WO2007129696A1 - Transmission/reception switching device - Google Patents

Transmission/reception switching device Download PDF

Info

Publication number
WO2007129696A1
WO2007129696A1 PCT/JP2007/059482 JP2007059482W WO2007129696A1 WO 2007129696 A1 WO2007129696 A1 WO 2007129696A1 JP 2007059482 W JP2007059482 W JP 2007059482W WO 2007129696 A1 WO2007129696 A1 WO 2007129696A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter
terminal
transmission
admittance
reception
Prior art date
Application number
PCT/JP2007/059482
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroshi Tsuchiya
Original Assignee
Ube Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries, Ltd. filed Critical Ube Industries, Ltd.
Publication of WO2007129696A1 publication Critical patent/WO2007129696A1/en

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • H03H9/171Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator implemented with thin-film techniques, i.e. of the film bulk acoustic resonator [FBAR] type
    • H03H9/172Means for mounting on a substrate, i.e. means constituting the material interface confining the waves to a volume
    • H03H9/175Acoustic mirrors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/0538Constructional combinations of supports or holders with electromechanical or other electronic elements
    • H03H9/0566Constructional combinations of supports or holders with electromechanical or other electronic elements for duplexers
    • H03H9/0571Constructional combinations of supports or holders with electromechanical or other electronic elements for duplexers including bulk acoustic wave [BAW] devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • H03H9/171Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator implemented with thin-film techniques, i.e. of the film bulk acoustic resonator [FBAR] type
    • H03H9/172Means for mounting on a substrate, i.e. means constituting the material interface confining the waves to a volume
    • H03H9/173Air-gaps
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/54Filters comprising resonators of piezo-electric or electrostrictive material
    • H03H9/58Multiple crystal filters
    • H03H9/60Electric coupling means therefor
    • H03H9/605Electric coupling means therefor consisting of a ladder configuration
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/70Multiple-port networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
    • H03H9/703Networks using bulk acoustic wave devices
    • H03H9/706Duplexers

Definitions

  • the present invention relates to a duplexer that is an electronic device, and more specifically, a duplexer using a thin film Balta acoustic resonator (FBAR) filter configured using a thin film Balta acoustic resonator (FBAR).
  • FBAR thin film Balta acoustic resonator
  • FBAR thin film Balta acoustic resonator
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2001-24476
  • the present invention has been made in view of the above circumstances, and a thin film Balta acoustic resonator (FBAR) filter in which the thickness and mounting area of the package are reduced by improving the phase matching circuit.
  • An object of the present invention is to provide a small duplexer used.
  • a reception filter having a first terminal and a second terminal, a transmission filter having a third terminal and a fourth terminal, and a common terminal connected to the first terminal and the third terminal
  • a duplexer with and comprising:
  • Each of the reception filter and the transmission filter is a ladder filter having a thin film Balta acoustic resonator
  • phase matching inductor having one end connected to the ground is connected to the transmission line connecting the first terminal, the third terminal, and the common terminal,
  • the reception filter and the transmission filter have a frequency at which the value of the real part of admittance is 1 in each pass band when the phase matching inductor is not connected to the transmission line, and the reception filter
  • the imaginary part of the admittance has the same frequency in the four bands of the pass band and stop band of the transmission filter and the pass band and stop band of the transmission filter, and the four bands have the capacity.
  • the inductance of the phase matching inductor is set so that the transmission filter and the reception filter are phase matched when it is connected to the transmission line.
  • the length of the phase matching circuit can be reduced, the mounting area of the duplexer and the package thickness can be reduced, and the duplexer can be reduced in size.
  • FIG. 1 is a circuit diagram showing an embodiment of a duplexer according to the present invention.
  • FIG. 2 is a circuit diagram showing a duplexer for comparison using a 90 ° phase shifter.
  • FIG. 3 is a schematic cross-sectional view for explaining the structure of a thin film Balta acoustic resonator having a cavity portion.
  • FIG.4 Schematic for explaining the structure of a thin-film Balta acoustic resonator with an acoustic mirror layer It is sectional drawing.
  • FIG. 5 is a circuit diagram showing a ladder filter.
  • Fig. 6 is a circuit diagram showing a ladder filter.
  • FIG. 9A is a schematic configuration diagram of the duplexer in FIG.
  • FIG. 9B is a schematic configuration diagram of the duplexer in FIG.
  • FIG. 10 is an admittance diagram showing filter characteristics before phase matching of the reception filter according to the embodiment of the present invention.
  • FIG. 11 is an admittance diagram showing filter characteristics after phase matching of the reception filter according to the embodiment of the present invention.
  • FIG. 12 is an admittance diagram showing filter characteristics before phase matching of a transmission filter for comparison.
  • FIG. 13 is an admittance diagram showing filter characteristics before phase matching of the transmission filter according to the embodiment of the present invention.
  • FIG. 14 is an admittance diagram showing filter characteristics after phase matching of a transmission filter for comparison.
  • FIG. 15 is an admittance diagram showing the filter characteristics after phase matching of the transmission filter according to the embodiment of the present invention.
  • FIG. 1 is a circuit diagram showing an embodiment of a transmission / reception switching device of the present invention.
  • the transmission / reception switching device of the present embodiment includes a reception thin film banolek acoustic resonator filter (hereinafter sometimes referred to as a “reception filter”) 7 having a first terminal 2 and a second terminal 4, Transmitting thin film banoroke sonic resonator filter (hereinafter sometimes referred to as “transmitting filter”) 8 having terminal 3 of 3 and fourth terminal 5 and first terminal 2 of receiving filter 7 through transmission line 10 And an antenna terminal 1 as a common terminal connected to the third terminal 3 of the transmission filter 8.
  • a reception thin film banolek acoustic resonator filter hereinafter sometimes referred to as a “reception filter”
  • Transmitting filter Transmitting thin film banoroke sonic resonator filter
  • a reception circuit (not shown) is connected to the second terminal 4 of the reception filter 7, a transmission circuit (not shown) is connected to the fourth terminal 5 of the transmission filter 8, and an antenna (not shown) is connected to the antenna terminal 1. Is connected.
  • Each of the reception filter 7 and the transmission filter 8 is a ladder filter having a thin film Balta acoustic resonator (FBAR) 11.
  • FBAR Balta acoustic resonator
  • phase matching inductor 9 One end of a phase matching inductor 9 is connected to the transmission line 10. The other end of the phase matching inductor 9 is connected to the ground.
  • the reception filter 7 and transmission filter 8 are It has specific characteristics as described below. By adopting such a combination of the reception filter 7, the transmission filter 8, and the phase matching inductor 9, the small size characteristic of the thin film Baltha acoustic wave resonator can be utilized as described later, and a small size can be achieved. It is possible to provide a duplexer.
  • FIG. 3 is a schematic cross-sectional view for explaining the structure of the thin film Balta acoustic resonator 11.
  • the thin film Baltha acoustic resonator 11 includes a substrate 16 having a cavity portion 17 formed thereon by a concave portion, a patterned lower electrode 15 formed in order on the substrate 16, a piezoelectric layer 14 and a pattern. And a laminated body composed of the upper electrode 13 having the shape. The laminate is formed so as to straddle the cavity part 17 and has a resonance part 19 formed in a region corresponding to the cavity part 17.
  • the resonance part 19 has a laminated structure in which the upper electrode 13, the piezoelectric layer 14, and the lower electrode 15 are overlapped when viewed in the film thickness direction.
  • a passivation layer, a support layer, and the like may be provided on the upper surface of the upper electrode 13 and the lower surface of the lower electrode 15.
  • the upper electrode 13 is made of a suitable material such as molybdenum (Mo), gold (Au), aluminum (A1), ruthenium (Ru), platinum (Pt), tungsten (W), and titanium (Ti). Can be used.
  • Mo molybdenum
  • Au gold
  • Al aluminum
  • Ru ruthenium
  • Ru platinum
  • W tungsten
  • Ti titanium
  • the piezoelectric layer 14 a layer made of an appropriate material such as aluminum nitride (A1N) and zinc oxide (ZnO) can be used.
  • A1N aluminum nitride
  • ZnO zinc oxide
  • a material made of a suitable material such as Ru), platinum (Pt), tungsten (W) and titanium (Ti) can be used.
  • the substrate 16 includes silicon (Si), silicon oxide (SiO), gallium arsenide (GaAs), and gallium arsenide.
  • the thin film Balta acoustic resonator 11 is a layer having a high acoustic impedance between the substrate 16 and the laminate composed of the lower electrode 15, the piezoelectric layer 14, and the upper electrode 13. Or an acoustic mirror layer 18 formed by alternately laminating layers having low acoustic impedance.
  • the energy generated by the resonance part 19 can be confined in the same manner as in the structure provided with the cavity part 17 as shown in FIG.
  • acoustic mirror layer 18 gold (Au), molybdenum (Mo), and tungsten (W) forces can be used as the high acoustic impedance layer, and silicon (Si), an oxidation layer can be used as the low acoustic impedance layer.
  • Au gold
  • Mo molybdenum
  • W tungsten
  • SiO 2 silicon
  • A1 aluminum
  • the thin film Balta acoustic resonator 11 having the cavity portion 17 as shown in FIG. 3 includes depositing the lower electrode 15 on the upper surface of the substrate 16 by a vapor deposition method such as sputtering, and patterning the desired shape.
  • the piezoelectric layer 14 is deposited by a vapor deposition method such as sputtering, and a patterning is performed in a desired shape as necessary, and the upper electrode 13 is deposited by a vapor deposition method such as sputtering, and the patterning is performed in a desired shape.
  • the step of providing the cavity portion 17 on the substrate 16 by etching or the like.
  • this manufacturing method may include a step of providing a passivation layer, a support layer, or the like on the upper surface of the upper electrode 13 or the lower surface of the lower electrode 15.
  • a thin-film banolek acoustic resonator 11 having an acoustic mirror layer 18 as shown in FIG. 4 is formed by depositing a layer having a high acoustic impedance and a layer having a low acoustic impedance on a substrate 16 by a deposition method such as sputtering.
  • the manufacturing method may include a step of providing a passivation layer, a support layer, or the like on the upper surface of the upper electrode 13 or the lower surface of the lower electrode 15.
  • the reception filter 7 a plurality of thin film Balta acoustic resonators (hereinafter referred to as “the first terminal 2 and the second terminal 4”) connected in series. 11) and a plurality of thin film Balta acoustic resonators (hereinafter also referred to as “parallel resonators”) 11 connected in parallel.
  • the parallel resonator 11 is connected to the ground via the inductor 9A.
  • These series resonators 11 or parallel resonators 11 may have the same frequency characteristic or may have different frequency characteristics.
  • the transmission filter 8 includes a plurality of series resonators 11 connected in series between the first terminal 3 and the second terminal 5 and a parallel resonator 11 connected in parallel.
  • the parallel resonator 1 1 is connected to the ground via an inductor 9A.
  • the reception filter 7 and the transmission filter 8 may be a ladder filter 12 as shown in FIG.
  • the parallel resonator 11 is directly connected to the ground.
  • reception filter 7 and the transmission filter 8 may be a ladder filter 12 as shown in FIG.
  • this ladder type filter 12 at least one of the thin film Balta acoustic resonators 11 in the ladder filter 12 shown in FIG. 5 is replaced with two thin film Balta acoustic resonators 11 connected in series.
  • the antenna terminal 1, the first terminal 2 of the reception filter 7, and the third terminal 3 of the transmission filter 8 are connected by a transmission line 10 to obtain a desired filter characteristic. Therefore, the phase matching inductor 9 is interposed between the transmission line 10 and the ground.
  • the transmission line 10 is provided in a package of a transmission / reception switch, and a reception signal and a transmission signal are transmitted.
  • the phase matching inductor 9 may be provided in a line pattern on the package, or may be formed as a concentrated inductor.
  • the phase matching between the reception filter 7 and the transmission filter 8 is achieved by providing the phase matching inductor 9.
  • the reception filter 7 and the transmission filter 8 a combination of those having the following characteristics is adopted.
  • FIG. 7 is an admittance diagram of the reception filter 7 or the transmission filter 8 before the phase matching inductor 9 is provided, that is, when the phase matching inductor 9 is not connected to the transmission line 10
  • FIG. 3 is an admittance diagram of the reception filter 7 or the transmission filter 8 when the inductor 9 is provided, that is, when the phase matching inductor 9 is connected to the transmission line 10 as shown in FIG.
  • the value of the real part of admittance is 1 in the passband 20. (I.e., the value of the real part of the admittance at any frequency in the passband 20 is 1 and the passband 20 is on the circle line indicating that the real part of the admittance is 1)
  • the pass band 20 and stop band 21 of the reception filter 7 and the pass band 20 and stop band 21 of the transmission filter 8 the frequencies where the imaginary part of the admittance has the same value 0.5 are shown.
  • admittance is a numerical value normalized by setting the admittance value of the entire duplexer (specifically, for example, the admittance value corresponding to an impedance of 50 ⁇ ) to 1 [the same applies below].
  • the passband (1920 — 1980 MHz) has a frequency in which the real part of the admittance is 1 in the passband 20 and the stopband (2110 — 2170 MHz) 21.
  • the imaginary part of the admittance has a frequency indicating the same value 0.5.
  • the pass band (2110-2170MHz) 20 has a frequency where the value of the real part of the admittance is 1, and the pass band 20 and the stop band (1920-1980MHz) 20
  • the imaginary part of the admittance has a frequency indicating the same value 0.5.
  • the transmission filter 7 and the reception filter 8 have an admittance (for example, impedance) of the entire circuit in the passband 20 when the phase matching inductor 9 is connected to the transmission line 10. (Corresponding to 50 ⁇ ) or an admittance or impedance value close to impedance, and in the cutoff band 21 has an admittance value much smaller than that of the entire duplexer, that is, an impedance value much larger than the impedance of the entire duplexer It has.
  • the value of the imaginary part of the admittance is sufficiently small in both the pass band 20 and the stop band 21.
  • the passband (1920_1980) ⁇ ) 20 has an admittance or impedance value close to that of the entire circuit, and the stopband (21 10_2170 ⁇ ) 21 is much more than that of the entire circuit. It has a small admittance value, that is, a very large impedance value. Furthermore, for the transmission filter 8, the passband In the region (2110-2170MHz) 20, the admittance or impedance value is close to that of the entire circuit, and in the stopband (1920—1980MHz) 21, the admittance value is much smaller than that of the entire circuit, that is, the impedance value is much larger. It has.
  • the reception filter 7 and the transmission filter 8 are capacitive in the pass band 20 and the stop band 21, respectively. This means that in FIG. 7, the pass band 20 and the stop band 21 of the reception filter 7 and the transmission filter 8 are located in the lower half of the chart. According to this, it is possible to obtain a duplexer having good characteristics as shown in FIG. 8 by performing phase matching with the addition of the phase matching inductor 9.
  • the inductance L of the phase matching inductor 9 can be determined as follows.
  • admittance Y is
  • admittance Y is
  • the center frequency 2045 [MHz] between the pass band and the stop band was used as the value of the frequency f.
  • each of the reception filter and the transmission filter is provided with this inductance. If these inductors are shared, the inductance of inductor 9 should be 3 ⁇ 9 [nH]. If the length of the inductor 9 is formed with a typical line width and pattern, it can be set to approximately 6.0 mm [mm] as described later.
  • phase matching inductor 9 based on the imaginary part change, which is the difference between the imaginary part of admittance Y in the target phase matching state and the imaginary part of admittance Y before adding phase matching inductor 9. It will be understood that the required inductance of the phase matching inductor 9 can be set.
  • the phase matching amounts of the reception filter 7 and the transmission filter 8 can be made the same. Therefore, the other end of the phase matching inductor 9 whose one end is connected to the ground is connected to the transmission line 10 that connects the antenna terminal 1, the first terminal 2 of the reception filter 7, and the third terminal 3 of the transmission filter 8. By connecting, the phases of the reception filter 7 and the transmission filter 8 can be set to desired values.
  • the transmission / reception switch belonging to the present invention is compared with the tray / transmission / reception switch belonging to the present invention.
  • FIG. 2 shows a circuit diagram of a transmission / reception switch for comparison using a 90 ° phase shifter as described in Patent Document 1.
  • a 90 ° phase shifter 6 is interposed between the antenna terminal 1 and the third terminal 3 of the transmission filter 8 and the first terminal 2 of the reception filter 7.
  • FIG. 9A shows a schematic configuration diagram of this duplexer.
  • a plurality of dielectric substrates constituting the duplexer package and stacked are shown separated from each other.
  • the chip of the reception filter 7 and the chip of the transmission filter 8 are mounted, and a conductor pattern constituting a part of the inductor 9A is formed.
  • a conductor pattern constituting the other part of the inductor 9A is formed.
  • the conductor pattern that forms the ground G is formed on the substrate in the third layer from the top.
  • a through hole is formed in the fourth layer from the top.
  • the line conductor pattern of ⁇ / 4 length that forms the 90 ° phase shifter 6 is formed. It is.
  • a through-hole is formed in the sixth layer substrate from the top.
  • the conductor pattern that forms the ground G is formed.
  • Table 1 shows the line length necessary to form the / 4 length line-shaped conductor pattern constituting the 90 ° phase shifter 6.
  • the line length of the line conductor pattern of 90 ° phase shifter 6 needs to be 13.8 mm, and above and below this line conductor pattern.
  • a ground G conductor pattern is required, and a distance of 0.2 mm is required between them. For this reason, the required number of substrates increases, the package becomes thicker and cannot be made smaller.
  • FIG. 9B shows a schematic configuration diagram of the duplexer in FIG.
  • a plurality of dielectric substrates constituting the duplexer package and stacked are shown separated from each other.
  • the chip of the reception filter 7 and the chip of the transmission filter 8 are mounted, and a conductor pattern constituting a part of the inductor 9A is formed.
  • a conductor pattern that forms the other part of the inductor 9A is formed.
  • a conductor pattern constituting the phase matching inductor 9 is formed, and a through hole is further formed.
  • a conductive pattern composing the ground G is formed on the fourth layer from the top.
  • the line length of the conductor pattern of the phase matching inductor 9 can be typically configured as 6. Omm, and the mounting area can be reduced. Since no ground pattern is required above and below the conductor pattern of the inductor 9, the number of substrates can be reduced and the thickness can be reduced to about 0.3 mm.
  • FIG. 10 is an admittance chart characteristic diagram of the reception filter 7 according to the present embodiment.
  • the filter having the characteristic of Fig. 10 has a frequency where the value of the real part of the admittance is 1 in the pass band 20, and the imaginary part of the admittance is the same value in the pass band 20 and the stop band 21. It has a frequency of 5 and is capacitive in passband 20 and stopband 21.
  • the reception filter 7 has an admittance real part of 1 at any frequency in the passband 20 and an imaginary admittance at any frequency in the passband 20 and any frequency in the stopband 21.
  • the value of the part takes the same value of 0.5, and it has a capacity in the pass band 20 and the stop band 21.
  • the reception filter 7 has an admittance and impedance of the entire transmission / reception switch circuit in the passband 20 as shown in FIG.
  • the stopband 21 has a much smaller admittance value and a much larger impedance value than those of the entire duplexer circuit. Also, the value of the imaginary part of the admittance at any frequency in the passband 20 and any frequency in the stopband 21 is zero.
  • FIG. 13 is an admittance chart characteristic diagram of the transmission filter 8 of the present embodiment
  • FIG. 12 is an admittance chart characteristic diagram of the transmission filter 8 for comparison.
  • the filter having the characteristics shown in FIG. 12 has a admittance real part value of 1 at a certain frequency in the passband 20, but at any frequency in the passband 20 and any frequency in the stopband 21.
  • the value of the imaginary part of admittance is not the same.
  • the transmission filter 8 has the characteristics shown in FIG. In the force S where the value of the imaginary part of admittance is 0, there is no frequency in the stopband 21 where the value of the imaginary part of admittance is 0. Therefore, in this case, the phase matching is insufficient and the characteristics of the duplexer are insufficient.
  • the real part of the admittance is 1 at a certain frequency in the passband 20, and the admittance at any frequency in the passband 20 and any frequency in the stopband 21.
  • the value of the imaginary part is the same value of 0.5, and the passband 20 and the stopband 21 are capacitive.
  • the transmission filter 8 has the characteristics shown in FIG. It has admittance and impedance values that are close to the overall circuit admittance and impedance, and has a much smaller admittance value and a much larger impedance value in the stopband 21 than the entire circuit. Further, the value of the imaginary part of the admittance at any frequency in the pass band 20 and any frequency in the stop band 21 is zero.
  • the phase matching inductor 9 when the phase matching inductor 9 is not connected to the transmission line 10 as the reception filter 7 and the transmission filter 8, the value of the real part of the admittance in each passband 20 Is a frequency where the imaginary part of the admittance has the same value in the four bands of the pass band 20 and stop band 21 of the reception filter 7 and the pass band 20 and stop band 21 of the transmission filter 8. And have the capacities in the four bands. For this reason, the amount of phase matching in each of the reception filter 7 and the transmission filter 8 is the same.
  • the passband 20 is important for the configuration of the duplexer.
  • the admittance and impedance values are close to the admittance and impedance of the entire duplexer circuit. In the cutoff band, the admittance is much smaller and the impedance is much larger than the entire duplexer circuit. be able to. Therefore, in this case, the phase matching is sufficient and the characteristics of the duplexer are good.

Abstract

A transmission/reception switching device includes: a reception filter (7) having a first terminal (2) and a second terminal (4); a transmission filter (8) having a third terminal (3) and a fourth terminal (5); and an antenna terminal (1) connected to the first terminal (2) and the third terminal (3). The reception filter (7) and the transmission filter (8) are both ladder-type filters having a thin film bulk sound wave resonator (11). A phase matching inductor (9) has one end connected to the ground and the other end connected to a transmission line (10) which connects the first terminal (2), the third terminal (3), and the antenna terminal (1). When the phase matching inductor (9) is not connected to the transmission line (10), the reception filter (7) and the transmission filter (8) have a frequency with an admittance real part value 1 in the respective pass bands and a frequency with the same admittance imaginary part value in four bands, i.e., the pass band and a cut-off band of the reception filter (7) and the pass band and a cut-off band of the transmission filter (8), and have a capacitance in the four bands.

Description

明 細 書  Specification
送受切換器  Duplexer
技術分野  Technical field
[0001] 本発明は、電子デバイスである送受切換器に係り、詳細には薄膜バルタ音波共振 器 (FBAR)を用いて構成される薄膜バルタ音波共振器 (FBAR)フィルタを用いた送 受切換器に関する。  The present invention relates to a duplexer that is an electronic device, and more specifically, a duplexer using a thin film Balta acoustic resonator (FBAR) filter configured using a thin film Balta acoustic resonator (FBAR). About.
背景技術  Background art
[0002] 近年、携帯電話に代表される小型通信機器の開発が活発に進められている。これ らの小型通信機器には送受信信号の分岐を行う送受切換器が用いられており、通信 機器の小型化および高性能化を実現するために送受切換器の小型化および高性能 化が要求されてレ、る。最近の無線通信におレ、ては高周波帯域を利用することが多く 、圧電領域即ち圧電層の厚みを変更することにより利用周波数を制御することが可 能な薄膜バルタ音波共振器 (FBAR)フィルタの利用が検討されている。  In recent years, development of small communication devices typified by mobile phones has been actively promoted. These small communication devices use a duplexer for branching transmission / reception signals. In order to realize a smaller and higher performance communication device, a smaller duplexer and higher performance are required. I'm going. In recent wireless communications, a high-frequency band is often used, and a thin film Balta acoustic resonator (FBAR) filter that can control the use frequency by changing the thickness of the piezoelectric region, that is, the piezoelectric layer. The use of is being considered.
[0003] 通常、送受切換器の受信フィルタ及び送信フィルタは所定の周波数における位相 を制御することが必要である。そのため、薄膜バルタ音波共振器 (FBAR)フィルタを 用いた送受切換器においては、従来、受信フィルタとアンテナ端子との間に 90° 移 相器を直列に接続することがなされていた (特許文献 1参照)。  [0003] Normally, the reception filter and the transmission filter of the duplexer need to control the phase at a predetermined frequency. For this reason, in a duplexer using a thin film Balta acoustic resonator (FBAR) filter, a 90 ° phase shifter has been conventionally connected in series between the reception filter and the antenna terminal (Patent Document 1). reference).
[0004] 特許文献 1 :特開 2001— 24476号公報  Patent Document 1: Japanese Patent Application Laid-Open No. 2001-24476
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] 位相整合回路として 90° 移相器を用いることは、送受切換器のパッケージの厚み 増加または実装面積の増加などをもたらし、送受切換器を小型化する際の障害とな つている。 [0005] The use of a 90 ° phase shifter as a phase matching circuit causes an increase in the thickness of the duplexer package or an increase in the mounting area, which is an obstacle to downsizing the duplexer.
[0006] 本発明は上記事情に鑑みてなされたものであり、位相整合回路を改良することによ り、パッケージの厚みや実装面積を減少させた、薄膜バルタ音波共振器 (FBAR)フ ィルタを用いた小型の送受切換器を提供することを目的とする。  [0006] The present invention has been made in view of the above circumstances, and a thin film Balta acoustic resonator (FBAR) filter in which the thickness and mounting area of the package are reduced by improving the phase matching circuit. An object of the present invention is to provide a small duplexer used.
課題を解決するための手段 [0007] 本発明によれば、上記目的を達成するものとして、 Means for solving the problem [0007] According to the present invention, the above-mentioned object is achieved as follows:
第 1の端子及び第 2の端子を備えた受信フィルタと、第 3の端子及び第 4の端子を 備えた送信フィルタと、前記第 1の端子と前記第 3の端子とに接続された共通端子と を有する送受切換器であって、  A reception filter having a first terminal and a second terminal, a transmission filter having a third terminal and a fourth terminal, and a common terminal connected to the first terminal and the third terminal A duplexer with and comprising:
前記受信フィルタ及び前記送信フィルタはいずれも薄膜バルタ音波共振器を備え た梯子型フィルタであり、  Each of the reception filter and the transmission filter is a ladder filter having a thin film Balta acoustic resonator,
前記第 1の端子と前記第 3の端子と前記共通端子とを接続する伝送線に、一端が グランドに接続された位相整合用インダクタの他端が接続されており、  The other end of the phase matching inductor having one end connected to the ground is connected to the transmission line connecting the first terminal, the third terminal, and the common terminal,
前記受信フィルタ及び前記送信フィルタは、前記伝送線に前記位相整合用インダ クタを接続しないときに、それぞれの通過帯域内にアドミツタンスの実部の値が 1とな る周波数を有し、前記受信フィルタの通過帯域及び遮断帯域ならびに前記送信フィ ルタの通過帯域及び遮断帯域の 4つの帯域内にアドミツタンスの虚部が同一の値を 示す周波数を有し、前記 4つの帯域において容量性をもつことを特徴とする送受切 換器、  The reception filter and the transmission filter have a frequency at which the value of the real part of admittance is 1 in each pass band when the phase matching inductor is not connected to the transmission line, and the reception filter The imaginary part of the admittance has the same frequency in the four bands of the pass band and stop band of the transmission filter and the pass band and stop band of the transmission filter, and the four bands have the capacity. A transmission / reception switch,
が提供される。  Is provided.
[0008] 本発明においては、前記位相整合用インダクタのインダクタンスは、それを前記伝 送線に接続したときに、前記送信フィルタと前記受信フィルタとが位相整合するように 、設定されている。  In the present invention, the inductance of the phase matching inductor is set so that the transmission filter and the reception filter are phase matched when it is connected to the transmission line.
発明の効果  The invention's effect
[0009] 本発明によれば、位相整合回路の長さを減少させることができ、送受切換器の実装 面積及びパッケージ厚みの低減が可能となり、力べして送受切換器の小型化が可能 となる。  [0009] According to the present invention, the length of the phase matching circuit can be reduced, the mounting area of the duplexer and the package thickness can be reduced, and the duplexer can be reduced in size. .
図面の簡単な説明  Brief Description of Drawings
[0010] [図 1]本発明の送受切換器の一実施形態を示す回路図である。  FIG. 1 is a circuit diagram showing an embodiment of a duplexer according to the present invention.
[図 2]90° 移相器を使用している比較のための送受切換器を示す回路図である。  FIG. 2 is a circuit diagram showing a duplexer for comparison using a 90 ° phase shifter.
[図 3]キヤビティ部を有する薄膜バルタ音波共振器の構造を説明するための模式的 断面図である。  FIG. 3 is a schematic cross-sectional view for explaining the structure of a thin film Balta acoustic resonator having a cavity portion.
[図 4]音響ミラー層を有する薄膜バルタ音波共振器の構造を説明するための模式的 断面図である。 [Fig.4] Schematic for explaining the structure of a thin-film Balta acoustic resonator with an acoustic mirror layer It is sectional drawing.
園 5]梯子型フィルタを示す回路図である。 FIG. 5 is a circuit diagram showing a ladder filter.
園 6]梯子型フィルタを示す回路図である。 Fig. 6 is a circuit diagram showing a ladder filter.
園 7]位相整合前のフィルタ特性を示すアドミッタンス図である。 7] An admittance diagram showing filter characteristics before phase matching.
園 8]位相整合後のフィルタ特性を示すアドミッタンス図である。 8] An admittance diagram showing the filter characteristics after phase matching.
園 9A]図 2の送受切換器の模式的構成図である。 9A] is a schematic configuration diagram of the duplexer in FIG.
園 9B]図 1の送受切換器の模式的構成図である。 9B] is a schematic configuration diagram of the duplexer in FIG.
園 10]本発明の実施形態に係わる受信フィルタの位相整合前のフィルタ特性を示す アドミッタンス図である。 10] FIG. 10 is an admittance diagram showing filter characteristics before phase matching of the reception filter according to the embodiment of the present invention.
園 11]本発明の実施形態に係わる受信フィルタの位相整合後のフィルタ特性を示す アドミッタンス図である。 11] FIG. 11 is an admittance diagram showing filter characteristics after phase matching of the reception filter according to the embodiment of the present invention.
[図 12]比較のための送信フィルタの位相整合前のフィルタ特性を示すアドミッタンス 図である。  FIG. 12 is an admittance diagram showing filter characteristics before phase matching of a transmission filter for comparison.
園 13]本発明の実施形態に係わる送信フィルタの位相整合前のフィルタ特性を示す アドミッタンス図である。 13] FIG. 13 is an admittance diagram showing filter characteristics before phase matching of the transmission filter according to the embodiment of the present invention.
[図 14]比較のための送信フィルタの位相整合後のフィルタ特性を示すアドミッタンス 図である。  FIG. 14 is an admittance diagram showing filter characteristics after phase matching of a transmission filter for comparison.
園 15]本発明の実施形態に係わる送信フィルタの位相整合後のフィルタ特性を示す アドミッタンス図である。 15] FIG. 15 is an admittance diagram showing the filter characteristics after phase matching of the transmission filter according to the embodiment of the present invention.
符号の説明 Explanation of symbols
1 アンテナ端子  1 Antenna terminal
2 受信フィルタの第 1の端子  2 Receive filter first terminal
3 送信フィルタの第 3の端子  3 Transmit filter third terminal
4 受信フィルタの第 2の端子  4 Receive filter second terminal
5 送信フィルタの第 4の端子  5 Transmit filter fourth terminal
6 90° 移相器  6 90 ° phase shifter
7 受信フィルタ  7 Receive filter
8 送信フィルタ 9 位相整合用インダクタ 8 Transmit filter 9 Phase matching inductor
9A インタクタ  9A Inductor
10 1 送線  10 1 Transmission
11 薄膜バルタ音波共振器  11 Thin-film Balta acoustic resonator
12 梯子型フィルタ  12 Ladder filter
13 上部電極  13 Upper electrode
14 圧電層  14 Piezoelectric layer
15 下部電極  15 Bottom electrode
16 基板  16 substrate
17 キヤビティき  17 Caviarity
18 音響ミラー層  18 Acoustic mirror layer
19 共振部  19 Resonant part
20 通過帯域  20 Passband
21 遮断帯域  21 Stop band
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0012] 以下、本発明の実施形態について、図面を用いて説明する。図 1は、本発明の送 受切換器の一実施形態を示す回路図である。本実施形態の送受切換器は、第 1の 端子 2及び第 2の端子 4を備えた受信薄膜バノレク音波共振器フィルタ (以下、「受信フ ィルタ」とレ、うことがある) 7と、第 3の端子 3及び第 4の端子 5を備えた送信薄膜バノレク 音波共振器フィルタ(以下、「送信フィルタ」ということがある) 8と、伝送線 10を介して 受信フィルタ 7の第 1の端子 2及び送信フィルタ 8の第 3の端子 3に接続された共通端 子としてのアンテナ端子 1とを有する。受信フィルタ 7の第 2の端子 4には不図示の受 信回路が接続され、送信フィルタ 8の第 4の端子 5には不図示の送信回路が接続され 、アンテナ端子 1には不図示のアンテナが接続される。受信フィルタ 7及び送信フィル タ 8は、いずれも、薄膜バルタ音波共振器 (FBAR) 11を備えた梯子型フィルタである  Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a circuit diagram showing an embodiment of a transmission / reception switching device of the present invention. The transmission / reception switching device of the present embodiment includes a reception thin film banolek acoustic resonator filter (hereinafter sometimes referred to as a “reception filter”) 7 having a first terminal 2 and a second terminal 4, Transmitting thin film banoroke sonic resonator filter (hereinafter sometimes referred to as “transmitting filter”) 8 having terminal 3 of 3 and fourth terminal 5 and first terminal 2 of receiving filter 7 through transmission line 10 And an antenna terminal 1 as a common terminal connected to the third terminal 3 of the transmission filter 8. A reception circuit (not shown) is connected to the second terminal 4 of the reception filter 7, a transmission circuit (not shown) is connected to the fourth terminal 5 of the transmission filter 8, and an antenna (not shown) is connected to the antenna terminal 1. Is connected. Each of the reception filter 7 and the transmission filter 8 is a ladder filter having a thin film Balta acoustic resonator (FBAR) 11.
[0013] 伝送線 10には、位相整合用インダクタ 9の一端が接続されている。位相整合用イン ダクタ 9の他端は、グランドに接続されている。受信フィルタ 7及び送信フィルタ 8は、 後述のような特定の特性をもつ。このような受信フィルタ 7と送信フィルタ 8と位相整合 用インダクタ 9との組み合わせを採用することにより、後述のように、薄膜バルタ音波 共振器の特徴である小型化の利点を生力 て、小型の送受切換器を提供することが 可能となる。 [0013] One end of a phase matching inductor 9 is connected to the transmission line 10. The other end of the phase matching inductor 9 is connected to the ground. The reception filter 7 and transmission filter 8 are It has specific characteristics as described below. By adopting such a combination of the reception filter 7, the transmission filter 8, and the phase matching inductor 9, the small size characteristic of the thin film Baltha acoustic wave resonator can be utilized as described later, and a small size can be achieved. It is possible to provide a duplexer.
[0014] 図 3は薄膜バルタ音波共振器 11の構造を説明するための模式的断面図である。図  FIG. 3 is a schematic cross-sectional view for explaining the structure of the thin film Balta acoustic resonator 11. Figure
3に示すように、薄膜バルタ音波共振器 11は、凹部により形成されるキヤビティ部 17 を上部に有する基板 16と、該基板 16上に順に形成されたパターン状下部電極 15、 圧電層 14及びパターン状上部電極 13からなる積層体とを有する。該積層体は、キヤ ビティ部 17をまたぐように形成されており、キヤビティ部 17に対応する領域に形成さ れる共振部 19を有する。共振部 19は、膜厚方向に見て上部電極 13、圧電層 14及 び下部電極 15が重なり合った積層構造をもつ。尚、薄膜バルタ音波共振器 11にお いては、上部電極 13の上面や下部電極 15の下面に、パッシベーシヨン層や支持層 等を設けてもよい。  As shown in FIG. 3, the thin film Baltha acoustic resonator 11 includes a substrate 16 having a cavity portion 17 formed thereon by a concave portion, a patterned lower electrode 15 formed in order on the substrate 16, a piezoelectric layer 14 and a pattern. And a laminated body composed of the upper electrode 13 having the shape. The laminate is formed so as to straddle the cavity part 17 and has a resonance part 19 formed in a region corresponding to the cavity part 17. The resonance part 19 has a laminated structure in which the upper electrode 13, the piezoelectric layer 14, and the lower electrode 15 are overlapped when viewed in the film thickness direction. In the thin film Balta acoustic resonator 11, a passivation layer, a support layer, and the like may be provided on the upper surface of the upper electrode 13 and the lower surface of the lower electrode 15.
[0015] 上部電極 13としては、モリブデン(Mo)、金(Au)、アルミニウム(A1)、ルテニウム( Ru)、白金 (Pt)、タングステン (W)及びチタン (Ti)などの適当な材料からなるものを 用いることができる。  The upper electrode 13 is made of a suitable material such as molybdenum (Mo), gold (Au), aluminum (A1), ruthenium (Ru), platinum (Pt), tungsten (W), and titanium (Ti). Can be used.
[0016] 圧電層 14としては、窒化アルミニウム (A1N)及び酸化亜鉛 (Zn〇)などの適当な材 料からなるものを用いることができる。  [0016] As the piezoelectric layer 14, a layer made of an appropriate material such as aluminum nitride (A1N) and zinc oxide (ZnO) can be used.
[0017] 下部電極 15としては、モリブデン(Mo)、金(Au)、アルミニウム(A1)、ルテニウム([0017] As the lower electrode 15, molybdenum (Mo), gold (Au), aluminum (A1), ruthenium (
Ru)、白金 (Pt)、タングステン (W)及びチタン (Ti)などの適当な材料からなるものを 用いることができる。 A material made of a suitable material such as Ru), platinum (Pt), tungsten (W) and titanium (Ti) can be used.
[0018] 基板 16としては、シリコン(Si)、酸化シリコン(Si〇)、ガリウム砒素(GaAs)及びガ  [0018] The substrate 16 includes silicon (Si), silicon oxide (SiO), gallium arsenide (GaAs), and gallium arsenide.
2  2
ラスなどの適当な材料からなるものを用いることができる。  What consists of suitable materials, such as a lath, can be used.
[0019] また、薄膜バルタ音波共振器 11は、図 4に示すように、下部電極 15、圧電層 14及 び上部電極 13からなる積層体と基板 16との間に、高音響インピーダンスを有する層 と低音響インピーダンスを有する層とを交互に積層してなる音響ミラー層 18が設けら れたものでもよレ、。これにより、図 3に示されるようなキヤビティ部 17が設けられた構造 のものと同様に、共振部 19により発生するエネルギーを閉じ込めることができる。 [0020] 音響ミラー層 18において、高音響インピーダンス層としては金 (Au)、モリブデン( Mo)及びタングステン (W)力 なるものを用いることができ、低音響インピーダンス層 としてはシリコン(Si)、酸化シリコン(SiO )及びアルミニウム (A1)からなるものを用い In addition, as shown in FIG. 4, the thin film Balta acoustic resonator 11 is a layer having a high acoustic impedance between the substrate 16 and the laminate composed of the lower electrode 15, the piezoelectric layer 14, and the upper electrode 13. Or an acoustic mirror layer 18 formed by alternately laminating layers having low acoustic impedance. As a result, the energy generated by the resonance part 19 can be confined in the same manner as in the structure provided with the cavity part 17 as shown in FIG. In the acoustic mirror layer 18, gold (Au), molybdenum (Mo), and tungsten (W) forces can be used as the high acoustic impedance layer, and silicon (Si), an oxidation layer can be used as the low acoustic impedance layer. Using silicon (SiO 2) and aluminum (A1)
2  2
ること力 sできる。  Can power s.
[0021] 次に、薄膜バルタ音波共振器 11の製造方法について説明する。図 3に示されるよう なキヤビティ部 17を有する薄膜バルタ音波共振器 11は、基板 16の上面に下部電極 15をスパッタリングなどの蒸着法により堆積し、所望の形状にパターユングを施すェ 程と、圧電層 14をスパッタリングなどの蒸着法により堆積し、必要に応じて所望の形 状にパターユングを施す工程と、上部電極 13をスパッタリングなどの蒸着法により堆 積し、所望の形状にパターユングを施す工程と、エッチングなどにより基板 16にキヤ ビティ部 17を設ける工程とによって製造される。また、この製造方法は、上部電極 13 の上面や下部電極 15の下面にパッシベーシヨン層や支持層等を設ける工程を含ん でもよい。  Next, a method for manufacturing the thin film Balta acoustic resonator 11 will be described. The thin film Balta acoustic resonator 11 having the cavity portion 17 as shown in FIG. 3 includes depositing the lower electrode 15 on the upper surface of the substrate 16 by a vapor deposition method such as sputtering, and patterning the desired shape. The piezoelectric layer 14 is deposited by a vapor deposition method such as sputtering, and a patterning is performed in a desired shape as necessary, and the upper electrode 13 is deposited by a vapor deposition method such as sputtering, and the patterning is performed in a desired shape. And the step of providing the cavity portion 17 on the substrate 16 by etching or the like. Further, this manufacturing method may include a step of providing a passivation layer, a support layer, or the like on the upper surface of the upper electrode 13 or the lower surface of the lower electrode 15.
[0022] 図 4に示されるような音響ミラー層 18を有する薄膜バノレク音波共振器 11は、基板 1 6に高音響インピーダンスを有する層と低音響インピーダンスを有する層とをスパッタ リングなどの蒸着法により交互に積層して音響ミラー層 18を形成する工程と、下部電 極 15をスパッタリングなどの蒸着法により堆積し、所望の形状にパターニングを施す 工程と、圧電層 14をスパッタリングなどの蒸着法により堆積し、必要に応じて所望の 形状にパターユングを施す工程と、上部電極 13をスパッタリングなどの蒸着法により 堆積し、所望の形状にパターニングを施す工程によって製造される。また、この製造 方法は、上部電極 13の上面や下部電極 15の下面にパッシベーシヨン層や支持層等 を設ける工程を含んでもよレ、。  [0022] A thin-film banolek acoustic resonator 11 having an acoustic mirror layer 18 as shown in FIG. 4 is formed by depositing a layer having a high acoustic impedance and a layer having a low acoustic impedance on a substrate 16 by a deposition method such as sputtering. The process of forming the acoustic mirror layer 18 by alternately laminating, the process of depositing the lower electrode 15 by a vapor deposition method such as sputtering, and patterning it into a desired shape, and the process of depositing the piezoelectric layer 14 by a vapor deposition method such as sputtering. Then, it is manufactured by a process of patterning a desired shape as required, and a process of depositing the upper electrode 13 by a vapor deposition method such as sputtering and patterning the desired shape. The manufacturing method may include a step of providing a passivation layer, a support layer, or the like on the upper surface of the upper electrode 13 or the lower surface of the lower electrode 15.
[0023] 図 1に示されているように、受信フィルタ 7においては、第 1の端子 2と第 2の端子 4と の間で直列に接続された複数の薄膜バルタ音波共振器 (以下、「直列共振器」という ことがある) 11及び並列に接続された複数の薄膜バルタ音波共振器 (以下、「並列共 振器」ということがある) 11を有する。並列共振器 11はインダクタ 9Aを介してグランド に接続されている。これらの直列共振器 11同士または並列共振器 11同士は、同様 の周波数特性を有してもよいし互いに異なる周波数特性を有してもよい。 [0024] 送信フィルタ 8においては、第 1の端子 3と第 2の端子 5との間で直列に接続された 複数の直列共振器 11及び並列に接続された並列共振器 11を有する。並列共振器 1 1はインダクタ 9Aを介してグランドに接続されてレ、る。これらの直列共振器 11同士ま たは並列共振器 11同士は、同様の周波数特性を有してもょレ、し互いに異なる周波 数特性を有してもよい。 As shown in FIG. 1, in the reception filter 7, a plurality of thin film Balta acoustic resonators (hereinafter referred to as “the first terminal 2 and the second terminal 4”) connected in series. 11) and a plurality of thin film Balta acoustic resonators (hereinafter also referred to as “parallel resonators”) 11 connected in parallel. The parallel resonator 11 is connected to the ground via the inductor 9A. These series resonators 11 or parallel resonators 11 may have the same frequency characteristic or may have different frequency characteristics. The transmission filter 8 includes a plurality of series resonators 11 connected in series between the first terminal 3 and the second terminal 5 and a parallel resonator 11 connected in parallel. The parallel resonator 1 1 is connected to the ground via an inductor 9A. These series resonators 11 or parallel resonators 11 may have the same frequency characteristics or may have different frequency characteristics.
[0025] 受信フィルタ 7及び送信フィルタ 8は、図 5に示されるような梯子型フィルタ 12であつ てもよレ、。この梯子型フィルタ 12では、並列共振器 11は直接グランドに接続されてい る。  [0025] The reception filter 7 and the transmission filter 8 may be a ladder filter 12 as shown in FIG. In this ladder filter 12, the parallel resonator 11 is directly connected to the ground.
[0026] また、受信フィルタ 7及び送信フィルタ 8は、図 6に示されるような梯子型フィルタ 12 であってもよい。この梯子型フィルタ 12では、図 5に示される梯子型フィルタ 12にお ける薄膜バルタ音波共振器 11の少なくとも 1つを、 2つの薄膜バルタ音波共振器 11 を直列接続したものに置き換えている。  In addition, the reception filter 7 and the transmission filter 8 may be a ladder filter 12 as shown in FIG. In this ladder type filter 12, at least one of the thin film Balta acoustic resonators 11 in the ladder filter 12 shown in FIG. 5 is replaced with two thin film Balta acoustic resonators 11 connected in series.
[0027] 図 1に示すように、アンテナ端子 1と受信フィルタ 7の第 1の端子 2と送信フィルタ 8の 第 3の端子 3とが伝送線 10により接続されており、所望のフィルタ特性を得るために 伝送線 10とグランドとの間に位相整合用インダクタ 9が介在している。伝送線 10は、 送受切換器のパッケージに設けられ、受信信号及び送信信号が伝送される。位相整 合用インダクタ 9は、パッケージにラインパターンで設けてもよいし、もしくは集中イン ダクタとして形成してもよレ、。  As shown in FIG. 1, the antenna terminal 1, the first terminal 2 of the reception filter 7, and the third terminal 3 of the transmission filter 8 are connected by a transmission line 10 to obtain a desired filter characteristic. Therefore, the phase matching inductor 9 is interposed between the transmission line 10 and the ground. The transmission line 10 is provided in a package of a transmission / reception switch, and a reception signal and a transmission signal are transmitted. The phase matching inductor 9 may be provided in a line pattern on the package, or may be formed as a concentrated inductor.
[0028] 位相整合用インダクタ 9を設けることにより、受信フィルタ 7と送信フィルタ 8との位相 整合がなされる。ここで、受信フィルタ 7及び送信フィルタ 8として、以下に述べるよう な特性をもつもの同士の組み合わせを採用する。  The phase matching between the reception filter 7 and the transmission filter 8 is achieved by providing the phase matching inductor 9. Here, as the reception filter 7 and the transmission filter 8, a combination of those having the following characteristics is adopted.
[0029] 図 7は、位相整合用インダクタ 9を設ける前すなわち伝送線 10に位相整合用インダ クタ 9を接続しない時の受信フィルタ 7または送信フィルタ 8のアドミッタンス図であり、 図 8は、位相整合用インダクタ 9を設けた時すなわち図 1に示されるように伝送線 10 に位相整合用インダクタ 9を接続した時の受信フィルタ 7または送信フィルタ 8のアドミ ッタンス図である。  [0029] FIG. 7 is an admittance diagram of the reception filter 7 or the transmission filter 8 before the phase matching inductor 9 is provided, that is, when the phase matching inductor 9 is not connected to the transmission line 10, and FIG. 3 is an admittance diagram of the reception filter 7 or the transmission filter 8 when the inductor 9 is provided, that is, when the phase matching inductor 9 is connected to the transmission line 10 as shown in FIG.
[0030] 図 7に示されているように、送信フィルタ 7及び受信フィルタ 8は、伝送線 10に位相 整合用インダクタ 9を接続しない時に、通過帯域 20内にアドミツタンスの実部の値が 1 となる周波数を有し (すなわち、通過帯域 20内のいずれかの周波数におけるアドミツ タンスの実部の値が 1であり、通過帯域 20がアドミツタンスの実部が 1であることを示 す円の線上にある)、受信フィルタ 7の通過帯域 20及び遮断帯域 21ならびに送信フ ィルタ 8の通過帯域 20及び遮断帯域 21の 4つの帯域内にアドミツタンスの虚部が同 一の値 0. 5を示す周波数を有する(すなわち、通過帯域 20内のいずれかの周波数 及び遮断帯域 21内のいずれかの周波数におけるアドミツタンスの虚部が同一の値 0 . 5を有し、アドミツタンスの虚部の値 0. 5の線が通過帯域 20と遮断帯域 21とを通る) 。ここで、アドミッタンスは、送受切換器全体のアドミツタンスの値 (具体的には、たとえ ばインピーダンス 50 Ωに対応するアドミッタンス値)を 1として規格化した数値で示す [ 以下同様]。 As shown in FIG. 7, in the transmission filter 7 and the reception filter 8, when the phase matching inductor 9 is not connected to the transmission line 10, the value of the real part of admittance is 1 in the passband 20. (I.e., the value of the real part of the admittance at any frequency in the passband 20 is 1 and the passband 20 is on the circle line indicating that the real part of the admittance is 1) In the four bands, the pass band 20 and stop band 21 of the reception filter 7 and the pass band 20 and stop band 21 of the transmission filter 8, the frequencies where the imaginary part of the admittance has the same value 0.5 are shown. (I.e., the imaginary part of the admittance at any frequency in the passband 20 and any frequency in the stopband 21 has the same value 0.5, and the imaginary part of the admittance value 0.5 line) Passes through passband 20 and stopband 21). Here, admittance is a numerical value normalized by setting the admittance value of the entire duplexer (specifically, for example, the admittance value corresponding to an impedance of 50 Ω) to 1 [the same applies below].
[0031] たとえば、受信フィルタ 7についていえば、通過帯域(1920_ 1980MHz) 20内に アドミツタンスの実部の値が 1となる周波数を有し、通過帯域 20及び遮断帯域(2110 — 2170MHz) 21内にアドミツタンスの虚部が同一の値 0· 5を示す周波数を有する。 更に、送信フィルタ 8についていえば、通過帯域(2110— 2170MHz) 20内にアドミ ッタンスの実部の値が 1となる周波数を有し、通過帯域 20及び遮断帯域(1920— 19 80MHz) 20内にアドミツタンスの虚部が同一の値 0· 5を示す周波数を有する。  For example, in the case of the reception filter 7, the passband (1920 — 1980 MHz) has a frequency in which the real part of the admittance is 1 in the passband 20 and the stopband (2110 — 2170 MHz) 21. The imaginary part of the admittance has a frequency indicating the same value 0.5. Further, regarding the transmission filter 8, the pass band (2110-2170MHz) 20 has a frequency where the value of the real part of the admittance is 1, and the pass band 20 and the stop band (1920-1980MHz) 20 The imaginary part of the admittance has a frequency indicating the same value 0.5.
[0032] 図 8に示されているように、送信フィルタ 7及び受信フィルタ 8は、伝送線 10に位相 整合用インダクタ 9を接続したときに、通過帯域 20では回路全体のアドミッタンス(た とえばインピーダンス 50 Ωに対応するもの)またはインピーダンスに近いアドミッタンス またはインピーダンスの値を持ち、遮断帯域 21では送受切換器全体のアドミッタンス よりはるかに小さなアドミツタンス値をもち即ち送受切換器全体のインピーダンスより はるかに大きなインピーダンス値をもつ。尚、送信フィルタ 7及び受信フィルタ 8では、 通過帯域 20及び遮断帯域 21の双方において、アドミツタンスの虚部の値は十分に 小さい。  As shown in FIG. 8, the transmission filter 7 and the reception filter 8 have an admittance (for example, impedance) of the entire circuit in the passband 20 when the phase matching inductor 9 is connected to the transmission line 10. (Corresponding to 50 Ω) or an admittance or impedance value close to impedance, and in the cutoff band 21 has an admittance value much smaller than that of the entire duplexer, that is, an impedance value much larger than the impedance of the entire duplexer It has. In the transmission filter 7 and the reception filter 8, the value of the imaginary part of the admittance is sufficiently small in both the pass band 20 and the stop band 21.
[0033] たとえば、受信フィルタ 7についていえば、通過帯域(1920_ 1980ΜΗζ) 20では 回路全体のものに近いアドミッタンスまたはインピーダンスの値を持ち、遮断帯域(21 10_ 2170ΜΗζ) 21では回路全体のものよりはるかに小さなアドミッタンス値即ちは るかに大きなインピーダンス値をもつ。更に、送信フィルタ 8についていえば、通過帯 域(2110— 2170MHz) 20では回路全体のものに近いアドミッタンスまたはインピー ダンスの値を持ち、遮断帯域(1920— 1980MHz) 21では回路全体のものよりはる 力に小さなアドミッタンス値即ちはるかに大きなインピーダンス値をもつ。 [0033] For example, with respect to the reception filter 7, the passband (1920_1980) ζ) 20 has an admittance or impedance value close to that of the entire circuit, and the stopband (21 10_2170ΜΗζ) 21 is much more than that of the entire circuit. It has a small admittance value, that is, a very large impedance value. Furthermore, for the transmission filter 8, the passband In the region (2110-2170MHz) 20, the admittance or impedance value is close to that of the entire circuit, and in the stopband (1920—1980MHz) 21, the admittance value is much smaller than that of the entire circuit, that is, the impedance value is much larger. It has.
[0034] 受信フィルタ 7及び送信フィルタ 8は、それぞれの通過帯域 20及び遮断帯域 21内 において容量性を持つ。これはすなわち、図 7において受信フィルタ 7及び送信フィ ルタ 8の通過帯域 20及び遮断帯域 21がチャートの下半分に位置することを意味する 。これによれば、位相整合用インダクタ 9の付カ卩により位相整合を行って、図 8のような 良好な特性をもつ送受切換器を得ることができる。  The reception filter 7 and the transmission filter 8 are capacitive in the pass band 20 and the stop band 21, respectively. This means that in FIG. 7, the pass band 20 and the stop band 21 of the reception filter 7 and the transmission filter 8 are located in the lower half of the chart. According to this, it is possible to obtain a duplexer having good characteristics as shown in FIG. 8 by performing phase matching with the addition of the phase matching inductor 9.
[0035] 位相整合用インダクタ 9のインダクタンス Lは、次のようにして決定することができる。  [0035] The inductance L of the phase matching inductor 9 can be determined as follows.
[0036] 通過帯域 20においては、アドミッタンス Yは、  [0036] In passband 20, admittance Y is
図 7では、 Y =1.0 + 0.5j  In Figure 7, Y = 1.0 + 0.5j
図 8では、 Y =1.0 + 0. Oj  In Figure 8, Y = 1.0 + 0. Oj
となる。  It becomes.
[0037] 遮断帯域 21においては、アドミッタンス Yは、  [0037] In stopband 21, admittance Y is
2  2
図 7では、 Y =X+0.5i  In Figure 7, Y = X + 0.5i
2  2
図 8では、 Y =X+0. Oj  In Figure 8, Y = X + 0.Oj
2  2
となる。  It becomes.
[0038] 図 7の状態から図 8の状態へと移行する(すなわち位相整合用インダクタ 9を付加す る)前後において、アドミッタンス Yの実部は変化しなレ、。虚部の変化分は、  [0038] The real part of the admittance Y does not change before and after the transition from the state of FIG. 7 to the state of FIG. 8 (that is, the addition of the phase matching inductor 9). The change of the imaginary part is
Y Y =0.0j-0.5j = -0.5j  Y Y = 0.0j-0.5j = -0.5j
2 1  twenty one
であり、従って、  And therefore
jWL/50 = l/(-0.5j) j W L / 50 = l / (-0.5j)
WL/50 = 2.0  WL / 50 = 2.0
L=100/W =100/(2 πΐ)= 100/(2 π X2045X106) =7.8[nH] L = 100 / W = 100 / (2 πΐ) = 100 / (2 π X2045X10 6 ) = 7.8 [nH]
となる。ここで、周波数 fの値として通過帯域と遮断帯域との中心周波数 2045 [MHz ]を用いた。  It becomes. Here, the center frequency 2045 [MHz] between the pass band and the stop band was used as the value of the frequency f.
[0039] 受信フィルタ及び送信フィルタのそれぞれに、このインダクタンスが備えられるので 、これらインダクタを共通化して、インダクタ 9のインダクタンスを 3· 9 [nH]とすればよ レ、。このようなインダクタ 9の長さは、典型的な線幅及びパターンで形成すると、後述 のように、約 6· 0 [mm]とすることができる。 [0039] Each of the reception filter and the transmission filter is provided with this inductance. If these inductors are shared, the inductance of inductor 9 should be 3 · 9 [nH]. If the length of the inductor 9 is formed with a typical line width and pattern, it can be set to approximately 6.0 mm [mm] as described later.
[0040] 同様にして、 目的とする位相整合状態でのアドミッタンス Yの虚部の値と位相整合 用インダクタ 9を付加する前のアドミッタンス Yの虚部との差である虚部変化分に基づ き、所要の位相整合用インダクタ 9のインダクタンスを設定することが可能であることが 理解されるであろう。 [0040] Similarly, based on the imaginary part change, which is the difference between the imaginary part of admittance Y in the target phase matching state and the imaginary part of admittance Y before adding phase matching inductor 9. It will be understood that the required inductance of the phase matching inductor 9 can be set.
[0041] 以上説明したように、上記のような受信フィルタ 7及び送信フィルタ 8を用いることに より、受信フィルタ 7及び送信フィルタ 8の位相整合量を同一にすることができる。この ため、アンテナ端子 1と受信フィルタ 7の第 1の端子 2と送信フィルタ 8の第 3の端子 3と を接続する伝送線 10に、一端がグランドに接続された位相整合用インダクタ 9の他端 を接続することにより、受信フィルタ 7及び送信フィルタ 8の位相を所望の値とすること ができる。  As described above, by using the reception filter 7 and the transmission filter 8 as described above, the phase matching amounts of the reception filter 7 and the transmission filter 8 can be made the same. Therefore, the other end of the phase matching inductor 9 whose one end is connected to the ground is connected to the transmission line 10 that connects the antenna terminal 1, the first terminal 2 of the reception filter 7, and the third terminal 3 of the transmission filter 8. By connecting, the phases of the reception filter 7 and the transmission filter 8 can be set to desired values.
実施例  Example
[0042] 以下、実施例により本発明を説明する。尚、この実施例では、本発明に属する送受 切換器と本発明に属さなレ、送受切換器とを比較した。  [0042] Hereinafter, the present invention will be described by way of examples. In this embodiment, the transmission / reception switch belonging to the present invention is compared with the tray / transmission / reception switch belonging to the present invention.
[0043] 先ず、図 2に、上記特許文献 1に記載されるような 90° 移相器を使用している比較 のための送受切換器の回路図を示す。この図において、図 1に示される素子と同様 な素子には同一の符号が付されている。アンテナ端子 1及び送信フィルタ 8の第 3の 端子 3と受信フィルタ 7の第 1の端子 2との間に、 90° 移相器 6が介在している。  [0043] First, FIG. 2 shows a circuit diagram of a transmission / reception switch for comparison using a 90 ° phase shifter as described in Patent Document 1. In this figure, elements similar to those shown in FIG. 1 are given the same reference numerals. A 90 ° phase shifter 6 is interposed between the antenna terminal 1 and the third terminal 3 of the transmission filter 8 and the first terminal 2 of the reception filter 7.
[0044] 図 9Aに、この送受切換器の模式的構成図を示す。図 9Aでは、送受切換器のパッ ケージを構成し且つ積層されている複数の誘電体基板を互いに分離して示している 。最上層の基板には、受信フィルタ 7のチップ及び送信フィルタ 8のチップが実装され ており、インダクタ 9Aの一部を構成する導体パターンが形成されている。上から 2番 目の層の基板には、インダクタ 9Aの他部を構成する導体パターンが形成されている 。上から 3番目の層の基板には、グランド Gを構成する導体パターンが形成されてい る。上から 4番目の層の基板には、スルーホールが形成されている。上から 5番目の 層の基板には、 90° 移相器 6を構成する λ /4長のライン状導体パターンが形成さ れている。上から 6番目の層の基板には、スルーホールが形成されている。上から 7 番目の層の基板には、グランド Gを構成する導体パターンが形成されている。 FIG. 9A shows a schematic configuration diagram of this duplexer. In FIG. 9A, a plurality of dielectric substrates constituting the duplexer package and stacked are shown separated from each other. On the uppermost substrate, the chip of the reception filter 7 and the chip of the transmission filter 8 are mounted, and a conductor pattern constituting a part of the inductor 9A is formed. On the second layer substrate from the top, a conductor pattern constituting the other part of the inductor 9A is formed. The conductor pattern that forms the ground G is formed on the substrate in the third layer from the top. A through hole is formed in the fourth layer from the top. On the fifth layer from the top, the line conductor pattern of λ / 4 length that forms the 90 ° phase shifter 6 is formed. It is. A through-hole is formed in the sixth layer substrate from the top. On the seventh layer from the top, the conductor pattern that forms the ground G is formed.
[0045] 表 1に、 90° 移相器 6を構成するえ /4長のライン状導体パターンを形成する際に 必要なライン長さを示す。表 1に示されるように、図 2の送受切換器においては、 90° 移相器 6のライン状導体パターンの線路長として 13. 8mm必要であり、さらにこのラ イン状導体パターンの上方及び下方にグランド Gの導体パターンが必要であり、その 間にはそれぞれ 0. 2mmの間隔が必要となる。このため、基板の必要枚数が増え、 パッケージの厚さが厚くなり小型にできない。  [0045] Table 1 shows the line length necessary to form the / 4 length line-shaped conductor pattern constituting the 90 ° phase shifter 6. As shown in Table 1, in the duplexer shown in Fig. 2, the line length of the line conductor pattern of 90 ° phase shifter 6 needs to be 13.8 mm, and above and below this line conductor pattern. In addition, a ground G conductor pattern is required, and a distance of 0.2 mm is required between them. For this reason, the required number of substrates increases, the package becomes thicker and cannot be made smaller.
[0046] [表 1]  [0046] [Table 1]
Figure imgf000013_0001
Figure imgf000013_0001
[0047] これに対し、図 1の送受切換器の模式的構成図を、図 9Bに示す。図 9Bでは、送受 切換器のパッケージを構成し且つ積層されている複数の誘電体基板を互いに分離し て示している。最上層の基板には、受信フィルタ 7のチップ及び送信フィルタ 8のチッ プが実装されており、インダクタ 9Aの一部を構成する導体パターンが形成されている 。上から 2番目の層の基板には、インダクタ 9Aの他部を構成する導体パターンが形 成されている。上から 3番目の層の基板には、位相整合用インダクタ 9を構成する導 体パターンが形成され、更にスルーホールが形成されている。上から 4番目の層の基 板には、グランド Gを構成する導体パターンが形成されてレ、る。 [0048] 図 1の送受切換器においては、位相整合用インダクタ 9の導体パターンの線路長は 典型的には 6. Ommで構成でき、実装面積の低減が可能であり、し力も、位相整合 用インダクタ 9の導体パターンの上方及び下方にグランドパターンが必要ではないの で、基板の枚数の低減が可能となり 0. 3mm程度に薄くすることができる。 [0047] On the other hand, FIG. 9B shows a schematic configuration diagram of the duplexer in FIG. In FIG. 9B, a plurality of dielectric substrates constituting the duplexer package and stacked are shown separated from each other. On the uppermost substrate, the chip of the reception filter 7 and the chip of the transmission filter 8 are mounted, and a conductor pattern constituting a part of the inductor 9A is formed. On the substrate of the second layer from the top, a conductor pattern that forms the other part of the inductor 9A is formed. On the substrate of the third layer from the top, a conductor pattern constituting the phase matching inductor 9 is formed, and a through hole is further formed. A conductive pattern composing the ground G is formed on the fourth layer from the top. [0048] In the duplexer shown in Fig. 1, the line length of the conductor pattern of the phase matching inductor 9 can be typically configured as 6. Omm, and the mounting area can be reduced. Since no ground pattern is required above and below the conductor pattern of the inductor 9, the number of substrates can be reduced and the thickness can be reduced to about 0.3 mm.
[0049] 図 10は、本実施例に係る受信フィルタ 7のアドミッタンスチャート特性図である。図 1 0の特性を持つフィルタは、通過帯域 20内にアドミツタンスの実部の値が 1となる周波 数を有し、通過帯域 20内及び遮断帯域 21内にアドミツタンスの虚部が同一の値 0. 5 を示す周波数を有し、通過帯域 20及び遮断帯域 21において容量性を持つ。即ち、 受信フイノレタ 7は、通過帯域 20のいずれかの周波数にてアドミツタンスの実部が 1で あり、通過帯域 20のいずれかの周波数と遮断帯域 21のいずれかの周波数とにおけ るアドミツタンスの虚部の値が同一の値 0. 5をとり、通過帯域 20及び遮断帯域 21に おいて容量性を持っている。このような特性を示すフィルタを用レ、、更に位相整合用 インダクタ 9を設けた場合、受信フィルタ 7は、図 11に示すように、通過帯域 20では送 受切換器の回路全体のアドミッタンス及びインピーダンスに近いアドミッタンス及びィ ンピーダンスの値を持ち、遮断帯域 21では送受切換器の回路全体のものよりはるか に小さなアドミッタンス値及びはるかに大きなインピーダンス値を持つ。また、通過帯 域 20のいずれかの周波数と遮断帯域 21のいずれかの周波数とにおけるアドミツタン スの虚部の値が 0である。  FIG. 10 is an admittance chart characteristic diagram of the reception filter 7 according to the present embodiment. The filter having the characteristic of Fig. 10 has a frequency where the value of the real part of the admittance is 1 in the pass band 20, and the imaginary part of the admittance is the same value in the pass band 20 and the stop band 21. It has a frequency of 5 and is capacitive in passband 20 and stopband 21. In other words, the reception filter 7 has an admittance real part of 1 at any frequency in the passband 20 and an imaginary admittance at any frequency in the passband 20 and any frequency in the stopband 21. The value of the part takes the same value of 0.5, and it has a capacity in the pass band 20 and the stop band 21. When a filter having such characteristics is used and a phase matching inductor 9 is further provided, the reception filter 7 has an admittance and impedance of the entire transmission / reception switch circuit in the passband 20 as shown in FIG. The stopband 21 has a much smaller admittance value and a much larger impedance value than those of the entire duplexer circuit. Also, the value of the imaginary part of the admittance at any frequency in the passband 20 and any frequency in the stopband 21 is zero.
[0050] 一方、図 13は、本実施形態の送信フィルタ 8のアドミッタンスチャート特性図であり、 図 12は比較のための送信フィルタ 8のアドミッタンスチャート特性図である。  On the other hand, FIG. 13 is an admittance chart characteristic diagram of the transmission filter 8 of the present embodiment, and FIG. 12 is an admittance chart characteristic diagram of the transmission filter 8 for comparison.
[0051] 図 12の特性を持つフィルタは、通過帯域 20のある周波数においてアドミッタンスの 実部の値が 1であるが、通過帯域 20のいずれかの周波数と遮断帯域 21のいずれか の周波数とにおいてアドミツタンスの虚部の値が同一とはなっていなレ、。このような特 性を示すフィルタを用レ、、更に位相整合用インダクタ 9を設けた場合、送信フィルタ 8 は、図 14に示すような特性を持つようになり、通過帯域 20のいずれかの周波数では アドミツタンスの虚部の値が 0である力 S、遮断帯域 21ではアドミツタンスの虚部の値が 0となる周波数はない。従って、この場合には、位相整合が不十分であり送受切換器 の特性が不十分となる。 [0052] 図 13の特性を持つフィルタは、通過帯域 20のある周波数においてアドミッタンスの 実部の値が 1であり、通過帯域 20のいずれかの周波数と遮断帯域 21のいずれかの 周波数においてアドミツタンスの虚部の値が同一の値 0. 5をとり、通過帯域 20及び 遮断帯域 21において容量性を持つ。このような特性を示すフィルタを用レ、、更に位 相整合用インダクタ 9を設けた場合、送信フィルタ 8は、図 15に示すような特性を持つ ようになり、通過帯域 20では送受切換器の回路全体のアドミッタンス及びインピーダ ンスに近いアドミッタンス及びインピーダンスの値を持ち、遮断帯域 21では回路全体 のものよりはるかに小さなアドミッタンス値及びはるかに大きなインピーダンス値を持 つ。また、通過帯域 20のいずれかの周波数と遮断帯域 21のいずれかの周波数とに おけるアドミツタンスの虚部の値が 0である。 The filter having the characteristics shown in FIG. 12 has a admittance real part value of 1 at a certain frequency in the passband 20, but at any frequency in the passband 20 and any frequency in the stopband 21. The value of the imaginary part of admittance is not the same. When a filter exhibiting such characteristics is used and a phase matching inductor 9 is provided, the transmission filter 8 has the characteristics shown in FIG. In the force S where the value of the imaginary part of admittance is 0, there is no frequency in the stopband 21 where the value of the imaginary part of admittance is 0. Therefore, in this case, the phase matching is insufficient and the characteristics of the duplexer are insufficient. In the filter having the characteristics shown in FIG. 13, the real part of the admittance is 1 at a certain frequency in the passband 20, and the admittance at any frequency in the passband 20 and any frequency in the stopband 21. The value of the imaginary part is the same value of 0.5, and the passband 20 and the stopband 21 are capacitive. When a filter exhibiting such characteristics is used and a phase matching inductor 9 is further provided, the transmission filter 8 has the characteristics shown in FIG. It has admittance and impedance values that are close to the overall circuit admittance and impedance, and has a much smaller admittance value and a much larger impedance value in the stopband 21 than the entire circuit. Further, the value of the imaginary part of the admittance at any frequency in the pass band 20 and any frequency in the stop band 21 is zero.
[0053] このように、本実施形態では、受信フィルタ 7及び送信フィルタ 8として、伝送線 10 に位相整合用インダクタ 9を接続しないときに、それぞれの通過帯域 20内にアドミッタ ンスの実部の値が 1となる周波数を有し、受信フィルタ 7の通過帯域 20及び遮断帯域 21ならびに送信フィルタ 8の通過帯域 20及び遮断帯域 21の 4つの帯域内にアドミツ タンスの虚部が同一の値を示す周波数を有し、前記 4つの帯域において容量性をも つものを使用している。このため、受信フィルタ 7及び送信フィルタ 8のそれぞれでの 位相整合量が同一となる。力べして、単一の位相整合用インダクタ 9を備えることで、 受信フィルタ 7及び送信フィルタ 8のレ、ずれにぉレ、ても、送受切換器の構成にぉレヽて 重要な通過帯域 20で送受切換器の回路全体のアドミッタンス及びインピーダンスに 近いアドミッタンス及びインピーダンスの値を持ち、遮断帯域では送受切換器の回路 全体のものよりアドミッタンスをはるかに小さな値とし且つインピーダンスをはるかに大 きな値とすることができる。従って、この場合には、位相整合が十分であり送受切換器 の特性は良好である。  As described above, in this embodiment, when the phase matching inductor 9 is not connected to the transmission line 10 as the reception filter 7 and the transmission filter 8, the value of the real part of the admittance in each passband 20 Is a frequency where the imaginary part of the admittance has the same value in the four bands of the pass band 20 and stop band 21 of the reception filter 7 and the pass band 20 and stop band 21 of the transmission filter 8. And have the capacities in the four bands. For this reason, the amount of phase matching in each of the reception filter 7 and the transmission filter 8 is the same. In addition, by providing a single phase matching inductor 9, even if the reception filter 7 and the transmission filter 8 are misaligned or misaligned, the passband 20 is important for the configuration of the duplexer. The admittance and impedance values are close to the admittance and impedance of the entire duplexer circuit. In the cutoff band, the admittance is much smaller and the impedance is much larger than the entire duplexer circuit. be able to. Therefore, in this case, the phase matching is sufficient and the characteristics of the duplexer are good.

Claims

請求の範囲 The scope of the claims
[1] 第 1の端子及び第 2の端子を備えた受信フィルタと、第 3の端子及び第 4の端子を備 えた送信フィルタと、前記第 1の端子と前記第 3の端子とに接続された共通端子とを 有する送受切換器であって、  [1] connected to a reception filter having a first terminal and a second terminal, a transmission filter having a third terminal and a fourth terminal, and the first terminal and the third terminal. A duplexer having a common terminal,
前記受信フィルタ及び前記送信フィルタはいずれも薄膜バルタ音波共振器を備え た梯子型フィルタであり、  Each of the reception filter and the transmission filter is a ladder filter having a thin film Balta acoustic resonator,
前記第 1の端子と前記第 3の端子と前記共通端子とを接続する伝送線に、一端が グランドに接続された位相整合用インダクタの他端が接続されており、  The other end of the phase matching inductor having one end connected to the ground is connected to the transmission line connecting the first terminal, the third terminal, and the common terminal,
前記受信フィルタ及び前記送信フィルタは、前記伝送線に前記位相整合用インダ クタを接続しないときに、それぞれの通過帯域内にアドミツタンスの実部の値が 1とな る周波数を有し、前記受信フィルタの通過帯域及び遮断帯域ならびに前記送信フィ ルタの通過帯域及び遮断帯域の 4つの帯域内にアドミツタンスの虚部が同一の値を 示す周波数を有し、前記 4つの帯域において容量性をもつことを特徴とする送受切 換器。  The reception filter and the transmission filter have a frequency at which the value of the real part of admittance is 1 in each pass band when the phase matching inductor is not connected to the transmission line, and the reception filter The imaginary part of the admittance has the same frequency in the four bands of the pass band and stop band of the transmission filter and the pass band and stop band of the transmission filter, and the four bands have the capacity. The handset switch.
[2] 前記位相整合用インダクタのインダクタンスは、それを前記伝送線に接続したときに、 前記送信フィルタと前記受信フィルタとが位相整合するように、設定されてレ、ることを 特徴とする、請求項 1に記載の送受切換器。  [2] The inductance of the phase matching inductor is set so that the transmission filter and the reception filter are phase matched when it is connected to the transmission line. The duplexer according to claim 1.
PCT/JP2007/059482 2006-05-09 2007-05-08 Transmission/reception switching device WO2007129696A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-130078 2006-05-09
JP2006130078A JP2009182368A (en) 2006-05-09 2006-05-09 Duplexer

Publications (1)

Publication Number Publication Date
WO2007129696A1 true WO2007129696A1 (en) 2007-11-15

Family

ID=38667804

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/059482 WO2007129696A1 (en) 2006-05-09 2007-05-08 Transmission/reception switching device

Country Status (2)

Country Link
JP (1) JP2009182368A (en)
WO (1) WO2007129696A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010141570A (en) * 2008-12-11 2010-06-24 Ube Ind Ltd Piezoelectric thin film acoustic resonator, and manufacturing method of the same
CN107196027A (en) * 2017-05-08 2017-09-22 电子科技大学 One kind eight double-channel duplex devices of miniaturization
CN113225098A (en) * 2021-04-25 2021-08-06 深圳市时代速信科技有限公司 Radio frequency transceiver module

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101716335B1 (en) 2010-12-03 2017-03-15 삼성전자주식회사 Low pass filter using bulk acoustic wave resonator

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002330056A (en) * 2001-04-26 2002-11-15 Murata Mfg Co Ltd Surface acoustic wave unit and communication equipment
JP2005260915A (en) * 2004-02-09 2005-09-22 Murata Mfg Co Ltd Branching filter and communication device
JP2007074698A (en) * 2005-08-08 2007-03-22 Fujitsu Media Device Kk Duplexer and ladder type filter
JP2007110714A (en) * 2005-10-07 2007-04-26 Infineon Technologies Ag Baw duplexer without phase shifter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002330056A (en) * 2001-04-26 2002-11-15 Murata Mfg Co Ltd Surface acoustic wave unit and communication equipment
JP2005260915A (en) * 2004-02-09 2005-09-22 Murata Mfg Co Ltd Branching filter and communication device
JP2007074698A (en) * 2005-08-08 2007-03-22 Fujitsu Media Device Kk Duplexer and ladder type filter
JP2007110714A (en) * 2005-10-07 2007-04-26 Infineon Technologies Ag Baw duplexer without phase shifter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010141570A (en) * 2008-12-11 2010-06-24 Ube Ind Ltd Piezoelectric thin film acoustic resonator, and manufacturing method of the same
CN107196027A (en) * 2017-05-08 2017-09-22 电子科技大学 One kind eight double-channel duplex devices of miniaturization
CN113225098A (en) * 2021-04-25 2021-08-06 深圳市时代速信科技有限公司 Radio frequency transceiver module

Also Published As

Publication number Publication date
JP2009182368A (en) 2009-08-13

Similar Documents

Publication Publication Date Title
KR100901954B1 (en) Bulk acoustic wave resonator with two piezoelectric layers as balun in filters and duplexers
JP4523637B2 (en) A duplexer based on coupled BAW resonators
US7825747B2 (en) Thin-film BAW filter, and a method for production of a thin-film BAW filter
JP3996379B2 (en) Filter structure and configuration including a piezoelectric resonator
US9240768B2 (en) Duplexer with transmission and reception filters each including resonators formed on different chips
US9595939B2 (en) Reactance filter having a steep edge
US8941450B2 (en) Acoustic wave device having a frequency control film
US8610333B2 (en) Acoustic wave devices
US8164398B2 (en) Resonator, filter and electronic device
US20040140865A1 (en) Thin-film piezoelectric resonator and method for fabricating the same
CN102931942B (en) Acoustic wave device
JP2005333644A (en) Filter incorporating inductor, duplexer and its manufacturing process
JP2006094457A (en) Fbar filter having unbalanced-balanced input/output structure
JP4791181B2 (en) Thin film bulk acoustic wave resonator, filter and communication device including the same, and method for manufacturing thin film bulk acoustic wave resonator
WO2021203761A1 (en) Filter, multiplexer, and communication device
US8925163B2 (en) Method of manufacturing laterally coupled BAW thin films
US7834720B2 (en) Bulk acoustic wave filter device and a method for trimming a bulk acoustic wave filter device
US8344590B2 (en) Acoustic wave device with frequency control film
US10069478B2 (en) Acoustic wave filter, duplexer, and module
WO2007129696A1 (en) Transmission/reception switching device
JP4997961B2 (en) Integrated duplexer
CN112187213A (en) Duplexer design method, duplexer, multiplexer and communication equipment
US20230172071A1 (en) Piezoelectric thin film resonator and method of manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07742917

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 07742917

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)