WO2007128199A1 - Procédé de multiplexage d'ondes pilotes, appareil et système de communication radio de plusieurs antennes - Google Patents
Procédé de multiplexage d'ondes pilotes, appareil et système de communication radio de plusieurs antennes Download PDFInfo
- Publication number
- WO2007128199A1 WO2007128199A1 PCT/CN2007/001217 CN2007001217W WO2007128199A1 WO 2007128199 A1 WO2007128199 A1 WO 2007128199A1 CN 2007001217 W CN2007001217 W CN 2007001217W WO 2007128199 A1 WO2007128199 A1 WO 2007128199A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- antennas
- sequence
- pilot
- different
- antenna
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0613—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0613—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
- H04B7/0684—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission using different training sequences per antenna
Definitions
- the present invention relates to the field of wireless communication technologies, and in particular, to a multi-antenna pilot multiplexing method, apparatus, and wireless communication system using the same. Background technique
- a new generation of mobile communication systems can deliver data rates of up to 100 Mb/s or higher, supporting voice-to-multimedia services.
- the data transmission rate can be dynamically adjusted according to the rate required by these services, so that high rate and large capacity can be realized on limited spectrum resources, and a technique with extremely high spectral efficiency is required.
- ISI inter-symbol interference
- the receiving end needs to obtain accurate channel state information, and its transmission mode and resource occupation mode will have different considerations in different systems and applications.
- the designed transmit power is as close as possible within the linear range of the power amplifier, that is, the transmitted signal waveform has a lower peak-to-average power ratio, which makes The transmitted pilot signal also has a constant amplitude characteristic of the time domain waveform. Since multi-carrier technology itself has a high peak-to-average ratio, in some systems, the uplink is usually considered in other uplinks, such as single-carrier based transmission.
- the pilot and data signals are usually time division multiplexed.
- the pilot multiplexing in the multi-transmit antenna system is generally Frequency Division Multiplexing (FDM).
- FDM Frequency Division Multiplexing
- pilots of multiple transmit antennas occupy frequency resources that do not overlap each other, and transmit at the same time, and regardless of whether the data transmission is performed
- the frequency band occupied by the pilot signal at least covers the frequency band of the data signal transmission. This provides the channel estimate used by the receiver for coherent demodulation or channel quality measurements related to resource scheduling.
- FDMA Frequency Division Multiple
- FDMA user frequency division multiple access
- FDM antenna frequency division multiplexing
- the embodiment of the invention provides a pilot multiplexing method and a wireless communication system, so as to avoid waste of frequency resources and meet the access requirements of more users.
- An embodiment of the present invention provides a pilot allocation method for multiple antennas, including:
- the at least two antennas are assigned different orthogonal sequences for each antenna to modulate its time-division pilot signal.
- the embodiment of the invention provides a pilot multiplexing method for multiple transmit antennas, including:
- An embodiment of the present invention provides a multi-antenna pilot allocation apparatus, including:
- a pilot signal distribution unit configured to allocate at least two antennas with the same at least two time-division pilot signals
- an orthogonal sequence allocating unit configured to allocate different orthogonal sequences to the at least two antennas, wherein the orthogonal sequence is used by each antenna to modulate the time-division pilot signal thereof.
- the embodiment of the invention further provides a wireless communication system, including: a frequency resource allocation unit, configured to allocate the same frequency resource to at least two antennas of the transmitting end; the signal allocates different CAZAC code sequences, and the codewords in the frequency domain of the pilots of different antennas of the at least two antennas are used by Truncation of different generalized class-clear sequence GCL sequences or GCL sequences generated by the same Zadoff-Chu sequence.
- FIG. 1 is a schematic diagram of a conventional multi-antenna FDMA+FDM pilot multiplexing method
- 2 is a schematic diagram of subcarrier allocation of pilot signals
- 3 to 9 are schematic diagrams for explaining the principle of the pilot multiplexing method of the present invention.
- FIG. 10 is a schematic structural diagram of a wireless communication system according to an embodiment of the present invention. detailed description
- the transmission power is as close as possible within the linear range of the power amplifier, that is, the transmitted signal waveform has a lower ratio of peak to average power, and the pilot signal is required to have The constant amplitude characteristic of the time domain waveform. Since multi-carrier technology itself has a high peak-to-average ratio, other transmission methods are generally considered, such as a single carrier-based transmission.
- the pilot and data signals are usually time-division multiplexed, that is, there are multiple time symbols in one transmission unit, and the pilots are transmitted in a separate time slot instead of being mixed with data. Sent within the time slot.
- the design of the pilot symbols is relatively independent, and the same or different transmission methods as the data symbols can be used.
- the principle of independently designing the pilot symbols is equally applicable, so the design of the pilot symbols is independent of the manner in which the data symbols are transmitted.
- 2 is a schematic diagram of subcarrier allocation of a user pilot signal. As shown in FIG.
- the current system bandwidth is Bs, and is quantized into N subcarriers, which is expressed as (Bs, N).
- the above uplink direction is taken as an example, that is, the user (mobile station) transmits a pilot signal to the base station.
- the system has allocated non-overlapping frequency resources for each user's pilot.
- There are several ways to allocate the method such as assigning a continuous M (M ⁇ N) subcarriers concentrated in a certain frequency band Be ( Bc ⁇ Bs ) to one user, denoted as (Bc, M). This method is called a localized subcarrier allocation method.
- Another way is to allocate K (K ⁇ N) subcarriers that are discontinuous in the system bandwidth to one user, denoted as (Bs, K), called the distributed subcarrier allocation mode.
- Another way is to allocate subcarriers limited to a certain bandwidth Bx (Bx ⁇ Bs) to a user in a decentralized manner, that is, discontinuous L subcarriers, expressed as (Bx, L), called hybrid.
- Subcarrier allocation method is also be used.
- the manner of decentralizing the subcarriers shown in Fig. 2 is an equally spaced subcarrier mode, which is for the low peak-to-average ratio of the transmitted signal, and may be an unequal interval on the premise of reducing the limit.
- the resource occupation methods of different users may be in the same manner, or may be different in different ways, for example, user A is a centralized allocation mode, and user B is a hybrid allocation mode.
- the user is informed that the allocation information may be carried by the base station in the current signaling, or may have been allocated in the previous stage of the communication, or may be the characteristics and categories of the user (such as priority, location, etc.) default.
- the pilot multiplexing method provided by the embodiment of the present invention may have various forms to achieve the purpose of the present invention.
- the specific embodiments of the present invention are described in detail below with reference to the accompanying drawings.
- 3 to 9 are schematic diagrams for explaining a pilot multiplexing method provided in an embodiment of the present invention.
- the multi-user multi-transmitting antenna is taken as an example, and the pilot resources of at least two users that are sent at the same time are first allocated non-overlapping frequency resources; and one of the at least two users.
- the pilot signals of at least two antennas of the user are allocated the same frequency resource; the pilot signals of each of the at least two antennas of one of the at least two users use different CAZAC (normal amplitude zero autocorrelation)
- the code sequence is sent.
- the CAZAC code sequence is a periodic shift sequence of the CAZAC code sequence in the time domain, and the shift length is greater than or equal to zero.
- the CAZAC code sequence is the Zadoff initial Zadoff-Chu sequence. Multiple access between users for frequency division multiplexing and/or time division multiplexing the way.
- each antenna uses the same or different allocated resources on the plurality of pilot signals.
- the same code sequence ie, the training sequence used by the pilot signals
- the pilot signal is modulated with an orthogonal sequence.
- the two pilot signals of the two antennas use the same Zadoff-Chu sequence as the code sequence, and the two pilot signals of the first antenna are modulated by ⁇ +1,- 1 ⁇ Modulates the two pilot signals of the second antenna so that the two antennas are distinguished by orthogonal sequences.
- FIG. 3 is a schematic diagram of multi-antenna pilot multiplexing of the same user in a pilot multiplexing method according to an embodiment of the present invention. As shown in FIG. 3, the CDM pilot multiplexing situation of the dual antenna is taken as an example in this embodiment.
- the pilot signals of different users are frequency division multiplexed, and the pilot of the user may occupy a distributed subcarrier, or a localized subcarrier, or a hybrid subroutine. Carrier.
- different antennas occupy the same time and frequency resources for transmission, and the two antennas occupy the same frequency resource.
- the antenna 1 and the antenna 2 of the user A are distinguished by different code sequences a and code sequences b, respectively, and occupy the same time and frequency resources for transmission. .
- the above sequences have good autocorrelation and good cross-correlation properties, and the sequences are known to both ends of the transceiving.
- the allocation information of the code sequence here may be notified by the base station at the current signaling, or may be allocated in the previous stage of the communication, or may be pre-allocated before the user accesses the network.
- the allocation information and the allocation information of the user frequency described above can be delivered simultaneously.
- the code sequence a and the code sequence b used to distinguish the antennas in this example must have good autocorrelation and cross-correlation properties, and are known to both ends of the transceiver.
- the pilot multiplexing method provided by the present invention has certain requirements on the used code sequence, and generally selects a sequence having CAZAC characteristics, that is, a constant amplitude zero autocorrelation sequence, and the amplitude of the time domain waveform of the sequence is constant, and The correlation is very good, and it also has a flat frequency domain, which is very suitable as a pilot or synchronization sequence.
- the representative CAZAC sequences include Zadoff-Chu sequences and Generalized chirp-like polyphase (GCL) sequences, which are defined as follows:
- Amplitude is a constant value
- the cross-correlation amplitude is constant and very low, as long as r and N are homogeneous
- (2) is a special "carrier" sequence, which is the Zadoff-Chu sequence defined by (1) above.
- ⁇ ) ⁇ can also be a Hadarmard sequence, which is the row of the Hadamard matrix.
- different GCL sequences can be assigned to different antennas.
- the pilot sequence can be directly modulated in the frequency domain.
- the pilot is first limited to the allocated bandwidth, then the elements in the different GCL sequences are mapped onto the available subcarriers, and finally the IFFT is used to form the time domain waveform for transmission.
- sequences obtained by processing the Zadoff-Chu and GCL sequences may not be used to cause serious damage to the sequence characteristics.
- the sequence of length N has a total of N-1.
- the periodic autocorrelation value of any one sequence is N
- the periodic cross-correlation value of any two sequences is N 1/2 .
- the sequence after cyclic shift of any sequence still has a good periodic autocorrelation with the original sequence, and still maintains low cross-correlation with other sequences.
- the pilot sequences of different antennas are orthogonal, and the correlation between the receivers can eliminate the interference of other antennas, and obtain channel estimation results with high luminance, which can be used for coherent reception equalization and data demodulation;
- different antennas adopt different sequences they have lower cross-correlation between them, and the receiving end cannot completely remove the interference of other antennas, and obtains channel estimation results with less precision, which can be used for measurement of channel conditions, providing wireless channels. Select or select the basis for the transmission band.
- the pilot sequence can be directly modulated in the frequency domain, and the Zadoff-Chu sequence obtained by the IFFT still maintains the CAZAC characteristic. It is also possible to transmit the pilot sequences of different antennas directly through the time domain, while still maintaining the orthogonality or low cross-correlation of the two sequences in the time domain. For example, the code sequence is repeated and compressed in the time domain, and then user-specific phase modulation is used to obtain the pilot signal of the user frequency division.
- each pilot signal may be transmitted as described above, or may be between multiple pilot signals of each antenna.
- Line "joined" code division resource allocation Taking two pilot signals and two transmit antennas as an example, the two pilot signals of the first antenna use the same sequence and are modulated with ⁇ +1, +1 ⁇ , and the two guides of the second antenna.
- the frequency signal uses another sequence that is orthogonal or low cross-correlated with the sequence and is modulated with ⁇ +1, -1 ⁇ , as shown in FIG.
- the pilot insertion method of time division multiplexing is taken as an example, and the peak-to-average ratio of the transmission signal is mainly considered for the uplink, and is not limited thereto.
- pilot and data frequency division it is assumed that even subcarriers are used to transmit data, and odd subcarriers are used to transmit pilots or all subcarriers with a multiple of four are used to transmit pilots, and the like.
- the pilot multiplexing method of the uplink user multi-transmit antenna code division can be extended to the pilot multiplexing of multiple transmitting antennas of one sector of one base station, and the downlink common pilot of multiple sectors of one base station. The way to reuse.
- the pilot multiplexing method provided by the embodiment of the present invention When the pilot multiplexing method provided by the embodiment of the present invention is applied to multiple transmit antennas in one sector, the pilots of multiple antennas of each sector occupy the same frequency resource, but use mutually orthogonal CAZAC codes.
- the antenna is distinguished as in the GCL sequence. This situation is exactly the same as the multi-antenna multiplexing of upstream users.
- the above method may also be used to allocate orthogonal CAZAC sequences, such as GCL sequences, for each sector. At this point, the benefit of a sector frequency reuse factor of one can be obtained.
- the CDM pilot multiplexing method in the embodiment of the present invention can also be extended to pilot multiplexing in a virtual (MIMO, Multi Input Multi Output) system.
- MIMO Multi Input Multi Output
- the basic principle of virtual MIMO technology is: Consider the combination of transmit antennas of multiple different users as multiple transmit antennas of a user, and the receivers integrate to receive the information of these users.
- the pilot multiplexing of multiple transmit antennas of different user transmit antenna combinations is another embodiment of the invention.
- the same frequency resource is allocated to the pilot signals of at least one antenna of at least two users transmitted at the same time;
- At least one of the at least two antennas of the at least two users is transmitted using a different CAZAC code sequence.
- the embodiment of the present invention is utilized.
- the transmission of the data portion at the transmission time of the pilot signal may be a single antenna or a multiple antenna, and the pilots on different antennas may have different functions, that is, one pilot is used to provide the data portion. Coherent demodulation, while another pilot provides channel quality measurements for antenna selection.
- the code sequence source generates or stores a code sequence; then the code sequence is modulated; finally the pilot signal is transmitted.
- the modulation processing can be performed in a frequency domain processing manner or a time domain processing manner.
- 6 is a schematic diagram of a frequency domain processing manner.
- a code sequence ⁇ b ⁇ is subjected to Discrete Fourier Transform (DFT) and frequency domain transmission; subcarrier mapping is performed by serial/parallel conversion and predetermined resource allocation; Performing an inverse fast Fourier transform (IFFT) on the mapped parallel code sequence; and transforming the inverse Fourier transformed data stream into a serial data stream.
- Figure 7 is a schematic diagram showing the structure of the time domain processing method of the pilot signal.
- the time domain modulation processing for the code sequence ⁇ b ⁇ includes repeated compression and phase modulation of time domain compression of the code sequence.
- the pilot is limited to the allocated bandwidth, then the elements in the code sequence are mapped to the available frequency bands, and finally, the time domain waveform is formed for transmission.
- the time domain waveform is formed for transmission.
- different antennas use different code sequences and occupy the same time and frequency resources for transmission, and the sequence codes have good performance.
- Autocorrelation and cross-correlation properties and are known to both ends of the transceiver.
- the transmitting end pilot multiplexing device takes a dual antenna as an example, and includes a serial/parallel conversion unit for transforming a serial code sequence into a parallel code sequence for subcarrier mapping; and an inverse fast Fourier transform (IFFT)
- IFFT inverse fast Fourier transform
- the unit using the fast inverse Fourier transform (IFFT) principle, relies on off-the-shelf high-speed integrated chips to form the transmit waveform.
- M 5 in this example
- the two transmitting antennas may also share a processing module, including serial-to-parallel conversion and IFFT.
- the allocation information of the foregoing code may be sent by the base station at the current signaling, or may be allocated in the previous stage of the communication, or may be allocated by the user when accessing the network.
- the allocation information and the allocation information of the user frequency described above may also be delivered simultaneously.
- a plurality of transmitting antennas share a code sequence source, a frequency processing unit, a serial/parallel conversion unit, an IFFT unit, and a parallel/serial conversion unit and a transmission processing unit or some of the units or Separate code sequence sources, frequency processing units, serial/parallel conversion units, IFFT units, and parallel/serial conversion units and transmission processing units or partial units therein are used.
- the base station acts as a receiving end, and processes the received pilot signal.
- the user is differentiated according to the frequency band, and then the known pilot sequence is used to perform correlation matching with each user's received signal, because the used code sequence has good performance.
- Autocorrelation and cross-correlation properties which reduce or remove interference from different antennas, resulting in channel estimates on the respective antennas.
- Figure 9 is a schematic diagram of the receiving mode of the dual-transmitting and dual-receiving antennas.
- the receiving-end pilot multiplexing apparatus of the embodiment of the present invention takes a dual-transmitting and dual-receiving antenna as an example. In practice, the receiving party may use more antennas than the transmitting side, but basic on each receiving antenna.
- the processing principle is the same, the frequency division user distinguishes the users according to the frequency; performs sliding correlation matching with each user's received signal by using a known pilot sequence, and then performs channel estimation processing. Since the adopted code sequence has good autocorrelation or cross-correlation properties, it is advantageous to remove mutual interference between different antennas, thereby obtaining channel estimation on the respective antennas.
- the base station performs system performance improvement based on channel estimation obtained by using pilots, such as using channel estimation results to equalize data to reduce ISI impact, improve demodulation performance, or use channel estimation to evaluate wireless channels, for each
- pilots such as using channel estimation results to equalize data to reduce ISI impact, improve demodulation performance, or use channel estimation to evaluate wireless channels, for each
- the users allocate frequency bands or antennas with good channel conditions to perform multi-user resource scheduling to maximize the throughput of the entire system.
- the pilot mainly provides channel estimation, but may provide synchronization function while providing channel estimation, or only as a pilot that provides synchronization.
- the pilot multiplexing of the present invention can be a (FDMA + TDMA) user + CDM antenna.
- FDMA + TDMA TDMA + CDM antenna.
- FIG. 10 is a schematic structural diagram of a wireless communication system according to an embodiment of the present invention.
- the wireless communication system in the embodiment of the present invention includes: a frequency resource allocating unit, configured to allocate the same frequency resource to at least two antennas of the transmitting end; and a code sequence allocating unit, configured to be at least two of the transmitting end a pilot signal of each of the antennas is assigned a different CAZAC (constant amplitude zero autocorrelation) code sequence; a pilot transmitting unit for transmitting a pilot signal using a different CAZAC code sequence; a receiving unit, configured to receive the Pilot signal.
- a frequency resource allocating unit configured to allocate the same frequency resource to at least two antennas of the transmitting end
- a code sequence allocating unit configured to be at least two of the transmitting end a pilot signal of each of the antennas is assigned a different CAZAC (constant amplitude zero autocorrelation) code sequence
- a pilot transmitting unit for transmitting a pilot signal using a different CAZ
- the antenna may be a transmit antenna of the same user or sector; it may also be a combination of transmit antennas of different users; or a transmit antenna of different sectors of the same base station.
- the pilot sequence of different antennas in at least two antennas of the user may be a codeword in the frequency domain, a truncation of a different GCL sequence or a GCL sequence generated by the same Zadoff-Chu sequence; or may be the same CAZAC Different periodic shift sequences of code sequences in the time domain; also different Zadoff-Ch sequences.
- the receiving unit receives the pilot signal as a sliding correlation reception.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Description
多天线的导频复用方法、 装置及无线通信系统 本申请要求于 2006 年 04 月 28 日提交中国专利局、 申请号为 200610079018.0、 发明名称为"导频复用方法及无线通信系统"的中国专利 申请的优先权, 其全部内容通过引用结合在本申请中。 技术领域
本发明涉及无线通信技术领域,特别涉及一种多天线的导频复用方法、 装置和采用所述方法的无线通信系统。 背景技术
新一代移动通信系统可以提供高达 100Mb/s甚至更高数据传输速率,支 持从语音到多媒体的业务。 数据传输速率可以根据这些业务所需的速率不 同动态调整, 这样在有限的频谱资源上实现高速率和大容量, 需要频谱效 率极高的技术。
多发多收天线技术可以提高信道容量, 但是信号在实际的无线信道传 播中, 由于多径传播的影响, 会导致信号在时域上的波形被展宽, 在频域 上的频率选择性衰落。 通常实际的宽带的无线衰落信道均为频率选择性信 道, 由于信道的频率逸择性, 使得传输的信号之间发生符号间干扰 (ISI, Inter— symbol Interference) , 将影响无线通信系统的性能。
为了提高效率, 接收端需要获得精确的信道状态信息, 而且其发射方 式、 资源占用方式在不同系统和应用中还会有不同的考虑。 如在上行的链 路中, 由于移动台设备需要降低成本和功率消耗, 设计的发射功率尽量在 功放的线性范围内,也就是发射信号波形具有较低的峰值和均值功率之比, 这就使得发送的导频信号还要具有时域波形的恒幅度特性。 由于多载波技 术本身具有较高峰均比, 因此, 在一些系统的上行链路中, 通常会考虑其 它的发射方式, 如基于单载波技术的发射方式。
基于单载波技术的发射方式下, 导频和数据信号通常是时分复用的。 在这种结构下, 多发射天线系统中的导频复用一般为频分复用 (FDM, Frequency Division Multiple ) 。 这种 FDM方式下多个发射天线的导频占 用互不重叠的频率资源, 在同一时刻进行发射, 并且无论该数据传输是发
生在当前的传输单元中, 还是相隔一段时间以后的传输时间单元中, 当前 的传输单元中, 导频信号占用的频带至少要覆盖数据信号传输的频带。 这 样能提供给接收方相干解调所用的信道估计或与资源调度有关的信道质量 测量。
通常多个用户之间是频分多址(FDMA, Frequency Division Multiple
Access ) 复用的, 在此情况下, 一种典型的用户频分多址(FDMA ) +天 线频分复用 (FDM )的方式如图 1所示, 图 1中给出的是用户 A采用双天 线发射导频时的复用情况。这种用户间 FDMA的方式, 虽然避免了多用户 干扰, 但是天线 1和天线 2的导频各自独占一份频率资源 (分别为实线和 点划线表示的子载波) , 造成了频率资源的浪费, 而且限制了更多用户的 接入。 发明内容
本发明实施例提供一种导频复用方法及无线通信系统, 以避免频率资 源浪费、 可满足更多用户的接入需求。
本发明实施例提供一种多天线的导频分配方法, 包括:
为至少两个天线分配相同的至少两个时分导频信号; 以及
为所述至少两天线分配不同正交序列, 用于各天线调制其所述的时分导频 信号。
本发明实施例提供一种多发射天线的导频复用方法, 包括:
为至少两个天线的导频信号分配相同的频率资源;
为所述至少两个天线的导频信号分配不同的 CAZAC码序列, 所述至 少两个天线中的各天线的导频频域上的码字采用由同一个 Zadoff-Cl 序列 生成的不同的广义类彻普序列 GCL序列或者 GCL序列的截断。
本发明实施例提供一种多天线导频分配装置, 包括:
导频信号分配单元, 用于为至少两个天线分配相同的至少两个时分导 频信号;
正交序列分配单元, 用于为所述至少两个天线分配不同正交序列, 所 述正交序列用于各天线调制其所述的时分导频信号。
本发明实施例还提供一种无线通信系统, 包括:
频率资源分配单元, 用于为发送端至少两个天线分配相同的频率资源; 信号分配不同的 CAZAC码序列, 所述至少两个天线中的不同天线的导频 的频域上的码字采用由同一个 Zadoff-Chu序列生成的不同的广义类彻普序 列 GCL序列或者 GCL序列的截断。
本发明实施例提供的导频复用的技术方案中, 采用 FDMA + CDM方 式, 对用户的不同天线分别用不同的码序列进行区分, 使得不同天线可以 共同占用一份频率资源,相对 FDMA + FDM方式节省了频率资源,可以允 许其它用户利用该资源进行接入。 在天线间采用 CDM的方式, 不但节省 了频率资源, 而且对使用的序列的限制也变小, 能够保证最终的性能。 附图说明 图 1为现有多天线 FDMA+FDM导频复用方式示意图;
图 2为导频信号的子载波分配示意图;
图 3至图 9为用于说明本发明导频复用方法的原理示意图;
图 10为本发明实施例中的无线通信系统结构示意图。 具体实施方式
下面结合附图对本发明的具体实施例做详细说明。
在上行的链路中, 由于移动台设备需要降低成本和功率消耗, 发射功 率尽量在功放的线性范围内, 也就是发射信号波形具有较低的峰值和均值 功率之比, 而且要求导频信号具有时域波形的恒幅度特性。 由于多载波技 术本身具有较高峰均比, 因此通常会考虑采用其它的发射方式, 如基于单 载波技术的发射方式。
基于单载波技术的发射方式下, 导频和数据信号通常是时分复用的 , 即在一个传输单元中有多个时间符号, 导频在一个独立的时隙内发送, 而 不是与数据混在一个时隙内发送。 这种情况下导频符号的设计相对独立, 可以采用与数据符号相同或不同的发射方式。 对于导频和数据不是时分复 用的情况, 比如频分和码分的情况, 独立设计导频符号的原则同样适用, 因此导频符号的设计与数据符号的发送方式无关。
图 2为用户导频信号的子载波分配示意图。 如图 2所示, 假设当前系 统带宽为 Bs, 量化为 N个子载波, 表示为 (Bs,N)。 以上行链路方向为例, 即用户 (移动台)向基站发射导频信号。
首先, 在初始阶段, 系统已经为每个用户的导频分配了不重叠的频率 资源。 分配方法有多种方式, 如将集中在某一频带 Be ( Bc≤Bs ) 中连续的 M(M≤N)个子载波分配给一个用户, 表示为 (Bc,M)。 这种方式称为集中式 (Localized)子载波分配方式。
另一种方式是将分散在系统带宽上不连续的 K ( K<N )个子载波分配 给一个用户,表示为(Bs,K) , 称为分散式(Distributed)子载波分配方式。 还有一种方式是将限制在某一带宽 Bx( Bx<Bs )内的子载波以分散的方式, 即不连续的 L个子载波分配给一个用户, 表示为(Bx,L), 称为混合式子载 波分配方式。
在图 2中所示的分散分配子载波的方式为等间隔的子载波方式, 这是 为了发射信号的低峰均比考虑, 在降低该限制的前提下, 也可以是不等间 隔的方式。 同时不同用户的资源占用方法可以是同一种方式的, 也可以各 自具有不同方式,如用户 A为集中分配方式,而用户 B为混合分配方式等。
用户获知该分配信息可以是由基站在当前下发信令通知中携带, 也可 以是在通信的上一阶段已经分配好的,也可以是用户的特性及类别(如优先 级、 位置等)已经默认的。
本发明实施例提供的导频复用方法可以有多种不同的形式以实现本发 明的目的, 下面结合附图对本发明的具体实施方式进行详细说明。
图 3至图 9为用于说明本发明实施例中提供的导频复用方法的示意图。 在本发明的一个实施例中, 以多用户多发射天线为例, 首先为同一时刻发 送的至少两个用户的导频分配互不重叠的频率资源; 并为所述至少两个用 户中的一用户的至少两个天线的导频信号分配相同的频率资源; 所述至少 两个用户中的一用户的至少两个天线中的各个天线的导频信号使用不同的 CAZAC (常幅度零自相关)码序列发送。 其中的 CAZAC码序列为时域上 的 CAZAC码序列的周期移位序列,移位长度大于等于零。 CAZAC码序列 为扎道夫初 Zadoff-Chu序列。用户之间进行频分复用和 /或时分复用的多址
方式。 当每个时间传输单元中有多个可用的时分导频信号时, 每个天线在 这多个导频信号上使用相同或不同的分配资源。 当每个时间传输单元中有 两个以上的可用的时分导频信号时, 可以在这多个时分的导频信号上发送 相同的码序列(即导频信号采用的训练序列), 而不同的导频信号上用一个 正交序列来调制。 例如, 当有两个导频信号时, 两个天线的两个导频信号 使用相同的 Zadoff-Chu序列作为码序列,用 调制第一个天线的两个 导频信号, 用 {+1,-1}调制第二个天线的两个导频信号, 这样这两个天线就 利用正交序列进行了区分。
图 3为本发明实施例中导频复用方法中同一用户多天线导频复用的示 意图。 如图 3所示, 本实施例中以双天线的 CDM导频复用情况为例。
本发明实施例的导频复用方法中, 不同用户的导频信号频分复用, 用 户的导频可以占用分散式(Distributed)子载波, 或集中式(Localized)子载 波, 或混合式子载波。 对某一用户而言, 将不同天线占用相同的时间和频 率资源进行发射, 两根天线占用了相同的频率资源。
在用户端, 为了在不同天线上发送的导频能被基站区分, 用户 A的天 线 1和天线 2分别用不同的码序列 a和码序列 b进行区分, 并占用相同的 时间和频率资源进行发射。
上述序列具有良好的自相关和较好的互相关特性, 并且该序列对收发 两端都是已知的。 这里的码序列的分配信息可以是由基站在当前下发信令 通知的, 也可以是在通信的上一阶段已经分配好的, 也可以是用户在接入 网络前预先分配好的。该分配信息和上述用户频率的分配信息可同时下发。
本例中用于区分天线的码序列 a和码序列 b必须具有良好的自相关和 互相关特性, 并且对收发两端都是已知的。 本发明提供的导频复用方法对 采用的码序列有一定的要求, 通常选择一种具有 CAZAC特性的序列, 即 常幅度零自相关序列, 该序列的时域波形的幅度为常数, 而且自相关性非 常好, 同时它还具有频域平坦的特性, 非常适合作为导频或同步序列。 代 表的 CAZAC 序列有 Zadoff-Chu序列和广义类彻普序列 (Generalized chirp-like polyphase, GCL )序列等, 它们的定义如下:
其中^ =exp(- j'2 N), 并且 r是与 N互质的数, g是任意的整数。 该序列 具有如下特性:
幅度为常数值
零周期自相关性
频 i或响应平坦
互相关幅度为常数并且很低, 只要 r与 N互质
如上也就是 CAZAC特性, 当 N为一个素数时, 满足 CAZAC特性的
Zadoff-Chu序列就有 N - 个。
GCL序列:
c k) = a k) b k mod/n), k = 0,1,...,N-1. (2)
其中 N =扁2 , s和 都是正整数, 是一个 "调制 "序列, 它的 m 个元 素^^是模为 1的复数, ^口 DFT序歹' J, bt{k) = W^, /,yfc = 0,l,...,m— l。 而 (2) 中的 是一个特殊的"载波"序列, 也就是上述的 ( 1 ) 定义的 Zadoff-Chu序列。
{ )}还可以是哈达玛(Hadarmard)序列, 即是哈达玛矩阵的行。 m 阶的哈达玛矩阵 Hra, 是 mx 阶的矩阵, 矩阵的元素由 1和 -1组成, 满足
2" , «是一 个正整数, 则哈达玛序列为 bl(k) = (-V)1-0 , , 0,l"..,m— l 其中, 是 的 m比特长的二进制表示的第/位比特。 任意的 GCL序列都具有理想的周期自相关性。 如果两个 GCL序列 cx(k) 和 是由同一个 Zadoff-Chu序列 {"(t)},但是由不同的序列 { ( )} 和 { ( )}调制生成的,那么这两个 GCL序列不但正交而且还具有片断零互 相关性, 片断长度为《y -l。 而且这两个 GCL序列相对应的两个长度为 m 的片断是互相正交的。 因此, 两个上述的 GCL序列调制在频域, 频域的任 何长度小于等于 m的片断具有的正交性。由同一个 Zadoff-Chu序列生成的
GCL序列,可以调制在不同的天线上。接收机在频域采用长度为 的滑动 相关, 可以对不同天线的信号进行分离, 再进行每个天线的信道估计。
一般的, 对不同的/ , 如果是正交的, 则对应不同的 的 GCL序列 可以分配给不同的天线。 具体的, 可以采用直接把导频序列在频域进行调 制的方式实现。 首先将导频限制在已分配的带宽中, 然后将不同的 GCL 序列中的元素映射于可用的子载波上,最后通过 IFFT形成时域波形进行发 射。
实际应用中, 还可以采用对 Zadoff-Chu和 GCL序列进行了处理后得 到的序列, 如截断, 延长, 循环移位等操作, 不会对序列特性造成严重的 破坏。
再以 Zadoff-Chu序列为例, 当 N取为素数时长度为 N的序列一共有 N-1 个。 任意一个序列的周期自相关值为 N, 任意两个序列的周期互相关 值为 N1/2。 而且任一序列经过周期移位后的序列与原序列仍然具有良好的 周期自相关性, 与其它序列仍保持低的互相关性。 这些特点使得该序列的 应用非常灵活。 当不同天线就采用同一序列的不同移位序列时, 并且满足 移位的长度大于多径信道的最大多径时延 (或者是总能量为 90 %的最大径 的时延等等), 此时, 不同天线的导频序列是正交的, 接收端利用序列的相 关性能够消除其它天线的干 4尤, 得到 ^青度艮高的信道估计结果, 这可用于 相干接收均衡和数据解调; 当不同天线采用不同的序列时, 它们之间具有 较低的互相关性, 接收端不能完全去除其它天线的干扰, 得到精度稍差的 信道估计结果, 这可用于信道条件的测量, 提供无线信道选择或选择传输 频带的依据。
具体的,可以像上述 GCL序列的例子一样,采用直接把导频序列在频 域进行调制的方式实现, 经过 IFFT 后得到 Zadoff-Chu序列仍然保持 CAZAC 特性。 也可以把不同天线的导频序列直接通过时域发送, 仍保持 两序列在时域的正交性或较低的互相关性。如在时域上对码序列进行重复、 压缩处理, 然后再采用用户特定的相位调制以获得用户频分的导频信号。
当每个时间传输单元中可用的时分的导频信号有多个时, 每个导频信 号都可以按上述方法进行发射, 也可以在每个天线的多个导频信号之间进
行"联合"的码分资源分配。 以 2个导频信号并且 2根发射天线为例, 第一 根天线的两个导频信号使用相同的序列, 并且用 {+1,+1}进行调制, 而第二 个天线的两个导频信号使用另一个和该序列正交或低互相关的序列, 并且 用 {+1,-1}进行调制, 如图 4所示。
前面描述的实施例中以时分复用的导频插入方式为例, 主要是为上行 链路考虑要降低发送信号的峰均比, 实际中并不限定于此。 例如在导频和 数据频分的情况下, 假设偶数子载波用来传输数据, 奇数子载波用来传输 导频或者所有序号为 4的倍数的子载波用来传输导频, 等类似情况。
这种上行用户多发射天线间码分的导频复用方式可以推广到一个基站 的一个扇区的多个发射天线的导频复用上, 以及一个基站的多个扇区的下 行公共导频的复用方式上。
本发明实施例提供的导频复用方法应用于一个扇区中的多个发射天线 上时, 每个扇区的多个天线的导频占用相同的频率资源, 但是使用互相正 交的 CAZAC码如 GCL序列对天线进行区分。这种情况与上行的用户多天 线复用的方法完全相同。
更进一步的, 当一个基站具有多个扇区时, 如果不同扇区导频使用同 样的频率资源, 也可以采用如上的方法, 为每个扇区分配正交的 CAZAC 序列, 如 GCL序列等, 此时能获得扇区频率重用因子为 1的好处。
本发明实施例中的 CDM导频复用方法还可以扩展到虚拟(MIMO, Multi Input Multi Output)系统中的导频复用。虛拟 MIMO技术的基本原理 是: 将多个不同用户的发射天线组合看作一个用户的多个发射天线, 接收 端综合来接收这些用户的信息。
在本发明另一个实施例中, 不同用户发射天线组合的多发射天线的导 频复用。
首先, 为同一时刻发送的至少两个用户的各自至少一个天线的导频信 号分配相同的频率资源;
所述的至少两个用户的各自至少一个天线使用不同的 CAZAC码序列 发送。
因此, 在满足用户间的同步和功控要求的前提下, 利用本发明实施例
中的方法将多个用户的导频占用共同的频率资源, 不同用户的导频使用不 同的正交码, 接收端仍然通过码的相关性来区分用户, 综合接收。
上述的两种方法中, 由于同一个扇区的多个天线之间或一个基站的多 个扇区之间的同步和功率都易于控制, 而且由于这些码长度相等, 且具有 良好的正交性, 因而能够有效的降低彼此间干扰, 不会受到远近效应的影 响。
本发明实施例中, 在导频信号的发射时刻数据部分的发射可以是单天 线也可以是多天线, 而不同天线上的导频可以具有不同的功能, 即一个导 频用来为数据部分提供相干解调, 而另一个导频提供天线选择的信道质量 测量。
下面对本发明实施例的导频信号的基本的发射方式进行说明。
如图 5所示, 码序列源产生或存储码序列; 然后对码序列进行调制处 理; 最后发射导频信号。 其中的调制处理可以釆用频域处理方式或时域处 理方式。 图 6为频域处理方式示意图, 如图 6所示, 码序列 {b}经离散傅 立叶变换(DFT )和频域傳成形; 经串 /并转换和按预定的资源分配进行子 载波映射; 然后对所述经过映射的并行的码序列进行快速傅立叶反变换 ( IFFT ) ; 再将经过傅立叶反变换的并行数据流变换为串行数据流。 图 7 为导频信号时域处理方式结构示意图。 如图 7所示, 对码序列 {b }的时域 调制处理包括对码序列进行时域压缩的重复压缩和相位调制。
以两个发射天线为例, 首先, 将导频限制在已分配的带宽中, 然后, 将码序列中的元素映射于可用的频带上, 最后, 形成时域波形进行发射。 如图 9所示, 在用户端, 为了在不同天线上发送的导频能被基站区分, 不 同的天线使用不同的码序列, 占用相同的时间和频率资源进行发射, 所述 序列码具有良好的自相关和互相关特性, 并且对收发两端都是已知的。 发 射端导频复用装置以双天线为例, 包括串 /并转换单元, 用于将串行的码序 列变换为并行的码序列, 以进行子载波的映射; 以及快速傅立叶反变换 ( IFFT )单元, 利用快速傅立叶反变换(IFFT )原理, 依靠现成的高速集 成芯片来形成发送波形。 输入的码序列 {al, a2, a3, a4, a5}和 {bl, b2, b3, b4, b5}经串 /并转换变成 M路(本例中 M=5 )并行分组, 按资源分配的方式进
行子载波映射, 经快速傅立叶反变换、 并 /串转换后送入发射处理模块。 本发明实施例的发射端导频复用装置中, 两个发射天线还可以公用一 个处理模块, 包括串并转换和 IFFT等。上述码的分配信息可以由基站在当 前下发信令通知, 也可在通信的上一阶段进行分配, 也可以是用户在接入 网络的时候就已经分配好的。 该分配信息和上述用户频率的分配信息也可 以是同时下发的。
本发明实施例提供的导频复用方法中, 多个发射天线共用码序列源、 频率处理单元、 串 /并转换单元、 IFFT单元、 和并 /串转换单元和发射处理 单元或其中部分单元或使用各自独立的码序列源、 频率处理单元、 串 /并转 换单元、 IFFT单元、 和并 /串转换单元和发射处理单元或其中的部分单元。
基站作为接收端, 对接收到的导频信号进行处理, 首先, 根据频带区 分用户, 然后,利用已知的导频序列与每个用户的接收信号进行相关匹配, 由于采用的码序列具有良好的自相关和互相关特性, 这样可降低或去除不 同天线的干扰, 从而得到各自天线上的信道估计。 图 9为双发双收天线接 收方式示意图。 如图 9所示, 本发明实施例的接收端导频复用装置以双发 双收天线为例, 实际中接收方可能采用比发送方更多的天线, 但是在每个 接收天线上的基本的处理原理相同, 频分用户根据频率区分用户; 利用已 知的导频序列与每个用户的接收信号进行滑动相关匹配, 然后进行信道估 计处理。 由于采用的码序列具有良好的自相关或和互相关特性, 有利于去 除不同天线之间相互的干扰, 从而得到各自天线上的信道估计。
基站根据利用导频获得的信道估计进行系统性能的改善, 如利用信道 估计的结果对数据进行均衡处理, 以减少 ISI的影响, 提高解调的性能, 或者利用信道估计来评估无线信道, 为每个用户分配信道条件好的频带或 天线, 进行多用户资源调度, 以使整个系统的吞吐量最大。
本发明实施例所提供的方法可以应用在多个发射天线中的部分天线 上。 在上述实施方式中导频主要提供信道估计, 但可以在提供信道估计的 同时还提供同步功能,或者只作为提供同步的导频。为了支持更多的用户, 在用户之间再采用 TDMA也是可以的, 因此, 本发明的导频复用可以为 ( FDMA + TDMA )用户 + CDM天线的方式。 例如, 在当前的传输时间单
元中, 由八、 B、 C三个用户采用如上方式复用 5M带宽, 每个用户都进行 导频的双天线复用, 而下一个传输时间单元中由 D、 E、 F三个用户采用如 上方式复用 5M带宽, 每个用户都进行导频的双天线复用, 依次类推, 在 一定周期后, 即若干个传输时间单元后, 用户 A、 B、 C再次发送导频。
图 10为本发明实施例中的无线通信系统结构示意图。 如图 10所示, 本发明实施例中的的无线通信系统包括: 频率资源分配单元, 用于为发送 端的至少两个天线分配相同的频率资源; 码序列分配单元, 用于为发送端 的至少两个天线中的各个天线的导频信号分配不同的 CAZAC (常幅度零 自相关)码序列; 导频发送单元, 用于使用不同的 CAZAC码序列发送导 频信号; 接收单元, 用于接收所述导频信号。 其中所述的天线可以是同一 用户或扇区的发射天线; 还可以是不同用户的发射天线的组合; 亦可以是 同一个基站的不同扇区的发射天线。 用户的至少两个天线中的不同天线的 导频序列, 可以是频域上的码字, 由同一个 Zadoff-Chu序列生成的不同的 GCL序列或者 GCL序列的截断; 也可以是由同一个 CAZAC码序列在时 域上的不同周期移位序列; 还可以是不同的 Zadoff- Chu序列。 接收单元对 导频信号的接收为滑动相关接收。
虽然通过实施方式描绘了本发明, 本领域普通技术人员知道, 本发明 有许多变形和变化而不脱离本发明的精神, 且均落在本发明权利要求书的 保护范围内。
Claims
1、 一种多天线的导频分配方法, 其特征在于, 包括:
为至少两个天线分配相同的至少两个时分导频信号; 以及
为所述至少两个天线分配不同正交序列, 用于各天线调制其所述的时 分导频信号。
2、 如权利要求 1所述的方法, 其特征在于, 所述至少两个天线为同一 个用户的发射天线; 或不同用户的发射天线。
3、如权利要求 1所述的方法,其特征在于,所述正交序列是沃尔什 walsh 码。
4、 如权利要求 1所述的方法, 其特征在于, 所述至少两个时分的导频 信号使用相同的训练序列。
5、 如权利要求 1或 4所述的方法, 其特征在于, 所述导频信号的训练 序列是常幅度零自相关 CAZAC序列或其截断序列, 或在时域上的不同周 期移位序列。
6、 如权利要求 5所述的方法, 其特征在于, 所述的 CAZAC序列是扎 道夫初 Zadoff-Cl 序列。
7、 一种多发射天线的导频复用方法, 其特征在于, 包括:
为至少两个天线的导频信号分配相同的频率资源;
为所述至少两个天线的导频信号分配不同的 CAZAC码序列,所述至少 两个天线中的各天线的导频频域上的码字采用由同一个 Zadoff-Chu序列生 成的不同的广义类彻普序列 GCL序列或者 GCL序列的截断。
8、 如权利要求 7 所述的方法, 其特征在于, 所述 GCL 序列由 c(k) = a(k) b(k mod m), A; = 0,1, ... , N - 1.得到, 分配给不同天线的 中的 綱 }互相正交, 并且 m>l。
9、 如权利要求 7所述的方法, 其特征在于, 所述多发射天线的发射端 为一个扇区的至少两个发射天线。
10、 如权利要求 7所述的方法, 其特征在于, 所述多发射天线的发射端 为一个基站的至少两个扇区。
11、 如权利要求 7所述的方法, 其特征在于, 还包括:
在接收端接收导频信号并进行滑动相关接收。
12、 一种多天线导频分配装置, 其特征在于, 包括:
导频信号分配单元, 用于为至少两个天线分配相同的至少两个时分导 频信号; '
正交序列分配单元,用于为所述至少两个天线分配不同正交序列,所述 正交序列用于各天线调制其所述的时分导频信号。
13、 如权利要求 12所述的装置, 其特征在于, 所述至少两个天线为同 一用户的发射天线中的各个天线, 或不同用户的发射天线中的各个天线。
14、 如权利要求 12所述的装置, 其特征在于, 所述正交序列是 walsh 序列。
15、 如权利要求 12所述的装置, 其特征在于, 所述至少两个时分的导 频信号使用相同的训练序列。
16、如权利要求 15或 12所述的系统, 其特征在于, 所述导频信号的训 练序列是 CAZAC序列或其截断序列, 及其在时域上的不同周期移位序列。
17、 如权利要求 16所述的装置, 其特征在于, 所述的 CAZAC序列是 扎道夫初 Zadoff-Chu序列。
18、 一种无线通信系统, 其特征在于, 包括:
频率资源分配单元, 用于为发送端至少两个天线分配相同的频率资源; 号分配不同的 CAZAC码序列, 所迷至少两个天线中的不同天线的导频的 频域上的码字采用由同一个 Zadoff-Chu序列生成的不同的广义类彻普序列 GCL序列或者 GCL序列的截断。
19、 如权利要求 18所述的系统, 其特征在于, 所述天线为同一用户或 扇区的发射天线。
20、 如权利要求 18所述的系统, 其特征在于, 所述天线为同一个基站 的不同扇区的发射天线。
21、 如权利要求 18所述的系统, 其特征在于, 还包括接收单元, 所述 接收单元根据所接收的导频信号进行滑动相关接收。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200610079018.0 | 2006-04-28 | ||
CNA2006100790180A CN101064546A (zh) | 2006-04-28 | 2006-04-28 | 导频复用方法及无线通信系统 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007128199A1 true WO2007128199A1 (fr) | 2007-11-15 |
Family
ID=38667418
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2007/001217 WO2007128199A1 (fr) | 2006-04-28 | 2007-04-13 | Procédé de multiplexage d'ondes pilotes, appareil et système de communication radio de plusieurs antennes |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN101064546A (zh) |
WO (1) | WO2007128199A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011036054A1 (de) | 2009-09-22 | 2011-03-31 | Chrisofix Ag | Fixierelement sowie anwendung eines solchen fixierelements zum fixieren eines gegenstandes, insbesondere von gliedmassen |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009079813A1 (fr) * | 2007-12-10 | 2009-07-02 | Utstarcom Telecom Co., Ltd. | Dispositif et procédé de combinaison en diversité de réception pour antennes multiples à rétroaction de décodage |
KR101027233B1 (ko) | 2008-07-23 | 2011-04-06 | 엘지전자 주식회사 | 다중 안테나 시스템에서 참조신호 전송 방법 |
CN101771437A (zh) * | 2008-12-31 | 2010-07-07 | 中兴通讯股份有限公司 | 一种专用导频的传输方法 |
CN101547036B (zh) | 2009-01-23 | 2012-08-08 | 华为技术有限公司 | 一种发射天线扩展后的参考信号发送方法、设备和系统 |
CN102036312B (zh) * | 2009-09-30 | 2013-08-07 | 华为技术有限公司 | 一种导频序列传输方法、网络节点和系统 |
CN102014099B (zh) | 2009-11-02 | 2013-04-24 | 电信科学技术研究院 | 一种下行导频的传输方法、装置及系统 |
CN102223167B (zh) | 2010-04-16 | 2015-11-25 | 华为技术有限公司 | 多天线系统中的探测参考信号发送方法及装置 |
EP3334058B1 (en) * | 2015-09-02 | 2020-02-05 | Huawei Technologies Co., Ltd. | Method and device for transmitting or receiving a signal |
CN106506133B (zh) * | 2016-11-08 | 2019-08-20 | 东南大学 | 宽带大规模mimo系统导频池及信道信息获取方法和系统 |
CN108282782A (zh) * | 2017-01-06 | 2018-07-13 | 深圳市金立通信设备有限公司 | 一种上行免授权用户激活检测方法、装置及基站 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6141542A (en) * | 1997-07-31 | 2000-10-31 | Motorola, Inc. | Method and apparatus for controlling transmit diversity in a communication system |
CN1396733A (zh) * | 2001-07-14 | 2003-02-12 | 华为技术有限公司 | 一种公共导频信道发射分集编码方法 |
CN1553621A (zh) * | 2003-05-30 | 2004-12-08 | 电子科技大学 | 一种基于时间频率同步训练序列的导引方案 |
US6870825B1 (en) * | 2000-09-06 | 2005-03-22 | Lucent Technologies Inc. | Pilot signal transmission in a multi-transmit antenna wireless communication system |
-
2006
- 2006-04-28 CN CNA2006100790180A patent/CN101064546A/zh active Pending
-
2007
- 2007-04-13 WO PCT/CN2007/001217 patent/WO2007128199A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6141542A (en) * | 1997-07-31 | 2000-10-31 | Motorola, Inc. | Method and apparatus for controlling transmit diversity in a communication system |
US6870825B1 (en) * | 2000-09-06 | 2005-03-22 | Lucent Technologies Inc. | Pilot signal transmission in a multi-transmit antenna wireless communication system |
CN1396733A (zh) * | 2001-07-14 | 2003-02-12 | 华为技术有限公司 | 一种公共导频信道发射分集编码方法 |
CN1553621A (zh) * | 2003-05-30 | 2004-12-08 | 电子科技大学 | 一种基于时间频率同步训练序列的导引方案 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011036054A1 (de) | 2009-09-22 | 2011-03-31 | Chrisofix Ag | Fixierelement sowie anwendung eines solchen fixierelements zum fixieren eines gegenstandes, insbesondere von gliedmassen |
Also Published As
Publication number | Publication date |
---|---|
CN101064546A (zh) | 2007-10-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2007128199A1 (fr) | Procédé de multiplexage d'ondes pilotes, appareil et système de communication radio de plusieurs antennes | |
RU2426236C2 (ru) | Способ передачи сигналов управления по восходящей линии связи в системе беспроводной связи | |
RU2290764C2 (ru) | Устройство и способ передачи для использования в системе мобильной связи, основанной на схеме ортогонального мультиплексирования с частотным разделением | |
EP2183894B1 (en) | Multicarrier communication system employing explicit frequency hopping | |
AU2010342988B2 (en) | Antenna port mapping method and device for demodulation reference signals | |
EP1891783B1 (en) | Efficient subcarrier groupping and data symbol allocation for ICI and PAPR reduction in OFDMA communications systems | |
US8238303B2 (en) | Method and apparatus of allocating subcarriers in an orthogonal frequency division multiplexing system | |
KR100938095B1 (ko) | 직교 주파수 분할 다중 방식을 사용하는 통신시스템에서 프리앰블 시퀀스 생성 장치 및 방법 | |
WO2017067428A1 (en) | System and method for pilot signal transmission | |
KR20100071095A (ko) | 다중 반송파 시스템에서 데이터 전송 방법 및 전송기 | |
KR20100015865A (ko) | 패킷 무선 통신에 기초한 싱글 캐리어 fdma를 위한 방법 및 장치 | |
KR20080096084A (ko) | 기준신호 전송 방법 | |
WO2014114113A1 (zh) | Dmrs处理方法及装置 | |
KR20100002066A (ko) | Sc-fdma 시스템에서 전송 다이버시티를 이용한 데이터 전송장치 및 방법 | |
KR20090122100A (ko) | 무선 통신 시스템에서 데이터 전송 방법 | |
KR20080020959A (ko) | 통신 시스템의 상향링크 신호 송신 방법, 송신 장치, 생성방법 및 생성 장치 | |
TW200812268A (en) | Transmitting device and communication method | |
US9496918B2 (en) | Multicarrier communication system employing explicit frequency hopping | |
KR20080046404A (ko) | 셀간 간섭을 저감시키는 통신 자원 할당 방법 | |
WO2010048129A1 (en) | Method and apparatus for performing uplink transmission techniques with multiple carriers and reference signals | |
KR101339507B1 (ko) | 부호어의 전송방법 | |
KR20110085887A (ko) | 상향링크 mimo 전송에서 데이터와 다중화된 상향링크 dm-rs 전송 방법 | |
KR20090110210A (ko) | 무선 통신 시스템에서 파일럿 시퀀스 맵핑 방법 | |
JP2010200077A (ja) | 移動通信システム、基地局装置、移動局装置および移動通信方法 | |
KR19990051722A (ko) | 멀티캐리어 변조방식을 이용한 직접확산-코드분할 다중접속 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07720790 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 07720790 Country of ref document: EP Kind code of ref document: A1 |