WO2007129605A1 - Method for producing (meth)acrylate and (meth)acrylate composition - Google Patents

Method for producing (meth)acrylate and (meth)acrylate composition Download PDF

Info

Publication number
WO2007129605A1
WO2007129605A1 PCT/JP2007/059162 JP2007059162W WO2007129605A1 WO 2007129605 A1 WO2007129605 A1 WO 2007129605A1 JP 2007059162 W JP2007059162 W JP 2007059162W WO 2007129605 A1 WO2007129605 A1 WO 2007129605A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
group
acrylate
compound
alcohol
Prior art date
Application number
PCT/JP2007/059162
Other languages
French (fr)
Japanese (ja)
Inventor
Shinji Kojima
Naoki Hashimoto
Takehiro Oiwake
Yasuyuki Sanai
Original Assignee
Toagosei Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toagosei Co., Ltd. filed Critical Toagosei Co., Ltd.
Priority to CN200780016539.4A priority Critical patent/CN101437786B/en
Priority to JP2008514448A priority patent/JPWO2007129605A1/en
Publication of WO2007129605A1 publication Critical patent/WO2007129605A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/08Preparation of carboxylic acid esters by reacting carboxylic acids or symmetrical anhydrides with the hydroxy or O-metal group of organic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/48Separation; Purification; Stabilisation; Use of additives
    • C07C67/62Use of additives, e.g. for stabilisation

Definitions

  • the present invention relates to a method for producing (meth) acrylate and a (meth) acrylate composition.
  • (Meth) atalylate is cured by ultraviolet irradiation or electron beam irradiation, and as a compounding component of a photocurable composition, it is used in various industrial applications such as optical lenses, printing inks, coating agents, and adhesives. Used.
  • the (meth) acrylate composition containing a polymer component causes uneven curing and turbidity, so it cannot be suitably used in applications such as optical lenses where uniformity and light transmission are important.
  • the (meth) atalylate generated deteriorates water resistance, so when used for coating agents and adhesives, the cured product absorbs moisture, causing the coating surface to peel off. Or the adhesive strength may be reduced.
  • (meth) acrylates may be heated and stirred for homogenization at the time of blending, or may be exposed to a heat resistance test after photocuring, but (meth) acrylates with poor thermal stability are as described above.
  • coloring occurs, so it cannot be used in optical lens applications where transparency is essential.
  • acrylic acid and methacrylic acid are collectively referred to as “(meth) acrylic acid”.
  • (Meth) acrylate is usually produced by the dehydration reaction of (meth) acrylic acid and alcohols in the presence of an acid catalyst, but various impurities are by-produced during the ester reaction. In order to remove such impurities, the reaction solution after dehydration is usually washed with water or an aqueous alkaline solution, but the removal of impurities is not always sufficient.
  • Patent Document 1 discloses a method in which a reaction product after dehydration esterification is neutralized and then treated with amines! Speak.
  • the treatment with the alkaline aqueous solution and the treatment with the acidic aqueous solution must be carried out in separate washing tanks and is not suitable for industrial implementation.
  • Patent Document 2 discloses a method of adding a cationic surfactant when neutralizing or washing the reaction solution after the production of (meth) acrylate. Therefore, it is disclosed that emulsification in the vicinity of the interface between the organic layer and the aqueous layer can be prevented, the separation time of the organic layer and the aqueous layer can be shortened, and as a result, impurities can be efficiently removed. It is.
  • Patent Document 2 Although the method described in Patent Document 2 is excellent in shortening the separation time between the organic layer and the aqueous layer, the storage stability and thermal stability of the obtained (meth) acrylate are insufficient. .
  • Patent Document 1 Japanese Patent Laid-Open No. 6-219991
  • Patent Document 2 JP 2001-048831 A Disclosure of the invention
  • An object of the present invention is to provide a method for producing (meth) acrylate which can improve storage stability and thermal stability of the obtained (meth) acrylate by a simple method.
  • a further object of the present invention is to provide a (meth) acrylate composition having improved storage stability and thermal stability.
  • R 1 represents an alkyl group or an aryl group
  • R 2 represents an alkylene group
  • R 3 represents a hydrogen atom or a methyl group.
  • (meth) acrylic acid is used in an amount of 0.8 mol to 2.0 mol with respect to 1 mol of alcohol hydroxyl group.
  • R 1 represents an alkyl group or an aryl group
  • R 2 represents an alkylene group
  • R 3 represents a hydrogen atom or a methyl group.
  • step (2) including a desolvation step of distilling off the organic solvent, an addition step of adding the specific treating agent to the reaction solution after the desolvation step, and a heating step of heating ⁇ 3>
  • the oxyalkylene group of the alcohol having an oxyalkylene group is 1) to ⁇ 7> any one of (1) to ⁇ 7>, wherein the alkylene group of R 2 in the formula (1) is a ethylene group or a propylene group.
  • a composition comprising (meth) acrylate having a (meth) acrylic acid and an (oxy) alkylene group obtained by subjecting an alcohol having an oxyalkylene group to a dehydrating ester reaction in the presence of an organic sulfonic acid catalyst.
  • a (meth) acrylate composition containing O ppm or more and ⁇ pm or less of the compound A represented by the formula (1),
  • R 1 represents an alkyl group or an aryl group
  • R 2 represents an alkylene group
  • R 3 represents a hydrogen atom or a methyl group.
  • an alkylene group of R 2 in the formula (1) is a Echire down or propylene ⁇ 9> or (Meth) ate acrylate composition according to 10>
  • the present invention it is possible to improve the storage stability and thermal stability of the (meth) atalylate obtained by a simple method, more specifically, it is possible to suppress an increase in acid value. It was possible to provide a method for producing (meth) atallylate. Furthermore, according to the present invention, it was possible to provide a (meth) acrylate composition that has improved storage stability and thermal stability, and more specifically can suppress an increase in acid value.
  • the inventors of the present invention have provided a method for producing (meth) atarylate, in which the storage safety of (meth) atalylate is reduced.
  • Various investigations were conducted on causative substances that cause poor qualitative and thermal stability.
  • the first (meth) acrylate production method of the present invention comprises dehydrating (meth) acrylic acid and an alcohol having an oxyalkylene group with an organic sulfonic acid catalyst in an organic solvent.
  • the compound A represented by the following formula (1) in the resulting (meth) atallylate is Oppm or more and lOOppm or less (in the present invention, “Oppm or more and 10 Oppm or less”). It is also described as “0 ⁇ : LOOppm” or “Oppm ⁇ : LOOppm” (hereinafter the same shall apply), and includes a management process for controlling so that it becomes the same.
  • the second method for producing (meth) acrylate according to the present invention includes dehydrating (meth) acrylic acid and alcohol having an oxyalkylene group with an organic sulfonic acid catalyst in an organic solvent.
  • the reaction solution obtained in the esterification step (1), the step (1) is neutralized and washed with water (2), and the (meth) acrylate is obtained in step (2).
  • R 1 represents an alkyl group or an aryl group
  • R 2 represents an alkylene group
  • R 3 represents a hydrogen atom or a methyl group
  • R 1 represents an alkyl group or an aryl group, and the alkyl group and aryl group may be unsubstituted or may have one or more substituents.
  • the alkyl group preferably has 1 to 10 carbon atoms, and the aryl group preferably has 6 to 12 carbon atoms.
  • the alkyl group may be linear or branched and may have a good cyclic structure.
  • Examples of the substituent allowed for the alkyl group include an aryl group, an alkoxy group, and a halogen atom, preferably an aryl group, a chloro group, and a rhogen atom, more preferably an aryl group, and particularly preferably a phenyl group. is there.
  • examples of the substituent allowed for the aryl group include an alkyl group, a halogen atom, and an alkoxy group, preferably an alkyl group, and more preferably an alkyl group having 1 to 3 carbon atoms.
  • R 1 examples include a methyl group, a phenyl group, a tolyl group, an ethylphenol group, and a benzyl group.
  • R 1 is derived from the organic sulfonic acid catalyst used in the esterification reaction.
  • R 1 is a methyl group
  • methanesulfonic acid is used as an acid catalyst.
  • benzenesulfonic acid is used, and in the case of a toluyl group, p-toluenesulfonic acid or ethylphenol is used.
  • ethylbenzene sulfonic acid is used.
  • benzyl sulfonic acid is used.
  • the alkylene group for R 2 is preferably an alkylene group having 4 or less carbon atoms, more preferably an ethylene group or a propylene group.
  • R 2 corresponds to the alkylene oxide group of the alcohol used in the esterification reaction.
  • R 3 represents a hydrogen atom or a methyl group.
  • R 3 is the (meth) attaly used in the esterification reaction. Corresponds to formic acid.
  • Compound A is presumed to be a reaction product of the alcohol used in the esterification reaction and the organic sulfonic acid catalyst. It is speculated that if compound A is present in (meth) acrylate, it decomposes over time and generates acid, which makes storage stability and thermal stability of (meth) acrylate become poor. .
  • Examples of the method for analyzing the content ratio of compound A in (meth) attalylate include liquid chromatography and gas chromatography, and liquid chromatography is preferable because compound A can be observed stably without decomposition. .
  • liquid chromatography liquid chromatography / mass spectrometry (hereinafter referred to as LCZMS) is preferable because of its excellent quantitativeness and detection sensitivity.
  • LCZMS liquid chromatography / mass spectrometry
  • the quantification conditions for Compound A by LCZMS include the following.
  • an esterification step is performed in which (meth) acrylic acid and an alcohol having an oxyalkylene group are dehydrated with an organic sulfonic acid catalyst in an organic solvent to give (meth) acrylate.
  • an organic sulfonic acid catalyst in an organic solvent to give (meth) acrylate.
  • (meth) acrylic acid and an alcohol having an oxyalkylene group are dehydrated in an organic solvent in the presence of an organic sulfonic acid catalyst.
  • (Meta) Atarirate It is preferred that the dehydration reaction is carried out under heating and stirring.
  • the oxyalkylene group in the alcohol is preferably an oxyalkylene group having 4 or less carbon atoms, more preferably an oxyethylene group or an oxypropylene group.
  • oxyalkylene group in alcohol a polyoxyethylene having two or more repeating units is used. It may be a gifted xylanolylene group!
  • Various compounds can be used as the alcohol, and specific examples thereof include the following alkylene oxide adducts of alcohol.
  • Glycols such as ethylene glycol, propylene glycol, neopentyl glycol, diethylene glycol, triethylene glycol, polyethylene glycol, dipropylene glycol, tripropylene glycol, polypropylene glycol, and their alkylene oxide adducts.
  • Glycerin such as glycerin, diglycerin, triglycerin, polyglycerin, and their alkylene oxide adducts.
  • Polyols such as butanediol, pentanediol, hexanediol, trimethylolpropane, ditrimethylolpropane, pentaerythritol, dipentaerythritol, and their alkylene oxide adducts.
  • the alkylene oxide is preferably an alkylene oxide having 4 or less carbon atoms, more preferably ethylene oxide or propylene oxide.
  • the average number of moles of alkylene oxide per mole of the compound is preferably 1 to 10 moles.
  • the present invention is likely to generate a large amount of impurities in the obtained (meth) acrylate, and an alkylene oxide adduct of a polyhydric alcohol or alkylene oxide. It can be more preferably applied to alcohol with a large number of id additions.
  • alkylene oxide adducts of polyhydric alcohols Preference is given to alkylene oxide adducts of polyhydric alcohols, and specific examples thereof include alkylene oxide adducts of trimethylolpropane, bisphenol A alkylene oxide adducts and diglycerin alkylene oxide adducts. Specific examples of the alkylene oxide adduct include an ethylene oxide adduct and a propylene oxide adduct.
  • Alcohols with a large number of alkylene oxide additions are alcohols having an alkylene oxide group with an average addition mole number of 3 moles or more per mole of the compound.
  • Specific examples of the alkylene oxide adduct include ethylene oxide adduct and propylene oxide adduct.
  • the proportion of (meth) acrylic acid and alcohol used in the dehydration esterification reaction is more preferably 0.8 to 2.0 moles of (meth) acrylic acid per mole of hydroxyl groups of the alcohol. 1. 0 to 1.5 moles. If the acrylic acid is used in an amount of 0.8 mol or more, an alcoholic hydroxyl group having a short dehydration esterification reaction time may be added to the (meth) acrylate group of the (meth) acrylate, for example, by Michael addition. This is preferable because good product purity can be obtained with less reaction.
  • the organic sulfonic acid catalyst used in the dehydration esterification reaction includes an organic sulfonic acid catalyst represented by the formula (2).
  • R 1 is the same as R 1 in Formula (1), and the preferred scopes are also same.
  • Specific examples of the organic sulfonic acid catalyst include p-toluenesulfonic acid, methanesulfonic acid, benzenesulfonic acid, ethylbenzenesulfonic acid and benzylsulfonic acid, and the like can be used alone or in any combination of two or more. Can be used.
  • the use ratio of the organic sulfonic acid catalyst is preferably 0.05 mol% to 10 mol%, more preferably 0.5 mol% to 5 mol, relative to the number of moles of the alcoholic hydroxyl group subjected to dehydration esterification. %.
  • a use rate of the organic sulfonic acid catalyst of 0.5 mol% or more is preferable because a practical reaction rate can be obtained. Also, if it is 10 mol% or less, the product purity with few side reactions is high and the labor required for the removal of the catalyst and the decolorization operation of the product in the purification process with little coloration is preferred.
  • the organic solvent used in the esterification step it is preferable to use an organic solvent having low solubility in water produced by the dehydration esterification reaction.
  • the esterification process is preferably carried out while azeotropically distilling off water.
  • organic solvents examples include aromatic hydrocarbons such as toluene, benzene and xylene, aliphatic hydrocarbons such as hexane, cyclohexane and heptane, and methyl ethyl ketone and cyclohexane. And ketones such as xanone.
  • the organic solvent may be used alone or in combination of two or more.
  • the proportion of the organic solvent is preferably 30 to 70% by weight in the reaction solution.
  • the esterification reaction temperature is preferably 70 to 140 ° C.
  • a reaction temperature of 70 ° C or higher is preferable because a rapid reaction can be performed. Further, it is preferable that the temperature is 140 ° C. or lower because gelling is not further generated due to less by-product of impurities in the esterification step.
  • polymerization inhibitor examples include organic compounds such as hydroquinone, tert butyl hydroquinone, hydrated quinone monomethyl ether, 2, 6 g tert-butyl-4-methyl phenol, 2, 4, 6-tri-tert-butyl phenol, benzoquinone, phenothiazine and the like.
  • the polymerization inhibitors may be used alone or in any combination of two or more.
  • the ratio of the polymerization inhibitor is preferably 5 to 20, OOOwtppm in the reaction solution S, more preferably 25 to 3, OOOwtppm.
  • oxygen-containing gas examples include air, a mixed gas of oxygen and nitrogen, and a mixed gas of oxygen and helium.
  • Control process for controlling compound A in (meth) acrylate to be ⁇ or more and ⁇ or less.
  • the proportion of Compound A is preferably Oppm or more and 80ppm or less, more preferably 0 to 50ppm, and particularly preferably 0 to 30ppm, more preferably not detected (lppm or less).
  • the compound A when R 1 contains an aromatic group, the compound A is preferably 0 to 80 ppm, more preferably 0 to 50 ppm, and further preferably 0 to 30 ppm. Further, when R 1 does not contain an aromatic group, for example, when it is an unsubstituted alkyl group, the compound A is preferably 0 to 30 ppm, more preferably 0 to 10 ppm. More preferably, it is 0 to 5 ppm.
  • the esterification reaction is preferably performed at 70 to 140 ° C, more preferably 80 to 130 ° C, and further preferably 90 to 120 ° C.
  • the fact that the esterification reaction is almost complete is a method of converting the unreacted (meth) acrylic acid contained in the reaction liquid from the charged (meth) acrylic acid by periodically measuring the acid value of the reaction liquid. Alternatively, it can be confirmed by detecting the amount of water distilled by the esterification reaction.
  • the reaction since the reaction is usually matured for several hours after the esterification reaction (post-heating), there is a possibility that compound A may be generated by the subsequent heating. Therefore, a method is preferred in which heating is not performed for a long time after completion of the esterification reaction. In this case, the heating time is preferably within 3 hours, more preferably within 1 hour.
  • the purification step includes neutralization treatment and water washing treatment.
  • the reaction solution obtained by the esterification step is neutralized for the purpose of reducing the proportion of Compound A in the case where the proportion of Compound A in (meth) atalylate exceeds lOOppm.
  • a method of hydrolyzing the compound A in the crude product obtained after the treatment and the water washing treatment by heating in the presence of moisture can be exemplified.
  • the heating temperature in this case may be set as appropriate according to the ratio of compound A in (meth) atalylate, but the heating temperature is preferably 60 to 140 ° C and 60 to 120 ° C. More preferred is 60 to 100 ° C.
  • the heating time is preferably 0.5 hours to 300 hours, more preferably 5 to 200 hours, and further preferably 20 to 150 hours.
  • One or more of the above-mentioned methods (a) to (b) are adopted, and the ratio of compound A in the obtained (meth) atalylate is regularly monitored, and finally obtained. It is controlled so that the compound A in the (meth) acrylate is less than lOOppm.
  • the method for carrying out the esterification reaction under mild conditions and the neutralized and washed (meth) acrylate are heated in the presence of moisture to hydrolyze compound A, and then
  • the method of carrying out the esterification reaction under mild conditions is more preferred in that it can be carried out on a simple and industrial scale, where the method of neutralizing and washing again is preferred.
  • the neutralization treatment is performed for the purpose of removing acidic components such as unreacted (meth) acrylic acid and organic sulfonic acid catalyst in the reaction product solution, and is usually performed by bringing the reaction solution into contact with an alkaline aqueous solution.
  • the neutralization treatment may be carried out according to a conventional method, for example, a method of adding an alkaline aqueous solution in which an alkali component is dissolved in the reaction solution, stirring and mixing, and the like.
  • the alkali component examples include alkali metal salts such as lithium hydroxide, sodium hydroxide and potassium hydroxide, and ammonia.
  • alkali metal salts such as lithium hydroxide, sodium hydroxide and potassium hydroxide, and ammonia.
  • the alkali component one kind may be used alone, or two or more kinds may be used in any combination. Of these, sodium hydroxide is preferred because of its excellent effect, low cost and easy availability.
  • the amount of the alkali component is preferably at least 1 time in terms of molar ratio with respect to the acid component of the reaction solution, more preferably 1.1 to 2.0 times. When the molar ratio of the alkali component is 1 or more times the acid component of the reaction solution, the acid component is sufficiently neutralized. Is preferable.
  • the concentration of the alkaline aqueous solution is preferably 1 to 25% by weight, more preferably 10 to 25% by weight. It is preferable that the concentration of the alkaline aqueous solution is 1% by weight or more because the amount of drainage after neutralization can be reduced. In addition, it is preferable that the concentration of the aqueous alkali solution is 25% by weight or less because (meth) acrylate does not polymerize! /.
  • the stirring and mixing time when adding the alkaline aqueous solution may be appropriately set according to the amount of the reaction solution, the amount of the acid component contained therein, the purpose, and the like, but is preferably about 5 minutes to 120 minutes.
  • the esterification reaction solution (reaction solution after the esterification step) or neutralization treatment solution (reaction solution that has been further neutralized after the esterification step) is washed with water.
  • the point at which the water washing treatment is performed can be appropriately selected according to the components used and the purpose.
  • an aqueous solution containing an inorganic salt preferably an aqueous solution of ammonium sulfate and a salt are preferred.
  • Ammonium salt aqueous solution such as aqueous ammonium solution, sodium salt aqueous solution such as sodium chloride, and acidic water such as hydrochloric acid aqueous solution.
  • heating can be performed as necessary.
  • Examples of the heating temperature include 30 to 80 ° C.
  • Examples of the heating time include 5 minutes to 5 hours.
  • distilled water used in the neutralization treatment and Z or washing treatment.
  • polymerization inhibitor examples include the same ones as described above, and the ratio thereof includes the same ratio as described above.
  • Examples of the oxygen-containing gas include the same as described above.
  • the neutralization treatment solution or water washing treatment solution is transferred to the solvent removal tank, and the organic solvent in the organic layer after the water layer is separated by the neutralization treatment or water washing treatment is removed. It is done.
  • the solvent removal treatment may be carried out according to a conventional method, for example, a method of removing the organic solvent by heating the solvent removal tank under reduced pressure.
  • the depressurization degree of the solvent removal tank may be appropriately set according to the raw material to be used and the purpose, and is preferably 0.5 to 50 kPa. A method of gradually increasing the depressurization degree depending on the degree of removal of the organic solvent is preferable.
  • the heating temperature may be appropriately set according to the obtained (meth) acrylate, the degree of pressure reduction, and the purpose, but is preferably 40 to 100, more preferably 60 to 80 ° C. In order to suppress thermal polymerization of (meth) atrelate, it is preferable to maintain the temperature at 80 ° C or lower.
  • the solvent removal step it is preferable to supply oxygen or add a polymerization inhibitor in order to suppress thermal polymerization of (meth) acrylate.
  • a polymerization inhibitor include the same ones as described above, and the ratio thereof includes the same ratio as described above.
  • the filtration step may be performed according to a conventional method.
  • the second (meth) acrylate preparation method of the present invention is represented by the above formula (1) with respect to the (meth) acrylate prepared by performing the esterification step, neutralization treatment, and water washing treatment.
  • an organic reaction liquid containing lppm or more of compound A, a quaternary ammonium salt, a quaternary sulfo salt, an amidine, a compound having a primary amino group and a Z or secondary amino group, semicarbazide and
  • treatment agents can be used alone or in combination of two or more. Hereinafter, each treatment agent will be described.
  • compound 3 As the quaternary ammonium salt, various compounds can be used, and a compound represented by the following formula (3) (hereinafter referred to as compound 3) is preferable.
  • Ri ⁇ R 3 represents an alkyl group
  • R 4 represents an alkyl group or a benzyl group
  • X- represents an inorganic anion.
  • the alkyl group may be linear or branched, but may be linear. Is preferred. An alkyl group having 8 or less carbon atoms is preferred.
  • Examples of the inorganic anion in X— in the formula (3) include halide ions, hydroxide ions and hydrogen sulfate ions.
  • halide ions for which halide ions and hydroxide ions are preferred, chlorine ions and bromine ions are more preferable.
  • Specific examples of the compound 3 include the following examples (1) and (2).
  • Benzyltrimethylammonium chloride Benzyltriethylammonium chloride, and benzyltri-n-butylammonium chloride.
  • compound 4 As the quaternary phosphonium salt, various compounds can be used, and a compound represented by the following formula (4) (hereinafter referred to as compound 4) is preferable.
  • Ri ⁇ R 3 represents an alkyl group
  • R 4 represents an alkyl group or a benzyl group
  • X- represents an inorganic anion.
  • the alkyl group may be linear or branched, but may be linear. Is preferred. An alkyl group having 8 or less carbon atoms is preferred.
  • Examples of inorganic anions in X— in the formula (4) include halide ions, hydroxide ions and hydrogen sulfate ions.
  • the chloride ion and the bromide ion power are more preferable as the halide ion preferred for the halide ion and the hydroxide ion.
  • compound 4 examples include benzyl-tree n-butyl phospho-mum chloride and tetra-n-butyl phospho-mu-bromide.
  • amidine various compounds can be used as long as they have an amidine skeleton. Specifically, 1,8-diazabicyclo (5.4.0) undecene-7 (diazabicyclo [5.4.0] undec-7-ene; DBU) and 1,5-diazabicyclo (4.3.0) nonene 5 (diazabicyclo [4.
  • Compounds having primary aminoamino and Z or secondary amino As a compound having a primary amino group and a Z or secondary amino group (hereinafter referred to as an amine compound), a compound having a primary amino group (hereinafter referred to as a primary amine) or a compound having a secondary amino group Examples thereof include compounds (hereinafter referred to as secondary amines and 1 ⁇ ⁇ ) and compounds having primary amino groups and secondary amino groups (hereinafter referred to as primary and secondary amines).
  • amine compound Various compounds can be used as the amine compound, and examples include the following examples.
  • Examples of primary amines include methylamines such as methenoreamine, ethenoreamine, propylamine, butynoleamine, 2-ethylhexylamine and hexadecylamine; alkyldiamines such as 1,6-hexanediamine; Alkoxyalkylamines such as propylamine and 3- (2-ethylhexyloxy) propylamine; (Dialkylamino) alkylamines such as 3- (dimethylamino) propylamine, 3- (jetylamino) propylamine and 3- (dibutylamino) propylamine Hydroxyalkylamines such as hydroxyethylamine and hydroxypropylamine; N-methyl-3,3'-iminobis (propylamine) and other N-anolenoiminobis (anolequinoleamine); and Riruamin, and the like.
  • alkyldiamines such as 1,6-he
  • a compound having an alkyl group may be a branched alkyl group.
  • (dialkylamino) alkylamine and N-alkyliminobis (alkylamine) have the effect of the present invention because they have a primary amino group that is a tertiary amino group.
  • Dialkylamines such as dimethylamine, jetylamine, dipropylamine, dibutylamine, and di-2-ethylhexylamine; di-2-ethoxypropylamine and di3- (2-ethylhexyl) )
  • Dialkoxyalkylamines such as propylamine; and diallylamine.
  • a compound having an alkyl group may be a branched alkyl group.
  • Examples of primary and secondary amines include 3,3, -iminobis (propyl) amine and 6,6, monoiminobis (hexyl) amine, and 3- (methylamino) propylamine. And (alkylamino) alkylamines such as min.
  • the amine compound of the present invention can be used in the form of an inorganic salt as required.
  • amine compound a compound in a form that is not an inorganic salt is preferable because it is excellent in the effect of the present invention.
  • Semicarbazide is a compound having at least one semicarbazide group.
  • the semicarbazide that can be used in the present invention is preferably a compound represented by the following formula (5).
  • R 1 and R 1 represent a monovalent organic group, which may be the same or different.
  • R 1 and R 2 are preferably a substituted or unsubstituted alkyl group or a phenyl group. Specific examples include a methyl group, an ethyl group, a propyl group, an isopropyl group, a stearyl group, a benzyl group, and a hydroxyethyl group. Of these, lower alkyl groups having 1 to 4 carbon atoms are more preferred! /.
  • R 3 and R 4 each independently represents a hydrogen atom or a monovalent organic group, and is preferably a hydrogen atom.
  • A represents a hydrogen atom or an n-valent organic group.
  • A is preferably an n-valent organic group, more preferably a divalent or trivalent organic group.
  • n is an integer of 1 or more, and an integer of 1 3 is preferable, and 2 or 3 is more preferable! /.
  • the n-valent organic group is not particularly limited, but is preferably an aliphatic group or an alicyclic group that is preferably a hydrogen atom, a carbon atom, a nitrogen atom, and a group composed of Z or oxygen nuclear power. It is more preferable.
  • Semicarbazide can be used alone or in combination of two or more.
  • the semicarbazide various compounds can be used, and examples thereof include compounds obtained by reaction of isocyanate compounds with N, N-disubstituted hydrazines.
  • the isocyanate compound is preferably a diisocyanate compound, such as 1,4-tetramethylene diisocyanate, 1,5 pentamethylene diisocyanate, 1, 6 Hexamethylene diisocyanate, 2, 2, 4 (or 2, 4, 4) Trimethyl-1, 6 Hexamethylene diisocyanate, lysine diisocyanate, isophorone diisocyanate, 1, 3— Aliphatic or cycloaliphatic diisocyanates such as bis (isocyanatomethyl) monocyclohexane, 4,4'-dicyclohexylmethane diisocyanate, xylylene diisocyanate and tetramethylxylene diisocyanate; 4,4'-diphenyl -Aromatic diisocyanates such as l-methane diisocyanate, 1,4-phenolic diisocyanate, 2,4 tolylene diisocyanate and naphthalene diisocyanate Examples.
  • polyisocyanates derived from these diisocyanates and monoisocyanates such as n-butyl isocyanate, n-xyl isocyanate, n-octyl isocyanate, and phenyl isocyanate.
  • isocyanate compounds aliphatic or alicyclic diisocyanates and polyisocyanates derived therefrom are preferred. Two or more of these isocyanate compounds may be used in combination.
  • N, N disubstituted hydrazine examples include N, N dimethyl hydrazine, N, N jet hydrazine, N, N dipropyl hydrazine, N, N diisopropyl hydrazine, N, N-distearyl hydrazine, N-methyl- N-ethylhydrazine, N-methyl-N-propyl hydrazine, N-methylN benzylhydrazine, N, N di (j8-hydrochichechinole) hydrazine and the like.
  • the reaction of the isocyanate compound and the N, N disubstituted hydrazine can be carried out with or without a solvent. When using a solvent, it is necessary to use a solvent inert to isocyanate.
  • the reaction is preferably carried out at 20 to 150 ° C, more preferably 0 to 100 ° C. It is preferable to react the isocyanate with the N, N disubstituted hydrazine in an approximately equivalent amount.
  • R 1 and R 2 in the above formula (5) are lower alkyl groups having 1 to 4 carbon atoms in that they have an excellent acid value increase suppressing function and are easily available, and R 3 and A semicarbazide having a semicarbazide group in which R 4 is a hydrogen atom is preferred. Furthermore, due to these advantages, R 1 and R 2 in the above formula (5) are lower alkyl groups having 1 to 4 carbon atoms because the treating agent is difficult to evaporate in the solvent removal step described later. A compound having a semicarbazide group in which R 3 and R 4 are hydrogen atoms and having a molecular weight of 200 or more is more preferable.
  • the compounds include 1,4-tetramethylene bis-N, N dimethyl semicarbazide, 1, 6 hexamethylene bis-N, N dimethyl semicarbazide, 1, 1, 1 ', 1, monotetramethyl 4, 4' ( Methylenedi-p-phenylene) disemicarbazide and the following compounds are preferred.
  • pyridine compound various compounds can be used as long as they have a pyridine ring.
  • pyridine, methylpyridine, ethylpyridine, propylpyridine, butylpyridine, 4- (1-butylpentyl) pyridin, dimethinorepyridine, trimethinorepyridine, and triethinorepyridine are preferred to be basic compounds.
  • the pyridine compound is preferably an aminoviridine compound, more preferably 2-dimethylaminopyridine or 4-dimethylaminopyridine.
  • a compound having a quaternary ammonium salt, a quaternary phosphate salt, an amidine, a primary amino group and Z or a secondary amino group, Group power consisting of semicarbazide and pyridine Use at least one selected specific treatment agent.
  • quaternary ammonium salts, quaternary phosphonium salts, amidine and semicarbazide are preferred, and semicarbazides are more preferred.
  • the use of semicarbazide is preferred because it can give the resulting (meth) atarylate an anti-coloring effect in addition to the effect of suppressing the increase in acid value.
  • the timing of addition of the specific treatment agent is arbitrary as long as it is a reaction solution obtained after neutralization treatment and water washing treatment, specifically, when filtration is performed before and after the solvent removal step. Includes the final product before and after the filtration process, and even the final product.
  • a method of adding a specific treating agent before the solvent removal step is preferable. This method is preferable because the solvent removal step and the specific treatment agent addition step can be performed in one step, and the addition step of the specific treatment agent can be omitted.
  • Examples of the method for adding the treatment agent include a method of adding to (meth) acrylate with stirring and mixing.
  • the addition ratio of the specific treatment agent is 2 to: LO, OOOwt ppm, more preferably 5 to 3, OOOwtppm, more preferably 50 to: L, OOOwtppm.
  • the power S is more preferable.
  • this value is 2 wtppm or more, the effect of the specific treatment agent can be exhibited effectively.
  • the composition has excellent solubility in (meth) acrylate and the composition When used as a product, it is preferable because it is excellent in compatibility with other components.
  • heating is preferred. Yes. This is because when the polyhydric alcohol is used as the alcohol, the (meth) acrylate obtained becomes a highly viscous product, and the treatment agent can be uniformly blended in a short time by heating.
  • the heating temperature and the heating time may be appropriately set according to the (meth) acrylate and the purpose to be obtained, but the heating temperature is preferably 30 to 100 ° C, more preferably 30 to 80 ° C.
  • the heating time is preferably 5 minutes to 5 hours, more preferably 30 minutes to 3 hours.
  • a polymerization inhibitor is used for the purpose of preventing the polymerization of the (meth) atalyloyl group. It is preferable that oxygen-containing gas may be introduced into the reaction solution.
  • the polymerization inhibitor include the same ones as described above, and the ratio thereof includes the same ratio as described above.
  • Examples of the oxygen-containing gas include the same as described above.
  • the neutralized water washing treatment liquid contains an organic solvent
  • a solvent removal step is performed.
  • the organic solvent may be the organic solvent used in the esterification step, or may be added in the subsequent neutralization treatment and Z or water washing treatment.
  • the solvent removal process will be described.
  • the neutralization treatment liquid or the water washing treatment liquid is transferred to the solvent removal tank, and the organic solvent in the organic layer after the aqueous layer is separated by the neutralization treatment or the water washing treatment is removed.
  • the solvent removal treatment may be carried out according to a conventional method, for example, a method of removing the organic solvent by heating the solvent removal tank under reduced pressure.
  • the depressurization degree of the solvent removal tank may be appropriately set according to the raw material to be used and the purpose.
  • the pressure is 0.5 to 50 kPa, and a method of gradually increasing the degree of vacuum depending on the degree of removal of the organic solvent is preferable.
  • the heating temperature may be appropriately set according to the obtained (meth) acrylate, the degree of pressure reduction, and the purpose, but is preferably 40 to 100, more preferably 60 to 80 ° C. In order to suppress thermal polymerization of (meth) atrelate, it is preferable to maintain the temperature at 80 ° C or lower.
  • oxygen is supplied in order to suppress thermal polymerization of (meth) acrylate. It is preferable to add a polymerization inhibitor.
  • the polymerization inhibitor include the same ones as described above, and the ratio thereof includes the same ratio as described above.
  • the filtration step it is preferable to perform pressure filtration in accordance with a conventional method.
  • Examples of the pressure filtration method include a method in which the reaction liquid after solvent removal is put into a filter equipped with filter paper and filtration is performed while pressure is applied to the filter.
  • the method of adding a filter aid to the reaction solution after the desolubilizer, the method of pre-coating the filter aid on the surface of the excess filter paper, and the method of using these in combination are preferred because the filtration efficiency can be improved.
  • gases used for pressurization include nitrogen, oxygen-containing gas (5% oxygen, 95% nitrogen) and air.
  • the (meth) attalylate obtained by the production method of the present invention can improve the storage stability and thermal stability of the obtained (meth) atalylate. Therefore, the obtained (meth) acrylate can be suitably used for various industrial applications such as optical lenses, printing inks, coating agents, and adhesives as a component of the active energy ray-curable composition.
  • the third invention of the present invention is a (meth) acrylate having an oxyalkylene group obtained by dehydrating esterification of an alcohol having (meth) acrylic acid and an oxyalkylene group in the presence of an acid catalyst.
  • the present invention relates to a (meth) attalylate-based composition containing a rate and containing Compound A in an amount of Oppm to lOOppm.
  • the proportion of Compound A is preferably Oppm or more and 80ppm or less, more preferably 0 to 50 ppm, and most preferably 0 to 30 ppm is not detected.
  • the (meth) acrylate composition can be preferably used in an active energy ray-curable composition.
  • a photopolymerization initiator When used as an active energy ray-curable composition, a photopolymerization initiator, (Meth) acrylate (other than (meth) acrylate) other than (meth) acrylate can be blended.
  • (Meth) acrylate other than (meth) acrylate
  • specific examples of each component will be described.
  • Other (meth) acrylates include a compound having one (meth) attaroyl group [hereinafter mono (meth) acrylate and! /, U] and a compound having two or more (meth) attaroyl groups. [Hereinafter, poly (meth) acrylate and! /, U] and the like.
  • Examples of mono (meth) acrylates include alkyl (meth) acrylates such as methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate and butyl (meth) acrylate. Hydroxyalkyl (meth) acrylates such as 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate and 1,4 butanediol mono (meth) acrylate; isobornyl acrylate, etc. And alicyclic mono (meth) acrylate.
  • tetrahydrofurfuryl (meth) acrylate tetrahydrofurfuryl (meth) acrylate, carbitol (meth) acrylate, (meth) taroloyl morpholine, maleimide (meth) acrylate and glycidyl (meth) acrylate are included.
  • poly (meth) acrylates include (meth) acrylates having two (meth) attalyloyl groups such as pentaerythritol di (meth) acrylate monostearate, and pentaerythritol tri (meth).
  • examples thereof include (meth) acrylate having three (meth) attaroyl groups, such as attalylate and trimethylolpropane tri (meth) acrylate.
  • (meth) acrylate with 4 or more (meth) attalyloyl groups such as dipentaerythritol hexa (meth) acrylate and di (trimethylolpropane) tetra (meth) acrylate can be used. It is.
  • oligomers such as urethane (meth) acrylate, polyester (meth) acrylate and epoxy (meth) acrylate can be used.
  • photopolymerization initiator examples include benzoin such as benzoin, benzoin methyl ether, and benzoin propyl ether; acetophenone, 2,2-dimethoxy-1-2-phen-lucatophenone, 2,2-diethoxy-1- Phenolacetophenone, 1, 1-dichloroa Cetophenone, 1-hydroxycyclohexyl phenyl ketone, 2-methyl 1- [4- (methylthio) phenol] — 2-morpholinopropane monoone and N, N-dimethylaminoacetophenone, etc.
  • benzoin such as benzoin, benzoin methyl ether, and benzoin propyl ether
  • acetophenone 2,2-dimethoxy-1-2-phen-lucatophenone
  • 2,2-diethoxy-1- Phenolacetophenone 1, 1-dichloroa Cetophenone
  • 1-hydroxycyclohexyl phenyl ketone 2-methyl 1- [4- (methylthio) phenol]
  • Anthraquinones such as methyl anthraquinone, 1-claw anthraquinone and 2 amyl anthraquinone; 2, 4 dimethylthioxanthone, 2, 4-jetyl thioxanthone, 2 thiaxanthone and 2, 4 diisopropyl thixanthone Ketals such as dimethyl ketal and benzyl dimethyl ketal; benzophenone, methylbenzophenone, 4,4'-diclonal benzophenone, 4, 4 'bisjetylaminobenzobenzoenone, Michler's ketone, and 4-benzoyl luo 4' methyldiphenyl Rusulfide And 2, 4, 6 trimethylbenzoyldiphosphine phosphine oxide.
  • a photosensitizer can be used in combination with the photopolymerization initiator as necessary.
  • the photosensitizer include N, N dimethylaminobenzoic acid ethyl ester, N, N dimethylaminobenzoic acid isoamyl ester, triethylamine, and triethanolamine.
  • an antifoaming agent, a leveling agent, an inorganic filler, an organic filler, a light stabilizer, an anti-oxidation agent, an ultraviolet absorber, and the like can be blended as necessary. . If necessary, a small amount of an antioxidant, a light stabilizer, an ultraviolet absorber, a polymerization inhibitor and the like may be added.
  • the obtained talate was dissolved in ethanol, and titrated with a potassium hydroxide solution using phenolphthalein as an indicator.
  • the acid value of the sample was calculated from the following formula.
  • the water concentration contained in the talate was adjusted to 1,000-3, OOOwtppm.
  • the glass container containing attalylate was sealed and heated in a heating block maintained at 80 ° C. for 72 hours. After cooling, the acid value was measured by the method described above.
  • reaction solution is cooled to 40 ° C or lower, extracted and washed by adding toluene and water, neutralized by adding a 20 wt% aqueous solution of sodium hydroxide and sodium hydroxide, and further added with water. Then, extraction washing was performed.
  • R 1 is a tolyl group
  • R 2 is an ethylene group
  • R It was confirmed that 3 contained 382 ppm of a compound having a hydrogen atom (hereinafter referred to as Compound A1).
  • compound A1 was confirmed by the retention time of the standard substance of compound A1 and the fragment pattern.
  • Compound A1 was quantified based on the results of preparing a calibration curve for the standard substance of Compound A1.
  • Source temperature 120 ° C
  • solvent removal temperature 400 ° C
  • collision energy 30V
  • Comparative Example 1-1 the charged amount of acrylic acid was changed from 180 g to 150 g, the reaction temperature of dehydrated ester was changed from 100 to 119 ° C to 100 to 117 ° C, and the reaction time was changed from 9 hours to 5 hours and 30 minutes. Except for the change, attalylate was produced in the same manner as in Comparative Example 1-1 and purified in the same manner.
  • Example 1 2 In Example 1-1, the crude product obtained after the solvent removal step was placed in a 500 ml flask, heated and stirred at 80 ° C, and then added with water to adjust the water concentration to 4,000- 5, Adjusted to OOOppm. Thereafter, the flask was sealed, and heating and stirring were continued for 72 hours.
  • the crude product was cooled to 40 ° C. or less, neutralized by adding toluene and a 20 wt% sodium hydroxide aqueous solution, and further subjected to extraction washing by adding water.
  • reaction solution is cooled to 40 ° C or lower, extracted and washed by adding toluene and water, neutralized by adding a 20 wt% aqueous solution of sodium hydroxide and sodium hydroxide, and further added with water. Then, extraction washing was performed.
  • Comparative Example 1-2 the crude product obtained after the solvent removal step was placed in a 500 ml flask, heated and stirred at 80 ° C, and then added with water to adjust the water concentration to 4,000- 5, Adjusted to OOOppm. Thereafter, the flask was sealed, and heating and stirring were continued for 72 hours. Thereafter, the crude product was cooled to 40 ° C. or less, neutralized by adding toluene and a 20 wt% sodium hydroxide aqueous solution, and further subjected to extraction washing by adding water.
  • reaction solution is cooled to 40 ° C or lower, extracted and washed by adding toluene and water, neutralized by adding a 20 wt% aqueous solution of sodium hydroxide and sodium hydroxide, and further added with water. Then, extraction washing was performed.
  • Compound A was analyzed under the following conditions using LCZMS. As a result, it was confirmed that the compound (1) contained 288 ppm of a compound (hereinafter referred to as compound A2) in which R 1 is a tolyl group, R 2 is a propylene group, and R 3 is a hydrogen atom. The identity of Compound A2 was confirmed by the retention time of the standard substance of Compound A2 and the fragment pattern. Compound A2 was quantified based on the results of a calibration curve prepared for the standard substance of Compound A2.
  • compound A2 a compound in which R 1 is a tolyl group, R 2 is a propylene group, and R 3 is a hydrogen atom.
  • Comparative Example 1-3 the crude product obtained after the solvent removal step was placed in a 500 ml flask, heated and stirred at 80 ° C, and then added with water to adjust the water concentration to 4,000- 5, Adjusted to OOOppm. Thereafter, the flask was sealed, and heating and stirring were continued for 72 hours.
  • the crude product was cooled to 40 ° C. or less, neutralized by adding toluene and a 20 wt% sodium hydroxide aqueous solution, and further subjected to extraction washing by adding water.
  • reaction solution is cooled to 40 ° C or lower, extracted and washed by adding toluene and water, neutralized by adding a 20 wt% aqueous solution of sodium hydroxide and sodium hydroxide, and further added with water. Then, extraction washing was performed.
  • the crude product was cooled to 40 ° C. or less, neutralized by adding toluene and a 20 wt% sodium hydroxide aqueous solution, and further subjected to extraction washing by adding water.
  • reaction solution is cooled to 40 ° C or lower, extracted and washed by adding toluene and water, neutralized by adding a 20 wt% aqueous solution of sodium hydroxide and sodium hydroxide, and further added with water. Then, extraction washing was performed.
  • the obtained crude product was placed in a 500 ml flask, heated and stirred at 80 ° C, and then added with water to adjust the water concentration to 4,000-5, OOOppm. Thereafter, the flask was sealed, and heating and stirring were continued for 72 hours.
  • the crude product was cooled to 40 ° C. or less, neutralized by adding toluene and a 20 wt% sodium hydroxide aqueous solution, and further subjected to extraction washing by adding water.
  • R 1 is a methyl group
  • R 2 is a propylene group
  • R 3 compounds of the hydrogen atom (hereinafter, compound A4 and U) Ru it was confirmed to contain 7 ppm.
  • compound A4 was confirmed by the retention time of the standard substance of compound A4 and the fragment pattern.
  • Compound A4 was quantified based on the results of preparing a calibration curve for the standard substance of Compound A4.
  • reaction solution is cooled to 40 ° C or lower, extracted and washed by adding toluene and water, neutralized by adding a 20 wt% aqueous solution of sodium hydroxide and sodium hydroxide, and further added with water. Then, extraction washing was performed.
  • Example 2-1 attalylate was produced in the same manner as in Example 2-1, except that a predetermined amount of the treating agent described in Table 3 below was added in the solvent removal step.
  • TBAOH Tetraptyl ammonium hydroxide
  • HMSC 1,6-hexamethylenebis-N, N-dimethylsemicarbazide
  • Example 2-1 the solvent removal treatment without adding the treatment agent was performed.
  • a predetermined amount of the treating agent described in Table 4 below was added to the crude product obtained after the toluene was distilled off, and the mixture was stirred at 70 ° C. for 1 hour for uniform mixing. Then, after filtration under pressure, a phthalate was obtained.
  • the treating agent was added to the crude product obtained after distilling off toluene at the same rate as in Examples 2-1 to 2-8, and stirred at 70 ° C. for 1 hour for uniform mixing. Then, after filtration under pressure, attalylate was obtained. The obtained attalylate had a low acid value after the forced deterioration test as in Examples 2-1 to 2-8.
  • Comparative Example 2-1 Into the same flask as in Example 1, 372 g of trimethylolpropane propylene oxide 6-mol adduct, 200 g of acrylic acid, 294 g of toluene, PTS19. Og, HQO. 89 g and cupric chloride 0.89 g were added. While stirring the oxygen-containing gas, the mixture was heated and stirred within the reaction liquid temperature range of 80 to 110 ° C and the reaction system pressure range of 400 to 650 mmHg. The generated water was removed from the system with a Dean-Stark tube, and a 7-hour dehydrating esterification reaction was performed.
  • reaction solution was neutralized by the same method as in Comparative Example 2-1, further added with water, extracted and washed, and then the solvent was removed.
  • Example 2-13 attalylate was produced in the same manner as in Example 2-13, except that a predetermined amount of the treatment agent shown in Table 6 below was added in the solvent removal step. The reaction solution after removal of the solvent was filtered under pressure to obtain acrylate.
  • Example 2 to 13 the solvent removal treatment without adding the treatment agent was performed.
  • a predetermined amount of the treatment agent shown in Table 7 below was added to the crude product obtained after the toluene was distilled off, and the mixture was stirred at 70 ° C for 1 hour to be uniformly mixed. Then, after filtration under pressure, a phthalate was obtained.
  • the treating agent was added to the crude product obtained after distilling off toluene at the same ratio as in Examples 2-13 to 2-18, and stirred at 70 ° C. for 1 hour to be uniformly mixed. Then, after filtration under pressure, attalylate was obtained.
  • the production method of the present invention can be used for a production method of (meth) acrylate.
  • the obtained (meth) acrylate can be suitably used for various industrial uses such as optical lenses, printing inks, coating agents, and adhesives as a component of the photocurable composition.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

Disclosed is a simple method for producing a (meth)acrylate which enables to obtain a (meth)acrylate improved in storage stability and thermal stability. Also disclosed is a (meth)acrylate composition. The production method comprises an esterification step wherein a (meth)acrylic acid and an alcohol having an oxyalkylene group are dehydrated with an organic sulfonic acid catalyst in an organic solvent, thereby obtaining a (meth)acrylate; and an adjustment step wherein a compound A represented by the formula (1) below is controlled to be 0-100 ppm in the thus-obtained (meth)acrylate. The production method also comprises an addition step wherein a specific processing agent is added into an organic reaction liquid which contains not less than 1 ppm of the compound A relative to the (meth)acrylate obtained through the esterification step and a step for performing neutralization and water rinsing. (1) [In the formula (1), R1 represents an alkyl group or an aryl group; R2 represents an alkylene group; and R3 represents a hydrogen atom or a methyl group.]

Description

明 細 書  Specification
(メタ)アタリレートの製造方法及び (メタ)アタリレート系組成物  Method for producing (meth) acrylate and (meth) acrylate composition
技術分野  Technical field
[0001] 本発明は、(メタ)アタリレートの製造方法及び (メタ)アタリレート系組成物に関する。  TECHNICAL FIELD [0001] The present invention relates to a method for producing (meth) acrylate and a (meth) acrylate composition.
背景技術  Background art
[0002] (メタ)アタリレートは、紫外線照射や電子線照射により硬化するため、光硬化性組 成物の配合成分として、光学レンズや印刷インキ、コーティング剤及び接着剤等の各 種工業用途に用いられて 、る。  [0002] (Meth) atalylate is cured by ultraviolet irradiation or electron beam irradiation, and as a compounding component of a photocurable composition, it is used in various industrial applications such as optical lenses, printing inks, coating agents, and adhesives. Used.
[0003] しかしながら、(メタ)アタリレートの貯蔵安定性や熱安定性が不良であると、不具合 を生じることがある。  [0003] However, if the storage stability and thermal stability of (meth) acrylate are poor, problems may occur.
例えば、(メタ)アタリレートの貯蔵安定性が不良であると、保管中に重合反応が起き てポリマー分が生じたり、(メタ)アタリレートが分解して (メタ)アクリル酸等の酸成分を 発生することがある。  For example, if the storage stability of (meth) acrylate is poor, a polymerization reaction occurs during storage, resulting in a polymer component, or (meth) acrylate is decomposed and acid components such as (meth) acrylic acid are removed. May occur.
ポリマー分を含む (メタ)アタリレートの組成物は、硬化むらや濁りを生じるため、均 一性や光透過性が重視される光学レンズ用途等では好適に使用することができない 又、酸成分が発生した (メタ)アタリレートは、臭気や装置腐食の問題に加え、耐水 性が悪化するため、コーティング剤や接着剤用途に用いた場合に、硬化物が水分を 吸収して、コーティング面の剥離や接着強度の低下を起こしてしまうことがある。 更に、(メタ)アタリレートは、配合時に均一化のため加熱撹拌されたり、光硬化後に 耐熱試験に曝されることがあるが、熱安定性不良な (メタ)アタリレートは、上記したよう なポリマー分や酸成分の発生に加え、着色を生じるために、透明性が必須である光 学レンズ用途等では到底使用することができない。  The (meth) acrylate composition containing a polymer component causes uneven curing and turbidity, so it cannot be suitably used in applications such as optical lenses where uniformity and light transmission are important. In addition to the problems of odor and device corrosion, the (meth) atalylate generated deteriorates water resistance, so when used for coating agents and adhesives, the cured product absorbs moisture, causing the coating surface to peel off. Or the adhesive strength may be reduced. In addition, (meth) acrylates may be heated and stirred for homogenization at the time of blending, or may be exposed to a heat resistance test after photocuring, but (meth) acrylates with poor thermal stability are as described above. In addition to the generation of polymer components and acid components, coloring occurs, so it cannot be used in optical lens applications where transparency is essential.
尚、本明細書中においては、アクリル酸及びメタクリル酸を総称して「(メタ)アクリル 酸」と記載する。  In this specification, acrylic acid and methacrylic acid are collectively referred to as “(meth) acrylic acid”.
[0004] (メタ)アタリレートの貯蔵安定性及び熱安定性が不良となる原因の一つとして、製 品中に残留する不純物の影響が挙げられる。 (メタ)アタリレートは、通常 (メタ)アクリル酸とアルコール類を酸触媒存在下にて脱 水エステルイ匕反応させ製造されて 、るが、エステルイ匕反応時には様々な不純物が副 生する。このような不純物を除くため、通常、脱水エステルイ匕後の反応液に対して、 水やアルカリ水溶液による洗浄操作が施されるが、不純物の除去は必ずしも十分で はない。 [0004] One of the causes of poor storage stability and thermal stability of (meth) acrylate is the effect of impurities remaining in the product. (Meth) acrylate is usually produced by the dehydration reaction of (meth) acrylic acid and alcohols in the presence of an acid catalyst, but various impurities are by-produced during the ester reaction. In order to remove such impurities, the reaction solution after dehydration is usually washed with water or an aqueous alkaline solution, but the removal of impurities is not always sufficient.
[0005] このため、(メタ)アタリレート製造時の洗浄工程を強化する方法が種々検討されて いる。  [0005] For this reason, various methods for strengthening the cleaning process during the production of (meth) acrylate are being studied.
例えば、特許文献 1では、脱水エステル化後の反応生成物を中和処理した後、さら にァミン類で処理する方法が開示されて!ヽる。  For example, Patent Document 1 discloses a method in which a reaction product after dehydration esterification is neutralized and then treated with amines! Speak.
し力しながら、この方法によれば、反応生成物をァミン類で処理した後、該ァミン類 を反応生成物から除くため、引き続き反応生成物を酸性水溶液で洗浄しなければな らず、反応生成物へ酸性成分が混入することがある。よって、該方法においては、酸 性水溶液での洗浄後に再度アルカリ水溶液での洗浄を行った後、軟水での洗浄を 三回繰り返しており、工程が煩雑かつ長時間を要するため、生産性の低下が著しい 。又、該処理を工業的に実施するならば、アルカリ水溶液及び酸性水溶液の双方に 対して腐食されな 、特殊かつ高価な材質の洗浄槽を用いる力、アルカリ水溶液での 処理と酸性水溶液での処理を別々の洗浄槽で実施しなければならず、工業的実施 に好適とは言い難い。  However, according to this method, after the reaction product is treated with the amine, the amine is removed from the reaction product, and therefore the reaction product must be washed with an acidic aqueous solution. Acidic components may be mixed into the product. Therefore, in this method, after washing with an aqueous alkaline solution after washing with an acidic aqueous solution, washing with soft water is repeated three times, and the process is complicated and requires a long time. Is remarkable. Also, if the treatment is carried out industrially, the ability to use a cleaning tank made of a special and expensive material that does not corrode both the alkaline aqueous solution and the acidic aqueous solution, the treatment with the alkaline aqueous solution and the treatment with the acidic aqueous solution Must be carried out in separate washing tanks and is not suitable for industrial implementation.
[0006] 又、特許文献 2では、(メタ)アタリレートを製造後の反応液を中和又は洗浄処理す る際に、カチオン系界面活性剤を添加する方法が開示されており、この方法によれ ば、有機層と水層の界面付近での乳化を防止して、有機層と水層の分離時間を短く することができ、その結果として効率的に不純物を除去することができることが開示さ れている。  [0006] Further, Patent Document 2 discloses a method of adding a cationic surfactant when neutralizing or washing the reaction solution after the production of (meth) acrylate. Therefore, it is disclosed that emulsification in the vicinity of the interface between the organic layer and the aqueous layer can be prevented, the separation time of the organic layer and the aqueous layer can be shortened, and as a result, impurities can be efficiently removed. It is.
しかしながら、特許文献 2記載の方法は、有機層と水層の分離時間の短縮ィ匕に優 れるものの、得られる (メタ)アタリレートの貯蔵安定性及び熱安定性が不十分なもの であった。  However, although the method described in Patent Document 2 is excellent in shortening the separation time between the organic layer and the aqueous layer, the storage stability and thermal stability of the obtained (meth) acrylate are insufficient. .
[0007] 特許文献 1 :特開平 6— 219991号公報  [0007] Patent Document 1: Japanese Patent Laid-Open No. 6-219991
特許文献 2:特開 2001 -048831号公報 発明の開示 Patent Document 2: JP 2001-048831 A Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0008] 本発明は、簡便な方法により、得られる (メタ)アタリレートの貯蔵安定性及び熱安定 性を向上させることができる (メタ)アタリレートの製造方法を提供することを目的とする 。更に本発明は、貯蔵安定性及び熱安定性の向上した (メタ)アタリレート系組成物を 提供することを目的とする。  [0008] An object of the present invention is to provide a method for producing (meth) acrylate which can improve storage stability and thermal stability of the obtained (meth) acrylate by a simple method. A further object of the present invention is to provide a (meth) acrylate composition having improved storage stability and thermal stability.
課題を解決するための手段  Means for solving the problem
[0009] 本発明の上記課題は、以下のく 1 >、 < 3 >及び < 9 >に記載の手段により解決さ れた。好ましい実施態様であるく 2>、 <4>〜< 8 >、 < 10>及びく 11 >と共に 以下に記載する。 [0009] The above-described problems of the present invention have been solved by the means described in <1>, <3>, and <9> below. The preferred embodiments are described below together with <2>, <4> to <8>, <10> and <11>.
< 1 > (メタ)アクリル酸及び、ォキシアルキレン基を有するアルコールを有機溶媒中 で有機スルホン酸触媒により脱水して (メタ)アタリレートとするエステルイ匕工程、及び 得られた (メタ)アタリレート中の式(1)で表される化合物 Aを Oppm以上 lOOppm以 下になるように制御する管理工程を含むことを特徴とする (メタ)アタリレートの製造方 法、  <1> An esterification process in which (meth) acrylic acid and an alcohol having an oxyalkylene group are dehydrated with an organic sulfonic acid catalyst in an organic solvent to form (meth) acrylate, and the obtained (meth) acrylate A process for producing (meth) acrylate, comprising a control step of controlling the compound A represented by the formula (1) in the formula so as to be Oppm or more and lOOppm or less,
[0010] [化 1]  [0010] [Chemical 1]
Figure imgf000005_0001
Figure imgf000005_0001
〔式(1)において、 R1はアルキル基又はァリール基を表し、 R2はアルキレン基を表し、 R3は水素原子又はメチル基を表す。〕 [In the formula (1), R 1 represents an alkyl group or an aryl group, R 2 represents an alkylene group, and R 3 represents a hydrogen atom or a methyl group. ]
< 2> 管理工程力 以下の 1)〜4)の少なくとも 1つの手段を含む < 1 >に記載の( メタ)アタリレートの製造方法。  <2> Management process capability The process for producing (meth) acrylate according to <1>, comprising at least one of the following 1) to 4).
1)エステル化工程にお!、てアルコールの水酸基 1モルに対して、(メタ)アクリル酸 を 0. 8モル以上 2. 0モル以下使用する。  1) In the esterification step, (meth) acrylic acid is used in an amount of 0.8 mol to 2.0 mol with respect to 1 mol of alcohol hydroxyl group.
2)エステルイ匕反応を 70°C以上 140°C以下で行う。  2) Perform esterification reaction at 70 ° C or higher and 140 ° C or lower.
3)エステルイ匕反応がほぼ完了した時点で終了する。 4)エステルイ匕工程により得られた反応液を中和処理及び水洗処理を経た後に得ら れる粗生成物中の化合物 Aを、水分の存在下で加熱して、加水分解する。 3) Finish when the esterification reaction is almost complete. 4) Compound A in the crude product obtained after neutralizing and washing the reaction solution obtained in the esterification process is heated in the presence of moisture to hydrolyze.
< 3 > (メタ)アクリル酸及び、ォキシアルキレン基を有するアルコールを有機溶媒中 で有機スルホン酸触媒により脱水して (メタ)アタリレートとするエステルイ匕工程(1)、 工程(1)により得られた反応液を中和処理及び水洗処理を行う工程(2)、工程(2)で 得られる (メタ)アタリレートに対して式( 1 )で表される化合物 Aを lppm以上含有する 有機反応液に、 4級アンモ-ゥム塩、 4級ホスホ-ゥム塩、アミジン、 1級ァミノ基及び Z又は 2級アミノ基を有する化合物、セミカルバジド並びにピリジンよりなる群力 選 択された少なくとも 1つの特定処理剤を添加する添加工程を含むことを特徴とする (メ タ)アタリレートの製造方法、 <3> Obtained by the esterification step (1) and step (1) by dehydrating (meth) acrylic acid and an alcohol having an oxyalkylene group with an organic sulfonic acid catalyst in an organic solvent to form (meth) acrylate. The organic reaction containing lppm or more of the compound A represented by the formula (1) with respect to the (meth) acrylate obtained in the step (2) and the step (2) in which the obtained reaction solution is neutralized and washed with water At least one selected from the group consisting of a quaternary ammonium salt, a quaternary phosphonium salt, an amidine, a compound having a primary amino group and a Z or secondary amino group, semicarbazide and pyridine. A method for producing (meta) atallylate, comprising an addition step of adding a specific treatment agent;
[化 2][Chemical 2]
Figure imgf000006_0001
Figure imgf000006_0001
〔式(1)において、 R1はアルキル基又はァリール基を表し、 R2はアルキレン基を表し、 R3は水素原子又はメチル基を表す。〕 [In the formula (1), R 1 represents an alkyl group or an aryl group, R 2 represents an alkylene group, and R 3 represents a hydrogen atom or a methyl group. ]
<4> 前記特定処理剤を添加する添加工程の後、有機溶媒を留去する脱溶媒ェ 程を含むことを特徴とするく 3 >記載の (メタ)アタリレートの製造方法、  <4> The method for producing a (meth) acrylate according to <3>, further comprising a desolvation step of distilling off the organic solvent after the addition step of adding the specific treating agent,
< 5 > 前記工程 (2)の後、有機溶媒を留去する脱溶媒工程、脱溶媒工程後の反応 液に、前記特定処理剤を添加する添加工程、及び加熱する加熱工程を含む < 3 > に記載の (メタ)アタリレートの製造方法、 <5> After the step (2), including a desolvation step of distilling off the organic solvent, an addition step of adding the specific treating agent to the reaction solution after the desolvation step, and a heating step of heating <3> A process for producing the (meth) attalylate according to claim 1,
< 6 > 前記加熱温度が 30〜: LOO°Cであるく 5 >に記載の (メタ)アタリレートの製造 方法、  <6> The method for producing a (meth) acrylate according to <5>, wherein the heating temperature is 30 to: LOO ° C.
< 7> ォキシアルキレン基を有するアルコール力 多価アルコールのアルキレンォ キサイド付加物である < 1 >〜く 6 > 、ずれか 1つに記載の (メタ)アタリレートの製造 方法、  <7> Alcohol power having an oxyalkylene group <1> to 6> which is an alkylene oxide adduct of a polyhydric alcohol,
< 8 > ォキシアルキレン基を有するアルコールのォキシアルキレン基がォキシェチ レン基又はォキシプロピレン基であり、式(1)における R2のアルキレン基が、エチレン 基又はプロピレン基であるく 1 >〜< 7>いずれ力 1つに記載の(メタ)アタリレートの 製造方法、 <8> The oxyalkylene group of the alcohol having an oxyalkylene group is 1) to <7> any one of (1) to <7>, wherein the alkylene group of R 2 in the formula (1) is a ethylene group or a propylene group. Method,
< 9 > (メタ)アクリル酸とォキシアルキレン基を有するアルコールを有機スルホン酸 触媒の存在下に脱水エステルィヒ反応させて得られたォキシアルキレン基を有する (メ タ)アタリレートを含む組成物であって、式(1)で表される化合物 Aを Oppm以上 ΙΟΟρ pm以下含有する (メタ)アタリレート系組成物、  <9> A composition comprising (meth) acrylate having a (meth) acrylic acid and an (oxy) alkylene group obtained by subjecting an alcohol having an oxyalkylene group to a dehydrating ester reaction in the presence of an organic sulfonic acid catalyst. A (meth) acrylate composition containing O ppm or more and ΙΟΟρ pm or less of the compound A represented by the formula (1),
[0013] [化 3]  [0013] [Chemical 3]
Figure imgf000007_0001
Figure imgf000007_0001
〔式(1)において、 R1はアルキル基又はァリール基を表し、 R2はアルキレン基を表し、 R3は水素原子又はメチル基を表す。〕 [In the formula (1), R 1 represents an alkyl group or an aryl group, R 2 represents an alkylene group, and R 3 represents a hydrogen atom or a methyl group. ]
[0014] < 10 > ォキシアルキレン基を有するアルコール力 多価アルコールのアルキレン オキサイド付加物であるく 9 >に記載の (メタ)アタリレート系組成物、 [0014] <10> Alcohol power having an oxyalkylene group [9] The (meth) acrylate composition according to 9>, which is an alkylene oxide adduct of a polyhydric alcohol,
< 11 > 才キシァノレキレン基を有するァノレコーノレの才キシァノレキレン基が才キシェ チレン基又はォキシプロピレン基であり、式(1)における R2のアルキレン基が、ェチレ ン基又はプロピレン基である < 9 >又はく 10>に記載の(メタ)アタリレート系組成物 発明の効果 <11> old Kishianorekiren group Anorekonore having old Kishianorekiren group is the old Kishe styrene group or O alkoxy propylene group, an alkylene group of R 2 in the formula (1) is a Echire down or propylene <9> or (Meth) ate acrylate composition according to 10>
[0015] 本発明によれば、簡便な方法により、得られる (メタ)アタリレートの貯蔵安定性及び 熱安定性を向上させることができる、より具体的には酸価上昇を抑制することができる (メタ)アタリレートの製造方法を提供することができた。更に本発明によれば、貯蔵安 定性及び熱安定性の向上した、より具体的には酸価上昇を抑制することができる (メ タ)アタリレート系組成物を提供することができた。  [0015] According to the present invention, it is possible to improve the storage stability and thermal stability of the (meth) atalylate obtained by a simple method, more specifically, it is possible to suppress an increase in acid value. It was possible to provide a method for producing (meth) atallylate. Furthermore, according to the present invention, it was possible to provide a (meth) acrylate composition that has improved storage stability and thermal stability, and more specifically can suppress an increase in acid value.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0016] 本発明者らは、(メタ)アタリレートの製造方法において、(メタ)アタリレートの貯蔵安 定性や熱安定性が不良となる原因物質について、種々の検討を行った。 [0016] The inventors of the present invention have provided a method for producing (meth) atarylate, in which the storage safety of (meth) atalylate is reduced. Various investigations were conducted on causative substances that cause poor qualitative and thermal stability.
その結果、特定の化合物が (メタ)アタリレート中に特定量存在すると、経時的に酸 成分が上昇してしまうことを見出し、この値を特定量以下とすることによって (メタ)ァク リレートの貯蔵安定性や熱安定性を向上させることができることを見出し本発明を完 成するに至った。  As a result, it has been found that when a specific compound is present in a specific amount in (meth) acrylate, the acid component increases with time, and by setting this value to a specific amount or less, the (meth) acrylate is reduced. The present inventors have found that storage stability and thermal stability can be improved and have completed the present invention.
更に前記、原因物質である特定の化合物が特定量を超過する場合には、特定の 処理剤で処理することによって (メタ)アタリレートの貯蔵安定性や熱安定性を向上さ せることができることを見出し、本発明を完成するに至った。  Furthermore, when the specific compound that is the causative substance exceeds a specific amount, it is possible to improve the storage stability and thermal stability of (meth) acrylate by treating with a specific treatment agent. The headline and the present invention were completed.
以下、本発明を詳細に説明する。  Hereinafter, the present invention will be described in detail.
[0017] 本発明の第 1の (メタ)アタリレートの製造方法は、(メタ)アクリル酸及び、ォキシアル キレン基を有するアルコールを有機溶媒中で有機スルホン酸触媒により脱水して (メ タ)アタリレートとするエステルイ匕工程、及び得られた (メタ)アタリレート中の後記式(1 )で表される化合物 Aを Oppm以上 lOOppm以下(本発明にお 、て、「Oppm以上 10 Oppm以下」を「0〜: LOOppm」又は「Oppm〜: LOOppm」とも記載することとする。以下 、同様)になるように制御する管理工程を含むことを特徴とする。  [0017] The first (meth) acrylate production method of the present invention comprises dehydrating (meth) acrylic acid and an alcohol having an oxyalkylene group with an organic sulfonic acid catalyst in an organic solvent. The compound A represented by the following formula (1) in the resulting (meth) atallylate is Oppm or more and lOOppm or less (in the present invention, “Oppm or more and 10 Oppm or less”). It is also described as “0˜: LOOppm” or “Oppm˜: LOOppm” (hereinafter the same shall apply), and includes a management process for controlling so that it becomes the same.
[0018] また、本発明の第 2の (メタ)アタリレートの製造方法は (メタ)アクリル酸及び、ォキシ アルキレン基を有するアルコールを有機溶媒中で有機スルホン酸触媒により脱水し て (メタ)アタリレートとするエステルイ匕工程(1)、工程(1)により得られた反応液を中和 処理及び水洗処理を行う工程(2)、工程(2)で得られる (メタ)アタリレートに対して後 記式(1)で表される化合物 Aを lppm以上含有する有機反応液に、 4級アンモ-ゥム 塩、 4級ホスホ-ゥム塩、アミジン、 1級ァミノ基及び Z又は 2級アミノ基を有する化合 物、セミカルバジド並びにピリジンよりなる群力 選択された少なくとも 1つの特定処理 剤を添加する添加工程を含むことを特徴とする。  [0018] Further, the second method for producing (meth) acrylate according to the present invention includes dehydrating (meth) acrylic acid and alcohol having an oxyalkylene group with an organic sulfonic acid catalyst in an organic solvent. The reaction solution obtained in the esterification step (1), the step (1) is neutralized and washed with water (2), and the (meth) acrylate is obtained in step (2). In an organic reaction solution containing lppm or more of the compound A represented by the formula (1), a quaternary ammonium salt, a quaternary phosphonium salt, an amidine, a primary aamino group, and a Z or secondary amino group And a compound consisting of semicarbazide and pyridine, and an addition step of adding at least one selected specific treatment agent.
[0019] (化合物 A)  [0019] (Compound A)
以下、式(1)で表される化合物 Aについて説明する。  Hereinafter, the compound A represented by the formula (1) will be described.
[0020] [化 4]
Figure imgf000009_0001
[0020] [Chemical 4]
Figure imgf000009_0001
[0021] 式(1)において、 R1はアルキル基又はァリール基を表し、 R2はアルキレン基を表し、 R3は水素原子又はメチル基を表す。 In the formula (1), R 1 represents an alkyl group or an aryl group, R 2 represents an alkylene group, and R 3 represents a hydrogen atom or a methyl group.
[0022] R1はアルキル基又はァリール基を表し、該アルキル基及びァリール基は無置換で あっても 1以上の置換基を有していても良い。アルキル基は炭素数 1〜10であること が好ましぐァリール基は炭素数 6〜 12であることが好ましい。また、アルキル基は、 直鎖状、分岐状であっても良ぐ環状構造を有していても良い。 R 1 represents an alkyl group or an aryl group, and the alkyl group and aryl group may be unsubstituted or may have one or more substituents. The alkyl group preferably has 1 to 10 carbon atoms, and the aryl group preferably has 6 to 12 carbon atoms. The alkyl group may be linear or branched and may have a good cyclic structure.
アルキル基に許容される置換基としては、ァリール基、アルコキシ基、ハロゲン原子 が例示でき、好ましくはァリール基及びノ、ロゲン原子であり、より好ましくはァリール基 であり、特に好ましくはフ ニル基である。  Examples of the substituent allowed for the alkyl group include an aryl group, an alkoxy group, and a halogen atom, preferably an aryl group, a chloro group, and a rhogen atom, more preferably an aryl group, and particularly preferably a phenyl group. is there.
また、ァリール基に許容される置換基としては、アルキル基、ハロゲン原子、アルコ キシ基が例示でき、好ましくはアルキル基であり、炭素数 1〜3のアルキル基であるこ とがより好ましい。  Further, examples of the substituent allowed for the aryl group include an alkyl group, a halogen atom, and an alkoxy group, preferably an alkyl group, and more preferably an alkyl group having 1 to 3 carbon atoms.
具体的には、 R1として、メチル基、フエ-ル基、トルィル基、ェチルフエ-ル基及び ベンジル基が好ましく例示できる。 Specifically, preferred examples of R 1 include a methyl group, a phenyl group, a tolyl group, an ethylphenol group, and a benzyl group.
[0023] 化合物 Aにおいて、 R1は、エステル化反応で使用した有機スルホン酸触媒に由来 するものである。 [0023] In compound A, R 1 is derived from the organic sulfonic acid catalyst used in the esterification reaction.
R1がメチル基の場合は、酸触媒としてメタンスルホン酸を使用した場合であり、以下 同様に、フヱ-ル基の場合はベンゼンスルホン酸、トルィル基の場合は p—トルエン スルホン酸、ェチルフエ-ル基の場合はェチルベンゼンスルホン酸、又、ベンジル基 の場合はべンジルスルホン酸である。 In the case where R 1 is a methyl group, methanesulfonic acid is used as an acid catalyst. Similarly, in the case of a phenol group, benzenesulfonic acid is used, and in the case of a toluyl group, p-toluenesulfonic acid or ethylphenol is used. In the case of a-group, ethylbenzene sulfonic acid is used. In the case of a benzyl group, benzyl sulfonic acid is used.
R2のアルキレン基としては、炭素数 4以下のアルキレン基が好ましぐより好ましくは エチレン基及びプロピレン基である。 R2は、エステル化反応で使用したアルコールの アルキレンオキサイド基に対応する。 The alkylene group for R 2 is preferably an alkylene group having 4 or less carbon atoms, more preferably an ethylene group or a propylene group. R 2 corresponds to the alkylene oxide group of the alcohol used in the esterification reaction.
R3は水素原子又はメチル基を表す。 R3は、エステル化反応で使用した (メタ)アタリ ル酸に対応する。 R 3 represents a hydrogen atom or a methyl group. R 3 is the (meth) attaly used in the esterification reaction. Corresponds to formic acid.
[0024] 化合物 Aは、エステルイ匕反応で使用したアルコールと有機スルホン酸触媒との反応 物であると推定している。(メタ)アタリレート中に化合物 Aが存在すると、経時的に分 解して酸を発生し、これが (メタ)アタリレートの貯蔵安定性や熱安定性を不良にして しまうものと推測している。  [0024] Compound A is presumed to be a reaction product of the alcohol used in the esterification reaction and the organic sulfonic acid catalyst. It is speculated that if compound A is present in (meth) acrylate, it decomposes over time and generates acid, which makes storage stability and thermal stability of (meth) acrylate become poor. .
[0025] (メタ)アタリレート中の化合物 Aの含有割合の分析方法としては、液体クロマトダラ フィー及びガスクロマトグラフィー等が挙げられ、化合物 Aが分解することなく安定に 観測できるため液体クロマトグラフィーが好ましい。 [0025] Examples of the method for analyzing the content ratio of compound A in (meth) attalylate include liquid chromatography and gas chromatography, and liquid chromatography is preferable because compound A can be observed stably without decomposition. .
さらに、液体クロマトグラフィーとしては、定量性 ·検出感度に優れているため液体ク 口マトグラフィー Z質量分析法 (以下、 LCZMSという)が好ましい。  Furthermore, as liquid chromatography, liquid chromatography / mass spectrometry (hereinafter referred to as LCZMS) is preferable because of its excellent quantitativeness and detection sensitivity.
[0026] LCZMSによる化合物 Aの定量条件としては、以下が挙げられる。 [0026] The quantification conditions for Compound A by LCZMS include the following.
OLC条件  OLC conditions
装置:高速液体クロマトグラフ (HPLC)、カラムの種類: ODSカラム、カラムの温度: 40°C、溶離液:水 Zメタノール系  Equipment: High performance liquid chromatograph (HPLC), column type: ODS column, column temperature: 40 ° C, eluent: water Z methanol system
OMS条件  OMS conditions
検出器: ESI ( + )  Detector: ESI (+)
[0027] ( (メタ)アタリレートの製造方法) [0027] (Manufacturing method of (meth) attalylate)
本発明では、まず、(メタ)アクリル酸及び、ォキシアルキレン基を有するアルコール を有機溶媒中で有機スルホン酸触媒により脱水して (メタ)アタリレートとするエステル 化工程を行う。以下、エステルイ匕工程について説明する。  In the present invention, first, an esterification step is performed in which (meth) acrylic acid and an alcohol having an oxyalkylene group are dehydrated with an organic sulfonic acid catalyst in an organic solvent to give (meth) acrylate. Hereinafter, the esterification process will be described.
[0028] 1.エステル化工程 [0028] 1. Esterification process
本発明では、まず (メタ)アクリル酸とォキシアルキレン基を有するアルコール (以下 、単に「アルコール」と表現することもある)を有機溶媒中で有機スルホン酸触媒の存 在下に脱水エステルイ匕して (メタ)アタリレートとする。脱水エステルイ匕反応は加熱 -撹 拌下で行われることが好ま U、。  In the present invention, first, (meth) acrylic acid and an alcohol having an oxyalkylene group (hereinafter sometimes simply referred to as “alcohol”) are dehydrated in an organic solvent in the presence of an organic sulfonic acid catalyst. (Meta) Atarirate. It is preferred that the dehydration reaction is carried out under heating and stirring.
[0029] アルコールにおけるォキシアルキレン基としては、炭素数 4以下のォキシアルキレン 基が好ましぐより好ましくはォキシエチレン基又はォキシプロピレン基である。 [0029] The oxyalkylene group in the alcohol is preferably an oxyalkylene group having 4 or less carbon atoms, more preferably an oxyethylene group or an oxypropylene group.
アルコールにおけるォキシアルキレン基としては、繰り返し単位を 2以上有するポリ 才キシァノレキレン基であっても良!、。 As the oxyalkylene group in alcohol, a polyoxyethylene having two or more repeating units is used. It may be a gifted xylanolylene group!
[0030] アルコールとしては、種々の化合物が使用でき、具体的には以下に示すアルコー ルのアルキレンオキサイド付加物等が挙げられる。 [0030] Various compounds can be used as the alcohol, and specific examples thereof include the following alkylene oxide adducts of alcohol.
[1]メタノール、エタノール、 n—プロピルアルコール、イソプロピルアルコール、 n—ブ チノレアノレコーノレ、イソブチノレアノレコーノレ、 n—ペンチノレアノレコーノレ、シクロへキサノー ル、 n—へプチルアルコール、 n—ォクチルアルコール、 2—ェチルへキシルアルコー ル、イソオタチルアルコール、 n—ノ-ルアルコール、イソノ-ルアルコール等の一価 アルキルアルコール及びこれらのアルキレンオキサイド付カロ物。 [1] Methanol, ethanol, n-propyl alcohol, isopropyl alcohol, n -butinoreanoreconole, isobutinoleanoreconole, n-pentenoreanoleconole, cyclohexanol, n-heptyl alcohol, Monovalent alkyl alcohols such as n-octyl alcohol, 2-ethyl hexyl alcohol, isooctyl alcohol, n-nor alcohol, and isol alcohol, and calories with these alkylene oxides.
[2]フエノール、クロ口フエノール、ブロモフエノール、フルオロフェノール、ナフトール [2] Phenol, black mouth phenol, bromophenol, fluorophenol, naphthol
、フエニルフエノール、タミルフエノール、ノニルフエノール、ビスフエノーノレ A、ビスフエ ノール F、チォビスフエノール及び 4, 4, 一スルホ -ルジフエノール等のフエノール性 水酸基を有する化合物及びこれらのアルキレンオキサイド付加物。 Compounds having a phenolic hydroxyl group such as phenylphenol, tamphenol, nonylphenol, bisphenol A, bisphenol F, thiobisphenol and 4,4,1sulfoldiphenol, and alkylene oxide adducts thereof.
[3]エチレングリコール、プロピレングリコール、ネオペンチルグリコール、ジエチレン グリコール、トリエチレングリコール、ポリエチレングリコール、ジプロピレングリコール、 トリプロピレングリコール、ポリプロピレングリコール等のグリコール類及びこれらのァ ルキレンオキサイド付加物。  [3] Glycols such as ethylene glycol, propylene glycol, neopentyl glycol, diethylene glycol, triethylene glycol, polyethylene glycol, dipropylene glycol, tripropylene glycol, polypropylene glycol, and their alkylene oxide adducts.
[4]グリセリン、ジグリセリン、トリグリセリン、ポリグリセリン等のグリセリン及びこれらの アルキレンオキサイド付加物。  [4] Glycerin such as glycerin, diglycerin, triglycerin, polyglycerin, and their alkylene oxide adducts.
[5]ブタンジオール、ペンタンジオール、へキサンジオール、トリメチロールプロパン、 ジトリメチロールプロパン、ペンタエリスリトール、ジペンタエリスリトール等のポリオ一 ル及びこれらのアルキレンオキサイド付加物。  [5] Polyols such as butanediol, pentanediol, hexanediol, trimethylolpropane, ditrimethylolpropane, pentaerythritol, dipentaerythritol, and their alkylene oxide adducts.
[6]トリス一 2—ヒドロキシェチルイソシァヌレート。  [6] Tris 2-hydroxyethyl isocyanurate.
尚、上記アルキレンオキサイドとしては、炭素数 4以下のアルキレンオキサイドがより 好ましぐさらに好ましくはエチレンオキサイド及びプロピレンオキサイドである。  The alkylene oxide is preferably an alkylene oxide having 4 or less carbon atoms, more preferably ethylene oxide or propylene oxide.
化合物 1モル当たりのアルキレンオキサイドの平均付カ卩モル数としては、 1〜10モ ルが好ましい。  The average number of moles of alkylene oxide per mole of the compound is preferably 1 to 10 moles.
[0031] 本発明は、上記したアルコールの中でも、得られる (メタ)アタリレート中に不純物が 多く発生し易 、、多価アルコールのアルキレンオキサイド付加物やアルキレンォキサ イド付加数の大きいアルコールに対して、より好ましく適用できるものである。 [0031] Among the alcohols described above, the present invention is likely to generate a large amount of impurities in the obtained (meth) acrylate, and an alkylene oxide adduct of a polyhydric alcohol or alkylene oxide. It can be more preferably applied to alcohol with a large number of id additions.
多価アルコールのアルキレンオキサイド付加物の好まし 、具体例としては、トリメチ ロールプロパンのアルキレンオキサイド付カ卩物、ビスフエノール Aのアルキレンォキサ イド付加物及びジグリセリンのアルキレンオキサイド付加物等が挙げられ、アルキレン オキサイド付加物の具体例としては、エチレンオキサイド付加物及びプロピレンォキ サイド付加物が挙げられる。  Preference is given to alkylene oxide adducts of polyhydric alcohols, and specific examples thereof include alkylene oxide adducts of trimethylolpropane, bisphenol A alkylene oxide adducts and diglycerin alkylene oxide adducts. Specific examples of the alkylene oxide adduct include an ethylene oxide adduct and a propylene oxide adduct.
アルキレンオキサイド付加数の大きいアルコールとは、化合物 1モル当たりに平均 付加モル数 3モル以上のアルキレンオキサイド基を有するアルコールであり、具体的 には、ノユルフェノールのアルキレンオキサイド 4モル付カ卩物等が挙げられ、アルキレ ンオキサイド付加物の具体例としては、エチレンオキサイド付加物及びプロピレンォ キサイド付加物が挙げられる。  Alcohols with a large number of alkylene oxide additions are alcohols having an alkylene oxide group with an average addition mole number of 3 moles or more per mole of the compound. Specific examples of the alkylene oxide adduct include ethylene oxide adduct and propylene oxide adduct.
[0032] 脱水エステル化反応での (メタ)アクリル酸とアルコールの使用割合は、アルコール の水酸基 1モルに対して (メタ)アクリル酸が 0. 8〜2. 0モルが好ましぐより好ましく は 1. 0〜1. 5モルである。アクリル酸の使用割合が 0. 8モル以上であると、脱水エス テル化反応の時間が短ぐアルコール性水酸基が(メタ)アタリレートの(メタ)アタリ口 ィル基にマイケル付加する等の副反応が少なぐ良好な製品純度を得ることができる ので好ましい。また、アクリル酸の使用割合が 2. 0モル以下であると、(メタ)アタリレ ートの (メタ)アタリロイル基に (メタ)アクリル酸がマイケル付加する等の付加反応が少 なぐ良好な製品純度が得られる上、脱水エステル化後に未反応のアクリル酸を除去 する必要が少な 、ので好まし!/、。  [0032] The proportion of (meth) acrylic acid and alcohol used in the dehydration esterification reaction is more preferably 0.8 to 2.0 moles of (meth) acrylic acid per mole of hydroxyl groups of the alcohol. 1. 0 to 1.5 moles. If the acrylic acid is used in an amount of 0.8 mol or more, an alcoholic hydroxyl group having a short dehydration esterification reaction time may be added to the (meth) acrylate group of the (meth) acrylate, for example, by Michael addition. This is preferable because good product purity can be obtained with less reaction. In addition, when the proportion of acrylic acid used is 2.0 mol or less, good product purity with little addition reaction such as Michael addition of (meth) acrylic acid to the (meth) atalyloyl group of (meth) acrylate. In addition, it is preferable to remove unreacted acrylic acid after dehydration esterification. /.
[0033] 脱水エステル化反応で使用する有機スルホン酸触媒としては、式(2)で表される有 機スルホン酸触媒が挙げられる。  [0033] The organic sulfonic acid catalyst used in the dehydration esterification reaction includes an organic sulfonic acid catalyst represented by the formula (2).
[0034] [化 5]  [0034] [Chemical 5]
 Yes
R1—— S—— OH (2) R 1 —— S—— OH ( 2 )
II  II
 Yes
[0035] 式(2)において、 R1は式(1)における R1と同じであり、また、好ましい範囲も同様で ある。 有機スルホン酸触媒として、具体的には p トルエンスルホン酸、メタンスルホン酸、 ベンゼンスルホン酸、ェチルベンゼンスルホン酸及びべンジルスルホン酸等が挙げ られ、一種を単独で又は二種以上を任意に組み合わせて使用できる。 [0035] formula (2), R 1 is the same as R 1 in Formula (1), and the preferred scopes are also same. Specific examples of the organic sulfonic acid catalyst include p-toluenesulfonic acid, methanesulfonic acid, benzenesulfonic acid, ethylbenzenesulfonic acid and benzylsulfonic acid, and the like can be used alone or in any combination of two or more. Can be used.
[0036] 有機スルホン酸触媒の使用割合は、脱水エステル化に供されるアルコール性水酸 基のモル数に対して 0. 05mol%〜10mol%が好ましぐより好ましくは 0. 5mol%〜 5mol%である。有機スルホン酸触媒の使用割合が 0. 5mol%以上であると、実用的 な反応速度を得ることができるので好ましい。また、 10mol%以下であると、副反応が 少なぐ製品の純度が高ぐまた着色が少なぐ精製工程での触媒の除去や製品の 脱色操作に要する労力が少な 、ので好ま U、。  [0036] The use ratio of the organic sulfonic acid catalyst is preferably 0.05 mol% to 10 mol%, more preferably 0.5 mol% to 5 mol, relative to the number of moles of the alcoholic hydroxyl group subjected to dehydration esterification. %. A use rate of the organic sulfonic acid catalyst of 0.5 mol% or more is preferable because a practical reaction rate can be obtained. Also, if it is 10 mol% or less, the product purity with few side reactions is high and the labor required for the removal of the catalyst and the decolorization operation of the product in the purification process with little coloration is preferred.
[0037] 本発明にお ヽて、エステルイ匕工程で使用する有機溶媒としては、脱水エステルイ匕 反応で生成する水との溶解度が低い有機溶媒を使用することが好ましい。又、エステ ル化工程は、水を共沸させて留去しながら行うことが好ま 、。  [0037] In the present invention, as the organic solvent used in the esterification step, it is preferable to use an organic solvent having low solubility in water produced by the dehydration esterification reaction. The esterification process is preferably carried out while azeotropically distilling off water.
エステルイ匕工程において好適に使用できる有機溶媒としては、例えば、トルエン、 ベンゼン及びキシレン等の芳香族炭化水素、へキサン、シクロへキサン及びヘプタン 等の脂肪族炭化水素、並びにメチルェチルケトン及びシクロへキサノン等のケトンが 挙げられる。  Examples of organic solvents that can be suitably used in the esterification process include aromatic hydrocarbons such as toluene, benzene and xylene, aliphatic hydrocarbons such as hexane, cyclohexane and heptane, and methyl ethyl ketone and cyclohexane. And ketones such as xanone.
有機溶媒は、基質の溶解性等を考慮して、一種を単独で使用しても又は二種以上 を任意に組み合わせて使用しても良 、。  In consideration of the solubility of the substrate, the organic solvent may be used alone or in combination of two or more.
有機溶媒の割合としては、反応液中に 30〜70重量%であることが好ましい。  The proportion of the organic solvent is preferably 30 to 70% by weight in the reaction solution.
[0038] エステルイ匕反応温度としては、 70〜140°Cが好ましい。反応温度が 70°C以上であ ると、速やかな反応が行われるので好ましい。また、 140°C以下であるとエステルイ匕 工程における不純物の副生が少なぐさらにゲルィ匕を生じることがないので好ましい。 [0038] The esterification reaction temperature is preferably 70 to 140 ° C. A reaction temperature of 70 ° C or higher is preferable because a rapid reaction can be performed. Further, it is preferable that the temperature is 140 ° C. or lower because gelling is not further generated due to less by-product of impurities in the esterification step.
[0039] エステルイ匕反応では、(メタ)アタリロイル基の重合を防止する目的で、重合禁止剤 を使用することが好ましぐさらには含酸素ガスを反応液に導入しても良い。 [0039] In the esterification reaction, it is preferable to use a polymerization inhibitor for the purpose of preventing polymerization of the (meth) atalyloyl group, and oxygen-containing gas may be introduced into the reaction solution.
重合禁止剤としては、例えば、ハイドロキノン、 tert ブチルハイドロキノン、ハイド口 キノンモノメチルエーテル、 2, 6 ジー tert—ブチルー 4 メチルフエノール、 2, 4, 6—トリ— tert—ブチルフエノール、ベンゾキノン、フエノチアジン等の有機系重合禁 止剤、塩化銅及び硫酸銅等の無機系重合禁止剤、並びにジブチルジチォカルバミ ン酸銅等の有機塩系重合禁止剤等が挙げられる。重合禁止剤は、一種を単独で使 用しても又は二種以上を任意に組み合わせて使用しても良 、。重合禁止剤の割合と して【ま、反応液中に 5〜20, OOOwtppm力 S好ましく、より好ましく ίま 25〜3, OOOwtp pmである。 Examples of the polymerization inhibitor include organic compounds such as hydroquinone, tert butyl hydroquinone, hydrated quinone monomethyl ether, 2, 6 g tert-butyl-4-methyl phenol, 2, 4, 6-tri-tert-butyl phenol, benzoquinone, phenothiazine and the like. Polymerization inhibitors, inorganic polymerization inhibitors such as copper chloride and copper sulfate, and dibutyldithiocarbami Examples thereof include organic salt polymerization inhibitors such as copper acid. The polymerization inhibitors may be used alone or in any combination of two or more. The ratio of the polymerization inhibitor is preferably 5 to 20, OOOwtppm in the reaction solution S, more preferably 25 to 3, OOOwtppm.
含酸素ガスとしては、例えば空気、酸素と窒素の混合ガス、酸素とヘリウムの混合ガ ス等が挙げられる。  Examples of the oxygen-containing gas include air, a mixed gas of oxygen and nitrogen, and a mixed gas of oxygen and helium.
[0040] 2. (メタ)ァクリレート中の化合物 Aを ΟΌΌΙΠ以上 ΙΟΟΌΌΙΠ以下になるように制御する 管理工程  [0040] 2. Control process for controlling compound A in (meth) acrylate to be ΟΌΌΙΠ or more and ΙΟΟΌΌΙΠ or less.
本発明の第 1の (メタ)アタリレートの製造方法では、得られた (メタ)アタリレート中の 式(1)で表される化合物 Αを Oppm以上 lOOppm以下になるように制御する管理工 程を含む。  In the first method for producing (meth) acrylate, in the obtained (meth) acrylate, the process of controlling the compound 表 represented by the formula (1) so as to be Oppm or more and lOOppm or less. including.
(メタ)アタリレート中の化合物 Aの割合が lOOppmを超える場合は、組成物の貯蔵 安定性や熱安定性が不良となってしまう。  If the proportion of compound A in (meth) acrylate is more than lOOppm, the storage stability and thermal stability of the composition will be poor.
化合物 Aの割合としては、 Oppm以上 80ppm以下であることが好ましぐより好ましく は 0〜50ppmであり、 0〜30ppmであることが更に好ましぐ検出されないこと(lppm 以下)が特に好ましい。  The proportion of Compound A is preferably Oppm or more and 80ppm or less, more preferably 0 to 50ppm, and particularly preferably 0 to 30ppm, more preferably not detected (lppm or less).
特に、 R1が芳香族基を含む場合には、化合物 Aは 0〜80ppmであることが好ましく 、 0〜50ppmであることがより好ましぐ 0〜30ppmであることがさらに好ましい。また、 R1が芳香族基を含有しない場合、例えば、無置換のアルキル基である場合には、化 合物 Aは 0〜30ppmであることが好ましぐ 0〜10ppmであることがより好ましぐ 0〜 5ppmであることがさらに好ましい。 In particular, when R 1 contains an aromatic group, the compound A is preferably 0 to 80 ppm, more preferably 0 to 50 ppm, and further preferably 0 to 30 ppm. Further, when R 1 does not contain an aromatic group, for example, when it is an unsubstituted alkyl group, the compound A is preferably 0 to 30 ppm, more preferably 0 to 10 ppm. More preferably, it is 0 to 5 ppm.
[0041] 最終的に得られる (メタ)アタリレート中の化合物 Aの割合を lOOppm以下とする方 法としては、 [0041] As a method of setting the ratio of Compound A in the finally obtained (meth) acrylate to lOOppm or less,
(a)エステル化反応を温和な条件で実施する方法、 ( a ) a method for carrying out the esterification reaction under mild conditions;
(b) (メタ)アタリレートの製造方法においてエステルイ匕反応後に実施される精製ェ 程を実施する方法  (b) A method for carrying out the purification step carried out after the esterification reaction in the method for producing (meth) attalylate
等が例示できる。  Etc. can be illustrated.
(a)エステル化反応を温和な条件で実施する方法としては、具体的には、以下の(a — l)〜(a— 3)が例示できる。 ( a ) As a method for carrying out the esterification reaction under mild conditions, specifically, the following (a) — L) to (a-3) can be exemplified.
(a— 1)アルコールに対して、(メタ)アクリル酸を過剰に使用しない方法  (a— 1) Method that does not use excessive (meth) acrylic acid relative to alcohol
アルコールの水酸基 1モルに対して、(メタ)アクリル酸を 0. 8〜2. 0モル使用するこ と力 子ましく、 1. 0〜1. 5モル使用することがより好ましぐ 1. 0〜1. 2モル使用する ことが更に好ましい。  The use of 0.8 to 2.0 moles of (meth) acrylic acid per mole of alcohol hydroxyl group is preferred, and the use of 1.0 to 1.5 moles is more preferred 1. It is more preferable to use 0 to 1.2 mol.
(a— 2)過剰に高温条件でエステルィヒ反応を行わな!/、方法  (a-2) Do not perform esterich reaction at excessively high temperature! /, method
エステル化反応を 70〜 140°Cで行うことが好ましく、 80〜 130°Cで行うことがより好 ましぐ 90〜120°Cで行うことが更に好ましい。  The esterification reaction is preferably performed at 70 to 140 ° C, more preferably 80 to 130 ° C, and further preferably 90 to 120 ° C.
(a— 3)エステルイ匕反応がほぼ完了した時点で終了する方法  (a-3) Method to terminate when esterification reaction is almost complete
エステルイ匕反応がほぼ完了したことは、反応液の酸価を定期的に測定して、仕込 みの (メタ)アクリル酸から反応液中に含まれる未反応の (メタ)アクリル酸を換算する 方法や、エステルイ匕反応で留出した水の量を検出することにより確認できる。  The fact that the esterification reaction is almost complete is a method of converting the unreacted (meth) acrylic acid contained in the reaction liquid from the charged (meth) acrylic acid by periodically measuring the acid value of the reaction liquid. Alternatively, it can be confirmed by detecting the amount of water distilled by the esterification reaction.
エステル化反応では、通常、反応熟成のためエステル化反応後にも数時間加熱( 後加熱)するが、この後加熱で化合物 Aが発生する恐れがある。そこで、エステルイ匕 反応終了後に加熱を長時間行わな 、方法が好まし 、。この場合における加熱時間と しては、 3時間以内とするのが好ましぐより好ましくは 1時間以内である。  In the esterification reaction, since the reaction is usually matured for several hours after the esterification reaction (post-heating), there is a possibility that compound A may be generated by the subsequent heating. Therefore, a method is preferred in which heating is not performed for a long time after completion of the esterification reaction. In this case, the heating time is preferably within 3 hours, more preferably within 1 hour.
また、本発明において、(a— 1)〜(a— 3)を適宜組み合わせることも好ましい。 又、 (b) (メタ)アタリレートの製造方法においてエステル化反応後に実施される精製 工程を実施する方法において、精製工程としては、中和処理及び水洗処理等が挙 げられる。  In the present invention, it is also preferable to appropriately combine (a-1) to (a-3). In the method for carrying out the purification step performed after the esterification reaction in the (b) (meth) acrylate production method, the purification step includes neutralization treatment and water washing treatment.
さらに、上記方法を行っても (メタ)アタリレート中の化合物 Aの割合が lOOppmを超 える場合や、化合物 Aの割合をより少なくする目的で、エステル化工程により得られ た反応液を中和処理及び水洗処理を経た後に得られる粗生成物中の化合物 Aを、 水分の存在下で加熱して、加水分解する方法が例示できる。  Furthermore, even if the above method is used, the reaction solution obtained by the esterification step is neutralized for the purpose of reducing the proportion of Compound A in the case where the proportion of Compound A in (meth) atalylate exceeds lOOppm. A method of hydrolyzing the compound A in the crude product obtained after the treatment and the water washing treatment by heating in the presence of moisture can be exemplified.
この場合の加熱温度 '時間としては、(メタ)アタリレート中の化合物 Aの割合に応じ て適宜設定すれば良いが、加熱温度としては 60〜140°Cが好ましぐ 60〜120°Cが より好ましぐ 60〜100°Cがさらに好ましい。また、加熱時間としては 0. 5時間〜 300 時間が好ましぐ 5〜200時間がより好ましぐ 20〜150時間がさらに好ましい。 [0042] 上記した (a)〜(b)の方法のいずれか 1つ以上を採用し、得られた (メタ)アタリレート 中の化合物 Aの割合を定期的に監視して、最終的に得られる (メタ)アタリレート中の 化合物 Aが lOOppm以下となる様に管理する。 The heating temperature in this case may be set as appropriate according to the ratio of compound A in (meth) atalylate, but the heating temperature is preferably 60 to 140 ° C and 60 to 120 ° C. More preferred is 60 to 100 ° C. The heating time is preferably 0.5 hours to 300 hours, more preferably 5 to 200 hours, and further preferably 20 to 150 hours. [0042] One or more of the above-mentioned methods (a) to (b) are adopted, and the ratio of compound A in the obtained (meth) atalylate is regularly monitored, and finally obtained. It is controlled so that the compound A in the (meth) acrylate is less than lOOppm.
上記した方法のうち、どの手段を採用し、どの様な条件で実施するかの選択は、使 用する (メタ)アクリル酸、アルコール及びスルホン酸触媒の種類及び量、得られた (メ タ)アタリレート中の化合物 Aの割合、並びに最終製品の用途等に応じて、適宜選択 すれば良い。  Among the above methods, which method to use and under what conditions is selected based on the type and amount of the (meth) acrylic acid, alcohol and sulfonic acid catalyst used, and the obtained (meta) What is necessary is just to select suitably according to the ratio of the compound A in attalylate, the use of a final product, etc.
上記した方法のうち、エステル化反応を温和な条件で実施する方法及び中和 ·水 洗後の (メタ)アタリレートを水分の存在下で加熱して、化合物 Aを加水分解させ、そ の後再度中和 ·水洗を行う方法が好ましぐ簡便かつ工業的規模で実施できる点で、 エステル化反応を温和な条件で実施する方法がより好ましい。  Among the methods described above, the method for carrying out the esterification reaction under mild conditions and the neutralized and washed (meth) acrylate are heated in the presence of moisture to hydrolyze compound A, and then The method of carrying out the esterification reaction under mild conditions is more preferred in that it can be carried out on a simple and industrial scale, where the method of neutralizing and washing again is preferred.
[0043] 3. 中和処理及び水洗処理 [0043] 3. Neutralization treatment and water washing treatment
本発明の第 1の製造方法で採用する精製工程の中和処理及び水洗処理等、並び に、本発明の第 2の製造方法でエステルイ匕工程後の反応液に対して行われる中和 処理及び水洗処理について次に説明する。  In addition to the neutralization treatment and washing treatment in the purification step employed in the first production method of the present invention, and the neutralization treatment performed on the reaction solution after the esterification step in the second production method of the present invention, Next, the water washing process will be described.
[0044] 3- 1. 中和処理 [0044] 3- 1. Neutralization treatment
中和処理は、反応生成液中の未反応 (メタ)アクリル酸及び有機スルホン酸触媒等 の酸性成分を除去する目的で行われ、通常、反応液とアルカリ水溶液を接触させて 行われる。  The neutralization treatment is performed for the purpose of removing acidic components such as unreacted (meth) acrylic acid and organic sulfonic acid catalyst in the reaction product solution, and is usually performed by bringing the reaction solution into contact with an alkaline aqueous solution.
中和処理は常法に従って行えば良ぐ例えば反応液にアルカリ成分を溶解したァ ルカリ水溶液を添加し、撹拌、混合する方法等が挙げられる。  The neutralization treatment may be carried out according to a conventional method, for example, a method of adding an alkaline aqueous solution in which an alkali component is dissolved in the reaction solution, stirring and mixing, and the like.
[0045] 前記アルカリ成分としては、水酸化リチウム、水酸化ナトリウム及び水酸化カリウム等 のアルカリ金属塩、並びにアンモニア等が挙げられる。アルカリ成分としては、一種を 単独で使用しても又は二種以上を任意に組み合わせて使用しても良 、。これらのう ち、効果に優れ、安価でかつ入手が容易であるため、水酸ィ匕ナトリウムが好ましい。 この場合、アルカリ成分の量は、反応液の酸成分に対してモル比で 1倍以上である ことが好ましぐより好ましくは 1. 1〜2. 0倍である。アルカリ成分の添加量力 反応 液の酸成分に対してモル比で 1倍以上であると、酸成分の中和が十分に行われるの で好ましい。 [0045] Examples of the alkali component include alkali metal salts such as lithium hydroxide, sodium hydroxide and potassium hydroxide, and ammonia. As the alkali component, one kind may be used alone, or two or more kinds may be used in any combination. Of these, sodium hydroxide is preferred because of its excellent effect, low cost and easy availability. In this case, the amount of the alkali component is preferably at least 1 time in terms of molar ratio with respect to the acid component of the reaction solution, more preferably 1.1 to 2.0 times. When the molar ratio of the alkali component is 1 or more times the acid component of the reaction solution, the acid component is sufficiently neutralized. Is preferable.
又、アルカリ水溶液の濃度は、 1〜25重量%であることが好ましぐより好ましくは 10 〜25重量%である。アルカリ水溶液の濃度が 1重量%以上であると、中和処理後の 排水量を少なくすることができるので好ましい。また、アルカリ水溶液の濃度が 25重 量%以下であると、(メタ)アタリレートが重合することがな 、ので好まし!/、。  The concentration of the alkaline aqueous solution is preferably 1 to 25% by weight, more preferably 10 to 25% by weight. It is preferable that the concentration of the alkaline aqueous solution is 1% by weight or more because the amount of drainage after neutralization can be reduced. In addition, it is preferable that the concentration of the aqueous alkali solution is 25% by weight or less because (meth) acrylate does not polymerize! /.
[0046] アルカリ水溶液添加時の撹拌、混合時間は、反応液の量、それに含まれる酸成分 の量及び目的等に応じて適宜設定すれば良いが、 5分から 120分程度が好ましい。  [0046] The stirring and mixing time when adding the alkaline aqueous solution may be appropriately set according to the amount of the reaction solution, the amount of the acid component contained therein, the purpose, and the like, but is preferably about 5 minutes to 120 minutes.
[0047] 3 - 2.水洗処理.  [0047] 3-2. Washing treatment.
本発明にお ヽては、前記エステル化反応液 (エステル化工程後の反応液)又は中 和処理液 (エステル化工程後、更に中和処理を行った反応液)に対して水洗処理を 行う。水洗処理をどの時点で行うかは、使用する成分及び目的に応じて適宜選択す ることがでさる。  In the present invention, the esterification reaction solution (reaction solution after the esterification step) or neutralization treatment solution (reaction solution that has been further neutralized after the esterification step) is washed with water. . The point at which the water washing treatment is performed can be appropriately selected according to the components used and the purpose.
水洗処理は、常法に従って行えば良い。具体的には、前記エステル化反応で得ら れたエステル化反応液又は前記中和処理液に対して水又は無機水溶液を添加し、 撹拌、混合する方法等が挙げられる。  What is necessary is just to perform a washing process according to a conventional method. Specifically, a method of adding water or an inorganic aqueous solution to the esterification reaction solution obtained by the esterification reaction or the neutralization treatment solution, stirring and mixing, and the like can be mentioned.
水洗工程においては、通常水を使用する。一方、有機層との分離を改善したり、高 純度の製品が要求される場合には、無機塩を含む水溶液を使用することが好ましぐ 具体的には、硫酸アンモ-ゥム水溶液及び塩ィ匕アンモ-ゥム水溶液等のアンモ-ゥ ム塩水溶液、塩ィ匕ナトリウム等のナトリウム塩水溶液、並びに塩酸水溶液等の酸性水 が挙げられる。  In the washing step, water is usually used. On the other hand, when separation from the organic layer is improved or a product with high purity is required, it is preferable to use an aqueous solution containing an inorganic salt. Specifically, an aqueous solution of ammonium sulfate and a salt are preferred. Ammonium salt aqueous solution such as aqueous ammonium solution, sodium salt aqueous solution such as sodium chloride, and acidic water such as hydrochloric acid aqueous solution.
[0048] 3 - 3.その他  [0048] 3-3. Other
前記中和処理及び Z又は水洗処理においては、必要に応じて加熱することができ る。  In the neutralization treatment and Z or water washing treatment, heating can be performed as necessary.
加熱温度としては、 30〜80°Cが挙げられ、加熱時間として、 5分〜 5時間が挙げら れる。  Examples of the heating temperature include 30 to 80 ° C. Examples of the heating time include 5 minutes to 5 hours.
前記中和処理及び Z又は水洗処理で使用する水としては、蒸留水を使用すること が好ましい。  It is preferable to use distilled water as water used in the neutralization treatment and Z or washing treatment.
加熱する場合においては、(メタ)アタリロイル基の重合を防止する目的で、重合禁 止剤を使用することが好ましぐさらには含酸素ガスを反応液に導入しても良い。 重合禁止剤としては、前記と同様のものが挙げられ、その割合も、前記と同様の割 合が挙げられる。 In the case of heating, polymerization is prohibited for the purpose of preventing the polymerization of the (meth) atalyloyl group. It is preferable to use a stopper, and oxygen-containing gas may be introduced into the reaction solution. Examples of the polymerization inhibitor include the same ones as described above, and the ratio thereof includes the same ratio as described above.
含酸素ガスとしては、前記と同様のものが挙げられる。  Examples of the oxygen-containing gas include the same as described above.
[0049] 本発明の第 1の (メタ)アタリレートの製造方法において、中和'水洗の処理液が有 機溶媒を含む場合は、脱溶剤工程を行う。  [0049] In the first method for producing (meth) acrylate, in the case where the neutralized water washing treatment liquid contains an organic solvent, a solvent removal step is performed.
脱溶剤工程につ!ヽて説明すると、中和処理液又は水洗処理液は脱溶剤槽に移さ れ、中和処理又は水洗処理で水層が分離された後の有機層中の有機溶剤が除去さ れる。  To explain the solvent removal process, the neutralization treatment solution or water washing treatment solution is transferred to the solvent removal tank, and the organic solvent in the organic layer after the water layer is separated by the neutralization treatment or water washing treatment is removed. It is done.
脱溶剤処理は常法に従えば良ぐ例えば脱溶剤槽を減圧下に加熱して有機溶剤 を除去する方法等が挙げられる。  The solvent removal treatment may be carried out according to a conventional method, for example, a method of removing the organic solvent by heating the solvent removal tank under reduced pressure.
脱溶剤槽の減圧度としては、使用する原料及び目的に応じて適宜設定すれば良く 、好ましくは 0. 5〜50kPaであり、有機溶剤の除去程度により徐々に減圧度を増す 方法が好ましい。  The depressurization degree of the solvent removal tank may be appropriately set according to the raw material to be used and the purpose, and is preferably 0.5 to 50 kPa. A method of gradually increasing the depressurization degree depending on the degree of removal of the organic solvent is preferable.
加熱温度は、得られる (メタ)アタリレート、減圧度及び目的に応じて適宜設定すれ ば良いが、 40〜100でカ 子ましく、より好ましくは 60〜80°Cである。(メタ)アタリレー トの熱重合を抑制するためには、温度を 80°C以下に維持するのが好ましい。  The heating temperature may be appropriately set according to the obtained (meth) acrylate, the degree of pressure reduction, and the purpose, but is preferably 40 to 100, more preferably 60 to 80 ° C. In order to suppress thermal polymerization of (meth) atrelate, it is preferable to maintain the temperature at 80 ° C or lower.
脱溶剤工程においては、(メタ)アタリレートの熱重合を抑えるために、酸素を供給し たり、重合禁止剤を添加することが好ましい。重合禁止剤としては、前記と同様のもの が挙げられ、その割合も、前記と同様の割合が挙げられる。  In the solvent removal step, it is preferable to supply oxygen or add a polymerization inhibitor in order to suppress thermal polymerization of (meth) acrylate. Examples of the polymerization inhibitor include the same ones as described above, and the ratio thereof includes the same ratio as described above.
[0050] さらなる製品の品質が要求される場合には、脱溶剤工程の後、さらに濾過を行うこと ができる。 [0050] If further product quality is required, further filtration can be performed after the solvent removal step.
該濾過工程は、常法に従えば良い。  The filtration step may be performed according to a conventional method.
[0051] 4.処理剤添加工程 [0051] 4. Treatment agent addition process
本発明の第 2の (メタ)アタリレートの製造方法は、前記エステル化工程、中和処理、 水洗処理を行って得られる (メタ)アタリレートに対して、上記式(1)で表される化合物 Aを lppm以上含有する有機反応液に、 4級アンモ-ゥム塩、 4級スルホ -ゥム塩、ァ ミジン、 1級ァミノ基及び Z又は 2級アミノ基を有する化合物、セミカルバジド並びにピ リジンよりなる群から選択された少なくとも 1つの特定処理剤(以下、単に処理剤ともい うこととする。)を添加する添加工程 (処理剤添加工程)を有する。 The second (meth) acrylate preparation method of the present invention is represented by the above formula (1) with respect to the (meth) acrylate prepared by performing the esterification step, neutralization treatment, and water washing treatment. In an organic reaction liquid containing lppm or more of compound A, a quaternary ammonium salt, a quaternary sulfo salt, an amidine, a compound having a primary amino group and a Z or secondary amino group, semicarbazide and An addition step (treatment agent addition step) of adding at least one specific treatment agent selected from the group consisting of lysine (hereinafter, simply referred to as treatment agent);
これらの処理剤は、 1種を添加することも、 2種以上を併用して使用することもできる 以下、それぞれの処理剤について説明する。  These treatment agents can be used alone or in combination of two or more. Hereinafter, each treatment agent will be described.
[0052] 4—1. 4級アンモニゥム塩 [0052] 4—1. 4th grade ammonium salt
4級アンモ-ゥム塩としては、種々の化合物が使用でき、好ましくは下記式(3)で表 される化合物(以下、化合物 3という)が挙げられる。  As the quaternary ammonium salt, various compounds can be used, and a compound represented by the following formula (3) (hereinafter referred to as compound 3) is preferable.
[0053] [化 6] [0053] [Chemical 6]
Figure imgf000019_0001
Figure imgf000019_0001
[0054] 〔尚、式(3)において、 Ri〜R3はアルキル基を表し、 R4はアルキル基又はベンジル基 を表し、 X—は無機陰イオンを表す。〕 [0054] [In the equation (3), Ri~R 3 represents an alkyl group, R 4 represents an alkyl group or a benzyl group, X- represents an inorganic anion. ]
[0055] 前記式(3)の Ri〜R4にお!/、て、アルキル基としては、直鎖状のものであっても分岐 状のものであっても良いが、直鎖状のものが好ましい。又、炭素数 8以下のアルキル 基が好ましい。 [0055] In Ri to R 4 in the formula (3), the alkyl group may be linear or branched, but may be linear. Is preferred. An alkyl group having 8 or less carbon atoms is preferred.
前記式(3)の X—における無機陰イオンとしては、ハロゲンィ匕物イオン、水酸化物ィ オン及び硫酸水素イオン等が挙げられる。これらの中でも、ハロゲンィ匕物イオン及び 水酸ィ匕物イオンが好ましぐハロゲンィ匕物イオンとしては、塩素イオン及び臭素イオン 力 り好ましい。  Examples of the inorganic anion in X— in the formula (3) include halide ions, hydroxide ions and hydrogen sulfate ions. Among these, as the halide ions for which halide ions and hydroxide ions are preferred, chlorine ions and bromine ions are more preferable.
[0056] 化合物 3の具体例としては、下記(1)及び(2)の例が挙げられる。  [0056] Specific examples of the compound 3 include the following examples (1) and (2).
(DRi R4がアルキル基を有する化合物の例 (Examples of compounds in which DRi R 4 has an alkyl group
テトラメチルアンモ -ゥムクロライド、テトラメチルアンモ -ゥムブロマイド、テトラメチ ルアンモ-ゥムヒドロキシド、テトラー n—ブチルアンモ -ゥムクロライド、テトラー n—ブ チルアンモ -ゥムブロマイド、テトラー n—ブチルアンモ-ゥムヒドロキシド及び硫酸水 素テトラブチルアンモ -ゥム等。 [0057] (2) Ri〜R3がアルキル基で R4がベンジル基を有する化合物の例 Tetramethylammonium chloride, tetramethylammonium bromide, tetramethylammonium hydroxide, tetra-n-butylammonium chloride, tetra-n-butylammonium-bromide, tetra-n-butylammonium hydroxide, and tetrabutylammonium sulfate. Examples of [0057] (2) Ri~R 3 compounds R 4 an alkyl group having a benzyl group
ベンジルトリメチルアンモ -ゥムクロライド、ベンジルトリェチルアンモ -ゥムクロライド 及びべンジルトリ— n—ブチルアンモ -ゥムクロライド等。  Benzyltrimethylammonium chloride, benzyltriethylammonium chloride, and benzyltri-n-butylammonium chloride.
[0058] 4— 2. 4級ホスホニゥム塩 [0058] 4— 2. Quaternary phosphonium salt
4級ホスホニゥム塩としては、種々の化合物が使用でき、好ましくは下記式 (4)で表 される化合物(以下、化合物 4という)が挙げられる。  As the quaternary phosphonium salt, various compounds can be used, and a compound represented by the following formula (4) (hereinafter referred to as compound 4) is preferable.
[0059] [化 7] [0059] [Chemical 7]
Figure imgf000020_0001
Figure imgf000020_0001
[0060] 〔尚、式 (4)において、 Ri〜R3はアルキル基を表し、 R4はアルキル基又はベンジル基 を表し、 X—は無機陰イオンを表す。〕 [0060] [In the equation (4), Ri~R 3 represents an alkyl group, R 4 represents an alkyl group or a benzyl group, X- represents an inorganic anion. ]
[0061] 前記式 (4)の Ri〜R4にお!/、て、アルキル基としては、直鎖状のものであっても分岐 状のものであっても良いが、直鎖状のものが好ましい。又、炭素数 8以下のアルキル 基が好ましい。 [0061] In Ri to R 4 in the formula (4), the alkyl group may be linear or branched, but may be linear. Is preferred. An alkyl group having 8 or less carbon atoms is preferred.
前記式 (4)の X—における無機陰イオンとしては、ハロゲンィ匕物イオン、水酸化物ィ オン及び硫酸水素イオン等が挙げられる。これらの中でも、ハロゲンィ匕物イオン及び 水酸ィヒ物イオンが好ましぐハロゲンィヒ物イオンとしては、塩素イオン及び臭素イオン 力 り好ましい。  Examples of inorganic anions in X— in the formula (4) include halide ions, hydroxide ions and hydrogen sulfate ions. Among these, the chloride ion and the bromide ion power are more preferable as the halide ion preferred for the halide ion and the hydroxide ion.
[0062] 化合物 4の具体例としては、ベンジルートリー n—ブチルホスホ-ゥムクロライド及び テトラー n—ブチルホスホ-ゥムブロマイド等が挙げられる。  [0062] Specific examples of compound 4 include benzyl-tree n-butyl phospho-mum chloride and tetra-n-butyl phospho-mu-bromide.
[0063] 4- 3.アミジン [0063] 4- 3. Amidine
アミジンとしては、アミジン骨格を有する化合物であれば種々の化合物が使用でき る。具体的には、 1, 8—ジァザビシクロ(5. 4. 0)ゥンデセン一 7 (diazabicyclo[5.4.0] undec- 7- ene ; DBU)及び 1, 5—ジァザビシクロ(4. 3. 0)ノネンー 5 (diazabicyclo[4. As the amidine, various compounds can be used as long as they have an amidine skeleton. Specifically, 1,8-diazabicyclo (5.4.0) undecene-7 (diazabicyclo [5.4.0] undec-7-ene; DBU) and 1,5-diazabicyclo (4.3.0) nonene 5 (diazabicyclo [4.
3.0]non- 5- ene; DBN)等が挙げられる。 3.0] non-5-ene; DBN) and the like.
[0064] 4-4. 1級ァミノ某及び Z又は 2級アミノ某を有する化合物 1級ァミノ基及び Z又は 2級アミノ基を有する化合物(以下、アミン系化合物という)と しては、 1級アミノ基を有する化合物(以下、 1級ァミンという)、 2級アミノ基を有する化 合物(以下、 2級ァミンと 1ヽぅ)及び 1級ァミノ基及び 2級アミノ基を有する化合物(以下 、 1—2級ァミンという)等が挙げられる。 [0064] 4-4. Compounds having primary aminoamino and Z or secondary amino As a compound having a primary amino group and a Z or secondary amino group (hereinafter referred to as an amine compound), a compound having a primary amino group (hereinafter referred to as a primary amine) or a compound having a secondary amino group Examples thereof include compounds (hereinafter referred to as secondary amines and 1 ヽ ぅ) and compounds having primary amino groups and secondary amino groups (hereinafter referred to as primary and secondary amines).
アミン系化合物としては、種々の化合物が使用でき、例えば下記の例が挙げられる  Various compounds can be used as the amine compound, and examples include the following examples.
[0065] 1級ァミンとしては、メチノレアミン、ェチノレアミン、プロピルァミン、ブチノレアミン、 2- ェチルへキシルァミン及びへキサデシルァミン等のアルキルアミン;1, 6 へキサン ジァミン等のアルキルジァミン; 3—メトキシプロピルァミン、 3—エトキシプロピルアミン 及び 3—(2 ェチルへキシルォキシ)プロピルアミン等のアルコキシアルキルアミン; 3—(ジメチルァミノ)プロピルァミン、 3—(ジェチルァミノ)プロピルァミン及び 3—(ジ ブチルァミノ)プロピルアミン等の(ジアルキルァミノ)アルキルアミン;ヒドロキシェチル ァミン及びヒドロキシプロピルアミン等のヒドロキシアルキルァミン; N—メチルー 3, 3' —ィミノビス(プロピルァミン)等の N—ァノレキノレーイミノビス(ァノレキノレアミン);並びに ァリルアミン等が挙げられる。 [0065] Examples of primary amines include methylamines such as methenoreamine, ethenoreamine, propylamine, butynoleamine, 2-ethylhexylamine and hexadecylamine; alkyldiamines such as 1,6-hexanediamine; Alkoxyalkylamines such as propylamine and 3- (2-ethylhexyloxy) propylamine; (Dialkylamino) alkylamines such as 3- (dimethylamino) propylamine, 3- (jetylamino) propylamine and 3- (dibutylamino) propylamine Hydroxyalkylamines such as hydroxyethylamine and hydroxypropylamine; N-methyl-3,3'-iminobis (propylamine) and other N-anolenoiminobis (anolequinoleamine); and Riruamin, and the like.
これらの中で、アルキル基を有する化合物においては、分岐状のアルキル基であつ ても良い。  Among these, a compound having an alkyl group may be a branched alkyl group.
尚、前記化合物の中で、(ジアルキルァミノ)アルキルアミン及び N アルキル イミ ノビス (アルキルァミン)は 3級アミノ基を有するものである力 1級アミノ基を有するた め本発明の効果を奏する。  Of the above-mentioned compounds, (dialkylamino) alkylamine and N-alkyliminobis (alkylamine) have the effect of the present invention because they have a primary amino group that is a tertiary amino group.
[0066] 2級ァミンとしては、種々の化合物が使用でき、ジメチルァミン、ジェチルァミン、ジ プロピルァミン、ジブチルァミン及びジ 2—ェチルへキシルァミン等のジアルキルァ ミン;ジ 2 エトキシプロピルアミン及びジ 3—(2 ェチルへキシル)プロピルアミ ン等のジアルコキシアルキルアミン等;並びにジァリルアミン等が挙げられる。 [0066] As the secondary amine, various compounds can be used. Dialkylamines such as dimethylamine, jetylamine, dipropylamine, dibutylamine, and di-2-ethylhexylamine; di-2-ethoxypropylamine and di3- (2-ethylhexyl) ) Dialkoxyalkylamines such as propylamine; and diallylamine.
これらの中で、アルキル基を有する化合物においては、分岐状のアルキル基であつ ても良い。  Among these, a compound having an alkyl group may be a branched alkyl group.
[0067] 1—2級ァミンとしては、 3, 3,ーィミノビス(プロピル)ァミン及び 6, 6,一イミノビス( へキシル)ァミン等のイミノビス(アルキル)ァミン、並びに 3—(メチルァミノ)プロピルァ ミン等の(アルキルァミノ)アルキルアミン等が挙げられる。 [0067] Examples of primary and secondary amines include 3,3, -iminobis (propyl) amine and 6,6, monoiminobis (hexyl) amine, and 3- (methylamino) propylamine. And (alkylamino) alkylamines such as min.
[0068] 本発明のアミン系化合物としては、必要に応じて無機の塩の形態でも使用できる。  [0068] The amine compound of the present invention can be used in the form of an inorganic salt as required.
具体的には、前記した化合物の塩酸塩及び硫酸塩等が挙げられる。  Specific examples include hydrochlorides and sulfates of the aforementioned compounds.
但し、アミン系化合物としては、無機の塩でない形態の化合物の方が、本発明の効 果に優れるため好ましい。  However, as the amine compound, a compound in a form that is not an inorganic salt is preferable because it is excellent in the effect of the present invention.
[0069] アミン系化合物としては、これらの中でも、脱溶剤工程において、処理剤が蒸発し にくいとの理由で、沸点が 200°C以上の化合物が好ましぐ 0. 5kPaにおける沸点が 60°C以上、 300°C以下である化合物が好ましい。 [0069] Of these, compounds having a boiling point of 200 ° C or higher are preferred because the treating agent is less likely to evaporate in the solvent removal step, and the boiling point at 0.5 kPa is 60 ° C. As mentioned above, the compound which is 300 degrees C or less is preferable.
具体的には、 6, 6,ーィミノビス(へキシル)ァミン、 1, 6—へキサンジァミン、へキサ デシルァミン等が挙げられる。  Specific examples include 6,6, -iminobis (hexyl) amine, 1,6-hexanediamine, hexadecylamine and the like.
[0070] 4— 5.セミカルバジド [0070] 4— 5. Semicarbazide
セミカルバジドは、セミカルバジド基を少なくとも 1つ有する化合物である。 本発明に用いることができるセミカルバジドは、下記式(5)で表される化合物である ことが好ましい。  Semicarbazide is a compound having at least one semicarbazide group. The semicarbazide that can be used in the present invention is preferably a compound represented by the following formula (5).
[0071] [化 8] [0071] [Chemical 8]
Figure imgf000022_0001
Figure imgf000022_0001
[0072] 式(5)中、 R1及び R ま、 1価の有機基を表し、それぞれ同じであっても異なっていて も良い。また、 R1及び R2は、置換又は無置換のアルキル基又はフエニル基であること が好ましい。具体的には、メチル基、ェチル基、プロピル基、イソプロピル基、ステアリ ル基、ベンジル基、及び、ヒドロキシェチル基等が例示できる。これらの中でも炭素数 1〜4の低級アルキル基であることがより好まし!/、。 In the formula (5), R 1 and R 1 represent a monovalent organic group, which may be the same or different. R 1 and R 2 are preferably a substituted or unsubstituted alkyl group or a phenyl group. Specific examples include a methyl group, an ethyl group, a propyl group, an isopropyl group, a stearyl group, a benzyl group, and a hydroxyethyl group. Of these, lower alkyl groups having 1 to 4 carbon atoms are more preferred! /.
式 (5)中、 R3及び R4は、それぞれ独立に、水素原子又は 1価の有機基を表し、水素 原子であることが好ましい。 In formula (5), R 3 and R 4 each independently represents a hydrogen atom or a monovalent organic group, and is preferably a hydrogen atom.
式(5)中、 Aは、水素原子又は n価の有機基を表す。 Aは n価の有機基であることが 好ましぐ 2価又は 3価の有機基であることがより好ましい。 式(5)中、 nは 1以上の整数であり、 1 3の整数であることが好ましぐ 2又は 3であ ることがより好まし!/、。 In formula (5), A represents a hydrogen atom or an n-valent organic group. A is preferably an n-valent organic group, more preferably a divalent or trivalent organic group. In the formula (5), n is an integer of 1 or more, and an integer of 1 3 is preferable, and 2 or 3 is more preferable! /.
前記 n価の有機基としては、特に制限はないが、水素原子、炭素原子、窒素原子及 び Z又は酸素原子力 構成された基であることが好ましぐ脂肪族基又は脂環族基 であることがより好ましい。  The n-valent organic group is not particularly limited, but is preferably an aliphatic group or an alicyclic group that is preferably a hydrogen atom, a carbon atom, a nitrogen atom, and a group composed of Z or oxygen nuclear power. It is more preferable.
セミカルバジドは、 1種を添加することも、 2種以上を併用して使用することもできる。  Semicarbazide can be used alone or in combination of two or more.
[0073] セミカルバジドとしては、種々の化合物が使用でき、イソシァネートイ匕合物と N, N— ジ置換ヒドラジンとの反応により得られる化合物を挙げることができる。  As the semicarbazide, various compounds can be used, and examples thereof include compounds obtained by reaction of isocyanate compounds with N, N-disubstituted hydrazines.
[0074] イソシァネートイ匕合物としては、ジイソシァネートイ匕合物であることが好ましぐ例え ば 1, 4ーテトラメチレンジイソシァネート、 1, 5 ペンタメチレンジイソシァネート、 1, 6 へキサメチレンジイソシァネート、 2, 2, 4 (又は 2, 4, 4) トリメチルー 1, 6 へ キサメチレンジイソシァネート、リジンジイソシァネート、イソホロンジイソシァネート、 1 , 3—ビス(イソシァネートメチル)一シクロへキサン、 4, 4'—ジシクロへキシルメタンジ イソシァネート、キシリレンジイソシァネート及びテトラメチルキシレンジイソシァネート 等の脂肪族又は脂環族ジイソシァネート; 4, 4'ージフヱ-ルメタンジイソシァネート、 1, 4 フエ-レンジイソシァネート、 2, 4 トリレンジイソシァネート及びナフタレンジ イソシァネート等の芳香族ジイソシァネートが例示できる。又、これらジイソシァネート より誘導されるポリイソシァネート;並びに n—ブチルイソシァネート、 n キシルイソ シァネート、 n—ォクチルイソシァネート及びフエ-ルイソシァネート等のモノイソシァ ネート等を挙げることができる。  [0074] The isocyanate compound is preferably a diisocyanate compound, such as 1,4-tetramethylene diisocyanate, 1,5 pentamethylene diisocyanate, 1, 6 Hexamethylene diisocyanate, 2, 2, 4 (or 2, 4, 4) Trimethyl-1, 6 Hexamethylene diisocyanate, lysine diisocyanate, isophorone diisocyanate, 1, 3— Aliphatic or cycloaliphatic diisocyanates such as bis (isocyanatomethyl) monocyclohexane, 4,4'-dicyclohexylmethane diisocyanate, xylylene diisocyanate and tetramethylxylene diisocyanate; 4,4'-diphenyl -Aromatic diisocyanates such as l-methane diisocyanate, 1,4-phenolic diisocyanate, 2,4 tolylene diisocyanate and naphthalene diisocyanate Examples. In addition, polyisocyanates derived from these diisocyanates; and monoisocyanates such as n-butyl isocyanate, n-xyl isocyanate, n-octyl isocyanate, and phenyl isocyanate.
[0075] これらイソシァネートイ匕合物のうち、脂肪族又は脂環族ジイソシァネート及び、それ より誘導されるポリイソシァネートが好ましい。これらイソシァネートイ匕合物は 2種以上 を併用しても良い。  Of these isocyanate compounds, aliphatic or alicyclic diisocyanates and polyisocyanates derived therefrom are preferred. Two or more of these isocyanate compounds may be used in combination.
[0076] N, N ジ置換ヒドラジンとしては、例えば N, N ジメチルヒドラジン、 N, N ジェ チルヒドラジン、 N, N ジプロピルヒドラジン、 N, N ジイソプロピルヒドラジン、 N, N—ジステアリルヒドラジン、 N—メチルー N ェチルヒドラジン、 N—メチルー N—ィ ソプロピルヒドラジン、 N—メチル N ベンジルヒドラジン及び N, N ジ(j8—ヒドロ キシェチノレ) ヒドラジン等が挙げられる。 [0077] イソシァネートイ匕合物と N, N ジ置換ヒドラジンとの反応は、溶剤の有無に関わら ず行うことができる。溶剤を用いる場合イソシァネートに対して不活性な溶剤を用いる 必要がある。 [0076] Examples of N, N disubstituted hydrazine include N, N dimethyl hydrazine, N, N jet hydrazine, N, N dipropyl hydrazine, N, N diisopropyl hydrazine, N, N-distearyl hydrazine, N-methyl- N-ethylhydrazine, N-methyl-N-propyl hydrazine, N-methylN benzylhydrazine, N, N di (j8-hydrochichechinole) hydrazine and the like. [0077] The reaction of the isocyanate compound and the N, N disubstituted hydrazine can be carried out with or without a solvent. When using a solvent, it is necessary to use a solvent inert to isocyanate.
反応は、 20〜150°Cで行うことが好ましぐより好ましくは 0〜100°Cである。 イソシァネートと N, N ジ置換ヒドラジンとは、ほぼ当量で反応させることが好まし い。  The reaction is preferably carried out at 20 to 150 ° C, more preferably 0 to 100 ° C. It is preferable to react the isocyanate with the N, N disubstituted hydrazine in an approximately equivalent amount.
[0078] これらの中でも、酸価上昇抑制機能に優れ、入手が容易である点、前記した式(5) における R1及び R2が炭素数 1〜4の低級アルキル基であり、 R3及び R4が水素原子で あるセミカルバジド基を有するセミカルバジドが好ま 、。さらにこれらの利点にカロえ、 後記する脱溶剤工程において、処理剤が蒸発しにくいとの理由で、前記した式 (5) における R1及び R2が炭素数 1〜4の低級アルキル基であり、 R3及び R4が水素原子で あるセミカルバジド基を有し、分子量が 200以上の化合物がより好まし 、。 [0078] Among these, R 1 and R 2 in the above formula (5) are lower alkyl groups having 1 to 4 carbon atoms in that they have an excellent acid value increase suppressing function and are easily available, and R 3 and A semicarbazide having a semicarbazide group in which R 4 is a hydrogen atom is preferred. Furthermore, due to these advantages, R 1 and R 2 in the above formula (5) are lower alkyl groups having 1 to 4 carbon atoms because the treating agent is difficult to evaporate in the solvent removal step described later. A compound having a semicarbazide group in which R 3 and R 4 are hydrogen atoms and having a molecular weight of 200 or more is more preferable.
当該化合物としては、 1, 4—テトラメチレンビス一 N, N ジメチルセミカルバジド、 1, 6 へキサメチレンビス一 N, N ジメチルセミカルバジド、 1, 1, 1 ' , 1, 一テトラメ チルー 4, 4' (メチレンジ—p—フエ-レン)ジセミカルバジド及び下記化合物等が 好ましい。  The compounds include 1,4-tetramethylene bis-N, N dimethyl semicarbazide, 1, 6 hexamethylene bis-N, N dimethyl semicarbazide, 1, 1, 1 ', 1, monotetramethyl 4, 4' ( Methylenedi-p-phenylene) disemicarbazide and the following compounds are preferred.
[0079] [化 9]  [0079] [Chemical 9]
Figure imgf000024_0001
Figure imgf000024_0001
[0080] 4-6.ピリジン化合物  [0080] 4-6. Pyridine compounds
ピリジン化合物としては、ピリジン環を有する化合物であれば種々の化合物が使用 できる。具体的には、塩基性化合物であることが好ましぐピリジン、メチルピリジン、 ェチルピリジン、プロピルピリジン、ブチルピリジン、 4一(1ーブチルペンチル)ピリジ ン、ジメチノレピリジン、トリメチノレピリジン、トリェチノレピリジン、フエ-ノレピリジン、ァミノ ピリジン、 2 ジメチルァミノピリジン及び 4 ジメチルァミノピリジン等が挙げられる。 これらの中でも、ピリジンィ匕合物は、アミノビリジンィ匕合物であることが好ましぐ 2- ジメチルァミノピリジン又は 4ージメチルァミノピリジンであることがより好ましい。 As the pyridine compound, various compounds can be used as long as they have a pyridine ring. Specifically, pyridine, methylpyridine, ethylpyridine, propylpyridine, butylpyridine, 4- (1-butylpentyl) pyridin, dimethinorepyridine, trimethinorepyridine, and triethinorepyridine are preferred to be basic compounds. , Phenol-pyridine, aminopyridine, 2-dimethylaminopyridine, 4-dimethylaminopyridine and the like. Among these, the pyridine compound is preferably an aminoviridine compound, more preferably 2-dimethylaminopyridine or 4-dimethylaminopyridine.
[0081] 4- 7.好ましい特定処理剤 [0081] 4- 7. Preferred Specific Treatment Agent
本発明の第 2の (メタ)アタリレートの製造方法において、 4級アンモ-ゥム塩、 4級ホ スホ -ゥム塩、アミジン、 1級ァミノ基及び Z又は 2級アミノ基を有する化合物、セミカ ルバジド並びにピリジンよりなる群力 選択された少なくとも 1つの特定処理剤を使用 する。これらの中で、 4級アンモニゥム塩、 4級ホスホニゥム塩、アミジン及びセミカル バジドであることが好ましぐセミカルバジドであることがより好ましい。セミカルバジド を使用することにより、得られる (メタ)アタリレートに酸価上昇抑制効果に加え、着色 防止効果を付与することができるので好ま 、。  In the second method for producing (meth) atallylate of the present invention, a compound having a quaternary ammonium salt, a quaternary phosphate salt, an amidine, a primary amino group and Z or a secondary amino group, Group power consisting of semicarbazide and pyridine Use at least one selected specific treatment agent. Of these, quaternary ammonium salts, quaternary phosphonium salts, amidine and semicarbazide are preferred, and semicarbazides are more preferred. The use of semicarbazide is preferred because it can give the resulting (meth) atarylate an anti-coloring effect in addition to the effect of suppressing the increase in acid value.
[0082] 4-8.処理剤の添加方法 [0082] 4-8. Method of adding treatment agent
前記特定処理剤の添加の時期としては、中和処理及び水洗処理を経た後に得ら れる反応液であれば任意であり、具体的には、脱溶剤工程の前'後、ろ過を行う場合 には、ろ過工程の前 ·後、さらには最終製品が挙げられる。  The timing of addition of the specific treatment agent is arbitrary as long as it is a reaction solution obtained after neutralization treatment and water washing treatment, specifically, when filtration is performed before and after the solvent removal step. Includes the final product before and after the filtration process, and even the final product.
これらの中でも、脱溶剤工程の前に特定処理剤を添加する方法が好ましい。この方 法によれば、脱溶剤工程と特定処理剤の添加工程を併せて 1工程で行うことができ、 特定処理剤の添カ卩工程を省略することができるため好ましい。  Among these, a method of adding a specific treating agent before the solvent removal step is preferable. This method is preferable because the solvent removal step and the specific treatment agent addition step can be performed in one step, and the addition step of the specific treatment agent can be omitted.
前記処理剤の添加方法としては、(メタ)アタリレートに、撹拌'混合しつつ添加する 方法等が挙げられる。  Examples of the method for adding the treatment agent include a method of adding to (meth) acrylate with stirring and mixing.
[0083] 前記特定処理剤の添加割合としては、(メタ)アタリレートに対して、 2〜: LO, OOOwt ppm力 子ましく、 5〜3, OOOwtppmがより好ましぐ 50〜: L, OOOwtppmであること力 S さらに好ましい。この値が 2wtppm以上であると、特定処理剤の効果を有効に発揮す ることができ、一方、 10, OOOwtppm以下であると、得られた (メタ)アタリレートへの 溶解性に優れ、組成物として使用する場合、他の成分との相溶性にも優れたものとな るので好ましい。  [0083] The addition ratio of the specific treatment agent is 2 to: LO, OOOwt ppm, more preferably 5 to 3, OOOwtppm, more preferably 50 to: L, OOOwtppm. The power S is more preferable. When this value is 2 wtppm or more, the effect of the specific treatment agent can be exhibited effectively. On the other hand, when it is 10, OOOwtppm or less, the composition has excellent solubility in (meth) acrylate and the composition When used as a product, it is preferable because it is excellent in compatibility with other components.
[0084] 該処理剤の添加においては、常温でも行うことができる力 必要に応じて加熱する ことができる。  [0084] In the addition of the treating agent, a force that can be performed even at room temperature can be heated as necessary.
特に、アルコールとして多価アルコールを使用する場合は、加熱することが好まし い。これは、アルコールとして多価アルコールを使用する場合は、得られる(メタ)ァク リレートが高粘度物となり、加熱により、処理剤を短時間で均一に配合することができ るためである。 Especially when polyhydric alcohol is used as alcohol, heating is preferred. Yes. This is because when the polyhydric alcohol is used as the alcohol, the (meth) acrylate obtained becomes a highly viscous product, and the treatment agent can be uniformly blended in a short time by heating.
加熱温度及び加熱時間は、得られる (メタ)アタリレート及び目的に応じて適宜設定 すれば良いが、加熱温度としては、 30〜100°Cが好ましぐより好ましくは 30〜80°C であり、加熱時間として、 5分〜 5時間が好ましぐより好ましくは 30分〜 3時間である 加熱する場合においては、(メタ)アタリロイル基の重合を防止する目的で、重合禁 止剤を使用することが好ましぐさらには含酸素ガスを反応液に導入しても良い。 重合禁止剤としては、前記と同様のものが挙げられ、その割合も、前記と同様の割 合が挙げられる。  The heating temperature and the heating time may be appropriately set according to the (meth) acrylate and the purpose to be obtained, but the heating temperature is preferably 30 to 100 ° C, more preferably 30 to 80 ° C. The heating time is preferably 5 minutes to 5 hours, more preferably 30 minutes to 3 hours. In the case of heating, a polymerization inhibitor is used for the purpose of preventing the polymerization of the (meth) atalyloyl group. It is preferable that oxygen-containing gas may be introduced into the reaction solution. Examples of the polymerization inhibitor include the same ones as described above, and the ratio thereof includes the same ratio as described above.
含酸素ガスとしては、前記と同様のものが挙げられる。  Examples of the oxygen-containing gas include the same as described above.
5. m mr. . 5.m mr ...
中和'水洗の処理液が有機溶媒を含む場合は、脱溶媒工程を行う。このとき、有機 溶媒は、エステルイ匕工程で使用された有機溶媒であっても良いし、その後の中和処 理及び Z又は水洗処理にて添加されたものであっても良い。  In the case where the neutralized water washing treatment liquid contains an organic solvent, a solvent removal step is performed. At this time, the organic solvent may be the organic solvent used in the esterification step, or may be added in the subsequent neutralization treatment and Z or water washing treatment.
脱溶媒工程について説明すると、中和処理液又は水洗処理液は脱溶媒槽に移さ れ、中和処理又は水洗処理で水層が分離された後の有機層中の有機溶媒が除去さ れる。  The solvent removal process will be described. The neutralization treatment liquid or the water washing treatment liquid is transferred to the solvent removal tank, and the organic solvent in the organic layer after the aqueous layer is separated by the neutralization treatment or the water washing treatment is removed.
脱溶媒処理は常法に従えば良ぐ例えば脱溶媒槽を減圧下に加熱して有機溶媒 を除去する方法等が挙げられる。  The solvent removal treatment may be carried out according to a conventional method, for example, a method of removing the organic solvent by heating the solvent removal tank under reduced pressure.
脱溶媒槽の減圧度としては、使用する原料及び目的に応じて適宜設定すれば良く The depressurization degree of the solvent removal tank may be appropriately set according to the raw material to be used and the purpose.
、好ましくは 0. 5〜50kPaであり、有機溶媒の除去程度により徐々に減圧度を増す 方法が好ましい。 Preferably, the pressure is 0.5 to 50 kPa, and a method of gradually increasing the degree of vacuum depending on the degree of removal of the organic solvent is preferable.
加熱温度は、得られる (メタ)アタリレート、減圧度及び目的に応じて適宜設定すれ ば良いが、 40〜100でカ 子ましく、より好ましくは 60〜80°Cである。(メタ)アタリレー トの熱重合を抑制するためには、温度を 80°C以下に維持するのが好ましい。  The heating temperature may be appropriately set according to the obtained (meth) acrylate, the degree of pressure reduction, and the purpose, but is preferably 40 to 100, more preferably 60 to 80 ° C. In order to suppress thermal polymerization of (meth) atrelate, it is preferable to maintain the temperature at 80 ° C or lower.
脱溶剤工程においては、(メタ)アタリレートの熱重合を抑えるために、酸素を供給し たり、重合禁止剤を添加することが好ましい。重合禁止剤としては、前記と同様のもの が挙げられ、その割合も、前記と同様の割合が挙げられる。 In the solvent removal process, oxygen is supplied in order to suppress thermal polymerization of (meth) acrylate. It is preferable to add a polymerization inhibitor. Examples of the polymerization inhibitor include the same ones as described above, and the ratio thereof includes the same ratio as described above.
[0086] さらなる製品の品質が要求される場合には、脱溶剤工程の後、さらに濾過を行うこと ができる。  [0086] If further product quality is required, further filtration can be performed after the solvent removal step.
該濾過工程は、常法に従えば良ぐ加圧濾過することが好ましい。  In the filtration step, it is preferable to perform pressure filtration in accordance with a conventional method.
加圧濾過の方法としては、例えば、濾紙を設置した濾過機に脱溶剤後の反応液を 投入し、濾過機内に圧力をかけながら濾過を行う方法が挙げられる。この場合、脱溶 剤後の反応液に濾過助剤を添加する方法、過濾紙表面に濾過助剤をプリコートする 方法及びこれらを併用する方法力 濾過効率を向上させることができ好ましい。加圧 で使用するガスとしては、窒素、含酸素ガス (酸素 5容量%、窒素 95容量%)及び空 気等が挙げられる。  Examples of the pressure filtration method include a method in which the reaction liquid after solvent removal is put into a filter equipped with filter paper and filtration is performed while pressure is applied to the filter. In this case, the method of adding a filter aid to the reaction solution after the desolubilizer, the method of pre-coating the filter aid on the surface of the excess filter paper, and the method of using these in combination are preferred because the filtration efficiency can be improved. Examples of gases used for pressurization include nitrogen, oxygen-containing gas (5% oxygen, 95% nitrogen) and air.
[0087] 6.組成物 [0087] 6. Composition
本発明の製造方法により得られた (メタ)アタリレートは、得られる (メタ)アタリレート の貯蔵安定性及び熱安定性を向上させることができる。このため、得られた (メタ)ァク リレートは、活性エネルギー線硬化型組成物の配合成分として、光学レンズ、印刷ィ ンキ、コーティング剤及び接着剤等の各種工業用途に好適に使用できる。  The (meth) attalylate obtained by the production method of the present invention can improve the storage stability and thermal stability of the obtained (meth) atalylate. Therefore, the obtained (meth) acrylate can be suitably used for various industrial applications such as optical lenses, printing inks, coating agents, and adhesives as a component of the active energy ray-curable composition.
[0088] 本発明の第 3発明は、(メタ)アクリル酸とォキシアルキレン基を有するアルコールを 酸触媒の存在下に脱水エステル化反応させて得られたォキシアルキレン基を有する (メタ)アタリレートを含む組成物であって、化合物 Aを Oppm以上 lOOppm以下含有 する (メタ)アタリレート系組成物に関する。  [0088] The third invention of the present invention is a (meth) acrylate having an oxyalkylene group obtained by dehydrating esterification of an alcohol having (meth) acrylic acid and an oxyalkylene group in the presence of an acid catalyst. The present invention relates to a (meth) attalylate-based composition containing a rate and containing Compound A in an amount of Oppm to lOOppm.
[0089] 組成物中の化合物 Aの割合が lOOppmを超える場合は、組成物の貯蔵安定性や 熱安定性が不良となってしまう。  [0089] When the proportion of Compound A in the composition exceeds lOOppm, the storage stability and thermal stability of the composition become poor.
化合物 Aの割合としては、 Oppm以上 80ppm以下が好ましぐより好ましくは 0〜50 ppmであり、 0〜30ppmであることがさらに好ましぐ検出されないことが最も好ましい  The proportion of Compound A is preferably Oppm or more and 80ppm or less, more preferably 0 to 50 ppm, and most preferably 0 to 30 ppm is not detected.
[0090] (メタ)アタリレート系組成物としては、活性エネルギー線硬化型組成物に好ましく使 用できる [0090] The (meth) acrylate composition can be preferably used in an active energy ray-curable composition.
活性エネルギー線硬化型組成物として使用する場合には、光重合開始剤、前記( メタ)アタリレート以外の (メタ)アタリレート〔その他 (メタ)アタリレート〕を配合することが できる。以下、それぞれの成分の具体例について説明する。 When used as an active energy ray-curable composition, a photopolymerization initiator, (Meth) acrylate (other than (meth) acrylate) other than (meth) acrylate can be blended. Hereinafter, specific examples of each component will be described.
[0091] その他 (メタ)アタリレートとしては、 1個の (メタ)アタリロイル基を有する化合物〔以下 モノ (メタ)アタリレートと!/、う〕及び 2個以上の (メタ)アタリロイル基を有する化合物〔以 下ポリ (メタ)アタリレートと!/、う〕等が挙げられる。  [0091] Other (meth) acrylates include a compound having one (meth) attaroyl group [hereinafter mono (meth) acrylate and! /, U] and a compound having two or more (meth) attaroyl groups. [Hereinafter, poly (meth) acrylate and! /, U] and the like.
[0092] モノ (メタ)アタリレートとしては、例えば、メチル (メタ)アタリレート、ェチル (メタ)ァク リレート、プロピル (メタ)アタリレート及びブチル (メタ)アタリレート等のアルキル (メタ) アタリレート; 2—ヒドロキシェチル (メタ)アタリレート、 2—ヒドロキシプロピル (メタ)ァク リレート及び 1, 4 ブタンジオールモノ(メタ)アタリレート等のヒドロキシアルキル (メタ )アタリレート;イソボル-ルアタリレート等の脂環族モノ (メタ)アタリレート等が挙げら れる。これら以外にも、テトラヒドロフルフリル (メタ)アタリレート、カルビトール (メタ)ァ タリレート、(メタ)アタリロイルモルホリン、マレイミド (メタ)アタリレート及びグリシジル( メタ)アタリレート等が挙げられる。  [0092] Examples of mono (meth) acrylates include alkyl (meth) acrylates such as methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate and butyl (meth) acrylate. Hydroxyalkyl (meth) acrylates such as 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate and 1,4 butanediol mono (meth) acrylate; isobornyl acrylate, etc. And alicyclic mono (meth) acrylate. In addition to these, tetrahydrofurfuryl (meth) acrylate, carbitol (meth) acrylate, (meth) taroloyl morpholine, maleimide (meth) acrylate and glycidyl (meth) acrylate are included.
[0093] ポリ(メタ)アタリレートとしては、例えば、ペンタエリスリトールジ (メタ)アタリレートモノ ステアレート等の 2個の (メタ)アタリロイル基を有する(メタ)アタリレート、並びにペンタ エリスリトールトリ(メタ)アタリレート、トリメチロールプロパントリ(メタ)アタリレート等の 3 個の (メタ)アタリロイル基を有する (メタ)アタリレート等を挙げることができる。これら以 外にも、ジペンタエリスリトールへキサ(メタ)アタリレート、ジ(トリメチロールプロパン) テトラ (メタ)アタリレート等の 4個以上の (メタ)アタリロイル基を有する (メタ)アタリレート も使用可能である。  [0093] Examples of poly (meth) acrylates include (meth) acrylates having two (meth) attalyloyl groups such as pentaerythritol di (meth) acrylate monostearate, and pentaerythritol tri (meth). Examples thereof include (meth) acrylate having three (meth) attaroyl groups, such as attalylate and trimethylolpropane tri (meth) acrylate. In addition to these, (meth) acrylate with 4 or more (meth) attalyloyl groups such as dipentaerythritol hexa (meth) acrylate and di (trimethylolpropane) tetra (meth) acrylate can be used. It is.
[0094] 又、ウレタン (メタ)アタリレート、ポリエステル (メタ)アタリレート及びエポキシ (メタ)ァ タリレート等のオリゴマーも使用することができる。  [0094] Also, oligomers such as urethane (meth) acrylate, polyester (meth) acrylate and epoxy (meth) acrylate can be used.
[0095] 可視光線又は紫外線硬化型組成物とする場合、組成物に光重合開始剤を配合す る。尚、電子線硬化型組成物とする場合は、光重合開始剤を必ずしも配合する必要 はない。  [0095] When a visible light or ultraviolet curable composition is used, a photopolymerization initiator is added to the composition. In addition, when setting it as an electron beam curable composition, it is not necessary to mix | blend a photoinitiator.
[0096] 光重合開始剤の具体例としては、ベンゾイン、ベンゾインメチルエーテル及びベン ゾインプロピルエーテル等のベンゾイン;ァセトフエノン、 2, 2—ジメトキシ一 2—フエ -ルァセトフエノン、 2, 2—ジエトキシ一 2—フエ-ルァセトフエノン、 1, 1—ジクロロア セトフエノン、 1—ヒドロキシシクロへキシルフェニルケトン、 2—メチル 1— [4— (メチ ルチオ)フエ-ル]— 2—モルフオリノープロパン一 1 オン及び N, N -ジメチルァミノ ァセトフエノン等のァセトフエノン; 2—メチルアントラキノン、 1—クロ口アントラキノン及 び 2 アミルアントラキノン等のアントラキノン; 2, 4 ジメチルチオキサントン、 2, 4— ジェチルチオキサントン、 2 クロ口チォキサントン及び 2, 4 ジイソプロピルチォキ サントン等のチォキサントン;ァセトフエノンジメチルケタール及びべンジルジメチルケ タール等のケタール;ベンゾフエノン、メチルベンゾフエノン、 4, 4'ージクロ口べンゾフ ェノン、 4, 4' ビスジェチルァミノべンゾフエノン、ミヒラーズケトン及び 4一べンゾィ ルー 4' メチルジフヱ二ルサルファイド等のベンゾフヱノン;並びに 2, 4, 6 トリメチ ルベンゾィルジフエ-ルホスフィンオキサイド等が挙げられる。 [0096] Specific examples of the photopolymerization initiator include benzoin such as benzoin, benzoin methyl ether, and benzoin propyl ether; acetophenone, 2,2-dimethoxy-1-2-phen-lucatophenone, 2,2-diethoxy-1- Phenolacetophenone, 1, 1-dichloroa Cetophenone, 1-hydroxycyclohexyl phenyl ketone, 2-methyl 1- [4- (methylthio) phenol] — 2-morpholinopropane monoone and N, N-dimethylaminoacetophenone, etc. Anthraquinones such as methyl anthraquinone, 1-claw anthraquinone and 2 amyl anthraquinone; 2, 4 dimethylthioxanthone, 2, 4-jetyl thioxanthone, 2 thiaxanthone and 2, 4 diisopropyl thixanthone Ketals such as dimethyl ketal and benzyl dimethyl ketal; benzophenone, methylbenzophenone, 4,4'-diclonal benzophenone, 4, 4 'bisjetylaminobenzobenzoenone, Michler's ketone, and 4-benzoyl luo 4' methyldiphenyl Rusulfide And 2, 4, 6 trimethylbenzoyldiphosphine phosphine oxide.
光重合開始剤には、必要に応じて光増感剤を併用することができる。光増感剤とし ては、 N, N ジメチルァミノ安息香酸ェチルエステル、 N, N ジメチルァミノ安息香 酸イソアミルエステル、トリェチルァミン及びトリエタノールァミン等が挙げられる。  A photosensitizer can be used in combination with the photopolymerization initiator as necessary. Examples of the photosensitizer include N, N dimethylaminobenzoic acid ethyl ester, N, N dimethylaminobenzoic acid isoamyl ester, triethylamine, and triethanolamine.
[0097] 前記成分以外にも、必要に応じて、消泡剤、レべリング剤、無機フィラー、有機フィ ラー、光安定剤、酸ィ匕防止剤及び紫外線吸収剤等を配合することもできる。又、必要 に応じて、酸化防止剤、光安定剤、紫外線吸収剤及び重合禁止剤等を少量添加し ても良い。 [0097] In addition to the above-described components, an antifoaming agent, a leveling agent, an inorganic filler, an organic filler, a light stabilizer, an anti-oxidation agent, an ultraviolet absorber, and the like can be blended as necessary. . If necessary, a small amount of an antioxidant, a light stabilizer, an ultraviolet absorber, a polymerization inhibitor and the like may be added.
実施例  Example
[0098] 以下に実施例及び比較例を記載し、本発明をさらに具体的に説明する。  Hereinafter, the present invention will be described more specifically by describing examples and comparative examples.
[0099] [各種分析方法] [0099] [Various analysis methods]
〇酸価  〇 Acid value
JIS K 0070— 1992に準じて、得られたアタリレートをエタノールに溶解し、フエ ノールフタレインを指示薬として水酸ィ匕カリウム溶液で滴定した。試料の酸価を下式 から算出した。  According to JIS K 0070-1992, the obtained talate was dissolved in ethanol, and titrated with a potassium hydroxide solution using phenolphthalein as an indicator. The acid value of the sample was calculated from the following formula.
酸価 [mg—KOHZg] = N X T X f X 56. 11/W  Acid value [mg—KOHZg] = N X T X f X 56. 11 / W
N:アルコール性水酸化カリウム溶液の濃度 [molZL]  N: Concentration of alcoholic potassium hydroxide solution [molZL]
T:アルコール性水酸ィ匕カリウム溶液の滴定量 [ml]  T: Titration of alcoholic potassium hydroxide solution [ml]
f :アルコール性水酸化カリウム溶液の力価 W:試料重量 [g] f: Potency of alcoholic potassium hydroxide solution W: Sample weight [g]
[0100] 〇強制劣化試験 [0100] 〇 Forced deterioration test
30mlガラス容器に得られたアタリレートを 5g入れ、大気冷暗所で数日静置すること で、アタリレートに含まれる水分濃度を 1, 000-3, OOOwtppmに調整した。  By putting 5g of the obtained talate in a 30ml glass container and allowing it to stand for several days in an air-cooled dark place, the water concentration contained in the talate was adjusted to 1,000-3, OOOwtppm.
その後、アタリレートが入ったガラス容器を密封し、 80°Cに保ったヒーティングブロッ ク中で 72時間加熱した。放冷後に前記の方法で酸価を測定した。  Thereafter, the glass container containing attalylate was sealed and heated in a heating block maintained at 80 ° C. for 72 hours. After cooling, the acid value was measured by the method described above.
[0101] 〇比較例 1 1 [0101] 〇 Comparative example 1 1
還流管を設置した 1Lの側管付き四口フラスコに、ビスフエノール Aのエチレンォキ サイド 4モル付加物 350g、アクリル酸 180g、トルエン 348g、ノ ラトルエンスルホン酸 一水和物 20. 9g、ハイドロキノン 0. 52g及び塩化第二銅 0. 52gを投入した。含酸素 ガス (酸素 5容量%、窒素 95容量%、以下同様)を吹き込みながら反応液温度 100 〜119°Cで加熱撹拌し、生成する水をディーンスターク管にて系外に除去しながら 9 時間の脱水エステルイ匕反応を行った。  In a 1 L side necked four-necked flask equipped with a reflux tube, 350 g of bisphenol A ethylene oxide 4 mol adduct, 180 g of acrylic acid, 348 g of toluene, 20.9 g of normal toluenesulfonic acid monohydrate, hydroquinone 0. 52 g and 0.52 g of cupric chloride were added. Heat and stir at a reaction liquid temperature of 100 to 119 ° C while blowing oxygen-containing gas (oxygen 5% by volume, nitrogen 95% by volume, and so on), and remove the generated water from the system with a Dean-Stark tube for 9 hours. The dehydration reaction was performed.
その後、反応液を 40°C以下まで冷却し、トルエン及び水を添加して抽出洗浄を行 つた後、 20wt%水酸ィ匕ナトリウム水溶液を添加して中和処理を行い、さらに水を添 カロして抽出洗浄を行った。  After that, the reaction solution is cooled to 40 ° C or lower, extracted and washed by adding toluene and water, neutralized by adding a 20 wt% aqueous solution of sodium hydroxide and sodium hydroxide, and further added with water. Then, extraction washing was performed.
得られた有機層に、ハイドロキノンモノメチルエーテル(以下 MQと!、う)を 0. 2g添 加し、含酸素ガスを吹き込みながら減圧下〔665Pa; 5mmHg]で 60〜80°Cに加温 してトルエンを留去した。  To the obtained organic layer, 0.2 g of hydroquinone monomethyl ether (hereinafter referred to as MQ!) Was added, and heated to 60-80 ° C under reduced pressure [665 Pa; 5 mmHg] while blowing oxygen-containing gas. Toluene was distilled off.
加圧下で濾過を行った後、製品であるアタリレートを得た。  After filtration under pressure, the product, atelate, was obtained.
[0102] 得られたアタリレートについて、 LCZMSを使用して下記の条件でィ匕合物 Aの分析 を行った結果、式(1)において、 R1がトルィル基、 R2がエチレン基、 R3が水素原子の 化合物(以下、化合物 A1と 、う)を 382ppm含有して 、ることが確認された。 [0102] As a result of analyzing the compound A using LCZMS under the following conditions for the obtained atarylate, in formula (1), R 1 is a tolyl group, R 2 is an ethylene group, R It was confirmed that 3 contained 382 ppm of a compound having a hydrogen atom (hereinafter referred to as Compound A1).
尚、化合物 A1の同定は、化合物 A1の標準物質の保持時間及びフラグメントバタ ーンにより確認した。又、化合物 A1の定量は、化合物 A1の標準物質について検量 線を作成し、その結果に基づき定量した。  The identity of compound A1 was confirmed by the retention time of the standard substance of compound A1 and the fragment pattern. Compound A1 was quantified based on the results of preparing a calibration curve for the standard substance of Compound A1.
[0103] (UPLC) [0103] (UPLC)
装置:日本ウォーターズ (株)製 Acquity UPLC システム カラム: ODSカラム; Acquity BEH 1. 7 μ τα C18 (カラム:内径; 2. Imm X長 さ; 50mm) Equipment: Acquity UPLC system manufactured by Nippon Waters Column: ODS column; Acquity BEH 1.7 μτα C18 (column: inner diameter; 2. Imm X length; 50 mm)
カラム温度: 40°C  Column temperature: 40 ° C
溶離液:水 Zメタノール = 70Z30 (Initial)→65/35 (lOmin)→50/50 (20mi n)→0/100 (21 - 23min)  Eluent: Water Z Methanol = 70Z30 (Initial) → 65/35 (lOmin) → 50/50 (20min) → 0/100 (21-23min)
流速: 0. 4mL/ min  Flow rate: 0.4 mL / min
検出器:フォトダイオードアレイ(PDA) (200— 400nm)  Detector: Photodiode array (PDA) (200—400nm)
試料濃度: 1 %メタノール溶液  Sample concentration: 1% methanol solution
注入量:5 ;z L  Injection volume: 5; z L
(MS)  (MS)
装置: Quattro premier API タンデム四重極  Equipment: Quattro premier API tandem quadrupole
検出: ESI 正イオン化検出  Detection: ESI positive ionization detection
キヤビラリ一電圧:3. 5kV、  Capillary voltage: 3.5kV,
MS : MRM (モニターイオン: m/z 271 > 99)、 extractor : 4. 0V、 RF Lens: 3 . 0V、脱溶媒ガス: 800LZhr、コーン電圧: 30V、  MS: MRM (monitor ion: m / z 271> 99), extractor: 4.0V, RF Lens: 3.0V, desolvation gas: 800LZhr, cone voltage: 30V,
コーンガス流量: 50LZhr  Cone gas flow rate: 50LZhr
ソース温度: 120°C、脱溶媒温度: 400°C、コリジョンエネルギー: 30V  Source temperature: 120 ° C, solvent removal temperature: 400 ° C, collision energy: 30V
[0104] 得られたアタリレートについて酸価を測定した。さらに、貯蔵安定性及び加熱安定 性を評価するため、強制劣化試験を行い、その後に酸価を測定した。それらの結果 を表 1に示す。 [0104] The acid value of the obtained acrylate was measured. Furthermore, in order to evaluate storage stability and heat stability, a forced deterioration test was performed, and then the acid value was measured. Table 1 shows the results.
[0105] 〇実施例 1 1 [0105] Example 1 1
比較例 1—1において、アクリル酸の仕込量を 180gから 150gに、脱水エステルイ匕 の反応温度を 100〜119°Cから 100〜117°Cに、反応時間を 9時間から 5時間 30分 にそれぞれ変更する以外は、比較例 1—1と同様の方法に従いアタリレートを製造し 、同様の方法で精製を行った。  In Comparative Example 1-1, the charged amount of acrylic acid was changed from 180 g to 150 g, the reaction temperature of dehydrated ester was changed from 100 to 119 ° C to 100 to 117 ° C, and the reaction time was changed from 9 hours to 5 hours and 30 minutes. Except for the change, attalylate was produced in the same manner as in Comparative Example 1-1 and purified in the same manner.
得られたアタリレートについて、比較例 1 1と同様の方法で、化合物 A1を定量し、 酸価及び強制劣化試験後の酸価を測定した。それらの結果を表 1に示す。  With respect to the obtained acrylate, Compound A1 was quantified in the same manner as in Comparative Example 11, and the acid value and the acid value after the forced deterioration test were measured. The results are shown in Table 1.
[0106] 〇実施例 1 2 実施例 1—1にお 、て、脱溶剤工程後に得られた粗生成物を 500mlフラスコに入 れ、 80°Cにて加熱撹拌後、水を添カ卩して水分濃度を 4, 000-5, OOOppmに調整し た。その後、フラスコを密封し、加熱撹拌を 72時間継続した。 [0106] Example 1 2 In Example 1-1, the crude product obtained after the solvent removal step was placed in a 500 ml flask, heated and stirred at 80 ° C, and then added with water to adjust the water concentration to 4,000- 5, Adjusted to OOOppm. Thereafter, the flask was sealed, and heating and stirring were continued for 72 hours.
その後、粗生成物を 40°C以下まで冷却し、トルエン及び 20wt%水酸ィ匕ナトリウム 水溶液を添加して中和処理を行い、さらに水を添加して抽出洗浄を行った。  Thereafter, the crude product was cooled to 40 ° C. or less, neutralized by adding toluene and a 20 wt% sodium hydroxide aqueous solution, and further subjected to extraction washing by adding water.
得られた有機層に、 MQを 0. 2g添加し、含酸素ガスを吹き込みながら減圧下で 60 〜80°Cに加温してトルエンを留去した。  To the obtained organic layer, 0.2 g of MQ was added, and heated to 60 to 80 ° C. under reduced pressure while blowing oxygen-containing gas, and toluene was distilled off.
加圧下で濾過を行った後、製品であるアタリレートを得た。  After filtration under pressure, the product, atelate, was obtained.
得られたアタリレートについて、比較例 1 1と同様の方法で、化合物 A1を定量し、 酸価及び強制劣化試験後の酸価を測定した。それらの結果を表 1に示す。  With respect to the obtained acrylate, Compound A1 was quantified in the same manner as in Comparative Example 11, and the acid value and the acid value after the forced deterioration test were measured. The results are shown in Table 1.
[0107] 〇比較例 1 2 [0107] 〇 Comparative Example 1 2
比較例 1—1と同様のフラスコに、 p タミルフエノールのエチレンオキサイド 1モル 付加物 350g、アクリル酸 142g、トルエン 321g、パラトルエンスルホン酸一水和物 16 . 5g、ハイドロキノン 0. 48g及び塩化第二銅 0. 48gを投入した。含酸素ガスを吹き 込みながら反応液温度 100〜119°Cで加熱撹拌し、生成する水をディーンスターク 管にて系外に除去しながら 9時間の脱水エステルイ匕反応を行った。  In a flask similar to Comparative Example 1-1, 350 g of ethylene oxide 1 mol adduct of p-amylphenol, 142 g of acrylic acid, 321 g of toluene, 16.5 g of paratoluenesulfonic acid monohydrate, 0.48 g of hydroquinone, and secondary chloride 0.48 g of copper was added. While blowing oxygen-containing gas, the mixture was heated and stirred at a reaction solution temperature of 100 to 119 ° C, and the generated water was removed from the system by a Dean-Stark tube, and a dehydrating esterification reaction was performed for 9 hours.
その後、反応液を 40°C以下まで冷却し、トルエン及び水を添加して抽出洗浄を行 つた後、 20wt%水酸ィ匕ナトリウム水溶液を添加して中和処理を行い、さらに水を添 カロして抽出洗浄を行った。  After that, the reaction solution is cooled to 40 ° C or lower, extracted and washed by adding toluene and water, neutralized by adding a 20 wt% aqueous solution of sodium hydroxide and sodium hydroxide, and further added with water. Then, extraction washing was performed.
得られた有機層に、 MQを 0. 2g添加し、含酸素ガスを吹き込みながら減圧下で 60 〜80°Cに加温してトルエンを留去した。  To the obtained organic layer, 0.2 g of MQ was added, and heated to 60 to 80 ° C. under reduced pressure while blowing oxygen-containing gas, and toluene was distilled off.
加圧下で濾過を行った後、製品であるアタリレートを得た。  After filtration under pressure, the product, atelate, was obtained.
[0108] 得られたアタリレートについて、比較例 1 1と同様の方法で、化合物 A1を定量し、 酸価及び強制劣化試験後の酸価を測定した。それらの結果を表 1に示す。 [0108] With respect to the obtained atarylate, Compound A1 was quantified in the same manner as in Comparative Example 11, and the acid value and the acid value after the forced deterioration test were measured. The results are shown in Table 1.
[0109] 〇実施例 1 3 [0109] Example 1 3
比較例 1— 2にお 、て、脱溶剤工程後に得られた粗生成物を 500mlフラスコに入 れ、 80°Cにて加熱撹拌後、水を添カ卩して水分濃度を 4, 000-5, OOOppmに調整し た。その後、フラスコを密封し、加熱撹拌を 72時間継続した。 その後、粗生成物を 40°C以下まで冷却し、トルエン及び 20wt%水酸ィ匕ナトリウム 水溶液を添加して中和処理を行い、さらに水を添加して抽出洗浄を行った。 In Comparative Example 1-2, the crude product obtained after the solvent removal step was placed in a 500 ml flask, heated and stirred at 80 ° C, and then added with water to adjust the water concentration to 4,000- 5, Adjusted to OOOppm. Thereafter, the flask was sealed, and heating and stirring were continued for 72 hours. Thereafter, the crude product was cooled to 40 ° C. or less, neutralized by adding toluene and a 20 wt% sodium hydroxide aqueous solution, and further subjected to extraction washing by adding water.
得られた有機層に、 MQを 0. 2g添加し、含酸素ガスを吹き込みながら減圧下で 60 〜80°Cに加温してトルエンを留去した。  To the obtained organic layer, 0.2 g of MQ was added, and heated to 60 to 80 ° C. under reduced pressure while blowing oxygen-containing gas, and toluene was distilled off.
加圧下で濾過を行った後、製品であるアタリレートを得た。得られたアタリレートにつ いて、比較例 1 1と同様の方法で、化合物 A1を定量し、酸価及び強制劣化試験後 の酸価を測定した。それらの結果を表 1に示す。  After filtration under pressure, the product, atelate, was obtained. With respect to the obtained acrylate, Compound A1 was quantified in the same manner as in Comparative Example 11, and the acid value and the acid value after the forced deterioration test were measured. The results are shown in Table 1.
[0110] 〇比較例 1 3 [0110] ○ Comparative Example 1 3
比較例 1—1と同様のフラスコに、ノユルフェノールのプロピレンオキサイド 2. 5モル 付加物 350g、アクリル酸 106g、トルエン 295g、ノ ラトルエンスルホン酸一水和物 12 . 3g、ハイドロキノン 0. 44g及び塩化第二銅 0. 44gを投入した。含酸素ガスを吹き 込みながら反応液温度 100〜119°Cで加熱撹拌し、生成する水をディーンスターク 管にて系外に除去しながら 9時間の脱水エステルイ匕反応を行った。  In a flask similar to that of Comparative Example 1-1, a 2.5 mol adduct of propylene oxide of nourphenol, 350 g of acrylic acid, 106 g of acrylic acid, 295 g of toluene, 12.3 g of normal toluenesulfonic acid monohydrate, 0.44 g of hydroquinone, and Cupric chloride 0.44 g was added. While blowing oxygen-containing gas, the mixture was heated and stirred at a reaction solution temperature of 100 to 119 ° C, and the generated water was removed from the system by a Dean-Stark tube, and a dehydrating esterification reaction was performed for 9 hours.
その後、反応液を 40°C以下まで冷却し、トルエン及び水を添加して抽出洗浄を行 つた後、 20wt%水酸ィ匕ナトリウム水溶液を添加して中和処理を行い、さらに水を添 カロして抽出洗浄を行った。  After that, the reaction solution is cooled to 40 ° C or lower, extracted and washed by adding toluene and water, neutralized by adding a 20 wt% aqueous solution of sodium hydroxide and sodium hydroxide, and further added with water. Then, extraction washing was performed.
得られた有機層に、 MQを 0. 2g添加し、含酸素ガスを吹き込みながら減圧下で 60 〜80°Cに加温してトルエンを留去した。  To the obtained organic layer, 0.2 g of MQ was added, and heated to 60 to 80 ° C. under reduced pressure while blowing oxygen-containing gas, and toluene was distilled off.
加圧下で濾過を行った後、製品であるアタリレートを得た。  After filtration under pressure, the product, atelate, was obtained.
[0111] 得られたアタリレートについて、 LCZMSを使用して以下の条件でィ匕合物 Aの分析 を行った。その結果、式(1)において、 R1がトルィル基、 R2がプロピレン基、 R3が水素 原子の化合物(以下、化合物 A2と 、う)を 288ppm含有して 、ることが確認された。 尚、化合物 A2の同定は、化合物 A2の標準物質の保持時間及びフラグメントバタ ーンにより確認した。又、化合物 A2の定量は、化合物 A2の標準物質について検量 線を作成し、その結果に基づき定量した。 [0111] With respect to the obtained atelate, Compound A was analyzed under the following conditions using LCZMS. As a result, it was confirmed that the compound (1) contained 288 ppm of a compound (hereinafter referred to as compound A2) in which R 1 is a tolyl group, R 2 is a propylene group, and R 3 is a hydrogen atom. The identity of Compound A2 was confirmed by the retention time of the standard substance of Compound A2 and the fragment pattern. Compound A2 was quantified based on the results of a calibration curve prepared for the standard substance of Compound A2.
[0112] (UPLC) [0112] (UPLC)
比較例 1—1と同じ。  Same as Comparative Example 1-1.
(MS) 下記以外は、比較例 1 1と同じ。 (MS) Same as Comparative Example 1 1 except for the following.
MS : MRM (モニターイオン: m/z 285 > 113)、 extractor: 3. 0V、 RF Lens : 2. 0V、脱溶媒ガス: 800LZhr、コーン電圧: 30V、コーンガス流量: 50LZhr、ソー ス温度: 120°C、脱溶媒温度: 400°C、コリジョンエネルギー: 10V)  MS: MRM (monitor ion: m / z 285> 113), extractor: 3.0V, RF Lens: 2.0V, solvent removal gas: 800LZhr, cone voltage: 30V, cone gas flow rate: 50LZhr, source temperature: 120 ° C, solvent removal temperature: 400 ° C, collision energy: 10V)
[0113] 〇実施例 1—4 [0113] Example 1-4
比較例 1—3にお 、て、脱溶剤工程後に得られた粗生成物を 500mlフラスコに入 れ、 80°Cにて加熱撹拌後、水を添カ卩して水分濃度を 4, 000-5, OOOppmに調整し た。その後、フラスコを密封し、加熱撹拌を 72時間継続した。  In Comparative Example 1-3, the crude product obtained after the solvent removal step was placed in a 500 ml flask, heated and stirred at 80 ° C, and then added with water to adjust the water concentration to 4,000- 5, Adjusted to OOOppm. Thereafter, the flask was sealed, and heating and stirring were continued for 72 hours.
その後、粗生成物を 40°C以下まで冷却し、トルエン及び 20wt%水酸ィ匕ナトリウム 水溶液を添加して中和処理を行い、さらに水を添加して抽出洗浄を行った。  Thereafter, the crude product was cooled to 40 ° C. or less, neutralized by adding toluene and a 20 wt% sodium hydroxide aqueous solution, and further subjected to extraction washing by adding water.
得られた有機層に、 MQを 0. 3g添加し、含酸素ガスを吹き込みながら減圧下で 60 〜80°Cに加温してトルエンを留去した。  To the obtained organic layer, 0.3 g of MQ was added, and heated to 60 to 80 ° C. under reduced pressure while blowing oxygen-containing gas, and toluene was distilled off.
加圧下で濾過を行った後、製品であるアタリレートを得た。得られたアタリレートにつ いて、比較例 1—3と同様の方法で、化合物 A2を定量し、酸価及び強制劣化試験後 の酸価を測定した。それらの結果を表 1に示す。  After filtration under pressure, the product, atelate, was obtained. With respect to the obtained acrylate, Compound A2 was quantified in the same manner as in Comparative Example 1-3, and the acid value and the acid value after the forced deterioration test were measured. The results are shown in Table 1.
[0114] 〇実施例 1—5 [0114] Example 1-5
比較例 1— 1と同様のフラスコに、ビスフエノール Aのエチレンオキサイド 4モル付カロ 物 350g、アクリル酸 180g、トルエン 341g、メタンスルホン酸 10. 6g、ハイドロキノン 0 . 51g及び塩化第二銅 0. 51gを投入した。含酸素ガスを吹き込みながら反応液温度 100〜119°Cで加熱撹拌し、生成する水をディーンスターク管にて系外に除去しな 力 9時間の脱水エステルイ匕反応を行った。  In a flask similar to Comparative Example 1-1, 350 g of bisphenol A ethylene oxide with 4 moles of carotenol, 180 g of acrylic acid, 341 g of toluene, 10.6 g of methanesulfonic acid, 0.51 g of hydroquinone and 0.51 g of cupric chloride Was introduced. While blowing oxygen-containing gas, the mixture was heated and stirred at a reaction solution temperature of 100 to 119 ° C, and the generated water was removed from the system with a Dean-Stark tube, and a dehydrating esterification reaction was performed for 9 hours.
その後、反応液を 40°C以下まで冷却し、トルエン及び水を添加して抽出洗浄を行 つた後、 20wt%水酸ィ匕ナトリウム水溶液を添加して中和処理を行い、さらに水を添 カロして抽出洗浄を行った。  After that, the reaction solution is cooled to 40 ° C or lower, extracted and washed by adding toluene and water, neutralized by adding a 20 wt% aqueous solution of sodium hydroxide and sodium hydroxide, and further added with water. Then, extraction washing was performed.
得られた有機層に、 MQを 0. 2g添加し、含酸素ガスを吹き込みながら減圧下で 60 〜80°Cに加温してトルエンを留去した。  To the obtained organic layer, 0.2 g of MQ was added, and heated to 60 to 80 ° C. under reduced pressure while blowing oxygen-containing gas, and toluene was distilled off.
[0115] 得られた粗生成物を 500mlフラスコに入れ、 80°Cにて加熱撹拌後、水を添加して 水分濃度を 4, 000〜5, OOOppmに調整した。その後、フラスコを密封し、加熱撹拌 を 72時間継続した。 [0115] The obtained crude product was put into a 500 ml flask, heated and stirred at 80 ° C, and water was added to adjust the water concentration to 4,000 to 5, 5 ppm. Then seal the flask and heat and stir Continued for 72 hours.
その後、粗生成物を 40°C以下まで冷却し、トルエン及び 20wt%水酸ィ匕ナトリウム 水溶液を添加して中和処理を行い、さらに水を添加して抽出洗浄を行った。  Thereafter, the crude product was cooled to 40 ° C. or less, neutralized by adding toluene and a 20 wt% sodium hydroxide aqueous solution, and further subjected to extraction washing by adding water.
得られた有機層に、 MQを 0. 2g添加し、含酸素ガスを吹き込みながら減圧下で 60 〜80°Cに加温してトルエンを留去した。  To the obtained organic layer, 0.2 g of MQ was added, and heated to 60 to 80 ° C. under reduced pressure while blowing oxygen-containing gas, and toluene was distilled off.
加圧下で濾過を行った後、製品であるアタリレートを得た。  After filtration under pressure, the product, atelate, was obtained.
[0116] 得られたアタリレートについて、 LCZMSを使用して以下の条件でィ匕合物 Aの分析 を行った。その結果、式(1)において、 R1がメチル基、 R2がエチレン基、 R3が水素原 子の化合物(以下、化合物 A3と 、う)を 23ppm含有して 、ることが確認された。 尚、化合物 A1— 3の同定は、化合物 A3の標準物質の保持時間及びフラグメントパ ターンにより確認した。又、化合物 A3の定量は、化合物 A3の標準物質について検 量線を作成し、その結果に基づき定量した。 [0116] The obtained atelate was analyzed for Compound A under the following conditions using LCZMS. As a result, it was confirmed that the compound (23) contained 23 ppm of a compound in which R 1 was a methyl group, R 2 was an ethylene group, and R 3 was a hydrogen atom (hereinafter referred to as compound A3). . The identity of compound A1-3 was confirmed by the retention time and fragment pattern of the standard substance of compound A3. Compound A3 was quantified based on the results of preparing a calibration curve for the standard substance of compound A3.
基づき定量した。  Quantified based on.
[0117] (UPLC) [0117] (UPLC)
下記以外は、比較例 1 1と同じ。  Same as Comparative Example 1 1 except for the following.
溶離液:水/メタノール = 10/90 (Initial— 5min)→0/100 (10- 1 lmin) 試料濃度: 2%メタノール溶液  Eluent: Water / methanol = 10/90 (Initial— 5min) → 0/100 (10-1 lmin) Sample concentration: 2% methanol solution
[0118] (MS) [0118] (MS)
下記以外は、比較例 1 1と同じ。  Same as Comparative Example 1 1 except for the following.
キヤビラリ一電圧 :4. 5kV  Capillary voltage: 4.5kV
MS : MRM (モニターイオン: m/z 195 > 99)、 extractor: 2. OV、 RF Lens: 3 . 0V、脱溶媒ガス: 800LZhr、コーン電圧: 20V、コーンガス流量: 50LZhr、ソー ス温度: 120°C、脱溶媒温度: 400°C、コリジョンエネルギー: 10V  MS: MRM (monitor ion: m / z 195> 99), extractor: 2. OV, RF Lens: 3.0V, solvent removal gas: 800LZhr, cone voltage: 20V, cone gas flow rate: 50LZhr, source temperature: 120 ° C, solvent removal temperature: 400 ° C, collision energy: 10V
[0119] 〇実施例 1—6 [0119] Example 1-6
比較例 1—1と同様のフラスコに、トリメチロールプロパンのプロピレンオキサイド 6モ ル付加物 350g、アクリル酸 227g、トルエン 372g、メタンスルホン酸 13. 3g、ノヽイド口 キノン 0. 56g及び塩化第二銅 0. 56gを投入した。含酸素ガスを吹き込みながら反応 液温度 100〜120°Cで加熱撹拌し、生成する水をディーンスターク管にて系外に除 去しながら 9時間の脱水エステルイ匕反応を行った。 In a flask similar to Comparative Example 1-1, 350 g of trimethylolpropane propylene oxide 6-mol adduct, 227 g of acrylic acid, 372 g of toluene, 13.3 g of methanesulfonic acid, 0.56 g of quinone quinone and cupric chloride Added 0.5 g. While blowing oxygen-containing gas, heat and stir at a reaction liquid temperature of 100 to 120 ° C, and remove the generated water from the system with a Dean-Stark tube. A 9-hour dehydration reaction was performed while leaving.
その後、反応液を 40°C以下まで冷却し、トルエン及び水を添加して抽出洗浄を行 つた後、 20wt%水酸ィ匕ナトリウム水溶液を添加して中和処理を行い、さらに水を添 カロして抽出洗浄を行った。  After that, the reaction solution is cooled to 40 ° C or lower, extracted and washed by adding toluene and water, neutralized by adding a 20 wt% aqueous solution of sodium hydroxide and sodium hydroxide, and further added with water. Then, extraction washing was performed.
得られた有機層に、 MQを 0. 2g添加し、含酸素ガスを吹き込みながら減圧下で 60 〜80°Cに加温してトルエンを留去した。  To the obtained organic layer, 0.2 g of MQ was added, and heated to 60 to 80 ° C. under reduced pressure while blowing oxygen-containing gas, and toluene was distilled off.
[0120] 得られた粗生成物を 500mlフラスコに入れ、 80°Cにて加熱撹拌後、水を添カ卩して 水分濃度を 4, 000〜5, OOOppmに調整した。その後、フラスコを密封し、加熱撹拌 を 72時間継続した。 [0120] The obtained crude product was placed in a 500 ml flask, heated and stirred at 80 ° C, and then added with water to adjust the water concentration to 4,000-5, OOOppm. Thereafter, the flask was sealed, and heating and stirring were continued for 72 hours.
その後、粗生成物を 40°C以下まで冷却し、トルエン及び 20wt%水酸ィ匕ナトリウム 水溶液を添加して中和処理を行い、さらに水を添加して抽出洗浄を行った。  Thereafter, the crude product was cooled to 40 ° C. or less, neutralized by adding toluene and a 20 wt% sodium hydroxide aqueous solution, and further subjected to extraction washing by adding water.
得られた有機層に、 MQを 0. 2g添加し、含酸素ガスを吹き込みながら減圧下で 60 〜80°Cに加温してトルエンを留去した。  To the obtained organic layer, 0.2 g of MQ was added, and heated to 60 to 80 ° C. under reduced pressure while blowing oxygen-containing gas, and toluene was distilled off.
加圧下で濾過を行った後、製品であるアタリレートを得た。  After filtration under pressure, the product, atelate, was obtained.
[0121] 得られたアタリレートについて、 LCZMSを使用して以下の条件でィ匕合物 Aの分析 を行った結果、式(1)において、 R1がメチル基、 R2がプロピレン基、 R3が水素原子の 化合物(以下、化合物 A4と ヽぅ)を 7ppm含有して ヽることが確認された。 [0121] As a result of analyzing the compound A using LCZMS under the following conditions for the obtained atelate, in formula (1), R 1 is a methyl group, R 2 is a propylene group, R 3 compounds of the hydrogen atom (hereinafter, compound A4 and U) Ru it was confirmed to contain 7 ppm.
尚、化合物 A4の同定は、化合物 A4の標準物質の保持時間及びフラグメントバタ ーンにより確認した。又、化合物 A4の定量は、化合物 A4の標準物質について検量 線を作成し、その結果に基づき定量した。  The identity of compound A4 was confirmed by the retention time of the standard substance of compound A4 and the fragment pattern. Compound A4 was quantified based on the results of preparing a calibration curve for the standard substance of Compound A4.
[0122] (UPLC) [0122] (UPLC)
下記以外は、比較例 1 1と同じ。  Same as Comparative Example 1 1 except for the following.
溶離液:水 Zメタノール = 10/90 (Initial— 5min)→0/100 (10- 1 lmin) 試料濃度: 2%メタノール溶液  Eluent: Water Z Methanol = 10/90 (Initial— 5min) → 0/100 (10-1 lmin) Sample concentration: 2% methanol solution
[0123] (MS) [0123] (MS)
下記以外は、比較例 1 1と同じ。  Same as Comparative Example 1 1 except for the following.
キヤビラリ一電圧 :4. 5kV  Capillary voltage: 4.5kV
MS: MRM (モニターイオン: m/z 209 > 113)、 extractor: 2. 0V、 RF Lens: 3. 0V、脱溶媒ガス: 800LZhr、コーン電圧: 20V、コーンガス流量: 50LZhr、ソー ス温度: 120°C、脱溶媒温度: 400°C、コリジョンエネルギー: 10V MS: MRM (monitor ion: m / z 209> 113), extractor: 2.0V, RF Lens: 3. 0V, solvent removal gas: 800LZhr, cone voltage: 20V, cone gas flow rate: 50LZhr, source temperature: 120 ° C, solvent removal temperature: 400 ° C, collision energy: 10V
[0124] [表 1] [0124] [Table 1]
Figure imgf000037_0001
Figure imgf000037_0001
[0125] 〇比較例 2— 1  [0125] 〇 Comparative Example 2-1
還流管を設置した 1Lの側管付き四口フラスコに、ビスフエノール Aのエチレンォキ サイド 4モル付加物 350g、アクリル酸 150g、トルエン 348g、ノ ラトルエンスルホン酸 一水和物(以下 PTSという) 20. 9g、ハイドロキノン(以下 HQという) 0. 52g及び塩化 第二銅 0. 52gを投入した。含酸素ガス (酸素 5容量%、窒素 95容量%、以下同様) を吹き込みながら反応液温度 100〜118°Cで加熱撹拌し、生成する水をディーンス ターク管にて系外に除去しながら 7時間の脱水エステル化反応を行った。  In a 1-L side-mounted four-necked flask equipped with a reflux tube, 350 g of bisphenol A ethylene oxide 4 mol adduct, 150 g of acrylic acid, 348 g of toluene, and noratoluenesulfonic acid monohydrate (hereinafter referred to as PTS) 20. 9 g, 0.52 g of hydroquinone (hereinafter referred to as HQ) and 0.52 g of cupric chloride were added. Heat and stir at a reaction liquid temperature of 100 to 118 ° C while blowing oxygen-containing gas (oxygen 5% by volume, nitrogen 95% by volume, and so on), and remove the generated water from the system with a Dean-Stark tube for 7 hours. The dehydration esterification reaction of was carried out.
その後、反応液を 40°C以下まで冷却し、トルエン及び水を添加して抽出洗浄を行 つた後、 20wt%水酸ィ匕ナトリウム水溶液を添加して中和処理を行い、さらに水を添 カロして抽出洗浄を行った。  After that, the reaction solution is cooled to 40 ° C or lower, extracted and washed by adding toluene and water, neutralized by adding a 20 wt% aqueous solution of sodium hydroxide and sodium hydroxide, and further added with water. Then, extraction washing was performed.
得られた有機層に、ハイドロキノンモノメチルエーテル(以下 MQと!、う)を 0. 2g添 加し、含酸素ガスを吹き込みながら減圧下で 60〜80°Cに加温してトルエンを留去し た。  To the obtained organic layer, 0.2 g of hydroquinone monomethyl ether (hereinafter referred to as MQ and!) Was added and heated to 60-80 ° C under reduced pressure while blowing oxygen-containing gas to distill off toluene. It was.
加圧下で濾過を行った後、製品であるアタリレートを得た。  After filtration under pressure, the product, atelate, was obtained.
[0126] 得られたアタリレートについて、比較例 1 1と同様の方法で、化合物 A1を定量し、 酸価及び強制劣化試験後酸価を測定した。それらの結果を表 2に示す。 [0126] With respect to the obtained atarylate, Compound A1 was quantified in the same manner as in Comparative Example 11, and the acid value and the acid value after the forced deterioration test were measured. Table 2 shows the results.
[0127] [表 2] 化合物 A 酸価(mg- KOH/g) [0127] [Table 2] Compound A Acid value (mg- KOH / g)
種類 (wtppm) 製造直後 強制劣化後 比較例 2-1 A1 382 0.049 1.774  Type (wtppm) Immediately after production After forced deterioration Comparative example 2-1 A1 382 0.049 1.774
[0128] 〇実施例 2— 1 [0128] Example 2— 1
比較例 2— 1と同様の方法及び条件で、エステル化、中和処理及び抽出洗浄を行 つた o  Comparative Example 2-1 Esterification, neutralization, and extraction washing were performed in the same manner and conditions as in o
得られた有機層に、 MQを 0. 2gと処理剤のテトラプチルアンモ -ゥムブロマイドを アタリレートに対して 348wtppm添加、撹拌し、含酸素ガスを吹き込みながら減圧下 で 60〜80°Cに加温してトルエンを留去した。  To the obtained organic layer, 0.2 g of MQ and tetraptylammonium bromide as a treatment agent were added to 348 wtppm with respect to attalylate, stirred, and heated to 60-80 ° C under reduced pressure while blowing oxygen-containing gas. And toluene was distilled off.
脱溶剤後の反応液を加圧下で濾過を行 ヽ、アタリレートを得た。  The reaction solution after removal of the solvent was filtered under pressure to obtain acrylate.
得られたアタリレートについて、製造直後及び強制劣化試験後の酸価を測定した。 それらの結果を表 3に示す。  The acid value immediately after manufacture and after the forced deterioration test was measured for the obtained atelate. Table 3 shows the results.
[0129] 〇実施例 2— 2〜同 2— 8 [0129] 〇Example 2-2 to 2-8
実施例 2— 1にお ヽて、脱溶剤工程で下記表 3に記載した処理剤を所定量添加す る以外は実施例 2— 1と同様の方法によりアタリレートを製造した。  In Example 2-1, attalylate was produced in the same manner as in Example 2-1, except that a predetermined amount of the treating agent described in Table 3 below was added in the solvent removal step.
脱溶剤後の反応液を加圧下で濾過を行 ヽ、アタリレートを得た。  The reaction solution after removal of the solvent was filtered under pressure to obtain acrylate.
得られたアタリレートについて、製造直後及び強制劣化試験後の酸価を測定した。 それらの結果を表 3に示す。  The acid value immediately after manufacture and after the forced deterioration test was measured for the obtained atelate. Table 3 shows the results.
[0130] [表 3] [0130] [Table 3]
Figure imgf000038_0001
Figure imgf000038_0001
表 3の略号は、下記を意味する。  The abbreviations in Table 3 mean the following.
•TBAB :テトラプチルアンモ -ゥムブロマイド •TBAOH :テトラプチルアンモ-ゥムヒドロキシド TBAB: Tetraptylammo-umbromide • TBAOH: Tetraptyl ammonium hydroxide
•TMAOH :テトラメチルアンモ-ゥムヒドロキシド  TMAOH: Tetramethylammonium hydroxide
•TBPB :テトラブチルホスホ-ゥムブロマイド  • TBPB: Tetrabutylphosphonium bromide
•IBHA: 6, 6, 一イミノビス(へキシル)ァミン  • IBHA: 6, 6, Iminobis (hexyl) amamine
• DMAP: 4 -ジメチルァミノピリジン  • DMAP: 4-Dimethylaminopyridine
•HMSC : 1, 6—へキサメチレンビス— N, N—ジメチルセミカルバジド  • HMSC: 1,6-hexamethylenebis-N, N-dimethylsemicarbazide
[0132] 〇実施例 2— 9〜同 2—11 [0132] Example 2-9 to 2-11
前記実施例 2—1において、処理剤を添加することなぐ脱溶剤処理を行った。 トルエン留去後に得られた粗製品中へ、下記表 4に記載した処理剤を所定量添加 し、 70°Cにて 1時間撹拌して均一混合させた。その後、加圧下で濾過を行った後、ァ タリレートを得た。  In Example 2-1, the solvent removal treatment without adding the treatment agent was performed. A predetermined amount of the treating agent described in Table 4 below was added to the crude product obtained after the toluene was distilled off, and the mixture was stirred at 70 ° C. for 1 hour for uniform mixing. Then, after filtration under pressure, a phthalate was obtained.
得られたアタリレートについて、製造直後及び強制劣化試験後の酸価を測定した。 それらの結果を表 4に示す。  The acid value immediately after manufacture and after the forced deterioration test was measured for the obtained atelate. Table 4 shows the results.
[0133] [表 4] [0133] [Table 4]
Figure imgf000039_0001
Figure imgf000039_0001
[0134] 表 4の略号は、下記を意味する。  [0134] The abbreviations in Table 4 mean the following.
•DBA:ジブチルァミン  DBA: Dibutylamine
•BA:ブチルァミン  BA: Butyramine
• DEA · HC1:ジェチルァミン塩酸塩  • DEA · HC1: Jetylamine hydrochloride
[0135] 〇実施例 2— 12 [0135] Example 2—12
前記実施例2—1〜2— 8にぉぃて、処理剤を添加することなぐ脱溶剤処理を行つ た。  According to Examples 2-1 to 2-8, the solvent removal treatment without adding the treatment agent was performed.
トルエン留去後に得られた粗製品中へ、処理剤を実施例 2— 1〜2— 8と同様の割 合で添加し、 70°Cにて 1時間撹拌して均一混合させた。その後、加圧下で濾過を行 つた後、アタリレートを得た。 得られたアタリレートは、上記実施例 2— 1〜2— 8と同様に、強制劣化試験後の酸 価が低いものであった。 The treating agent was added to the crude product obtained after distilling off toluene at the same rate as in Examples 2-1 to 2-8, and stirred at 70 ° C. for 1 hour for uniform mixing. Then, after filtration under pressure, attalylate was obtained. The obtained attalylate had a low acid value after the forced deterioration test as in Examples 2-1 to 2-8.
[0136] 〇比較例 2— 2 [0136] 〇 Comparative Example 2-2
比較例 2— 1と同様のフラスコに、トリメチロールプロパンのプロピレンオキサイド 6モ ル付加物 372g、アクリル酸 200g、トルエン 294g、 PTS19. Og、 HQO. 89g及び塩 化第二銅 0. 89gを投入し、含酸素ガスを吹き込みながら反応液温度 80〜110°C、 反応系圧力 400〜650mmHgの範囲内で加熱撹拌した。生成する水をディーンスタ ーク管にて系外に除去しながら 7時間の脱水エステルイ匕反応を行った。  Comparative Example 2-1 Into the same flask as in Example 1, 372 g of trimethylolpropane propylene oxide 6-mol adduct, 200 g of acrylic acid, 294 g of toluene, PTS19. Og, HQO. 89 g and cupric chloride 0.89 g were added. While stirring the oxygen-containing gas, the mixture was heated and stirred within the reaction liquid temperature range of 80 to 110 ° C and the reaction system pressure range of 400 to 650 mmHg. The generated water was removed from the system with a Dean-Stark tube, and a 7-hour dehydrating esterification reaction was performed.
反応終了後、反応液を比較例 2— 1と同様の方法により中和処理を行い、さらに水 を添加して抽出洗浄を行い、脱溶剤処理を行った。  After the completion of the reaction, the reaction solution was neutralized by the same method as in Comparative Example 2-1, further added with water, extracted and washed, and then the solvent was removed.
[0137] 得られたアタリレートについて、比較例 1—3と同様の方法で、化合物 A2を定量し、 酸価及び強制劣化試験後酸価を測定した。それらの結果を表 5に示す。 [0137] With respect to the obtained atarylate, Compound A2 was quantified in the same manner as in Comparative Example 1-3, and the acid value and the acid value after forced degradation test were measured. The results are shown in Table 5.
[0138] [表 5]
Figure imgf000040_0001
[0138] [Table 5]
Figure imgf000040_0001
[0139] 〇実施例 2— 13  [0139] Example 2-13
比較例 2— 2と同様の方法及び条件で、エステル化、中和処理及び抽出洗浄を行 つた o  Esterification, neutralization treatment and extraction washing were performed in the same method and conditions as in Comparative Example 2-2 o
得られた有機層に、 MQを 0. 2gと処理剤のテトラプチルアンモ-ゥムヒドロキシドを アタリレートに対して 570wtppm添カ卩し、添加し、含酸素ガスを吹き込みながら減圧 下で 60〜80°Cに加温してトルエンを留去した。  To the obtained organic layer, 0.2 g of MQ and tetraptylammonium hydroxide as a treatment agent were added at 570 wtppm with respect to attalylate, added, and 60-80 ° C under reduced pressure while blowing oxygen-containing gas. The toluene was distilled off.
脱溶剤後の反応液を加圧下で濾過を行 ヽ、アタリレートを得た。  The reaction solution after removal of the solvent was filtered under pressure to obtain acrylate.
得られたアタリレートについて酸価を測定し、強制劣化試験後に酸価を測定した。 それらの結果を表 6に示す。  The acid value was measured for the obtained attalylate, and the acid value was measured after the forced deterioration test. Table 6 shows the results.
[0140] 〇実施例 2— 14〜同 2— 18 [0140] Example 2-14 to 2-18
実施例 2— 13において、脱溶剤工程で下記表 6に記載した処理剤を所定量添カロ する以外は実施例 2— 13と同様の方法によりアタリレートを製造した。 脱溶剤後の反応液を加圧下で濾過を行 ヽ、アタリレートを得た。 In Example 2-13, attalylate was produced in the same manner as in Example 2-13, except that a predetermined amount of the treatment agent shown in Table 6 below was added in the solvent removal step. The reaction solution after removal of the solvent was filtered under pressure to obtain acrylate.
得られたアタリレートについて、製造直後及び強制劣化試験後の酸価を測定した。 それらの結果を表 6に示す。  The acid value immediately after manufacture and after the forced deterioration test was measured for the obtained atelate. Table 6 shows the results.
[表 6]  [Table 6]
Figure imgf000041_0001
Figure imgf000041_0001
[0142] 〇実施例 2— 19  [0142] Example 2—19
前記実施例 2— 13において、処理剤を添加することなぐ脱溶剤処理を行った。 トルエン留去後に得られた粗製品中へ、下記表 7に記載した処理剤を所定量添カロ し、 70°Cにて 1時間撹拌して均一混合させた。その後、加圧下で濾過を行った後、ァ タリレートを得た。  In Examples 2 to 13, the solvent removal treatment without adding the treatment agent was performed. A predetermined amount of the treatment agent shown in Table 7 below was added to the crude product obtained after the toluene was distilled off, and the mixture was stirred at 70 ° C for 1 hour to be uniformly mixed. Then, after filtration under pressure, a phthalate was obtained.
得られたアタリレートについて、製造直後及び強制劣化試験後の酸価を測定した。 それらの結果を表 7に示す。  The acid value immediately after manufacture and after the forced deterioration test was measured for the obtained atelate. Table 7 shows the results.
[0143] [表 7]
Figure imgf000041_0002
[0143] [Table 7]
Figure imgf000041_0002
[0144] 〇実施例 2— 20  [0144] Example 2-20
前記実施例 2— 13〜2— 18において、処理剤を添加することなぐ脱溶剤処理を 行った。  In Examples 2-13 to 2-18, the solvent removal treatment without adding the treatment agent was performed.
トルエン留去後に得られた粗製品中へ、処理剤を実施例 2— 13〜2— 18と同様の 割合で添加し、 70°Cにて 1時間撹拌して均一混合させた。その後、加圧下で濾過を 行った後、アタリレートを得た。  The treating agent was added to the crude product obtained after distilling off toluene at the same ratio as in Examples 2-13 to 2-18, and stirred at 70 ° C. for 1 hour to be uniformly mixed. Then, after filtration under pressure, attalylate was obtained.
得られたアタリレートは、上記実施例 2— 13〜2— 18と同様に、強制劣化試験後の 酸価が低いものであった。 産業上の利用可能性 The obtained attalylate had a low acid value after the forced deterioration test, as in Examples 2-13 to 2-18. Industrial applicability
本発明の製造方法は、(メタ)アタリレートの製造方法に利用できる。  The production method of the present invention can be used for a production method of (meth) acrylate.
さらに得られた (メタ)アタリレートは、光硬化性組成物の配合成分として、光学レン ズ、印刷インキ、コーティング剤及び接着剤等の各種工業用途に好適に使用できる。  Further, the obtained (meth) acrylate can be suitably used for various industrial uses such as optical lenses, printing inks, coating agents, and adhesives as a component of the photocurable composition.

Claims

請求の範囲 (メタ)アクリル酸及び、ォキシアルキレン基を有するアルコールを有機溶媒中で有 機スルホン酸触媒により脱水して (メタ)アタリレートとするエステルイ匕工程、及び 前記エステルイ匕工程にて得られた (メタ)アタリレート中の式(1)で表される化合物 A を Oppm以上 lOOppm以下になるように制御する管理工程を含むことを特徴とする(メタ)アタリレートの製造方法。 Claims (meth) acrylic acid and an alcohol having an oxyalkylene group are dehydrated with an organic sulfonic acid catalyst in an organic solvent to give (meth) acrylate, and obtained in the esterification step. A method for producing (meth) acrylate, comprising a control step of controlling the compound A represented by the formula (1) in the obtained (meth) acrylate to be Oppm or more and lOOppm or less.
[化 1]  [Chemical 1]
Figure imgf000043_0001
Figure imgf000043_0001
〔式(1)において、 R1はアルキル基又はァリール基を表し、 R2はアルキレン基を表し、 R3は水素原子又はメチル基を表す。〕 [In the formula (1), R 1 represents an alkyl group or an aryl group, R 2 represents an alkylene group, and R 3 represents a hydrogen atom or a methyl group. ]
[2] 管理工程が、以下の 1)〜4)の少なくとも 1つの手段を含む請求項 1に記載の (メタ) アタリレートの製造方法。 [2] The method for producing a (meth) acrylate according to claim 1, wherein the management step includes at least one of the following 1) to 4).
1)エステル化工程にお!、てアルコールの水酸基 1モルに対して、(メタ)アクリル酸 を 0. 8モル以上 2. 0モル以下使用する。  1) In the esterification step, (meth) acrylic acid is used in an amount of 0.8 mol to 2.0 mol with respect to 1 mol of alcohol hydroxyl group.
2)エステルイ匕反応を 70°C以上 140°C以下で行う。  2) Perform esterification reaction at 70 ° C or higher and 140 ° C or lower.
3)エステルイ匕反応がほぼ完了した時点で終了する。  3) Finish when the esterification reaction is almost complete.
4)エステルイ匕工程により得られた反応液を中和処理及び水洗処理を経た後に得ら れる粗生成物中の化合物 Aを、水分の存在下で加熱して、加水分解する。  4) Compound A in the crude product obtained after neutralization and water washing treatment of the reaction solution obtained in the esterification process is heated in the presence of moisture to hydrolyze.
[3] (メタ)アクリル酸及び、ォキシアルキレン基を有するアルコールを有機溶媒中で有 機スルホン酸触媒により脱水して (メタ)アタリレートとするエステルイ匕工程(1)、 工程(1)により得られた反応液を中和処理及び水洗処理を行う工程(2)、 工程 (2)で得られる (メタ)アタリレートに対して式(1)で表される化合物 Aを lppm以 上含有する反応液に、 4級アンモ-ゥム塩、 4級ホスホ-ゥム塩、アミジン、 1級ァミノ 基及び Z又は 2級アミノ基を有する化合物、セミカルバジド並びにピリジンよりなる群 から選択された少なくとも 1つの特定処理剤を添加する添加工程を含むことを特徴と する [3] According to steps (1) and (1), (meth) acrylic acid and alcohol having an oxyalkylene group are dehydrated with an organic sulfonic acid catalyst in an organic solvent to form (meth) acrylate. The obtained reaction solution is neutralized and washed with water (2), and contains (ppm) or more of compound A represented by formula (1) with respect to the (meth) acrylate obtained in step (2). In the reaction solution, at least one selected from the group consisting of a quaternary ammonium salt, a quaternary phosphonium salt, an amidine, a compound having a primary amino group and a Z or secondary amino group, semicarbazide and pyridine Including an addition step of adding a specific treatment agent; Do
(メタ)アタリレートの製造方法。  A method for producing (meth) atallylate.
[化 2]  [Chemical 2]
Figure imgf000044_0001
Figure imgf000044_0001
〔式(1)において、 R1はアルキル基又はァリール基を表し、 R2はアルキレン基を表し、 R3は水素原子又はメチル基を表す。〕 [In the formula (1), R 1 represents an alkyl group or an aryl group, R 2 represents an alkylene group, and R 3 represents a hydrogen atom or a methyl group. ]
[4] 前記特定処理剤を添加する添加工程の後、有機溶媒を留去する脱溶媒工程を含 むことを特徴とする請求項 3記載の (メタ)アタリレートの製造方法。 [4] The method for producing (meth) acrylate according to [3], further comprising a desolvation step of distilling off the organic solvent after the addition step of adding the specific treating agent.
[5] 前記工程 (2)の後、有機溶媒を留去する脱溶媒工程、 [5] After the step (2), a desolvation step of distilling off the organic solvent,
脱溶媒工程後の反応液に、前記特定処理剤を添加する添加工程、及び 加熱する加熱工程を含む  It includes an addition step of adding the specific treatment agent to the reaction solution after the desolvation step, and a heating step of heating.
請求項 3に記載の (メタ)アタリレートの製造方法。  4. The method for producing a (meth) acrylate according to claim 3.
[6] 前記加熱温度が 30〜100°Cである請求項 5に記載の (メタ)アタリレートの製造方法 [6] The method for producing (meth) acrylate according to claim 5, wherein the heating temperature is 30 to 100 ° C.
[7] ォキシアルキレン基を有するアルコールが、多価アルコールのアルキレンォキサイ ド付加物である請求項 1〜6いずれ力 1つに記載の (メタ)アタリレートの製造方法。 [7] The method for producing (meth) acrylate according to any one of claims 1 to 6, wherein the alcohol having an oxyalkylene group is an alkylene oxide addition product of a polyhydric alcohol.
[8] ォキシアルキレン基を有するアルコールのォキシアルキレン基がォキシエチレン基 又はォキシプロピレン基であり、式(1)における R2のアルキレン基が、エチレン基又 はプロピレン基である請求項 1〜7いずれか 1つに記載の (メタ)アタリレートの製造方 法。 [8] Okishiarukiren Okishiarukiren group of the alcohol having a group is Okishiechiren group or O alkoxy propylene group, an alkylene group of R 2 in the formula (1) is, according to claim 1 ethylene group or a propylene group 7. The method for producing (meth) atallylate according to any one of 7 above.
[9] (メタ)アクリル酸とォキシアルキレン基を有するアルコールを有機スルホン酸触媒の 存在下に脱水エステルイ匕反応させて得られたォキシアルキレン基を有する (メタ)ァク リレートを含む組成物であって、式(1)で表される化合物 Aを Oppm以上 lOOppm以 下含有する (メタ)アタリレート系組成物。  [9] A composition comprising (meth) acrylate having an oxyalkylene group obtained by reacting (meth) acrylic acid and an alcohol having an oxyalkylene group in the presence of an organic sulfonic acid catalyst and dehydrating ester reaction. A (meth) attalylate composition containing the compound A represented by the formula (1) in a range of Oppm to lOOppm.
[化 3]
Figure imgf000045_0001
[Chemical 3]
Figure imgf000045_0001
〔式(1)において、 R1はアルキル基又はァリール基を表し、 R2はアルキレン基を表し、[In the formula (1), R 1 represents an alkyl group or an aryl group, R 2 represents an alkylene group,
R3は水素原子又はメチル基を表す。〕 R 3 represents a hydrogen atom or a methyl group. ]
[10] ォキシアルキレン基を有するアルコールが、多価アルコールのアルキレンォキサイ ド付加物である請求項 9に記載の (メタ)アタリレート系組成物。 10. The (meth) acrylate composition according to claim 9, wherein the alcohol having an oxyalkylene group is an alkylene oxide addition product of a polyhydric alcohol.
[11] 才キシァノレキレン基を有するァノレコーノレの才キシァノレキレン基が才キシエチレン基 又はォキシプロピレン基であり、式(1)における R2のアルキレン基が、エチレン基又 はプロピレン基である請求項 9又は 10に記載の(メタ)アタリレート系組成物。 [11] Sai Kishianorekiren old Kishianorekiren group Anorekonore having group is an old Kishiechiren group or O alkoxy propylene group, an alkylene group of R 2 in the formula (1) is, according to claim 9 or 10 ethylene group or a propylene group (Meth) atarylate composition described in 1.
PCT/JP2007/059162 2006-05-10 2007-04-27 Method for producing (meth)acrylate and (meth)acrylate composition WO2007129605A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN200780016539.4A CN101437786B (en) 2006-05-10 2007-04-27 Method for producing (meth)acrylate and (meth)acrylate composition
JP2008514448A JPWO2007129605A1 (en) 2006-05-10 2007-04-27 Method for producing (meth) acrylate and (meth) acrylate composition

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006131997 2006-05-10
JP2006131999 2006-05-10
JP2006-131997 2006-05-10
JP2006-131999 2006-05-10

Publications (1)

Publication Number Publication Date
WO2007129605A1 true WO2007129605A1 (en) 2007-11-15

Family

ID=38667713

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/059162 WO2007129605A1 (en) 2006-05-10 2007-04-27 Method for producing (meth)acrylate and (meth)acrylate composition

Country Status (4)

Country Link
JP (1) JPWO2007129605A1 (en)
CN (1) CN101437786B (en)
TW (1) TWI393702B (en)
WO (1) WO2007129605A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018150286A (en) * 2017-03-15 2018-09-27 東亞合成株式会社 Method for producing (meth)acrylate

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6003204B2 (en) * 2012-05-11 2016-10-05 日立化成株式会社 Method for producing alkanediol monoglycidyl ether (meth) acrylate

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06219991A (en) * 1993-01-25 1994-08-09 Arakawa Chem Ind Co Ltd Production of polyfunctional @(3754/24)meth)acrylate
JP2001122820A (en) * 1999-10-26 2001-05-08 Hitachi Chem Co Ltd Method for producing (meth)acrylate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06219991A (en) * 1993-01-25 1994-08-09 Arakawa Chem Ind Co Ltd Production of polyfunctional @(3754/24)meth)acrylate
JP2001122820A (en) * 1999-10-26 2001-05-08 Hitachi Chem Co Ltd Method for producing (meth)acrylate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018150286A (en) * 2017-03-15 2018-09-27 東亞合成株式会社 Method for producing (meth)acrylate

Also Published As

Publication number Publication date
CN101437786B (en) 2013-01-09
TW200804268A (en) 2008-01-16
TWI393702B (en) 2013-04-21
CN101437786A (en) 2009-05-20
JPWO2007129605A1 (en) 2009-09-17

Similar Documents

Publication Publication Date Title
EP2966069B1 (en) Preparation of 3-[(s)-7-bromo-2-(2-hydroxy-propylamino)-5-pyridin-2-yl-3h-1,4-benzodiazepin-3-yl]propionic acid methyl ester with a work-up method without ammonium containing solutions
EP3368519B1 (en) Novel heterocyclic antiestrogens
KR20070010010A (en) Process for purifying mesotrione
DK2543662T3 (en) PROCEDURE FOR PREPARING ALKYL-METHANSULPHONATE SOLUTION
WO2007129605A1 (en) Method for producing (meth)acrylate and (meth)acrylate composition
CA2261324A1 (en) Method for producing isocyanatoalkyl (meth)acrylate
WO2007129606A1 (en) Method for producing (meth)acrylate ester
EP3173404B1 (en) Method for preparing n,n&#39;-bis(2-cyanoethyl)-1,2-ethylenediamine
CZ214097A3 (en) Stabilized aqueous solutions of unsaturated quaternary ammonium salts and process for preparing thereof
JP4811109B2 (en) Method for producing (meth) acrylic acid ester
JP5119926B2 (en) Method for producing (meth) acrylic acid ester
JP4933253B2 (en) Method for producing iohexol
EP3173403B1 (en) Method for preparing n,n&#39;-bis(2-cyanoethyl)-1,2-ethylenediamine by using cation exchange resin as catalyst
WO2015198850A1 (en) Method for producing phenolic compound
EP2676950A1 (en) Stabilized isocyanate group-containing ethylene-based unsaturated compound
JP2014062071A (en) Method for producing ethylenically unsaturated group-containing isocyanate compound
WO2015108169A1 (en) Method for producing cyclobutane tetracarboxylic acid derivative
KR102054480B1 (en) Hydroxyalkyl (meth)acrylate and method for producing same
JP4951966B2 (en) Production method of polyfunctional (meth) acrylate
EP3037410B1 (en) Method for producing m-xylylene diisocyanate
Shintou et al. A Convenient Method for the Preparation of Symmetrical or Unsymmetrical Ethers by The Coupling of Two Alcohols via A New Type of Oxidation–reduction Condensation Using Tetrafluoro-1, 4-benzoquinone
EP3357902A1 (en) Method for producing acid halide solution, mixed solution, and method for producing monoester compound
CN112029085A (en) Method for preparing polyether polyol by adopting solution polymerization method
CA1212698A (en) Process for the preparation of amino-phenols using the hydroxylation of anilines in a superacid medium containing hydrogen peroxide
JP5777844B2 (en) Method for producing isobornyl (meth) acrylate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07742597

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008514448

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 200780016539.4

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07742597

Country of ref document: EP

Kind code of ref document: A1