartículas de la invención con una relación de, aproximadamente, 0,025 mg tiamina/mg polímero biodegradable proporciona una capacidad de adhesión (unión) muy eficiente.1:10 and 1: 500, preferably between 1:10 and 1: 100, more preferably around 1:40. In a specific embodiment, nanoparticles of the invention with a ratio of approximately 0.025 mg thiamine / mg biodegradable polymer provides a very efficient adhesion (bonding) capability.
Las nanopartículas de la invención pueden presentar una carga superficial (medida mediante el potencial Z) que varía en función de la estructura del polímero biodegradable y en la proporción de éste con respecto a la tiamina o al derivado de la misma. La contribución de la carga positiva se atribuye, entre otros, a los grupos amino presentes en la tiamina o en su derivado. Dependiendo de los parámetros mencionados, la magnitud de la carga superficial de las nanopartículas de la invención puede variar dentro de un amplio intervalo. En una realización particular, se han obtenido unas nanopartículas de la invención, a base de copolímero PVM/MA y tiamina, con un potencial Z de alrededor de -34,0+1,9 mV (Ejemplo 1, Tabla 1), mientras que, en otra realización particular, se han obtenido unas nanopartículas de la invención (a base de copolímero PVM/MA y tiamina) cargadas con ovoalbúmina (OVA), con un potencial Z de alrededor de -28,6±6,2 mV (Ejemplo 3 , Tabla 3).The nanoparticles of the invention may have a surface charge (measured by the Z potential) that varies depending on the structure of the biodegradable polymer and on the proportion thereof with respect to the thiamine or derivative thereof. The contribution of the positive charge is attributed, among others, to the amino groups present in the thiamine or its derivative. Depending on the parameters mentioned, the magnitude of the surface charge of the nanoparticles of the invention can vary within a wide range. In a particular embodiment, nanoparticles of the invention have been obtained, based on PVM / MA copolymer and thiamine, with a Z potential of about -34.0 + 1.9 mV (Example 1, Table 1), while In another particular embodiment, nanoparticles of the invention (based on PVM / MA copolymer and thiamine) loaded with ovalbumin (OVA) have been obtained, with a Z potential of about -28.6 ± 6.2 mV (Example 3, Table 3).
Las nanopartículas de la invención pueden obtenerse por métodos convencionales conocidos por los técnicos en la materia. En una realización particular, las nanopartículas de la invención se pueden obtener incubando las nanopartículas de polímero biodegradable previamente formadas con una solución acuosa de tiamina o de un derivado de la misma, lo que permite obtener mayoritariamente nanopartículas de polímero biodegradable en las que la tiamina, o su derivado, se encuentra unida a la superficie de las nanopartículas. En una realización particular, el polímero biodegradable presente en las nanopartículas de la invención es un copolímero de PVM/MA, cuya obtención se describe, por ejemplo, en WO 02/069938. En general, las nanopartículas pueden obtenerse a partir del polímero biodegradable mediante un procedimiento que comprende la disolución de dicho polímero biodegradable en un disolvente orgánico (e.g., acetona, etc.) y posterior desolvatación tras la adición de un disolvente apropiado, por ejemplo, un disolvente o una mezcla de disolventes miscible con la disolución del polímero biodegradable, tal como una mezcla etanol-agua, obteniéndose una suspensión de nanopartículas de la que se eliminan los disolventes orgánicos por métodos convencionales, por ejemplo, mediante evaporación a presión reducida, y, a continuación, se añade agua, con lo que se obtiene una suspensión acuosa de nanopartículas. La relación, en volumen, fase orgánica: solución hidroalcohólica (etanol/agua) puede variar dentro de un amplio intervalo; no obstante, en una realización particular, dicha relación está comprendida entre 1:1 y l:10 (v:v). Tras la eliminación de los disolventes orgánicos, las nanopartículas de polímero biodegradable se modifican en su superficie de manera eficiente con tiamina o con un derivado de la misma, mediante incubación, a temperatura ambiente, durante un periodo de tiempo apropiado. Para ello, sobre dicha suspensión de nanopartículas previamente obtenida se añade una solución acuosa de tiamina o de un derivado de la misma. En una realización particular, se utiliza agua de calidad farmacéutica. Tanto la concentración del polímero biodegradable como la de la tiamina, o su derivado, puede variar dentro de un amplio intervalo; no obstante, en una realización particular, la concentración del polímero biodegradable está comprendida entre 0,001 y 10% p/v y la de tiamina, o derivado de la misma, entre 0,001 y 5% p/v. En general, los grupos amino de la tiamina reaccionan con grupos funcionales eventualmente presentes en el polímero biodegradable, lo que conduce a la formación de enlaces entre el polímero biodegradable y la tiamina. La asociación de la tiamina a las nanopartículas del polímero biodegradable se hace evidente debido al descenso significativo de la carga negativa superficial de las nanopartículas (véase, por ejemplo, la Tabla 1). En una realización particular, los grupos amino de la tiamina reaccionan con los grupos anhídrido del copolímero PVM/MA, reacción que puede darse fácilmente por la simple incubación de la tiamina con la suspensión acuosa de las nanopartículas, lo que conduce a la formación de enlaces amida entre el copolímero PVM/MA y la tiamina. Las nanopartículas de la invención pueden purificarse por métodos convencionales, por ejemplo, mediante centrifugación, ultracentrifugación, filtración tangencial, o evaporación, incluyendo la utilización de vacío.The nanoparticles of the invention can be obtained by conventional methods known to those skilled in the art. In a particular embodiment, the nanoparticles of the invention can be obtained by incubating the previously formed biodegradable polymer nanoparticles with an aqueous solution of thiamine or a derivative thereof, which makes it possible to obtain mostly biodegradable polymer nanoparticles in which the thiamine, or its derivative, is attached to the surface of the nanoparticles. In a particular embodiment, the biodegradable polymer present in the nanoparticles of the invention is a PVM / MA copolymer, the preparation of which is described, for example, in WO 02/069938. In general, the nanoparticles can be obtained from the biodegradable polymer by a process comprising the dissolution of said biodegradable polymer in an organic solvent (eg, acetone, etc.) and subsequent desolvation after the addition of an appropriate solvent, for example, a solvent or a mixture of solvents miscible with the solution of the biodegradable polymer, such as an ethanol-water mixture, obtaining a suspension of nanoparticles from which the organic solvents are removed by conventional methods, for example, by evaporation under reduced pressure, and, then water is added, so an aqueous suspension of nanoparticles is obtained. The ratio, by volume, organic phase: hydroalcoholic solution (ethanol / water) can vary within a wide range; however, in a particular embodiment, said ratio is between 1: 1 and 1: 10 (v: v). After removal of the organic solvents, the biodegradable polymer nanoparticles are modified on their surface efficiently with thiamine or with a derivative thereof, by incubation, at room temperature, for an appropriate period of time. For this purpose, an aqueous solution of thiamine or a derivative thereof is added to said previously obtained suspension of nanoparticles. In a particular embodiment, pharmaceutical grade water is used. Both the concentration of the biodegradable polymer and that of thiamine, or its derivative, can vary within a wide range; however, in a particular embodiment, the concentration of the biodegradable polymer is between 0.001 and 10% w / v and that of thiamine, or between it, between 0.001 and 5% w / v. In general, the thiamine amino groups react with functional groups eventually present in the biodegradable polymer, which leads to the formation of bonds between the biodegradable polymer and thiamine. The association of thiamine with the nanoparticles of the biodegradable polymer is evident due to the significant decrease in the negative surface charge of the nanoparticles (see, for example, Table 1). In a particular embodiment, the thiamine amino groups react with the anhydride groups of the PVM / MA copolymer, a reaction that can easily occur by simply incubating the thiamine with the aqueous suspension of the nanoparticles, which leads to bond formation. amide between the PVM / MA copolymer and thiamine. The nanoparticles of the invention can be purified by conventional methods, for example, by centrifugation, ultracentrifugation, tangential filtration, or evaporation, including the use of vacuum.
Opcionalmente, se puede añadir un agente reticulante para mejorar la estabilidad de las nanopartículas de la invención, tal como se describe en WO 02/069938. Ejemplos ilustrativos, no limitativos, de agentes reticulantes que se pueden utilizar incluyen compuestos diaminados, por ejemplo 1,3 diaminopropano, polisacáridos o sacáridos simples, proteínas y, en general, cualquier molécula que presente grupos funcionales capaces de reaccionar con los grupos funcionales presentes en el polímero biodegradable, por ejemplo, grupos anhídrido presentes en el copolímero PVM/MA.Optionally, a crosslinking agent can be added to improve the stability of the nanoparticles of the invention, as described in WO 02/069938. Illustrative, non-limiting examples of crosslinking agents that may be used include diamine compounds, for example 1.3 diaminopropane, simple polysaccharides or saccharides, proteins and, in general, any molecule having functional groups. capable of reacting with the functional groups present in the biodegradable polymer, for example, anhydride groups present in the PVM / MA copolymer.
Asimismo, si se desea, las nanopartículas de la invención pueden ser liofilizadas por métodos convencionales. Desde un punto de vista farmacológico, es importante poder disponer de nanopartículas en forma liofilizada dado que ello mejora su estabilidad durante el almacenamiento y conservación a largo plazo, además de reducir el volumen del producto que va a ser manipulado. Las nanopartículas de la invención pueden ser liofilizadas en presencia de un agente crioprotector habitual tal como glucosa, sacarosa, manitol, trehalosa, glicerol, lactosa, sorbitol, polivinilpilorridona, etc., preferentemente, sacarosa o manitol; a una concentración comprendida dentro de un amplio intervalo, preferentemente, entre 0,1% y 10% en peso.Also, if desired, the nanoparticles of the invention can be lyophilized by conventional methods. From a pharmacological point of view, it is important to be able to have nanoparticles in lyophilized form since this improves their stability during long-term storage and conservation, in addition to reducing the volume of the product to be handled. The nanoparticles of the invention can be lyophilized in the presence of a usual cryoprotectant agent such as glucose, sucrose, mannitol, trehalose, glycerol, lactose, sorbitol, polyvinyl pyrridone, etc., preferably, sucrose or mannitol; at a concentration within a wide range, preferably between 0.1% and 10% by weight.
Las nanopartículas de la invención presentan elevada capacidad de asociación de moléculas biológicamente activas, lo que las convierte en unos sistemas de transporte de fármacos o de presentación de antígenos y alérgenos muy apropiados. Por tanto, en otro aspecto, la invención se relaciona a una composición farmacéutica que comprende nanopartículas de la invención y, al menos, una molécula biológicamente activa.The nanoparticles of the invention have a high ability to associate biologically active molecules, which makes them a drug transport system or presentation of very appropriate antigens and allergens. Therefore, in another aspect, the invention relates to a pharmaceutical composition comprising nanoparticles of the invention and at least one biologically active molecule.
En general, dicha molécula biológicamente activa estará en el interior de la nanopartícula de la invención; no obstante, podría suceder que alguna molécula biológicamente activa estuviera también unida a la superficie de la nanopartícula si bien la mayor parte de dichas moléculas estarán en el interior (e.g., encapsuladas) de las nanopartículas de la invención.In general, said biologically active molecule will be inside the nanoparticle of the invention; however, it could happen that some biologically active molecule was also attached to the surface of the nanoparticle although most of said molecules will be inside (e.g., encapsulated) of the nanoparticles of the invention.
El término "molécula biológicamente activa", tal como aquí se utiliza, se refiere a cualquier sustancia utilizada en el tratamiento, cura, prevención o diagnosis de una enfermedad o aquélla utilizada para mejorar el bienestar físico y mental de humanos y animales. En general, dicho término incluye tanto fármacos como antígenos y alérgenos. Según la presente invención, las nanopartículas de la invención pueden incorporar una o más moléculas biológicamente activas independientemente de las características de solubilidad de las mismas. La capacidad de asociación dependerá, por tanto, de la molécula incorporada, pero, en general, dicha capacidad es alta tanto para moléculas hidrófilas como para moléculas de marcado carácter hidrófobo. En una realización particular, la composición farmacéutica de la invención comprende nanopartículas de la invención que contienen uno o más fármacos diferentes. Ejemplos ilustrativos, no limitativos, de dichos fármacos incluyen agentes analgésicos, antiinflamatorios, antitumorales, neuroprotectores, antialérgicos, antiasmáticos, antibióticos (e.g., antibacterianos, antifúngicos, antivirales, antiparasitarios, etc.), surfactantes pulmonares, etc.The term "biologically active molecule", as used herein, refers to any substance used in the treatment, cure, prevention or diagnosis of a disease or that used to improve the physical and mental well-being of humans and animals. In general, said term includes both drugs and antigens and allergens. According to the present invention, the nanoparticles of the invention can incorporate one or more biologically active molecules regardless of the solubility characteristics thereof. The association capacity will therefore depend on the incorporated molecule, but, in general, said capacity is high for both hydrophilic molecules and molecules of marked hydrophobic character. In a particular embodiment, the pharmaceutical composition of the invention comprises nanoparticles of the invention containing one or more different drugs. Illustrative, non-limiting examples of such drugs include analgesic, anti-inflammatory, antitumor, neuroprotective, antiallergic, anti-asthmatic, antibiotic agents (eg, antibacterial, antifungal, antiviral, antiparasitic, etc.), pulmonary surfactants, etc.
En otra realización particular, la composición farmacéutica de la invención comprende nanopartículas de la invención que contienen uno o más antígenos diferentes con fines vacunales o bien uno o más alérgenos diferentes con fines inmunoterapéuticos.In another particular embodiment, the pharmaceutical composition of the invention comprises nanoparticles of the invention containing one or more different antigens for vaccination purposes or one or more different allergens for immunotherapeutic purposes.
Tal como se utiliza en esta descripción, el término "antígeno" se refiere a cualquier sustancia capaz de ser reconocida por el sistema inmune de un sujeto y/o capaz de inducir en un sujeto una respuesta inmune humoral o una respuesta inmune celular que conduce a la activación de linfocitos B y/o T cuando se introduce en un sujeto; a modo ilustrativo, dicho término incluye cualquier producto inmunogénico, nativo o recombinante, obtenido de un organismo superior o de un microorganismo, por ejemplo, una bacteria, un virus, un parásito, un protozoo, un hongo, etc., que contiene uno o más determinantes antigénicos, por ejemplo, componentes estructurales de dichos organismos; toxinas, por ejemplo, exotoxinas, etc. Prácticamente cualquier antígeno puede ser utilizado en la elaboración de nanopartículas de la invención cargadas con antígeno. A modo ilustrativo, no limitativo, el término "antígeno" incluye: antígenos "microbianos", es decir, antígenos de microorganismos, incluyendo, aunque sin limitarse, virus, bacterias, hongos y parásitos infecciosos; dichos antígenos incluyen el microorganismo intacto así como partes, fragmentos y derivados de los mismos, bien de origen natural o artificial, así como productos sintéticos o recombinantes que son idénticos o similares a los antígenos naturales de un microorganismo e inducen una respuesta inmune específica para ese microorganismo; en este sentido, un compuesto es similar a un antígeno natural de un microorganismo si induce una respuesta inmune (humoral y/o celular) como la del antígeno natural de ese microorganismo; dichos antígenos se utilizan de forma rutinaria por los expertos en la materia; y antígenos "tumorales", es decir, sustancias, por ejemplo, péptidos, asociadas a un tumor o a un cáncer ("marcador tumoral"), que es capaz de provocar una respuesta immune, en particular, cuando es presentado en el contexto de una molécula del CMH, e.g., Her2 (cáncer de mama); GD2 (neuroblastoma); EGF-R (glioblastoma maligno); CEA (cáncer de tiroide medular); CD52 (leucemia); proteína gplOO de melanoma humano; proteína melan-A/MART-1 de melanoma humano; tirosinasa; proteína NA17-A nt; proteína MAGE-3; proteína p53; proteína HPV16E7; fragmentos antigénicos de dichos antígenos; etc. Tal como se utiliza en esta descripción, el término "alérgeno" se refiere a una sustancia a la que un sujeto es sensible y provoca una reacción inmunitaria, por ejemplo, extractos alergénicos de pólenes, extractos alergénicos de insectos, extractos alergénicos de alimentos o productos alimenticios, componentes presentes en saliva, pinzas o aguijones de insectos que inducen una reacción de sensibilidad en un sujeto, componentes presentes en plantas que inducen una reacción de sensibilidad en un sujeto, etc., por ejemplo, extractos proteicos de pólenes, tal como el polen de gramíneas, extractos alergénicos de Lolium perenne, extractos alergénicos de olea (olivo), etc.; extractos proteicos de insectos, tal como de ácaros del polvo, etc.; extractos alergénicos de componentes alimentarios, etc. Prácticamente cualquier alérgeno puede ser utilizado en la elaboración de las nanopartículas cargadas con alérgeno de la composición de la invención; no obstante, en una realización particular, dicho alérgeno es la ovoalbúmina (OVA), una proteína ampliamente utilizada como modelo alergénico experimental.As used in this description, the term "antigen" refers to any substance capable of being recognized by the immune system of a subject and / or capable of inducing in a subject a humoral immune response or a cellular immune response that leads to the activation of B and / or T lymphocytes when introduced into a subject; by way of illustration, said term includes any immunogenic, native or recombinant product, obtained from a higher organism or from a microorganism, for example, a bacterium, a virus, a parasite, a protozoan, a fungus, etc., which contains one or more antigenic determinants, for example, structural components of said organisms; toxins, for example, exotoxins, etc. Virtually any antigen can be used in the preparation of nanoparticles of the invention loaded with antigen. By way of illustration, not limitation, the term "antigen" includes: "microbial" antigens, that is, microorganism antigens, including, but not limited to, viruses, bacteria, fungi and infectious parasites; said antigens include the intact microorganism as well as parts, fragments and derivatives thereof, either of natural or artificial origin, as well as synthetic or recombinant products that are identical or similar to the natural antigens of a microorganism and induce a specific immune response for that microorganism; in this sense, a compound is similar to a natural antigen of a microorganism if it induces an immune response (humoral and / or cellular) like that of the natural antigen of that microorganism; said antigens are used routinely by those skilled in the art; Y "tumor" antigens, that is, substances, for example, peptides, associated with a tumor or a cancer ("tumor marker"), which is capable of eliciting an immune response, in particular, when presented in the context of a molecule from CMH, eg, Her2 (breast cancer); GD2 (neuroblastoma); EGF-R (malignant glioblastoma); CEA (medullary thyroid cancer); CD52 (leukemia); human melanoma gplOO protein; melanoma-A / MART-1 human melanoma protein; tyrosinase; NA17-A nt protein; MAGE-3 protein; p53 protein; HPV16E7 protein; antigenic fragments of said antigens; etc. As used in this description, the term "allergen" refers to a substance to which a subject is sensitive and causes an immune reaction, for example, allergenic extracts of pollens, allergenic extracts of insects, allergenic extracts of food or products. food, components present in saliva, tweezers or stingers of insects that induce a sensitivity reaction in a subject, components present in plants that induce a sensitivity reaction in a subject, etc., for example, protein extracts of pollens, such as grass pollen, allergic extracts of perennial Lolium, allergic extracts of olea (olive), etc .; Protein extracts of insects, such as dust mites, etc .; allergenic extracts of food components, etc. Virtually any allergen can be used in the preparation of the nanoparticles loaded with allergen of the composition of the invention; however, in a particular embodiment, said allergen is ovalbumin (OVA), a protein widely used as an experimental allergenic model.
Ejemplos ilustrativos, no limitativos, de dichas moléculas biológicamente activas que pueden contener las nanopartículas de la invención incluyen antígenos bacterianos: citoplasmáticos, periplásmicos, de la envoltura celular (e.g., proteínas de membrana interna, proteínas de membrana externa, lipopolisacáridos y complejos mixtos, proteínas asociadas a la pared celular, etc.), etc.; antígenos de estructuras superficiales (e.g., fimbriae, glicocálix, flagelares, etc.), incluyendo los de patógenos intracelulares, como por ejemplo Brucella sp., Salmonella sp., etc; antígenos de microorganismnos eucariotas, tanto solubles como superficiales; antígenos virales, por ejemplo, matriciales, de cápsides, de envolturas, internos (incluidos enzimáticos), alérgenos de especies animales (ácaros, etc.), de plantas (gramíneas, etc.), etc. La naturaleza química de la molécula biológicamente activa puede ser muy variada. En una realización particular, dicha molécula biológicamente activa es un polisacárido, una proteína, un péptido o un lípido. En otra realización particular, dicha molécula biológicamente activa es un ácido nucleico (e.g., ADN, ARN, etc.), un nucleósido, un nucleótido, un oligonucleótido, un polinucleótido, etc.Illustrative, non-limiting examples of said biologically active molecules that may contain the nanoparticles of the invention include bacterial: cytoplasmic, periplasmic, cell envelope antigens (eg, inner membrane proteins, outer membrane proteins, lipopolysaccharides and mixed complexes, proteins associated to the cell wall, etc.), etc .; surface structure antigens (eg, fimbriae, glycocalyx, flagellar, etc.), including those of intracellular pathogens, such as Brucella sp., Salmonella sp., etc .; eukaryotic microorganism antigens, both soluble and superficial; viral antigens, for example, matrix, capsid, envelope, internal (including enzymatic), allergens of animal species (mites, etc.), of plants (grasses, etc.), etc. The chemical nature of the biologically active molecule can be very varied. In a particular embodiment, said biologically active molecule is a polysaccharide, a protein, a peptide or a lipid. In another particular embodiment, said biologically active molecule is a nucleic acid (eg, DNA, RNA, etc.), a nucleoside, a nucleotide, an oligonucleotide, a polynucleotide, etc.
Las nanopartículas de la invención se utilizan para modificar la distribución de la molécula biológicamente activa asociada y/o de las nanopartículas convencionales al ser administradas por una vía que dé acceso a alguna mucosa del organismo (incluyendo la vía oral, rectal, nasal, vaginal u ocular). Ejemplos de composiciones farmacéuticas incluyen cualquier composición líquida (suspensión o dispersión de las nanopartículas) para administración oral, bucal, sublingual, tópica, ocular, nasal, vaginal o parenteral; cualquier composición en forma de gel, pomada, crema o bálsamo para su administración tópica, ocular, nasal o vaginal; o cualquier composición sólida (comprimidos, cápsulas) para su administración oral. En una realización particular, la composición farmacéutica se administra por vía oral. En otra realización particular, dicha composición farmacéutica se administra por vía parenteral.The nanoparticles of the invention are used to modify the distribution of the associated biologically active molecule and / or of the conventional nanoparticles when administered by a route that gives access to some mucosa of the organism (including oral, rectal, nasal, vaginal or ocular). Examples of pharmaceutical compositions include any liquid composition (suspension or dispersion of the nanoparticles) for oral, oral, sublingual, topical, ocular, nasal, vaginal or parenteral administration; any composition in the form of gel, ointment, cream or balm for topical, ocular, nasal or vaginal administration; or any solid composition (tablets, capsules) for oral administration. In a particular embodiment, the pharmaceutical composition is administered orally. In another particular embodiment, said pharmaceutical composition is administered parenterally.
Las composiciones farmacéuticas descritas comprenderán los excipientes adecuados para cada formulación. Por ejemplo, en el caso de formulaciones orales en forma de comprimidos o cápsulas se incluirán si es necesario agentes aglutinantes, desintegrantes, lubricantes, agentes de carga, recubrimiento entérico, etc. Las formulaciones sólidas orales se preparan de forma convencional por mezclado, granulación en seco o húmedo e incorporando las nanopartículas de la invención. Las composiciones farmacéuticas también pueden ser adaptadas para su administración parenteral, en forma de, por ejemplo, soluciones, suspensiones o productos liofüizados, estériles, en la forma de dosificación apropiada; en este caso, dichas composiciones farmacéuticas incluirán los excipientes adecuados, tales como tampones, tensioactivos, etc. En cualquier caso, los excipientes se elegirán en función de la forma farmacéutica de administración seleccionada. Una revisión de las distintas formas farmacéuticas de administración de fármacos y de su preparación puede encontrarse en el libro "Tratado de Farmacia Galénica", de C. Faulí i Trillo, 10 Edición, 1993, Luzán 5, S.A. de Ediciones. La proporción de la molécula biológicamente activa incorporada en la nanopartícula de la invención puede variar dentro de un amplio intervalo, por ejemplo, puede ser de hasta un 25% en peso respecto al peso total de las nanopartículas. No obstante, la proporción adecuada dependerá en cada caso de la moléculas biológicamente activa incorporada.The pharmaceutical compositions described will comprise the excipients suitable for each formulation. For example, in the case of oral formulations in the form of tablets or capsules, binders, disintegrants, lubricants, fillers, enteric coating, etc. will be included if necessary. Oral solid formulations are prepared in conventional manner by mixing, dry or wet granulation and incorporating the nanoparticles of the invention. The pharmaceutical compositions may also be adapted for parenteral administration, in the form of, for example, sterile lyophilized solutions, suspensions or products, in the appropriate dosage form; in this case, said pharmaceutical compositions will include suitable excipients, such as buffers, surfactants, etc. In any case, the excipients will be chosen based on the pharmaceutical form of administration selected. A review of the different pharmaceutical forms of drug administration and their preparation can be found in the book "Galenica Pharmacy Treaty", by C. Faulí i Trillo, 10 Edition, 1993, Luzán 5, SA de Ediciones. The proportion of the biologically active molecule incorporated into the nanoparticle of the invention can vary within a wide range, for example, it can be up to 25% by weight with respect to the total weight of the nanoparticles. However, the appropriate proportion will depend in each case on the biologically active molecules incorporated.
La incorporación de la molécula biológicamente activa a las nanopartículas de la invención se puede hacer tal como se describe en WO 02/069938, por incorporación a la solución del polímero biodegradable antes de la formación de nanopartículas, o bien posteriormente adicionarla a la suspensión acuosa de las nanopartículas ya formadas. Por ejemplo, y dependiendo de la naturaleza de la moléculas biológicamente activa, se puede proceder del siguiente modo: a) Moléculas biológicamente activas hidrófobas: adición en la fase orgánica (e.g., acetona) e incubación / solubilización conjunta con el polímero biodegradable durante un periodo de tiempo variable (hasta 1 hora) bajo agitación (agitador mecánico, magnético o ultrasonidos); y b) Moléculas biológicamente activas bidrófilas: bien mediante adición en la fase orgánica (e.g., acetona) e incubación conjunta con el polímero biodegradable durante un periodo de tiempo variable (hasta 1 hora) bajo agitación (agitador mecánico, magnético o ultrasonidos) hasta obtener una suspensión fina en el disolvente orgánico [este procedimiento ha sido utilizado con éxito para encapsular una proteína modelo (ovoalbúmina, proteína de unos 44 kDa); la incorporación fue eficiente permitiendo una encapsulación elevada de la proteína modelo; o bien mediante adición en la fase acuosa para incubar con las nanopartículas preformadas (es el caso utilizado para encapsular el marcador fluorescente utilizado en los ejemplos que acompañan a esta descripción, rodamina B isotiocianato).The incorporation of the biologically active molecule into the nanoparticles of the invention can be done as described in WO 02/069938, by incorporation into the solution of the biodegradable polymer before the formation of nanoparticles, or subsequently added to the aqueous suspension of the nanoparticles already formed. For example, and depending on the nature of the biologically active molecule, one can proceed as follows: a) Hydrophobic biologically active molecules: addition in the organic phase (eg, acetone) and joint incubation / solubilization with the biodegradable polymer for a period variable time (up to 1 hour) under agitation (mechanical, magnetic or ultrasonic stirrer); and b) Biologically active bi-hydrophilic molecules: either by addition in the organic phase (eg, acetone) and joint incubation with the biodegradable polymer for a variable period of time (up to 1 hour) under stirring (mechanical, magnetic or ultrasonic agitator) until obtaining a fine suspension in the organic solvent [this procedure has been used successfully to encapsulate a model protein (ovalbumin, about 44 kDa protein); incorporation was efficient allowing high encapsulation of the model protein; or by addition in the aqueous phase to incubate with the preformed nanoparticles (this is the case used to encapsulate the fluorescent marker used in the examples that accompany this description, rhodamine B isothiocyanate).
Tal como se mencionó previamente, las nanopartículas de la invención producen un efecto estimulador o potenciador de la respuesta inmunitaria tras su administración a un sujeto por lo que pueden ser utilizadas como adyuvante en vacunas o en inmunoterapia. De hecho, las nanopartículas de la invención tienen la capacidad de estimular las dos vías de respuesta inmunitaria (ThI o Th2), por lo que puede utilizarse en formulaciones vacunales o inmunoterapéuticas. A modo ilustrativo, para una formulación vacunal, se requiere, en general, dependiendo de los mecanismos de patogenicidad del organismo del que procede el antígeno (intracelular o extracelular, toxina dependiente, flagelo dependiente, etc.), una estimulación de la respuesta ThI (intracelular, como en el caso de Brucella, Salmonella, etc.) o de respuesta Th2 (extracelular, como en el caso de Staphylococcus, Escherichia coli, bacterias enterotoxigénicas, etc.). Asimismo, a modo ilustrativo, para una formulación inmunoterapéutica se requiere una inducción de tolerancia mediante la presencia de los dos tipos de respuesta, es decir, induciendo respuestas ThI y Th2 de forma balanceada. En una realización particular de la invención, para estimular una respuesta inmunitaria, las formulaciones contendrán nanopartículas de polímero biodegradable y tiamina, y encapsulado en su interior o recubriendo total o parcialmente la superficie de las mismas el antígeno o el alérgeno.As previously mentioned, the nanoparticles of the invention produce a stimulatory or potentiating effect of the immune response after administration to a subject and can therefore be used as an adjuvant in vaccines or in immunotherapy In fact, the nanoparticles of the invention have the ability to stimulate the two immune response pathways (ThI or Th2), so it can be used in vaccine or immunotherapeutic formulations. By way of illustration, for a vaccine formulation, it is generally required, depending on the pathogenic mechanisms of the organism from which the antigen (intracellular or extracellular, toxin dependent, scourge dependent, etc.), a stimulation of the ThI response ( intracellular, as in the case of Brucella, Salmonella, etc.) or Th2 response (extracellular, as in the case of Staphylococcus, Escherichia coli, enterotoxigenic bacteria, etc.). Also, by way of illustration, a tolerance induction is required for an immunotherapeutic formulation by the presence of the two types of response, that is, inducing ThI and Th2 responses in a balanced manner. In a particular embodiment of the invention, to stimulate an immune response, the formulations will contain nanoparticles of biodegradable polymer and thiamine, and encapsulated therein or totally or partially coating the surface thereof the antigen or the allergen.
Por tanto, en otro aspecto, la invención se relaciona con una vacuna o composición para inmunoterapia que comprende una cantidad terapéuticamente eficaz de las nanopartículas de la invención y un antígeno o alérgeno, junto con un vehículo o excipiente farmacéuticamente aceptable. El antígeno o alérgeno puede estar contenido en el interior de dichas nanopartículas y/o recubriendo al menos parcialmente la superficie de dichas nanopartículas. Dichos términos "antígeno" y "alérgeno" han sido definidos previamente.Therefore, in another aspect, the invention relates to a vaccine or composition for immunotherapy comprising a therapeutically effective amount of the nanoparticles of the invention and an antigen or allergen, together with a pharmaceutically acceptable carrier or excipient. The antigen or allergen may be contained within said nanoparticles and / or at least partially covering the surface of said nanoparticles. These terms "antigen" and "allergen" have been previously defined.
El alérgeno o antígeno presente en las nanopartículas de la invención puede estar recubriendo, al menos, parcialmente la superficie de dichas nanopartículas y/o contenido en el interior de dichas nanopartículas. En una realización particular, dicho alérgeno o antígeno está recubriendo la totalidad o parte de la superficie de dichas nanopartículas.The allergen or antigen present in the nanoparticles of the invention may be at least partially covering the surface of said nanoparticles and / or contained within said nanoparticles. In a particular embodiment, said allergen or antigen is coating all or part of the surface of said nanoparticles.
En una realización particular, dicha vacuna o composición para inmunoterapia puede encontrarse en cualquier forma farmacéutica de administración por cualquier vía apropiada, por ejemplo, oral, rectal, nasal, sublingual, etc. En una realización particular, dicha vacuna o composición para inmunoterapia se encuentra en una forma farmacéutica de administración por vía oral, mientras que en otra realización particular, dicha vacuna o composición para inmunoterapia se encuentra en una forma farmacéutica de administración por vía parenteral, por ejemplo, por vía intramuscular (i.m.), subcutánea (s.α), intravenosa (i.v.), intraperitoneal (i.p.), intradérmica (i.d.), etc. Una revisión de las distintas formas farmacéuticas de administración de fármacos, en general, y de sus procedimientos de preparación puede encontrarse en el libro "Tratado de Farmacia Galénica", de C. Faulí i Trillo, Ia Edición, 1993, Luzán 5, S.A. de Ediciones.In a particular embodiment, said vaccine or composition for immunotherapy can be found in any pharmaceutical form of administration by any appropriate route, for example, oral, rectal, nasal, sublingual, etc. In a particular embodiment, said vaccine or composition for immunotherapy is in a pharmaceutical form of oral administration, while in another particular embodiment, said vaccine or composition for immunotherapy is in a form Pharmaceutical administration parenterally, for example, intramuscularly (im), subcutaneously (s.α), intravenously (iv), intraperitoneally (ip), intradermally (id), etc. A review of the different pharmaceutical forms of administering drugs, in general, and their methods of preparation can be found in the book "Tratado de Farmacia Galenica", C. Fauli i Trillo of, I Edition, 1993, Luzan 5, SA of Editions.
La dosis de nanopartículas cargadas con un antígeno o con un alérgeno puede variar dentro de un amplio intervalo, por ejemplo, entre aproximadamente 0,01 y aproximadamente 10 mg por kg de peso corporal, preferentemente, entre 0,1 y 2 mg por kg de peso corporal.The dose of nanoparticles loaded with an antigen or with an allergen may vary within a wide range, for example, between about 0.01 and about 10 mg per kg of body weight, preferably, between 0.1 and 2 mg per kg of body weight.
En una realización particular, las nanopartículas de la invención no incorporan el antígeno o alérgeno, sino que éstas se encuentran vacías y se administran en combinación con composiciones vacunales o inmunoterapéuticas que contienen el antígeno o alérgeno, respectivamente, produciéndose un efecto estimulador de la respuesta inmunitaria tras la administración de dicha composición vacunal o inmunoterapéutica y las nanopartículas vacías. Por tanto, un aspecto adicional de la invención lo constituye un producto que comprende, de forma separada, a) un antígeno o un alérgeno; y b) una composición que comprende dichas nanopartículas basadas en un polímero biodegradable y tiamina, como composición potenciadora de la respuesta inmune frente a dicho antígeno o alérgeno, como combinación para su administración simultánea o secuencial a un sujeto, en la inducción o estimulación de una respuesta inmune frente a dicho antígeno o alérgeno en dicho sujeto.In a particular embodiment, the nanoparticles of the invention do not incorporate the antigen or allergen, but these are empty and are administered in combination with vaccine or immunotherapeutic compositions containing the antigen or allergen, respectively, producing a stimulatory effect of the immune response. after administration of said vaccine or immunotherapeutic composition and empty nanoparticles. Therefore, a further aspect of the invention is a product comprising, separately, a) an antigen or an allergen; and b) a composition comprising said nanoparticles based on a biodegradable polymer and thiamine, as a composition that enhances the immune response against said antigen or allergen, as a combination for simultaneous or sequential administration to a subject, in the induction or stimulation of a response immune against said antigen or allergen in said subject.
La administración combinada de dicha composición vacunal o inmunoterapéutica y de las nanopartículas vacías puede efectuarse de forma simultánea o secuencial, separada en el tiempo, en cualquier orden, es decir, puede administrarse primero la composición vacunal o inmunoterapéutica y, posteriormente, las nanopartículas vacías o viceversa. Alternativamente, dicha composición vacunal o inmunoterapéutica y dichas nanopartículas vacías pueden administrarse simultáneamente. En este caso, la composición vacunal o inmunoterapéutica y las nanopartículas vacías pueden administrarse en la misma composición o bien en composiciones diferentes. La invención se describe a continuación mediante unos ejemplos que no son limitativos de la invención, sino ilustrativos.The combined administration of said vaccine or immunotherapeutic composition and of the empty nanoparticles can be carried out simultaneously or sequentially, separated in time, in any order, that is, the vaccine or immunotherapeutic composition can be administered first and, subsequently, the empty nanoparticles or vice versa. Alternatively, said vaccine or immunotherapeutic composition and said empty nanoparticles can be administered simultaneously. In this case, the vaccine or immunotherapeutic composition and the empty nanoparticles can be administered in the same composition or in different compositions. The invention is described below by examples that are not limiting of the invention, but illustrative.
EJEMPLOS Los siguientes ejemplos describen la producción de nanopartículas a base deEXAMPLES The following examples describe the production of nanoparticles based on
PVM/MA y recubiertas con tiamina que, opcionalmente, contienen un antígeno y ponen de manifiesto la capacidad de dichas nanopartículas para adherirse de forma específica a la mucosa gastrointestinal y, si es necesario, actuar como adyuvante en inmunoterapia o en vacunación.PVM / MA and coated with thiamine that, optionally, contain an antigen and demonstrate the ability of said nanoparticles to specifically adhere to the gastrointestinal mucosa and, if necessary, act as an adjuvant in immunotherapy or vaccination.
Procedimiento general de producción de nanopartículas recubiertas con tiaminaGeneral procedure for the production of thiamine coated nanoparticles
El procedimiento general de producción de las nanopartículas de PVM/MA recubiertas con tiamina es una variante del procedimiento general descrito anteriormente [Arbos et al., J. Control. Reléase, 83 (2002) 321-330]. Este procedimiento comprende la disolución de dicho copolímero en acetona seguido de la adición de etanol. A la solución resultante se le añadió un volumen similar de agua con lo que se formaron instantáneamente en el medio las nanopartículas, bajo la apariencia de una suspensión lechosa. A continuación, se retiraron los disolventes orgánicos (etanol y acetona) mediante evaporación bajo presión reducida, quedando las partículas en una suspensión acuosa estable. La tiamina se incorporó en la fase acuosa que facilita la desolvatación del polímero, dejando actuar la reacción durante un determinado tiempo. Dependiendo del momento en el que se añadió el fármaco, molécula activa o marcador, se obtuvieron distintas formulaciones con diferente disposición de los mismos (véanse los Ejemplos 1 y 3). A modo ilustrativo: A. Para obtener formulaciones que contenían el compuesto (fármaco, molécula activa o marcador) adherido a la superficie de las nanopartículas [por ejemplo, un marcador fluorescente], la incubación con el compuesto se llevó a cabo tras haber evaporado los disolventes orgánicos (Ejemplo 1).The general method of production of thiamine coated PVM / MA nanoparticles is a variant of the general procedure described above [Arbos et al., J. Control. Relay, 83 (2002) 321-330]. This process comprises dissolving said copolymer in acetone followed by the addition of ethanol. A similar volume of water was added to the resulting solution, so that nanoparticles formed instantly in the medium, under the appearance of a milky suspension. Then, the organic solvents (ethanol and acetone) were removed by evaporation under reduced pressure, the particles being in a stable aqueous suspension. The thiamine was incorporated into the aqueous phase that facilitates the desolvation of the polymer, leaving the reaction to act for a certain time. Depending on the time at which the drug, active molecule or label was added, different formulations were obtained with different arrangement thereof (see Examples 1 and 3). By way of illustration: A. To obtain formulations containing the compound (drug, active molecule or label) adhered to the surface of the nanoparticles [eg, a fluorescent label], incubation with the compound was carried out after evaporating the organic solvents (Example 1).
B. Para obtener formulaciones que contenían el compuesto (fármaco, antígeno, etc.) encapsulado en el interior de las nanopartículas [por ejemplo, ovoalbúmina (OVA)], se incubó el compuesto (fármaco o antígeno) disperso en acetona antes de añadir el etanol y el agua (Ejemplo 3).B. To obtain formulations containing the compound (drug, antigen, etc.) encapsulated inside the nanoparticles [eg ovalbumin (OVA)], the compound (drug or antigen) dispersed in acetone was incubated before adding ethanol and water (Example 3).
El siguiente paso consistió en la incubación entre las nanopartículas formadas y la tiamina. Eventualmente, tras este proceso de incubación, se puede adicionar el agente reticulante que, en este caso, ha sido el 1,3-diaminopropano (10 μg/mg polímero).The next step consisted of the incubation between the formed nanoparticles and the thiamine. Eventually, after this incubation process, the crosslinking agent which, in this case, has been 1,3-diaminopropane (10 μg / mg polymer) can be added.
La purificación de las nanopartículas se llevó a cabo mediante ultracentrifugación. Finalmente, las nanopartículas purificadas se liofilizaron para su almacenamiento y conservación a largo plazo.The purification of the nanoparticles was carried out by ultracentrifugation. Finally, the purified nanoparticles were lyophilized for long-term storage and preservation.
Caracterización de las nanopartículasCharacterization of the nanoparticles
El tamaño y potencial zeta de las nanopartículas se determinó en un Zetamaster (Malvern Instruments/Optilas, España). La morfología de las nanopartículas se estudió por microscopía electrónica de barrido en un aparato Zeiss DSM940 (Oberkochen, Alemania). La cantidad de tiamina asociada a las nanopartículas se cuantificó por cromatografía de líquidos de alta resolución (HPLC), de acuerdo con el procedimiento descrito por [Batifoulier et al., J. Chromatogr. B Analyt. Technol. Biomed. Life. Sci., 816 (2005) 67-72]. El análisis se llevó a cabo en un cromatógrafo modelo 1100 series LC (Agilent, Waldbornn, Germany) acoplado a un sistema de detección de ultravioleta (UV) de diodo-array. Los datos se analizaron en un ordenador Hewlett-Packard mediante el programa Chem-Station G2171. Para la separación de tiamina se utilizó una columna de fase reversa Zobrax NH2 (4,6 mm x 150 mm; 5 μm; Agilent) calentada a 400C. La fase móvil estaba formada por una mezcla de solución reguladora de fosfatos (PBS) (pH= 6; 50 mM) y metanol (en proporción 80/20 en volumen), y fue bombeada a un flujo de 0,5 mL/min. La detección se realizó a 254 nm.The size and zeta potential of the nanoparticles was determined in a Zetamaster (Malvern Instruments / Optilas, Spain). The morphology of the nanoparticles was studied by scanning electron microscopy in a Zeiss DSM940 (Oberkochen, Germany). The amount of thiamine associated with the nanoparticles was quantified by high performance liquid chromatography (HPLC), according to the procedure described by [Batifoulier et al., J. Chromatogr. B Analyt. Technol Biomed Life Sci., 816 (2005) 67-72]. The analysis was carried out on a model 1100 series LC chromatograph (Agilent, Waldbornn, Germany) coupled to a diode-array ultraviolet (UV) detection system. The data was analyzed on a Hewlett-Packard computer using the Chem-Station G2171 program. For the separation of thiamine a Zobrax NH 2 reverse phase column (4.6 mm x 150 mm; 5 μm; Agilent) heated to 40 0 C was used. The mobile phase was formed by a mixture of phosphate regulatory solution (PBS) ) (pH = 6; 50 mM) and methanol (in proportion 80/20 by volume), and was pumped at a flow rate of 0.5 mL / min. Detection was performed at 254 nm.
Para el análisis de las muestras, 1 mL de los sobrenadantes provenientes de la centrifugación de las nanopartículas se dosificó en viales de HPLC. A continuación, una alícuota de 10 μL se inyectó en la columna de HPLC. Finalmente, se calculó la cantidad de tiamina asociada a las nanopartículas como la diferencia entre la cantidad inicial de tiamina y la cantidad de tiamina cuantificada en los sobrenadantes. La cantidad de rodamina B isotiocianato (RBITC) incorporada en las nanopartículas se determinó por colorimetría a una longitud de onda de 540 nm (Labsystems iEMS Reader MF, Finlandia). Esta cantidad se estimó como la diferencia entre la cantidad inicial añadida y la cantidad cuantificada en los sobrenadantes recogidos durante la etapa de purificación por centrifugación. Para los cálculos, se utilizó una curva de calibrado entre 5 y 100 μg/mL (r > 0,999).For the analysis of the samples, 1 mL of the supernatants from the centrifugation of the nanoparticles was dosed in HPLC vials. Next, a 10 μL aliquot was injected into the HPLC column. Finally, the amount of thiamine associated with the nanoparticles was calculated as the difference between the initial amount of thiamine and the amount of thiamine quantified in the supernatants. The amount of rhodamine B isothiocyanate (RBITC) incorporated into the nanoparticles was determined by colorimetry at a wavelength of 540 nm (Labsystems iEMS Reader MF, Finland). This amount was estimated as the difference between the initial amount added and the amount quantified in the supernatants collected during the centrifugal purification step. For the calculations, a calibration curve between 5 and 100 μg / mL (r> 0.999) was used.
La cinética de liberación de RBITC desde las nanopartículas se realizó en tubos de diálisis Vivaspin® 100.000 MWCO (VTVASPIN, Hannover, Germany). Para ello, 5 mg de nanopartículas se dispersaron en 1 mL de medio gástrico simulado (FGS) o medio intestinal simulado (FIS) [USP XXIII] a 37±1°C. A determinados tiempos, las suspensiones de nanopartículas se centrifugaron (5.000 x g, 15 minutos) y la cantidad de RBITC en los líquidos dializados se cuantificó por colorimetría (λ=540 nm).The release kinetics of RBITC from the nanoparticles was performed in Vivaspin ® 100,000 MWCO dialysis tubes (VTVASPIN, Hannover, Germany). For this, 5 mg of nanoparticles were dispersed in 1 mL of simulated gastric medium (FGS) or simulated intestinal medium (FIS) [USP XXIII] at 37 ± 1 ° C. At certain times, the nanoparticle suspensions were centrifuged (5,000 xg, 15 minutes) and the amount of RBITC in the dialyzed liquids was quantified by colorimetry (λ = 540 nm).
El contenido proteico [principio activo (en este caso ovoalbúmina)] encapsulado en las nanopartículas recubiertas con tiamina se determinó mediante el ensayo con ácido microbicinconínico (Micro BCA, Pierce, EEUU). Para ello, las nanopartículas se digirieron, a 37°C durante 24 h, con una solución de lauril sulfato sódico (3%) en NaOH 0,1 M. Se utilizó electroforesis en gel de poliacrilamida con dodecilsulfato sódico (SDS-PAGE) para corroborar el contenido en OVA. Para ello, se disolvieron 5 mg de nanopartículas (OVA-T-NP) en 2 mL de una mezcla de dimetilformamida (DMF) y acetona (1:1 v/v), a -200C, durante 24 h. La cantidad de OVA se estimó mediante el cálculo de la densidad media de la banda en el gel SDS-PAGE usando el programa Micro Lnage® (Versión 4.0; Olympus Optical Co., USA). La recta de calibrado se realizó con OVA (0,25-2,5 μg proteína/pocillo).The protein content [active ingredient (in this case ovalbumin)] encapsulated in the thiamine-coated nanoparticles was determined by testing with microbicinconinic acid (Micro BCA, Pierce, USA). For this, the nanoparticles were digested, at 37 ° C for 24 h, with a solution of sodium lauryl sulfate (3%) in 0.1 M NaOH. Polyacrylamide gel electrophoresis with sodium dodecyl sulfate (SDS-PAGE) was used for corroborate the content in OVA. To do this, 5 mg of nanoparticles (OVA-T-NP) were dissolved in 2 mL of a mixture of dimethylformamide (DMF) and acetone (1: 1 v / v), at -20 0 C for 24 h. The amount of OVA was estimated by calculating the average density of the band in the SDS-PAGE gel using the Micro Lnage ® program (Version 4.0; Olympus Optical Co., USA). The calibration line was performed with OVA (0.25-2.5 μg protein / well).
Estudio de bioadhesiónBioadhesion study
Este estudio se realizó aplicando un protocolo descrito anteriormente [Arbós et al., Int. J. Pharm., 242 (2002) 129-136], de acuerdo con las regulaciones del Comité responsable de la Universidad de Navarra en línea con la legislación europea sobre animlaes de experimentación (86/609/EU). De forma breve, una suspensión acuosa con 10 mg de nanopartículas marcadas con RBITC (aproximadamente 45 mg partículas/ kg peso) fueron administradas por vía oral a ratas Wistar macho (peso medio de 225 g; Harían, Spain). Los animales fueron sacrificados por dislocación cervical a diferentes tiempos (0,5, 1, 3 u 8 horas tras la administración). En cada animal, la cavidad abdominal fue abierta, el tracto gastrointestinal retirado, lavado con suero salino y cortado en seis regiones anatómicas: estómago (Sto), intestino delgado (II, 12, 13 e 14) y ciego (Ce). Cada una de las regiones, tras su apertura logitudinal y lavado con PBS (pH = 7,4; 0,15 M), se incubaron en una solución de NaOH 3 M para su digestión. Posteriormente, se adicionaron 2 mL de metanol y, tras agitación, se centrifugaron a 2.000 x g durante 10 minutos. Alícuotas de 1 mL de los diferentes sobrenadantes se diluyeron hasta 3 mL con agua purificada y se analizaron en un espectrofluorímetro (X6x 540 ran y λem 580 nm; GENios, TECAN, Groedig, Austria). Las rectas de calibrado se prepararon mediante adición de soluciones de RBITC en NaOH 3 N (0,5-10 μg/mL) a segmentos de tejidos control, que fueron sometidos a las mismas etapas de extracción (r>0,996).This study was carried out by applying a protocol described above [Arbós et al., Int. J. Pharm., 242 (2002) 129-136], in accordance with the regulations of the Committee responsible for the University of Navarra in line with European legislation on experimental animals (86/609 / EU). Briefly, an aqueous suspension with 10 mg of RBITC-labeled nanoparticles (approximately 45 mg particles / kg weight) was administered orally to male Wistar rats (average weight 225 g; Harían, Spain). The animals were sacrificed by cervical dislocation at different times (0.5, 1, 3 or 8 hours after administration). In each animal, the abdominal cavity was opened, the gastrointestinal tract removed, washed with saline and cut into six anatomical regions: stomach (Sto), small intestine (II, 12, 13 and 14) and blind (Ce). Each of the regions, after their logitudinal opening and washing with PBS (pH = 7.4; 0.15 M), were incubated in a solution of 3 M NaOH for digestion. Subsequently, 2 mL of methanol was added and, after stirring, centrifuged at 2,000 xg for 10 minutes. 1 mL aliquots of the different supernatants were diluted to 3 mL with purified water and analyzed in a spectrofluorimeter (X 6x 540 ran and λ em 580 nm; GENIOS, TECAN, Groedig, Austria). Calibration lines were prepared by adding RBITC solutions in 3 N NaOH (0.5-10 μg / mL) to control tissue segments, which were subjected to the same extraction steps (r> 0.996).
Por otra parte, se realizó un estudio de competición para investigar el efecto de la tiamina libre en la capacidad bioadhesiva de las nanopartículas. Para ello, los animales recibieron, de forma simultánea, una mezcla de 10 mg de nanopartículas recubiertas de tiamina y 5 mg de tiamina libre.On the other hand, a competition study was conducted to investigate the effect of free thiamine on the bioadhesive capacity of nanoparticles. For this, the animals received, simultaneously, a mixture of 10 mg of thiamine coated nanoparticles and 5 mg of free thiamine.
Para cada formulación de nanopartículas (NP y T-NP) se determinó su curva de bioadhesión, de la que se estimaron los diferentes parámetros de bioadhesión [Arbós et al., J. Control. Reléase, 89 (2003) 19-30; Salman et al., J. Control. Reléase, 106 (2005) 1-13]: Qmax, AUCadh, Tn13x, MRTadh y Kadh. Qmax, representa la máxima fracción adherida a la mucosa y permite estimar la afinidad de las nanopartículas por el substrato biológico. Kadh representa la velocidad de eliminación de la fracción adherida y se calculó con ayuda del programa WinNonlin versión 1.5 (Scientific Consulting, Inc.). AUCadh o área bajo la curva, representa la fracción adherida frente al tiempo (expresada en forma de cantidad de marcador adherido con respecto al tiempo) y se evaluó por el método de trapecios hasta I2 (el último punto de muestreo), y permite cuantificar la intensidad del fenómeno bioadhesivo. Tmax representa el tiempo en el que se produce la máxima adhesión. Finalmente, MRTadh es el tiempo medio de residencia de la fracción adherida de nanopartículas y permite evaluar la duración relativa de las interacciones adhesivas, tomando como límite el último punto de muestreo. Los cálculos se realizaron utilizando el programa WinNonlin 1.5 (Pharsight Corporation, USA).For each nanoparticle formulation (NP and T-NP) its bioadhesion curve was determined, from which the different bioadhesion parameters were estimated [Arbós et al., J. Control. Relay, 89 (2003) 19-30; Salman et al., J. Control. Relay, 106 (2005) 1-13]: Qmax, AUCadh, Tn 13x , MRT to dh and K to dh. Qmax, represents the maximum fraction adhered to the mucosa and allows to estimate the affinity of the nanoparticles for the biological substrate. K adh represents the removal rate of the adhered fraction and was calculated with the help of the WinNonlin version 1.5 program (Scientific Consulting, Inc.). AUC adh or area under the curve, represents the fraction adhered against time (expressed as a quantity of adherent marker with respect to time) and was evaluated by the trapezoid method up to I 2 (the last sampling point), and allows quantify the intensity of the bioadhesive phenomenon. T max represents the time at which maximum adhesion occurs. Finally, MRT adh is the average residence time of the adhered fraction of nanoparticles and allows the relative duration of adhesive interactions to be evaluated, taking as a limit the last sampling point. The calculations were performed using the WinNonlin 1.5 program (Pharsight Corporation, USA).
Estudios de microscopía de fluorescencia La visualización de la distribución de las nanopartículas recubiertas de tiamina, se realizó mediante microscopía de fluorescencia. Para ello, los animales de laboratorio recibieron una dosis oral de 10 mg de nanopartículas marcadas con RBITC. Dos horas después de la administración, los animales fueron sacrificados y se extrajeron diferentes porciones del intestino delgado y se lavaron con PBS. Dichas porciones de aproximadamente 0,5 cm de longitud fueron tratadas con Sakura Tissue-Tek Oct® Compound (Sakura, Holanda) y congeladas en nitrógeno líquido. Diferentes muestras del tejido fueron cortadas en secciones de 5 μm en un criostato (2800 Frigocut E, Alemania), fijadas a soportes recubiertos con poli-L-lisina (Sigma, España) and almacenadas a - 200C antes de su visualización por microscopía de fluorescencia.Fluorescence microscopy studies The visualization of the distribution of thiamine coated nanoparticles was carried out by fluorescence microscopy. For this, the laboratory animals received an oral dose of 10 mg of nanoparticles labeled with RBITC. Two hours after administration, the animals were sacrificed and different portions of the small intestine were removed and washed with PBS. Said portions of approximately 0.5 cm in length were treated with Sakura Tissue-Tek Oct® Compound (Sakura, Holland) and frozen in liquid nitrogen. Different tissue samples were cut in sections of 5 μm in a cryostat (2800 Frigocut E, Germany), fixed to supports coated with poly-L-lysine (Sigma, Spain) and stored at - 20 0 C before viewing by microscopy of fluorescence.
Protocolos de inmunización y muestreoImmunization and sampling protocols
Los protocolos con animales fueron aplicados de acuerdo con la legislación Europea (86/609/EU). Ratones BALB/c (20 ± 1 g) (Harían, España) fueron divididos en 6 grupos diferentes de 10 animales cada uno. La estrategia de administración estaba basada en la administración única de una dosis subcutánea u oral. En el caso de la inmunización oral, cada animal recibió un volumen de 200 μL conteniendo 100 μg de ovoalbúmina, libre o encapsulada en nanopartículas recubiertas de tiamina (OVA-T- NP) o en nanopartículas convencionales (OVA-NP). Para los grupos de los animales inmunizados por vía subcutánea (s.c), la dosis de proteína fue de 20 μg OVA en 50 μL de PBS.The protocols with animals were applied in accordance with European legislation (86/609 / EU). BALB / c mice (20 ± 1 g) (Harían, Spain) were divided into 6 different groups of 10 animals each. The administration strategy was based on the single administration of a subcutaneous or oral dose. In the case of oral immunization, each animal received a volume of 200 μL containing 100 μg of ovalbumin, free or encapsulated in thiamine coated nanoparticles (OVA-T-NP) or in conventional nanoparticles (OVA-NP). For groups of animals immunized subcutaneously (s.c), the protein dose was 20 μg OVA in 50 μL PBS.
Las muestras de sangre se recogieron del plexo retroorbital en los días 0, 7, 14, 28 y 42 tras la inmunización. Las muestras fueron centrifugadas (3.000 x g, 10 minutos) y conservados como "pool" de cada grupo (10 ratones). Finalmente, cada pool se diluyó con PBS (1:10) y se almacenó a -800C hasta su posterior análisis. Las muestras de heces y su análisis fue realizado siguiendo un protocolo descrito anteriormente [Maciel et al., Braz J Med Biol Res 37 (2004) 817-826]. En este caso, las heces de cada grupo de animales fueron recogidas en los días 1, 7, 14, 28 y 42 tras la inmunización.Blood samples were collected from the retroorbital plexus on days 0, 7, 14, 28 and 42 after immunization. The samples were centrifuged (3,000 xg, 10 minutes) and kept as "pool" of each group (10 mice). Finally, each pool was diluted with PBS (1:10) and stored at -80 0 C until analysis. Stool samples and their analysis were performed following a protocol described previously [Maciel et al., Braz J Med Biol Res 37 (2004) 817-826]. In this case, the feces of each group of animals were collected on days 1, 7, 14, 28 and 42 after immunization.
Determinación de anticuerpos anti-OVA en suero y heces mediante ELISADetermination of anti-OVA antibodies in serum and feces by ELISA
Los anticuerpos anti-OVA en suero se analizaron mediante ELISA con conjugados anti-IgGt y anti-IgG2a (Sigma-Aldrich Chemie, Alemania). Brevemente, para la realización de este ensayo se utilizaron placas de 96 pocilios (EB, Thermo Labsystems, Vantaa, Finlandia), en donde se fijó 1 μg de ovoalbúmina disuelto en solución reguladora carbonato-bicarbonato (0,05 M, pH 9,6) a 4°C durante 24 horas. Posteriormente, las placas se bloquearon mediante incubación durante 1 h a 37°C con 1% de albúmina sérica bovina en una solución de PBS-Tween 20 0,05% (PBS-T). Las placas fueron lavadas y se añadieron los sueros en diluciones seriadas partiendo de 1 :40, y se incubaron a 370C durante 4 horas. Posteriormente, se realizaron 5 lavados de 1 minuto. A continuación, se incubó durante 2 horas el conjugado con peroxidasa, se realizaron otros 5 lavados de 1 minuto, se añadió el sustrato [ABTS (ácido 2,2'-azino- bis(3-etilbenzo-tiazolín-6-sulfónico) (Sigma-Aldrich Chemie, Alemania)] y se llevó a cabo la lectura a 405 nm en un lector de placas (iEMS Reader MF, Labsystems, Finlandia) tras 30 minutos de incubación a temperatura ambiente. Los títulos finales se determinaron mediante dilución de la muestra hasta obtener una media de OD = 0,2 respecto a la obtenida con suero de ratón no inmunizado.Serum anti-OVA antibodies were analyzed by ELISA with anti-IgG t and anti-IgG 2a conjugates (Sigma-Aldrich Chemie, Germany). Briefly, 96 well plates (EB, Thermo Labsystems, Vantaa, Finland) were used to perform this test, where 1 μg of ovalbumin dissolved in carbonate-bicarbonate regulatory solution (0.05 M, pH 9.6) was fixed ) at 4 ° C for 24 hours. Subsequently, the plates were blocked by incubation for 1 h at 37 ° C with 1% bovine serum albumin in a solution of 0.05% PBS-Tween 20 (PBS-T). The plates were washed and the sera were added in serial dilutions starting from 1: 40, and incubated at 37 0 C for 4 hours. Subsequently, 5 washes of 1 minute were performed. Then, the peroxidase conjugate was incubated for 2 hours, another 5 washes of 1 minute were performed, the substrate [ABTS (2,2'-azino-bis (3-ethylbenzo-thiazoline-6-sulfonic acid) was added) ( Sigma-Aldrich Chemie, Germany)] and the reading was carried out at 405 nm in a plate reader (iEMS Reader MF, Labsystems, Finland) after 30 minutes of incubation at room temperature.The final titers were determined by dilution of the sample until obtaining an average of OD = 0.2 with respect to that obtained with non-immunized mouse serum.
Los anticuerpos anti-OVA en heces se analizaron mediante ELISA con conjugados anti-IgA. En este caso, tras el recubrimiento de las placas con OVA, éstas se bloquearon mediante la adición, e incubación durante 1 h a temperatura ambiente, de 200 μL de una solución de PBS-T conteniendo 3% de leche descremada. El extracto de las heces se añadió a dos placas y se fueron realizando diluciones seriadas en PBS-T. Dichas placas se incubaron durante 4 h a 37°C. Finalmente, tras el lavado, los pocilios se incubaron con el conjugado anti-IgA marcado con peroxidasa (Nordic rmmunological Labs, Holanda). Análisis estadísticoStool anti-OVA antibodies were analyzed by ELISA with anti-IgA conjugates. In this case, after coating the plates with OVA, they were blocked by adding, and incubating for 1 h at room temperature, 200 μL of a PBS-T solution containing 3% skim milk. The stool extract was added to two plates and serial dilutions were made in PBS-T. Said plates were incubated for 4 h at 37 ° C. Finally, after washing, the wells were incubated with the peroxidase-labeled anti-IgA conjugate (Nordic rmmunological Labs, The Netherlands). Statistic analysis
Los datos de bioadhesión y las características físico-químicas fueron comparados usando el test no parámetrico de Mann-Whitney U-test y el test de t-Bioadhesion data and physicochemical characteristics were compared using the Mann-Whitney U-test non-parametric test and the t-test.
Student, respectivamente. Valores de P < 0,05 fueron considerados significativos. Todos los cálculos se realizaron utilizando el programa de estadística SPSS® (SPSS® Student, respectively. P values <0.05 were considered significant. All calculations were performed using the SPSS ® statistics program (SPSS ®
10, Microsoft, USA).10, Microsoft, USA).
EJEMPLO 1EXAMPLE 1
Preparación y caracterización de nanopartículas a base del copolímero de metil vinil éter v anhídrido maleico (PVM/MA)Preparation and characterization of nanoparticles based on the copolymer of methyl vinyl ether and maleic anhydride (PVM / MA)
El proceso que se describe a continuación es válido para la preparación de formas farmacéuticas coloidales de tipo nanopartícula recubiertas con tiamina que pueden ser utilizadas para encapsular o asociar moléculas de naturaleza hidrófila.The process described below is valid for the preparation of colloidal pharmaceutical forms of nanoparticle type coated with thiamine that can be used to encapsulate or associate molecules of hydrophilic nature.
1.1. Preparación de nanopartículas control (NP)1.1. Preparation of control nanoparticles (NP)
100 mg del copolímero de metil vinil éter y anhídrido maleico (PVM/MA) [Gantrez® AN 119] se disolvieron en 5 mL de acetona. Posteriormente, sobre esta fase y bajo agitación magnética, se adicionaron 10 mL de etanol y 10 mL de agua desionizada. La mezcla resultante se dejó homogeneizar durante 5 minutos. Entonces, la suspensión de nanopartículas fue evaporada bajo presión reducida hasta eliminar ambos disolventes orgánicos y el volumen final se ajustó con agua a 10 mL. A la suspensión resultante se le añadieron 100 μl de una solución al 1% v/v de 1,3-diaminopropano, sometiendo el conjunto a agitación magnética durante 5 minutos, y 1,25 mg de rodamina B-isotiocianato (RBITC). La suspensión resultante se sometió a purificación por ultracentrifugación (20 minutos a 27.000 x g). Los sobrenadantes se eliminaron y el residuo se resuspendió en agua o en una disolución acuosa de sacarosa al 5%. Finalmente, la suspensión de nanopartículas resultantes se liofilizó, manteniéndose todas sus propiedades intactas. 1.2. Preparación de nanopartículas recubiertas con tiamina (T-NP)100 mg of the copolymer of methyl vinyl ether and maleic anhydride (PVM / MA) [Gantrez® AN 119] were dissolved in 5 mL of acetone. Subsequently, on this phase and under magnetic stirring, 10 mL of ethanol and 10 mL of deionized water were added. The resulting mixture was allowed to homogenize for 5 minutes. Then, the nanoparticle suspension was evaporated under reduced pressure until both organic solvents were removed and the final volume was adjusted with water to 10 mL. To the resulting suspension was added 100 µl of a 1% v / v solution of 1,3-diaminopropane, subjecting the whole to magnetic stirring for 5 minutes, and 1.25 mg of rhodamine B-isothiocyanate (RBITC). The resulting suspension was subjected to purification by ultracentrifugation (20 minutes at 27,000 xg). The supernatants were removed and the residue was resuspended in water or in a 5% aqueous sucrose solution. Finally, the resulting nanoparticle suspension was lyophilized, keeping all its properties intact. 1.2. Preparation of thiamine coated nanoparticles (T-NP)
100 mg del copolímero de metil vinil éter y anhídrido maleico (PVM/MA) [Gantrez® AN 119] se disolvieron en 5 mL de acetona. Posteriormente, sobre esta fase y bajo agitación magnética, se adicionaron 10 mL de etanol y 10 mL de agua desionizada conteniendo 2,5 mg de tiamina. La mezcla resultante se dejó homogeneizar y la suspensión de nanopartículas fue evaporada bajo presión reducida hasta eliminar ambos disolventes orgánicos, y el volumen final se ajustó con agua a 10 mL. La suspensión resultante se sometió a agitación magnética durante 1 hora a temperatura ambiente. Posteriormente se añadieron 100 μl de una solución al 1% v/v de 1,3- diaminopropano, sometiendo el conjunto a agitación magnética durante 5 minutos, y 1,25 mg de rodamina B-isotiocianato (RBITC). La suspensión resultante se sometió a purificación por ultracentrifugación (20 minutos a 27.000 x g). Los sobrenadantes se eliminaron y el residuo se resuspendió en agua o en una solución acuosa de sacarosa al 5%. Finalmente, la suspensión de nanopartículas resultantes se liofilizó, manteniéndose todas sus propiedades intactas.100 mg of the copolymer of methyl vinyl ether and maleic anhydride (PVM / MA) [Gantrez® AN 119] were dissolved in 5 mL of acetone. Subsequently, on this phase and under magnetic stirring, 10 mL of ethanol and 10 mL of deionized water containing 2.5 mg of thiamine were added. The resulting mixture was allowed to homogenize and the nanoparticle suspension was evaporated under reduced pressure until both organic solvents were removed, and the final volume was adjusted with water to 10 mL. The resulting suspension was subjected to magnetic stirring for 1 hour at room temperature. Subsequently, 100 µl of a 1% v / v solution of 1,3-diaminopropane was added, subjecting the whole to magnetic stirring for 5 minutes, and 1.25 mg of rhodamine B-isothiocyanate (RBITC). The resulting suspension was subjected to purification by ultracentrifugation (20 minutes at 27,000 x g). The supernatants were removed and the residue was resuspended in water or in a 5% aqueous sucrose solution. Finally, the resulting nanoparticle suspension was lyophilized, keeping all its properties intact.
1.3. Características físico-químicas de las nanopartículas1.3. Physicochemical characteristics of nanoparticles
La Tabla 1 resume las características físico-químicas principales de las nanopartículas obtenidas. Las nanopartículas control (NP) muestran un tamaño cercano a los 200 nm con una carga superficial negativa de -51 mV. Por otra parte, las nanopartículas recubiertas con tiamina (T-NP) eran significativamente mayores (cercanas a los 400 nm) y mostraban un potencial zeta significativamente menos negativo. Estas nanopartículas (T-NP) mostraban una cantidad de tiamina asociada de 15 μg/mg nanopartículas (Tabla 1). Por último, es de destacar que la presencia de tiamina no ejerce ningún efecto sobre el rendimiento de fabricación de las nanopartículas. Igualmente, se observaron pequeñas diferencias al comparar la asociación de RBITC para ambas formulaciones. Tabla 1Table 1 summarizes the main physicochemical characteristics of the nanoparticles obtained. The control nanoparticles (NP) show a size close to 200 nm with a negative surface charge of -51 mV. On the other hand, the thiamine-coated nanoparticles (T-NP) were significantly higher (close to 400 nm) and showed a significantly less negative zeta potential. These nanoparticles (T-NP) showed an associated amount of thiamine of 15 μg / mg nanoparticles (Table 1). Finally, it is noteworthy that the presence of thiamine has no effect on the manufacturing performance of the nanoparticles. Similarly, small differences were observed when comparing the association of RBITC for both formulations. Table 1
Características físico-químicas de las nanopartículas de Gantrez® ANPhysicochemical characteristics of Gantrez ® AN nanoparticles
(media ± SD, n = 6)(mean ± SD, n = 6)
Figure imgf000031_0001
a Rendimiento: Porcentaje de polímero transformado en nanopartículas. *P< 0,05 versus nanopartículas control (Test de t-Student).
Figure imgf000031_0001
a Performance: Percentage of polymer transformed into nanoparticles. * P <0.05 versus control nanoparticles (t-Student test).
Las nanopartículas recubiertas con tiamina mostraban una población de partículas esféricas muy homogénea (Figura 1).The thiamine-coated nanoparticles showed a very homogeneous population of spherical particles (Figure 1).
EJEMPLO 2 Características bioadhesivas de las nanopartículas y distribución en el tracto gastrointestinalEXAMPLE 2 Bioadhesive characteristics of nanoparticles and distribution in the gastrointestinal tract
2.1. Estudios de liberación in vitro de RBITC desde las nanopartículas2.1. In vitro release studies of RBITC from nanoparticles
Los estudios in vivo para determinar la capacidad bioadhesiva de las diferentes formulaciones se realizaron utilizando nanopartículas marcadas con RBITC. En primer lugar, para asegurar la estabilidad de la asociación del marcador fluorescente a las nanopartículas en las condiciones del tracto gastrointestinal, se realizaron estudios de liberación en medios simulados gástrico (FGS) e intestinal (FIS). La Figura 2 recoge los resultados obtenidos.In vivo studies to determine the bioadhesive capacity of the different formulations were performed using RBITC labeled nanoparticles. First, to ensure the stability of the association of the fluorescent marker to the nanoparticles in the conditions of the gastrointestinal tract, gastric and intestinal (FIS) simulated gastric (FGS) release studies were performed. Figure 2 shows the results obtained.
En todos los casos, se constató que el porcentaje de RBITC liberado tras 8 horas de incubación, era siempre inferior al 5% de la cantidad asociada a las nanopartículas. Por ello, se puede asumir que la intensidad de fluorescencia y las manchas obtenidas durante la visualización de las imágenes correspondía al marcador fluorescente asociado a las nanopartículas. 2.2. Distribución de la fracción adherida de nanopartículas en el tracto gastrointestinal de animales de laboratorioIn all cases, it was found that the percentage of RBITC released after 8 hours of incubation was always less than 5% of the amount associated with the nanoparticles. Therefore, it can be assumed that the fluorescence intensity and the spots obtained during the visualization of the images corresponded to the fluorescent marker associated with the nanoparticles. 2.2. Distribution of the adhered fraction of nanoparticles in the gastrointestinal tract of laboratory animals
La Figura 3 muestra la distribución en el tracto gastrointestinal de las fracciones adheridas de nanopartículas recubiertas con tiamina (T-NP) (Figura 3 a) o de nanopartículas control (NP) (Figura 3b). Se puede observar que, a los 30 minutos de la administración de las formulaciones de nanopartículas, ambos tipos (NP y T-NP) mostraban la misma capacidad para adherirse a la mucosa del tracto gastrointestinal, principalmente en la zona del estómago y las regiones superiores del intestino delgado (duodeno). Sin embargo, 1 h después de la administración de las nanopartículas, las nanopartículas recubiertas con tiamina (T-NP) mostraban una capacidad bioadhesiva significativamente mayor y una distribución más homogénea que las nanopartículas control (NP). La cantidad de nanopartículas recubiertas con tiamina (T-NP) encontradas adheridas a la mucosa fue de aproximadamente el 45% de la dosis administrada (Figura 3). A las 3 horas posteriores a la administración, las nanopartículas recubiertas con tiamina (T-NP) mostraban la máxima adhesión (65% de la dosis administrada) y un importante tropismo por el íleon de los animales (porciones 13 e 14 en la Figura 3 a).Figure 3 shows the distribution in the gastrointestinal tract of the adhered fractions of thiamine-coated nanoparticles (T-NP) (Figure 3 a) or control nanoparticles (NP) (Figure 3b). It can be seen that, within 30 minutes of the administration of the nanoparticle formulations, both types (NP and T-NP) showed the same ability to adhere to the mucosa of the gastrointestinal tract, mainly in the stomach area and the upper regions of the small intestine (duodenum). However, 1 h after administration of the nanoparticles, the thiamine-coated nanoparticles (T-NP) showed significantly greater bioadhesive capacity and a more homogeneous distribution than the control nanoparticles (NP). The amount of thiamine-coated nanoparticles (T-NP) found adhered to the mucosa was approximately 45% of the administered dose (Figure 3). At 3 hours after administration, the thiamine-coated nanoparticles (T-NP) showed maximum adhesion (65% of the administered dose) and an important tropism for the animal's ileum (portions 13 and 14 in Figure 3 to).
Por otra parte, cuando a los animales de laboratorio se les administró la mezcla de nanopartículas recubiertas con tiamina (T-NP) y la vitamina (tiamina) libre, la capacidad de las nanopartículas para desarrollar interacciones bioadhesivas en el tracto gastrointestinal se vio fuertemente inhibida (Figura 3c). No obstante, la distribución en el tracto y la fracción adherida a la mucosa de esas nanopartículas recubiertas con tiamina (T-NP) era similar al perfil observado para las nanopartículas control (NP). Este resultado indica claramente que la adhesión y el tropismo de las nanopartículas recubiertas con tiamina (T-NP) está dirigido por la presencia de tiamina en su superficie.On the other hand, when the mixture of thiamine-coated nanoparticles (T-NP) and free vitamin (thiamine) was administered to laboratory animals, the ability of the nanoparticles to develop bioadhesive interactions in the gastrointestinal tract was strongly inhibited. (Figure 3c). However, the distribution in the tract and the mucosa-adhered fraction of these thiamine-coated nanoparticles (T-NP) was similar to the profile observed for control nanoparticles (NP). This result clearly indicates that the adhesion and tropism of thiamine-coated nanoparticles (T-NP) is driven by the presence of thiamine on its surface.
2.3. Curvas y parámetros de bioadhesión2.3. Bioadhesion parameters and curves
Las curvas de bioadhesión fueron obtenidas por representación de la cantidad total de nanopartículas adheridas en el tracto gastrointestinal en función del tiempo tras su administración (Figura 4). La comparación de los perfiles de bioadhesión para las diferentes formulaciones permite observar que las nanopartículas control (NP) muestran un máximo de bioadhesión 30 minutos después de su administración [Figura 4, (?)]. Posteriormente, la cantidad de nanopartículas control (NP) adheridas va cayendo con el tiempo.Bioadhesion curves were obtained by representing the total amount of nanoparticles adhered to the gastrointestinal tract as a function of time after administration (Figure 4). The comparison of bioadhesion profiles for the different formulations allows us to observe that the control nanoparticles (NP) show a maximum of bioadhesion 30 minutes after their administration [Figure 4, (?)]. Subsequently, the amount of control nanoparticles (NP) attached is falling over time.
Por el contrario, para las nanopartículas recubiertas de tiamina (T-NP), el máximo de adhesión se observa 3 horas después de su administración. Además, este máximo representa una cantidad cercana al 65% de la dosis administrada [Figura 4, (¡ )]. Desde estas curvas se calcularon los parámetros de bioadhesión que permiten comparar el potencial adhesivo de las distintas nanopartículas. Los parámetros están recogidos en la Tabla 2.In contrast, for thiamine coated nanoparticles (T-NP), the maximum adhesion is observed 3 hours after administration. In addition, this maximum represents an amount close to 65% of the administered dose [Figure 4, (¡)]. From these curves, the bioadhesion parameters that allow comparing the adhesive potential of the different nanoparticles were calculated. The parameters are listed in Table 2.
En primer lugar, merece la pena destacar que las nanopartículas recubiertas con tiamina (T-NP) están caracterizadas por una AUCadh (parámetro que mide la intensidad de las interacciones bioadhesivas) 3 veces superior a la observada para las nanopartículas control (NP). Igualmente, el máximo de adhesión (expresado como Qmax) de las T-NP era también significativamente mayor que para las NP (p<0,01). Por el contrario, la fracción adherida de T-NP mostraba una velocidad de eliminación (Kadh) significativamente mayor que para NP (p<0,05) y un tiempo de residencia medioFirst, it is worth noting that thiamine-coated nanoparticles (T-NP) are characterized by an AUC at dh (parameter that measures the intensity of bioadhesive interactions) 3 times higher than that observed for control nanoparticles (NP) . Likewise, the maximum adhesion (expressed as Q max ) of the T-NPs was also significantly higher than for the NP (p <0.01). In contrast, the adhered fraction of T-NP showed a significantly higher elimination rate (Kadh) than for NP (p <0.05) and an average residence time
(MRTadh) de aproximadamente 3,12 horas. Particularmente interesante resultó el hecho de que la co-administración de nanopartículas recubiertas de tiamina (T-NP) y vitamina(MRT adh ) of approximately 3.12 hours. Particularly interesting was the fact that the co-administration of thiamine (T-NP) and vitamin coated nanoparticles
(tiamina) libre, eliminaba las propiedades bioadhesivas de estas nanopartículas (T-NP)(thiamine) free, removed the bioadhesive properties of these nanoparticles (T-NP)
[Figura 4, (? )]. Así, en estas condiciones, los parámetros de bioadhesión estudiados de T-NP eran similares a los calculados para las nanopartículas control (NP) (p<0,05).[Figure 4, (?)]. Thus, under these conditions, the bioadhesion parameters studied of T-NP were similar to those calculated for control nanoparticles (NP) (p <0.05).
Todos estos resultados son coincidentes con estudios previos que han descrito la presencia de receptores de tiamina a lo largo del intestino delgado de ratas y humanos [Casirola et al., J. Physiol. (Lond), 398 (1988) 329-339; Laforenza et al., J. Membr. Biol. 161 (1998) 151-162]. Igualmente se ha descrito que la absorción de tiamina (en animales de laboratorio y humanos) es inhibida por la administración de análogos estructurales de tiamina, como amprolium, oxitiamina y piritiamina [Laforenza et al.,. J. Membr. Biol. 161 (1998) 151-162; Dudeja et al., Am. J. Physiol. CeIl. Physiol., 281 (2001) C786-C792]. Tabla 2 Parámetros de bioadhesión ara las distintas formulaciones de nano artículasAll these results are consistent with previous studies that have described the presence of thiamine receptors along the small intestine of rats and humans [Casirola et al., J. Physiol. (Lond), 398 (1988) 329-339; Laforenza et al., J. Membr. Biol. 161 (1998) 151-162]. It has also been described that the absorption of thiamine (in laboratory and human animals) is inhibited by the administration of structural analogs of thiamine, such as amprolium, oxythiamine and piritiamine [Laforenza et al.,. J. Membr. Biol. 161 (1998) 151-162; Dudeja et al., Am. J. Physiol. CeIl. Physiol., 281 (2001) C786-C792]. Table 2 Bioadhesion parameters for the different nanoarticle formulations
Figure imgf000034_0001
Figure imgf000034_0001
Los resultados se expresan como media ± SD (n =3)The results are expressed as mean ± SD (n = 3)
TNP-COM representa los valores obtenidos cuando se administraron conjuntamente las nanopartículas recubiertas de tiamina (T-NP) con 5 mg de la vitamina libreTNP-COM represents the values obtained when the thiamine coated nanoparticles (T-NP) were co-administered with 5 mg of the free vitamin
Qmax (mg): Cantidad máxima de nanopartículas adheridas a la mucosaQmax (mg): Maximum amount of nanoparticles attached to the mucosa
AUCadh (mg.h): Área bajo la curva de bioadhesiónAUC a dh (mg.h): Area under the bioadhesion curve
Kadh (h"1): Velocidad de eliminación de la fracción adheridaK a dh (h "1 ): Speed of elimination of the adhered fraction
MRTadh (h): Tiempo de residencia medio de la fracción adherida de nanopartículasMRT a dh (h): Average residence time of the adhered fraction of nanoparticles
** P< 0,01 vs nanopartículas control (NP y NPT-COM) (Man-Whitney U-test).** P <0.01 vs control nanoparticles (NP and NPT-COM) (Man-Whitney U-test).
2.4. Visualización de la distribución de las nanopartículas adheridas a la mucosa intestinal La visualización de las nanopartículas marcadas con RBITC en la mucosa gastrointestinal se observó por microscopía de fluorescencia. La Figura 5 muestra varias fotografías que permiten observar la distribución de las nanopartículas en muestras de íleon, 2 horas después de la administración por vía oral de 10 mg de nanopartículas en ratas. Las nanopartículas control (NP) fueron principalmente detectadas en la capa externa del íleon (mucus que tapiza la mucosa), confirmando la baja afinidad de estos transportadores por la mucosa intestinal (Figura 5b). Por el contrario, las nanopartículas recubiertas de tiamina (T-NP) se distribuían ampliamente y mostraban una afinidad muy grande por las micro vellosidades del intestino (Figura 5a). Por otra parte, dichas T-NP mostraban un tropismo importante para adherirse a las placas de Peyer y para ser internalizadas y/o capturadas por ese tejido linfoide (Figura 5c). Esta captura no se observó para dichas NP (Figura 5d). EJEMPLO 3 Preparación de las nanopartículas conteniendo un antígeno modelo2.4. Visualization of the distribution of the nanoparticles attached to the intestinal mucosa The visualization of the nanoparticles labeled with RBITC in the gastrointestinal mucosa was observed by fluorescence microscopy. Figure 5 shows several photographs that allow us to observe the distribution of nanoparticles in ileum samples, 2 hours after oral administration of 10 mg of nanoparticles in rats. Control nanoparticles (NP) were mainly detected in the outer layer of the ileum (mucus that covers the mucosa), confirming the low affinity of these transporters for the intestinal mucosa (Figure 5b). In contrast, thiamine-coated nanoparticles (T-NP) were widely distributed and showed a very large affinity for the micro villi of the intestine (Figure 5a). On the other hand, said T-NP showed an important tropism to adhere to Peyer's plates and to be internalized and / or captured by that lymphoid tissue (Figure 5c). This capture was not observed for these NPs (Figure 5d). EXAMPLE 3 Preparation of nanoparticles containing a model antigen
La capacidad adyuvante de las nanopartículas recubiertas con tiamina (T-NP) se estudió utilizando ovoalbúmina (OVA) como modelo de antígeno.The adjuvant ability of thiamine-coated nanoparticles (T-NP) was studied using ovalbumin (OVA) as an antigen model.
3.1. Preparación de nanopartículas control con ovoalbúmina encapsulada (OVA- NP)3.1. Preparation of control nanoparticles with encapsulated ovalbumin (OVA-NP)
5 mg de OVA se dispersaron en 2 mL de agua con ayuda de ultrasonidos (Microson™) o en un baño de ultrasonidos durante 1 minuto bajo enfriamiento. Esta suspensión se adicionó a una solución de 100 mg del copolímero de metil vinil éter y anhídrido maleico (PVM/MA) [Gantrez® AN 119] en 3 mL de acetona. Posteriormente, sobre esta fase y bajo agitación magnética, se adicionaron 10 mL de etanol y 10 mL de agua desionizada. La mezcla resultante se dejó homogeneizar durante 5 minutos. Entonces, la suspensión de nanopartículas fue evaporada bajo presión reducida (Büchi R- 144, Suiza) hasta eliminar ambos disolventes orgánicos y el volumen final se ajustó con agua a 10 mL. Las nanopartículas obtenidas tienen OVA encapsulada (OVA-NP). A la suspensión resultante se le añadieron 100 μL de una solución al 1% v/v de 1,3- diaminopropano, sometiendo el conjunto a agitación magnética durante 5 minutos. La suspensión resultante se sometió a purificación por ultracentrifugación (20 minutos a 27.000 x g). Los sobrenadantes se eliminaron y el residuo se resuspendió en agua o en una solución acuosa de sacarosa al 5%. Finalmente, la suspensión de nanopartículas resultante se liofilizó, permitiendo de ese modo mantener todas sus propiedades intactas.5 mg of OVA was dispersed in 2 mL of water with the help of ultrasound (Microson ™) or in an ultrasonic bath for 1 minute under cooling. This suspension was added to a solution of 100 mg of the copolymer of methyl vinyl ether and maleic anhydride (PVM / MA) [Gantrez® AN 119] in 3 mL of acetone. Subsequently, on this phase and under magnetic stirring, 10 mL of ethanol and 10 mL of deionized water were added. The resulting mixture was allowed to homogenize for 5 minutes. Then, the nanoparticle suspension was evaporated under reduced pressure (Büchi R-144, Switzerland) until both organic solvents were removed and the final volume was adjusted with water to 10 mL. The nanoparticles obtained have encapsulated OVA (OVA-NP). To the resulting suspension 100 µL of a 1% v / v solution of 1,3-diaminopropane was added, subjecting the whole to magnetic stirring for 5 minutes. The resulting suspension was subjected to purification by ultracentrifugation (20 minutes at 27,000 x g). The supernatants were removed and the residue was resuspended in water or in a 5% aqueous sucrose solution. Finally, the resulting nanoparticle suspension was lyophilized, thereby keeping all its properties intact.
3.2. Preparación de nanopartículas recubiertas con tiamina con ovoalbúmina encapsulada (OVA-T-NP)3.2. Preparation of thiamine coated nanoparticles with encapsulated ovalbumin (OVA-T-NP)
5 mg de OVA se dispersaron en 2 mL de agua con ayuda de ultrasonidos5 mg of OVA was dispersed in 2 mL of water with the help of ultrasound
(Microson™) o en un baño de ultrasonidos durante 1 minuto bajo enfriamiento. Esta suspensión se adicionó a una solución de 100 mg del copolímero de metil vinil éter y anhídrido maleico (PVM/MA) [Gantrez® AN 119] en 3 mL de acetona. Posteriormente, sobre esta fase y bajo agitación magnética, se adicionaron 10 mL de etanol y 10 mL de agua desionizada conteniendo 2,5 mg de tiamina. La mezcla resultante se dejó homogeneizar y la suspensión de nanopartículas fue evaporada bajo presión reducida (Büchi R- 144, Suiza) hasta eliminar ambos disolventes orgánicos y el volumen final se ajustó con agua a 10 mL. La suspensión resultante fue sometida a agitación magnética durante 1 hora a temperatura ambiente y purificada mediante centrifugación a 27.000 x g durante 20 minutos, recogiendo los sobrenadantes para cuantificar la tiamina unida a las nanopartículas. Posteriormente se añadieron 100 μL de una solución al 1% v/v de 1,3-diaminopropano, sometiendo el conjunto a agitación magnética durante 5 minutos. La suspensión resultante se sometió a purificación por ultracentrifugación (20 minutos a 27.000 x g). Los sobrenadantes se eliminaron y el residuo se resuspendió en agua o en una solución acuosa de sacarosa al 5%. Finalmente, la suspensión de nanopartículas resultante se liofilizó, permitiendo de ese modo mantener todas sus propiedades intactas.(Microson ™) or in an ultrasonic bath for 1 minute under cooling. This suspension was added to a solution of 100 mg of the methyl vinyl ether copolymer and maleic anhydride (PVM / MA) [Gantrez® AN 119] in 3 mL of acetone. Subsequently, on this phase and under magnetic stirring, 10 mL of ethanol and 10 mL of deionized water containing 2.5 mg of thiamine were added. The resulting mixture was allowed to homogenize and the nanoparticle suspension was evaporated under reduced pressure (Büchi R-144, Switzerland) until both organic solvents were removed and the final volume was adjusted with water to 10 mL. The resulting suspension was subjected to magnetic stirring for 1 hour at room temperature and purified by centrifugation at 27,000 xg for 20 minutes, collecting the supernatants to quantify the thiamine bound to the nanoparticles. Subsequently, 100 µL of a 1% v / v solution of 1,3-diaminopropane was added, subjecting the whole to magnetic stirring for 5 minutes. The resulting suspension was subjected to purification by ultracentrifugation (20 minutes at 27,000 xg). The supernatants were removed and the residue was resuspended in water or in a 5% aqueous sucrose solution. Finally, the resulting nanoparticle suspension was lyophilized, thereby keeping all its properties intact.
3.3. Características físico-químicas de las nanopartículas3.3. Physicochemical characteristics of nanoparticles
La Tabla 3 resume las características físico-químicas principales de las nanopartículas resultantes (OVA-NP y OVA-T-NP). La formulación OVA-T-NP mostró un tamaño significativamente mayor (412 nm) que las nanopartículas control (280 nm). Por otra parte, la presencia de OVA afecta ligeramente a la cantidad de tiamina unida a la superficie de las nanopartículas. Así, la presencia de esta proteína (OVA) disminuía en un 20% la cantidad de vitamina (tiamina) unida (12 μg/mg vs 15 μg/mg). La cantidad de OVA encapsulada se determinó, en este caso, mediante densitometría de las bandas de esta proteína en el gel de SDS-PAGE, utilizando el programa Microlmage® Versión 4. La cantidad de OVA fue, para OVA-NP y OVA-T- NP, de 12,1±1,4 y 11,6±2,3 μg/mg nanopartículas, respectivamente. Tabla 3Table 3 summarizes the main physicochemical characteristics of the resulting nanoparticles (OVA-NP and OVA-T-NP). The OVA-T-NP formulation showed a significantly larger size (412 nm) than the control nanoparticles (280 nm). On the other hand, the presence of OVA slightly affects the amount of thiamine attached to the surface of the nanoparticles. Thus, the presence of this protein (OVA) decreased by 20% the amount of vitamin (thiamine) bound (12 μg / mg vs 15 μg / mg). The amount of encapsulated OVA was determined, in this case, by densitometry of the bands of this protein in the SDS-PAGE gel, using the Microlmage® Version 4 program. The amount of OVA was, for OVA-NP and OVA-T - NP, of 12.1 ± 1.4 and 11.6 ± 2.3 μg / mg nanoparticles, respectively. Table 3
Características físico-químicas de las nanopartículas de Gantrez® AN conteniendo ovoalbúmina como modelo de antí eno (media ± SD; n = 6)Physicochemical characteristics of Gantrez ® AN nanoparticles containing ovalbumin as an antigen model (mean ± SD; n = 6)
Figure imgf000037_0001
Figure imgf000037_0001
EJEMPLO 4EXAMPLE 4
Estudio de la capacidad adyuvante de las nanopartículas que encapsulan ovoalbúminaStudy of the adjuvant capacity of nanoparticles that encapsulate ovalbumin
La Figura 6 muestra los títulos de IgG2a y IgGl tras la inmunización oral o subcutánea de ratones Balb/C con una dosis única de los diferentes tratamientos (OVA- NP, OVA-T-NP y proteína libre). La Tabla 4 resume los valores de las áreas bajo las curvas de la respuesta inmune.Figure 6 shows the titers of IgG2a and IgGl after oral or subcutaneous immunization of Balb / C mice with a single dose of the different treatments (OVA-NP, OVA-T-NP and free protein). Table 4 summarizes the values of the areas under the curves of the immune response.
En la inmunización subcutánea (s.c), la administración de OVA-T-NP inducía la producción de niveles anticuerpos anti-OVA de tipo Th2 (IgGl) similares a los inducidos por la formulación OVA-NP. Sin embargo, los títulos de IgG2a (correspondientes a una respuesta de tipo ThI) eran al menos 2 veces superiores para OVA-T-NP que para OVA-NP. Todo esto demuestra que con nanopartículas recubiertas de tiamina (T-NP) se pueden conseguir niveles más balanceados de perfiles ThI y Th2, ya que su actividad inductora de niveles de IgG2a (ThI) es bastante superior a la inducida por las nanopartículas control (NP) no recubiertas con esta vitamina (tiamina). En todos los casos, los niveles de anticuerpos anti-OVA generados por ambas formulaciones (OVA-NP y OVA-T-NP) fueron significativamente mayores que cuando se inmunizó con la proteína (OVA) libre. Tabla 4In subcutaneous immunization (sc), administration of OVA-T-NP induced the production of anti-OVA antibody levels of type Th2 (IgGl) similar to those induced by the OVA-NP formulation. However, the IgG2a titers (corresponding to a ThI response) were at least 2 times higher for OVA-T-NP than for OVA-NP. All this demonstrates that with thiamine-coated nanoparticles (T-NP), more balanced levels of ThI and Th2 profiles can be achieved, since their level-inducing activity of IgG2a (ThI) levels is much higher than that induced by control nanoparticles (NP ) not coated with this vitamin (thiamine). In all cases, the levels of anti-OVA antibodies generated by both formulations (OVA-NP and OVA-T-NP) were significantly higher than when immunized with free protein (OVA). Table 4
Valores de áreas bajo las curvas (AUCs) que representan los diferentes perfiles de respuesta inmune expresados en la Figura 6.Values of areas under curves (AUCs) representing the different immune response profiles expressed in Figure 6.
Figure imgf000038_0001
Figure imgf000038_0001
Las AUCs se expresan como unidades arbitrarias (título x tiempo)AUCs are expressed as arbitrary units (title x time)
Tras la administración oral, las nanopartículas OVA-NP también mostraron un perfil predominantemente de tipo Th2 (Figura 6). La respuesta oral de tipo ThI fue muy baja (AUC de 1,5; AUQh2 es 7 veces superior que AUCa11, ver Tabla 4) y, al mismo tiempo, la respuesta de anticuerpos inducida por la administración oral fue inferior a la descrita tras la administración subcutánea.After oral administration, the OVA-NP nanoparticles also showed a predominantly Th2 type profile (Figure 6). The oral ThI response was very low (AUC of 1.5; AUQ h2 is 7 times higher than AUCa 11 , see Table 4) and, at the same time, the antibody response induced by oral administration was lower than that described after subcutaneous administration.
Por el contrario, la inmunización oral con OVA-T-NP inducía respuestas ThI y Th2 superiores a las obtenidas con OVA-NP. Además, ambas respuestas eran del mismo orden (Tabla 4). Por otra parte, mientras para las nanopartículas OVA-NP la respuesta inmune por vía s.c. fue significativamente más intensa que por vía oral, para las nanopartículas OVA-T-NP la inducción de anticuerpos anti-OVA por las vías s.c. y oral fueron bastante similares, en especial la respuesta ThI. Estos resultados muestran claramente la capacidad de las nanopartículas recubiertas con tiamina (T-NP) para aumentar y potenciar las respuestas celulares de tipo ThI. Esta observación tiene un gran valor al obtenerla en un modelo animal predispuesto al desarrollo de respuestas Th2 [Gieni et al., Int. hnmunol., 8 (1996) 1511-1520].On the contrary, oral immunization with OVA-T-NP induced ThI and Th2 responses superior to those obtained with OVA-NP. In addition, both responses were of the same order (Table 4). On the other hand, while for the OVA-NP nanoparticles the immune response via s.c. It was significantly more intense than orally, for the OVA-T-NP nanoparticles the induction of anti-OVA antibodies by the s.c. and oral were quite similar, especially the ThI response. These results clearly show the ability of thiamine-coated nanoparticles (T-NP) to increase and enhance ThI type cellular responses. This observation has great value when obtained in an animal model predisposed to the development of Th2 responses [Gieni et al., Int. Hnmunol., 8 (1996) 1511-1520].
Estos resultados concuerdan con otros previos donde se había puesto de manifiesto que la presencia de micropartículas con OVA en las zonas distales del intestino delgado promovía la inducción de respuestas de tipo ThI [Cronkhite y Michael, Vaccine, 22 (2004) 2106-2115]. Esta potenciación de la respuesta ThI puede estar relacionada con el elevado tropismo de las nanopartículas T-NP por las regiones distales del intestino delgado, así como su captura por las placas de Peyer ricas en células presentadoras de antígenos (Figuras 3-5). En realidad, recientemente se ha establecido que es mucho más fácil inducir la producción de anticuerpos de tipo IgG2a en la porción distal del tracto gastrointestinal donde, según parece, existe un mayor número de células dendríticas que promueven las respuestas celulares o de tipo ThI [Peng et al., J. Immunol., 176, (2006) 3330-3341; Hattori et al., Biochem. Biophys. Res. Commun., 317 (2004) 992-999; Shi et al., Tumori., 91 (2005) 531-538].These results are consistent with previous ones where it was shown that the presence of microparticles with OVA in the distal areas of the small intestine promoted the induction of ThI-type responses [Cronkhite and Michael, Vaccine, 22 (2004) 2106-2115]. This potentiation of the ThI response may be related to the high tropism of the T-NP nanoparticles by the regions. distal of the small intestine, as well as its capture by the Peyer plates rich in antigen presenting cells (Figures 3-5). In fact, it has recently been established that it is much easier to induce the production of antibodies of the IgG2a type in the distal portion of the gastrointestinal tract where, it seems, there is a greater number of dendritic cells that promote cellular or ThI-type responses [Peng et al., J. Immunol., 176, (2006) 3330-3341; Hattori et al., Biochem. Biophys Res. Commun., 317 (2004) 992-999; Shi et al., Tumori., 91 (2005) 531-538].
La Figura 7 muestra la evolución de anticuerpos anti-OVA de tipo IgA en las heces de los ratones inmunizados por las vías s.c. u oral. En ambos casos, la inmunización con nanopartículas, independientemente de la vía de administración, indujo la producción de niveles elevados de IgA. Sin embargo, las nanopartículas recubiertas con tiamina (T-NP) inducían la secreción de niveles significativamente mayores de IgA intestinal que las nanopartículas convencionales. Por vía oral, esa diferencia era de 64 veces superior para las nanopartículas OVA-T-NP que para las nanopartículas OVA-NP. Este fenómeno puede estar relacionado con la captura efectiva de las nanopartículas T-NP por las placas de Peyer del tracto gastrointestinal y su paso hacia los linfocitos responsables de la síntesis y secreción a nivel de mucosas de la IgA.Figure 7 shows the evolution of anti-OVA antibodies of the IgA type in the feces of mice immunized by the s.c. or oral In both cases, immunization with nanoparticles, regardless of the route of administration, induced the production of high levels of IgA. However, thiamine-coated nanoparticles (T-NP) induced the secretion of significantly higher levels of intestinal IgA than conventional nanoparticles. Orally, this difference was 64 times greater for the OVA-T-NP nanoparticles than for the OVA-NP nanoparticles. This phenomenon may be related to the effective capture of the T-NP nanoparticles by the Peyer plates of the gastrointestinal tract and their passage to the lymphocytes responsible for the synthesis and secretion at the level of IgA mucous membranes.
En conclusión, las nanopartículas recubiertas de tiamina (T-NP) han mostrado una capacidad particular para desarrollar interacciones adhesivas en la mucosa gastro- intestinal. Esta capacidad puede ser interesante para aumentar la biodisponibilidad oral de numerosos fármacos. Por otra parte, como adyuvantes de vacunación, estos transportadores poliméricos son capaces de alcanzar las placas de Peyer y potenciar una elevada inducción de anticuerpos frente al antígeno transportado. Además, la respuesta que se genera es humoral (Th2) y celular (ThI), lo cual puede ser de interés para vacunación frente a numerosos patógenos y para inmunoterapia para el tratamiento de alergias. In conclusion, thiamine-coated nanoparticles (T-NP) have shown a particular ability to develop adhesive interactions in the gastro-intestinal mucosa. This ability may be interesting to increase the oral bioavailability of numerous drugs. On the other hand, as vaccination adjuvants, these polymeric transporters are capable of reaching Peyer's plates and potentiating a high induction of antibodies against the transported antigen. In addition, the response that is generated is humoral (Th2) and cellular (ThI), which may be of interest for vaccination against numerous pathogens and for immunotherapy for the treatment of allergies.

Claims

REIVINDICACIONES
1. Nanopartículas que comprenden un polímero biodegradable y tiamina o un derivado de la misma.1. Nanoparticles comprising a biodegradable polymer and thiamine or a derivative thereof.
2. Nanopartículas según la reivindicación 1, en las que dicho polímero biodegradable es un copolímero de metil vinil éter y anhídrido maleico (PVM/MA).2. Nanoparticles according to claim 1, wherein said biodegradable polymer is a copolymer of methyl vinyl ether and maleic anhydride (PVM / MA).
3. Nanopartículas según cualquiera de las reivindicaciones 1 ó 2, en las que el copolímero tiene un peso molecular comprendido entre 100 y 2.400 kDa, preferentemente entre 200 y 2.000 kDa, más preferentemente entre 180 y 250 ka.3. Nanoparticles according to any one of claims 1 or 2, wherein the copolymer has a molecular weight between 100 and 2,400 kDa, preferably between 200 and 2,000 kDa, more preferably between 180 and 250 ka.
4. Nanopartículas según cualquiera de las reivindicaciones 1 a 3, que comprenden tiamina o tiamina hidrocloruro.4. Nanoparticles according to any one of claims 1 to 3, comprising thiamine or thiamine hydrochloride.
5. Nanopartículas según cualquiera de las reivindicaciones 1 a 4, en las que la tiamina o su derivado se encuentra recubriendo total o parcialmente la superficie de las nanopartículas.5. Nanoparticles according to any one of claims 1 to 4, wherein the thiamine or its derivative is completely or partially coating the surface of the nanoparticles.
6. Nanopartículas según cualquiera de las reivindicaciones 1 a 5, en las que la relación en peso entre la tiamina, o derivado de la misma, y el polímero biodegradable está comprendido entre 1:10 y 1:500, preferentemente entre 1:10 y 1:100, más preferentemente alrededor de 1 :40.6. Nanoparticles according to any one of claims 1 to 5, wherein the weight ratio between the thiamine, or derivative thereof, and the biodegradable polymer is between 1:10 and 1: 500, preferably between 1:10 and 1: 100, more preferably around 1: 40.
7. Nanopartículas según cualquiera de las reivindicaciones 1 a 6, en las que dichas nanopartículas se encuentran reticuladas. 7. Nanoparticles according to any of claims 1 to 6, wherein said nanoparticles are crosslinked.
8. Composición farmacéutica que comprende nanopartículas según cualquiera de las reivindicaciones 1 a 7 y una molécula biológicamente activa capaz de prevenir, aliviar o curar una enfermedad.8. Pharmaceutical composition comprising nanoparticles according to any one of claims 1 to 7 and a biologically active molecule capable of preventing, alleviating or curing a disease.
9. Composición según la reivindicación 8, que comprende como molécula biológicamente activa una proteína o un péptido.9. Composition according to claim 8, comprising as a biologically active molecule a protein or a peptide.
10. Composición según la reivindicación 8, que comprende como molécula biológicamente activa un compuesto seleccionado del grupo formado por un ácido nucleico, un nucleósido, un nucleótido, un oligonucleótido, un polinucleótido y sus mezclas.10. Composition according to claim 8, which comprises as a biologically active molecule a compound selected from the group consisting of a nucleic acid, a nucleoside, a nucleotide, an oligonucleotide, a polynucleotide and mixtures thereof.
11. Composición según la reivindicación 8, que comprende como molécula biológicamente activa un agente antitumoral o un antígeno para tumores.11. Composition according to claim 8, comprising as an biologically active molecule an antitumor agent or a tumor antigen.
12. Composición según la reivindicación 8, que comprende como molécula biológicamente activa un protector del sistema nervioso central o un glucocorticoide.12. Composition according to claim 8, comprising as a biologically active molecule a protector of the central nervous system or a glucocorticoid.
13. Composición según la reivindicación 8, que comprende como molécula biológicamente activa un antígeno para vacunación o un alérgeno para inmunoterapia.13. Composition according to claim 8, comprising as a biologically active molecule an antigen for vaccination or an allergen for immunotherapy.
14. Composición farmacéutica según cualquiera de las reivindicaciones 8 a 12, para administración oral.14. Pharmaceutical composition according to any of claims 8 to 12, for oral administration.
15. Composición farmacéutica según cualquiera de las reivindicaciones 8 a 12, para administración parenteral. 15. Pharmaceutical composition according to any of claims 8 to 12, for parenteral administration.
16. Composición farmacéutica según cualquiera de las reivindicaciones 8 a 12, para administración por una vía que dé acceso a alguna mucosa del organismo, preferentemente la vía rectal, oftálmica, vaginal, nasal, pulmonar o sublingual.16. Pharmaceutical composition according to any of claims 8 to 12, for administration by a route that gives access to any mucosa of the organism, preferably the rectal, ophthalmic, vaginal, nasal, pulmonary or sublingual route.
17. Uso de las nanopartículas según cualquiera de las reivindicaciones 1 a 7 en la elaboración de un medicamento.17. Use of the nanoparticles according to any of claims 1 to 7 in the manufacture of a medicament.
18. Un liofilizado que comprende las nanopartículas según cualquiera de las reivindicaciones 1 a 7.18. A lyophilisate comprising the nanoparticles according to any one of claims 1 to 7.
19. Una vacuna o composición para inmunoterapia que comprende una cantidad terapéuticamente eficaz de las nanopartículas según reivindicaciones 1 a 7 y un antígeno o alérgeno, junto con un vehículo o excipiente farmacéuticamente aceptable.19. A vaccine or composition for immunotherapy comprising a therapeutically effective amount of the nanoparticles according to claims 1 to 7 and an antigen or allergen, together with a pharmaceutically acceptable carrier or excipient.
20. Vacuna según la reivindicación 19, en la que el antígeno o alérgeno está contenido en el interior de dichas nanopartículas y/o recubriendo al menos parcialmente la superficie de dichas nanopartículas.20. Vaccine according to claim 19, wherein the antigen or allergen is contained within said nanoparticles and / or at least partially covering the surface of said nanoparticles.
21. Vacuna según cualquiera de las reivindicaciones 19 ó 20, en la que dicho antígeno comprende un extracto inmunogénico procedente de un organismo.21. Vaccine according to any of claims 19 or 20, wherein said antigen comprises an immunogenic extract from an organism.
22. Vacuna según cualquiera de las reivindicaciones 19 ó 20, en la que dicho alérgeno comprende un extracto de polen alergénico, un extracto de insecto alergénico o un extracto de un producto alimenticio alergénico.22. Vaccine according to any of claims 19 or 20, wherein said allergen comprises an allergenic pollen extract, an allergenic insect extract or an extract of an allergenic food product.
23. Un producto que comprende, de forma separada, a) un antígeno o un alérgeno; y b) una composición que comprende nanopartículas basadas en un polímero biodegradable y tiamina según reivindicaciones 1 a 7, como composición potenciadora de la respuesta inmune frente a dicho antígeno o alérgeno, como combinación para su administración simultánea o secuencial a un sujeto, en la inducción o estimulación de una respuesta inmune frente a dicho antígeno o alérgeno en dicho sujeto.23. A product comprising, separately, a) an antigen or an allergen; and b) a composition comprising nanoparticles based on a biodegradable polymer and thiamine according to claims 1 to 7, as a composition enhancer of the immune response against said antigen or allergen, as a combination for simultaneous or sequential administration to a subject, in the induction or stimulation of an immune response against said antigen or allergen in said subject.
24. Uso de nanopartículas según cualquiera de las reivindicaciones 1 a 7 en la elaboración de una composición farmacéutica para la estimulación selectiva de la respuesta inmune de ThI, o en la fabricación de una composición farmacéutica para la estimulación selectiva de la respuesta inmune de Th2, o en la fabricación de una composición farmacéutica para la estimulación equilibrada de las respuestas inmunes de ThI y Th2.24. Use of nanoparticles according to any one of claims 1 to 7 in the preparation of a pharmaceutical composition for the selective stimulation of the ThI immune response, or in the manufacture of a pharmaceutical composition for the selective stimulation of the Th2 immune response, or in the manufacture of a pharmaceutical composition for the balanced stimulation of ThI and Th2 immune responses.
25. Procedimiento para la producción de nanopartículas según cualquiera de las reivindicaciones 1 a 7 que comprende: a) desolvatación de una solución orgánica que comprende un polímero biodegradable, con una solución hidroalcohólica para formar las nanopartículas; b) incubación simultánea de las nanopartículas de polímero biodegradable formadas en la etapa a) y la tiamina en una solución acuosa; y c) eliminación de los disolventes orgánicos obteniéndose una suspensión acuosa de nanopartículas.25. Process for the production of nanoparticles according to any one of claims 1 to 7 comprising: a) desolvation of an organic solution comprising a biodegradable polymer, with a hydroalcoholic solution to form the nanoparticles; b) simultaneous incubation of the biodegradable polymer nanoparticles formed in step a) and the thiamine in an aqueous solution; and c) elimination of organic solvents obtaining an aqueous suspension of nanoparticles.
26. Procedimiento según la reivindicación 25, en el que la concentración del polímero biodegradable está comprendida entre 0,001 y 10% p/v y la de la tiamina entre 0,001 y 5% p/v.26. The method of claim 25, wherein the concentration of the biodegradable polymer is between 0.001 and 10% w / v and that of thiamine between 0.001 and 5% w / v.
27. Procedimiento según cualquiera de las reivindicaciones 25 y 26, que comprende etapas adicionales de purificación. 27. A method according to any of claims 25 and 26, comprising additional purification steps.
28. Procedimiento según cualquiera de las reivindicaciones 25 a 27, que comprende además la incorporación de una molécula biológicamente activa mediante su adición en la fase orgánica donde está el polímero biodegradable disuelto, previo a su desolvatación.28. A method according to any of claims 25 to 27, further comprising incorporating a biologically active molecule by adding it in the organic phase where the biodegradable polymer is dissolved, prior to its desolvation.
29. Procedimiento según cualquiera de las reivindicaciones 25 a 27, que comprende además la incorporación de una molécula biológicamente activa mediante su adición a la suspensión acuosa de las nanopartículas ya formadas.29. A method according to any of claims 25 to 27, further comprising incorporating a biologically active molecule by adding it to the aqueous suspension of already formed nanoparticles.
30. Procedimiento según cualquiera de las reivindicaciones 25 a 29, que comprende una etapa adicional de liofilización, opcionalmente en presencia de un agente crioprotector, preferentemente sacarosa o manitol. 30. A method according to any of claims 25 to 29, comprising an additional lyophilization step, optionally in the presence of a cryoprotectant, preferably sucrose or mannitol.
PCT/ES2007/000309 2006-05-26 2007-05-25 Bioadhesive nanoparticles for administration of biologically active molecules WO2007138135A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP200601399.8 2006-05-26
ES200601399A ES2286951B1 (en) 2006-05-26 2006-05-26 BIOADHESIVE NANOPARTICLES FOR THE ADMINISTRATION OF BIOLOGICALLY ACTIVE MOLECULES.

Publications (1)

Publication Number Publication Date
WO2007138135A1 true WO2007138135A1 (en) 2007-12-06

Family

ID=38441493

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2007/000309 WO2007138135A1 (en) 2006-05-26 2007-05-25 Bioadhesive nanoparticles for administration of biologically active molecules

Country Status (2)

Country Link
ES (1) ES2286951B1 (en)
WO (1) WO2007138135A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011121305A3 (en) * 2010-03-31 2011-11-24 Stabilitech Ltd. Method for preserving alum adjuvants and alum-adjuvanted vaccines
US9351940B2 (en) 2011-04-15 2016-05-31 Bionanoplus, S.L. Nanoparticles comprising esters of poly (methyl vinyl ether-co-maleic anhydride) and uses thereof
US10029007B2 (en) 2011-10-05 2018-07-24 Stabilitech Biopharma Ltd Stabilisation of polypeptides
US10206960B2 (en) 2010-03-31 2019-02-19 Stabilitech Biopharma Ltd Stabilisation of viral particles
US10716859B2 (en) 2010-03-31 2020-07-21 Stabilitech Biopharma Ltd Excipients for stabilising viral particles, polypeptides or biological material
US10806783B2 (en) 2014-04-11 2020-10-20 Stabilitech Biopharma Ltd Vaccine compositions
US10980871B2 (en) 2017-05-08 2021-04-20 Iosbio Ltd Vaccine compositions

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5635382A (en) * 1989-04-03 1997-06-03 Purdue Research Foundation Method for enhancing transmembrane transport of exogenous molecules
US5688488A (en) * 1989-04-03 1997-11-18 Purdue Research Foundation Composition and method for tumor imaging
ES2178961A1 (en) * 2001-03-06 2003-01-01 Inst Cientifico Tecnol Navarra Production of nanoparticles from methyl vinyl ether copolymer and maleic anhydride for the administration of hydrophilic pharmaceuticals, more particularly of puric and pyrimidinic bases
ES2246695A1 (en) * 2004-04-29 2006-02-16 Instituto Cientifico Y Tecnologico De Navarra, S.A. Immune response stimulating composition comprising nanoparticles based on a methyl vinyl ether-maleic acid copolymer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5635382A (en) * 1989-04-03 1997-06-03 Purdue Research Foundation Method for enhancing transmembrane transport of exogenous molecules
US5688488A (en) * 1989-04-03 1997-11-18 Purdue Research Foundation Composition and method for tumor imaging
ES2178961A1 (en) * 2001-03-06 2003-01-01 Inst Cientifico Tecnol Navarra Production of nanoparticles from methyl vinyl ether copolymer and maleic anhydride for the administration of hydrophilic pharmaceuticals, more particularly of puric and pyrimidinic bases
ES2246695A1 (en) * 2004-04-29 2006-02-16 Instituto Cientifico Y Tecnologico De Navarra, S.A. Immune response stimulating composition comprising nanoparticles based on a methyl vinyl ether-maleic acid copolymer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LOCKMAN P.R. ET AL.: "Brain uptake of thiamine-coated nanoparticles", J. CONTROL. RELEASE, vol. 93, no. 3, 2003, pages 271 - 282, XP004476716 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011121305A3 (en) * 2010-03-31 2011-11-24 Stabilitech Ltd. Method for preserving alum adjuvants and alum-adjuvanted vaccines
GB2499480A (en) * 2010-03-31 2013-08-21 Stabilitech Ltd Method for preserving alum adjuvants and alum-adjuvanted vaccines
US9101607B2 (en) 2010-03-31 2015-08-11 Stabilitech Ltd. Method for preserving alum adjuvants and alum-adjuvanted vaccines
US10206960B2 (en) 2010-03-31 2019-02-19 Stabilitech Biopharma Ltd Stabilisation of viral particles
US10716859B2 (en) 2010-03-31 2020-07-21 Stabilitech Biopharma Ltd Excipients for stabilising viral particles, polypeptides or biological material
US9351940B2 (en) 2011-04-15 2016-05-31 Bionanoplus, S.L. Nanoparticles comprising esters of poly (methyl vinyl ether-co-maleic anhydride) and uses thereof
US10029007B2 (en) 2011-10-05 2018-07-24 Stabilitech Biopharma Ltd Stabilisation of polypeptides
US10806783B2 (en) 2014-04-11 2020-10-20 Stabilitech Biopharma Ltd Vaccine compositions
US10980871B2 (en) 2017-05-08 2021-04-20 Iosbio Ltd Vaccine compositions

Also Published As

Publication number Publication date
ES2286951B1 (en) 2008-10-01
ES2286951A1 (en) 2007-12-01

Similar Documents

Publication Publication Date Title
ES2329598T3 (en) STIMULATING COMPOSITION OF THE IMMUNE RESPONSE THAT INCLUDES NANOPARTICLES BASED ON A COPYLIMER OF METHYL VINYL ETER AND MALEIC ANHYDRIDE.
ES2684554T3 (en) Nanoparticles comprising a cyclodextrin and paclitaxel and uses thereof
Sharma et al. Polymer nanotechnology based approaches in mucosal vaccine delivery: challenges and opportunities
ES2286951B1 (en) BIOADHESIVE NANOPARTICLES FOR THE ADMINISTRATION OF BIOLOGICALLY ACTIVE MOLECULES.
US20070237826A1 (en) Polymerized solid lipid nanoparticles for oral or mucosal delivery of therapeutic proteins and peptides
ES2311451T3 (en) POLICATION CARBOHYDRATES AS IMMUESTIMULANTS IN VACCINES.
US20060078618A1 (en) Lipid particles and suspensions and uses thereof
US11123304B2 (en) Nanoparticles having poly(ester amide) polymer cores as drug delivery vehicles
ES2369550T3 (en) FORMULATION OF ASSISTANT FOR ADMINISTRATION IN MUCOSAS.
KR101751964B1 (en) Oral vaccine fast-dissolving dosage form using starch
Salman et al. Evaluation of bioadhesive capacity and immunoadjuvant properties of vitamin B 12-gantrez nanoparticles
EP3581176A1 (en) Core-shell zein nanoparticles for the encapsulation of compounds, process for their preparation and uses thereof
CN1842345A (en) Oral solid dose vaccine
JP2019504895A (en) TIMP encapsulating cedar pollen epitope (tissue metalloprotease inhibitor)
Long et al. Tomato lectin-modified nanoemulsion-encapsulated MAGE1-HSP70/SEA complex protein vaccine: Targeting intestinal M cells following peroral administration
Liu et al. Antigen-conjugated N-trimethylaminoethylmethacrylate chitosan nanoparticles induce strong immune responses after nasal administration
Arora et al. Oral immunization against hepatitis B virus using mannosylated bilosomes
ES2765035T3 (en) Inulin and inulin acetate formulations
Bhairy et al. Stability and In-vivo Efficacy of Bile salts containing vesicles (Bilosomes) for oral delivery of vaccines and poorly soluble active drug molecules
WO2018146365A1 (en) Purified pollen particles and use thereof for administering nanosystems
ES2369949B1 (en) Polymeric microspheres as adjuvants in the production of vaccines against scuticociliated fish parasites.
WO2006059846A1 (en) Formulation of sec1 mutated protein and method for formulation of the same
WO2011138050A1 (en) Method for vaccination
ES2407137T3 (en) Microspheres containing allergens for antigens
Suksamran et al. Oral methylated N-aryl chitosan derivatives for inducing immune responses to ovalbumin

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07788557

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07788557

Country of ref document: EP

Kind code of ref document: A1