WO2007134620A1 - Procédé pour préparer un élément constitué d'un matériau de base électroconducteur à l'exécution d'un processus d'érosion - Google Patents

Procédé pour préparer un élément constitué d'un matériau de base électroconducteur à l'exécution d'un processus d'érosion Download PDF

Info

Publication number
WO2007134620A1
WO2007134620A1 PCT/EP2006/004786 EP2006004786W WO2007134620A1 WO 2007134620 A1 WO2007134620 A1 WO 2007134620A1 EP 2006004786 W EP2006004786 W EP 2006004786W WO 2007134620 A1 WO2007134620 A1 WO 2007134620A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating
base material
component
cooling air
thermal barrier
Prior art date
Application number
PCT/EP2006/004786
Other languages
German (de)
English (en)
Inventor
Viktor Georgiev
Francis-Jurjen Ladru
Gerhard Reich
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to PCT/EP2006/004786 priority Critical patent/WO2007134620A1/fr
Priority to PCT/EP2007/053616 priority patent/WO2007134916A1/fr
Priority to EP07728082A priority patent/EP2018246A1/fr
Publication of WO2007134620A1 publication Critical patent/WO2007134620A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H9/00Machining specially adapted for treating particular metal objects or for obtaining special effects or results on metal objects
    • B23H9/10Working turbine blades or nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/01Selective coating, e.g. pattern coating, without pre-treatment of the material to be coated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P2700/00Indexing scheme relating to the articles being treated, e.g. manufactured, repaired, assembled, connected or other operations covered in the subgroups
    • B23P2700/06Cooling passages of turbine components, e.g. unblocking or preventing blocking of cooling passages of turbine components
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • the present invention relates to a method of preparing a component of electrically conductive base material to perform an erosion process.
  • Highly thermally stressed components are often provided with a heat-insulating coating to keep the heat load of the components low.
  • cooling air holes are often introduced into such components to allow the generation of a cooling air film over the component.
  • the cooling air film leads to a further cooling and thus to a further reduction of the thermal load.
  • gas turbine blades ie running or guide vanes of gas turbines, have such cooling air holes and thermal barrier coatings.
  • a common method for producing the cooling air holes in the metallically conductive base material of the turbine blades is the erosion with the aid of erosion electrodes. Since this method requires a current flow between the electrically conductive base material and the erosion electrodes, the introduction of the cooling air holes takes place before the application of the electrically insulating thermal barrier coating.
  • the existing cooling air holes are closed when applying the thermal barrier coating, they must be opened again after applying the thermal barrier coating.
  • the opening can be done, for example, by means of a high-pressure fluid, which is blown from the inside of the turbine blades through the cooling air holes.
  • a high-pressure fluid which is blown from the inside of the turbine blades through the cooling air holes.
  • JP 9136260 One way to make the opening of the cooling air holes only after the application of the thermal barrier coating is described in JP 9136260. After applying a thermal barrier coating on the base material of a turbine blade, the thermal barrier coating is removed there, where the cooling air holes are to be introduced, by means of a blasting process again. Subsequently, the cooling air holes are introduced by means of erosion electrodes at the exposed locations in the base material. However, care must be taken when removing the thermal barrier coating by means of the blasting process that the blasting does not result in damage to the ceramic thermal insulation layer outside the areas intended for the introduction of the cooling air holes.
  • the object of the present invention is to provide an advantageous method for preparing a component made of an electrically conductive base material for performing an erosion process.
  • a further object is to provide an advantageous method for producing a component from an electrically conductive base material with an electrically insulating coating and recesses introduced into the base material.
  • an electrically insulating coating is sprayed onto the surface of the base material. Those areas of the component surface in which the erosion process is to be carried out are kept free during the spraying of the coating of coating material.
  • the surface of the base material is kept from the outset by the coating material where the erosion process is to be carried out for forming recesses, such as cooling air openings, it is no longer necessary to remove excess coating material after application of the coating. The risk of damaging the already applied coating by removing coating material is thereby eliminated. In addition, it is possible to reduce the number of work steps involved in the erosive introduction of recesses, since the removal of the coating is eliminated, which can have a cost-effective effect on the manufacture of the components.
  • a template can be arranged above the component surface during spraying.
  • This template can also be designed in three dimensions. It then has, for example, an inverse structure to be erosively formed, which is arranged relative to the component surface and to the injection direction such that the resulting spray shadow the opening area of the recess in the surface corresponds.
  • the inventive method is particularly suitable for the manufacture of turbine blades, so as runners or vanes of gas turbines to which a thermal barrier coating is applied as an electrically insulating coating and in the means of the erosion cooling air holes are to be introduced as recesses. Since the integrity of the thermal barrier coating is particularly important in the case of gas turbine blades, the method according to the invention makes a valuable contribution to improving the production of gas turbine blades with cooling-air bores.
  • inverse structures of a three-dimensional template for generating the spray shadow at the locations where the cooling air holes are to be introduced for example, pins can be used.
  • Suitable spraying methods for applying the electrically insulating coating are, in particular, thermal spraying methods. But also non-thermal spray methods, such as. Cold gas spraying, can be used in principle.
  • the method of preparing a component of an electrically conductive base material for performing an erosion process may be adapted to a manufacturing method for manufacturing a component of an electrically insulating base material having an electrically insulating coating applied to the surface of the base material and at least one eroding by the base material be extended to the application of the electrically insulating coating introduced into the base material recess when after preparing the component according to the preparation method according to the invention at least one
  • FIG. 1 schematically shows a section of a rotor blade of a gas turbine.
  • FIG. 2 shows a template for producing a spray shadow during the injection of a thermal insulation coating on the turbine blade in a plan view of the leading edge of the turbine blade.
  • Fig. 3 shows the turbine blade of Fig. 2 in one
  • Fig. 4 shows a detail of Fig. 3 in an enlarged view.
  • FIG. 5 shows the turbine blade of FIG. 3 during the FIG
  • FIG. 6 shows a perspective view of a rotor blade or guide vane of a turbomachine.
  • FIG. 6 shows a perspective view of a moving blade 120 or guide blade 130 of a turbomachine that extends along a longitudinal axis 121.
  • the turbomachine may be a gas turbine of an aircraft or a power plant for power generation, a steam turbine or a compressor.
  • the blade 120, 130 has along the longitudinal axis 121 consecutively a fastening region 400, a blade platform 403 adjacent thereto and an airfoil 406 and a blade tip 415.
  • the blade 130 may have at its blade tip 415 another platform (not shown).
  • a blade root 183 is formed, which serves for attachment of the blades 120, 130 to a shaft or a disc (not shown).
  • the blade root 183 is designed, for example, as a hammer head. Other designs as Christmas tree or Schwalbenschwanzfuß are possible.
  • the blade 120, 130 has a leading edge 409 and a trailing edge 412 for a medium flowing past the airfoil 406.
  • blades 120, 130 for example, solid metallic materials, in particular superalloys, are used in all regions 400, 403, 406 of the blade 120, 130.
  • superalloys are known, for example, from EP 1 204 776 B1, EP 1 306 454, EP 1 319 729 A1, WO 99/67435 or WO 00/44949; These writings are with respect. the chemical composition of the alloy part of the disclosure.
  • the blade 120, 130 can hereby by a casting process, also by means of directed solidification, by a
  • Forging process be made by a milling process or combinations thereof.
  • directionally solidified structures generally refers to single crystals that have no grain boundaries or at most small angle grain boundaries, as well as stem crystal structures that have grain boundaries running in the longitudinal direction but no transverse grain boundaries. These second-mentioned crystalline structures are also known as directionally solidified structures. Such methods are known from US Pat. No. 6,024,792 and EP 0 892 090 A1; These writings are with respect. the solidification process part of the disclosure.
  • the blades 120, 130 may have coatings against corrosion or oxidation, e.g. B. (MCrAlX; M is at least one element of the group iron (Fe), cobalt (Co),
  • Nickel (Ni), X is an active element and stands for yttrium (Y) and / or silicon and / or at least one element of the rare earths, or hafnium (Hf)).
  • Such alloys are known from EP 0 486 489 B1, EP 0 786 017 B1, EP 0 412 397 B1 or EP 1 306 454 A1, which should be part of this disclosure with regard to the chemical composition of the alloy.
  • the density is preferably 95% of the theoretical density.
  • a protective aluminum oxide layer (TGO thermal grown oxide layer) is formed on the MCrAlX layer (as an intermediate layer or as the outermost layer).
  • thermal barrier coating On the MCrAlX may still be present a thermal barrier coating, which is preferably the outermost layer, and exists for example ZrO 2 , Y 2 O 3 -ZrO 2 , ie it is not, partially or completely stabilized by yttrium oxide and / or calcium oxide and / or magnesium oxide.
  • the thermal barrier coating covers the entire MCrAlX layer. Suitable coating processes, such as electron beam evaporation (EB-PVD), produce stalk-shaped grains in the thermal barrier coating. Other coating methods are conceivable, for example atmospheric plasma spraying (APS), LPPS, VPS or CVD.
  • the thermal barrier coating may have porous, micro- or macro-cracked grains for better thermal shock resistance. The thermal barrier coating is therefore preferably more porous than the MCrAlX layer.
  • Refurbishment means that components 120, 130 may need to be deprotected after use (e.g., by sandblasting). This is followed by removal of the corrosion and / or oxidation layers or products. Optionally, even cracks in the component 120, 130 are repaired. This is followed by a re-coating of the component 120, 130 and a renewed use of the component 120, 130.
  • the blade 120, 130 may be hollow or solid. If the blade 120, 130 is to be cooled, it is hollow and may still film cooling holes 418 (indicated by dashed lines) on.
  • the rotor blade 1 shows a schematic representation of a section of a rotor blade of a gas turbine.
  • the rotor blade 1 consists of a metallic base material and has a leading edge 3 and a trailing edge 5, between which a pressure side 7 and a suction side 9 extend.
  • cooling air holes 11, 13, 15 are arranged, is blown through during the operation of the gas turbine cooling air, which lays as a cooling air film around the turbine blade 1.
  • the turbine blade 1 is provided for thermal insulation against the hot exhaust gases flowing around it during operation of the gas turbine plant with a furnisheddämmbeSchichtung.
  • the thermal barrier coating is applied by means of a spraying process. In the present embodiment, atmospheric plasma spraying is used, which is a special thermal spraying process.
  • the ceramic thermal barrier coating is first applied during the manufacture of the turbine blade illustrated in FIG. 1, before the cooling air bores 11, 13, 15 are introduced into the metallic base material of the turbine blade 1 by means of EDM drilling. Since EDM drilling requires a counter electrode to the erosion electrode, the ceramic thermal barrier coating can not be drilled with this method.
  • a stencil 17 is placed over the surface 27 of the turbine blade 1 during the spraying of the coating, as shown in FIGS Figures 2 to 4 is shown.
  • the template 17 is equipped with a number of pins 19 fixed to a carrier 21.
  • the carrier passes into a holder 23, to which the template 17 is held during spraying.
  • the template 17 is stopped before the start of spraying to the surface of the uncoated turbine blade 1 that the tips 25 of the pins are located at a very small distance above the surface 27 of the turbine blade 1 (see Fig.4).
  • the spattering of the ceramic material takes place with the aid of a spray nozzle 29, from which the ceramic material is sprayed in an injection direction 33.
  • the ceramic material leaving the spray nozzle 29 forms a spray cone 31, which represents a largely symmetrical distribution of material around the spray direction 33 of the spray nozzle 29.
  • Due to the large The spatial proximity of the pins 19 to the surface 27 of the turbine blade forms a spray shadow 37 between the tips 25 of the pins 19 and certain areas 35 of the surface 27. In the spray-shadowed area 35 of the surface 27, the syringe ceramic material can
  • the areas 35 located in the spray shadow remain uncovered.
  • the pins 19 and the injection direction 33 are oriented relative to one another such that the uncoated regions 35 correspond in shape exactly to the shape of the exit surfaces of the cooling air bores 11, 13, 15 to be formed in the component surface.
  • the erosion electrodes 41 are brought to the uncoated regions 35 and the erosion drilling started.
  • the erosion electrodes 41 (see FIG. 5) are continuously tracked into the base material 43 until it has been broken through and a central cavity 45 of the turbine blade 1 has been reached. After reaching the central cavity 45, the corresponding cooling air hole is completed.
  • cooling air bores can be introduced into the turbine blades after the application of a ceramic thermal barrier coating.
  • the removal of ceramic thermal barrier coating at the locations where the cooling air holes are to be introduced, is not necessary.
  • the ceramic thermal barrier coating 39 therefore remains unchanged after application, so that the risk of damaging the thermal barrier coating by local removal does not exist.
  • the method according to the invention has been described using the example of the preparation of turbine blades for the introduction of cooling air bores by EDM drilling. However, it can also be used for introducing other recesses, for example grooves. These can then be introduced by means of a sinking process as the erosion process in the component surface.
  • the component does not need to be a turbine blade.
  • the invention can basically be used for preparing and producing such components which consist of an electrically conductive base material and which, after completion, should have an electrically insulating surface coating and recesses in the base material. As recesses are blind or through holes, grooves, etc. into consideration.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

L'invention concerne un procédé servant à préparer un élément (1) constitué d'un matériau de base électroconducteur à l'exécution d'un processus d'érosion. Selon ce procédé, un revêtement isolant (39) est projeté sur la surface (27) du matériau de base. Les zones (35) dans lesquelles le processus d'érosion doit être exécuté sont maintenues exemptes de matériau de revêtement lors de la projection du revêtement.
PCT/EP2006/004786 2006-05-19 2006-05-19 Procédé pour préparer un élément constitué d'un matériau de base électroconducteur à l'exécution d'un processus d'érosion WO2007134620A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/EP2006/004786 WO2007134620A1 (fr) 2006-05-19 2006-05-19 Procédé pour préparer un élément constitué d'un matériau de base électroconducteur à l'exécution d'un processus d'érosion
PCT/EP2007/053616 WO2007134916A1 (fr) 2006-05-19 2007-04-13 Procédé pour préparer un élément constitué d'un matériau de base électroconducteur à l'exécution d'un processus d'érosion
EP07728082A EP2018246A1 (fr) 2006-05-19 2007-04-13 Procédé pour préparer un élément constitué d'un matériau de base électroconducteur à l'exécution d'un processus d'érosion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2006/004786 WO2007134620A1 (fr) 2006-05-19 2006-05-19 Procédé pour préparer un élément constitué d'un matériau de base électroconducteur à l'exécution d'un processus d'érosion

Publications (1)

Publication Number Publication Date
WO2007134620A1 true WO2007134620A1 (fr) 2007-11-29

Family

ID=36951992

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/EP2006/004786 WO2007134620A1 (fr) 2006-05-19 2006-05-19 Procédé pour préparer un élément constitué d'un matériau de base électroconducteur à l'exécution d'un processus d'érosion
PCT/EP2007/053616 WO2007134916A1 (fr) 2006-05-19 2007-04-13 Procédé pour préparer un élément constitué d'un matériau de base électroconducteur à l'exécution d'un processus d'érosion

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/053616 WO2007134916A1 (fr) 2006-05-19 2007-04-13 Procédé pour préparer un élément constitué d'un matériau de base électroconducteur à l'exécution d'un processus d'érosion

Country Status (1)

Country Link
WO (2) WO2007134620A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008008894A1 (de) * 2008-02-13 2009-08-20 Man Turbo Ag Verfahren zur Herstellung eines Bauteiles für eine thermische Maschine
DE102008018742B4 (de) * 2008-04-14 2022-02-24 Hahn-Schickard-Gesellschaft für angewandte Forschung e.V. Werkzeugelektrode zur elektrochemischen Bearbeitung und ein Verfahren für die elektrochemische Bearbeitung

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04236757A (ja) * 1991-01-17 1992-08-25 Mitsubishi Heavy Ind Ltd タービン翼のマスキング方法
EP0668368A1 (fr) * 1994-02-18 1995-08-23 Mitsubishi Jukogyo Kabushiki Kaisha Aube de turbine à gaz et procédé de sa fabrication
JPH09136260A (ja) * 1995-11-15 1997-05-27 Mitsubishi Heavy Ind Ltd ガスタービン翼の冷却孔加工方法
JPH09158702A (ja) * 1995-12-08 1997-06-17 Ishikawajima Harima Heavy Ind Co Ltd エンジン部品のクーリングホール再加工方法及び該方法に使用されるクーリングホール再加工装置
EP0908538A1 (fr) * 1997-09-26 1999-04-14 General Electric Company Procédé et dispositif pour prévenir le placage de matériau dans les ouvertures de surface des aubes de turbine
EP1437191A1 (fr) * 2003-01-13 2004-07-14 Siemens Aktiengesellschaft Méthode de fabrication d'un trou

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04236757A (ja) * 1991-01-17 1992-08-25 Mitsubishi Heavy Ind Ltd タービン翼のマスキング方法
EP0668368A1 (fr) * 1994-02-18 1995-08-23 Mitsubishi Jukogyo Kabushiki Kaisha Aube de turbine à gaz et procédé de sa fabrication
JPH09136260A (ja) * 1995-11-15 1997-05-27 Mitsubishi Heavy Ind Ltd ガスタービン翼の冷却孔加工方法
JPH09158702A (ja) * 1995-12-08 1997-06-17 Ishikawajima Harima Heavy Ind Co Ltd エンジン部品のクーリングホール再加工方法及び該方法に使用されるクーリングホール再加工装置
EP0908538A1 (fr) * 1997-09-26 1999-04-14 General Electric Company Procédé et dispositif pour prévenir le placage de matériau dans les ouvertures de surface des aubes de turbine
EP1437191A1 (fr) * 2003-01-13 2004-07-14 Siemens Aktiengesellschaft Méthode de fabrication d'un trou

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 016, no. 584 (C - 1013) 24 December 1992 (1992-12-24) *
PATENT ABSTRACTS OF JAPAN vol. 1997, no. 09 30 September 1997 (1997-09-30) *
PATENT ABSTRACTS OF JAPAN vol. 1997, no. 10 31 October 1997 (1997-10-31) *

Also Published As

Publication number Publication date
WO2007134916A1 (fr) 2007-11-29

Similar Documents

Publication Publication Date Title
DE60217590T3 (de) Verfahren zum Reparieren eines gelöcherten Gasturbinenbauteils
WO2006061267A1 (fr) Systeme stratifie, utilisation et procede de realisation d'un systeme stratifie
EP1772228A1 (fr) Procédé pour la réparation d'une pièce à microstructure orientée.
EP1712739A1 (fr) Elément avec trou de refroidissement par film
EP2153929A1 (fr) Méthode de fabrication d'un trou
EP1870497A1 (fr) Procédé d'enlèvement électrochimique d'un revêtement métallique d'un substrat
EP3500395B1 (fr) Procédé en 3 étapes de fabrication d'orifices de refroidissement par air utlisant un laser dans le domaine des nanosecondes et des millisecondes et pièce obtenue
EP1864742A1 (fr) Procédé pour usiner par électro-érosion des materiaux électriquement non-conducteur
WO2010078994A1 (fr) Procédé pour recouvrir un composant pourvu de trous de refroidissement pelliculaire et composant
EP1816316A1 (fr) Procédé de réparation de composants
EP2712699A1 (fr) Procédé de protection d'un composant, procédé de forage au laser et composant
WO2008034739A1 (fr) Procédé de dépôt ou d'enlèvement électrochimique de couches sur des organes
EP1839801A1 (fr) Méthode de réparation pour la remise en état de pièces
EP2725235A1 (fr) Profil diversement rugueux et procédés associés de fabrication
WO2006069822A1 (fr) Procede de creation d'un trou
EP1889680A1 (fr) Procédé de soudage de composants de turbines avec utilisation d'un corps céramique introduit dans une partie creuse du composant de la turbine
EP1772531A1 (fr) Procédé et appareil de revêtement intérieur.
WO2007134620A1 (fr) Procédé pour préparer un élément constitué d'un matériau de base électroconducteur à l'exécution d'un processus d'érosion
EP2320714B1 (fr) Tuyère d'injection de plasma dotée d'une injection située à l'intérieur
WO2015104098A1 (fr) Procédé de protection d'un élément, procédé de perçage au laser et élément
WO2009052841A1 (fr) Procédé d'usinage par électro-érosion, avec apport séparé de diélectrique et dispositif approprié
WO2013068160A1 (fr) Procédé de soudage de rechargement d'une pièce en métal monocristallin ou à solidification directionnelle
EP1645652A1 (fr) Procédé de fabrication d'un système de couches
WO2015078615A1 (fr) Dispositif de masquage à base d'alliage de tungstène et un alliage de tungstène
EP2402096A1 (fr) Structure de poutres poreuse

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06742997

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06742997

Country of ref document: EP

Kind code of ref document: A1