WO2007133051A2 - A method of implementing superposition coding for a forward link in a wireless commnication system - Google Patents
A method of implementing superposition coding for a forward link in a wireless commnication system Download PDFInfo
- Publication number
- WO2007133051A2 WO2007133051A2 PCT/KR2007/002405 KR2007002405W WO2007133051A2 WO 2007133051 A2 WO2007133051 A2 WO 2007133051A2 KR 2007002405 W KR2007002405 W KR 2007002405W WO 2007133051 A2 WO2007133051 A2 WO 2007133051A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- power level
- far
- close
- ats
- transmit power
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 55
- 238000004891 communication Methods 0.000 claims abstract description 13
- 230000005540 biological transmission Effects 0.000 claims description 10
- 230000010363 phase shift Effects 0.000 claims description 4
- 238000010295 mobile communication Methods 0.000 claims description 2
- 238000010586 diagram Methods 0.000 description 9
- 238000001514 detection method Methods 0.000 description 8
- 239000002131 composite material Substances 0.000 description 6
- 238000013139 quantization Methods 0.000 description 4
- 230000006978 adaptation Effects 0.000 description 3
- 230000001413 cellular effect Effects 0.000 description 3
- 230000001427 coherent effect Effects 0.000 description 3
- 238000013459 approach Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000013507 mapping Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- XDLMVUHYZWKMMD-UHFFFAOYSA-N 3-trimethoxysilylpropyl 2-methylprop-2-enoate Chemical compound CO[Si](OC)(OC)CCCOC(=O)C(C)=C XDLMVUHYZWKMMD-UHFFFAOYSA-N 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 235000021190 leftovers Nutrition 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. Transmission Power Control [TPC] or power classes
- H04W52/04—Transmission power control [TPC]
- H04W52/18—TPC being performed according to specific parameters
- H04W52/28—TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non-transmission
- H04W52/283—Power depending on the position of the mobile
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
- H04L1/18—Automatic repetition systems, e.g. Van Duuren systems
- H04L1/1829—Arrangements specially adapted for the receiver end
- H04L1/1864—ARQ related signaling
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/32—Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
- H04L27/34—Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
- H04L27/3488—Multiresolution systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/50—Allocation or scheduling criteria for wireless resources
- H04W72/54—Allocation or scheduling criteria for wireless resources based on quality criteria
- H04W72/542—Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. Transmission Power Control [TPC] or power classes
- H04W52/04—Transmission power control [TPC]
- H04W52/18—TPC being performed according to specific parameters
- H04W52/24—TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
- H04W52/242—TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account path loss
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. Transmission Power Control [TPC] or power classes
- H04W52/04—Transmission power control [TPC]
- H04W52/18—TPC being performed according to specific parameters
- H04W52/26—TPC being performed according to specific parameters using transmission rate or quality of service QoS [Quality of Service]
- H04W52/267—TPC being performed according to specific parameters using transmission rate or quality of service QoS [Quality of Service] taking into account the information rate
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. Transmission Power Control [TPC] or power classes
- H04W52/04—Transmission power control [TPC]
- H04W52/54—Signalisation aspects of the TPC commands, e.g. frame structure
Definitions
- the present invention relates to a method of implementing superposition coding, and more particularly, to a method of implementing superposition coding for a forward link in a wireless communication system.
- BS base station
- a network When multiple users move about within the same cell/sector, it is important for a base station (BS) or a network to transmit messages to these multiple users. Some of the users may be close to the BS while some may be far away. Regardless, it is important for the user to continue receiving the message without interruption and not lose connection.
- the present invention is directed to a method of implementing superposition coding for a forward link in a wireless communication system that substantially obviates one or more problems due to limitations and disadvantages of the related art.
- An object of the present invention is to provide a method of transmitting at least one data stream using superposition coding (SPC) in a wireless communication system.
- SPC superposition coding
- Another object of the present invention is to provide a method of transmitting at least one data stream using superposition coding (SPC) in an orthogonal frequency division multiplexing (OFDM) system.
- SPC superposition coding
- OFDM orthogonal frequency division multiplexing
- a further object of the present invention is to provide a method of transmitting at least one data stream using superposition coding (SPC) in a high speed downlink packet access (HSDPA) system.
- SPC superposition coding
- HSDPA high speed downlink packet access
- a method of transmitting at least one data stream using superposition coding (SPC) in a wireless communication system includes receiving feedback information from at least two access terminals (ATs), assigning the at least two ATs as a first AT or a second AT based on the feedback information, wherein the first AT has a smaller path loss than that of the second AT, and the second AT has a larger path loss than that of the first AT, channel coding the at least one inputted data stream by a channel coding scheme, modulating the at least one data stream using layered modulation scheme, allocating wireless resources to symbols of the first AT and the second AT, and transmitting the symbols to at least one of the first AT and the second AT according to the allocated wireless resources.
- ATs access terminals
- a method of transmitting at least one data stream using superposition coding (SPC) in a wireless communication system includes layer modulating at least one of data portions of the at least one data stream or preamble of the at least one data stream if the data portions overlap for a first AT and a second AT, wherein the first AT has a smaller path loss than that of the second AT, and the second AT has a larger path loss than that of the first AT, and transmitting the symbols to at least one of the first AT and the second AT.
- SPC superposition coding
- a method of transmitting at least one data stream using superposition coding (SPC) in an orthogonal frequency division multiplexing (OFDM) system includes receiving feedback information from at least two access terminals (ATs), assigning the at least two ATs as a first AT or a second AT based on the feedback information, wherein the first AT has a smaller path loss than that of the second AT, and the second AT has a larger path loss than that of the first AT, modulating the at least one data stream using layered modulation scheme, allocating wireless resources to symbols of the first AT and the second AT, and transmitting the symbols to at least one of the first AT and the second AT according to the allocated wireless resources.
- SPC superposition coding
- OFDM orthogonal frequency division multiplexing
- a method of transmitting at least one data stream using superposition coding (SPC) in a high speed downlink packet access (HSDPA) system includes receiving feedback information from at least two access terminals (ATs), assigning the at least two ATs as a first AT or a second AT based on the feedback information, wherein the first AT has a smaller path loss than that of the second AT, and the second AT has a larger path loss than that of the first AT, modulating the at least one data stream using layered modulation scheme, allocating wireless resources to symbols of the first AT and the second AT, and transmitting the symbols to at least one of the first AT and the second AT according to the allocated wireless resources.
- SPC superposition coding
- FlG. 1 is an exemplary diagram illustrating ATs close and far from a serving BS in a cellular system
- FlG. 2 is an exemplary diagram illustrating a hierarchical or layered modulation using QPSK for each layer
- FlG. 3 is an exemplary diagram illustrating maximization of the layered or super- positioned signal(s);
- FlG. 4 is an exemplary diagram illustrating a hierarchical or layered modulation where both the Close_AT and the Far_AT each use QPSK modulation;
- FlG. 5 is an exemplary diagram illustrating superposition modulation or layered- modulation.
- ATs can be close to or far from a base station (BS) of a serving cell/sector at any given time. As such, these ATs can have different path losses. For example, the AT close to the BS may have very small path loss while the AT far away from the BS may have significantly more path loss due to the distance.
- BS base station
- a Close_AT is an AT close to the BS in the sense that is experiences small path loss. More specifically, the Close_AT is an AT whose channel quality indicator (CQI) is less than some or a prescribed CQI threshold.
- CQI channel quality indicator
- a Far_AT is an AT far from the BS in the sense that it experiences large path loss. More specifically, the Far_AT is an AT whose CQI is greater than some or a prescribed threshold.
- Figure 1 is an exemplary diagram illustrating ATs close and far from a serving BS in a cellular system.
- Close_AT experiences a small path loss whereas Far_AT experiences a large path loss.
- a set of resources in terms of transmit power and channelization codes, may be allocated exclusively to only one of the ATs. For example, the resources are allocated for transmission to the Far_AT and exclude allocation of resources to the Close_AT as a result.
- a BS may transmit to both the Far_AT and Close_AT.
- the resources in terms of transmit power and channelization codes can be controlled and shared among the two ATs.
- the BS may allocate a small fraction of the transmit power to the Close_AT and a larger amount of transmit power to the Far_AT having a larger path loss.
- both ATs can use the same resources. With this approach, both ATs can experience roughly the same level of signal-to-noise ratio (SNR) (or different levels, if desired).
- SNR signal-to-noise ratio
- both ATs share the same resources, they can be distinguished by layered modulation as explained shortly.
- the SPC can be defined by hierarchical modulation or layered modulation.
- the Close_AT and Far_AT can each use quadrature phase shift keying (QPSK) modulation.
- Figure 2 is an exemplary diagram illustrating a hierarchical or layered modulation using QPSK for each layer.
- layer 1 (inner layer) and layer 2 (outer layer) are modulated according to the QPSK scheme.
- QAM quadrature amplitude modulation
- the signals of the Close_AT and Far_AT can be added together to form composite signal a 16-quadrature amplitude modulation (16-QAM) signal as shown in Figure 4.
- the Close_signal is a signal intended for the Close_AT
- the Far_signal is the signal intended for the Far_AT.
- Figure 4 is an exemplary diagram illustrating a hierarchical or layered modulation where both the Close_AT and the Far_AT each use QPSK modulation.
- the decision boundaries for the Far_AT symbol detection are identical to the x-axis and y- axis.
- the decision boundaries for the Close_AT symbol detection are like + signs but centered in each cluster as shown only for the top left quadrant.
- FIG. 5 is an exemplary diagram illustrating superposition modulation or layered-modulation. More specifically, referring to Figure 5, each user s signal or data stream can be modulated with a modulation scheme such as a low-order modulation scheme. Thereafter, the superposition modulated or layered-modulated sub-streams can again be multiplexed (or super- positioned) by other multiplexing schemes. Consequently, the data streams can be efficiently multiplexed without requiring additional processing gain and/or additional frequency/time.
- a modulation scheme such as a low-order modulation scheme.
- the channel coded data streams are modulated using a modulation, followed by pre-coding (or superpositioning/multiplexing).
- each channel coded data stream is modulated by a quadrature phase shift keying (QPSK), and they are pre-coded or superpositioned to 16 quadrature amplitude modulation (QAM).
- QPSK quadrature phase shift keying
- QAM quadrature amplitude modulation
- the pre-coded symbols are combined to 16QAM.
- the pre- coding includes power splitting as well as phase adjustment.
- channel coding schemes can include turbo coding, convolutional coding, or Reed-Solomon coding.
- PSK and a rotated-PSK
- QAM with different amplitudes
- QPSK and a 16QAM QPSK and 64QAM
- GMSK Gaussian minimum shift keying
- the PSK and the rotated-PSK is further defined by any one of a binary PSK (BPSK) and a rotated-BPSK, the QPSK and a rotated-QPSK, and a 16PSK and a rotated- 16PSK.
- the data streams can be the same (e.g. TV broadcast) or it may be different for each user (e.g., base station transmitting user-specific information).
- assumption can be made that independent data streams are sent to each user from the transmitter having multiple antennas.
- each symbol or sub-stream e.g., some subset of the symbol constellation or each user s sub-symbol
- MMO coherent multi input, multi output
- each beam can carry composite symbol (e.g., single-beamforming or coherent beamforming).
- each low-order-modulated symbol or sub-stream can be transmitted through a single beam, for example.
- a combination of the beamforming schemes can be used, which can be described as some beams can carry composite symbols and some beams can be transmitted through a single beam.
- space-time block coding can be employed, for example. More specifically, in case of a single-stream STBC, the STBC can be performed after modulation multiplexing or superpositioning and/or performed on multiple inputted low-order-modulated symbols or sub-streams.
- each sub- stream can be treated as a single STBC
- each low-order-modulated symbol or sub- stream can be transmitted through a single STBC stream
- some STBC streams can use a combination of the aforementioned schemes, in which each of some streams are treated as a single-stream STBC and each of some low-order-modulated streams is transmitted through a single STBC stream.
- a predetermined rate/power splitting for each user from the transmitting end and the SIC from the receiving end can be used, for example. If the rate or power slitting is not predetermined, the transmitter will signal the receiver(s) beforehand or at the same time using upper-layer signaling, or preamble or different pilot pattern.
- the SPC can be applied to various wireless communication systems including code division multiple access 2000 (cdma2000), global system for mobile communications (GSM), wideband cdma (WCDMA), high speed downlink packet access (HSDPA), worldwide interoperability for microwave access (WiMAX), evolution-data optimized (EV-DO), orthogonal frequency division multiplexing (OFDM), OFDM access (OFDMA), and code vision multiplexing (CDM).
- code division multiple access 2000 cdma2000
- GSM global system for mobile communications
- WCDMA wideband cdma
- HSDPA high speed downlink packet access
- WiMAX worldwide interoperability for microwave access
- EV-DO evolution-data optimized
- OFDM orthogonal frequency division multiplexing
- OFDM OFDM access
- CDM code vision multiplexing
- the BS As the BS is able to transmit to all the ATs in its serving cell/sector, it may be important for the BS to control the way in which the transmission is made to each and/ or all ATs. That is, the BS or (serving BS) may control transmission to a number of SPC-applied ATs, control transmit power level, and alignment of sub-packet.
- the SPC allows for the BS to transmit to all the ATs in its cell/sector, it is possible that a large number of ATs are present in the serving cell/sector at a given time. If there are a large number of ATs in the serving cell/sector at a given time, transmissions to all the ATs by the serving BS can become complex. In response, it is possible to limit or fix the maximum number of ATs, to which SPC is applied, at any given time. Here, this maximum number can be configurable and can be set to provide optimum transmission.
- the system can define the maximum number of SPC-applied ATs to be two (2). This implies that the BS can transmit with a set of channelization codes (or resources) to 0, 1 or 2 ATs.
- the BS transmits SPC symbols (or sub-streams) to the ATs.
- the BS can transmit the SPC symbols to no ATs, a Close_AT, a Far_AT, or both Close_AT and Far_AT.
- transmit power levels can be fixed for each layer (or power ratios between layers) at any given time. For example, if there are a Close_AT and a Far_AT, the Close_AT can be allocated less transmit power relative to the Far_AT. In other words, the Close_AT can be allocated 1OdB transmit power relative to the Far_AT. As discussed, the Close_AT generally refers to an AT that experiences smaller path loss relative to the Far_AT.
- the number or value (e.g., 1OdB) that can be allocated to the Close_AT can be fixed for a system, and/or it can also be configured. Alternatively, independent transmit powers can be allocated for each layer at any given time.
- the 1 st sub-packet for the Close_AT packet and the Far_AT packet can be aligned but need not be aligned.
- the detection can be made for symbols as well as packets.
- the Far_AT can decode each received symbol according to conventional means.
- the Close_AT can first decode the symbol for the Far_AT and removes or cancels the Close_AT symbol from the received symbol.
- the Far_AT symbol is first decoded.
- the Close_AT signal remains but due to imperfect cancellation, there usually exists residual noise, interference, and/or leftovers from the Far_AT signal.
- the Close_AT then performs symbol detection on this residuel signal for the Close_AT signal.
- packet detection is available.
- the procedures associated with packet detection is same as those of the symbol detection except that the Close_AT removes the Far_AT signal only after is successfully decodes the Far_AT packet. This typically can be achieved if the check or cyclic redundancy code (CRC) or checksum passes indicating a successful decoding operation of the packet.
- CRC cyclic redundancy code
- the ATs in a serving cell/sector can be identified as a Close_AT or a Far_AT, depending on degree of path loss, for example.
- the Close_AT and/or Far_AT can be defined based on a prescribed CQI threshold.
- data rate control DRC can also be used in place of CQI.
- the BS can designate the AT as being close or far. More specifically, the BS can designate an AT as a Close_AT based on reported CQI, a data rate control (DRC), or some moving average received by the system is below (or possibly equal to) a prescribed value (e.g., Close_CQI_Threshold).
- the CQI is transmitted from an AT to a BS transmitter which can be used for link adaptation and/or rate control and scheduling the ATs.
- the BS can designate an AT as a Far_AT based on reported CQI, DRC, or some moving average received by the system is above (or possibly equal to) a prescribed value (e.g., Far_CQI_Threshold).
- the DRC is transmitted by the AT to the BS transmitter and has a similar purpose to that of the CQI. However, it can also indicate the data rate the BS should use when transmitting data to the AT. Similarly to CQI, the DRC can be used for link adaptation and/or rate control and scheduling the ATs.
- an AT can designate itself as a Close_AT or a Far_AT. More specifically, an AT can designate itself as a Close_AT if its CQI, DRC, or some moving average is below (or possibly equal to) a prescribed value (e.g., Close_CQI_Threshold).
- the Close_CQI (or DRC)_Threshold represents a threshold value below which an AT is designated as a Close_AT.
- an AT can designate itself as a Far_AT if its CQI, DRC, or some moving average is above (or possibly equal to) a prescribed value (e.g., Far_CQI_Threshold).
- the Far_CQI (or DRC)_Threshold represents a threshold value below which an AT is designated as a Far_AT.
- the Close_CQI_Threshold and the Far_CQI_Threshold may or may not be equal.
- the serving BS can also schedule an AT.
- a Close_AT can be scheduled as a Close_AT, a Far_AT, or possibly as a Regular_AT.
- the Far_AT can be scheduled as a Far_AT or a Regular_AT.
- the Regular_AT is an AT operating in the absence of the SPC concept as in legacy systems.
- hysterisis can be added, similar to that of power control add and/or delete regions for soft handover.
- AT can be required to read both the Close_CQI_Threshold and Far_CQI_Threshold. This can be accomplished by setting the Close_CQI_Threshold to be greater than the Far_CQI_Threshold.
- the SPC can be applied to the data portions (non-pilot or MAC burst) if the data portions overlap for the Close_AT and the Far_AT. More specifically, a symbol for the Close_AT and a symbol for the Far_AT can be applied to a length 16 Walsh code. This application of the symbol can be repeated for each Walsh code.
- the SPC can be applied to the preamble portions if they overlap for the
- the symbol for the Close_AT and the symbol for the Far_AT can be applied to a length 64 Walsh code.
- the SPC can be applied to the preamble and the data portion if they overlap for the Close_AT and the Far_AT.
- the preamble and the data portion overlap if the first sub-packets of the preamble and of the data portion are aligned.
- the power level for transmission to the Close_AT and the Far_AT can be fixed.
- the BS (or network) can set the transmit power level of the data and the preamble destined for the Close_AT to Close_Power_Level.
- the Close_Power_Level is a transmit power level for the Close_signal which is a signal intended for the Close AT.
- the serving BS can set the transmit power level of the data and the preamble destined for the Far_AT to Far_Power_Level.
- the Far_Power_Level is a transmit power level for the Far_signal which is a signal intended for the Far_AT.
- the DRC can be used for link adaptation and/or rate control and scheduling the ATs.
- the BS can designate an AT as a Close_AT or a Far_AT based on the DRC reported from the AT.
- a BS scheduler can use a Close_DRC for scheduling
- the Close_DRC is a DRC which quantized the rate closest to the ratio of the Close power level to the Total power level (Close + Far Power Level).
- the BS scheduler can use rate control for determining the data rate for transmitting to the Close_AT.
- the Close_AT can be scheduled on either the close or far preamble, and the Close_signal or Far_Signal version of the forward traffic channel (FTC).
- FTC forward traffic channel
- the BS Scheduler can use the Far_DRC for scheduling
- the Far_DRC can be either set to the DRC or the DRC quantized to the rate closest to the ratio of the Far power level to the Total power level (Close + Far Power Level).
- the BS scheduler can use rate control for determining the data rate for transmitting to the Far_AT.
- the Far_AT can be scheduled on the far preamble and Far_signal version of the FTC.
- the SPC can also be applied to OFDM type systems.
- the SPC can be applied to a set of OFDM tones (or signals) in a packet data channel
- the SPC can be applied to a set of OFDM tones (or signals) intended for both the Close_AT and the Far_AT.
- the symbols for the close signals can be set to the Close_Power_Level to generate a Close_PDCH.
- the symbols for the far signals can be set to the Far_Power_Level to generate a Far_PDCH.
- the two signals can then be added to generate the composite signal (e.g., layered modulation or hierarchical modulation).
- the composite signal can be generated with different approaches. For example, the symbols can be added first to generate composite symbols.
- the BS scheduler (or the network) can use the CQI. More specifically, the BS scheduler can use the Close_CQI for scheduling Close_ATs. Similarly, the BS scheduler can use the Close_CQI for scheduling rate control. Here, the rate control can be used to determine the data rate for transmitting to the Close_AT.
- the BS scheduler (or the network) can use the
- the rate control can be used for determining the data rate for transmitting to the Far_AT.
- PDCCH packet data control channel
- Close_PDCCH a Close_PDCCH and a
- the Far_PDCCH can be defined.
- the PDCCH can be used to indicate the scheduled AT (MAC ID) as well as the rate, modulation, and coding scheme used in the associated PDCCH.
- the Close_PDCCH can cany the control information for the Close_PDCCH.
- the Far_PDCCH can carry the control information for the Far_PDCCH.
- the SPC can be applied to the Close_PDCCH and the Far_PDCCH.
- the same resources or channelization codes can be used or shared by the Close_PDCCH and the Far_PDCCH.
- the PDCCHs can include a field indicating a layer number.
- the layer number can be applied in SPC cases. For example, if the SPC is two layers, a 1-bit field can indicate whether the PDCCH is a Close_PDCCH or a Far_PDCCH. Moreover, if more layers are used or needed, the field can use more bits (e.g., use two bits for 3 or 4 layers).
- the PDCCHs can include a field indicating a transmit power level if dynamic power level adjustment is desired. For example, if two layers for SPC is used, the Close_PDCCH can carry the Close signal power level, and the Far_PDCCH can carry the Far signal power level.
- the Close_PDCCH can carry both the Close and Far power levels, the Cl ose power level and a ratio of the Far to the Close power levels, the Far power level and a ratio of the Close to the Far power levels, or some other combination which conveys the Close and Far power levels.
- the Close_PDCCH can omit the Close and/or Far power levels.
- omission can be used if the receiving end can estimate the Close power level and the Far power level.
- a number of bits used to indicate the power level in the PDCCH can be reduced.
- a layer number can be used to indicate the transmit power level. For example, if the layer number is used to indicate a Far_PDCCH, then this indicates, like a most significant bit (MSB), that the power level is high. In this case, the power level bits can be used to indicate at a finer quantization level the high power. Similarly, for example, the layer number is used to indicate a Close_PDCCH, then this indicates, like the MSB, that the power level is low. In this case, the power level bits can be used to indicate at a finer quantization level the high power.
- the mapping of the layer number to the power level can be preset (e.g., set to a default at the AT) or configured.
- a field can be used to indicate various information such as a layer number and a transmit power level for the Close_AT and the Far_AT. If, however, the Close power level and the Far power level are fixed, then these fields would not be necessary.
- the Close_AT can be scheduled on either the Close_PDCCH or the Far_PDCCH (and Close_PDCH or Far_PDCH). Moreover, the Far_ATs can be scheduled on the Far_PDCCH and Far_PDCH.
- the SPC can be applied to each of the high speed downlink shared channels
- Each HS-DSCH uses a configurable number of length 16 Walsh codes. More specifically, the symbol for a Close_AT and the symbol for the Far_AT can be applied to a length 16 Walsh code. As a result, transmission to the Close_AT can take place via a Close_HS-DSCH and to the Far_AT via a Far_HS-DSCH.
- HS-SCCH HS-SCCH
- the symbol for the Close_AT and that for the Far_AT can be applied to the Walsh codes used to carry the HS-SCCH.
- transmission to the Close_AT can take place via a Close_HS-SCCH and to the Far_AT via a Far_HS-SCCH.
- the Far_HS-SCCH can re-use the existing HS-SCCHs whereas the Close_HS-SCCH can use new Walsh codes.
- the Close_HS-DSCH can be set to the Close power level
- the Far_HS-DSCH can be set to the Far power level
- New HS-SCCHs can include a field indicating a layer number.
- the layer number can be applied in SPC cases. For example, if the SPC is two layers, a 1-bit field can indicate whether the HS_SCCH is a Close_HS-SCCH or a Far_HS-SCCH. Moreover, if more layers are used or needed, the field can use more bits (e.g., use two bits for 3 or 4 layers).
- the HS-SCCHs can include a field indicating a transmit power level if dynamic power level adjustment is desired. For example, if two layers for SPC is used, the Close_HS-SCCH can carry the Close signal power level, and the Far_ HS-SCCH can carry the Far signal power level.
- the Close_ HS-SCCH can carry both the Close and Far power levels
- the Close_ HS-SCCH can omit the Close and/or Far power levels.
- omission can be used if the receiving end can estimate the Close power level and the Far power level.
- a number of bits used to indicate the power level in the HS-SCCH can be reduced.
- a layer number can be used to indicate the transmit power level. For example, if the layer number is used to indicate a Far_ HS-SCCH, then this indicates, like the MSB, that the power level is high. In this case, the power level bits can be used to indicate at a finer quantization level the high power. Similarly, for example, the layer number is used to indicate a Close_ HS-SCCH, then this indicates, like the MSB, that the power level is low. In this case, the power level bits can be used to indicate at a finer quantization level the high power.
- the mapping of the layer number to the power level can be preset (e.g., set to a default at the AT) or configured.
- a field can be used to indicate various information such as a layer number and a transmit power level for the Close_AT and the Far_AT. If, however, the Closer power level and the Far power level are fixed, then these fields would not be necessary.
- the Close_AT can be scheduled on either the Close . HS-SCCH or the Far_ HS-SCCH (and Close_HS-DSCH or Far_HS-DSCH).
- the Close_ATs would then need to detect both HS-SCCHs.
- the Far_ATs can be scheduled on the Far_ HS-SCCH and Far_HS_DSCH.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Quality & Reliability (AREA)
- Mobile Radio Communication Systems (AREA)
- Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
Abstract
Description
Claims
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP07746553.2A EP2018787B1 (en) | 2006-05-17 | 2007-05-17 | A method of implementing superposition coding for a forward link in a wireless commnication system |
CN2007800144932A CN101627583B (en) | 2006-05-17 | 2007-05-17 | A method of implementing superposition coding for a forward link in a wireless commnication system |
JP2009506424A JP4852144B2 (en) | 2006-05-17 | 2007-05-17 | Method for implementing superposition coding for forward link in wireless communication system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US80154806P | 2006-05-17 | 2006-05-17 | |
US60/801,548 | 2006-05-17 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2007133051A2 true WO2007133051A2 (en) | 2007-11-22 |
WO2007133051A3 WO2007133051A3 (en) | 2009-07-30 |
Family
ID=38694319
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2007/002405 WO2007133051A2 (en) | 2006-05-17 | 2007-05-17 | A method of implementing superposition coding for a forward link in a wireless commnication system |
Country Status (7)
Country | Link |
---|---|
US (1) | US8626177B2 (en) |
EP (1) | EP2018787B1 (en) |
JP (1) | JP4852144B2 (en) |
KR (1) | KR100991797B1 (en) |
CN (1) | CN101627583B (en) |
TW (1) | TWI406577B (en) |
WO (1) | WO2007133051A2 (en) |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009009460A1 (en) * | 2007-07-10 | 2009-01-15 | Qualcomm Incorporated | Methods and apparatus for successive interference cancellation based on two rate feedback in peer-to-peer networks |
WO2009113763A1 (en) * | 2008-03-11 | 2009-09-17 | Electronics And Telecommunications Research Institute | Cooperative reception diversity apparatus and method based on signal point rearrangement or superposition modulation in relay system |
JP2010200249A (en) * | 2009-02-27 | 2010-09-09 | Sharp Corp | Communication apparatus, terminal device, transmitting method, receiving method and communication system |
JP2010206284A (en) * | 2009-02-27 | 2010-09-16 | Sharp Corp | Radio communication system, radio communication method, communication device, and terminal device |
EP2246993A1 (en) | 2009-04-27 | 2010-11-03 | Alcatel Lucent | Extending SDMA by power loading for spatially non-separable users |
JP2011524689A (en) * | 2008-06-11 | 2011-09-01 | クゥアルコム・インコーポレイテッド | Apparatus and method for non-exclusive multiplexing channel error control for control channel |
US8433349B2 (en) | 2007-07-10 | 2013-04-30 | Qualcomm Incorporated | Methods and apparatus for successive interference cancellation based on transmit power control by interfering device with success probability adaptation in peer-to-peer wireless networks |
US8577284B2 (en) | 2008-03-11 | 2013-11-05 | Electronics And Telecommunications Research Institute | Cooperative reception diversity apparatus and method based on signal point rearrangement or superposition modulation in relay system |
US8849197B2 (en) | 2007-07-10 | 2014-09-30 | Qualcomm Incorporated | Methods and apparatus for active successive interference cancellation in peer-to-peer networks |
US8874040B2 (en) | 2007-07-10 | 2014-10-28 | Qualcomm Incorporated | Methods and apparatus for successive interference cancellation based on rate capping in peer-to-peer networks |
WO2015073493A1 (en) * | 2013-11-18 | 2015-05-21 | Wi-Lan Labs, Inc. | Hierarchical modulation for unicast streams |
EP2814192A4 (en) * | 2012-02-29 | 2015-07-15 | Huawei Tech Co Ltd | Signal transmission method, device and system |
EP2326053A4 (en) * | 2008-09-12 | 2016-08-03 | Fujitsu Ltd | Transmission device, reception device, transmission method, and reception method |
US9521680B2 (en) | 2007-07-10 | 2016-12-13 | Qualcomm Incorporated | Methods and apparatus for successive interference cancellation based on three rate reports from interfering device in peer-to-peer networks |
WO2017028763A1 (en) | 2015-08-14 | 2017-02-23 | Mediatek Inc. | Signal modulation and demodulation for multiuser superposition transmission scheme |
US9668225B2 (en) | 2007-07-10 | 2017-05-30 | Qualcomm Incorporated | Methods and apparatus for active successive interference cancellation based on one rate feedback and probability adaptation in peer-to-peer networks |
EP3288213A1 (en) * | 2013-04-04 | 2018-02-28 | Ntt Docomo, Inc. | Radio base station, user terminal and radio communication method for non-orthogonal multiple access |
US10396880B2 (en) | 2014-02-06 | 2019-08-27 | Telefonaktiebolaget Lm Ericsson (Publ) | Beam-forming selection |
US11271703B2 (en) | 2014-05-02 | 2022-03-08 | Qualcomm Incorporated | Techniques for improving control channel capacity |
Families Citing this family (72)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2009001566A1 (en) * | 2007-06-27 | 2010-08-26 | パナソニック株式会社 | Radio transmission apparatus, radio reception apparatus, and precoding method |
US8055291B2 (en) * | 2007-09-12 | 2011-11-08 | Telefonaktiebolaget Lm Ericsson (Publ) | Power-aware link adaptation in a wideband CDMA system |
US8077802B2 (en) * | 2008-03-17 | 2011-12-13 | Intel Corporation | Device, system, and method of resource allocation in a wireless network |
WO2010001475A1 (en) * | 2008-07-03 | 2010-01-07 | 富士通株式会社 | Base station apparatus and data mapping method |
US8811267B2 (en) * | 2008-08-13 | 2014-08-19 | Samsung Electronics Co., Ltd. | Communication system for supporting primary user and secondary user |
US20100046644A1 (en) * | 2008-08-19 | 2010-02-25 | Motorola, Inc. | Superposition coding |
US8929268B2 (en) * | 2009-06-17 | 2015-01-06 | Intel Corporation | Techniques for hierarchical encoding for multicast broadcast services in wireless communication systems |
EP2326055A4 (en) * | 2008-09-09 | 2014-08-06 | Fujitsu Ltd | Transmitter, transmission method, receiver, and reception method |
CN102301819B (en) * | 2008-11-21 | 2015-01-07 | 皮恩-汉·霍 | System, method and computer program for single modulation scheme superposition coded multicast |
CN102217206B (en) | 2009-01-05 | 2014-10-08 | 马维尔国际贸易有限公司 | Precoding codebooks for mimo communication systems |
US8385441B2 (en) | 2009-01-06 | 2013-02-26 | Marvell World Trade Ltd. | Efficient MIMO transmission schemes |
US8238483B2 (en) * | 2009-02-27 | 2012-08-07 | Marvell World Trade Ltd. | Signaling of dedicated reference signal (DRS) precoding granularity |
EP3512219B1 (en) * | 2009-04-06 | 2022-05-04 | Marvell Asia Pte, Ltd. | Improved feedback strategies for multi-user mimo communication systems |
US8543063B2 (en) * | 2009-04-21 | 2013-09-24 | Marvell World Trade Ltd. | Multi-point opportunistic beamforming with selective beam attenuation |
US20110033011A1 (en) * | 2009-08-05 | 2011-02-10 | Industrial Technology Research Institute | Methods and apparatuses relating to multi-resolution transmissions with mimo scheme |
US8675794B1 (en) | 2009-10-13 | 2014-03-18 | Marvell International Ltd. | Efficient estimation of feedback for modulation and coding scheme (MCS) selection |
US8917796B1 (en) | 2009-10-19 | 2014-12-23 | Marvell International Ltd. | Transmission-mode-aware rate matching in MIMO signal generation |
JP5669854B2 (en) | 2009-11-09 | 2015-02-18 | マーベル ワールド トレード リミテッド | Method and apparatus for transmitting feedback data to a base station using coordinated transmission, and system comprising a base station using coordinated transmission scheme and a mobile communication terminal for transmitting feedback data |
EP2514181B1 (en) * | 2009-12-17 | 2018-10-03 | Marvell World Trade Ltd. | Mimo feedback schemes for cross-polarized antennas |
CN102687456B (en) * | 2010-01-07 | 2015-04-15 | 马维尔国际贸易有限公司 | Signaling of dedicated reference signal (DRS) precoding granularity |
US9036567B2 (en) * | 2010-02-03 | 2015-05-19 | Qualcomm Incorporated | Logical channel mapping for increased utilization of transmission resources |
JP5258002B2 (en) | 2010-02-10 | 2013-08-07 | マーベル ワールド トレード リミテッド | Device, mobile communication terminal, chipset, and method in MIMO communication system |
KR20110095823A (en) * | 2010-02-19 | 2011-08-25 | 엘지전자 주식회사 | Method and apparatus for mapping multiple layers to mutilple antenna ports |
MY159415A (en) * | 2010-03-14 | 2017-01-13 | Univ Putra Malaysia | A concatenated multidimensional signal modulating transmitter and receiver system and a method thereof |
US8687741B1 (en) | 2010-03-29 | 2014-04-01 | Marvell International Ltd. | Scoring hypotheses in LTE cell search |
US8675751B2 (en) * | 2010-04-08 | 2014-03-18 | Comtech Ef Data Corp. | Meta-carrier embedding technique with improved performance for BPSK, MSK, and O-QPSK modulation |
JP2012100254A (en) | 2010-10-06 | 2012-05-24 | Marvell World Trade Ltd | Codebook subsampling for pucch feedback |
US8615052B2 (en) | 2010-10-06 | 2013-12-24 | Marvell World Trade Ltd. | Enhanced channel feedback for multi-user MIMO |
US9048970B1 (en) | 2011-01-14 | 2015-06-02 | Marvell International Ltd. | Feedback for cooperative multipoint transmission systems |
US8861391B1 (en) | 2011-03-02 | 2014-10-14 | Marvell International Ltd. | Channel feedback for TDM scheduling in heterogeneous networks having multiple cell classes |
EP2692068B1 (en) | 2011-03-31 | 2019-06-19 | Marvell World Trade Ltd. | Channel feedback for cooperative multipoint transmission |
EP2587702A1 (en) * | 2011-10-25 | 2013-05-01 | Alcatel Lucent | A data retransmission request device, a data transmitter, and a data retransmission method for multi-tone systems |
US9020058B2 (en) | 2011-11-07 | 2015-04-28 | Marvell World Trade Ltd. | Precoding feedback for cross-polarized antennas based on signal-component magnitude difference |
US8923427B2 (en) | 2011-11-07 | 2014-12-30 | Marvell World Trade Ltd. | Codebook sub-sampling for frequency-selective precoding feedback |
US9031597B2 (en) | 2011-11-10 | 2015-05-12 | Marvell World Trade Ltd. | Differential CQI encoding for cooperative multipoint feedback |
US9220087B1 (en) | 2011-12-08 | 2015-12-22 | Marvell International Ltd. | Dynamic point selection with combined PUCCH/PUSCH feedback |
CN103178941B (en) * | 2011-12-26 | 2014-12-24 | 华为技术有限公司 | Method and base station for transmitting control information |
US8902842B1 (en) | 2012-01-11 | 2014-12-02 | Marvell International Ltd | Control signaling and resource mapping for coordinated transmission |
KR102024796B1 (en) * | 2012-04-13 | 2019-11-04 | 한국전자통신연구원 | Apparatus and Method of Transmission of Hierarchically Modulated Signal |
WO2013160795A1 (en) | 2012-04-27 | 2013-10-31 | Marvell World Trade Ltd. | Coordinated multipoint (comp) communication between base-stations and mobile communication terminals |
JP5916507B2 (en) * | 2012-05-11 | 2016-05-11 | シャープ株式会社 | TRANSMISSION DEVICE, RECEPTION DEVICE, TRANSMISSION METHOD, PROGRAM, AND INTEGRATED CIRCUIT |
CN103580740B (en) | 2012-07-26 | 2017-09-19 | 华为技术有限公司 | A kind of signal processing method and relevant device |
WO2014021633A1 (en) * | 2012-07-31 | 2014-02-06 | 삼성전자 주식회사 | Communication method and device using beamforming in wireless communication system |
FR2995163B1 (en) * | 2012-09-03 | 2014-09-12 | Centre Nat Rech Scient | METHOD FOR TRANSMITTING AN INFORMATION SEQUENCE, SIGNAL, ENTITY SOURCE, RELAY ENTITY, RECEPTION METHOD, RECEIVER ENTITY, SYSTEM AND CORRESPONDING COMPUTER PROGRAM |
KR102136609B1 (en) * | 2012-09-21 | 2020-08-13 | 삼성전자주식회사 | Apparatus and method for signaling power information in wireless communication system |
US9049058B2 (en) * | 2012-12-21 | 2015-06-02 | Broadcom Corporation | Fine step blended modulation communications |
WO2014179953A1 (en) * | 2013-05-08 | 2014-11-13 | 华为技术有限公司 | Superposition coding method, apparatus and system |
US9839018B2 (en) | 2013-07-03 | 2017-12-05 | Futurewei Technologies, Inc. | Systems and methods for transmitting data information messages on a downlink of a wireless communication system |
WO2015002502A1 (en) * | 2013-07-05 | 2015-01-08 | Samsung Electronics Co., Ltd. | Transmitter and signal transmitting method thereof |
US9660766B2 (en) | 2013-07-18 | 2017-05-23 | Lg Electronics Inc. | Robust symbol transmission and reception method using hierarchical modulation in wireless access system |
KR101468894B1 (en) * | 2013-08-14 | 2014-12-09 | 목포대학교산학협력단 | Method of transmission and reception of multiuser multiple antenna communication system |
JP2015056735A (en) * | 2013-09-11 | 2015-03-23 | 日本電信電話株式会社 | Communication system and communication method |
US20150117866A1 (en) * | 2013-10-31 | 2015-04-30 | Zte Corporation | Quadrature amplitude modulation symbol mapping |
US20150139293A1 (en) * | 2013-11-18 | 2015-05-21 | Wi-Lan Labs, Inc. | Hierarchical modulation for multiple streams |
JP6304682B2 (en) * | 2014-02-24 | 2018-04-04 | 学校法人日本大学 | Multilevel modulation / demodulation method |
US9942013B2 (en) * | 2014-05-07 | 2018-04-10 | Qualcomm Incorporated | Non-orthogonal multiple access and interference cancellation |
CN105634654B (en) * | 2014-10-27 | 2019-12-17 | 中兴通讯股份有限公司 | Superposition coding and demodulation method and device for multi-user information transmission |
CN105634702B (en) * | 2014-12-01 | 2019-09-10 | 中兴通讯股份有限公司 | Multi-user information co-channel sending, receiving method and its device |
US9831958B2 (en) * | 2014-12-30 | 2017-11-28 | Mediatek Inc. | Resource allocation for superposition coding |
CN111245573B (en) * | 2015-03-06 | 2022-09-20 | 韩国电子通信研究院 | Broadcast signal receiving apparatus and method using a preamble and a preamble |
US10194447B2 (en) | 2015-03-31 | 2019-01-29 | Sony Corporation | Communication apparatus and a method for communication |
CN106211144B (en) * | 2015-04-30 | 2020-06-16 | 华为技术有限公司 | Communication method of mobile terminal and mobile terminal |
CN107925556B (en) * | 2015-07-02 | 2020-12-04 | 诺基亚技术有限公司 | Apparatus and method for reusing existing constellations for superposition transmission |
CN106411801A (en) | 2015-07-30 | 2017-02-15 | 中兴通讯股份有限公司 | Multi-user information transmission modulation method and apparatus, and multi-user information transmission demodulation method and apparatus |
EP3350949B1 (en) | 2015-09-17 | 2020-01-01 | Telefonaktiebolaget LM Ericsson (publ) | Transmitting user data to a wireless communication device over a control channel |
CN107371254B (en) | 2016-05-13 | 2023-04-25 | 中兴通讯股份有限公司 | Information transmission method and device |
TWI667892B (en) * | 2017-08-18 | 2019-08-01 | 國立成功大學 | A wireless radio-frequency transceiver system for internet of things |
US10630349B2 (en) * | 2017-10-20 | 2020-04-21 | Qualcomm Incorporated | Multi-layer modulated streams |
TWI650969B (en) * | 2017-11-03 | 2019-02-11 | 國立臺灣大學 | Hierarchical beamforming method and system thereof |
US11496198B2 (en) | 2017-12-09 | 2022-11-08 | Huawei Technologies Co., Ltd. | Channel measurement method and user equipment |
CN109905154B (en) * | 2017-12-09 | 2024-09-17 | 华为技术有限公司 | Channel measurement method and user equipment |
WO2020168514A1 (en) * | 2019-02-21 | 2020-08-27 | Qualcomm Incorporated | Methods and apparatus to facilitate duo coding of data channels |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000068959A (en) | 1998-08-26 | 2000-03-03 | Nippon Telegr & Teleph Corp <Ntt> | Radio transmission device and radio communication equipment |
US7031249B2 (en) * | 2000-10-27 | 2006-04-18 | Sharp Laboratories Of America, Inc. | Outer code for CSMA systems using an OFDM physical layer in contention-free mode |
KR100459573B1 (en) * | 2001-08-25 | 2004-12-03 | 삼성전자주식회사 | Apparatus for transmitting/receiving uplink transmission power and high speed downlink shared channel power level in communication system using high speed downlink packet access scheme and method thereof |
US7177658B2 (en) * | 2002-05-06 | 2007-02-13 | Qualcomm, Incorporated | Multi-media broadcast and multicast service (MBMS) in a wireless communications system |
US8190163B2 (en) * | 2002-08-08 | 2012-05-29 | Qualcomm Incorporated | Methods and apparatus of enhanced coding in multi-user communication systems |
JP4718442B2 (en) * | 2003-02-19 | 2011-07-06 | クゥアルコム・インコーポレイテッド | Control superposition coding in multi-user communication systems |
US7623553B2 (en) * | 2003-11-03 | 2009-11-24 | Qualcomm Incorporated | Method, apparatus, and system for data transmission and processing in a wireless communication environment |
US7342958B2 (en) * | 2004-06-24 | 2008-03-11 | Lucent Technologies Inc | System and method for enhancing throughput in an additive gaussian noise channel with a predetermined rate set and unknown interference |
WO2006002550A1 (en) * | 2004-07-07 | 2006-01-12 | Nortel Networks Limited | System and method for mapping symbols for mimo transmission |
US20070002724A1 (en) * | 2005-06-15 | 2007-01-04 | Samsung Electronics Co., Ltd. | Apparatus and method for broadcast superposition and cancellation in a multi-carrier wireless network |
US7869417B2 (en) * | 2005-07-21 | 2011-01-11 | Qualcomm Incorporated | Multiplexing and feedback support for wireless communication systems |
US7729232B2 (en) * | 2006-02-01 | 2010-06-01 | Lg Electronics Inc. | Method of transmitting and receiving data using superposition modulation in a wireless communication system |
US8085819B2 (en) * | 2006-04-24 | 2011-12-27 | Qualcomm Incorporated | Superposition coding in a wireless communication system |
-
2007
- 2007-05-17 EP EP07746553.2A patent/EP2018787B1/en not_active Not-in-force
- 2007-05-17 US US11/750,214 patent/US8626177B2/en active Active
- 2007-05-17 CN CN2007800144932A patent/CN101627583B/en not_active Expired - Fee Related
- 2007-05-17 WO PCT/KR2007/002405 patent/WO2007133051A2/en active Application Filing
- 2007-05-17 KR KR1020087024262A patent/KR100991797B1/en not_active IP Right Cessation
- 2007-05-17 JP JP2009506424A patent/JP4852144B2/en not_active Expired - Fee Related
- 2007-05-17 TW TW096117660A patent/TWI406577B/en not_active IP Right Cessation
Non-Patent Citations (1)
Title |
---|
See references of EP2018787A4 * |
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9668225B2 (en) | 2007-07-10 | 2017-05-30 | Qualcomm Incorporated | Methods and apparatus for active successive interference cancellation based on one rate feedback and probability adaptation in peer-to-peer networks |
US8849197B2 (en) | 2007-07-10 | 2014-09-30 | Qualcomm Incorporated | Methods and apparatus for active successive interference cancellation in peer-to-peer networks |
US8874040B2 (en) | 2007-07-10 | 2014-10-28 | Qualcomm Incorporated | Methods and apparatus for successive interference cancellation based on rate capping in peer-to-peer networks |
US8433349B2 (en) | 2007-07-10 | 2013-04-30 | Qualcomm Incorporated | Methods and apparatus for successive interference cancellation based on transmit power control by interfering device with success probability adaptation in peer-to-peer wireless networks |
WO2009009460A1 (en) * | 2007-07-10 | 2009-01-15 | Qualcomm Incorporated | Methods and apparatus for successive interference cancellation based on two rate feedback in peer-to-peer networks |
US8855567B2 (en) | 2007-07-10 | 2014-10-07 | Qualcomm Incorporated | Methods and apparatus for successive interference cancellation based on two rate feedback in peer-to-peer networks |
US9521680B2 (en) | 2007-07-10 | 2016-12-13 | Qualcomm Incorporated | Methods and apparatus for successive interference cancellation based on three rate reports from interfering device in peer-to-peer networks |
WO2009113763A1 (en) * | 2008-03-11 | 2009-09-17 | Electronics And Telecommunications Research Institute | Cooperative reception diversity apparatus and method based on signal point rearrangement or superposition modulation in relay system |
US8577284B2 (en) | 2008-03-11 | 2013-11-05 | Electronics And Telecommunications Research Institute | Cooperative reception diversity apparatus and method based on signal point rearrangement or superposition modulation in relay system |
US8498243B2 (en) | 2008-06-11 | 2013-07-30 | Qualcomm Incorporated | Apparatus and method for channel error control of non-exclusive multiplexing for control channels |
JP2011524689A (en) * | 2008-06-11 | 2011-09-01 | クゥアルコム・インコーポレイテッド | Apparatus and method for non-exclusive multiplexing channel error control for control channel |
EP2326053A4 (en) * | 2008-09-12 | 2016-08-03 | Fujitsu Ltd | Transmission device, reception device, transmission method, and reception method |
JP2010200249A (en) * | 2009-02-27 | 2010-09-09 | Sharp Corp | Communication apparatus, terminal device, transmitting method, receiving method and communication system |
JP2010206284A (en) * | 2009-02-27 | 2010-09-16 | Sharp Corp | Radio communication system, radio communication method, communication device, and terminal device |
WO2010124928A1 (en) | 2009-04-27 | 2010-11-04 | Alcatel Lucent | Extending sdma by power loading for spatially non-separable users |
EP2246993A1 (en) | 2009-04-27 | 2010-11-03 | Alcatel Lucent | Extending SDMA by power loading for spatially non-separable users |
EP2814192A4 (en) * | 2012-02-29 | 2015-07-15 | Huawei Tech Co Ltd | Signal transmission method, device and system |
EP3288213A1 (en) * | 2013-04-04 | 2018-02-28 | Ntt Docomo, Inc. | Radio base station, user terminal and radio communication method for non-orthogonal multiple access |
US10548093B2 (en) | 2013-04-04 | 2020-01-28 | Ntt Docomo, Inc. | Radio base station, user terminal and radio communication method |
WO2015073493A1 (en) * | 2013-11-18 | 2015-05-21 | Wi-Lan Labs, Inc. | Hierarchical modulation for unicast streams |
US9749999B2 (en) | 2013-11-18 | 2017-08-29 | Taiwan Semiconductor Manufacturing Co., Ltd. | Hierarchical modulation for unicast streams |
US10396880B2 (en) | 2014-02-06 | 2019-08-27 | Telefonaktiebolaget Lm Ericsson (Publ) | Beam-forming selection |
US11271703B2 (en) | 2014-05-02 | 2022-03-08 | Qualcomm Incorporated | Techniques for improving control channel capacity |
WO2017028763A1 (en) | 2015-08-14 | 2017-02-23 | Mediatek Inc. | Signal modulation and demodulation for multiuser superposition transmission scheme |
EP3311513A4 (en) * | 2015-08-14 | 2018-07-25 | MediaTek Inc. | Signal modulation and demodulation for multiuser superposition transmission scheme |
Also Published As
Publication number | Publication date |
---|---|
US8626177B2 (en) | 2014-01-07 |
TW200803568A (en) | 2008-01-01 |
EP2018787B1 (en) | 2017-03-08 |
CN101627583B (en) | 2012-08-29 |
JP2009545193A (en) | 2009-12-17 |
EP2018787A2 (en) | 2009-01-28 |
WO2007133051A3 (en) | 2009-07-30 |
CN101627583A (en) | 2010-01-13 |
TWI406577B (en) | 2013-08-21 |
JP4852144B2 (en) | 2012-01-11 |
EP2018787A4 (en) | 2015-06-17 |
US20070270170A1 (en) | 2007-11-22 |
KR20080109812A (en) | 2008-12-17 |
KR100991797B1 (en) | 2010-11-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2018787B1 (en) | A method of implementing superposition coding for a forward link in a wireless commnication system | |
EP2020158B1 (en) | A method of configuring multiuser packet and a structure thereof in a wireless communication system | |
US7729232B2 (en) | Method of transmitting and receiving data using superposition modulation in a wireless communication system | |
EP2242200B1 (en) | Method for performing an adaptive modulation and coding scheme in mobile communication system | |
KR101222998B1 (en) | Transmitting apparatus and transmitting method | |
US8208435B2 (en) | Base station apparatus, user apparatus and method for use in mobile communication system | |
KR100459573B1 (en) | Apparatus for transmitting/receiving uplink transmission power and high speed downlink shared channel power level in communication system using high speed downlink packet access scheme and method thereof | |
RU2495528C2 (en) | Method and apparatus for controlling and multiplexing data in mimo communication system | |
JP5251984B2 (en) | Transmitter, transmission method, receiver, and reception method | |
US20100220663A1 (en) | Communications system and method | |
CA2734040A1 (en) | System and method of modulation and coding scheme adjustment for a lte shared data channel | |
KR100958636B1 (en) | Method and apparatus for conrolling transmission and receiption of dedicated pilot according to mcs level is used in wireless telecommunications system | |
WO2009028910A1 (en) | Method and system for handshaking in wireless communication system | |
MX2007011897A (en) | Transmitting apparatus and transmitting method. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200780014493.2 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07746553 Country of ref document: EP Kind code of ref document: A2 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020087024262 Country of ref document: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009506424 Country of ref document: JP |
|
REEP | Request for entry into the european phase |
Ref document number: 2007746553 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2007746553 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |