WO2007132834A1 - Composite optical device - Google Patents

Composite optical device Download PDF

Info

Publication number
WO2007132834A1
WO2007132834A1 PCT/JP2007/059924 JP2007059924W WO2007132834A1 WO 2007132834 A1 WO2007132834 A1 WO 2007132834A1 JP 2007059924 W JP2007059924 W JP 2007059924W WO 2007132834 A1 WO2007132834 A1 WO 2007132834A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
surface portion
glass
composite
optical element
Prior art date
Application number
PCT/JP2007/059924
Other languages
French (fr)
Japanese (ja)
Inventor
Toshiaki Takano
Jun Murata
Original Assignee
Panasonic Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corporation filed Critical Panasonic Corporation
Publication of WO2007132834A1 publication Critical patent/WO2007132834A1/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1392Means for controlling the beam wavefront, e.g. for correction of aberration
    • G11B7/13922Means for controlling the beam wavefront, e.g. for correction of aberration passive
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/4205Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive optical element [DOE] contributing to image formation, e.g. whereby modulation transfer function MTF or optical aberrations are relevant
    • G02B27/4211Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive optical element [DOE] contributing to image formation, e.g. whereby modulation transfer function MTF or optical aberrations are relevant correcting chromatic aberrations
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/4205Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive optical element [DOE] contributing to image formation, e.g. whereby modulation transfer function MTF or optical aberrations are relevant
    • G02B27/4216Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive optical element [DOE] contributing to image formation, e.g. whereby modulation transfer function MTF or optical aberrations are relevant correcting geometrical aberrations
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/4272Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having plural diffractive elements positioned sequentially along the optical path
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/4283Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive element with major temperature dependent properties
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1353Diffractive elements, e.g. holograms or gratings
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1372Lenses
    • G11B7/1374Objective lenses

Definitions

  • the present invention relates to a composite optical element, and more particularly to a composite optical element in which a second optical part is bonded to a first optical part.
  • a composite optical element including two or more optical units is known.
  • a composite optical element is formed by bonding different materials (for example, glass and resin), and a diffractive surface may be formed on the bonded surface.
  • a slit-like or groove-like lattice structure having a fine equidistant interval of several tens of force and several hundreds per minute interval (about 1 mm) is formed on the diffractive surface.
  • a diffracted light beam is generated in a direction determined by the pitch (interval) of the slits and grooves and the wavelength of the light. They can be collected and used as a lens. Therefore, in such a composite optical element, the refractive index increases as the wavelength increases, unlike lenses made of glass or resin, and the h-line (404.7 nm) to c-line (656.3 nm). It is possible to increase the diffraction efficiency to 90% or more in a wide wavelength region.
  • Patent Document 1 Japanese Patent Laid-Open No. 11-287904
  • Patent Document 2 JP-A-11 305126
  • a second optical part made of a resin is bonded to a first optical part that also has glass power.
  • resin has poor environmental resistance compared to glass, that is, its characteristics change due to environmental changes such as temperature changes and humidity changes, so depending on the conditions of use of the composite optical element, There was a risk of deterioration of characteristics.
  • the present invention has been made in view of the power, and the object of the present invention is to withstand the environment.
  • An object of the present invention is to provide a composite optical element having excellent properties.
  • the composite optical element of the present invention has a first optical functional surface, which is made of glass, and a second optical portion made of glass that is bonded to the first optical part on the first optical functional surface. And.
  • the second optical unit has a bonding surface where the second optical unit is bonded to the first optical unit, and a second optical functional surface existing on the opposite side of the bonding surface. At least a part of the first optical functional surface has a first uneven surface portion, and at least a part of the second optical functional surface has a second uneven surface portion.
  • the “optical functional surface” is an incident / exit surface or a reflective surface.
  • a composite optical element having excellent environmental resistance can be provided.
  • FIG. 1 is a schematic cross-sectional view of a composite optical element according to Embodiment 1.
  • FIG. 2 is a cross-sectional process diagram illustrating a method of molding a composite optical element according to the first embodiment.
  • FIG. 3 is a schematic cross-sectional view of a composite optical element according to the second embodiment.
  • FIG. 4 is a schematic sectional view of a composite optical element according to the third embodiment.
  • FIG. 5 is a schematic cross-sectional view of a composite optical element according to Embodiment 4.
  • FIG. 6 is a schematic sectional view of a composite optical element according to the fifth embodiment.
  • FIG. 7 is a schematic cross-sectional view of a composite optical element according to Embodiment 6.
  • a composite lens is taken as an example of a composite optical element, and its configuration and forming method are shown.
  • FIG. 1 is a schematic cross-sectional view of a composite optical element 10 according to the first embodiment.
  • the composite optical element 10 includes a first optical unit 11 and a second optical unit 14.
  • the first optical unit 11 is an aspheric lens made of glass, and has two lens surfaces, that is, a lens surface (first optical functional surface) 12 and a lens surface 13.
  • the second optical unit 14 also has a glass force and is bonded to the first optical unit 11 at the lens surface 12 of the first optical unit 11.
  • the composite optical element 10 according to the present embodiment includes the first optical unit 11 and the second optical unit 14 that also have glass power, the composite optical element that includes the optical unit made of resin.
  • the second optical unit 14 is bonded to the composite optical element 10, and the side on which the surface is the “surface of the composite optical element 10” t
  • the composite optical element 10 according to the present embodiment is further shown.
  • the second optical unit 12 is joined to the first optical unit 11 so that the optical axis thereof coincides with the optical axis of the first optical unit 11.
  • the first optical part 11 also has the first glass force
  • the second optical part 14 is the second glass
  • the glass transition temperature of the first glass is higher than the glass transition temperature of the second glass. . Therefore, even when the composite optical element 10 that works on the present embodiment is formed by bonding the second glass melted after forming the first optical part 11 to the first optical part 11 as described later, Changes in the shape of the first optical unit 11 during bonding can be minimized.
  • the lens surface 13 is smooth without steps or ridges. Meanwhile, Ren The first uneven surface portion 12a is present around the optical axis, and the first smooth surface portion 12b is present on the periphery of the first uneven surface portion 12a. Therefore, when the compound optical element 10 is viewed from the front side (when the compound optical element 10 is also viewed from the downward force in FIG. 1), the center of the lens surface 12 (around the optical axis) is a force that is uneven by the first uneven surface portion 12a.
  • the periphery of the surface 12 is smooth by the first smooth surface portion 12b, and the first uneven surface portion 12a and the first smooth surface portion 12b are arranged concentrically around a point on the optical axis of the composite optical element 10.
  • the first concavo-convex surface portion 12a is a diffractive portion. Specifically, the first concavo-convex surface portion 12a has a plurality of concavities and convexities having a sawtooth cross section. In addition, it is more preferable that the circumference of the optical axis is within the area of radius dZ3, which is preferably within the area of radius dZ4, centered on one point on the optical axis, where d is the radius of the lens surface. More preferably, it is within the region of radius dZ2.
  • the lens surface (second optical function surface) 15 exists on the opposite side of the cemented surface 16.
  • the second smooth surface portion 15b exists around the optical axis, and the second uneven surface portion 15a exists on the periphery of the second smooth surface portion 15b. Therefore, when the composite optical element 10 is viewed from the front side (when the composite optical element 10 is viewed from below in FIG. 1), the center of the lens surface 15 (around the optical axis) is smoother by the second smooth surface portion 15b.
  • the periphery of the lens surface 15 is uneven by the second concave convex surface portion 15a.
  • the second concavo-convex surface portion 15a is a turning portion like the first concavo-convex surface portion 12a.
  • the second concavo-convex surface portion 15a has a plurality of concavities and convexities having a sawtooth cross section. Therefore, the arrangement relationship between the second uneven surface portion 15a and the second smooth surface portion 15b on the lens surface 15 of the second optical portion 14 is the same as the first uneven surface portion 12a and the first smooth surface portion on the lens surface 12 of the first optical portion 11.
  • the arrangement relationship with 12b is the opposite. In other words, when the composite optical element 10 according to the present embodiment is viewed from the front surface side, the first uneven surface portion 12a exists on the back surface side of the second smooth surface portion 15b, and the first uneven surface surface of the second uneven surface portion 15a has the first surface.
  • a smooth surface portion 12b is present.
  • the optical power differs between the periphery of the optical axis and the periphery rather than the periphery of the optical axis.
  • light having a wavelength is incident on the second smooth surface portion 15b to be condensed, Wavelength ( ⁇ ⁇
  • FIGS. 2A to 2D are schematic cross-sectional views showing a molding process of the composite optical element 10 according to the present embodiment.
  • the first optical part 11 is molded through the steps shown in FIGS. 2 (a) and 2 (b), and then the processes shown in FIGS. )
  • the second optical unit 14 is bonded to the first optical unit 11 through a process. Specific examples are shown below.
  • a first glass preform 1 and a molding apparatus are prepared.
  • the first glass preform 1 preferably has a shape very similar to the shape of the first optical part 11.
  • the molding apparatus includes an upper mold 81 and a lower mold 82, and the upper mold 81 and the lower mold 82 have molding surfaces 81a and 82a that become lens surfaces 12 and 13, respectively.
  • the molding surface 81a is formed smoothly. Concavities and convexities corresponding to the first uneven surface portion 12a are formed in the center of the molding surface 82a, and the periphery of the molding surface 82a is smoothly formed so as to correspond to the first smooth surface portion 12b. Then, after setting the lower mold 82 with the molding surface 82a facing upward, the first glass preform 1 is set on the molding surface 82a, and the molding surface 81a is directed downward on the first glass preform 1.
  • Set type 81 is set on the molding surface 82a, and the molding surface 81a is directed downward on the first glass preform 1.
  • the first glass preform 1 is heated to near the glass softening temperature and pressed as shown in FIG. 2 (b) to form the molding surfaces 81a, 81a of the upper mold 81 and the lower mold 82. Transfer 82a onto the surface of the first glass preform 1 respectively.
  • the upper mold 81 and the lower mold 82 are pressed against each other by pressing the upper mold 81 against the surface of the first glass preform 1 and pressing the lower mold 82 against the surface of the first glass preform 1 respectively.
  • 1It may be pressed against the surface of glass preform 1.
  • it is cooled.
  • the first optical unit 11 can be molded. In this way, the first optical part 11 is molded using the press molding method.
  • the first optical part 11 is molded by one molding.
  • the lens surfaces 12 and 13 are aspherical surfaces, they can be molded relatively easily by processing the molding surfaces 81a and 82a. Therefore, the first optical unit 11 can be manufactured with a high manufacturing yield.
  • the second glass preform 4 is made of glass having a glass transition temperature lower than that of the first glass preform 1.
  • the molding apparatus includes an upper mold 81 and a lower mold 91, and the lower mold 91 has a molding surface 9la.
  • the center of the molding surface 91a is smoothly formed so as to correspond to the second smooth surface portion 15b, and irregularities are formed on the periphery of the molding surface 91a so as to correspond to the second uneven surface portion 15a.
  • the second glass preform 4 Is set on the molding surface 91a, and the first optical part 11 and the upper die 91 are set on the second glass preform 4 in this order.
  • the first optical unit 11 if the first optical unit 11 is set so that the center of the lens surface 12 of the first optical unit 11 overlaps the center of the molding surface 91a of the lower die 91, the second optical unit 14
  • the composite optical element 10 can be molded by aligning the optical axis of the first optical unit 11 with the optical axis of the first optical unit 11.
  • the second glass preform is heated to near the glass softening temperature and pressed as shown in FIG. 2 (d).
  • the softness of the first optical unit 11 is reduced when the second glass preform is soft. Can be prevented.
  • the second glass preform flows in accordance with the shape of the lens surface 12 and enters the concave portion at the peripheral edge of the molding surface 9 la, the peripheral shape is suitably transferred to the surface of the second glass preform 4. In this way, the composite optical element 10 that can be applied to the present embodiment can be molded.
  • the composite optical unit 10 since both the first optical unit 11 and the second optical unit 14 have glass power, the composite optical unit having an optical unit made of resin is used. Excellent optical characteristics compared to optical elements.
  • the glass transition temperature of the first glass is higher than the glass transition temperature of the second glass, the second optical unit 14 can be bonded without any change in the shape of the first optical unit 11.
  • the optical power is different between the surface and the periphery of the composite optical element 10, so that the light can be fluorescent with different wavelengths.
  • Such a composite optical element 10 can be mounted on an optical device such as an imaging device, an illumination device, and an optical disc recording / reproducing device.
  • the imaging device is a device for photographing a subject, for example, a digital still camera or a digital video camera.
  • the illumination device is a device for irradiating light on an object to be illuminated, for example, a projector.
  • optical disc recording / playback devices include digital versatile discs (hereinafter referred to as DVDs), compact discs (hereinafter referred to as CDs), and Blu-ray discs (registered trademarks, hereinafter referred to as BDs (registered trademarks)). It is a device that records and reproduces.
  • DVD, CD, and BD registered trademark
  • DVD, CD, and BD registered trademark
  • DVD, CD, and BD registered trademark
  • DVD, CD, and BD registered trademark
  • FIG. 3 is a schematic sectional view of the composite optical element 20 according to the second embodiment.
  • the first uneven surface portion 12a exists on the periphery of the lens surface 12 of the first optical portion 11, and the second uneven surface Surface 15a exists around the optical axis!
  • FIG. 4 is a schematic cross-sectional view of the composite optical element 30 according to the third embodiment.
  • each of the first optical part 31 and the second optical part 34 has a flat plate shape, and the first uneven surface part 32.
  • Each of a and the second uneven surface portion 35a is formed with a plurality of uneven portions having a stepped cross section.
  • the first optical unit 31 the first uneven surface portion 32a is present around the optical axis, and the first smooth surface portion 32b is present at the periphery of the first uneven surface portion 32a.
  • the second optical unit 34 has a lens surface 35 on the side opposite to the cemented surface 36. In the lens surface 35, the second smooth surface portion 35b exists around the optical axis, and the second uneven surface portion 35a exists on the periphery of the second smooth surface portion 35b.
  • the first uneven surface portion 32a and the first smooth surface portion 32b are arranged concentrically around one point on the optical axis of the composite optical element 30, and the lens surface In 35, the second uneven surface portion 35a and the second smooth surface portion 35b are arranged concentrically around a point on the optical axis of the composite optical element 30.
  • FIG. 5 is a schematic sectional view of the composite optical element 40 according to the fourth embodiment.
  • the composite optical element 40 according to the present embodiment has a configuration very similar to the composite optical element 30 of the third embodiment.
  • the first uneven surface portion 42a of the first optical portion 41 and the second uneven surface portion 45a of the second optical portion 44 are lens array portions. Specifically, a plurality of concave lenses are arranged on each of the first uneven surface portion 42a and the second uneven surface portion 45a.
  • the first uneven surface portion 42a exists around the optical axis.
  • a lens surface 45 exists on the opposite side of the second optical unit 44 from the joint surface 46, and the lens surface 45 has a second smooth surface portion 45b around the optical axis.
  • the second uneven surface portion 45a is present at the periphery of 45b.
  • a plurality of convex lenses may be arranged on each of the first uneven surface portion 42a and the second uneven surface portion 45a.
  • FIG. 6 is a schematic cross-sectional view of a composite optical element 50 according to the fifth embodiment.
  • the composite optical element 50 according to the present embodiment has a configuration similar to that of the composite optical element 10 of the first embodiment, but the first uneven surface portion 52a of the first optical unit 51 and the first optical unit 54 of the second optical unit 54. 2
  • the uneven surface portion 55a is a phase step portion.
  • each of the first uneven surface portion 52a and the second uneven surface portion 55a is formed with a plurality of phase step surfaces having a stepped cross section.
  • the first uneven surface portion 52 a exists around the optical axis of the lens surface 52 of the first optical portion 51.
  • a lens surface 55 exists on the opposite side of the second optical unit 54 from the cemented surface 56.
  • the lens surface 55 has a second smooth surface portion 55b around the optical axis.
  • the second uneven surface portion 55a exists on the periphery of the surface portion 55b.
  • the light beam incident on the second smooth surface portion 55b that is the same as the composite optical element 30 of the third embodiment has a phase at the first uneven surface portion 52a.
  • the phase of the light beam incident on the second uneven surface portion 55a is converted in the second uneven surface portion 55a.
  • FIG. 7 is a schematic cross-sectional view of a composite optical element 60 according to the sixth embodiment.
  • the composite optical element 60 has a configuration very similar to that of the composite optical element 10 of the first embodiment, but the first uneven surface portion 62a of the first optical unit 61 and the second uneven surface portion 65 of the second optical unit 64. a is an antireflection part.
  • the first concavo-convex surface portion 62a and the second concavo-convex surface portion 65a are formed with a plurality of cone-shaped projections, and the cone-shaped projections are arranged at a pitch less than the wavelength of the light to be reflected. Has been.
  • the first uneven surface portion 62a exists around the optical axis of the lens surface 62 of the first optical portion 61.
  • a lens surface 65 exists on the opposite side of the cemented surface 66 of the second optical unit 64.
  • a second smooth surface portion 65b exists around the optical axis.
  • the second uneven surface portion 65a is present at the periphery of the surface portion 65b.
  • Embodiments 1 to 6 may have the following configuration.
  • the composite optical element may be a composite mirror without being limited to a composite lens.
  • the optical functional surface may be a reflective surface.
  • the force that the lens surface of the first optical unit is aspherical may be a flat surface as in Embodiments 3 and 4, or may be a spherical surface, a cylindrical surface, an elliptical surface, and a toric surface. Good.
  • the first optical part is not limited to one formed by a press molding method, and may be one formed by etching or one formed by injection molding.
  • the lens surface of the first optical unit and the lens surface of the second optical unit are each formed with one type of uneven surface portion, multiple types of uneven surface portions may be formed.
  • the third optical unit may be bonded to the lens surface of the second optical unit. It is preferable that a third uneven surface portion is formed on the lens surface of the third optical portion (the portion on the side opposite to the cemented surface)! /.
  • the fourth optical unit may be bonded to the other lens surface.
  • the fourth concavo-convex surface portion is formed on the lens surface of the fourth optical portion (the portion opposite to the cemented surface). I prefer to do that!
  • the first uneven surface portion is present at the periphery of the optical axis of the lens surface of the first optical portion, and the second uneven surface portion is the first uneven surface portion. 2 It exists around the optical axis of the lens surface of the optical part.
  • the second uneven surface portion is also a diffractive portion if the first uneven surface portion is a diffractive portion, for example, the first uneven surface portion may be a diffractive portion and the second uneven surface portion may be a lens array portion.
  • the present invention can be mounted on an optical disc recording / reproducing apparatus, and in addition, an image pickup apparatus (digital still camera, digital video camera, etc.) and a display apparatus (projector, etc.) It can be installed.
  • an image pickup apparatus digital still camera, digital video camera, etc.
  • a display apparatus projector, etc.

Abstract

Disclosed is a composite optical device, particularly a composite optical device wherein a second optical unit is joined to a first optical unit. This composite optical device is excellent in environmental resistance. Specifically disclosed is a composite optical device (10) comprising a first glass optical unit (11) and a second glass optical unit (14). The second optical unit (14) is joined to the first optical unit (11) on a lens surface (12) of the first optical unit (11), and has a lens surface (15) and a contact surface (16). The lens surface (12) and the lens surface (15) respectively have a first rough surface (12a) and a second rough surface (15a).

Description

明 細 書  Specification
複合光学素子  Compound optical element
技術分野  Technical field
[0001] 本発明は、複合光学素子に関し、特に、第 1光学部に第 2光学部が接合された複 合光学素子に関するものである。  The present invention relates to a composite optical element, and more particularly to a composite optical element in which a second optical part is bonded to a first optical part.
背景技術  Background art
[0002] 従来より、 2つ以上の光学部を備えた複合光学素子が知られている。複合光学素 子は、互いに異なる素材 (例えば、ガラスと榭脂)を接合させて成形されている場合が 多ぐその接合面に回折面が形成されている場合がある。  Conventionally, a composite optical element including two or more optical units is known. In many cases, a composite optical element is formed by bonding different materials (for example, glass and resin), and a diffractive surface may be formed on the bonded surface.
[0003] 回折面には、微小間隔 (約 lmm)当たり数十力 数百本程度の細かい等間隔のス リット状もしくは溝状の格子構造が形成されている。そのため、回折面を有する複合 光学素子に光束を入射させると、スリットや溝のピッチ(間隔)と光の波長とで定まる方 向に回折光束が発生し、例えば、特定次数の回折光を一点に集めてレンズとして使 用することができる。そのため、このような複合光学素子では、ガラス力もなるレンズや 榭脂からなるレンズとは異なり長波長ほど屈折率が高くなるので、 h線 (404. 7nm) から c線 (656. 3nm)までの広波長領域で回折効率を 90%以上とすることが可能で ある。  [0003] On the diffractive surface, a slit-like or groove-like lattice structure having a fine equidistant interval of several tens of force and several hundreds per minute interval (about 1 mm) is formed. For this reason, when a light beam is incident on a composite optical element having a diffractive surface, a diffracted light beam is generated in a direction determined by the pitch (interval) of the slits and grooves and the wavelength of the light. They can be collected and used as a lens. Therefore, in such a composite optical element, the refractive index increases as the wavelength increases, unlike lenses made of glass or resin, and the h-line (404.7 nm) to c-line (656.3 nm). It is possible to increase the diffraction efficiency to 90% or more in a wide wavelength region.
特許文献 1:特開平 11― 287904号公報  Patent Document 1: Japanese Patent Laid-Open No. 11-287904
特許文献 2 :特開平 11 305126号公報  Patent Document 2: JP-A-11 305126
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] ところで、多くの複合光学素子では、ガラス力もなる第 1光学部に、榭脂からなる第 2 光学部が接合されている。一般に、榭脂はガラスに比べて耐環境性が悪い、すなわ ち、温度変化や湿度変化などの環境変化により特性が変化するので、複合光学素子 の使用条件によっては、その複合光学素子の光学特性の劣化を招来する虞があつ た。 [0004] By the way, in many composite optical elements, a second optical part made of a resin is bonded to a first optical part that also has glass power. In general, resin has poor environmental resistance compared to glass, that is, its characteristics change due to environmental changes such as temperature changes and humidity changes, so depending on the conditions of use of the composite optical element, There was a risk of deterioration of characteristics.
[0005] 本発明は、力かる点に鑑みてなされたものであり、その目的とするところは、耐環境 性に優れた複合光学素子を提供することにある。 [0005] The present invention has been made in view of the power, and the object of the present invention is to withstand the environment. An object of the present invention is to provide a composite optical element having excellent properties.
課題を解決するための手段  Means for solving the problem
[0006] 本発明の複合光学素子は、第 1光学機能表面を有し、ガラスからなる第 1光学部と 、第 1光学機能表面において第 1光学部に接合され、ガラスからなる第 2光学部とを 備えている。第 2光学部は、第 2光学部が第 1光学部に接合された接合面と、接合面 とは反対側に存する第 2光学機能表面とを有している。第 1光学機能表面の少なくと も一部には第 1凹凸面部が存在しており、第 2光学機能表面の少なくとも一部には第 2凹凸面部が存在している。なお、「光学機能表面」は、入出射面または反射面など である。  [0006] The composite optical element of the present invention has a first optical functional surface, which is made of glass, and a second optical portion made of glass that is bonded to the first optical part on the first optical functional surface. And. The second optical unit has a bonding surface where the second optical unit is bonded to the first optical unit, and a second optical functional surface existing on the opposite side of the bonding surface. At least a part of the first optical functional surface has a first uneven surface portion, and at least a part of the second optical functional surface has a second uneven surface portion. The “optical functional surface” is an incident / exit surface or a reflective surface.
発明の効果  The invention's effect
[0007] 本発明では、耐環境性に優れた複合光学素子を提供することができる。  In the present invention, a composite optical element having excellent environmental resistance can be provided.
図面の簡単な説明  Brief Description of Drawings
[0008] [図 1]図 1は、実施形態 1にかかる複合光学素子の概略断面図である。 FIG. 1 is a schematic cross-sectional view of a composite optical element according to Embodiment 1.
[図 2]図 2は、実施形態 1にかかる複合光学素子の成形方法を示す断面工程図であ る。  FIG. 2 is a cross-sectional process diagram illustrating a method of molding a composite optical element according to the first embodiment.
[図 3]図 3は、実施形態 2にかかる複合光学素子の概略断面図である。  FIG. 3 is a schematic cross-sectional view of a composite optical element according to the second embodiment.
[図 4]図 4は、実施形態 3にかかる複合光学素子の概略断面図である。  FIG. 4 is a schematic sectional view of a composite optical element according to the third embodiment.
[図 5]図 5は、実施形態 4にかかる複合光学素子の概略断面図である。  FIG. 5 is a schematic cross-sectional view of a composite optical element according to Embodiment 4.
[図 6]図 6は、実施形態 5にかかる複合光学素子の概略断面図である。  FIG. 6 is a schematic sectional view of a composite optical element according to the fifth embodiment.
[図 7]図 7は、実施形態 6にかかる複合光学素子の概略断面図である。  FIG. 7 is a schematic cross-sectional view of a composite optical element according to Embodiment 6.
符号の説明  Explanation of symbols
[0009] 10, 20, 30, 40, 50, 60 複合光学素子  [0009] 10, 20, 30, 40, 50, 60 Compound optical element
11, 31, 41, 51, 61 第 1光学部  11, 31, 41, 51, 61 1st optical section
12, 32, 42, 52, 62 レンズ面(第 1光学機能表面)  12, 32, 42, 52, 62 Lens surface (first optical functional surface)
12a, 32a, 42a, 52a, 62a 第 1凹凸面部  12a, 32a, 42a, 52a, 62a First uneven surface
14, 34, 44, 54, 64 第 2光学部  14, 34, 44, 54, 64 Second optical part
15, 35, 45, 55, 65 レンズ面(第 2光学機能表面) 15a, 35a, 45a, 55a, 65a 第 2凹凸面部 15, 35, 45, 55, 65 Lens surface (second optical function surface) 15a, 35a, 45a, 55a, 65a Second uneven surface
16, 36, 46, 56, 66 接合面  16, 36, 46, 56, 66 Joint surface
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0010] 以下、本発明の実施形態を図面に基づいて詳細に説明する。なお、本発明は、以 下の実施形態に限定されない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The present invention is not limited to the following embodiment.
[0011] 《発明の実施形態 1》 [Embodiment 1 of the Invention]
実施形態 1では、複合光学素子として複合レンズを例に挙げて、その構成および成 形方法を示す。  In Embodiment 1, a composite lens is taken as an example of a composite optical element, and its configuration and forming method are shown.
[0012] 図 1は、実施形態 1にかかる複合光学素子 10の概略断面図である。  FIG. 1 is a schematic cross-sectional view of a composite optical element 10 according to the first embodiment.
[0013] 本実施形態にかかる複合光学素子 10は、第 1光学部 11と第 2光学部 14とを備えて いる。第 1光学部 11は、ガラスからなる非球面レンズであり、 2つのレンズ面すなわち レンズ面 (第 1光学機能表面) 12およびレンズ面 13を有している。第 2光学部 14は、 ガラス力もなり、第 1光学部 11のレンズ面 12において第 1光学部 11に接合されてい る。このように、本実施形態にかかる複合光学素子 10は、ガラス力もなる第 1光学部 1 1および第 2光学部 14を備えているので、榭脂からなる光学部を備えている複合光 学素子とは異なり、温度変化や湿度変化などの環境変化による光学特性 (光透過率 、集光率や収差など)の劣化を防止することができる。なお、以下では、複合光学素 子 10にお 、て第 2光学部 14が接合されて 、る側を「複合光学素子 10の表面」 t 、う The composite optical element 10 according to the present embodiment includes a first optical unit 11 and a second optical unit 14. The first optical unit 11 is an aspheric lens made of glass, and has two lens surfaces, that is, a lens surface (first optical functional surface) 12 and a lens surface 13. The second optical unit 14 also has a glass force and is bonded to the first optical unit 11 at the lens surface 12 of the first optical unit 11. Thus, since the composite optical element 10 according to the present embodiment includes the first optical unit 11 and the second optical unit 14 that also have glass power, the composite optical element that includes the optical unit made of resin. In contrast, it is possible to prevent deterioration of optical characteristics (light transmittance, light condensing rate, aberration, etc.) due to environmental changes such as temperature changes and humidity changes. In the following description, the second optical unit 14 is bonded to the composite optical element 10, and the side on which the surface is the “surface of the composite optical element 10” t
[0014] 本実施形態にかかる複合光学素子 10をさらに示す。複合光学素子 10では、第 2光 学部 12は、その光軸が第 1光学部 11の光軸と一致するように、第 1光学部 11に接合 されている。また、第 1光学部 11は第 1ガラス力もなつており、第 2光学部 14は第 2ガ ラスカゝらなっており、第 1ガラスのガラス転移温度は第 2ガラスのガラス転移温度よりも 高い。そのため、後述のように第 1光学部 11を成形した後に溶融した第 2ガラスを第 1 光学部 11に接合させることにより本実施形態に力かる複合光学素子 10を成形する 場合であっても、接合時における第 1光学部 11の形状変化を最小限に抑えることが できる。 [0014] The composite optical element 10 according to the present embodiment is further shown. In the composite optical element 10, the second optical unit 12 is joined to the first optical unit 11 so that the optical axis thereof coincides with the optical axis of the first optical unit 11. The first optical part 11 also has the first glass force, the second optical part 14 is the second glass, and the glass transition temperature of the first glass is higher than the glass transition temperature of the second glass. . Therefore, even when the composite optical element 10 that works on the present embodiment is formed by bonding the second glass melted after forming the first optical part 11 to the first optical part 11 as described later, Changes in the shape of the first optical unit 11 during bonding can be minimized.
[0015] 第 1光学部 11では、レンズ面 13は段差や稜線などがなく滑らかである。一方、レン ズ面 12には、第 1凹凸面部 12aが光軸周囲に存在しており、第 1滑面部 12bが第 1 凹凸面部 12aよりも周縁に存在している。そのため、複合光学素子 10を表面側から 見ると (複合光学素子 10を図 1の下方力も見ると)、レンズ面 12の中央 (光軸周囲)は 第 1凹凸面部 12aにより凸凹している力 レンズ面 12の周縁は第 1滑面部 12bにより 滑らかであり、第 1凹凸面部 12aおよび第 1滑面部 12bは複合光学素子 10の光軸上 の一点を中心とする同心円状に配置されている。この第 1凹凸面部 12aは回折部で あり、具体的には、第 1凹凸面部 12aには断面鋸歯状の凹凸が複数形成されている 。なお、光軸周囲は、レンズ面の半径を dとしたとき、光軸上の一点を中心として半径 dZ4の領域内であることが好ましぐ半径 dZ3の領域内であることがさらに好ましぐ 半径 dZ2の領域内であることがさらに好ましい。 In the first optical unit 11, the lens surface 13 is smooth without steps or ridges. Meanwhile, Ren The first uneven surface portion 12a is present around the optical axis, and the first smooth surface portion 12b is present on the periphery of the first uneven surface portion 12a. Therefore, when the compound optical element 10 is viewed from the front side (when the compound optical element 10 is also viewed from the downward force in FIG. 1), the center of the lens surface 12 (around the optical axis) is a force that is uneven by the first uneven surface portion 12a. The periphery of the surface 12 is smooth by the first smooth surface portion 12b, and the first uneven surface portion 12a and the first smooth surface portion 12b are arranged concentrically around a point on the optical axis of the composite optical element 10. The first concavo-convex surface portion 12a is a diffractive portion. Specifically, the first concavo-convex surface portion 12a has a plurality of concavities and convexities having a sawtooth cross section. In addition, it is more preferable that the circumference of the optical axis is within the area of radius dZ3, which is preferably within the area of radius dZ4, centered on one point on the optical axis, where d is the radius of the lens surface. More preferably, it is within the region of radius dZ2.
[0016] また、第 2光学部 14では、レンズ面 (第 2光学機能表面) 15は接合面 16の反対側 に存在している。レンズ面 15には、第 2滑面部 15bが光軸周囲に存在しており、第 2 凹凸面部 15aが第 2滑面部 15bよりも周縁に存在している。そのため、複合光学素子 10を表面側から見ると (複合光学素子 10を図 1の下方から見ると)、レンズ面 15の中 央 (光軸周囲)は第 2滑面部 15bにより滑らかであるが、レンズ面 15の周縁は第 2凹 凸面部 15aにより凸凹している。この第 2凹凸面部 15aは第 1凹凸面部 12aと同じく回 折部であり、具体的には、第 2凹凸面部 15aには断面鋸歯状の凹凸が複数形成され ている。そのため、第 2光学部 14のレンズ面 15における第 2凹凸面部 15aと第 2滑面 部 15bとの配置関係は、第 1光学部 11のレンズ面 12における第 1凹凸面部 12aと第 1滑面部 12bとの配置関係とは逆である。換言すると、本実施形態にかかる複合光学 素子 10を表面側から見ると、第 2滑面部 15bの裏面側には第 1凹凸面部 12aが存在 し、第 2凹凸面部 15aの裏面側には第 1滑面部 12bが存在している。これにより、複合 光学素子 10の表面では、光学的パワーが光軸周囲と光軸周囲よりも周縁とで異なる ので、例えば、波長え の光を第 2滑面部 15bに入射させて集光させ、波長え (≠λ In the second optical unit 14, the lens surface (second optical function surface) 15 exists on the opposite side of the cemented surface 16. On the lens surface 15, the second smooth surface portion 15b exists around the optical axis, and the second uneven surface portion 15a exists on the periphery of the second smooth surface portion 15b. Therefore, when the composite optical element 10 is viewed from the front side (when the composite optical element 10 is viewed from below in FIG. 1), the center of the lens surface 15 (around the optical axis) is smoother by the second smooth surface portion 15b. The periphery of the lens surface 15 is uneven by the second concave convex surface portion 15a. The second concavo-convex surface portion 15a is a turning portion like the first concavo-convex surface portion 12a. Specifically, the second concavo-convex surface portion 15a has a plurality of concavities and convexities having a sawtooth cross section. Therefore, the arrangement relationship between the second uneven surface portion 15a and the second smooth surface portion 15b on the lens surface 15 of the second optical portion 14 is the same as the first uneven surface portion 12a and the first smooth surface portion on the lens surface 12 of the first optical portion 11. The arrangement relationship with 12b is the opposite. In other words, when the composite optical element 10 according to the present embodiment is viewed from the front surface side, the first uneven surface portion 12a exists on the back surface side of the second smooth surface portion 15b, and the first uneven surface surface of the second uneven surface portion 15a has the first surface. A smooth surface portion 12b is present. Thereby, on the surface of the composite optical element 10, the optical power differs between the periphery of the optical axis and the periphery rather than the periphery of the optical axis.For example, light having a wavelength is incident on the second smooth surface portion 15b to be condensed, Wavelength (≠ λ
1 2 1 2
)の光を第 2凹凸面部 15aに入射させて集光させることができる。 ) Can be incident on the second uneven surface portion 15a and condensed.
[0017] 図 2 (a)〜 (d)は、本実施形態にかかる複合光学素子 10の成形工程を示す概略断 面図である。本実施形態にかかる複合光学素子 10の成形方法は、図 2 (a)および図 2 (b)に示す工程を経て第 1光学部 11を成形した後、図 2 (c)および図 2 (d)に示す 工程を経て第 1光学部 11に第 2光学部 14を接合させるというものである。以下に、具 体的に示す。 FIGS. 2A to 2D are schematic cross-sectional views showing a molding process of the composite optical element 10 according to the present embodiment. In the molding method of the composite optical element 10 according to the present embodiment, the first optical part 11 is molded through the steps shown in FIGS. 2 (a) and 2 (b), and then the processes shown in FIGS. ) The second optical unit 14 is bonded to the first optical unit 11 through a process. Specific examples are shown below.
[0018] まず、図 2 (a)に示すように、第 1ガラスプリフォーム 1および成形装置を用意する。  First, as shown in FIG. 2 (a), a first glass preform 1 and a molding apparatus are prepared.
第 1ガラスプリフォーム 1は、第 1光学部 11の形状に酷似した形状を有していることが 好ましい。成形装置は、上型 81と下型 82とを備えており、上型 81および下型 82は、 それぞれレンズ面 12, 13となる成形面 81a, 82aを有している。成形面 81aは滑らか に形成されて ヽる。成形面 82aの中央には第 1凹凸面部 12aに対応する凹凸が形成 されており、成形面 82aの周縁は第 1滑面部 12bに対応するように滑らかに形成され ている。そして、成形面 82aを上向けて下型 82をセットした後、成形面 82aの上に第 1ガラスプリフォーム 1をセットし、第 1ガラスプリフォーム 1の上に成形面 81aを下向け て上型 81をセットする。  The first glass preform 1 preferably has a shape very similar to the shape of the first optical part 11. The molding apparatus includes an upper mold 81 and a lower mold 82, and the upper mold 81 and the lower mold 82 have molding surfaces 81a and 82a that become lens surfaces 12 and 13, respectively. The molding surface 81a is formed smoothly. Concavities and convexities corresponding to the first uneven surface portion 12a are formed in the center of the molding surface 82a, and the periphery of the molding surface 82a is smoothly formed so as to correspond to the first smooth surface portion 12b. Then, after setting the lower mold 82 with the molding surface 82a facing upward, the first glass preform 1 is set on the molding surface 82a, and the molding surface 81a is directed downward on the first glass preform 1. Set type 81.
[0019] 次に、第 1ガラスプリフォーム 1をそのガラス軟ィ匕温度付近にまで加熱し、図 2 (b)に 示すようにプレスして、上型 81および下型 82の成形面 81a, 82aをそれぞれ第 1ガラ スプリフォーム 1の表面に転写する。プレスする際、上型 81を第 1ガラスプリフォーム 1 の表面に押し付けてもよぐ下型 82を第 1ガラスプリフォーム 1の表面に押し付けても よぐ上型 81および下型 82をそれぞれ第 1ガラスプリフォーム 1の表面に押し付けて も良い。その後、冷却する。これにより、第 1光学部 11を成形することができる。このよ うにプレス成形法を用いて第 1光学部 11を成形するので、研磨法や研削法を用いて 第 1光学部を成形する場合と異なり、一回の成形で第 1光学部 11を成形できるととも に、レンズ面 12, 13が非球面であっても成形面 81a, 82aの加工により比較的容易 に成形することができる。よって、第 1光学部 11を製造歩留まり良く製造することがで きる。  Next, the first glass preform 1 is heated to near the glass softening temperature and pressed as shown in FIG. 2 (b) to form the molding surfaces 81a, 81a of the upper mold 81 and the lower mold 82. Transfer 82a onto the surface of the first glass preform 1 respectively. When pressing, the upper mold 81 and the lower mold 82 are pressed against each other by pressing the upper mold 81 against the surface of the first glass preform 1 and pressing the lower mold 82 against the surface of the first glass preform 1 respectively. 1It may be pressed against the surface of glass preform 1. Then, it is cooled. As a result, the first optical unit 11 can be molded. In this way, the first optical part 11 is molded using the press molding method. Unlike the molding of the first optical part using the polishing method or the grinding method, the first optical part 11 is molded by one molding. In addition, even if the lens surfaces 12 and 13 are aspherical surfaces, they can be molded relatively easily by processing the molding surfaces 81a and 82a. Therefore, the first optical unit 11 can be manufactured with a high manufacturing yield.
[0020] 続、て、図 2 (c)に示すように、第 2ガラスプリフォーム 4および成形装置を準備する 。第 2ガラスプリフォーム 4は、第 1ガラスプリフォーム 1よりもガラス転移温度が低いガ ラスからなる。成形装置は上型 81と下型 91とを備えており、下型 91は成形面 9 laを 有している。成形面 91aの中央は第 2滑面部 15bに対応するように滑らかに形成され ており、成形面 91aの周縁には第 2凹凸面部 15aに対応するように凸凹が形成されて いる。そして、成形面 91aを上向けて下型 91をセットした後、第 2ガラスプリフォーム 4 を成形面 91aにセットし、第 2ガラスプリフォーム 4の上に第 1光学部 11および上型 91 を順にセットする。第 1光学部 11をセットする際、下型 91の成形面 91aの中央に第 1 光学部 11のレンズ面 12の中央が重なるように第 1光学部 11をセットすれば、第 2光 学部 14の光軸を第 1光学部 11の光軸に一致させて複合光学素子 10を成形すること ができる。 Next, as shown in FIG. 2 (c), a second glass preform 4 and a molding apparatus are prepared. The second glass preform 4 is made of glass having a glass transition temperature lower than that of the first glass preform 1. The molding apparatus includes an upper mold 81 and a lower mold 91, and the lower mold 91 has a molding surface 9la. The center of the molding surface 91a is smoothly formed so as to correspond to the second smooth surface portion 15b, and irregularities are formed on the periphery of the molding surface 91a so as to correspond to the second uneven surface portion 15a. Then, after setting the lower die 91 with the molding surface 91a facing upward, the second glass preform 4 Is set on the molding surface 91a, and the first optical part 11 and the upper die 91 are set on the second glass preform 4 in this order. When setting the first optical unit 11, if the first optical unit 11 is set so that the center of the lens surface 12 of the first optical unit 11 overlaps the center of the molding surface 91a of the lower die 91, the second optical unit 14 The composite optical element 10 can be molded by aligning the optical axis of the first optical unit 11 with the optical axis of the first optical unit 11.
[0021] それから、第 2ガラスプリフォームをそのガラス軟ィ匕温度付近にまで加熱し、図 2 (d) に示すようにプレスする。このとき、第 2ガラスプリフォームのガラス転移温度は、第 1 ガラスプリフォームのガラス転移温度よりも低 、ので、第 2ガラスプリフォームの軟ィ匕時 に第 1光学部 11の軟ィ匕を防止することができる。また、レンズ面 12の形状に合わせ て第 2ガラスプリフォームが流動して成形面 9 laの周縁の凹部に入り込むので、周縁 の形状が第 2ガラスプリフォーム 4の表面に好適に転写される。このようにして本実施 形態に力かる複合光学素子 10を成形することができる。  Then, the second glass preform is heated to near the glass softening temperature and pressed as shown in FIG. 2 (d). At this time, since the glass transition temperature of the second glass preform is lower than the glass transition temperature of the first glass preform, the softness of the first optical unit 11 is reduced when the second glass preform is soft. Can be prevented. Further, since the second glass preform flows in accordance with the shape of the lens surface 12 and enters the concave portion at the peripheral edge of the molding surface 9 la, the peripheral shape is suitably transferred to the surface of the second glass preform 4. In this way, the composite optical element 10 that can be applied to the present embodiment can be molded.
[0022] 以上説明したように、本実施形態にかかる複合光学素子 10では、第 1光学部 11お よび第 2光学部 14はどちらもガラス力もなるので、榭脂からなる光学部を備えた複合 光学素子に比べて光学特性に優れている。また、第 1ガラスのガラス転移温度は第 2 ガラスのガラス転移温度よりも高いので、第 1光学部 11の形状変化を伴うことなく第 2 光学部 14を接合することができる。さらに、本実施形態にかかる複合光学素子 10で は、複合光学素子 10の表面と周縁とで光学的パワーが相異なるので、波長が互い に異なる光魏光させることができる。  [0022] As described above, in the composite optical element 10 according to the present embodiment, since both the first optical unit 11 and the second optical unit 14 have glass power, the composite optical unit having an optical unit made of resin is used. Excellent optical characteristics compared to optical elements. In addition, since the glass transition temperature of the first glass is higher than the glass transition temperature of the second glass, the second optical unit 14 can be bonded without any change in the shape of the first optical unit 11. Furthermore, in the composite optical element 10 according to the present embodiment, the optical power is different between the surface and the periphery of the composite optical element 10, so that the light can be fluorescent with different wavelengths.
[0023] このような複合光学素子 10は、撮像装置、照明装置、光ディスク記録再生装置等 の光学機器に搭載することができる。撮像装置は、被写体を撮影するための装置で あり、例えばデジタルスチルカメラやデジタルビデオカメラである。照明装置は、被照 明対象物に光を照射するための装置であり、例えばプロジェクタである。また、光ディ スク記録再生装置は、デジタルバーサタイルディスク(以下、 DVDと称す)や、コン パクトディスク(以下、 CDと称す)や、ブルレイディスク(登録商標、以下 BD (登録商 標)と称す)などを記録再生する装置である。一般に、 DVD、 CDおよび BD (登録商 標)では、記録再生するための光源の波長や光ディスクの厚みなどが互いに異なる ので、一台の光ディスク記録再生装置で DVDと CDと BD (登録商標)とを記録再生 可能とするためには光学系を工夫する必要があるが、本実施形態に力かる複合光学 デバイス 10を用いれば複数種類の情報記録媒体に対して互換性を有する光デイス ク記録再生装置を実現することができる。 Such a composite optical element 10 can be mounted on an optical device such as an imaging device, an illumination device, and an optical disc recording / reproducing device. The imaging device is a device for photographing a subject, for example, a digital still camera or a digital video camera. The illumination device is a device for irradiating light on an object to be illuminated, for example, a projector. In addition, optical disc recording / playback devices include digital versatile discs (hereinafter referred to as DVDs), compact discs (hereinafter referred to as CDs), and Blu-ray discs (registered trademarks, hereinafter referred to as BDs (registered trademarks)). It is a device that records and reproduces. In general, DVD, CD, and BD (registered trademark) have different wavelengths of light sources for recording and playback, optical disc thickness, etc., so DVD, CD, and BD (registered trademark) can be Record playback In order to make this possible, it is necessary to devise an optical system. However, if the composite optical device 10 that is effective in this embodiment is used, an optical disk recording / reproducing apparatus compatible with multiple types of information recording media can be realized. can do.
[0024] 《発明の実施形態 2》  [Embodiment 2 of the Invention]
図 3は、実施形態 2にかかる複合光学素子 20の概略断面図である。本実施形態に 力かる複合光学素子 20では、上記実施形態 1における複合光学素子とは異なり、第 1凹凸面部 12aが第 1光学部 11のレンズ面 12の周縁に存在しており、第 2凹凸面部 15aが光軸周囲に存在して!/、る。  FIG. 3 is a schematic sectional view of the composite optical element 20 according to the second embodiment. In the composite optical element 20 that works in the present embodiment, unlike the composite optical element in the first embodiment, the first uneven surface portion 12a exists on the periphery of the lens surface 12 of the first optical portion 11, and the second uneven surface Surface 15a exists around the optical axis!
[0025] 《発明の実施形態 3》  [Embodiment 3 of the Invention]
図 4は、実施形態 3にかかる複合光学素子 30の概略断面図である。本実施形態に 力かる複合光学素子 30では、上記実施形態 1における複合光学素子 10とは異なり、 第 1光学部 31および第 2光学部 34がそれぞれ平板状であり、また、第 1凹凸面部 32 aおよび第 2凹凸面部 35aにはそれぞれ断面階段状の凹凸が複数形成されている。  FIG. 4 is a schematic cross-sectional view of the composite optical element 30 according to the third embodiment. In the composite optical element 30 according to the present embodiment, unlike the composite optical element 10 in the first embodiment, each of the first optical part 31 and the second optical part 34 has a flat plate shape, and the first uneven surface part 32. Each of a and the second uneven surface portion 35a is formed with a plurality of uneven portions having a stepped cross section.
[0026] 具体的には、第 1光学部 31では、第 1凹凸面部 32aが光軸周囲に存在しており、第 1凹凸面部 32aよりも周縁に第 1滑面部 32bが存在している。一方、第 2光学部 34に は、接合面 36とは反対側にレンズ面 35が存在している。レンズ面 35では、光軸周囲 に第 2滑面部 35bが存在しており、第 2滑面部 35bよりも周縁に第 2凹凸面部 35aが 存在している。そして、上記実施形態 1と同様、レンズ面 32では第 1凹凸面部 32aと 第 1滑面部 32bとは複合光学素子 30の光軸上の一点を中心とする同心円状に配置 されており、レンズ面 35では第 2凹凸面部 35aと第 2滑面部 35bとは複合光学素子 3 0の光軸上の一点を中心とする同心円状に配置されている。  Specifically, in the first optical unit 31, the first uneven surface portion 32a is present around the optical axis, and the first smooth surface portion 32b is present at the periphery of the first uneven surface portion 32a. On the other hand, the second optical unit 34 has a lens surface 35 on the side opposite to the cemented surface 36. In the lens surface 35, the second smooth surface portion 35b exists around the optical axis, and the second uneven surface portion 35a exists on the periphery of the second smooth surface portion 35b. As in the first embodiment, on the lens surface 32, the first uneven surface portion 32a and the first smooth surface portion 32b are arranged concentrically around one point on the optical axis of the composite optical element 30, and the lens surface In 35, the second uneven surface portion 35a and the second smooth surface portion 35b are arranged concentrically around a point on the optical axis of the composite optical element 30.
[0027] このような複合光学素子 30の表面側から平行光束を入射すると、第 2滑面部 35b に入射された光束は、第 1凹凸面部 32aにおいて位相が変換される。一方、第 2凹凸 面部 35aに入射された光束は、第 2凹凸面部 35aにおいて位相が変換された後に第 1滑面部 3 lbへ入射される。  When a parallel light beam is incident from the surface side of such a composite optical element 30, the phase of the light beam incident on the second smooth surface portion 35b is converted in the first uneven surface portion 32a. On the other hand, the light beam incident on the second uneven surface portion 35a is incident on the first smooth surface portion 3 lb after the phase is converted in the second uneven surface portion 35a.
[0028] 《発明の実施形態 4》  << Embodiment 4 of the Invention >>
図 5は、実施形態 4にかかる複合光学素子 40の概略断面図である。本実施形態に かかる複合光学素子 40は上記実施形態 3の複合光学素子 30とよく似た構成を有し ているが、第 1光学部 41の第 1凹凸面部 42aおよび第 2光学部 44の第 2凹凸面部 45 aはレンズアレイ部である。具体的には、第 1凹凸面部 42aおよび第 2凹凸面部 45a にはそれぞれ、複数の凹状のレンズが配置されている。ここで、第 1凹凸面部 42aは 、光軸周囲に存在している。また、第 2光学部 44の接合面 46とは反対側にはレンズ 面 45が存在しており、レンズ面 45では、光軸周囲に第 2滑面部 45bが存在しており、 第 2滑面部 45bよりも周縁に第 2凹凸面部 45aが存在している。 FIG. 5 is a schematic sectional view of the composite optical element 40 according to the fourth embodiment. The composite optical element 40 according to the present embodiment has a configuration very similar to the composite optical element 30 of the third embodiment. However, the first uneven surface portion 42a of the first optical portion 41 and the second uneven surface portion 45a of the second optical portion 44 are lens array portions. Specifically, a plurality of concave lenses are arranged on each of the first uneven surface portion 42a and the second uneven surface portion 45a. Here, the first uneven surface portion 42a exists around the optical axis. In addition, a lens surface 45 exists on the opposite side of the second optical unit 44 from the joint surface 46, and the lens surface 45 has a second smooth surface portion 45b around the optical axis. The second uneven surface portion 45a is present at the periphery of 45b.
[0029] このような複合光学素子 40の表面側から平行光束を入射すると、第 2滑面部 45b に入射された光束は、第 1凹凸面部 42aにおいて位相が変換されて出射される。一 方、第 2凹凸面部 45aに入射された光束は、第 2凹凸面部 45aにおいて位相が変換 された後に第 1滑面部 42bへ入射される。  [0029] When a parallel light beam is incident from the surface side of such a composite optical element 40, the light beam incident on the second smooth surface portion 45b is emitted with the phase converted at the first uneven surface portion 42a. On the other hand, the light beam incident on the second uneven surface portion 45a is incident on the first smooth surface portion 42b after the phase is converted in the second uneven surface portion 45a.
[0030] なお、第 1凹凸面部 42aおよび第 2凹凸面部 45aにはそれぞれ、複数の凸状のレン ズが配列されて 、てもよ 、。  [0030] It should be noted that a plurality of convex lenses may be arranged on each of the first uneven surface portion 42a and the second uneven surface portion 45a.
[0031] 《発明の実施形態 5》  [Embodiment 5 of the Invention]
図 6は、実施形態 5にかかる複合光学素子 50の概略断面図である。本実施形態に かかる複合光学素子 50は上記実施形態 1の複合光学素子 10とよく似た構成を有し ているが、第 1光学部 51の第 1凹凸面部 52aおよび第 2光学部 54の第 2凹凸面部 55 aは位相段差部である。具体的には、第 1凹凸面部 52aおよび第 2凹凸面部 55aには それぞれ、断面階段状の複数の位相段差面が形成されている。ここで、第 1凹凸面 部 52aは、第 1光学部 51のレンズ面 52における光軸周囲に存在している。また、第 2 光学部 54の接合面 56とは反対側にはレンズ面 55が存在しており、レンズ面 55では 、光軸周囲には第 2滑面部 55bが存在しており、第 2滑面部 55bよりも周縁には第 2 凹凸面部 55aが存在して 、る。  FIG. 6 is a schematic cross-sectional view of a composite optical element 50 according to the fifth embodiment. The composite optical element 50 according to the present embodiment has a configuration similar to that of the composite optical element 10 of the first embodiment, but the first uneven surface portion 52a of the first optical unit 51 and the first optical unit 54 of the second optical unit 54. 2 The uneven surface portion 55a is a phase step portion. Specifically, each of the first uneven surface portion 52a and the second uneven surface portion 55a is formed with a plurality of phase step surfaces having a stepped cross section. Here, the first uneven surface portion 52 a exists around the optical axis of the lens surface 52 of the first optical portion 51. In addition, a lens surface 55 exists on the opposite side of the second optical unit 54 from the cemented surface 56. The lens surface 55 has a second smooth surface portion 55b around the optical axis. The second uneven surface portion 55a exists on the periphery of the surface portion 55b.
[0032] このような複合光学素子 50の表面側から平行光束を入射すると、上記実施形態 3 の複合光学素子 30と同じぐ第 2滑面部 55bに入射された光束は第 1凹凸面部 52a において位相が変換され、第 2凹凸面部 55aに入射された光束は第 2凹凸面部 55a にお 、て位相が変換される。  When a parallel light beam is incident from the surface side of such a composite optical element 50, the light beam incident on the second smooth surface portion 55b that is the same as the composite optical element 30 of the third embodiment has a phase at the first uneven surface portion 52a. The phase of the light beam incident on the second uneven surface portion 55a is converted in the second uneven surface portion 55a.
[0033] 《発明の実施形態 6》  [Embodiment 6 of the Invention]
図 7は、実施形態 6にかかる複合光学素子 60の概略断面図である。本実施形態に かかる複合光学素子 60は上記実施形態 1の複合光学素子 10とよく似た構成を有し ているが、第 1光学部 61の第 1凹凸面部 62aおよび第 2光学部 64の第 2凹凸面部 65 aは反射防止部である。具体的には、第 1凹凸面部 62aおよび第 2凹凸面部 65aには 複数の錐体状突起が形成されており、錐体状突起は反射させようとする光の波長以 下のピッチでそれぞれ配列されている。ここで、第 1凹凸面部 62aは、第 1光学部 61 のレンズ面 62における光軸周囲に存在している。第 2光学部 64の接合面 66とは反 対側にはレンズ面 65が存在しており、レンズ面 65では、光軸周囲には第 2滑面部 65 bが存在しており、第 2滑面部 65bよりも周縁には第 2凹凸面部 65aが存在している。 FIG. 7 is a schematic cross-sectional view of a composite optical element 60 according to the sixth embodiment. In this embodiment The composite optical element 60 has a configuration very similar to that of the composite optical element 10 of the first embodiment, but the first uneven surface portion 62a of the first optical unit 61 and the second uneven surface portion 65 of the second optical unit 64. a is an antireflection part. Specifically, the first concavo-convex surface portion 62a and the second concavo-convex surface portion 65a are formed with a plurality of cone-shaped projections, and the cone-shaped projections are arranged at a pitch less than the wavelength of the light to be reflected. Has been. Here, the first uneven surface portion 62a exists around the optical axis of the lens surface 62 of the first optical portion 61. A lens surface 65 exists on the opposite side of the cemented surface 66 of the second optical unit 64. In the lens surface 65, a second smooth surface portion 65b exists around the optical axis. The second uneven surface portion 65a is present at the periphery of the surface portion 65b.
[0034] このような複合光学素子 60の表面側から平行光束を入射すると、第 2滑面部 65b に入射された光束は第 1凹凸面部 62aにおいて反射が防止され、第 2凹凸面部 65a に入射された光束は第 2凹凸面部 65aにおいて反射が防止される。  When a parallel light beam is incident from the surface side of such a composite optical element 60, the light beam incident on the second smooth surface portion 65b is prevented from being reflected on the first uneven surface portion 62a, and is incident on the second uneven surface portion 65a. The reflected light beam is prevented from being reflected at the second uneven surface portion 65a.
[0035] 《その他の実施形態》  << Other Embodiments >>
上記実施形態 1乃至 6は、以下のような構成であってもよい。  Embodiments 1 to 6 may have the following configuration.
[0036] 複合光学素子の一例として複合レンズを例に挙げたが、複合光学素子は複合レン ズに限定されることはなぐ複合ミラーであってもよい。複合光学素子が複合ミラーで ある場合には、光学機能表面は反射面であればよい。  [0036] Although a composite lens has been described as an example of a composite optical element, the composite optical element may be a composite mirror without being limited to a composite lens. When the composite optical element is a composite mirror, the optical functional surface may be a reflective surface.
[0037] 第 1光学部のレンズ面は非球面であるとした力 上記実施形態 3および 4のように平 面であってもよいし、球面、円筒面、楕球面およびトーリック面であってもよい。  [0037] The force that the lens surface of the first optical unit is aspherical may be a flat surface as in Embodiments 3 and 4, or may be a spherical surface, a cylindrical surface, an elliptical surface, and a toric surface. Good.
[0038] 第 1光学部は、プレス成形法により成形されたものに限定されず、エッチングにより 成形されたものであってもよぐ射出成形により成形されたものであっても良い。  [0038] The first optical part is not limited to one formed by a press molding method, and may be one formed by etching or one formed by injection molding.
[0039] 第 1光学部のレンズ面および第 2光学部のレンズ面には、それぞれ、一種類の凹凸 面部が形成されているとしたが、複数種の凹凸面部が形成されていてもよい。  [0039] Although the lens surface of the first optical unit and the lens surface of the second optical unit are each formed with one type of uneven surface portion, multiple types of uneven surface portions may be formed.
[0040] 第 2光学部のレンズ面には第 3の光学部が接合されて 、てもよ 、。そして、その第 3 の光学部のレンズ面 (接合面とは反対側の部分)には、第 3の凹凸面部が形成されて 、ることが好まし!/、。  [0040] The third optical unit may be bonded to the lens surface of the second optical unit. It is preferable that a third uneven surface portion is formed on the lens surface of the third optical portion (the portion on the side opposite to the cemented surface)! /.
[0041] 第 1光学部の 2つのレンズ面のうち一方のレンズ面に第 2光学部が接合されている としたが、他方のレンズ面にも第 4の光学部が接合されていてもよい。この場合、第 4 の光学部のレンズ面 (接合面とは反対側の部分)には、第 4の凹凸面部が形成されて 、ることが好まし!/、。 [0041] Although the second optical unit is bonded to one of the two lens surfaces of the first optical unit, the fourth optical unit may be bonded to the other lens surface. . In this case, the fourth concavo-convex surface portion is formed on the lens surface of the fourth optical portion (the portion opposite to the cemented surface). I prefer to do that!
[0042] 上記実施形態 3乃至 6において、上記実施形態 2のように、第 1凹凸面部が第 1光 学部のレンズ面の光軸周囲よりも周縁に存在していて、第 2凹凸面部が第 2光学部 のレンズ面の光軸周囲に存在して 、てもよ 、。  [0042] In Embodiments 3 to 6, as in Embodiment 2 above, the first uneven surface portion is present at the periphery of the optical axis of the lens surface of the first optical portion, and the second uneven surface portion is the first uneven surface portion. 2 It exists around the optical axis of the lens surface of the optical part.
[0043] 第 1凹凸面部が回折部ならば第 2凹凸面部も回折部であるとしたが、例えば、第 1 凹凸面部が回折部で第 2凹凸面部がレンズアレイ部であってもよい。  [0043] Although the second uneven surface portion is also a diffractive portion if the first uneven surface portion is a diffractive portion, for example, the first uneven surface portion may be a diffractive portion and the second uneven surface portion may be a lens array portion.
産業上の利用可能性  Industrial applicability
[0044] 以上説明したように、本発明は、光ディスク記録再生装置に搭載可能であり、それ 以外にも、撮像装置 (デジタルスチルカメラやデジタルビデオカメラ等)や表示装置 ( プロジェクタ一等)〖こも搭載可能である。 As described above, the present invention can be mounted on an optical disc recording / reproducing apparatus, and in addition, an image pickup apparatus (digital still camera, digital video camera, etc.) and a display apparatus (projector, etc.) It can be installed.

Claims

請求の範囲 The scope of the claims
[1] 第 1光学機能表面を有し、ガラスからなる第 1光学部と、  [1] a first optical part having a first optical functional surface and made of glass;
前記第 1光学機能表面において前記第 1光学部に接合され、ガラスからなる第 2光 学部とを備え、  A second optical part made of glass and bonded to the first optical part on the first optical functional surface;
前記第 2光学部は、当該第 2光学部が前記第 1光学部に接合された接合面と、該 接合面とは反対側に存する第 2光学機能表面とを有しており、  The second optical unit has a bonding surface where the second optical unit is bonded to the first optical unit, and a second optical functional surface existing on the opposite side of the bonding surface,
前記第 1光学機能表面の少なくとも一部には第 1凹凸面部が存在しており、 前記第 2光学機能表面の少なくとも一部には第 2凹凸面部が存在していることを特 徴とする複合光学素子。  A first uneven surface portion is present on at least a portion of the first optical functional surface, and a second uneven surface portion is present on at least a portion of the second optical functional surface. Optical element.
[2] 前記第 1光学部は、第 1ガラスからなり、 [2] The first optical unit is made of a first glass,
前記第 2光学部は、第 2ガラスからなり、  The second optical part is made of a second glass,
前記第 1ガラスのガラス軟ィ匕温度は、前記第 2ガラスのガラス軟ィ匕温度よりも高 、こ とを特徴とする請求項 1に記載の複合光学素子。  2. The composite optical element according to claim 1, wherein the glass softening temperature of the first glass is higher than the glass softening temperature of the second glass.
[3] 前記第 1および前記第 2凹凸面部はそれぞれ、回折部、複数の凹状または凸状レ ンズ面力 なるレンズアレイ部、位相段差部および光反射防止部のうちの少なくとも 一つであることを特徴とする請求項 1に記載の複合光学素子。 [3] Each of the first and second concavo-convex surface portions is at least one of a diffractive portion, a lens array portion having a plurality of concave or convex lens surface forces, a phase step portion, and a light reflection preventing portion. The composite optical element according to claim 1, wherein:
PCT/JP2007/059924 2006-05-16 2007-05-15 Composite optical device WO2007132834A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-136514 2006-05-16
JP2006136514 2006-05-16

Publications (1)

Publication Number Publication Date
WO2007132834A1 true WO2007132834A1 (en) 2007-11-22

Family

ID=38693924

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/059924 WO2007132834A1 (en) 2006-05-16 2007-05-15 Composite optical device

Country Status (1)

Country Link
WO (1) WO2007132834A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018208724A1 (en) * 2017-05-08 2018-11-15 Sightglass Vision, Inc. Contact lenses for reducing myopia and methods for making the same
US10884264B2 (en) 2018-01-30 2021-01-05 Sightglass Vision, Inc. Ophthalmic lenses with light scattering for treating myopia
US11493781B2 (en) 2008-12-22 2022-11-08 The Medical College Of Wisconsin, Inc. Method and apparatus for limiting growth of eye length
US11543681B2 (en) 2016-08-01 2023-01-03 University Of Washington Ophthalmic lenses for treating myopia

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0375231A (en) * 1990-08-02 1991-03-29 Canon Inc Synthetic optical element
JP2004240417A (en) * 2003-01-14 2004-08-26 Nikon Corp Optical element and manufacturing method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0375231A (en) * 1990-08-02 1991-03-29 Canon Inc Synthetic optical element
JP2004240417A (en) * 2003-01-14 2004-08-26 Nikon Corp Optical element and manufacturing method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11493781B2 (en) 2008-12-22 2022-11-08 The Medical College Of Wisconsin, Inc. Method and apparatus for limiting growth of eye length
US11543681B2 (en) 2016-08-01 2023-01-03 University Of Washington Ophthalmic lenses for treating myopia
WO2018208724A1 (en) * 2017-05-08 2018-11-15 Sightglass Vision, Inc. Contact lenses for reducing myopia and methods for making the same
US11718052B2 (en) 2017-05-08 2023-08-08 Sightglass Vision, Inc. Contact lenses for reducing myopia and methods for making the same
US10884264B2 (en) 2018-01-30 2021-01-05 Sightglass Vision, Inc. Ophthalmic lenses with light scattering for treating myopia
US11914228B2 (en) 2018-01-30 2024-02-27 Sightglass Vision, Inc. Ophthalmic lenses with light scattering for treating myopia

Similar Documents

Publication Publication Date Title
JP5147693B2 (en) Compound optical element
JP4210265B2 (en) Hybrid lens manufacturing method
US20060077795A1 (en) Objective optical system for optical recording media and optical pickup device using it
JP4287428B2 (en) Hybrid lens unit and hybrid lens array
JP4672058B2 (en) Compound optical element
JP5159621B2 (en) Compound lens and manufacturing method thereof
JP2004163960A (en) Planar lens and method of manufacturing the same
JP5147694B2 (en) Compound optical element
US20030231536A1 (en) Objective lens and optical pickup apparatus, information recording/reproducing apparatus
WO2007132834A1 (en) Composite optical device
WO2007040235A1 (en) Objective lens unit and optical pickup device
JPWO2007145116A1 (en) Composite optical element and manufacturing method thereof
JP2008203580A (en) Compound optical element
JP2002131511A (en) Optical element and method for manufacturing the same
US20050083586A1 (en) Complex optical element and method for manufacturing thereof
EP1164583A2 (en) Complex objective lens and method for manufacturing the same and optical pickup device and optical recording / reproducing apparatus
JP2007310000A (en) Compound optical element
WO2007132833A1 (en) Composite lens and method of producing the same
WO2007145119A1 (en) Composite optical device
JP2004020905A (en) Manufacturing method of optical part
JP2008151836A (en) Optical element
JPH1139703A (en) Hologram laser unit and dual-focus optical pickup device
JP2003217195A (en) Method for manufacturing optical recording medium and manufacturing apparatus thereof
JP2008145736A (en) Composite optical element
JP2012243377A (en) Optical element and optical head device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07743359

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07743359

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP