WO2007136793A1 - Rapid makeup riser connector - Google Patents

Rapid makeup riser connector Download PDF

Info

Publication number
WO2007136793A1
WO2007136793A1 PCT/US2007/011985 US2007011985W WO2007136793A1 WO 2007136793 A1 WO2007136793 A1 WO 2007136793A1 US 2007011985 W US2007011985 W US 2007011985W WO 2007136793 A1 WO2007136793 A1 WO 2007136793A1
Authority
WO
WIPO (PCT)
Prior art keywords
latch segment
assembly
housing
grooved profile
segment assembly
Prior art date
Application number
PCT/US2007/011985
Other languages
French (fr)
Inventor
Joseph W. Pallini
Scott I. Stewart
Steve M. Wong
Daniel L. Havelka
Original Assignee
Vetco Gray, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vetco Gray, Inc. filed Critical Vetco Gray, Inc.
Priority to GB0820749A priority Critical patent/GB2450854B/en
Priority to BRPI0711912-7A priority patent/BRPI0711912B1/en
Publication of WO2007136793A1 publication Critical patent/WO2007136793A1/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • E21B17/02Couplings; joints
    • E21B17/08Casing joints
    • E21B17/085Riser connections
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • E21B17/02Couplings; joints
    • E21B17/08Casing joints
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/02Surface sealing or packing
    • E21B33/03Well heads; Setting-up thereof
    • E21B33/035Well heads; Setting-up thereof specially adapted for underwater installations
    • E21B33/038Connectors used on well heads, e.g. for connecting blow-out preventer and riser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L37/00Couplings of the quick-acting type
    • F16L37/002Couplings of the quick-acting type which can be controlled at a distance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S285/00Pipe joints or couplings
    • Y10S285/92Remotely controlled

Definitions

  • This invention relates in general to high pressure riser systems with surface or near surface blowout preventers and more particularly to a high strength, high preload, rapid makeup connector for such riser systems.
  • a drilling riser is a large diameter pipe used in offshore drilling operations to guide the drill string from the offshore platform to and from the subsea wellhead and to provide means for circulation of drilling fluid.
  • the drill string is lowered through the drilling riser.
  • Drilling fluid circulates down from the platform through the drill string, out through the drill bit, and returns to the platform in the space between the inner diameter of the riser and outer diameter of the drill string.
  • Environmental forces caused by waves, currents and the movement of the offshore platform as well as internal forces caused by the weight of the heavy drilling fluids all contribute to the substantial loads applied to the drilling riser.
  • high pressure drilling risers, utilizing surface blowout preventors may be exposed to full well bore pressure. The connection between each successive joint of drilling riser must be able to withstand such loads.
  • these connectors and the riser pipe need withstand only fairly low pressure, such as 2000 psi, because the blowout preventer is located subsea on top of the wellhead assembly.
  • a recent approach is to mount the blowout preventer on the vessel and make the riser of sufficient strength to handle much higher internal pressure, such as 10,000 psi.
  • the connection between the individual riser pipes must be able to withstand this high pressure.
  • the present invention is directed to a device for connecting risers which can withstand high pressure and provides both a high strength and low fatigue connection, such as drilling risers or completion risers.
  • a connector having the features of the present invention would generally be used for riser systems that utilize a surface blowout preventer, but is also suitable for use on risers using subsea blowout preventors.
  • the connector of the present invention comprises a pin assembly that is attached to the end of a first riser pipe and a housing assembly that is attached to the end of a second riser pipe that is to be connected with the first riser pipe.
  • the housing assembly contains an internal split pivoting latch segment assembly. One end of each latch segment contains a grooved profile that mates with a corresponding external profile on the pin assembly. The other end of the latch assembly engages an internal shoulder of the housing assembly.
  • the housing assembly has a sufficiently large cavity to allow the latch segments to pivot between the open and engaged positions.
  • a split actuation ring is repositioned inside the cavity of the housing assembly, forcing the profile of latch segment into engagement with the profile of the pin assembly by rotating the latch segments.
  • the actuation ring is positioned by a series of load transfer blocks that are moved axially by a drive sleeve, which resides on the outside of the housing assembly.
  • the load transfer blocks may directly act on the latch segments.
  • the load transfer blocks travel in slots or windows that are milled into the housing assembly.
  • Split actuation ring retainers hold the actuation ring in place. Retaining screws attach both the actuation ring retainer and actuation ring to the load transfer block.
  • the drive sleeve may be controlled by an actuation device built in to a riser spider system. Seals and gaskets of the connector prevent leakage of fluid between the interior of the riser and the surrounding environment, the entry of sea water into the connector, and prevent high pressure bore fluid from passing into the cavity within the housing assembly.
  • a retraction link is carried on the box, which rotates about a curved surface within the housing assembly and, contains a Hp which engages an upper edge of latch segment.
  • the actuation ring is repositioned by the load transfer blocks that are moved by a drive sleeve.
  • the retraction link rotates and engages the edge of the latch segment, moving the latch segment into the open position.
  • the profile of the latch segment disengages from the profile of the pin.
  • the load transfer blocks directly engage the retraction link.
  • connection is compressively preloaded by providing a relatively shallow load flank angle to the profile of the latch segment and to the corresponding profile of the pin.
  • the magnitude of preloading should be sufficient such that if the maximum projected tensile load is applied to the first and second riser joint, the faces of the connecting parts do not separate from the gasket. The preload would thus be sufficient to maintain a sealed connection under expected working loads of the joint sections.
  • One embodiment of the present invention may also include an automatic connector actuation lock.
  • This actuation lock ensures that the drive sleeve does not move unexpectedly during operations and can lock the drive sleeve in both the open or engaged position. In particular, the actuation lock will ensure that the drive sleeve remains in open position while bringing the riser joints together and in the engaged position during working conditions.
  • the actuation lock is composed of two concentric split rings, a smaller diameter ratchet ring and a larger diameter back-up ring, both located within a cavity in the drive sleeve.
  • the ratchet ring has a thread profile on its inner diameter that corresponds to a thread profile on the outside diameter of the housing assembly.
  • the ratchet ring has a profile on its outer diameter that corresponds to a profile on the inner diameter of the back-up ring.
  • Figure 1 is a schematic view illustrating a riser constructed in accordance with this invention.
  • Figure 2 is a sectional view of a connection system for a riser joint with a latch segment in the open position.
  • Figure 3 is a sectional view of the connection system of Figure 1 with the latch segment in the closed position.
  • Figure 4 is a schematic view illustrating a riser constructed in accordance with this invention, including the actuation lock.
  • Figure 5 is a schematic view illustrating the actuation lock in the open position.
  • Figure 6 is a schematic view illustrating the actuation lock in the locked position.
  • a riser 11 is schematically shown extending from a floating platform 13.
  • Platform 13 is illustrated schematically and can be any type, such as a spar, tension leg platform, mobile offshore drilling unit, or the like.
  • Riser 11 is a drilling riser used to drill offshore wells and is particularly for use in applications where the blowout preventer is located at the surface.
  • the drilling riser may be submerged for several years at a time, such as for use on a spar platform.
  • the drilling riser may also be recovered after drilling each well, such as on a tension leg platform.
  • Riser 11 is made up of a plurality of high pressure riser joints 15, each approximately 60 feet in length.
  • a blowout preventer 17 is shown schematically at the upper end of riser 11.
  • a subsea tieback assembly 19 is shown schematically at the lower end of riser 11 although blowout preventer 17 can also be at the lower end. Locating blowout preventer 17 at the platform or near the surface has significant advantages but in such a case riser 11 has to be able to withstand high internal pressure.
  • Subsea tieback assembly 19 may incorporate a quick disconnect mechanism as well as a hydraulic connector on its lower end that connects it to a subsea wellhead assembly. Subsea tieback assembly 19 is not normally equipped to seal around drill pipe.
  • a first high pressure drilling riser joint 21 is fitted with a housing assembly 23, referred to as a box, and a second high pressure drilling riser joint 25 is fitted with a pin assembly 27.
  • Box 23 slides over pin 27.
  • Box 23 contains an internal split pivoting latch segment assembly.
  • the latch ring assembly combines a plurality of separate segments 29, for example twelve, spaced around box 23.
  • One end of each latch segment 29 contains a grooved profile 31 that mates with a corresponding profile 33 on pin assembly 27. Profiles 31 and 33 may have a saw tooth pattern or an alternative pattern.
  • a second end 35 of latch segment 29 engages a shoulder 37 of box 23.
  • Second end 35 is a curved, convex surface and shoulder 37 is a curved concave shoulder. This arrangement allows latch segment 29 to rock between the open position of Figure 2 and the engaged position of Figure 3.
  • a split actuation ring 41 is repositioned inside cavity 39 of box 23, forcing profile 31 of latch segment 29 into engagement with profile 33 of pin 27 by rotating latch segment 29 about end 35.
  • Actuation ring 41 has a curved convex inner side that slides along the convex outer surface of latch segment 29 as can be seen by comparing Figures 2 and 3.
  • Actuation ring 41 may be fabricated in multiple segments that are then mated to create a full ring around the inner concave surface of cavity 39.
  • the curvature of the convex inner surface of actuation ring 41 and the curvature of convex outer surface of latch segment 29 are such that as actuation ring 41 slides along the outer surface of latch segment 29, contact between the convex inner surface of actuation ring 41 and the convex outer surface of latch segment 29 is maintained. As latch segment 29 rotates about end 35, the relative angle between the outer surface of latch segment 29 and the inner surface of actuation ring 41 will change. The design of the curvature of both the inner surface of actuation ring 41 and outer surface of latch segment 29 must take this relative change into account to allow the surfaces to remain in contact.
  • Actuation ring 41 moves axially between the upper unlocked position of Figure 2 and the lower locked position of Figure 3.
  • actuation ring 41 is moved vertically by a series of load transfer blocks 43 that are moved axially by a drive sleeve 47, which resides on the outside of box 23.
  • Drive sleeve 47 forms a complete ring around box 23, with the inner cylindrical surface of drive sleeve 47 matching the outer cylindrical surface of box 23.
  • the number of load transfer blocks 43 corresponds to the number of latch segments 29 in this embodiment.
  • the load transfer blocks 43 travel in slots or windows 44 that are milled into box 23.
  • Actuation ring retainer 55 secures actuation ring 41 to load transfer block 43.
  • Actuation ring retainer 55 is a split ring.
  • a retaining screw 53 attaches actuation ring retainer 55 and the actuation ring 41 to each load transfer block 43.
  • transfer blocks 43 directly engage latch segments 29, and there is no need for the actuating ring or retainer.
  • the drive sleeve 47 may be moved axially by an actuation device 85 built in to a riser spider system such as spider system 80 shown in Figure 4.
  • Spider system 80 is mounted on platform 13 and moves horizontally towards riser pipe 25 until upward facing surface 75 of vertical member 77 of spider system 80 is positioned such that it can support downward facing surface 79 of pin assembly 27.
  • a handling tool has piston assembly 83 which is supported by spider system 80, and threaded adapter 87, which is located on top of piston assembly 83.
  • Threaded adapter 87 contains actuation devise 85 which engages drive sleeve 47 and moves drive sleeve 47 axially by the action of piston assembly 83.
  • conical seal face 48 of joint 21 and seal face 49 of joint 25 are pressed against either side of gasket 51.
  • Gasket 51 prevents leakage of fluid between the interior of the riser and the surrounding environment.
  • Seals 54 and 56 between box 23 and pin 27 seal cavity 39 against the entry of sea water.
  • Seals 52, 54 additionally prevent high pressure bore fluid from passing into cavity 39.
  • Seals 58 and 60 between drive sleeve 47 and box 23 prevent the entry of sea water into seal cavity 39 via the space between drive sleeve 47 and box 23.
  • Box 23 contains a port 62 for testing seals 52 and 54, and for allowing leakage of high pressure bore fluids to vent before passing into cavity 39.
  • a plurality of retraction segments or links 45 are carried on pin 27 above profile 33.
  • Each retraction link 45 has an upward facing curved concave surface which engages a curved convex surface 46 depending from box 23. This engagement allows retraction link 45 to pivot about the curved convex surface 46 of box 23.
  • a lower side of retraction link 45 contains a lip 50 which engages an upper edge of latch segment 29.
  • Actuation ring retainer 55 has a convex curved surface that engages the concave outer surface of each retraction link 45.
  • actuation ring 41 is moved to the lower position by the load transfer blocks 43 that are moved axially by a drive sleeve 47.
  • actuation ring retainer 55 makes contact with retraction link 45, it causes retraction link 45 to rotate or pivot about convex surface 46.
  • Lip 50 engages the upper edge of latch segment 29, pivoting latch segment 29 into the open position.
  • profile 31 of latch segment 29 disengages from profile 33 of pin 27.
  • Box 23 contains a sufficiently large cavity 39 to allow latch segment 29 to pivot into the open position and fully disengage from pin 27.
  • load transfer blocks 43 contact actuation rings 55 directly.
  • the curvature of the convex surface of actuation ring retainer 55 and the curvature of concave outer surface of retraction link 45 are such that as actuation ring retainer 55 slides along the outer surface of retraction link 45, contact between the surfaces is maintained.
  • the relative angle between the convex surface of actuation ring retainer 55 and the curvature of concave outer surface of retraction link 45 will change.
  • the design of the curvature of both the convex surface of actuation ring retainer 55 and concave outer surface of retraction link 45 must take this relative change into account to allow the surfaces to remain in contact.
  • connection is compressively preloaded by providing a relatively shallow load flank angle to profile 31 of latch segment 29 and to the corresponding profile 33 of pin 27.
  • the magnitude of preloading should be sufficient such that if the maximum projected tensile load is applied to riser joint 21 and 25, face 48 of joint 21 and face 49 of joint 25 do not separate from gasket 51. The preload would thus be sufficient to maintain the contact between faces 48 and 49 and gasket 51 under expected working loads of the joint sections.
  • the preloading forces are transmitted from joint 21 through box 23 and transferred to pin assembly 27 of joint 25 via the profiles 31 and 33.
  • one embodiment of the present invention may also include an automatic connector actuation lock 64.
  • Actuation lock 64 ensures that drive sleeve 47 does not move unexpectedly during operations.
  • Actuation lock 64 can lock drive sleeve 47 in both the open or engaged position.
  • the actuation lock will ensure that drive sleeve 47 remains in the engaged position during working conditions, and the open position while bringing the joints together during installation.
  • Actuation lock 64 is composed of two concentric split rings, comprising a smaller diameter ratchet ring 66 and a larger diameter back-up ring 68, both located within cavity 70 in drive sleeve 47, as can be seen in Figure 5.
  • a threaded ring 71 secures to drive ring 47 to define the upper end of cavity 70.
  • Ratchet ring 66 has a groove profile 72 on its inner diameter that corresponds to groove profile 74 on the outside diameter of box 23.
  • Ratchet ring 66 is biased inward to engage profile 74.
  • Ratchet ring 66 has groove profile 76 on its outer diameter that corresponds to groove profile 78 on the inner diameter of back-up ring 68.
  • Back-up ring 68 is outwardly biased.
  • back-up ring 68 aligns outer profile 76 with profile 78 on the inner diameter of back-up ring 68 such that the upward facing flanks 88 of profile 76 of ratchet ring 66 do not interfere with the downward facing flanks 90 of profile 78 of back-up ring 68.
  • This alignment of profiles 76 and 78 allows ratchet ring 68 to expand and contract and move axially over threads 74 of the outer diameter of box 23 as drive sleeve 47 is moved either upwards or downwards.
  • Groove profile 72 on Tatchet ring 66 engages groove profile 74 on the outside diameter of box 23 when drive sleeve 47 is in the locked position ( Figure 6).
  • pins 82 retract from cavity 70 causing back-up ring 68 to expand and take on a larger diameter.
  • back-up ring 68 moves outward, downward sloping shoulder 84 of cavity 70 remains in contact with the upward sloping surface 86 of back-up ring 68, forcing back-up ring 68 to move downward.
  • face 94 of profile 78 lines up with face 96 of profile 76 and ratchet ring 66 is unable to expand.
  • profile 74 of box 23 engages profile 72 of ratchet ring 66 and ratchet ring 66 unable to move axially, locking drive sleeve 47 in place.
  • the invention has significant advantages.
  • the coupling provides a high preload which is necessary for long, high pressure riser strings.
  • the coupling can be quickly made-up and broken out with an automated handling tool. Personnel are not placed in exposed positions while the riser is being made-up or broken out.
  • the assembly and retrieval of a riser is less time consuming than in the prior art.
  • box 23 and pin 27 could be connected with the pin facing upward or downward.
  • the lock could be used with connectors other than one using a pivoting latch assembly.

Landscapes

  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Earth Drilling (AREA)
  • Connector Housings Or Holding Contact Members (AREA)
  • Cable Accessories (AREA)

Abstract

A connector for connecting sections of drilling riser pipe wherein a first riser contains a pin assembly (27) with an external first grooved profile (33) and a second riser contains a housing assembly (23). An internal split pivoting latch segment assembly (29) carried by the housing assembly contains a second grooved profile (31) adapted to mate to the first grooved profile and a split actuation ring (41) movably carried by the housing assembly forces the second grooved profile of the latch segment assembly into engagement with the first grooved profile of the pin assembly. A plurality of retraction links (45) engage an upper edge of the latch segment assembly to disengage the second grooved profile of the latch segment assembly from the first grooved profile of the pin assembly if the risers are to be disconnected.

Description

PATENT APPLICATION
RAPID MAKEUP RISER CONNECTOR
Cross-Reference to Related Application
This application claims priority to provisional application 60/801,667, filed May 19, 2006.
Field of the Invention
This invention relates in general to high pressure riser systems with surface or near surface blowout preventers and more particularly to a high strength, high preload, rapid makeup connector for such riser systems.
Description of the Prior Art
A drilling riser is a large diameter pipe used in offshore drilling operations to guide the drill string from the offshore platform to and from the subsea wellhead and to provide means for circulation of drilling fluid. The drill string is lowered through the drilling riser. Drilling fluid circulates down from the platform through the drill string, out through the drill bit, and returns to the platform in the space between the inner diameter of the riser and outer diameter of the drill string. Environmental forces caused by waves, currents and the movement of the offshore platform as well as internal forces caused by the weight of the heavy drilling fluids all contribute to the substantial loads applied to the drilling riser. Additionally, high pressure drilling risers, utilizing surface blowout preventors, may be exposed to full well bore pressure. The connection between each successive joint of drilling riser must be able to withstand such loads. The prior art makes up the riser pipe or joint connections with bolted flange type connectors or with radially oriented screws that move dogs into and out of engagement with a profile on the riser pipe. Both of these methods require manipulation with a wrench or stud tensioning device, placing personnel in close proximity to the drilling slots for prolonged periods of time, and increasing the danger level of performing the task.
Normally, these connectors and the riser pipe need withstand only fairly low pressure, such as 2000 psi, because the blowout preventer is located subsea on top of the wellhead assembly. A recent approach is to mount the blowout preventer on the vessel and make the riser of sufficient strength to handle much higher internal pressure, such as 10,000 psi. The connection between the individual riser pipes must be able to withstand this high pressure.
Improvements to this prior art are desired which would allow for the connection between the riser pipes to be made rapidly and more safely, while at the same time generating high preload, able to withstand significant design separation loads.
Summary of the Invention
The present invention is directed to a device for connecting risers which can withstand high pressure and provides both a high strength and low fatigue connection, such as drilling risers or completion risers. A connector having the features of the present invention would generally be used for riser systems that utilize a surface blowout preventer, but is also suitable for use on risers using subsea blowout preventors.
The connector of the present invention comprises a pin assembly that is attached to the end of a first riser pipe and a housing assembly that is attached to the end of a second riser pipe that is to be connected with the first riser pipe. The housing assembly contains an internal split pivoting latch segment assembly. One end of each latch segment contains a grooved profile that mates with a corresponding external profile on the pin assembly. The other end of the latch assembly engages an internal shoulder of the housing assembly. The housing assembly has a sufficiently large cavity to allow the latch segments to pivot between the open and engaged positions.
In order to secure the first riser pipe to the second riser pipe, a split actuation ring is repositioned inside the cavity of the housing assembly, forcing the profile of latch segment into engagement with the profile of the pin assembly by rotating the latch segments. The actuation ring is positioned by a series of load transfer blocks that are moved axially by a drive sleeve, which resides on the outside of the housing assembly. Alternatively, the load transfer blocks may directly act on the latch segments. The load transfer blocks travel in slots or windows that are milled into the housing assembly. Split actuation ring retainers hold the actuation ring in place. Retaining screws attach both the actuation ring retainer and actuation ring to the load transfer block. The drive sleeve may be controlled by an actuation device built in to a riser spider system. Seals and gaskets of the connector prevent leakage of fluid between the interior of the riser and the surrounding environment, the entry of sea water into the connector, and prevent high pressure bore fluid from passing into the cavity within the housing assembly.
A retraction link is carried on the box, which rotates about a curved surface within the housing assembly and, contains a Hp which engages an upper edge of latch segment. In order to release the first riser pipe from the second riser pipe, the actuation ring is repositioned by the load transfer blocks that are moved by a drive sleeve. When the split actuation actuation ring retainer makes contact with the retraction link, the retraction link rotates and engages the edge of the latch segment, moving the latch segment into the open position. As a result, the profile of the latch segment disengages from the profile of the pin. In an alternative configuration, the load transfer blocks directly engage the retraction link.
The connection is compressively preloaded by providing a relatively shallow load flank angle to the profile of the latch segment and to the corresponding profile of the pin. The magnitude of preloading should be sufficient such that if the maximum projected tensile load is applied to the first and second riser joint, the faces of the connecting parts do not separate from the gasket. The preload would thus be sufficient to maintain a sealed connection under expected working loads of the joint sections.
One embodiment of the present invention may also include an automatic connector actuation lock. This actuation lock ensures that the drive sleeve does not move unexpectedly during operations and can lock the drive sleeve in both the open or engaged position. In particular, the actuation lock will ensure that the drive sleeve remains in open position while bringing the riser joints together and in the engaged position during working conditions. The actuation lock is composed of two concentric split rings, a smaller diameter ratchet ring and a larger diameter back-up ring, both located within a cavity in the drive sleeve. The ratchet ring has a thread profile on its inner diameter that corresponds to a thread profile on the outside diameter of the housing assembly. The ratchet ring has a profile on its outer diameter that corresponds to a profile on the inner diameter of the back-up ring. When the spider engages the riser pipe, a handling tool engages the drive sleeve and depresses a series of radial pins in the drive sleeve, which force the back-up ring to reduce in diameter and to move upward. This in turn provides clearance for the ratchet ring to expand and move axially over the threads of the outer diameter on the housing assembly. When the spider is disengaged, the radial pins retract, the back-up ring returns to its larger diameter, and the ratchet ring is unable to move axially, thereby locking the sleeve in place. The benefits of this connector over the prior art is that this connector is designed for rapid make-up while at the same time generating high preload which is able to withstand significant design separation loads.
Brief Description of the Drawings
Figure 1 is a schematic view illustrating a riser constructed in accordance with this invention.
Figure 2 is a sectional view of a connection system for a riser joint with a latch segment in the open position.
Figure 3 is a sectional view of the connection system of Figure 1 with the latch segment in the closed position.
Figure 4 is a schematic view illustrating a riser constructed in accordance with this invention, including the actuation lock.
Figure 5 is a schematic view illustrating the actuation lock in the open position.
Figure 6 is a schematic view illustrating the actuation lock in the locked position.
Detailed Description of the Invention
Referring to Figure 1, a riser 11 is schematically shown extending from a floating platform 13. Platform 13 is illustrated schematically and can be any type, such as a spar, tension leg platform, mobile offshore drilling unit, or the like. Riser 11 is a drilling riser used to drill offshore wells and is particularly for use in applications where the blowout preventer is located at the surface. The drilling riser may be submerged for several years at a time, such as for use on a spar platform. The drilling riser may also be recovered after drilling each well, such as on a tension leg platform.
Riser 11 is made up of a plurality of high pressure riser joints 15, each approximately 60 feet in length. A blowout preventer 17 is shown schematically at the upper end of riser 11. A subsea tieback assembly 19 is shown schematically at the lower end of riser 11 although blowout preventer 17 can also be at the lower end. Locating blowout preventer 17 at the platform or near the surface has significant advantages but in such a case riser 11 has to be able to withstand high internal pressure. Subsea tieback assembly 19 may incorporate a quick disconnect mechanism as well as a hydraulic connector on its lower end that connects it to a subsea wellhead assembly. Subsea tieback assembly 19 is not normally equipped to seal around drill pipe.
Referring to Figure 2, a first high pressure drilling riser joint 21 is fitted with a housing assembly 23, referred to as a box, and a second high pressure drilling riser joint 25 is fitted with a pin assembly 27. Box 23 slides over pin 27. Box 23 contains an internal split pivoting latch segment assembly. Preferably the latch ring assembly combines a plurality of separate segments 29, for example twelve, spaced around box 23. One end of each latch segment 29 contains a grooved profile 31 that mates with a corresponding profile 33 on pin assembly 27. Profiles 31 and 33 may have a saw tooth pattern or an alternative pattern. A second end 35 of latch segment 29 engages a shoulder 37 of box 23. Second end 35 is a curved, convex surface and shoulder 37 is a curved concave shoulder. This arrangement allows latch segment 29 to rock between the open position of Figure 2 and the engaged position of Figure 3.
Turning to Figure 3, in order to secure riser 21 to riser 25, a split actuation ring 41 is repositioned inside cavity 39 of box 23, forcing profile 31 of latch segment 29 into engagement with profile 33 of pin 27 by rotating latch segment 29 about end 35. Actuation ring 41 has a curved convex inner side that slides along the convex outer surface of latch segment 29 as can be seen by comparing Figures 2 and 3. Actuation ring 41 may be fabricated in multiple segments that are then mated to create a full ring around the inner concave surface of cavity 39. The curvature of the convex inner surface of actuation ring 41 and the curvature of convex outer surface of latch segment 29 are such that as actuation ring 41 slides along the outer surface of latch segment 29, contact between the convex inner surface of actuation ring 41 and the convex outer surface of latch segment 29 is maintained. As latch segment 29 rotates about end 35, the relative angle between the outer surface of latch segment 29 and the inner surface of actuation ring 41 will change. The design of the curvature of both the inner surface of actuation ring 41 and outer surface of latch segment 29 must take this relative change into account to allow the surfaces to remain in contact.
Actuation ring 41 moves axially between the upper unlocked position of Figure 2 and the lower locked position of Figure 3. In this embodiment, actuation ring 41 is moved vertically by a series of load transfer blocks 43 that are moved axially by a drive sleeve 47, which resides on the outside of box 23. Drive sleeve 47 forms a complete ring around box 23, with the inner cylindrical surface of drive sleeve 47 matching the outer cylindrical surface of box 23. The number of load transfer blocks 43 corresponds to the number of latch segments 29 in this embodiment. The load transfer blocks 43 travel in slots or windows 44 that are milled into box 23. Actuation ring retainer 55 secures actuation ring 41 to load transfer block 43. Actuation ring retainer 55 is a split ring. A retaining screw 53 attaches actuation ring retainer 55 and the actuation ring 41 to each load transfer block 43. In an alternate configuration, transfer blocks 43 directly engage latch segments 29, and there is no need for the actuating ring or retainer. The drive sleeve 47 may be moved axially by an actuation device 85 built in to a riser spider system such as spider system 80 shown in Figure 4. Spider system 80 is mounted on platform 13 and moves horizontally towards riser pipe 25 until upward facing surface 75 of vertical member 77 of spider system 80 is positioned such that it can support downward facing surface 79 of pin assembly 27. A handling tool has piston assembly 83 which is supported by spider system 80, and threaded adapter 87, which is located on top of piston assembly 83. Threaded adapter 87 contains actuation devise 85 which engages drive sleeve 47 and moves drive sleeve 47 axially by the action of piston assembly 83.
Returning to Figure 3, when connected, conical seal face 48 of joint 21 and seal face 49 of joint 25 are pressed against either side of gasket 51. Gasket 51 prevents leakage of fluid between the interior of the riser and the surrounding environment. Seals 54 and 56 between box 23 and pin 27 seal cavity 39 against the entry of sea water. Seals 52, 54 additionally prevent high pressure bore fluid from passing into cavity 39. Seals 58 and 60 between drive sleeve 47 and box 23 prevent the entry of sea water into seal cavity 39 via the space between drive sleeve 47 and box 23. Box 23 contains a port 62 for testing seals 52 and 54, and for allowing leakage of high pressure bore fluids to vent before passing into cavity 39. A plurality of retraction segments or links 45 are carried on pin 27 above profile 33. Each retraction link 45 has an upward facing curved concave surface which engages a curved convex surface 46 depending from box 23. This engagement allows retraction link 45 to pivot about the curved convex surface 46 of box 23. A lower side of retraction link 45 contains a lip 50 which engages an upper edge of latch segment 29. Actuation ring retainer 55 has a convex curved surface that engages the concave outer surface of each retraction link 45.
Referring again to Figure 2, in order to release the first riser 21 from second riser pipe 25, actuation ring 41 is moved to the lower position by the load transfer blocks 43 that are moved axially by a drive sleeve 47. When actuation ring retainer 55 makes contact with retraction link 45, it causes retraction link 45 to rotate or pivot about convex surface 46. Lip 50 engages the upper edge of latch segment 29, pivoting latch segment 29 into the open position. As a result, profile 31 of latch segment 29 disengages from profile 33 of pin 27. Box 23 contains a sufficiently large cavity 39 to allow latch segment 29 to pivot into the open position and fully disengage from pin 27. In an alternative configuration, load transfer blocks 43 contact actuation rings 55 directly.
The curvature of the convex surface of actuation ring retainer 55 and the curvature of concave outer surface of retraction link 45 are such that as actuation ring retainer 55 slides along the outer surface of retraction link 45, contact between the surfaces is maintained. As retraction link 45 rocks or pivots about convex surface 46, the relative angle between the convex surface of actuation ring retainer 55 and the curvature of concave outer surface of retraction link 45 will change. The design of the curvature of both the convex surface of actuation ring retainer 55 and concave outer surface of retraction link 45 must take this relative change into account to allow the surfaces to remain in contact. The connection is compressively preloaded by providing a relatively shallow load flank angle to profile 31 of latch segment 29 and to the corresponding profile 33 of pin 27. The magnitude of preloading should be sufficient such that if the maximum projected tensile load is applied to riser joint 21 and 25, face 48 of joint 21 and face 49 of joint 25 do not separate from gasket 51. The preload would thus be sufficient to maintain the contact between faces 48 and 49 and gasket 51 under expected working loads of the joint sections. The preloading forces are transmitted from joint 21 through box 23 and transferred to pin assembly 27 of joint 25 via the profiles 31 and 33.
In operation, when making up riser 11 for lowering into the sea, the operator makes sure that latch segment 29 is in the open position as shown in Figure 2. The operator lowers a first riser joint 25 with the end of riser joint 25 containing pin assembly 27 pointed upwards and holds this riser joint in place with the riser spider system of platform 13. The operator then lowers a second riser joint 21, with box 23 pointed downward, landing box 23 of riser 21 over the pin assembly 27 of riser joint 25. The operator then actuates drive sleeve 47 by an actuation device built into the riser spider of platform 13, which moves load transfer blocks 43 downward, which in turn repositions actuation ring 41, forcing profile 31 of latch segment 29 into engagement with profile 33 of pin 27. When the operator is ready to install the next riser joint, he repeats this cycle. The operator can break out the riser joint of riser 11 by reversing the procedure.
Turning to Figure 4, one embodiment of the present invention may also include an automatic connector actuation lock 64. Actuation lock 64 ensures that drive sleeve 47 does not move unexpectedly during operations. Actuation lock 64 can lock drive sleeve 47 in both the open or engaged position. In particular, the actuation lock will ensure that drive sleeve 47 remains in the engaged position during working conditions, and the open position while bringing the joints together during installation.
Actuation lock 64 is composed of two concentric split rings, comprising a smaller diameter ratchet ring 66 and a larger diameter back-up ring 68, both located within cavity 70 in drive sleeve 47, as can be seen in Figure 5. A threaded ring 71 secures to drive ring 47 to define the upper end of cavity 70. Ratchet ring 66 has a groove profile 72 on its inner diameter that corresponds to groove profile 74 on the outside diameter of box 23. Ratchet ring 66 is biased inward to engage profile 74. Ratchet ring 66 has groove profile 76 on its outer diameter that corresponds to groove profile 78 on the inner diameter of back-up ring 68. Back-up ring 68 is outwardly biased.
When riser actuation device 85 engages drive sleeve 47 (Figure 4), engagement member 81 of threaded adapter 87 engages peg member 89 of threaded adapter 87 depresses a plurality of pins 82 spaced radially around and carried on drive sleeve 47, which force back-up ring 68 to reduce in diameter. Cavity 70 of drive sleeve 47 has a downward sloping shoulder 84 which remains in contact with the upward sloping surface 86 of back-up ring 68 such that as back-up ring 68 reduces in diameter, it also moves upward along downward facing shoulder 84. The upward movement of back-up ring 68 aligns outer profile 76 with profile 78 on the inner diameter of back-up ring 68 such that the upward facing flanks 88 of profile 76 of ratchet ring 66 do not interfere with the downward facing flanks 90 of profile 78 of back-up ring 68. This alignment of profiles 76 and 78 allows ratchet ring 68 to expand and contract and move axially over threads 74 of the outer diameter of box 23 as drive sleeve 47 is moved either upwards or downwards. Groove profile 72 on Tatchet ring 66 engages groove profile 74 on the outside diameter of box 23 when drive sleeve 47 is in the locked position (Figure 6). When drive sleeve 47 is in the unlocked position (Figure 5), groove profile 72 on ratchet ring 66 engages a profile 92 (Figure 4) on the outside diameter of box 23 spaced above profile 72. While engaging profile 92, ratchet ring 66 holds drive sleeve 47 in the unlocked position..
When threaded adapter 87 is removed, turning now to Figure 6, pins 82 retract from cavity 70 causing back-up ring 68 to expand and take on a larger diameter. As back-up ring 68 moves outward, downward sloping shoulder 84 of cavity 70 remains in contact with the upward sloping surface 86 of back-up ring 68, forcing back-up ring 68 to move downward. When back-up ring 68 is in the outer and lower position, face 94 of profile 78 lines up with face 96 of profile 76 and ratchet ring 66 is unable to expand. As a result, profile 74 of box 23 engages profile 72 of ratchet ring 66 and ratchet ring 66 unable to move axially, locking drive sleeve 47 in place.
The invention has significant advantages. The coupling provides a high preload which is necessary for long, high pressure riser strings. The coupling can be quickly made-up and broken out with an automated handling tool. Personnel are not placed in exposed positions while the riser is being made-up or broken out. The assembly and retrieval of a riser is less time consuming than in the prior art.
The present invention has been described with reference to several embodiments thereof. Those skilled in the art will appreciate that the invention is thus not limited, but is susceptible to variation and modification without departure from the scope and spirit thereof. For example, box 23 and pin 27 could be connected with the pin facing upward or downward. The lock could be used with connectors other than one using a pivoting latch assembly.

Claims

We claim:
1. A connector for connecting sections of riser pipe, the connector comprising: a pin with an external grooved profile on one end of a first riser pipe; a housing assembly on one end of a second riser pipe; an internal split pivoting latch segment assembly carried by the housing assembly and having a grooved profile that mates with the grooved profile on pin, the latch segment assembly having a support end that is pivotally supported on a shoulder of the housing assembly; and an actuation member carried by the housing assembly for axial movement in a first direction relative to the latch segment assembly to pivot the latch segment assembly and to force the grooved profile of the latch segment assembly into engagement with the grooved profile of the pin.
2. The connector according to claim 1 further comprising a retraction link pivotally carried by the housing assembly in engagement with an end of the latch segment assembly opposite the support end, the retraction link pivoting in response to axial movement of the actuation member in a second direction to disengage the grooved profile of the latch segment assembly from the grooved profile of the pin.
3. The connector according to claim 2 wherein the actuation member has a curved convex side that slides along a curved concave outer surface of the retraction links, said curved surfaces designed such that contact between the curved surfaces is maintained as the actuation ring retainers are moved.
4. The connector according to claim 1 wherein the latch segment assembly comprises a plurality of separate segments spaced around the housing assembly.
5. The connector according to claim 1 wherein the actuation member has a curved convex inner side that slides along a curved convex outer surface of the latch segment assembly, said curved surfaces configured such that contact between the curved surfaces is maintained as the actuation member is moved axially in the first direction.
6. The connector according to claim 1 further comprising: a window in the housing assembly; a drive sleeve carried on an outside of the housing assembly for axial movement relative to the housing assembly; and a load transfer block in the window and secured to the actuation member and the drive sleeve.
7. The connector according to claim 1 wherein the housing assembly comprises: an annular member having an inner diameter and an annular cavity formed in the inner diameter; and the latch segment assembly is carried in the annular cavity.
8. The connector according to claim 7 wherein the actuation member is carried in the annular cavity.
9. A riser connection system comprising: a plurality of riser pipes, each of the riser pipes having a pin containing an external grooved profile on a first end of and a housing on a second end; an internal split pivoting latch segment assembly carried within the housing and having a grooved profile that mates with the grooved profile on the pin of an adjacent riser pipe, the latch segment assembly having a support end that is pivotally supported on an internal shoulder of the housing assembly; an actuation member carried within the housing for axial movement relative to the housing and the latch assembly; a window in the housing assembly; a drive sleeve carried on an outside of the housing for axial movement relative to the housing; and a load transfer block carried in the window for axial movement relative to the housing and secured to the actuation member and the drive sleeve so that axial movement of the drive sleeve in a first direction causes the actuation member to move to pivot the latch segment assembly to a locked position.
10. The connection system according to claim 9 further comprising a lock carried by the housing for selectively preventing the drive sleeve from moving in a second direction while the latch segment assembly is in the locked position.
11. The connection system according to claim 9 further comprising a retraction link pivotally carried within the housing in engagement with an end of the latch segment assembly opposite the support end, the retraction link pivoting in response to axial movement of the actuation member in a second direction to disengage the grooved profile of the latch segment assembly from the grooved profile of the pin.
12. The connection system according to claim 9 wherein the latch segment assembly comprises a plurality of separate segments spaced around the housing.
13. The connection system according to claim 9 wherein the actuation member has a curved convex inner side that slides along a curved convex outer surface of the latch segment assembly, said curved surfaces configured such that contact between the curved surfaces is maintained as the actuation member is moved axially in the first direction.
14. The connection system according to claim 9 further comprising a lock carried by the housing for selectively preventing the drive sleeve from moving in a first direction while the latch segment assembly is in an unlocked position.
15. A connector for connecting sections of riser pipe, the connector comprising: a pin containing an external grooved profile on one end of a first riser pipe; a housing on one end of a second riser pipe; an internal latch segment assembly carried by the housing assembly with a grooved profile that mates with the grooved profile on the first riser pipe while in an engaged position and spaced from the grooved profile on the first riser pipe while in a disengaged position; an actuation sleeve carried by the housing for axial movement in a first direction relative to the latch segment assembly to move the latch segment assembly, to the engaged position and in a second direction to move the latch assembly to the disengaged position; a split lock ring carried between the sleeve and the housing, the lock ring having a set of grooves that engage a matching set of grooves in ratcheting engagement and while in an unlocked position the drive sleeve moves axially; and a backup assembly that selectively prevents the lock ring from moving to the unlocked position
16. The connector according to claim 15 wherein the backup assembly comprises a plurality of pins mounted in the sleeve for radial movement relative to the sleeve.
17. The connector according to claim 15 further comprising: a split backup ring encircling the lock ring to prevent ratcheting movement o the lock ring while the backup ring is in the unlocked position; and a plurality of pins mounted in apertures in the sleeve for radial movement, each pin having an inner end that engages the backup ring and an outer end accessible from the exterior of the sleeve for moving the backup ring between the locked and unlocked position.
18. The connector according to claim 17 wherein the backup ring has a grooved profile on an inner diameter that that mates to a grooved profile on an outer diameter of the lock ring.
19. The connector according to claim 15 wherein the lock ring grooves are located on an inner diameter of the lock ring and the lock ring is inwardly biased.
20. A latch segment assembly carried by a housing assembly and having a grooved profile that mates with a grooved profile on a pin; an actuation member carried by the housing assembly for axial movement in a first direction relative to the latch segment assembly to move the latch segment assembly and to force the grooved profile of the latch segment assembly into engagement with the grooved profile of the pin; and a retraction link carried by the housing assembly in engagement with an end of the latch segment assembly, moving in response to axial movement of the actuation member in a second direction to disengage the grooved profile of the latch segment assembly from the grooved profile of the pin.
PCT/US2007/011985 2006-05-19 2007-05-18 Rapid makeup riser connector WO2007136793A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
GB0820749A GB2450854B (en) 2006-05-19 2007-05-18 Rapid makeup riser connector
BRPI0711912-7A BRPI0711912B1 (en) 2006-05-19 2007-05-18 QUICK COMPOSITION SUBMARINE CONDUCTOR CONNECTOR

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US80166706P 2006-05-19 2006-05-19
US60/801,667 2006-05-19

Publications (1)

Publication Number Publication Date
WO2007136793A1 true WO2007136793A1 (en) 2007-11-29

Family

ID=38521307

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2007/011985 WO2007136793A1 (en) 2006-05-19 2007-05-18 Rapid makeup riser connector

Country Status (4)

Country Link
US (1) US7686087B2 (en)
BR (1) BRPI0711912B1 (en)
GB (1) GB2450854B (en)
WO (1) WO2007136793A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010005711A1 (en) * 2008-06-16 2010-01-14 Vetco Gray, Inc. Latch system for friction-locked tubular members
WO2010026373A1 (en) * 2008-09-05 2010-03-11 Aker Subsea Limited Connector for tubular
GB2480571A (en) * 2006-06-01 2011-11-23 Cameron Int Corp Stress distributing wellhead connector
WO2012007928A3 (en) * 2010-07-16 2012-04-12 Weatherford/Lamb, Inc. Positive retraction latch locking dog for a rotating control device
CN103109036A (en) * 2010-08-23 2013-05-15 阿克深海有限公司 Ratchet and latch mechanisms
WO2014085167A3 (en) * 2012-11-28 2014-12-18 Vetco Gray Inc. Lockdown system for use in a wellhead assembly
WO2016203380A1 (en) * 2015-06-17 2016-12-22 Marco Pozzi A quick-fit coupling

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0508140D0 (en) * 2005-04-22 2005-06-01 Enovate Systems Ltd Lubricator system
GB0613393D0 (en) * 2006-07-06 2006-08-16 Enovate Systems Ltd Improved workover riser compensator system
BRPI0915324A2 (en) * 2008-06-16 2015-10-27 Cameron Int Corp hydraulic connector
US8485262B1 (en) * 2008-09-26 2013-07-16 John W. Angers Modular, stackable wellhead system
US8479824B2 (en) * 2008-10-02 2013-07-09 Weatherford/Lamb, Inc. Power slip assembly for wellhead casing and wellbore tubing
EP2376825B1 (en) * 2009-01-13 2013-02-13 Single Buoy Moorings Inc. Retractable hydrocarbon connector
GB2468926B (en) * 2009-03-27 2013-08-07 Claxton Engineering Services Ltd Tubular connector
US8307903B2 (en) * 2009-06-24 2012-11-13 Weatherford / Lamb, Inc. Methods and apparatus for subsea well intervention and subsea wellhead retrieval
US8322436B2 (en) * 2009-06-29 2012-12-04 Vetco Gray Inc. Split assembly attachment device
US8272444B2 (en) * 2009-11-10 2012-09-25 Benton Frederick Baugh Method of testing a drilling riser connection
US20110193340A1 (en) * 2010-02-08 2011-08-11 Seahorse Equipment Corp. Flexible joint for large-diameter riser pipes
FR2956694B1 (en) * 2010-02-23 2012-02-24 Inst Francais Du Petrole UPLINK COLUMN CONNECTOR WITH FLANGES AND EXTERNAL LOCKING RING
GB2478011B8 (en) * 2010-02-25 2016-08-17 Plexus Holdings Plc Clamping arrangement
US8316948B2 (en) * 2010-03-04 2012-11-27 Vetco Gray Inc. Actuation assembly for riser connection dog
US8474538B2 (en) * 2010-09-21 2013-07-02 Vetco Gray Inc. Hydraulically actuated safety lock ring
CN102146772B (en) * 2011-02-15 2013-04-17 宝鸡石油机械有限责任公司 Rotary locking piece type drilling riser connector
BR112014001421A2 (en) * 2011-08-08 2017-02-21 Nat Oilwell Varco Lp of a tubular column, and method for connecting a plurality of tubulars
US9145745B2 (en) 2011-09-23 2015-09-29 Vetco Gray Inc. Rotationally actuated collet style tubular connection
US8757671B2 (en) * 2011-12-02 2014-06-24 Vetco Gray Inc. Slide actuating tubular connector
GB201122466D0 (en) 2011-12-30 2012-02-08 Nat Oilwell Varco Uk Ltd Connector
US10253582B2 (en) * 2012-05-14 2019-04-09 Dril-Quip, Inc. Riser monitoring and lifecycle management system and method
US9206654B2 (en) * 2012-05-14 2015-12-08 Dril-Quip, Inc. Systems and methods for riser coupling
SG195477A1 (en) * 2012-05-14 2013-12-30 Dril Quip Inc Systems and methods for riser coupling
US9708863B2 (en) * 2012-05-14 2017-07-18 Dril-Quip Inc. Riser monitoring system and method
US11414937B2 (en) 2012-05-14 2022-08-16 Dril-Quip, Inc. Control/monitoring of internal equipment in a riser assembly
US9695644B2 (en) * 2012-05-14 2017-07-04 Drill-Quip Inc. Smart riser handling tool
US9228397B2 (en) * 2012-05-14 2016-01-05 Dril-Quip, Inc. Systems and methods for riser coupling
US9222318B2 (en) * 2012-05-14 2015-12-29 Dril-Quip, Inc. Systems and methods for riser coupling
US9494002B2 (en) 2012-09-06 2016-11-15 Reform Energy Services Corp. Latching assembly
US9828817B2 (en) 2012-09-06 2017-11-28 Reform Energy Services Corp. Latching assembly
EP3042029B1 (en) * 2013-09-06 2019-05-08 Reform Energy Services Corp. Latching assembly
US9255453B1 (en) * 2014-01-31 2016-02-09 Phyllis A. Jennings Heavy duty riser connector assembly
FR3020654B1 (en) * 2014-05-05 2016-05-06 Ifp Energies Now UPRIGHT ROD COMPRISING AN INTERNAL LOCKING RING AND A MEANS FOR ADJUSTING THE PLAY BETWEEN THE AUXILIARY TUBE ELEMENTS AND THE MAIN TUBE ELEMENTS.
NO345002B1 (en) * 2014-07-16 2020-08-17 Dril Quip Inc Mechanical hold-down assembly for a well tie-back string
WO2016049466A1 (en) * 2014-09-26 2016-03-31 Vetco Gray Inc Lockdown mechanism and lockdown system for wellhead connector
US10480696B2 (en) * 2015-12-01 2019-11-19 Forum Us, Inc. Locking collar quick union connection
US10240423B2 (en) * 2015-12-29 2019-03-26 Cameron International Corporation Connector system
ES2842973T3 (en) 2017-01-27 2021-07-15 Siemens Gamesa Renewable Energy B V Set comprising a first and a second section and a fixture
NL2018250B1 (en) * 2017-01-27 2018-08-07 Fistuca B V Assembly comprising a first and a second upright section and a fixation
US20190323312A1 (en) 2017-03-14 2019-10-24 Reel Power Licensing Corp. Remotely activated connection device for a spiral shoulder connection
US20180264604A1 (en) * 2017-03-14 2018-09-20 Reel Power Licensing Corp. Remotely activated connection device for a spiral shoulder connection
GB202218537D0 (en) * 2022-12-09 2023-01-25 S3N Ventrus Ltd A release adapter for an end-fitting and a subsea connector assembly

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4693497A (en) * 1986-06-19 1987-09-15 Cameron Iron Works, Inc. Collet connector
US4902044A (en) * 1989-05-04 1990-02-20 Drill-Quip, Inc. Well apparatus
US5535827A (en) * 1993-07-30 1996-07-16 Sonsub, Inc. Hydraulic connector
US5634671A (en) * 1994-08-01 1997-06-03 Dril-Quip, Inc. Riser connector
US6234252B1 (en) * 1998-03-26 2001-05-22 Abb Vetco Gray Inc. External tieback connector and method for tying back riser to subsea wellhead
WO2002036932A1 (en) * 2000-10-31 2002-05-10 Cooper Cameron Corporation Apparatus and method for connecting tubular members
US20040163816A1 (en) * 2002-12-16 2004-08-26 Nelson John Edward Sub mudline abandonment connector

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3096999A (en) * 1958-07-07 1963-07-09 Cameron Iron Works Inc Pipe joint having remote control coupling means
US4433859A (en) * 1981-07-16 1984-02-28 Nl Industries, Inc. Wellhead connector with release mechanism
US4491346A (en) * 1982-11-01 1985-01-01 Dril-Quip, Inc. Apparatus for releasably connecting tubular members in end-to-end relation
GB2288418B (en) * 1994-03-16 1998-07-15 Fmc Corp Tubing hanger incorporating a seal
US6129149A (en) * 1997-12-31 2000-10-10 Kvaerner Oilfield Products Wellhead connector
US6260624B1 (en) * 1998-08-06 2001-07-17 Abb Vetco Gray, Inc. Internal production riser primary tieback
GB0004212D0 (en) * 2000-02-23 2000-04-12 Plexus Ocean Syst Ltd Pipe joint
US6609734B1 (en) * 2002-02-11 2003-08-26 Benton F. Baugh Torus type connector
AU2003262802A1 (en) * 2002-08-23 2004-03-11 Dril-Quip, Inc. Riser connector
US7234528B2 (en) * 2005-03-04 2007-06-26 Vetco Gray Inc. Multi-purpose sleeve for tieback connector
GB2456653B (en) * 2005-08-23 2009-12-02 Vetco Gray Inc Preloaded riser coupling system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4693497A (en) * 1986-06-19 1987-09-15 Cameron Iron Works, Inc. Collet connector
US4902044A (en) * 1989-05-04 1990-02-20 Drill-Quip, Inc. Well apparatus
US5535827A (en) * 1993-07-30 1996-07-16 Sonsub, Inc. Hydraulic connector
US5634671A (en) * 1994-08-01 1997-06-03 Dril-Quip, Inc. Riser connector
US6234252B1 (en) * 1998-03-26 2001-05-22 Abb Vetco Gray Inc. External tieback connector and method for tying back riser to subsea wellhead
WO2002036932A1 (en) * 2000-10-31 2002-05-10 Cooper Cameron Corporation Apparatus and method for connecting tubular members
US20040163816A1 (en) * 2002-12-16 2004-08-26 Nelson John Edward Sub mudline abandonment connector

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2480571A (en) * 2006-06-01 2011-11-23 Cameron Int Corp Stress distributing wellhead connector
GB2480571B (en) * 2006-06-01 2011-12-28 Cameron Int Corp Stress distributing wellhead connector
US7913767B2 (en) 2008-06-16 2011-03-29 Vetco Gray Inc. System and method for connecting tubular members
WO2010005711A1 (en) * 2008-06-16 2010-01-14 Vetco Gray, Inc. Latch system for friction-locked tubular members
GB2475438B (en) * 2008-09-05 2012-10-10 Aker Subsea Ltd Connector for tubular
WO2010026373A1 (en) * 2008-09-05 2010-03-11 Aker Subsea Limited Connector for tubular
GB2475438A (en) * 2008-09-05 2011-05-18 Aker Subsea Ltd Connector for tubular
AU2011277937B2 (en) * 2010-07-16 2016-01-07 Weatherford Technology Holdings, Llc Positive retraction latch locking dog for a rotating control device
US9010433B2 (en) 2010-07-16 2015-04-21 Weatherford Technology Holdings, Llc Positive retraction latch locking dog for a rotating control device
WO2012007928A3 (en) * 2010-07-16 2012-04-12 Weatherford/Lamb, Inc. Positive retraction latch locking dog for a rotating control device
US9518436B2 (en) 2010-07-16 2016-12-13 Weatherford Technology Holdings, Llc Positive retraction latch locking dog for a rotating control device
EP3540176B1 (en) * 2010-07-16 2023-10-25 Weatherford Technology Holdings, LLC Positive retraction latch locking dog for a rotating control device
CN103109036A (en) * 2010-08-23 2013-05-15 阿克深海有限公司 Ratchet and latch mechanisms
GB2483066B (en) * 2010-08-23 2016-04-13 Aker Subsea Ltd Ratchet and latch mechanisms and pre-loading devices
WO2014085167A3 (en) * 2012-11-28 2014-12-18 Vetco Gray Inc. Lockdown system for use in a wellhead assembly
GB2527666A (en) * 2012-11-28 2015-12-30 Vetco Gray Inc Lockdown system for use in a wellhead assembly
WO2016203380A1 (en) * 2015-06-17 2016-12-22 Marco Pozzi A quick-fit coupling

Also Published As

Publication number Publication date
BRPI0711912B1 (en) 2018-02-06
GB2450854B (en) 2011-11-02
GB0820749D0 (en) 2008-12-17
BRPI0711912A2 (en) 2012-01-03
US7686087B2 (en) 2010-03-30
GB2450854A (en) 2009-01-07
US20070267197A1 (en) 2007-11-22

Similar Documents

Publication Publication Date Title
US7686087B2 (en) Rapid makeup drilling riser
US8356672B2 (en) Riser joint coupling
US8312933B2 (en) Marine drilling riser system
US7591315B2 (en) Subsea riser disconnect and method
US4154298A (en) Well tubing hanger
US4597448A (en) Subsea wellhead system
AU2001259532B2 (en) Subsea riser disconnect and method
US6173781B1 (en) Slip joint intervention riser with pressure seals and method of using the same
US20190093445A1 (en) Systems and methods for controlling flow from a wellbore annulus
US9534466B2 (en) Cap system for subsea equipment
US7377323B2 (en) Blowout preventer stack landing assist tool
AU2001259532A1 (en) Subsea riser disconnect and method
US9719312B2 (en) Adjustable mudline tubing hanger suspension system
US20190218865A1 (en) Apparatus for transmitting torque through a work string
NL8300566A (en) Submarine wellhead system.
NO20111067A1 (en) Full diameter compression sealing method
US20220127913A1 (en) Rotatable mandrel hanger
US20050051336A1 (en) Subsea tubing hanger lockdown device
US11473374B2 (en) Deployment tool and deployment tool assembly
GB2218444A (en) Casing hanger and packoff running tool

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07795061

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 0820749

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20070518

WWE Wipo information: entry into national phase

Ref document number: 0820749.0

Country of ref document: GB

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07795061

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: PI0711912

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20081118