WO2007132051A1 - Material with fullerene-type structure, production method and applications thereof - Google Patents

Material with fullerene-type structure, production method and applications thereof Download PDF

Info

Publication number
WO2007132051A1
WO2007132051A1 PCT/ES2007/070090 ES2007070090W WO2007132051A1 WO 2007132051 A1 WO2007132051 A1 WO 2007132051A1 ES 2007070090 W ES2007070090 W ES 2007070090W WO 2007132051 A1 WO2007132051 A1 WO 2007132051A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon
substrate
precursor compound
nitrogen
noble gas
Prior art date
Application number
PCT/ES2007/070090
Other languages
Spanish (es)
French (fr)
Inventor
Manuel Camero Hernanz
Josephus Gerardus Buijnsters
Angel LANDA CÁNOVAS
Ignacio Jimenez Guerrero
Cristina GOMEZ-ALEIXANDRE FERNÁNDEZ
Raul GAGO FERNÁNDEZ
Original Assignee
Consejo Superior De Investigaciones Científicas
Universidad Autónoma de Madrid
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior De Investigaciones Científicas, Universidad Autónoma de Madrid filed Critical Consejo Superior De Investigaciones Científicas
Publication of WO2007132051A1 publication Critical patent/WO2007132051A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/152Fullerenes
    • C01B32/154Preparation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/511Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using microwave discharges

Definitions

  • the present invention falls within the Materials Technology sector, for its application in the Mechanical Technology sectors, both in the metal-mechanical transformation industry, and in mechanical devices that require low friction and wear and in Information Technology as magnetic media coating.
  • the state of the art regarding carbon-based coatings comprises, on the one hand, classic diamond-type or DLC (diamond-like carbon) carbon coatings, which consist of a mixture of carbon atoms with trigonal and tetragonal coordination associated with their hybridizations sp 2 and sp 3 , respectively, with a certain content of hydrogen atoms that saturate free bonds of carbon atoms.
  • classic diamond-type or DLC diamond-like carbon
  • PVD physical vapor deposition
  • PLD pulsed laser deposition
  • AJCA modified arc methods
  • An object of the invention is a material with a carbon-like structure in the form of a carbon coating, hereinafter, the fulerene material of the invention, consisting of carbon with partially hydrogenated sp 2 hybridization to an atomic content of 35%, preferably between 5 and 35%.
  • a particular object is the rubber material of the invention which also comprises nitrogen to an atomic content of 35%.
  • Another object of the invention is a method for manufacturing the fullerene material of the invention on a substrate at low temperature, between 25 and 300 0 C, using the technique of chemical vapor deposition assisted by plasma (PACVD), containing in Its sine is highly energetic ions and because it comprises the following stages: i) supply of the starting gases in the reactor at room temperature in a flow ratio "carbon precursor compound / activating gas" between 0.05 and 1 until reaching a pressure comprised between 10 ⁇ 4 and 50 Torr, ii) a decomposition reaction from a mixture of the carbon precursor compound, preferably a hydrocarbon, and a noble gas by applying an electromagnetic field, the frequency of which may vary in the 5 MHz range and 25 GHz, which produces the excitation of the noble gas as well as the activation, dissociation and ionization of the carbon precursor compound, and iü) a External energy supply to the carbon ions produced by ionization of the carbon precursor compound with energy values in the range 50-300 eV.
  • PSVD chemical
  • step i) is carried out by a mixture of a carbon precursor compound, a noble gas and a nitrogen precursor.
  • Another particular object is the process of the invention where the carbon precursor compound is select among different hydrocarbons, such as: methane, ethylene and acetylene; where noble gas is selected from argon and neon; and where the nitrogen precursor is selected from molecular nitrogen or ammonia.
  • the energy supply of iii) is carried out by applying an electric polarization voltage to the substrate containing at least a temporary fraction of negative polarization, or by the incidence of laser radiation in the visible range-UV.
  • the object of the invention is the use of the process of the invention for the manufacture of materials, for example, mechanical, optical devices, magnetic media, aircraft wings, glasses and plastics or photodetectors.
  • the present invention is based on the fact that the inventors have observed that it is possible to obtain a material of the fulerene-like structure (FL) composed of carbon or partially hydrogenated carbon nitride, more specifically, composed mostly of carbon, with a moderate content between 5- 35% hydrogen, which gives them friction and wear properties that are not very dependent on atmospheric conditions, with a constant wear coefficient value of less than 5 x ICT 7 mm 3 / Nm over the entire range of relative humidity (Example 1 and 2).
  • this material with a fulerene-like structure consists of carbon atoms with sp 2 hybridization partially hydrogenated, which produces the curvature of the formed graffiti planes.
  • they may contain nitrogen up to a maximum atomic percentage of 35% (Example 2).
  • DLC diamond-type carbon
  • the preparation method is particularly suitable for the growth of these layers due to the low temperature required, thus being compatible with a wide range of substrates and technological processes, and because it allows the homogeneous coating of three-dimensional pieces due to their non-directional character.
  • an object of the invention is constituted by a material with a fleece-like structure in the form of a carbon coating, hereinafter referred to as a fleeting material of the invention, consisting of carbon with sp 2 hybridization partially hydrogenated to an atomic content of 35%, preferably between 5 and 35%.
  • a particular object is the rubber material of the invention which also comprises nitrogen to an atomic content of 35%.
  • the present invention relates to a process for manufacturing the material of the invention in the form of continuous and uniform coatings, by means of the plasma-assisted vapor deposition (CVD) technique (PACVD), keeping the substrate at low temperature, between 25 and 300 0 C, containing highly energetic ions, of at least 50 eV.
  • CVD plasma-assisted vapor deposition
  • PSVD plasma-assisted vapor deposition
  • the process of the invention consists in carrying out a decomposition or dissociation reaction of a precursor or supplier gas. of carbon atoms, for example a hydrocarbon, in a reaction chamber by applying an alternating electromagnetic field frequently in the range 5 MHz and 25 GHz, which results in the formation of a plasma.
  • plasma formed by electrons, ions and neutral species is formed.
  • the excitation of the noble gas takes place as well as the activation, dissociation and ionization of the hydrocarbon (and the excitation and dissociation of the nitrogen source in the case of carbon nitrides, see Example 2).
  • the activation and subsequent dissociation and ionization of the hydrocarbon can occur either by collision of the hydrocarbon molecules with electrons present in the plasma or by inelastic collision with the excited activating species of the noble gas.
  • the noble gas argon or neon
  • the nitrogen atom supply gas molecular nitrogen or ammonia
  • the nitrogen atom supply gas molecular nitrogen or ammonia
  • the starting gases are fed into the reactor at room temperature in a "Hydrocarbon / activating gas" flow rate between 0.05 and 10 until reaching a pressure between 10 ⁇ 4 and 50 Torr.
  • the working pressure depends on the type of precursor gas and the frequency of the electromagnetic field used to generate the plasma and can be adapted for each case by a person skilled in the art.
  • an essential element of this invention is the method of supplying energy to the carbon ions produced by hydrocarbon ionization.
  • the value of the threshold bias voltage necessary for the stabilization of the FL layers depends on both the specific synthesis conditions and the type of precursor gases, working pressure, etc.
  • plasma confinement occurs in the vicinity of the surface of the substrate to be coated. This fact favors the supply and transport of mass towards the surface of the substrate where the formation of the FL layer takes place, thus favoring the deposition process.
  • a mixture of a hydrocarbon (methane, ethylene, acetylene, or others) can be used as a supplier of carbon atoms and a noble gas (argon, neon, or others) as a diluent and activating gas.
  • a nitrogen atom supply gas molecular nitrogen or ammonia
  • the manufacturing method described in the present invention based on CVD techniques, has great advantages over PVD techniques because it allows deposits at quite high speeds and allows three-dimensional pieces to be homogeneously coated.
  • CVD techniques have been used to obtain carbon-based materials such as: (i) dense layers of diamond-type carbon (DLC), (ii) isolated carbon nanostructures, grown around catalyst metal particles (11, 12) and (iii) carbon powder with a fulerene type structure (13).
  • DLC diamond-type carbon
  • isolated carbon nanostructures grown around catalyst metal particles (11, 12)
  • carbon powder with a fulerene type structure 13
  • another object of the invention is a method for manufacturing the fullerene material of the invention on a substrate at low temperature, between 25 and 300 0 C, using the technique of chemical vapor deposition assisted by plasma (PACVD ), containing within it highly energy ions and because it comprises the following steps: i) supply of the starting gases in the reactor at room temperature in a ratio of "carbon precursor compound / activating gas" flows between 0.05 and 1 to achieve a pressure between 10 ⁇ 4 and 50 Torr, ii) a decomposition reaction from a mixture of the carbon precursor compound, preferably a hydrocarbon, and a noble gas by applying an electromagnetic field, the frequency of which may vary in the 5 MHz and 25 GHz range, which produces the excitation of the noble gas as well as the activation, dissociation and ionization of the carbon precursor compound, and iii) an external energy supply to the carbon ions produced by ionization of the carbon precursor compound with energy values in the range 50-300 eV.
  • PSVD chemical vapor deposition
  • the relationship between flows established in the present invention, between 0.05 and 1, is a reflection of the general conditions for this type of reactions between these gases, with at least one activating gas molecule for each carbon precursor gas molecule.
  • frequencies between a minimum of 5 MHz and 25 GHz can be included, reflecting the range of frequencies in which it is possible to achieve the dissociation and excitation of gases.
  • the 13.56 MHz and 2.45 GHz ISM bands are considered optimal for the application in the production of the material of the invention.
  • step i) is carried out by a mixture of a carbon precursor compound, a noble gas and a nitrogen precursor.
  • carbon precursor compound is selected from different hydrocarbons, such as: methane, ethylene and acetylene; where noble gas is selected from argon and neon; and where the nitrogen precursor is selected from molecular nitrogen or ammonia.
  • Another particular object is the process of the invention where the energy supply of iii) is carried out by applying an electric polarization voltage to the substrate containing at least a temporary fraction of negative polarization, or by the incidence of laser radiation in the visible range-UV.
  • Another particular object is the process of the invention where the energy supply of iii) for a conductive substrate is carried out by applying a continuous negative voltage to the substrate during the layer preparation process.
  • Another particular object is the process of the invention where the energy supply of iii) for an insulating substrate is carried out by applying an alternating voltage with a negative polarization component, a pulsed source with negative voltage pulses, or by visible-UV lighting.
  • the object of the invention is the use of the process of the invention for the manufacture of materials, for example, mechanical, optical devices, magnetic media, aircraft wings, glasses and plastics or photodetectors.
  • Figure 1 Diagram of a PACVD reactor for the preparation of carbon-type (FL) carbon layers.
  • Figure 2. Image of transmission electron microscopy (HRTEM) of a carbon layer with FL structure of the material of the invention.
  • Figure 3. XANES spectra of the coating of the material of the invention.
  • the XANES spectra of the coating of the FL structure material of the invention obtained with the appropriate energy of the carbon ions are shown, compared to the spectrum of a conventional hydrogenated carbon layer without FL structure (not FL) obtained with carbon ions of insufficient energy to achieve the FL structure.
  • the spectrum of the C60 fulerene is shown as a reference for the spectral characteristics.
  • Figure 4. Tribological properties (coefficients of friction and wear) of carbon coatings with FL structure compared to conventional carbon layers.
  • the wear coefficient (abrasion resistance) and friction coefficient values for a series of partially hydrogenated carbon coatings produced with different carbon ion energy are shown.
  • the tribological benefits of the coatings with FL structure object of this invention are perfectly distinguished, compared to those of conventional hydrogenated coatings without FL structure.
  • Figure 5 Image of transmission electron microscopy (HRTEM) of a layer of carbon nitride with FL structure.
  • Example 1 Manufacture of the carbon layers with FL structure of the invention.
  • a carbon film with a FL-like structure and with a carbon content of 20% (atomic percentage) has been synthesized.
  • a chemical vapor deposition equipment assisted by electron cyclotron resonance plasma (ECR-CVD) has been used ( Figure 1).
  • This equipment comprises, at least, an alternating current source with excitation frequency between 10 MHz and 2.45 GHz capable of activating the molecules or atoms present, a reaction chamber with controlled pressure in the range of 10 ⁇ 4 to 50 Torr, where the dissociation and ionization of the hydrocarbon and a substrate holder are placed where the piece to be coated is placed, with easy access for the application of the energy input method to the ionic species present in the plasma.
  • methane hydrocarbon as carbon precursor gas in the film
  • noble gas Argon as diluent and activating gas for hydrocarbon decomposition.
  • the working pressure used was ICT 3 mbar, using an electromagnetic field at a frequency of 2.45 GHz with a plasma power of 200 W.
  • the ratio of CH 4 / Ar flows, used in the synthesis of FL carbon was 0, 43
  • the threshold energy of the plasma ions necessary to achieve stabilization of the FL structure was 100 eV, and it is important to note that this value varies with the ratio of gas flows used.
  • heating is not necessary, so the maximum temperature recorded during the process was always lower than 12O 0 C.
  • the composition, nanostructure and bond structure of the FL carbon films were analyzed using characterization techniques such as ion detection (ERDA), high resolution transmission electron microscopy (HRTEM) and X-ray absorption (XANES).
  • ERDA ion detection
  • HRTEM high resolution transmission electron microscopy
  • XANES X-ray absorption
  • the ERDA analysis of the films showed an atomic percentage of hydrogen below 35% while in films without FL structure this concentration is usually higher than 40%.
  • the nanostructure of the material analyzed by HRTEM indicated the presence of carbon atoms grouped in curved graffiti planes ( Figure 2), confirming the formation of carbon films with a structure similar to that presented by the fulerene molecule, where the curvature is observed from the surface planes of the tank, and where the denomination of carbon-type carbon films (FL) is derived.
  • XANES spectroscopy Figure 3 indicates that FL carbon films show typical spectral characteristics of C60 fulerene, absent in films without FL structure.
  • the mechanical and tribological properties of the material obtained were studied by nanoindentation and pin-on-disk tests (using a WC / Co-6% hard metal ball on the coating), respectively. Young's hardness and modulus of the films with FL structure were 20 GPa and 150 GPa, while in films without FL structure they took values of 2 GPa and 20 GPa, respectively.
  • the tribological properties of friction and abrasion resistance are shown in Figure 4 for a series of samples of materials without FL structure and with FL structure. A clear transition in the tribological properties was observed as a function of the energy of the ions.
  • Example 2 Manufacture of carbon nitride layers with FL structure.
  • a third gas was added as a source of nitrogen to the hydrocarbon / noble gas mixture to obtain carbon nitride coatings.
  • the C: N: H layers with FL structure were deposited in a CVD reactor with electron cyclotron resonance (ECR-CVD) using as an excitation source an electromagnetic field at a frequency of 2.45 GHz with a power of 210 W.
  • ECR-CVD electron cyclotron resonance
  • a bias voltage was applied to the substrate of -200 V to achieve stabilization of the FL structure, a value that depends on the specific conditions of the gas mixture Under these conditions, the growth rate of the layers was 0.14 nm / s and the temperature remained below 14O 0 C.
  • Example 2 there is a threshold energy of the ions to achieve stabilization of the FL phase.
  • the fulerene nanostructure is shown in the HRTEM photograph of Figure 5.
  • the mechanical and tribological properties also improved substantially when the formation of the FL structure was achieved.

Abstract

The invention describes a carbon-based material with fullerene-type structure and more specifically consists of sp2 hybridization carbon partially hydrogenated up to an atomic content of 35%, preferably between 5 and 35%. The method for producing it is performed on a substrate at low temperature – between 25 and 300°C – using the plasma-assisted chemical vapour deposition (PACVD) technique, containing, within it, highly energized ions and applicable to non-heat-resistant materials covering a wide range of applications. These materials are useful for the production of, for example, mechanical or optical devices, magnetic means, aircraft wings, glasses and plastics or photodetectors.

Description

TÍ TULOTITLE
MATERIAL CON ESTRUCTURA TIPO FULERENO, PROCEDIMIENTO DEFULERENE TYPE STRUCTURE MATERIAL, PROCEDURE FOR
FABRICACIÓN Y SUS APLICACIONESMANUFACTURE AND ITS APPLICATIONS
SECTOR DE LA TÉCNICASECTOR OF THE TECHNIQUE
La presente invención se encuadra dentro del sector de Tecnología de Materiales, para su aplicación en los sectores de Tecnologías Mecánicas, tanto en la industria de transformación metal-mecánica, como en dispositivos mecánicos que requieran baja fricción y desgaste y en Tecnologías de la Información como recubrimiento de soportes magnéticos.The present invention falls within the Materials Technology sector, for its application in the Mechanical Technology sectors, both in the metal-mechanical transformation industry, and in mechanical devices that require low friction and wear and in Information Technology as magnetic media coating.
ESTADO DE LA TÉCNICA:STATE OF THE TECHNIQUE:
El estado de la técnica respecto a los recubrimientos basados en carbono comprende por un lado los recubrimientos de carbono tipo diamante clásicos o DLC (diamond-like carbón), que consisten en una mezcla de átomos de carbono con coordinación trigonal y tetragonal asociada a sus hibridaciones sp2 y sp3, respectivamente, con un cierto contenido de átomos de hidrógeno que saturan enlaces libres de los átomos carbono. Las propiedades físicas de este tipo de recubrimientos se asocian directamente a la fracción sp2/sp3 en las películas, siendo aquellas con altos contenidos de enlaces sp3, característicos de la estructura del diamante, los que muestran mejores propiedades mecánicas (dureza superior a 10 GPa, coeficiente de desgaste inferior a ICT6 mm3/Nm) y de transparencia óptica en el ultravioleta-visible-infrarrojo . Sin embargo, los recubrimientos con altos contenidos de enlaces sp2, típicos del grafito presentan peores propiedades mecánicas (dureza inferior a 10 GPa) y ópticas. Respecto al comportamiento tribológico en distinto tipo de atmósfera, es conocido que los recubrimientos DLC que no contienen hidrógeno muestran mejores características de fricción y desgaste en atmósfera húmeda, mientras que las capas DLC hidrogenadas presentan un mejor comportamiento en atmósfera seca. Existen numerosos artículos y patentes referidas a las capas convencionales de carbono tipo diamante (DLC) y a sus propiedades resistentes a la abrasión para su aplicación sobre sustratos ópticos (1), medios magnéticos (2), alas de aviones (3), vidrios y plásticos (4), o fotodetectores (5).The state of the art regarding carbon-based coatings comprises, on the one hand, classic diamond-type or DLC (diamond-like carbon) carbon coatings, which consist of a mixture of carbon atoms with trigonal and tetragonal coordination associated with their hybridizations sp 2 and sp 3 , respectively, with a certain content of hydrogen atoms that saturate free bonds of carbon atoms. The physical properties of this type of coatings are directly associated with the sp 2 / sp 3 fraction in the films, being those with high contents of sp 3 bonds, characteristic of the structure of the diamond, which show better mechanical properties (hardness greater than 10 GPa, wear coefficient lower than ICT 6 mm 3 / Nm) and optical transparency in ultraviolet-visible-infrared. However, coatings with high contents of sp 2 bonds, typical of graphite have worse mechanical properties (hardness less than 10 GPa) and optical. Regarding the tribological behavior in different types of atmosphere, it is known that DLC coatings that do not contain hydrogen show better friction characteristics and wear in a humid atmosphere, while hydrogenated DLC layers have a better performance in a dry atmosphere. There are numerous articles and patents referring to conventional diamond carbon (DLC) layers and their abrasion resistant properties for application on optical substrates (1), magnetic media (2), aircraft wings (3), glass and plastics (4), or photodetectors (5).
Por otro lado, desde los años 90, es conocido un nuevo tipo de recubrimientos con estructura tipo fulereno (FL) basados en nitruro de carbono (CNx) (6) y carbono (C) (7), que no contienen hidrógeno en su estructura. La mejora en las propiedades tribomecá nicas de las capas FL no está relacionada con la presencia de una fracción elevada de híbridos sp3 de carbono, sino con la curvatura y entrecruzamiento de los planos básales de carbono con hibridación sp2. Los recubrimientos FL son amorfos, combinando orden tipo fulereno a corto alcance con falta de orden cristalino a largo alcance. Estos materiales siempre se han sintetizado mediante técnicas físicas de depósito en fase vapor o PVD (physical vapor deposition) , que requieren temperaturas elevadas del sustrato, del orden de 45O0C (8). Entre las técnicas físicas más utilizadas, es interesante mencionar: pulverización catódica (sputtering) , depósito por láser pulsado (PLD: pulsed láser deposition) (9) y métodos de arco modificado (AJCA: Anodic Jet Carbón Are method) (10). Estos métodos PVD de síntesis son complejos y muy direccionales, por lo que no resulta fácil su aplicación práctica sobre grandes superficies planas, ni sobre piezas tridimensionales con formas complejas.On the other hand, since the 1990s, a new type of coatings with a structure of the fulerene type (FL) based on carbon nitride (CN x ) (6) and carbon (C) (7), which do not contain hydrogen in their structure. The improvement in the tribomechanical properties of the FL layers is not related to the presence of a high fraction of sp 3 carbon hybrids, but to the curvature and cross-linking of the basal carbon planes with sp 2 hybridization. FL coatings are amorphous, combining short-range fulerene type order with long-range lack of crystalline order. These materials have always been synthesized by physical vapor deposition techniques or PVD (physical vapor deposition), which require high substrate temperatures, of the order of 45O 0 C (8). Among the most commonly used physical techniques, it is interesting to mention: sputtering, sputtered laser deposition (PLD: pulsed laser deposition) (9) and modified arc methods (AJCA: Anodic Jet Carbon Are method) (10). These PVD methods of synthesis are complex and very directional, so it is not easy to apply them on large flat surfaces, or on three-dimensional pieces with complex shapes.
DESCRIPCIÓN DE LA INVENCIÓN Descripción BreveDESCRIPTION OF THE INVENTION Brief Description
Un objeto de la invención lo constituye un material con estructura tipo fulereno en forma de recubrimiento de carbono, en adelante material fulereno de la invención, que consiste en carbono con hibridación sp2 parcialmente hidrogenado hasta un contenido atómico del 35%, preferentemente entre un 5 y 35%.An object of the invention is a material with a carbon-like structure in the form of a carbon coating, hereinafter, the fulerene material of the invention, consisting of carbon with partially hydrogenated sp 2 hybridization to an atomic content of 35%, preferably between 5 and 35%.
Un objeto particular lo constituye el material fulereno de la invención que comprende adema s nitrógeno hasta un contenido atómico del 35%.A particular object is the rubber material of the invention which also comprises nitrogen to an atomic content of 35%.
Otro objeto de la invención lo constituye un procedimiento para la fabricación del material fulereno de la invención sobre un sustrato a baja temperatura, entre 25 y 3000C, mediante la técnica de deposición química en fase vapor asistida por plasma (PACVD) , conteniendo en su seno iones altamente energéticos y porque comprende las siguientes etapas : i) alimentación de los gases de partida en el reactor a temperatura ambiente en una relación de flujos "compuesto precursor de carbono/gas activante" comprendida entre 0.05 y 1 hasta alcanzar una presión comprendida entre 10~4 y 50 Torr, ii) una reacción de descomposición a partir de una mezcla del compuesto precursor del carbono, preferentemente un hidrocarburo, y un gas noble mediante la aplicación de un campo electromagnético, cuya frecuencia puede variar en el rango 5 MHz y 25 GHz, que produce la excitación del gas noble asi como la activación, disociación e ionización del compuesto precursor del carbono, y iü) un suministro de energía exterior a los iones carbonados producidos por ionización del compuesto precursor de carbono con valores de energía en el rango 50-300 eV.Another object of the invention is a method for manufacturing the fullerene material of the invention on a substrate at low temperature, between 25 and 300 0 C, using the technique of chemical vapor deposition assisted by plasma (PACVD), containing in Its sine is highly energetic ions and because it comprises the following stages: i) supply of the starting gases in the reactor at room temperature in a flow ratio "carbon precursor compound / activating gas" between 0.05 and 1 until reaching a pressure comprised between 10 ~ 4 and 50 Torr, ii) a decomposition reaction from a mixture of the carbon precursor compound, preferably a hydrocarbon, and a noble gas by applying an electromagnetic field, the frequency of which may vary in the 5 MHz range and 25 GHz, which produces the excitation of the noble gas as well as the activation, dissociation and ionization of the carbon precursor compound, and iü) a External energy supply to the carbon ions produced by ionization of the carbon precursor compound with energy values in the range 50-300 eV.
Otro objeto particular lo constituye el procedimiento de la invención donde la etapa i) se lleva a cabo mediante una mezcla de un compuesto precursor de carbono, un gas noble y un precursor de nitrógeno.Another particular object is the process of the invention where step i) is carried out by a mixture of a carbon precursor compound, a noble gas and a nitrogen precursor.
Otro objeto particular lo constituye el procedimiento de la invención donde el compuesto precursor de carbono se selecciona entre diferentes hidrocarburos, como por ejemplo: metano, etileno y acetileno; donde el gas noble se selecciona entre argón y neón; y donde el precursor de nitrógeno se selecciona entre nitrógeno molecular o amoniaco. Otro objeto particular lo constituye el procedimiento de la invención donde el suministro de energía de iii) se realiza mediante la aplicación de un voltaje eléctrico de polarización al sustrato que contenga al menos una fracción temporal de polarización negativa, o mediante la incidencia de radiación láser en el rango visible-UV.Another particular object is the process of the invention where the carbon precursor compound is select among different hydrocarbons, such as: methane, ethylene and acetylene; where noble gas is selected from argon and neon; and where the nitrogen precursor is selected from molecular nitrogen or ammonia. Another particular object is the process of the invention where the energy supply of iii) is carried out by applying an electric polarization voltage to the substrate containing at least a temporary fraction of negative polarization, or by the incidence of laser radiation in the visible range-UV.
Finalmente, objeto de la invención lo constituye el uso del procedimiento de la invención para la fabricación de materiales, por ejemplo, dispositivos mecánicos, ópticos, medios magnéticos, alas de aviones, vidrios y plásticos o fotodetectores .Finally, the object of the invention is the use of the process of the invention for the manufacture of materials, for example, mechanical, optical devices, magnetic media, aircraft wings, glasses and plastics or photodetectors.
Descripción DetalladaDetailed description
La presente invención se basa en que los inventores han observado que es posible obtener un material de estructura tipo fulereno (FL) compuesto por carbono o nitruro de carbono parcialmente hidrogenado, más concretamente, compuesto mayoritariamente por carbono, con un contenido moderado entre el 5-35% de hidrógeno, lo que les confiere unas propiedades de fricción y desgaste poco dependientes de las condiciones atmosféricas, con un valor del coeficiente de desgaste constante e inferior a 5 x ICT7 mm3/Nm en todo el rango de humedades relativas (Ejemplo 1 y 2).The present invention is based on the fact that the inventors have observed that it is possible to obtain a material of the fulerene-like structure (FL) composed of carbon or partially hydrogenated carbon nitride, more specifically, composed mostly of carbon, with a moderate content between 5- 35% hydrogen, which gives them friction and wear properties that are not very dependent on atmospheric conditions, with a constant wear coefficient value of less than 5 x ICT 7 mm 3 / Nm over the entire range of relative humidity (Example 1 and 2).
Además, este material con estructura tipo fulereno (FL) consiste en átomos de carbono con hibridación sp2 parcialmente hidrogenados, lo que produce la curvatura de los planos grafiticos formados. Opcionalmente, pueden contener nitrógeno hasta un porcentaje atómico máximo del 35% (Ejemplo 2). El interés del material de la invención reside en que son recubrimientos resistentes a la abrasión para cualquier valor de humedad relativa de la atmósfera porque reúne las ventajas de los recubrimientos de carbono tipo diamante (DLC) convencionales y de los nuevos materiales carbonaceos con estructura FL. Además, el método de preparación es particularmente apropiado para el crecimiento de estas capas por la baja temperatura requerida, siendo asi compatible con una amplia gama de sustratos y procesos tecnológicos, y porque permite el recubrimiento homogéneo de piezas tridimensionales debido a su carácter no direccional.In addition, this material with a fulerene-like structure (FL) consists of carbon atoms with sp 2 hybridization partially hydrogenated, which produces the curvature of the formed graffiti planes. Optionally, they may contain nitrogen up to a maximum atomic percentage of 35% (Example 2). The interest of the material of the invention resides in that they are abrasion resistant coatings for any relative humidity value of the atmosphere because it combines the advantages of conventional diamond-type carbon (DLC) coatings and new carbonaceous materials with FL structure. In addition, the preparation method is particularly suitable for the growth of these layers due to the low temperature required, thus being compatible with a wide range of substrates and technological processes, and because it allows the homogeneous coating of three-dimensional pieces due to their non-directional character.
Por tanto, un objeto de la invención lo constituye un material con estructura tipo fulereno en forma de recubrimiento de carbono, en adelante material fulereno de la invención, que consiste en carbono con hibridación sp2 parcialmente hidrogenado hasta un contenido atómico del 35%, preferentemente entre un 5 y 35%.Therefore, an object of the invention is constituted by a material with a fleece-like structure in the form of a carbon coating, hereinafter referred to as a fleeting material of the invention, consisting of carbon with sp 2 hybridization partially hydrogenated to an atomic content of 35%, preferably between 5 and 35%.
Un objeto particular lo constituye el material fulereno de la invención que comprende adema s nitrógeno hasta un contenido atómico del 35%.A particular object is the rubber material of the invention which also comprises nitrogen to an atomic content of 35%.
Por otro lado, la presente invención se refiere a un procedimiento de fabricación del material de la invención en forma de recubrimientos continuos y uniformes, mediante la técnica de deposición química en fase vapor (CVD) asistida por plasma (PACVD) , manteniendo el sustrato a baja temperatura, entre 25 y 3000C, conteniendo en su seno iones altamente energéticos, de al menos 50 eV. Para llevar a cabo dicho procedimiento se ha utilizado un equipo como el mostrado en la Figura 1. Má s concretamente, para la obtención de capas FL, el procedimiento de la invención consiste en efectuar una reacción de descomposición o disociación de un gas precursor o suministrador de los átomos de carbono, por ejemplo un hidrocarburo, en una cámara de reacción mediante la aplicación de un campo electromagnético alterno con frecuencia en el rango 5 MHz y 25 GHz, que da lugar a la formación de un plasma. Como resultado de este proceso se forma el plasma constituido por electrones, iones y especies neutras (átomos, moléculas y radicales) excitadas. Una vez formado el plasma se produce la excitación del gas noble asi como la activación, disociación e ionización del hidrocarburo (y la excitación y disociación de la fuente de nitrógeno en el caso de nitruros de carbono, ver Ejemplo 2). La activación y posterior disociación e ionización del hidrocarburo puede producirse bien por colisión de las moléculas de hidrocarburo con electrones presentes en el plasma o bien por colisión inelá stica con las especies activantes excitadas del gas noble. El gas noble (argón o neón) puede actuar como diluyente y como gas activante de las moléculas de hidrocarburo. Asi mismo, en el caso de la preparación de capas de nitruro de carbono, el gas suministrador de átomos de nitrógeno (nitrógeno molecular o amoniaco) puede actuar también como gas activante de las moléculas de hidrocarburo.On the other hand, the present invention relates to a process for manufacturing the material of the invention in the form of continuous and uniform coatings, by means of the plasma-assisted vapor deposition (CVD) technique (PACVD), keeping the substrate at low temperature, between 25 and 300 0 C, containing highly energetic ions, of at least 50 eV. To carry out said procedure, equipment such as that shown in Figure 1 has been used. More specifically, to obtain FL layers, the process of the invention consists in carrying out a decomposition or dissociation reaction of a precursor or supplier gas. of carbon atoms, for example a hydrocarbon, in a reaction chamber by applying an alternating electromagnetic field frequently in the range 5 MHz and 25 GHz, which results in the formation of a plasma. As a result of this process, plasma formed by electrons, ions and neutral species (atoms, molecules and radicals) is formed. Once the plasma is formed, the excitation of the noble gas takes place as well as the activation, dissociation and ionization of the hydrocarbon (and the excitation and dissociation of the nitrogen source in the case of carbon nitrides, see Example 2). The activation and subsequent dissociation and ionization of the hydrocarbon can occur either by collision of the hydrocarbon molecules with electrons present in the plasma or by inelastic collision with the excited activating species of the noble gas. The noble gas (argon or neon) can act as a diluent and as an activating gas for the hydrocarbon molecules. Likewise, in the case of the preparation of carbon nitride layers, the nitrogen atom supply gas (molecular nitrogen or ammonia) can also act as an activating gas for the hydrocarbon molecules.
Los gases de partida son alimentados en el reactor a temperatura ambiente en una relación de flujos "Hidrocarburo/gas activante" comprendida entre 0.05 y 10 hasta alcanzar una presión comprendida entre 10~4 y 50 Torr. La presión de trabajo depende del tipo de gas precursor y de la frecuencia del campo electromagnético empleado para generar el plasma y pueden ser adaptados para cada caso por un experto en la materia. Durante el proceso de preparación de las capas FL se requiere la presencia de iones altamente energéticos para que finalmente se formen las estructuras de carbono tipo fulereno sobre el sustrato. Por tanto, un elemento esencial de este invento es el método de suministro de energía a los iones carbonados producidos por ionización del hidrocarburo. Se puede utilizar diferentes sistemas para conseguir aumentar la energía de los iones carbonados como son la aplicación de un voltaje eléctrico de polarización al sustrato que contenga al menos una fracción temporal de polarización negativa, o la incidencia de radiación láser en el rango visible-UV. El método irá s eficiente para sustratos conductores es la aplicación de una tensión negativa continua al sustrato durante el proceso de preparación de las capas, ya que es homogéneo sobre todo el sustrato. Sobre sustratos aislantes es necesario aplicar una tensión alterna con una componente negativa de la polarización, una fuente pulsada con pulsos de voltaje negativos, o recurrir a la excitación mediante iluminación visible-UV. De esta forma, es posible conseguir iones con energía superior a 50 eV a partir de los generados en el plasma por ionización de las moléculas de hidrocarburo. La incidencia de estas especies iónicas carbonadas con energía elevada conduce a la formación de estructuras tipo fulereno en el depósito obtenido. El valor del voltaje de polarización umbral necesario para la estabilización de las capas FL depende tanto de las condiciones concretas de síntesis como del tipo de gases precursores, presión de trabajo, etc. En el caso de la aplicación de una tensión negativa al sustrato, también es importante señalar que adema s del aumento de la energía de los iones, se produce el confinamiento del plasma en las proximidades de la superficie del sustrato a recubrir. Este hecho favorece el suministro y transporte de masa hacia la superficie del sustrato donde tiene lugar la formación de la capa FL, favoreciendo asi el proceso de deposición.The starting gases are fed into the reactor at room temperature in a "Hydrocarbon / activating gas" flow rate between 0.05 and 10 until reaching a pressure between 10 ~ 4 and 50 Torr. The working pressure depends on the type of precursor gas and the frequency of the electromagnetic field used to generate the plasma and can be adapted for each case by a person skilled in the art. During the process of preparing the FL layers, the presence of highly energetic ions is required to finally form the carbon-type carbon structures on the substrate. Therefore, an essential element of this invention is the method of supplying energy to the carbon ions produced by hydrocarbon ionization. Be You can use different systems to increase the energy of the carbon ions, such as the application of an electric polarization voltage to the substrate that contains at least a temporary fraction of negative polarization, or the incidence of laser radiation in the visible-UV range. The method that will be efficient for conductive substrates is the application of a continuous negative tension to the substrate during the layer preparation process, since it is homogeneous over the entire substrate. On insulating substrates it is necessary to apply an alternating voltage with a negative polarization component, a pulsed source with negative voltage pulses, or resort to excitation by visible UV-illumination. In this way, it is possible to obtain ions with energy greater than 50 eV from those generated in the plasma by ionization of the hydrocarbon molecules. The incidence of these ionic species carbonated with high energy leads to the formation of fulerene type structures in the deposit obtained. The value of the threshold bias voltage necessary for the stabilization of the FL layers depends on both the specific synthesis conditions and the type of precursor gases, working pressure, etc. In the case of the application of a negative tension to the substrate, it is also important to note that in addition to the increase in ion energy, plasma confinement occurs in the vicinity of the surface of the substrate to be coated. This fact favors the supply and transport of mass towards the surface of the substrate where the formation of the FL layer takes place, thus favoring the deposition process.
Como fuente gaseosa se puede utilizar una mezcla de un hidrocarburo (metano, etileno, acetileno, u otros) como suministrador de átomos de carbono y un gas noble (argón, neón, u otros) como gas diluyente y activante. En el caso de recubrimientos conteniendo adema s nitrógeno en su estructura, es necesaria la adición de un gas suministrador de átomos de nitrógeno (nitrógeno molecular o amoniaco) a la mezcla gaseosa .As a gaseous source, a mixture of a hydrocarbon (methane, ethylene, acetylene, or others) can be used as a supplier of carbon atoms and a noble gas (argon, neon, or others) as a diluent and activating gas. In the case of coatings also containing nitrogen in its structure, the addition of a nitrogen atom supply gas (molecular nitrogen or ammonia) to the gas mixture is necessary.
Por otro lado, el método de fabricación descrito en la presente invención, basado en técnicas CVD tienes grandes ventajas frente a las técnicas PVD porque permite depósitos a velocidades bastante irá s altas y permite recubrir homogéneamente piezas tridimensionales. Hasta el momento, las técnicas CVD se han utilizado para obtener materiales carboná ceos como: (i) capas densas de carbono tipo diamante (DLC), (ii) nanoestructuras de carbono aisladas, crecidas en torno a partículas metálicas catalizadoras (11, 12) y (iii) polvo de carbono con estructura tipo fulereno (13). Sin embargo, hasta ahora nunca se habla logrado sintetizar capas continuas y densas con estructura tipo fulereno mediante técnicas CVD.On the other hand, the manufacturing method described in the present invention, based on CVD techniques, has great advantages over PVD techniques because it allows deposits at quite high speeds and allows three-dimensional pieces to be homogeneously coated. So far, CVD techniques have been used to obtain carbon-based materials such as: (i) dense layers of diamond-type carbon (DLC), (ii) isolated carbon nanostructures, grown around catalyst metal particles (11, 12) and (iii) carbon powder with a fulerene type structure (13). However, until now it has never been possible to synthesize continuous and dense layers with a fulerene structure using CVD techniques.
Por lo tanto, otro objeto de la invención lo constituye un procedimiento para la fabricación del material fulereno de la invención sobre un sustrato a baja temperatura, entre 25 y 3000C, mediante la técnica de deposición química en fase vapor asistida por plasma (PACVD) , conteniendo en su seno iones altamente energéticos y porque comprende las siguientes etapas : i) alimentación de los gases de partida en el reactor a temperatura ambiente en una relación de flujos "compuesto precursor de carbono/gas activante" comprendida entre 0.05 y 1 hasta alcanzar una presión comprendida entre 10~4 y 50 Torr, ii) una reacción de descomposición a partir de una mezcla del compuesto precursor del carbono, preferentemente un hidrocarburo, y un gas noble mediante la aplicación de un campo electromagnético, cuya frecuencia puede variar en el rango 5 MHz y 25 GHz, que produce la excitación del gas noble así como la activación, disociación e ionización del compuesto precursor del carbono, y iii) un suministro de energía exterior a los iones carbonados producidos por ionización del compuesto precursor de carbono con valores de energía en el rango 50-300 eV.Therefore, another object of the invention is a method for manufacturing the fullerene material of the invention on a substrate at low temperature, between 25 and 300 0 C, using the technique of chemical vapor deposition assisted by plasma (PACVD ), containing within it highly energy ions and because it comprises the following steps: i) supply of the starting gases in the reactor at room temperature in a ratio of "carbon precursor compound / activating gas" flows between 0.05 and 1 to achieve a pressure between 10 ~ 4 and 50 Torr, ii) a decomposition reaction from a mixture of the carbon precursor compound, preferably a hydrocarbon, and a noble gas by applying an electromagnetic field, the frequency of which may vary in the 5 MHz and 25 GHz range, which produces the excitation of the noble gas as well as the activation, dissociation and ionization of the carbon precursor compound, and iii) an external energy supply to the carbon ions produced by ionization of the carbon precursor compound with energy values in the range 50-300 eV.
La relación entre flujos establecida en la presente invención, entre 0.05 y 1, es reflejo de las condiciones generales para este tipo de reacciones entre estos gases, con al menos una molécula de gas activante por cada molécula de gas precursor de carbono.The relationship between flows established in the present invention, between 0.05 and 1, is a reflection of the general conditions for this type of reactions between these gases, with at least one activating gas molecule for each carbon precursor gas molecule.
En la aplicación del campo electromagnético del punto ii) se puede incluir frecuencias entre un mínimo de 5 MHz y 25 GHz, reflejo del rango de frecuencias en los que es posible conseguir la disociación y excitación de los gases. Preferentemente, se consideran las bandas ISM de 13,56 MHz y 2,45 GHz como las óptimas para la aplicación en la producción del material de la invención.In the application of the electromagnetic field of point ii) frequencies between a minimum of 5 MHz and 25 GHz can be included, reflecting the range of frequencies in which it is possible to achieve the dissociation and excitation of gases. Preferably, the 13.56 MHz and 2.45 GHz ISM bands are considered optimal for the application in the production of the material of the invention.
Otro objeto particular lo constituye el procedimiento de la invención donde la etapa i) se lleva a cabo mediante una mezcla de un compuesto precursor de carbono, un gas noble y un precursor de nitrógeno.Another particular object is the process of the invention where step i) is carried out by a mixture of a carbon precursor compound, a noble gas and a nitrogen precursor.
Otro objeto particular lo constituye el procedimiento de la invención donde el compuesto precursor de carbono se selecciona entre diferentes hidrocarburos, como por ejemplo: metano, etileno y acetileno; donde el gas noble se selecciona entre argón y neón; y donde el precursor de nitrógeno se selecciona entre nitrógeno molecular o amoniaco.Another particular object is the process of the invention where the carbon precursor compound is selected from different hydrocarbons, such as: methane, ethylene and acetylene; where noble gas is selected from argon and neon; and where the nitrogen precursor is selected from molecular nitrogen or ammonia.
Otro objeto particular lo constituye el procedimiento de la invención donde el suministro de energía de iii) se realiza mediante la aplicación de un voltaje eléctrico de polarización al sustrato que contenga al menos una fracción temporal de polarización negativa, o mediante la incidencia de radiación láser en el rango visible-UV. Otro objeto particular lo constituye el procedimiento de la invención donde el suministro de energía de iii) para un sustrato conductor se realiza mediante la aplicación de una tensión negativa continua al sustrato durante el proceso de preparación de las capas.Another particular object is the process of the invention where the energy supply of iii) is carried out by applying an electric polarization voltage to the substrate containing at least a temporary fraction of negative polarization, or by the incidence of laser radiation in the visible range-UV. Another particular object is the process of the invention where the energy supply of iii) for a conductive substrate is carried out by applying a continuous negative voltage to the substrate during the layer preparation process.
Otro objeto particular lo constituye el procedimiento de la invención donde el suministro de energía de iii) para un sustrato aislante se realiza mediante la aplicación de una tensión alterna con una componente negativa de la polarización, una fuente pulsada con pulsos de voltaje negativos, o mediante iluminación visible-UV.Another particular object is the process of the invention where the energy supply of iii) for an insulating substrate is carried out by applying an alternating voltage with a negative polarization component, a pulsed source with negative voltage pulses, or by visible-UV lighting.
Finalmente, objeto de la invención lo constituye el uso del procedimiento de la invención para la fabricación de materiales, por ejemplo, dispositivos mecánicos, ópticos, medios magnéticos, alas de aviones, vidrios y plásticos o fotodetectores .Finally, the object of the invention is the use of the process of the invention for the manufacture of materials, for example, mechanical, optical devices, magnetic media, aircraft wings, glasses and plastics or photodetectors.
DESCRIPCIÓN DE LAS FIGURASDESCRIPTION OF THE FIGURES
Figura 1.- Esquema de un reactor PACVD para la preparación de capas de carbono tipo fulereno (FL) .Figure 1.- Diagram of a PACVD reactor for the preparation of carbon-type (FL) carbon layers.
Figura 2.- Imagen de microscopía electrónica de transmisión (HRTEM) de un capa de carbono con estructura FL del material de la invención. Figura 3.- Espectros XANES del recubrimiento del material de la invención. Se muestran los espectros XANES del recubrimiento del material con estructura FL de la invención obtenido con la energía apropiada de los iones de carbono, comparado con el espectro de una capa de carbono hidrogenado convencional sin estructura FL (no FL) obtenida con iones de carbono de energía insuficiente para lograr la estructura FL. Además se muestra el espectro del fulereno C60 a modo de referencia para las características espectrales. Figura 4.- Propiedades tribológicas (coeficientes de fricción y desgaste) de recubrimientos de carbono con estructura FL comparados con las capas de carbono convencionales. Se muestran los valores del coeficiente de desgaste (resistencia a la abrasión) y del coeficiente de fricción para una serie de recubrimientos de carbono parcialmente hidrogenado producidos con distinta energía de los iones carbonados. Se distinguen perfectamente las prestaciones tribológicas de los recubrimientos con estructura FL objeto de esta invención, frente a las de los recubrimientos hidrogenados convencionales sin estructura FL.Figure 2.- Image of transmission electron microscopy (HRTEM) of a carbon layer with FL structure of the material of the invention. Figure 3.- XANES spectra of the coating of the material of the invention. The XANES spectra of the coating of the FL structure material of the invention obtained with the appropriate energy of the carbon ions are shown, compared to the spectrum of a conventional hydrogenated carbon layer without FL structure (not FL) obtained with carbon ions of insufficient energy to achieve the FL structure. In addition, the spectrum of the C60 fulerene is shown as a reference for the spectral characteristics. Figure 4.- Tribological properties (coefficients of friction and wear) of carbon coatings with FL structure compared to conventional carbon layers. The wear coefficient (abrasion resistance) and friction coefficient values for a series of partially hydrogenated carbon coatings produced with different carbon ion energy are shown. The tribological benefits of the coatings with FL structure object of this invention are perfectly distinguished, compared to those of conventional hydrogenated coatings without FL structure.
Figura 5.- Imagen de microscopía electrónica de transmisión (HRTEM) de un capa de nitruro de carbono con estructura FL.Figure 5.- Image of transmission electron microscopy (HRTEM) of a layer of carbon nitride with FL structure.
EJEMPLOS DE REALIZACIÓNEXAMPLES OF REALIZATION
Ejemplo 1.- Fabricación de la capas de carbono con estructura FL de la invención.Example 1.- Manufacture of the carbon layers with FL structure of the invention.
En el primer ejemplo se ha sintetizado una película de carbono con estructura tipo fulereno FL y con un contenido de carbono del 20% (porcentaje atómico) . Se ha empleado un equipo de deposición química en fase de vapor asistido por plasma de resonancia ciclotrónica del electrón (ECR-CVD) (Figura 1) . Este equipo comprende, al menos, una fuente de corriente alterna con frecuencia de excitación entre 10 MHz y 2.45 GHz capaz de activar las moléculas o átomos presentes, una cámara de reacción con presión controlada en el rango de 10~4 a 50 Torr, donde se produce la disociación e ionización del hidrocarburo y un portasustratos donde se coloca la pieza a recubrir, con fácil acceso para la aplicación del método de aporte de energía a las especies iónicas presentes en el plasma .In the first example, a carbon film with a FL-like structure and with a carbon content of 20% (atomic percentage) has been synthesized. A chemical vapor deposition equipment assisted by electron cyclotron resonance plasma (ECR-CVD) has been used (Figure 1). This equipment comprises, at least, an alternating current source with excitation frequency between 10 MHz and 2.45 GHz capable of activating the molecules or atoms present, a reaction chamber with controlled pressure in the range of 10 ~ 4 to 50 Torr, where the dissociation and ionization of the hydrocarbon and a substrate holder are placed where the piece to be coated is placed, with easy access for the application of the energy input method to the ionic species present in the plasma.
Se utilizaron dos gases de partida: el hidrocarburo metano como gas precursor de carbono en la película, y el gas noble argón como gas diluyente y activante de la descomposición del hidrocarburo. La presión de trabajo empleada fue de ICT3 mbar, utilizando un campo electromagnético a una frecuencia de 2.45 GHz con una potencia del plasma de 200 W. La relación de flujos CH4/Ar, empleada en la síntesis del carbono FL fue de 0,43. La energía umbral de los iones del plasma necesaria para lograr la estabilización de la estructura FL fue de 100 eV, y es importante señalar que este valor varia con la relación de flujos de gases utilizada. Durante el proceso de crecimiento de las películas de carbono FL mediante ECR-CVD, no es necesario el calentamiento, por lo que la temperatura máxima registrada durante el proceso fue siempre inferior a 12O0C.Two starting gases were used: methane hydrocarbon as carbon precursor gas in the film, and noble gas Argon as diluent and activating gas for hydrocarbon decomposition. The working pressure used was ICT 3 mbar, using an electromagnetic field at a frequency of 2.45 GHz with a plasma power of 200 W. The ratio of CH 4 / Ar flows, used in the synthesis of FL carbon was 0, 43 The threshold energy of the plasma ions necessary to achieve stabilization of the FL structure was 100 eV, and it is important to note that this value varies with the ratio of gas flows used. During the growth process of FL carbon films using ECR-CVD, heating is not necessary, so the maximum temperature recorded during the process was always lower than 12O 0 C.
La composición, nanoestructura y estructura de enlace de las películas de carbono FL se analizaron utilizando técnicas de caracterización como detección de iones (ERDA) , microscopía electrónica de transmisión de alta resolución (HRTEM) y absorción de rayos X (XANES). El análisis ERDA de las películas, mostró un porcentaje atómico de hidrógeno inferior al 35% mientras que en las películas sin estructura FL esta concentración suele ser superior al 40%. La nanoestructura del material analizada por HRTEM, indicó la presencia de átomos de carbono agrupados en planos grafiticos curvados (Figura 2), confirmándose la formación de películas de carbono con una estructura similar a la que presenta la molécula de fulereno, donde se observa la curvatura de los planos superficiales del depósito, y de donde se deriva la denominación de películas de carbono tipo fulereno (FL) . Por otro lado, la espectroscopia XANES (Figura 3) indica que las películas de carbono FL muestran características espectrales típicas del fulereno C60, ausentes en las películas sin estructura FL.The composition, nanostructure and bond structure of the FL carbon films were analyzed using characterization techniques such as ion detection (ERDA), high resolution transmission electron microscopy (HRTEM) and X-ray absorption (XANES). The ERDA analysis of the films showed an atomic percentage of hydrogen below 35% while in films without FL structure this concentration is usually higher than 40%. The nanostructure of the material analyzed by HRTEM, indicated the presence of carbon atoms grouped in curved graffiti planes (Figure 2), confirming the formation of carbon films with a structure similar to that presented by the fulerene molecule, where the curvature is observed from the surface planes of the tank, and where the denomination of carbon-type carbon films (FL) is derived. On the other hand, XANES spectroscopy (Figure 3) indicates that FL carbon films show typical spectral characteristics of C60 fulerene, absent in films without FL structure.
Las propiedades mecánicas y tribológicas del material obtenido se estudiaron mediante nanoindentación y ensayos pin- on-disk (utilizando una bola de metal duro WC/Co-6% sobre el recubrimiento), respectivamente. La dureza y módulo de Young de las películas con estructura FL fueron de 20 GPa y 150 GPa, mientras que en las películas sin estructura FL tomaron valores de 2 GPa y 20 GPa, respectivamente. Las propiedades tribológicas de fricción y resistencia a la abrasión se muestran en la Figura 4 para una serie de muestras de materiales sin estructura FL y con estructura FL. Se observó una transición clara en las propiedades tribológicas en función de la energía de los iones. Asi, para el coeficiente de desgaste hay una transición desde valores superiores a 5 x 10~5 mm3/Nm en capas no FL, a valores del orden de 1 x 10~7 mm3/Nm en el caso de las capas de C con estructura FL (8 x 10~8 - 2 x 10~7 mm3/Nm) .The mechanical and tribological properties of the material obtained were studied by nanoindentation and pin-on-disk tests (using a WC / Co-6% hard metal ball on the coating), respectively. Young's hardness and modulus of the films with FL structure were 20 GPa and 150 GPa, while in films without FL structure they took values of 2 GPa and 20 GPa, respectively. The tribological properties of friction and abrasion resistance are shown in Figure 4 for a series of samples of materials without FL structure and with FL structure. A clear transition in the tribological properties was observed as a function of the energy of the ions. Thus, for the wear coefficient there is a transition from values greater than 5 x 10 ~ 5 mm 3 / Nm in non-FL layers, to values of the order of 1 x 10 ~ 7 mm 3 / Nm in the case of C layers with FL structure (8 x 10 ~ 8 - 2 x 10 ~ 7 mm 3 / Nm).
Ejemplo 2.- Fabricación de capas de nitruro de carbono con estructura FL.Example 2.- Manufacture of carbon nitride layers with FL structure.
En el segundo ejemplo, se añadió un tercer gas como fuente de nitrógeno a la mezcla hidrocarburo/gas noble para la obtención de recubrimientos de nitruro de carbono. Las capas de C:N:H con estructura FL se depositaron en un reactor CVD con resonancia ciclotrónica del electrón (ECR-CVD) utilizando como fuente de excitación un campo electromagnético a una frecuencia de 2.45 GHz con una potencia de 210 W. Se utilizó una mezcla de metano/argón/nitrógeno con velocidades de flujo de 13 sccm/20 sccm/3 sccm, a una presión total de 1.1-10"2 Torr . Se aplicó un voltaje de polarización al sustrato de -200 V para lograr la estabilización de la estructura FL, valor que depende de las condiciones especificas de la mezcla de gases. En estas condiciones, el ritmo de crecimiento de las capas fue de 0.14 nm/s y la temperatura se mantuvo inferior a 14O0C.In the second example, a third gas was added as a source of nitrogen to the hydrocarbon / noble gas mixture to obtain carbon nitride coatings. The C: N: H layers with FL structure were deposited in a CVD reactor with electron cyclotron resonance (ECR-CVD) using as an excitation source an electromagnetic field at a frequency of 2.45 GHz with a power of 210 W. a mixture of methane / argon / nitrogen with flow rates of 13 sccm / 20 sccm / 3 sccm, at a total pressure of 1.1-10 "2 Torr. A bias voltage was applied to the substrate of -200 V to achieve stabilization of the FL structure, a value that depends on the specific conditions of the gas mixture Under these conditions, the growth rate of the layers was 0.14 nm / s and the temperature remained below 14O 0 C.
Al igual que ocurre en el Ejemplo 1, hay una energía umbral de los iones para lograr la estabilización de la fase FL. Se realizó una caracterización similar a la descrita en el Ejemplo 1, con resultados muy parecidos. La nanoestructura tipo fulereno se muestra en la fotografía HRTEM de la Figura 5. Las propiedades mecánicas y tribológicas también mejoraron sustancialmente cuando se consiguió la formación de la estructura FL.As in Example 1, there is a threshold energy of the ions to achieve stabilization of the FL phase. A characterization similar to that described in the Example 1, with very similar results. The fulerene nanostructure is shown in the HRTEM photograph of Figure 5. The mechanical and tribological properties also improved substantially when the formation of the FL structure was achieved.
BibliografíaBibliography
1.- Optically transparent, scratch-resistant , diamond-like carbón coatings, patente WO-00-56127. 2.- Recording media having protective overcoats of highly tetrahedral amorphous carbón and methods for their production. Patente US-2003-148103.1.- Optically transparent, scratch-resistant, diamond-like carbon coatings, patent WO-00-56127. 2.- Recording media having protective overcoats of highly tetrahedral amorphous carbon and methods for their production. US-2003-148103.
3.- Wear resistant coatings to reduce ice adhesión on air foils, patente WO-2004-078873. 4.- Diamond-like Carbón Coatings on Glass and Plastics for Added Hardness and Abrasión Resistance. Patente US-2004- 028906.3.- Wear resistant coatings to reduce ice adhesion on air foils, WO-2004-078873. 4.- Diamond-like Coal Coatings on Glass and Plastics for Added Hardness and Abrasion Resistance. US-2004-028906.
5.- Low Temperature Plasma Deposited Hydrogenated Amorphous Germanium Carbón Abrasión Resistant Coatings. Patentes US- 2005/0089686 y US-2004-043218.5.- Low Temperature Plasma Deposited Hydrogenated Amorphous Germanium Coal Abrasion Resistant Coatings. US-2005/0089686 and US-2004-043218.
6.- H. Sjδstrom, S. Stafsrδm, M. Boman, J. E. Sundgren, Superhard and Elastic Carbón Nitride Thin Films Having Fullerenelike Microstructure, PHYSICAL REVIEW LETTERS 75, 1336 (1995) . 7.- I. Alexandrou, H. -J. Scheibe, C. J. Kiely, A. J. Papworth, G. A. J. Amaratunga, B. Schultrich, Carbón films with an sp2 network structure, PHYSICAL REVIEW B 60, 10903 (1999) . Neidhardt, J; Czigany, Z; Hultman, L Superelastic fullerene¬ like carbón nitride coatings synthesised by reactive unbalanced magnetron sputtering, SURFACE ENGINEERING, 19, 299 (2003) .6.- H. Sjδstrom, S. Stafsrδm, M. Boman, JE Sundgren, Superhard and Elastic Carbon Nitride Thin Films Having Fullerenelike Microstructure, PHYSICAL REVIEW LETTERS 75, 1336 (1995). 7.- I. Alexandrou, H. -J. Scheibe, CJ Kiely, AJ Papworth, GAJ Amaratunga, B. Schultrich, Carbon films with an sp 2 network structure, PHYSICAL REVIEW B 60, 10903 (1999). Neidhardt, J; Czigany, Z; Hultman, L Superelastic fullerene ¬ like carbon nitride coatings synthesised by reactive unbalanced magnetron sputtering, SURFACE ENGINEERING, 19, 299 (2003).
9.- Voevodin, AA; Jones, JG; Zabinski, JS; et al. Growth and structure of fullerene-like CNx thin films produced by pulsed láser ablation of graphite in nitrogen JOURNAL OF APPLIED PHYSICS, 92, 4980 (2002) .9.- Voevodin, AA; Jones, JG; Zabinski, JS; et al. Growth and structure of fullerene-like CNx thin films produced by pulsed laser ablation of graphite in nitrogen JOURNAL OF APPLIED PHYSICS, 92, 4980 (2002).
10.- I. Alexandrou, CJ. Kiely, A. J. Papworth, G. A. J. Amaratunga, Formation and subsequent inclusión of fullerene- like nanoparticles in nanocomposite carbón thin films CARBÓN 42, 1651 (2004) .10.- I. Alexandrou, CJ. Kiely, A. J. Papworth, G. A. J. Amaratunga, Formation and subsequent inclusion of fullerene-like nanoparticles in nanocomposite carbon thin films CARBON 42, 1651 (2004).
11.- Lin, CC; Lo, PY; Lin, CH; et al. Structure and property features of the catalyst-assisted carbón nanostructures on Si wafer by catalyst ion implantation and ECR-CVD DIAMOND AND RELATED MATERIALS, 14, 778 (2005) .11.- Lin, CC; Lo, PY; Lin, CH; et al. Structure and property features of the catalyst-assisted carbon nanostructures on Si wafer by catalyst ion implantation and ECR-CVD DIAMOND AND RELATED MATERIALS, 14, 778 (2005).
12.- Yang, Q; Xiao, C; Chen, W; et al. Selective growth of diamond and carbón nanostructures by hot filament chemical vapor deposition DIAMOND AND RELATED MATERIALS, 13, 433 (2004) . 13.- Burden, AP; Silva, SRP, Fullerene-like carbón nanoparticles generated by radio-frequency plasma-enhanced Chemical vapour deposition PHILOSOPHICAL MAGAZINE LETTERS, 78, 15 (1998) . 12.- Yang, Q; Xiao, C; Chen, W; et al. Selective growth of diamond and carbon nanostructures by hot filament chemical vapor deposition DIAMOND AND RELATED MATERIALS, 13, 433 (2004). 13.- Burden, AP; Silva, SRP, Fullerene-like carbon nanoparticles generated by radio-frequency plasma-enhanced Chemical vapor deposition PHILOSOPHICAL MAGAZINE LETTERS, 78, 15 (1998).

Claims

REIVINDICACIONES
1.- Material con estructura tipo fulereno en forma de recubrimiento de carbono caracterizado porque consiste en carbono con hibridación sp2 parcialmente hidrogenado hasta un contenido atómico del 35%, preferentemente entre un 5 y 35% de átomos hidrogenados incorporados en su estructura. 1. Material with a rubber-like structure in the form of a carbon coating characterized in that it consists of carbon with sp 2 hybridization partially hydrogenated to an atomic content of 35%, preferably between 5 and 35% of hydrogenated atoms incorporated in its structure.
2.- Material según la reivindicación 1 caracterizado porque contiene además nitrógeno hasta un contenido atómico del 35%. 2. Material according to claim 1 characterized in that it also contains nitrogen to an atomic content of 35%.
3.- Procedimiento para la fabricación del material según las reivindicaciones 1 y 2 caracterizado porque se realiza sobre un sustrato a baja temperatura, entre 25 y 3000C, mediante la técnica de deposición química en fase vapor asistida por plasma (PACVD) , conteniendo en su seno iones altamente energéticos y porque comprende las siguientes etapas: i) alimentación de los gases de partida en el reactor a temperatura ambiente en una relación de flujos "compuesto precursor de carbono/gas activante" comprendida entre 0.05 y 1 hasta alcanzar una presión comprendida entre 10~4 y 50 Torr, ii) una reacción de descomposición a partir de una mezcla del compuesto precursor del carbono, preferentemente un hidrocarburo, y un gas noble mediante la aplicación de un campo electromagnético, cuya frecuencia puede variar en el rango 5 MHz a 25 GHz, que produce la excitación del gas noble asi como la activación, disociación e ionización del compuesto precursor del carbono, y iii) suministro de energía exterior a los iones carbonados producidos por ionización del compuesto precursor de carbono con valores de energía en el rango 50-300 eV. 3. Process for manufacturing the material according to claims 1 and 2 characterized in that is carried on a substrate at low temperature, between 25 and 300 0 C, using the technique of chemical vapor deposition assisted by plasma (PACVD), containing Highly energetic ions, and because it comprises the following stages: i) supply of the starting gases in the reactor at room temperature in a flow rate "compound precursor carbon / activating gas" between 0.05 and 1 until reaching a pressure between 10 ~ 4 and 50 Torr, ii) a decomposition reaction from a mixture of the carbon precursor compound, preferably a hydrocarbon, and a noble gas by applying an electromagnetic field, the frequency of which may vary in the range 5 MHz at 25 GHz, which produces the excitation of the noble gas as well as the activation, dissociation and ionization of the carbon precursor compound, and iii) ister of external energy to the carbon ions produced by ionization of the carbon precursor compound with energy values in the range 50-300 eV.
4.- Procedimiento según la reivindicación 3 caracterizado porque la etapa i) se lleva a cabo mediante una mezcla de un compuesto precursor de carbono, un gas noble y un precursor de nitrógeno . 4. Method according to claim 3 characterized in that step i) is carried out by a mixture of a carbon precursor compound, a noble gas and a nitrogen precursor.
5.- Procedimiento según las reivindicaciones 3 y 4 caracterizado porque el compuesto precursor de carbono se selecciona entre diferentes hidrocarburos, como por ejemplo: metano, etileno y acetileno. 5. Method according to claims 3 and 4 characterized in that the carbon precursor compound is selected from different hydrocarbons, such as methane, ethylene and acetylene.
6.- Procedimiento según las reivindicaciones 3 y 4 caracterizado porque el gas noble se selecciona entre argón y neón .6. Method according to claims 3 and 4 characterized in that the noble gas is selected from argon and neon.
7. - Procedimiento según la reivindicación 4 caracterizado porque el precursor de nitrógeno se selecciona entre nitrógeno molecular o amoniaco.7. - Method according to claim 4 characterized in that the nitrogen precursor is selected from molecular nitrogen or ammonia.
8.- Procedimiento según la reivindicación 3 caracterizado porque el suministro de energía de iii) puede realizarse mediante la aplicación de un voltaje eléctrico de polarización al sustrato que contenga al menos una fracción temporal de polarización negativa, o mediante la incidencia de radiación láser en el rango visible-UV.8. Method according to claim 3 characterized in that the power supply of iii) can be carried out by applying an electrical polarization voltage to the substrate containing at least a temporary fraction of negative polarization, or by the incidence of laser radiation in the visible range-UV.
9.- Procedimiento según la reivindicación 3 caracterizado porque el suministro de energía de iii) para un sustrato conductor se realiza mediante la aplicación de una tensión negativa continua al sustrato durante el proceso de preparación de las capas.9. Method according to claim 3 characterized in that the energy supply of iii) for a conductive substrate is carried out by applying a continuous negative voltage to the substrate during the layer preparation process.
10.- Procedimiento según la reivindicación 3 caracterizado porque el suministro de energía de iii) para un sustrato aislante se realiza mediante la aplicación de una tensión alterna con una componente negativa de la polarización, una fuente pulsada con pulsos de voltaje negativos, o mediante iluminación visible-UV.10. Method according to claim 3 characterized in that the power supply of iii) for an insulating substrate is carried out by applying an alternating voltage with a negative polarization component, a pulsed source with negative voltage pulses, or by lighting visible-UV.
11.- El uso del procedimiento según las reivindicaciones 3 a la 10 para la fabricación de materiales, por ejemplo, dispositivos mecánicos, ópticos, medios magnéticos, alas de aviones, vidrios y plásticos o fotodetectores . 11. The use of the method according to claims 3 to 10 for the manufacture of materials, for example, mechanical, optical devices, magnetic media, aircraft wings, glasses and plastics or photodetectors.
PCT/ES2007/070090 2006-05-12 2007-05-11 Material with fullerene-type structure, production method and applications thereof WO2007132051A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP200601283 2006-05-12
ES200601283A ES2301361B1 (en) 2006-05-12 2006-05-12 FULERENE TYPE STRUCTURE MATERIAL, MANUFACTURING PROCEDURE AND ITS APPLICATIONS.

Publications (1)

Publication Number Publication Date
WO2007132051A1 true WO2007132051A1 (en) 2007-11-22

Family

ID=38693583

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2007/070090 WO2007132051A1 (en) 2006-05-12 2007-05-11 Material with fullerene-type structure, production method and applications thereof

Country Status (2)

Country Link
ES (1) ES2301361B1 (en)
WO (1) WO2007132051A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101469402B (en) * 2007-12-25 2010-11-24 中国科学院兰州化学物理研究所 Preparation of fullerene-like carbon film
EP2373540A2 (en) * 2008-12-18 2011-10-12 Thomas C. Maganas Monomolecular carbon-based film for forming lubricious surface on aircraft parts

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ABRASONIS G. ET AL.: "Nitrogen incorporation in carbon nitride films produced by direct and dual ion-beam sputtering", JOURNAL OF APPLIED PHYSICS, vol. 98, no. 074907, 11 October 2005 (2005-10-11), pages 1 - 8 *
GROGER H. ET AL.: "CNx-layers prepared by plasma assisted chemical vapour deposition", SURFACE AND COATINGS TECHNOLOGY, vol. 86-87, 1 December 1996 (1996-12-01), pages 409 - 414 *
SJÖSTRÖM H. ET AL.: "Growth of CNxHy films by reactive magnetron sputtering of carbon in Ar/NH3 discharges", JOURNAL OF MATERIALS RESEARCH, vol. 11, no. 4, April 1996 (1996-04-01), pages 981 - 988 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101469402B (en) * 2007-12-25 2010-11-24 中国科学院兰州化学物理研究所 Preparation of fullerene-like carbon film
EP2373540A2 (en) * 2008-12-18 2011-10-12 Thomas C. Maganas Monomolecular carbon-based film for forming lubricious surface on aircraft parts
EP2373540A4 (en) * 2008-12-18 2015-04-08 Thomas C Maganas Monomolecular carbon-based film for forming lubricious surface on aircraft parts

Also Published As

Publication number Publication date
ES2301361A1 (en) 2008-06-16
ES2301361B1 (en) 2009-05-01

Similar Documents

Publication Publication Date Title
Nehate et al. A review of boron carbon nitride thin films and progress in nanomaterials
Bewilogua et al. History of diamond-like carbon films—From first experiments to worldwide applications
Wang Research on carbon nitrides
Sharda et al. Biased enhanced growth of nanocrystalline diamond films by microwave plasma chemical vapor deposition
Sharda et al. Growth of nanocrystalline diamond films by biased enhanced microwave plasma chemical vapor deposition: A different regime of growth
Liu et al. Morphology and structure of Ti-doped diamond films prepared by microwave plasma chemical vapor deposition
Lu et al. Chemical vapour deposition of molybdenum carbides: aspects of phase stability
Merenkov et al. Extraordinary synergetic effect of precursors in laser CVD deposition of SiBCN films
Flege et al. Preparation of metal-containing diamond-like carbon films by magnetron sputtering and plasma source ion implantation and their properties
Paramanik et al. Synthesis of nanocrystalline diamond embedded diamond-like carbon films on untreated glass substrates at low temperature using (C2H2+ H2) gas composition in microwave plasma CVD
Imai et al. Hydrogen-free fluorinated DLC films with high hardness prepared by using T-shape filtered arc deposition system
Yang et al. Effect of substrate temperature variation on nanostructured WC films prepared using HFCVD technique
Sheng et al. Effect of unbonded hydrogen on amorphous carbon film deposited by PECVD with annealing treatment
Ogwu et al. The effect of the substrate bias on the Raman spectra and thermal stability of diamond-like carbon (DLC) and silicon-modified DLC films prepared by plasma-enhanced chemical vapour deposition (PECVD)
Zhang et al. Synthesis and characterization of boron incorporated diamond-like carbon thin films
Yang et al. Deposition and microstructure of Ti-containing diamond-like carbon nanocomposite films
ES2301361B1 (en) FULERENE TYPE STRUCTURE MATERIAL, MANUFACTURING PROCEDURE AND ITS APPLICATIONS.
Ma et al. High-rate, room-temperature synthesis of amorphous silicon carbide films from organo-silicon in high-density helicon wave plasma
Jedrzejczak et al. Carbon coatings with high concentrations of silicon deposited by RF PECVD method at relatively high self-bias
Lung et al. Growth characterization and properties of diamond-like carbon films by electron cyclotron resonance chemical vapor deposition
Tzeng et al. Graphene induced diamond nucleation on tungsten
Grenadyorov et al. Thermal stability of aC: H: SiOx thin films in hydrogen atmosphere
Bogdanowicz Advancements in diamond-like carbon coatings
Liepack et al. Characteristics of excess carbon in PACVD TiC-amorphous carbon layers
Paramanik et al. The effect of CO2 addition to the (C2H2+ H2) gas system on the low-temperature growth of diamond-like carbon (DLC) with prominent nano-diamond phase

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07730528

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07730528

Country of ref document: EP

Kind code of ref document: A1