WO2007126121A1 - Method for processing plastic and apparatus therefor - Google Patents

Method for processing plastic and apparatus therefor Download PDF

Info

Publication number
WO2007126121A1
WO2007126121A1 PCT/JP2007/059406 JP2007059406W WO2007126121A1 WO 2007126121 A1 WO2007126121 A1 WO 2007126121A1 JP 2007059406 W JP2007059406 W JP 2007059406W WO 2007126121 A1 WO2007126121 A1 WO 2007126121A1
Authority
WO
WIPO (PCT)
Prior art keywords
plastic
coal
heavy fraction
benzene ring
treating
Prior art date
Application number
PCT/JP2007/059406
Other languages
French (fr)
Japanese (ja)
Inventor
Joichi Takenaka
Kunio Miyazawa
Original Assignee
Jfe Chemical Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2006123188A external-priority patent/JP2007291290A/en
Priority claimed from JP2006123187A external-priority patent/JP2007291289A/en
Priority claimed from JP2006130127A external-priority patent/JP2007302732A/en
Priority claimed from JP2006131543A external-priority patent/JP2007302766A/en
Application filed by Jfe Chemical Corporation filed Critical Jfe Chemical Corporation
Publication of WO2007126121A1 publication Critical patent/WO2007126121A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • C08J11/16Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with inorganic material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/06Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal by destructive hydrogenation
    • C10G1/065Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal by destructive hydrogenation in the presence of a solvent
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/10Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal from rubber or rubber waste
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Definitions

  • the present invention relates to a method and apparatus for treating a plastic having a benzene ring.
  • waste plastics that contain at least plastics with a benzene ring.
  • Benzenes include technologies based on thermal decomposition (thermal decomposition method), or thermal decomposition in a hydrogen atmosphere.
  • Technology hydrocracking
  • thermal decomposition method in Japanese Patent Application Laid-Open No. 9-13048, waste plastic containing expanded polystyrene (polystyrene) is thermally decomposed to obtain benzene such as styrene. , 'However, it is difficult to strictly control the decomposition reaction in the thermal decomposition method.
  • JP-A-2003-321682 a liquid monocyclic or polycyclic aromatic compound containing waste plastic that has been liquefied by heating is hydrogenated and decomposed, and the resulting reaction product is used as a cyclization catalyst. Benzenes are obtained by reaction in the presence. These hydrocracking methods increase the yield of benzenes compared to the pyrolysis method.
  • waste plastics usually contain chlorine-containing polymers such as polychlorinated butyl and chlorine compounds derived from sodium chloride. Even so, the heavy fraction contains various chlorine compounds such as by-product chlorine compounds, so there is no use for the heavy fraction and it is difficult to dispose of it.
  • the present invention has been made in view of such a point, and it is possible to obtain benzenes in a high yield from a plastic having a benzene ring and to effectively use other by-product decomposition oil. It is an object of the present invention to provide a plastic processing method and apparatus. Disclosure of the invention
  • the present invention includes a step of dissolving a plastic having a benzene ring in a solvent hardly soluble in water, a step of hydrocracking the obtained plastic solution having a benzene ring, and a product of the hydrocracking step.
  • the dechlorination is more preferably centrifugal separation or water washing.
  • the thermal decomposition is at least a partial coating of the heavy fraction.
  • the pyrolysis is carried out by charging at least a part of the heavy fraction into a coke oven and coking with coal, wherein ffl of the coke oven charge is More preferably, at least a portion of the heavy fraction is mixed with the coal. Further, it is more preferable that the temperature at which at least a part of the heavy fraction is mixed with the coal is 20 to 100 ° C. Further, it is more preferable to use a molded mixture of at least a part of the heavy fraction described in this paragraph and the coal. .
  • the pyrolysis is carried out in a step of reforming the coal by mixing at least a part of the heavy fraction with the coal and heating it. ..
  • the thermal decomposition is performed at 400 to 600 ° C. .
  • the boiling point of the heavy fraction is It is preferably 3 30 ° C or higher.
  • the plastics have a benzene ring and are a mixture of a plastic having a benzene ring and another plastic.
  • the plastic having a benzene ring is preferably a waste plastic containing at least a plastic having a benzene ring.
  • the plastics have a benzene ring and the plastic contains at least polystyrene.
  • the solvent is preferably at least one selected from the group consisting of coal tar and coal tar distillation fraction.
  • the product of the hydrocracking step is preferably a benzene.
  • the present invention also includes a dissolution tank equipped with a stirrer and a heating device up to 250 ° C., a pressure reaction vessel capable of withstanding 120 kg / cm 2 G at 500 ° C., a fractionator, and It is also a plastic processing equipment equipped with a pyrolysis tank that is resistant to hydrogen chloride and chlorine gas.
  • the plastic processing apparatus preferably further includes either a centrifuge or a separator equipped with a heating device and a water injection device up to 25 ° C. before the fractionator. .
  • the pyrolysis tank is at least one selected from the group consisting of a coke oven, a coker, and a coal reforming furnace. It is preferable.
  • the present invention provides a hydrolyzing process in which a plastic and a solvent are mixed and heated to dissolve the plastic, and the plastic solution obtained in the dissolving process is hydrocracked in the presence of a catalyst.
  • a hydrocracking step for carrying out the reaction, a distilling step for distilling the hydrocracking reaction product produced in the hydrocracking step to obtain a heavy fraction, and a heavy fraction obtained in the distillation step It is also a plastic processing method characterized by having a pyrolysis step of thermally decomposing.
  • FIG. 1 is a schematic explanatory view showing an embodiment of the plastic processing apparatus of the present invention.
  • FIG. 2 is a schematic explanatory view showing one embodiment of a manufacturing apparatus for another plastic processing apparatus according to the present invention.
  • FIG. 3 is a schematic explanatory view showing an embodiment of a manufacturing apparatus for another plastic processing apparatus according to the present invention.
  • FIG. 4 is a schematic explanatory view showing an embodiment of a manufacturing apparatus for another plastic processing apparatus according to the present invention.
  • FIG. 5 is a schematic explanatory view showing an embodiment of a manufacturing apparatus for another plastic processing apparatus according to the present invention.
  • the present inventors have improved the hydrocracking method and effective use of cracked oil produced as a by-product, particularly heavy fractions, for a mixed plastic having a benzene ring-containing plastic. It was investigated. As a result, the heavy fraction is thermally decomposed, We found a method that can convert it into chlorides such as Zen, Kotas and hydrogen chloride. However, it was found that these conversion products can be recovered individually, so that the yield of benzenes can be improved and the heavy fraction can be effectively used.
  • the heavy fraction in cracked oil becomes a liquid with abundant hydrogen content and low viscosity, and can be easily pyrolyzed by a simple process. Furthermore, it is possible to modify poor coal with compounds that easily donate hydrogen, that is, hydrophenanthrene and its derivatives, hydroanthracene and its derivatives, and hydropyrene and its derivatives. In addition, it is possible to increase the recovery of benzenes by coking heavy fractions with a coker, and to obtain the knowledge that the resulting coke can be properly disposed of in an integrated steelworks sintering machine, coke oven, or blast furnace. It was. The method of the present invention is also optimal for chemical recycling of waste plastics with a large amount of benzene recovered.
  • the present invention has been made based on these findings.
  • the plastic having a benzene ring of the present invention includes a benzene ring as a part of the polymer structure, and, as is apparent from the gist of the present invention, a ring-closing reaction (such as heating and z or hydrogenolysis reaction). Also included are polymers that can form benzene rings as part of the polymer structure by cyclization reactions) and Z or cleavage reactions.
  • the benzene ring contained may be contained in the polymer main chain or in the polymer side chain.
  • the benzene ring may have a substituent.
  • polymers that contain a benzene ring as part of the polymer structure include polystyrenes, polyethylene terephthalates, polycarbonates, phenol resins, xylene resins, ABS resins, polysulfones, and polyethylene. Examples include lenoxides.
  • the plastic having a benzene ring may be a mixture of a plastic having a benzene ring and another plastic.
  • the plastic having a benzene ring applicable to the present invention may be an unused plastic or a plastic after being used for some purpose. From the perspective of resource reuse, it is preferable to use plastic that has been used and discarded (hereinafter also referred to as waste plastic). That is, in the present invention, as the plastic having the benzene ring, a plastic that contains at least a plastic having a benzene ring can be suitably used.
  • any of the plastics having the benzene ring is more preferably a plastic containing at least polystyrene.
  • the benzene ring-containing plastic in addition to industrial waste, a mixture of polyethylene and polypropylene can be used.
  • waste plastics well known as municipal waste often contain chlorine-containing plastics such as polyvinyl chloride and polyvinylidene chloride, but such mixed plastics may also be used.
  • the typical composition (% by weight) of waste plastic is as follows: polyethylene: 20 to 40%, polypropylene: 10 to 20%, polystyrene: 10 to 40% polyethylene terephthalate: 5 to 10 %, Polysalt ⁇ Vinolein resin.
  • Polyvinylidene chloride resin 1 to 10%
  • other impurities 1 to 10%.
  • No special adjustment of the particle size of the benzene ring-containing plastic is required, but it is desirable to use crude oil because the dissolution time is shortened.
  • it may contain a thermosetting resin or paper.
  • the solvent is hardly soluble in water and contains a benzene ring-containing plastic or this. It is not particularly limited as long as it can dissolve or fluidize the mixed plastic (hereinafter also referred to as plastic or mixed plastic).
  • the water-insoluble solvent referred to in the present application includes water-insoluble solvents.
  • the solvent is preferably a monocyclic, bicyclic or tricyclic aromatic compound and various derivatives thereof, or a mixture thereof from the viewpoint of compatibility with plastics.
  • each fraction of coal tar can also be used to fluidize thermosetting resins and papers, making it possible to pump up waste plastic containing benzene ring-containing plastic into the hydrocracking reactor. Is preferred.
  • coal tar (all fractions), creosote oil fractions produced in a coal tar distillation plant, anthracene oil fractions, etc.
  • the mixing ratio of the benzene ring-containing plastic or the mixed plastic containing it with respect to the solvent is preferably 5 parts by mass Z 95 5 parts by mass to 40 parts by mass / 60 parts by mass. 5 parts by mass / 9
  • the treatment amount increases at 5 parts by mass or more, the economy improves.
  • 40 parts by mass or less of Z 60 parts by mass is more advantageous for fluidity.
  • the plastic it is preferable to dissolve it by heating to 150 ° C or higher. Heating to 150 ° C or higher is more economical because the plastic has a higher dissolution rate and can be dissolved in a smaller dissolution tank. However, from the point of view of operation, temperatures below about 400 ° C are sufficient. In addition, if the temperature exceeds 250 ° C., the light fraction will be volatilized significantly. In this case, it is desirable to perform the dissolution treatment in a sealed container.
  • the waste plastic contains chlorine-containing plastics such as polychlorinated butyl
  • a decomposition reaction occurs in all or part of the chlorine-containing plastics, and chlorine compounds such as hydrogen chloride are also generated. It may occur.
  • the hydrocracking reaction is preferably performed in the presence of a catalyst.
  • a Co—Mo, Ni—Mo, Ni—W catalyst, or iron Catalyst iron oxide, iron sulfide, iron sulfate and its calcined product.
  • a support such as alumina (A 1 2 0 3 ), silica (S i 0 2 ), or zeolite if necessary.
  • the mixing ratio of plastic: solvent: catalyst supplied to the hydrocracking reactor is preferably 5: 94: 1 to 36:54:10 by mass ratio.
  • the catalyst may be added before the dissolution step.
  • the hydrocracking reaction may be carried out in either liquid phase or gas phase, and the reaction temperature is 300. About 500 ° C, preferably 400-450. About C, the pressure is about 1.0 to 2 p. 3 MPa (10 to 200 atmospheres), preferably 5.1 to 10. IMP a (50 to: LOO atmosphere).
  • examples of the reaction product in the hydrocracking step include benzenes such as benzene, toluene, xylene and ethylbenzene.
  • the product obtained in the hydrocracking step is fractionated to obtain useful components such as benzenes and cracked oil.
  • the product of the hydrocracking step may include the solvent used and its cracked product. More specifically, hydrogenated tar fractions (light fractions) corresponding to lighter gas fractions mainly composed of C3 to C4, benzene fractions, creosote oil and anthracene oil, etc. , And heavy fractions. This heavy fraction preferably has a boiling point of 330 ° C or higher.
  • a preferable thermal decomposition temperature is 400 to 600 ° C. Note that this pyrolysis temperature is the temperature when passing through the region of 400 to 600 ° C, such as when charging directly into a coke oven or mixed with coal. It does not matter even if the temperature is higher after pyrolysis.
  • At least a part of the heavy fraction is converted into a powder and thermally decomposed.
  • At least a part of the heavy fraction can be charged together and pyrolyzed to obtain coatas, and at the same time, benzenes such as BTX (benzene, toluene, xylene) can be increased. it can. (b) At least a part of the heavy fraction is charged into a coke oven and pyrolyzed together with the coking of coal.
  • benzenes such as BTX (benzene, toluene, xylene) can be increased. it can.
  • At least a part of the heavy fraction is charged into a coke oven and pyrolyzed together with the coking of coal.
  • the method for charging the heavy fraction into the coke oven is not particularly limited. That is, the heavy fraction may be charged directly into a coke oven, or mixed with coal to be coked and charged together with the coal.
  • the forming is possible, for example, by a method of producing bean charcoal.
  • the particle size of the coal is about 3 mm or less, the contact efficiency between the inorganic matter and the heavy fraction in the coal is improved, and the rate of formation of chloride is increased.
  • the mixing temperature and molding temperature of the heavy fraction and coal but 20-100 ° C is preferable, and 20-80 ° C is more preferable in terms of improving the fluidity of the heavy fraction. It is.
  • the temperature is 100 ° C or lower, it is easy to suppress the volatilization of components, and it is easy to maintain a good working environment.
  • the coal has a higher density of coal particles, so the coking property is improved, that is, the coal is reformed.
  • chlorine such as hydrogen chloride (HC 1) generated by thermal decomposition of heavy fractions during high-temperature dry distillation in the Kotas furnace is trapped by inorganic substances in the coal, for example, becoming stable chlorides.
  • HC 1 hydrogen chloride
  • most of the chlorine contained in the heavy fraction reacts with inorganic matter in the coal - to form a Na C l, KC 1, C a C l 2, stable chlorides such as Mg C 1 2 .
  • At least a part of the heavy fraction is mixed with coal and heated to thermally decompose while reforming the coal.
  • the degree of coalification (R.) of the inferior quality coal is R. ⁇ 0.68.
  • the degree of coalification (R.) of the non-slightly caking coal is 0.68 to 0.80.
  • the degree of coalification is the ratio of reflected light when the coal is irradiated with light, and is measured according to JISM 8816.
  • the heat treatment is performed by mixing with the inferior coal that does not become the raw material for Kotas, or the non-slightly caking coal that does not become the raw material for Kotas alone.
  • the heat treatment is preferably performed at 300 to 500 ° C, particularly 350 to 450 ° C.
  • the atmosphere should be a nitrogen atmosphere or a reducing atmosphere, and the reaction pressure should be 0.1 to 15.2 MPa (1 to 150 atmospheres).
  • a hydrogen atmosphere is preferable because the reforming effect is further improved.
  • most of the chlorine contained in the heavy fraction reacts with the inorganic substances present in the poor coal and non-slightly caking coal, resulting in NaC l, KC 1, CaC l 2 , Mg C 1 2 Forms stable chlorides.
  • HC 1 hydrogen chloride
  • Inferior coal and non-slightly caking coal react with the heavy fraction, and become coal (modified coal) of almost the same quality as coking coal for coke production. This makes it possible to effectively use inferior or non-coking coal.
  • the dechlorination referred to in the present invention is to remove a chlorine compound from the product of the hydrocracking process.
  • it is natural to remove the chlorine compound in the form of a molecule when removing it, and it is removed as a c 1 -ion and its counter ion. From the point of view, the molecule containing chlorine is missing. Including cases that can be seen.
  • gravity precipitation, hydrocyclone, centrifugation, or water washing by liquid-liquid extraction can be exemplified as the dechlorination method.
  • waste plastics containing benzene ring-containing plastics are used as raw materials for this effort.
  • waste plastics often contain chlorine-containing plastics such as polychlorinated butyl, and all or one of the chlorine-containing plastics is used in the above-described dissolution process and Z or hydrocracking process. Some parts are also decomposed to generate chlorine compounds such as hydrogen chloride. 'Or, such waste plastics often contain alkali salt such as soy sauce, miso, and salt. Therefore, in the method of the present invention, it is preferable to provide either a centrifugation step or a water washing step as the dechlorination step.
  • a centrifugal separation step By installing a solid-liquid separator between the hydrocracking step and the fractionating step, here, a centrifugal separation step, the solid content such as chlorine and catalyst in the plastic solution is separated as a residue. Can be removed. Through this step, a high-quality pitch (hydrogenated pitch) free from solids can be obtained by further reducing-pressure distillation of the bottom oil of the fractional distillation.
  • water is added to and mixed with the plastic solution obtained in the dissolution step or hydrocracking step, and the water-soluble chlorine content in the solution or the water-soluble chlorine suspended in the solution is mixed. After extracting the water into water, it is removed by liquid separation. Specifically, a water washing process by liquid-liquid extraction can be exemplified.
  • the mixing treatment with water in this step may be either batch type or continuous type. processing
  • the temperature is preferably 1550 to 2550 ° C. If it is 1500 ° C or higher, the mixed state becomes better and the transfer of chlorine to water becomes easier. In addition, since the cleaning efficiency is saturated even at high temperatures, it is economically appropriate to be 2500 ° C or less.
  • the amount of water added to the solution is preferably from 0.1 to: L 0 times, particularly 1 to 4 times by weight. If it is 0.1 times or more, the operation of phase separation of the solution and water is easy. In addition, even if the amount of water is increased, the extraction amount of water-soluble chlorine is saturated, so it may be about 10 times economically.
  • the plastic processing apparatus and the benzene production apparatus may have the same configuration. That is, the present application includes a dissolution tank equipped with a stirrer and a heating device up to 250 ° C., a pressure reaction vessel capable of withstanding 120 kg / cm 2 G at 500 ° C., a fractionator, and a chloride. An invention of a plastic processing apparatus provided with a thermal decomposition tank resistant to hydrogen and chlorine gas is also provided.
  • FIG. 1 is a schematic explanatory view showing an embodiment of the plastic processing apparatus of the present invention.
  • the present invention is not limited to FIG. The following description is based on the drawings.
  • Benzene ring-containing plastics hereinafter also applicable to mixed plastics or waste plastics containing benzene ring-containing plastics
  • coal tar (solvent) 12 and catalyst 13 are agitator (not shown) and 2 5 Heating device up to 0 ° C
  • the heating temperature of the dissolution tank is preferably 1550 to 400 ° C.
  • the solution of the benzene ring-containing plastic obtained here is a pressure reactor (also called a hydrocracking reactor) that can withstand 120 kg / cm3 ⁇ 4 at 500 ° C with a pump (not shown) 3 The liquid is sent to
  • hydrogen or a gas containing hydrogen as a main component is supplied to the pressure reaction vessel 3.
  • the majority of the gas discharged from the pressure reaction vessel 3 is circulated in order to improve economic efficiency, and a part of the gas is discarded as the exhaust gas 21 so as to maintain the hydrogen concentration at a predetermined concentration. I'm trying to make 15 up. However, do not circulate the exhausted gas, use it as a heating source for this plant, discard the entire amount of gas discharged from the pressure reaction vessel 3 while supplying a new amount of hydrogen, or use it for other purposes. You can also.
  • the molecular chain (main chain) is broken and hydrocracking reaction occurs mainly due to the effect of the catalyst 13 to produce ethylbenzene.
  • BTXs benzene, toluene, xylene, etc.
  • methane, ethane, etc. are generated by the decomposition of the alkyl chain of ethylbenzene and the disproportionation reaction of the product.
  • the conventional thermal decomposition of plastics alone often produces styrene with an unsaturated alkene on the benzene ring.
  • the reaction proceeds mildly, and hydrogen atoms are supplied to the main chain cleavage part of the polystyrene, whereby an alkyl chain (saturated hydrocarbon) is added to the benzene ring. More ethylbenzene is used.
  • the alkyl group of ethylbenzene is a single bond and is more easily cleaved than the double bond of styrene, which increases the yield of benzene and toluene.
  • thermosetting resins such as phenol resin, polyethylene terephthalate, etc. become benzenes by hydrocracking, and some become heavy oils (including pitches).
  • coal tar used as a solvent is partly decomposed and lightened by reaction with hydrogen in the gas, but a part of it may produce pitch fraction due to polycondensation reaction.
  • chlorine reacts with a monocyclic aromatic compound formed by hydrogenolysis of a plastic, and an aromatic compound such as a monocyclic, bicyclic or tricyclic ring in a solvent, and 0.1 to 0.00. About 2% by mass of aromatic chlorine compounds are by-produced, and the concentration of organochlorine compounds in cracked oil increases.
  • the liquid product discharged from the pressure reaction vessel 3 is sent to a distillation column (fractional distillation column) 6 where C 3 to C 4 gas fraction 22, BTX fraction 23, light fraction 24, heavy fraction Fractionated to 25.
  • the number of distillation columns 6 is one, but fractional distillation may be subdivided by providing an atmospheric distillation column and a vacuum distillation column.
  • the distillation column ordinary ones such as an atmospheric distillation column and a vacuum distillation column (vacuum distillation column) can be used.
  • a purification device such as a dedicated distiller may be provided. If the light fractions 24 contain organochlorine compounds, their boiling points are not so high that they can be easily removed by precision distillation. That is, since the organochlorine compound has a low boiling point, it can be fractionated without polycondensation in distillation.
  • the heavy fraction 25 is concentrated in chlorine, and as such, no use can be found.
  • the heavy fraction fractionated in the distillation tower is hydrogenated in the hydrocracking reaction and contains hydrogen.
  • the amount is increasing, that is, the molecular structure with many hydrogen atoms in the molecule, that is,
  • H / C ratio of hydrogen atom to carbon atom
  • the apparatus of the present invention has a thermal decomposition tank 7 having resistance to hydrogen chloride and chlorine gas for effectively using the heavy fraction.
  • the pyrolysis tank 7 is a plastic processing apparatus that is at least one selected from the group consisting of a coker, a coke oven, and a coal reforming furnace.
  • the temperature in the pyrolysis tank 7 is preferably 400 to 600 ° C.
  • the 'heavy fraction 25 is sent to a pyrolysis tank 7 such as a coker, and discharged as a cracked BTX fraction 28 and a coatas 26.
  • Decomposition BTX fraction 28 contains hydrogen chloride derived from chlorine originally present in heavy fraction 25 (generated by decomposition in pyrolysis tank 7) 27. To remove it.
  • water, sodium hydroxide, potassium hydroxide, or the like can be used as the cleaning liquid used in the cleaning tower 9. Since the chlorine concentration of the Cotas 26 obtained in this way is significantly reduced, it can be properly disposed as a raw material in existing processes such as sintering machines, coke ovens, or blast furnaces.
  • FIG. 2 is a schematic view showing an embodiment of another plastic processing apparatus according to the present invention.
  • a difference from the embodiment shown in FIG. 1 is an example in which a coke oven is used as the pyrolysis tank 7 although the washing tower 9 is not provided.
  • the heavy fraction 25 is supplied to the pyrolysis tank (coatus furnace) 7 together with the coal 16 and pyrolyzed in the coal-coating process.
  • the obtained Kotas 26 is supplied to blast furnaces and used as a raw material for iron making.
  • FIG. 3 is a schematic view showing an embodiment of another plastic processing apparatus according to the present invention.
  • a difference from the embodiment shown in FIG. 2 is an example in which a coal mixer 8 is used instead of the pyrolysis tank 7.
  • the obtained coal is separately added to the blended coal and pyrolyzed in a coke oven (not shown).
  • heavy fraction 25 and coal 16 can be mixed in coal mixer 8 and molded as necessary to reform coal (non-slightly caking coal) 16.
  • the present application also provides an invention of a plastic processing apparatus further provided with either a centrifuge or a separator equipped with a heating device and a water injection device up to 250 ° C. before the fractionator. To do. .
  • FIG. 4 is a schematic view showing an embodiment of another plastic processing apparatus according to the present invention.
  • a liquid one-liquid extractor 2 is provided as a water washing device between the pressure reaction vessel 3 and the distillation column 6 and the hydrogenolysis reaction generated in the pressure reaction vessel 3 is performed.
  • the removal of water-soluble chlorine content 27 in the product is performed.
  • Na a C 1, KC 1, Fe C 1 2, etc. in the hydrocracking reaction product are greatly transferred to the water phase. Separation and removal of water with transferred chlorine content reduces the amount of chlorine contained in hydrocracked oil. Therefore, in the heat treatment process, the ratio of forming stable chlorides is higher than in the case of FIG. 2, which is preferable.
  • FIG. 5 is a schematic view showing an embodiment of another plastic processing apparatus according to the present invention.
  • the difference from the embodiment shown in FIG. 2 is that a centrifugal separator 5 is provided between the pressure reaction vessel 3 and the distillation column 6, and the hydrogen content in the hydrocracking reaction product produced in the pressure reaction vessel 3 is different. 2 7 is to be removed.
  • the product of hydrocracking reaction is normal temperature due to low viscosity However, it is preferable to supply at 200 ° C. for centrifugal separation at a high temperature because the separation efficiency is further improved.
  • Chlorine content 27 is separated as the residue from the centrifugal separator 5, and a hydrocracking reaction product with reduced chlorine content is obtained as the supernatant.
  • the supernatant hydrocracking reaction product is sent to the distillation column 6 where C 3 to C 4 gas fraction 2 2, BTX containing BTX fraction 2 3, light fraction 2 4, heavy It is fractionated into mass fractions 25.
  • the heavy fraction 25 with less chlorine content is placed in the pyrolysis tank 7.
  • Waste plastic recovered from the fish market is supplied to dissolution tank 1 held at 200 ° C at 9.6 kg / hr, and anthracene oil in the coal tar fraction is 22.4 kgZr as a solvent.
  • Supplied. was added converter dust (F e 2 ⁇ 3) at a rate of 1.5kgZhr as a catalyst.
  • the hydrogenation reaction was performed at a temperature of 450 ° C, a reaction pressure of lO.lMPa (100 atm), and a residence time of 1 hr. At this time, hydrogen gas 15 was supplied at 2.5 Nm 3 Zlir.
  • the supernatant is sent to a distillation column (fractional distillation column) 6 and a fraction mainly composed of BTX having a boiling point up to 1 803 ⁇ 4 (BTX fraction) 2 3.
  • BTX fraction a fraction mainly composed of BTX having a boiling point up to 1 803 ⁇ 4
  • the heavy fraction 25 was supplied to a coker (pyrolysis tank 7) and pyrolyzed at 500 ° C to obtain a decomposed BTX fraction (not shown) and coatas 26. Chlorine content in the resulting Kotasu is 0.03 mass 0/0, were subjected to the original family of sintering machines. ,
  • the decomposed BTX fraction was gas-washed in a washing tower (not shown) using a sodium hydroxide aqueous solution as a washing liquid. Removes hydrogen chloride contained in the washing tower.
  • the BTX fraction (not shown) was combined with the BTX fraction 23 distilled from the distillation column 6 and purified with a small distillation column to collect benzenes. Table 1 shows the amount of benzene recovered.
  • Comparative Example 1 the same hydrocracking and distillation operations as in Invention Example 1 were performed except that the heavy fraction was not pyrolyzed. The amount of benzene recovered in this case is also shown in Table 1.
  • the hydrocracking was carried out at a temperature of 4500 ° C in the pressure reaction vessel 3, a reaction pressure of 10 IMP a (100 atm), and a residence time of 1 hr. At this time, hydrogen gas 15 was supplied at 2.5 Nm Vhr.
  • the reaction product (cracked oil) is sent to the distillation column 6 and a C 3 to C 4 gas fraction 2 2, a fraction containing benzenes with a boiling point up to 200 ° C. (benzene fraction) 2 3 It was divided into a light fraction 24 having a boiling point of 200-330 ° C and a heavy fraction 25 having a boiling point of 330 ° C or higher.
  • the heat-treated product (modified coal) obtained was subjected to X-ray photoelectron spectroscopy and X-ray diffractometer. analyzed.
  • the N a C 1 to modified coal, KC 1, F eC l 2 , Ca C l 2, chlorine as such Mg C 1 2 was confirmed to exist in a stable state.
  • the can firing test is a firing test using a rectangular steel can (20 liters in volume) that has two sides that are almost the same length as the 45-cm furnace width of the actual Kotas furnace. .
  • polystyrene 30 mass 0/0, polyethylene 35 weight 0/0, polypropylene 30 wt%, and chloride Bulle 5 mass 0/0 mixture 11 was prepared. This mixture was fed at 9.6 kgZlir to a dissolution tank maintained at 200 ° C., and an anthracene oil of a coal tar fraction as solvent 12 was fed at 22.4 kgZhr. Converter dust as a catalyst 13 (F e 2 ⁇ . Main component) was added 1 at a rate of 5 kg / hr. The hydrocracking was performed at a temperature of 450 ° C, a reaction pressure of 10.
  • the base blended coal has four grades (Coal A, B Coal, Coal Degree (Ro), Gisser Maximum Fluidity (MF), Total Inert (TI), and Ash (as well as blending ratio) shown in Table 2.
  • Coal (coking coal for Cotas) was prepared by mixing C coal and D coal. A can firing test was conducted on 15 kg of each blended coal. In other words, after 7 hours of dry distillation in a coke oven with a furnace temperature of 1100 ° C, the water was discharged from the furnace and sprinkled with fire. The packing density of the blended coal was 0.8 T / m 3 . After preparing the coatus in this way, the drum strength (DI 3 ° 15 ) of coatus was measured according to JIS. Table 4 shows the measurement results.
  • Comparative Example 4 the same blended coal and heavy fraction as in Comparative Example 3 (0.15 kg, the same as the amount present in the blended coal of Inventive Example 3) were placed separately and subjected to the can firing test. The amount of hydrogen chloride generated by thermal decomposition at 1100 ° C, the same as the furnace temperature, was investigated. The heating rate was the same at 3 ° C Zmin. Table 4 shows the analysis results.
  • a benzene ring-containing plastic particularly a waste plastic containing at least a benzene ring-containing plastic, is used as a raw material, and at the same time, benzenes that are extremely useful in the chemical industry and the pharmaceutical industry are obtained. This makes it possible to effectively use other cracked oils. Therefore, it can contribute widely to industry as chemical recycling of waste plastic.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Development (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

Disclosed is a method for processing a plastic, which comprises a step for dissolving a plastic having a benzene ring into a solvent which is poorly soluble in water, a step for hydrocracking the thus-obtained solution of the plastic having a benzene ring, a step for fractionating the product obtained in the hydrocracking step, and a step for thermally decomposing at least a part of the heavy distillate obtained in the fractionating step. Benzenes, which are extremely useful in chemical industries and pharmaceutical industries, can be produced by this method by using a waste plastic which contains at least a benzene ring-containing plastic, as a raw material. In addition, other by-produced cracked oils can be effectively utilized.

Description

プラスチックの処理方法およびその装置 Plastic processing method and apparatus
技術分野 本発明は、 ベンゼン環を有するプラスチックの処理方法とその装置に関する。 特 には、 ベンゼン環を有するプラスチックを少なくとも含有する廃プラスチックなど 明 TECHNICAL FIELD The present invention relates to a method and apparatus for treating a plastic having a benzene ring. In particular, waste plastics that contain at least plastics with a benzene ring.
を原料として、 化学工業や医薬品工業に細て極めて有用なベンゼン類を取得すると同 時に、 他の副生分解油の有効利用を図るプラスチックの処理方法とその装置に関す る。 As a raw material, it is related to plastic processing methods and equipment for obtaining benzenes that are extremely useful in the chemical and pharmaceutical industries, and at the same time, effectively using other by-product cracked oils.
背景技術 Background art
ポリスチレンなどのベンゼン環含有プラスチックを分解してベンゼンまたはベン ゼン誘導体 (以下、 ベンゼン類とも呼ぶ) を得る技術としては、 熱分解を主体とす る技術 (熱分解法) 、 あるいは水素雰囲気で熱分解する技術 (水素化分解法) など がある。 熱分解法を例示すれば、 特開平 9-13048号公報では、 発泡スチロール (ポリス チレン) を含有する廃プラスチックを熱分解してスチレンなどのベンゼン類を取得 している。 , ' しかしながら、 熱分解法は分解反応を厳密に制御することが難しいため、 発泡ス チロールを原料とすると、 ベンゼン、 トルエン、 キシレンといったベンゼン類のほ 力 \ 少ないながらもェタン、 エチレンといったアルカン、 アルケン類が副生するほ 、 所謂コータスと呼ばれる炭素固体が約 15質量%も生成するので、 ベンゼン類 が含まれる液状物質の収率は約 80質量。 /。程度となる。 しかも、 液状物質のなかに はベンゼン類以外の物質がかなり含有されるため、 ベンゼン類の実際の収率は 80 質量。 /。以下であり、 コータスの生成量が 5質量%程度と少ない水素化分解法の場合 のべンゼン類収率 70質量%を下回ると推定される。 Technologies for decomposing benzene ring-containing plastics such as polystyrene to obtain benzene or benzene derivatives (hereinafter also referred to as benzenes) include technologies based on thermal decomposition (thermal decomposition method), or thermal decomposition in a hydrogen atmosphere. Technology (hydrocracking). As an example of the thermal decomposition method, in Japanese Patent Application Laid-Open No. 9-13048, waste plastic containing expanded polystyrene (polystyrene) is thermally decomposed to obtain benzene such as styrene. , 'However, it is difficult to strictly control the decomposition reaction in the thermal decomposition method. Therefore, if expanded polystyrene is used as the raw material, alkanes such as ethane, ethylene, alkenes, although benzene, toluene, and xylene are less powerful. As a by-product is produced, carbon solids called so-called coatus are produced as much as 15% by mass. The yield of liquid substances containing is about 80 mass. /. It will be about. Moreover, since liquid substances contain a lot of substances other than benzenes, the actual yield of benzenes is 80 mass. /. It is estimated that the yield of benzens is less than 70% by mass in the case of hydrocracking, where the amount of coatas produced is as low as 5% by mass.
すなわち、 熱分解法では、 ポリ.スチレンの主鎖の全てが分解してガス状物質とな ると仮定しても、 ポリスチレンの全ベンゼン環の 20質量%前後はベンゼン類以外 の副生物となってしまうことは物質収支から明白であり、 ベンゼン環のケミカルリ サイク^/としては高効率とは言い切れない。  That is, in the thermal decomposition method, even if it is assumed that the main chain of polystyrene is decomposed into a gaseous substance, about 20% by mass of the total benzene ring of polystyrene is a by-product other than benzenes. It is clear from the material balance that chemical recycling of the benzene ring ^ / cannot be said to be highly efficient.
一方、 水素化分解法を例示すれば、 北海道工業開発試験所報告第 15号 79頁 (1 977年) に、 塩化亜鉛触媒の存在下でのポリスチレン廃棄物の水素化分解法が開示 されている。 し力 し、 ベンゼン類 (アルキルベンゼン) の収率は 70質量。 /0に止ま つている。 On the other hand, as an example of hydrocracking method, Hokkaido Industrial Development Laboratory Report No. 15, page 79 (1 977) discloses a hydrocracking method of polystyrene waste in the presence of zinc chloride catalyst. . However, the yield of benzenes (alkylbenzenes) is 70 mass. / Stops at 0 .
また、 特開 2003-321682号公報では、 加熱して液化した廃プラスチックを含む 液状の単環または多環系芳香族化合物を水素化して分解した後、 得られた反応生成 物を環化触媒の存在下で反応させてベンゼン類を得ている。 これらの水素化分解法 では、 熱分解法に較べてベンゼン類の収量は増加する。  In JP-A-2003-321682, a liquid monocyclic or polycyclic aromatic compound containing waste plastic that has been liquefied by heating is hydrogenated and decomposed, and the resulting reaction product is used as a cyclization catalyst. Benzenes are obtained by reaction in the presence. These hydrocracking methods increase the yield of benzenes compared to the pyrolysis method.
しかし、 上記のいずれの分解法においても、 通常、 廃プラスチックにはポリ塩化 ビュルに代表される含塩素ポリマーや食塩由来の塩素化合物なども含まれることが 多いため、 ベンゼン類を分留して得たとしても、 重質留分には副生塩素化合物など 種々の塩素化合物が含まれるため、 重質留分の用途がなく、 処分に困るという問題 However, in any of the above decomposition methods, waste plastics usually contain chlorine-containing polymers such as polychlorinated butyl and chlorine compounds derived from sodium chloride. Even so, the heavy fraction contains various chlorine compounds such as by-product chlorine compounds, so there is no use for the heavy fraction and it is difficult to dispose of it.
¾あった。 ¾ There was.
本発明はかかる点に鑑みてなされたものであり、 ベンゼン環を有するプラスチッ クからベンゼン類を収率良く取得すると共に、 他の副生分解油の有効利用もできる プラスチックの処理方法とその装置を提供することを目的とする。 発明の開示 The present invention has been made in view of such a point, and it is possible to obtain benzenes in a high yield from a plastic having a benzene ring and to effectively use other by-product decomposition oil. It is an object of the present invention to provide a plastic processing method and apparatus. Disclosure of the invention
すなわち本発明は、 ベンゼン環を有するプラスチックを水に難溶性な溶剤に溶解 する工程、 得られた該べンゼン環を有するプラスチックの溶液を水素化分解するェ 程、 該水素化分解工程の生成物を分留する工程、 および該分留工程の重質留分の少 なくとも一部を熱分解する工程を有するプラスチックの処理方法である。  That is, the present invention includes a step of dissolving a plastic having a benzene ring in a solvent hardly soluble in water, a step of hydrocracking the obtained plastic solution having a benzene ring, and a product of the hydrocracking step. A process for treating plastics, and a process for thermally decomposing at least a part of the heavy fraction of the fractionation process.
なお、 このプラスチックの処理法では、 さらに、 該分留工程の前に、 脱塩素する 工程を有するのが好ましい。 なかでも、 該脱塩素が、 遠心分離あるいは水洗浄であ るのがより好ましい。  In this plastic processing method, it is preferable to further include a dechlorination step before the fractionation step. Among these, the dechlorination is more preferably centrifugal separation or water washing.
また、 上記のいずれのプラスチックの処理法でも、 該熱分解が、 該重質留分の少 なくとも一部のコータス化であるのが好ましい。  In any of the plastic processing methods described above, it is preferable that the thermal decomposition is at least a partial coating of the heavy fraction.
あるいは、 該熱分解を、 該重質留分の少なくとも一部をコークス炉に装入し、 石 炭のコータス化と一緒に行うめが好ましく、 この際、 該コークス炉の装入の fflに、 該重質留分の少なくとも一部を該石炭と混合する方がさらに好ましい。 また、 該重 質留分の少なくとも一部を該石炭と混合する際の温度が、 2 0〜 1 0 0 °Cである方 がさらに好ましい。 また、 この段落に記載した該重質留分の少なくとも一部と該石 炭との混合物は、 成形したものを用いた方がさらに好ましい。.  Alternatively, it is preferable that the pyrolysis is carried out by charging at least a part of the heavy fraction into a coke oven and coking with coal, wherein ffl of the coke oven charge is More preferably, at least a portion of the heavy fraction is mixed with the coal. Further, it is more preferable that the temperature at which at least a part of the heavy fraction is mixed with the coal is 20 to 100 ° C. Further, it is more preferable to use a molded mixture of at least a part of the heavy fraction described in this paragraph and the coal. .
あるいは、 該熱分解を、 該重質留分の少なくとも一部を石炭と混合し、 加熱して 該石炭を改質する工程で行うのがより好ましい。 ..  Alternatively, it is more preferable that the pyrolysis is carried out in a step of reforming the coal by mixing at least a part of the heavy fraction with the coal and heating it. ..
さらに、 上記のいずれのプラスチックの処理方法においても、 該熱分解を、 4 0 0〜 6 0 0 °Cで行うのが好ましい。 .  Furthermore, in any of the plastic processing methods described above, it is preferable that the thermal decomposition is performed at 400 to 600 ° C. .
また、 上記のいずれのプラスチックの処理方法においても、 該重質留分の沸点は、 3 3 0 °C以上であるのが好ましい。 In any of the above plastic processing methods, the boiling point of the heavy fraction is It is preferably 3 30 ° C or higher.
ざらに、 上記のいずれのプラスチックの処理方法においても、 該ベンゼン環を有 するプラスチック力 ベンゼン環を有するプラスチックと他のプラスチックとの混 合物であるのが好ましい。  In general, in any of the above-described methods for treating plastics, it is preferable that the plastics have a benzene ring and are a mixture of a plastic having a benzene ring and another plastic.
また、 上記のいずれのプラスチックの処理方法においても、 該ベンゼン環を有す るプラスチックが、 ベンゼン環を有するプラスチックを少なくとも含有する廃プラ スチックであるのが好ましい。  In any of the above plastic processing methods, the plastic having a benzene ring is preferably a waste plastic containing at least a plastic having a benzene ring.
さらに、 上記のいずれのプラスチックの処理方法においても、 該ベンゼン環を有 するプラスチック力 少なくともポリスチレンを含有するプラスチックであるのが 好ましい。  Furthermore, in any of the above-described methods for treating plastics, it is preferable that the plastics have a benzene ring and the plastic contains at least polystyrene.
また、 上記のいずれのプラスチックの処理方法においても、 該溶剤が、 コールタ ールおよびコールタール蒸留留分からなる群より選ばれる少なくとも 1種であるの が好ましい。  In any of the above plastic processing methods, the solvent is preferably at least one selected from the group consisting of coal tar and coal tar distillation fraction.
さらに、 上記のいずれのプラスチックの処理方法においても、 該水素化分解工程 の生成物がベンゼン類であるのが好ましい。  Furthermore, in any of the plastic processing methods described above, the product of the hydrocracking step is preferably a benzene.
また、 本発明は、 撹拌機と 2 5 0 °Cまでの加熱装置を備えた溶解槽、 5 0 0 °Cで 1 2 0 Kg/cm2Gに耐え得る圧力反応容器、 分留器、 および塩化水素と塩素ガスに 耐性を有する熱分解槽を備えたプラスチックの処理装置でもある。 The present invention also includes a dissolution tank equipped with a stirrer and a heating device up to 250 ° C., a pressure reaction vessel capable of withstanding 120 kg / cm 2 G at 500 ° C., a fractionator, and It is also a plastic processing equipment equipped with a pyrolysis tank that is resistant to hydrogen chloride and chlorine gas.
なお、 このプラスチックの処理装置は、 該分留器の前に、 遠心分離機、 または 2 5 0 °Cまでの加熱装置と注水装置を備えた分液器のいずれかをさらに備えたものが 好ましい。  The plastic processing apparatus preferably further includes either a centrifuge or a separator equipped with a heating device and a water injection device up to 25 ° C. before the fractionator. .
さらに、 上記のいずれのプラスチックの処理装置においても、 該熱分解槽が、 コ ークス炉、 コーカーおよび石炭改質炉からなる群より選ばれた少なくとも 1種であ るのが好ましい。 . また、 本発明は、 プラスチックと溶剤を混合、 加熱して前記プラスチックを溶解 する溶解工程と、 該溶解工程で得られたプラスチック溶液を触媒の存在下で水素化 分解反応させて、 水素化分解反応を行う水素化分解工程と、 該水素化分解工程で生 成した水素化分解反応生成物を蒸留して、 重質留分を得る蒸留工程と、 該蒸留工程 で得られた重質留分を熱分解する熱分解工程とを有することを特徴とするプラスチ ックの処理方法でもある。 図面の簡単な説明 Furthermore, in any of the plastic processing apparatuses described above, the pyrolysis tank is at least one selected from the group consisting of a coke oven, a coker, and a coal reforming furnace. It is preferable. Further, the present invention provides a hydrolyzing process in which a plastic and a solvent are mixed and heated to dissolve the plastic, and the plastic solution obtained in the dissolving process is hydrocracked in the presence of a catalyst. A hydrocracking step for carrying out the reaction, a distilling step for distilling the hydrocracking reaction product produced in the hydrocracking step to obtain a heavy fraction, and a heavy fraction obtained in the distillation step It is also a plastic processing method characterized by having a pyrolysis step of thermally decomposing. Brief Description of Drawings
図 1,は、 本発明のプラスチックの処理装置の一実施形態を示す概略説明図である。 図 2は、 本凳明に係る他のプラスチックの処理装置の製造装置の一実施形態を示 す概略説明図である。  FIG. 1 is a schematic explanatory view showing an embodiment of the plastic processing apparatus of the present invention. FIG. 2 is a schematic explanatory view showing one embodiment of a manufacturing apparatus for another plastic processing apparatus according to the present invention.
図 3は、 本発明に係る他のプラスチックの処理装置の製造装置の一実施形態を示 す概略説明図である。  FIG. 3 is a schematic explanatory view showing an embodiment of a manufacturing apparatus for another plastic processing apparatus according to the present invention.
図 4は、 本癸明に係る他のプラスチックの処理装置の製造装置の一実施形態を示 す概略説明図である。  FIG. 4 is a schematic explanatory view showing an embodiment of a manufacturing apparatus for another plastic processing apparatus according to the present invention.
図 5は、 本発明に係る他のプラスチックの処理装置の製造装置の一実施形態を示 す概略説明図である。 発明を実施するための最良の形態  FIG. 5 is a schematic explanatory view showing an embodiment of a manufacturing apparatus for another plastic processing apparatus according to the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
本発明者らは、 上記課題を解決するこめべンゼン環含有プラスチックを有する混 合プラスチックを対象に、 水素化分解法の改良と、 副生する分解油、 なかでも重質 留分の有効利用法を検討した。 その結果、 重質留分を熱分解することにより、 ベン ゼン類、 コータスおよび塩化水素などの塩化物に変換できる方法を見出した。 しか も、 これらの変換物は、 それぞれ個別に回収可能なので、 ベンゼン類の収率を向上 させると共に、 重質留分の有効利用も図れることが判った。 In order to solve the above-mentioned problems, the present inventors have improved the hydrocracking method and effective use of cracked oil produced as a by-product, particularly heavy fractions, for a mixed plastic having a benzene ring-containing plastic. It was investigated. As a result, the heavy fraction is thermally decomposed, We found a method that can convert it into chlorides such as Zen, Kotas and hydrogen chloride. However, it was found that these conversion products can be recovered individually, so that the yield of benzenes can be improved and the heavy fraction can be effectively used.
すなわち、 温和な水素化分角反応を行えば、 分解油中の重質留分は水素含有量が 豊富で粘性の低い液体となるため、 簡単なプロセスで容易に熱分解することができ る。 さらに、 含有されている水素を供与しやすい化合物、 すなわちヒドロフエナン スレンおよびその誘導体、 ヒ ドロアントラセンおょぴその誘導体、 ならびにヒ ドロ ピレンおよびその誘導体等によって劣質炭の改質なども行える。 また、 重質留分を コーカーでコークス化すればベンゼン類の増回収ができると共に、 得られるコーク スは、 一貫製鉄所の焼結機、 コークス炉、 あるいは高炉において適切に処分できる という知見を得た。 本発明の方法は、 ベンゼン類の回収量の多い廃プラスチックの ケミカルリサイクルなどにも最適である。  In other words, if a mild hydrogenation angle reaction is performed, the heavy fraction in cracked oil becomes a liquid with abundant hydrogen content and low viscosity, and can be easily pyrolyzed by a simple process. Furthermore, it is possible to modify poor coal with compounds that easily donate hydrogen, that is, hydrophenanthrene and its derivatives, hydroanthracene and its derivatives, and hydropyrene and its derivatives. In addition, it is possible to increase the recovery of benzenes by coking heavy fractions with a coker, and to obtain the knowledge that the resulting coke can be properly disposed of in an integrated steelworks sintering machine, coke oven, or blast furnace. It was. The method of the present invention is also optimal for chemical recycling of waste plastics with a large amount of benzene recovered.
本発明は、 これらの知見に基づいてなされたものである。  The present invention has been made based on these findings.
本発明のベンゼン環を有するプラスチックとは、 ポリマーの構造の一部にベンゼ ン環を含むもののほか、 本発明の趣旨から明らかなように、 加熱および zまたは水 素化分解反応などにより閉環反応 (環化反応) および Zまたは開裂反応によってポ リマーの構造の一部にベンゼン環を形成できるポリマーも含まれる。 含有されるべ ンゼン環は、 ポリマー主鎖に含まれてもポリマー側鎖に含まれてもよい。 また、 該 ベンゼン環は置換基を有してもよい。 ポリマーの構造の一部にベンゼン環を含むも のを例示すると、 ホ°リスチレン類、 ポリエチレンテレフタレート類、 ポリカーボネ ート類、 フエノール樹脂類、 キシレン樹脂類、 ABS樹脂類、 ポリスルフォン類お よびポリフエ二レンォキシド類などが挙げられる。  The plastic having a benzene ring of the present invention includes a benzene ring as a part of the polymer structure, and, as is apparent from the gist of the present invention, a ring-closing reaction (such as heating and z or hydrogenolysis reaction). Also included are polymers that can form benzene rings as part of the polymer structure by cyclization reactions) and Z or cleavage reactions. The benzene ring contained may be contained in the polymer main chain or in the polymer side chain. The benzene ring may have a substituent. Examples of polymers that contain a benzene ring as part of the polymer structure include polystyrenes, polyethylene terephthalates, polycarbonates, phenol resins, xylene resins, ABS resins, polysulfones, and polyethylene. Examples include lenoxides.
さらに、 本発明の方法によれば、 得られる重質留分の有効利用も図れるため、 該 ベンゼン環を有するプラスチックは、 ベンゼン環を有するプラスチックと他のプラ スチックとの混合物でもよい。 Furthermore, according to the method of the present invention, the heavy fraction obtained can be effectively used. The plastic having a benzene ring may be a mixture of a plastic having a benzene ring and another plastic.
また、 本発明に適用できるベンゼン環を有するプラスチックは、 未使用なプラス チックでも、 何らかの用途に使用された後のプラスチックでもよい。 資源の再利用 に主眼におけば、 使用され、 廃棄されたプラスチック (以下、 廃プラスチックとも 呼ぶ) を用いるのが好ましい。 すなわち、 本発明では、 該ベンゼン環を有するブラ スチックとして、 ベンゼン環を有するプラスチックを少なくとも含有する廃プラス チックであるものが好適に利用できる。  Further, the plastic having a benzene ring applicable to the present invention may be an unused plastic or a plastic after being used for some purpose. From the perspective of resource reuse, it is preferable to use plastic that has been used and discarded (hereinafter also referred to as waste plastic). That is, in the present invention, as the plastic having the benzene ring, a plastic that contains at least a plastic having a benzene ring can be suitably used.
なお、 上記の該ベンゼン環を有するプラスチックはいずれも、 少なくともポリス チレンを含有するプラスチックがより好適である。 ベンゼン環含有プラスチックは、 産業廃棄物のほか、 ポリエチレン、 ポリプロピ レンなどが混ざった混合物を用いることができる。 また、 都市ごみとしてよく知ら れている廃プラスチックは、 ポリ塩化ビエルゃポリ塩化ビニリデンに代表されるよ うな塩素含有プラスチックを含むことが多いが、 このような混合プラスチックでも 構わない。 廃プラスチックの典型的な組成 (重量%) を例示すれば、 ポリエチレ ン: 2 0〜 4 0 %、 ポリプロピレン: 1 0〜 2 0 %、 ポリスチレン: 1 0〜 4 0 % ポリエチレンテレフタレート : 5〜1 0 %、 ポリ塩 {匕ビニノレ樹旨 .ポリ塩化ビニリ デン樹脂: 1〜1 0 %、 およびその他の不純物: 1〜1 0 %などが挙げられる。 ベンゼン環含有プラスチックの粒度調整は特段必要ないが、 溶解時間が短くなる ので粗粋することが望ましい。 また、 少量であれば熱硬化性樹脂や紙類を含んでも よい。  Any of the plastics having the benzene ring is more preferably a plastic containing at least polystyrene. As the benzene ring-containing plastic, in addition to industrial waste, a mixture of polyethylene and polypropylene can be used. In addition, waste plastics well known as municipal waste often contain chlorine-containing plastics such as polyvinyl chloride and polyvinylidene chloride, but such mixed plastics may also be used. The typical composition (% by weight) of waste plastic is as follows: polyethylene: 20 to 40%, polypropylene: 10 to 20%, polystyrene: 10 to 40% polyethylene terephthalate: 5 to 10 %, Polysalt {Vinolein resin. Polyvinylidene chloride resin: 1 to 10%, and other impurities: 1 to 10%. No special adjustment of the particle size of the benzene ring-containing plastic is required, but it is desirable to use crude oil because the dissolution time is shortened. Moreover, if it is a small amount, it may contain a thermosetting resin or paper.
瞧?工程]  瞧? Process]
溶剤は、 水に難溶性であり、 かつベンゼン環含有プラスチックあるいはこれを含 有する混合プラスチック (以下、 プラスチックあるいは混合プラスチックとも呼 ぶ) を溶解あるいは流動化できるものであれば特に限定されない。 なお、 本願で言 う水に難溶性な溶剤とは、 水に不溶性な溶剤も含む。 また、 この溶剤は、 プラスチ ックと相溶性があるという観点から、 単環、 二環、 三環程度の芳香族化合物および その各種誘導体、 あるいはこれらの混合物などが好ましい。 なかでもコールタール の各留分は、 熱硬化性樹脂や紙類なども流動化できるので、 水素化分解反応器への ベンゼン環含有プラスチックを含有する廃ブラスチックのポンプアツプが可能とな り、 極めて好適である。 コールタールの各留分としては、 コールタール (全留分) をはじめコールタール蒸留プラントで製造されるクレオソート油留分、 アントラセ ン油留分などを用いることができ、 また、 これらにピッチを含有していてもよい。 ベンゼン環含有プラスチックあるいはこれを含有する混合プラスチックの溶剤に 対する混合割合は、 それぞれ 5質量部 Z 9 5質量部〜 4 0質量部/ 6 0質量部が好 ましい。 5質量部/ 9 5質量部以上で処理量が大きくなるにつれ、 経済性が向上す る。 また、 4 0質量部 Z 6 0質量部以下の方が、 流動性に有利である。 The solvent is hardly soluble in water and contains a benzene ring-containing plastic or this. It is not particularly limited as long as it can dissolve or fluidize the mixed plastic (hereinafter also referred to as plastic or mixed plastic). The water-insoluble solvent referred to in the present application includes water-insoluble solvents. The solvent is preferably a monocyclic, bicyclic or tricyclic aromatic compound and various derivatives thereof, or a mixture thereof from the viewpoint of compatibility with plastics. In particular, each fraction of coal tar can also be used to fluidize thermosetting resins and papers, making it possible to pump up waste plastic containing benzene ring-containing plastic into the hydrocracking reactor. Is preferred. For each coal tar fraction, coal tar (all fractions), creosote oil fractions produced in a coal tar distillation plant, anthracene oil fractions, etc. can be used. You may contain. The mixing ratio of the benzene ring-containing plastic or the mixed plastic containing it with respect to the solvent is preferably 5 parts by mass Z 95 5 parts by mass to 40 parts by mass / 60 parts by mass. 5 parts by mass / 9 As the treatment amount increases at 5 parts by mass or more, the economy improves. Further, 40 parts by mass or less of Z 60 parts by mass is more advantageous for fluidity.
プ スチックの溶解の条件に関しては、 1 5 0 °C以上に加熱して溶解するのが好 ましい。 1 5 0 °C以上に加熱した方が、 プラスチックの溶解速度が高く、 小さな溶 解槽で溶解可能なので経済的である。 しかし、 操業上からは 4 0 0 °C以下程度まで で十分である。 また、 2 5 0 °Cを超えると、 軽質留分の揮発が著しくなるので、 こ の場合は密閉容器のなかで溶解処理を行うことが望ましい。  Regarding the conditions for dissolving the plastic, it is preferable to dissolve it by heating to 150 ° C or higher. Heating to 150 ° C or higher is more economical because the plastic has a higher dissolution rate and can be dissolved in a smaller dissolution tank. However, from the point of view of operation, temperatures below about 400 ° C are sufficient. In addition, if the temperature exceeds 250 ° C., the light fraction will be volatilized significantly. In this case, it is desirable to perform the dissolution treatment in a sealed container.
なお、 この工程で、 加熱処理を行うと、 廃プラスチックにポリ塩化ビュルなどの 塩素含有プラスチックが含まれていると、 塩素含有プラスチックの全部あるいは一 部で分解反応も起こり塩化水素などの塩素化合物も発生することもある。  In this process, when heat treatment is performed, if the waste plastic contains chlorine-containing plastics such as polychlorinated butyl, a decomposition reaction occurs in all or part of the chlorine-containing plastics, and chlorine compounds such as hydrogen chloride are also generated. It may occur.
[水素化分解工程] この工程では、 上記の溶解工程で得られたベンゼン環含有プラスチックの溶液を、 水素と反応させて、 プラスチックの分解 (以下、 水素化分解反応とも呼ぶ) を行う。 該水素化分解反応では、 溶剤も同時に分解されてもかまわない。 この工程でも、 混 合プラスチックである廃プラスチックにポリ塩化ビュルなどの塩素含有プラスチッ クが含まれていると、 塩素含有ブラスチックの全部あるいは一部で分解反応も起こ り塩化水素などの塩素化合物も発生することがある。 [Hydrolysis process] In this step, the benzene ring-containing plastic solution obtained in the dissolution step is reacted with hydrogen to decompose the plastic (hereinafter also referred to as a hydrogenolysis reaction). In the hydrocracking reaction, the solvent may be decomposed at the same time. Even in this process, if waste plastic, which is a mixed plastic, contains chlorine-containing plastics such as polychlorinated butyl, all or part of the chlorine-containing plastic also undergoes a decomposition reaction, and chlorine compounds such as hydrogen chloride are also produced. May occur.
なお、 該水素化分解反応は触媒の存在下で行うのが好ましい。  The hydrocracking reaction is preferably performed in the presence of a catalyst.
用いる触媒としては、 該塩素化合物の濃度が低い場合、 すなわち、 産業廃棄物プ ラスチックを原料とする多くの場合、 C o— M o、 N i— M o、 N i—W系触媒、 あるいは鉄触媒 (酸化鉄、 硫化鉄、 硫酸鉄およびその焼成物) などが挙げられる。 れらの触媒は、 必要によりアルミナ (A 1 203) 、 シリカ (S i 02) 、 ゼオラ イトなどの担体に担持させることができる。 As the catalyst to be used, when the concentration of the chlorine compound is low, that is, in many cases using industrial waste plastic as a raw material, a Co—Mo, Ni—Mo, Ni—W catalyst, or iron Catalyst (iron oxide, iron sulfide, iron sulfate and its calcined product). These catalysts can be supported on a support such as alumina (A 1 2 0 3 ), silica (S i 0 2 ), or zeolite if necessary.
一方、 産業廃棄物でなく都市ごみ (一般廃棄物) のような廃プラスチックを原料 とした場合、 %オーダーの塩素が含有されるので、 上記触媒の貴金属成分が塩化物 を形成して劣化してしまう。 そこで、 このような場合には、 塩化物となっても触媒 性能がある鉄系触媒が好ましい。 鉄系触媒の代表例としては、 鉄鉱石、 転炉ダスト などを挙げることができる。 粒状物で使用する場合は、 通常よく使われる粒径であ る 0.;!〜 10mm程度でよい。 この触媒は流動床、 固定床、 スラリー床などの何れの 反応形式で用いても構わない。  On the other hand, when waste plastic such as municipal waste (general waste) is used as a raw material instead of industrial waste, it contains chlorine in the order of%, so the precious metal component of the catalyst deteriorates by forming chloride. End up. Therefore, in such a case, an iron-based catalyst that has catalytic performance even if it becomes a chloride is preferable. Typical examples of iron-based catalysts include iron ore and converter dust. When using with granular materials, it is usually the common particle size 0.;! ~ 10mm is enough. This catalyst may be used in any reaction mode such as a fluidized bed, a fixed bed, or a slurry bed.
なお、 水素化分解反応器に供給するプラスチック :溶剤:触媒の混合比率は、 質 量比で 5 : 94: 1〜36: 54: 10が好ましい。  The mixing ratio of plastic: solvent: catalyst supplied to the hydrocracking reactor is preferably 5: 94: 1 to 36:54:10 by mass ratio.
なお、 前記触媒は該溶解工程から前もつて添加してもよい。  The catalyst may be added before the dissolution step.
前記水素化分解反応は、 液相、 気相のいずれで行ってもよく、 反応温度は 3 0 0 〜500°C程度、 好ましくは 400〜450。C程度、 圧力は 1. 0〜2 p. 3MP a (10〜200気圧) 程度、 好ましくは 5. 1〜10. IMP a (50〜: L O O 気圧) である。 The hydrocracking reaction may be carried out in either liquid phase or gas phase, and the reaction temperature is 300. About 500 ° C, preferably 400-450. About C, the pressure is about 1.0 to 2 p. 3 MPa (10 to 200 atmospheres), preferably 5.1 to 10. IMP a (50 to: LOO atmosphere).
本発明の方法によれば、 該水素化分解工程での反応生成物としては、 ベンゼン、 トルエン、 キシレン、 ェチルベンゼンなどのベンゼン類が挙げられる。  According to the method of the present invention, examples of the reaction product in the hydrocracking step include benzenes such as benzene, toluene, xylene and ethylbenzene.
[分留工程] .  [Fractionation process].
この工程では、 上記水素化分解工程で得られる生成物を分留して、 ベンゼン類や 分解油などの有用成分を得る。 なお、 該水素化分解工程の生成物には、 用いた溶剤 とその分解生成物が含まれてもよい。 より具体的には、 C 3〜C 4を主体とするガ ス留分、 ベンゼン類留分、 クレオソート油やアントラセン油などを軽質化したもの に相当する水添タール留分 (軽質留分) 、 および重質留分などが得られる。 この重 質留分としては、 沸点が 330°C以上のものが好ましい。  In this step, the product obtained in the hydrocracking step is fractionated to obtain useful components such as benzenes and cracked oil. The product of the hydrocracking step may include the solvent used and its cracked product. More specifically, hydrogenated tar fractions (light fractions) corresponding to lighter gas fractions mainly composed of C3 to C4, benzene fractions, creosote oil and anthracene oil, etc. , And heavy fractions. This heavy fraction preferably has a boiling point of 330 ° C or higher.
[熱分解工程]  [Pyrolysis process]
この工程では、 上記の分留で得られる重質留分の少なくとも一部を熱分解して、 重質留分の有効利用をさらに図る。 また、 好ましい熱分解温度は、 400〜60 0°Cである。 なお、 この熱分解温度は、 コークス炉などに直接、 あるいは石炭と混 合するなどして装入したときのように、 400〜600°Cの領域を通過する時の温 度であり、 通過後に熱分解してからさらに高温となっても構わない。  In this step, at least a part of the heavy fraction obtained by the above fractionation is pyrolyzed to further effectively use the heavy fraction. A preferable thermal decomposition temperature is 400 to 600 ° C. Note that this pyrolysis temperature is the temperature when passing through the region of 400 to 600 ° C, such as when charging directly into a coke oven or mixed with coal. It does not matter even if the temperature is higher after pyrolysis.
以下に、 各種の熱分解方法について説明する。  The various pyrolysis methods are described below.
(a) 該重質留分の少なくとも一部をコ タス化して熱分解する。  (a) At least a part of the heavy fraction is converted into a powder and thermally decomposed.
'例えば、 該重質留分の少なくとも一部をコ一力一に装入して熱分解し、 コータス を得ると同時に、 BTX (ベンゼン、 トルエン、 キシレン) などのベンゼン類を増 産することもできる。 (b)該重質留分の少なくとも一部をコークス炉に装入し、 石炭のコークス化と一 緒に熱分解する。 'For example, at least a part of the heavy fraction can be charged together and pyrolyzed to obtain coatas, and at the same time, benzenes such as BTX (benzene, toluene, xylene) can be increased. it can. (b) At least a part of the heavy fraction is charged into a coke oven and pyrolyzed together with the coking of coal.
該重質留分のコークス炉への装入方法は、 特に制限しない。 すなわち、 該重質留 分をコークス炉に直接装入してもよいし、 コークス化する石炭と混合して石炭と共 に装入してもよレ、。  The method for charging the heavy fraction into the coke oven is not particularly limited. That is, the heavy fraction may be charged directly into a coke oven, or mixed with coal to be coked and charged together with the coal.
また、 重質留分と石炭とを混合する場合には、 成型するのがより好ましい。 該成 型は、 たとえば豆炭を製造するような方法で可能である。 石炭の粒径は 3 mm程度 以下である方が、 石炭中の無機物と重質留分の接触効率が良くなり、 塩化物を形成 する割合が高くなる。 重質留分と石炭との混合温虔、 成型温度はとくに制限はない が、 重質留分の流動性がよくなるという点で 20〜 100 °Cが好ましく、 より好ま しくは 20〜80°Cである。 100°C以下である方が、 成分の揮発を抑制し易いの で、 良好な作業環境が保ち易い。  Moreover, when mixing a heavy fraction and coal, it is more preferable to shape | mold. The forming is possible, for example, by a method of producing bean charcoal. When the particle size of the coal is about 3 mm or less, the contact efficiency between the inorganic matter and the heavy fraction in the coal is improved, and the rate of formation of chloride is increased. There are no particular restrictions on the mixing temperature and molding temperature of the heavy fraction and coal, but 20-100 ° C is preferable, and 20-80 ° C is more preferable in terms of improving the fluidity of the heavy fraction. It is. When the temperature is 100 ° C or lower, it is easy to suppress the volatilization of components, and it is easy to maintain a good working environment.
成型を行った場合の成型炭は、 石炭粒子が一層高密度となっているので、 コーク ス化性が向上している、 すなわち石炭の改質が起こっている。 そのほか、 コータス 炉における高温乾留の際に重質留分の熱分解により発生する塩化水素 (HC 1) な どの塩素分は石炭中の無機物にトラップされて、 たとえば安定な塩化物となる。 つ まり、 重質留分に含まれる塩素のほとんどが石炭中の無機物と反応して-、 Na C l、 KC 1、 C a C l 2、 Mg C 12などの安定な塩化物を形成する。 このため、 コー クス炉における高温乾留でも塩ィ匕水素 (HC 1) などの装置を腐食するような有害 物質を発生し難くなる。 In the case of forming, the coal has a higher density of coal particles, so the coking property is improved, that is, the coal is reformed. In addition, chlorine such as hydrogen chloride (HC 1) generated by thermal decomposition of heavy fractions during high-temperature dry distillation in the Kotas furnace is trapped by inorganic substances in the coal, for example, becoming stable chlorides. This means that most of the chlorine contained in the heavy fraction reacts with inorganic matter in the coal - to form a Na C l, KC 1, C a C l 2, stable chlorides such as Mg C 1 2 . For this reason, it is difficult to generate harmful substances that corrode equipment such as salt and hydrogen (HC 1) even at high temperature carbonization in a coke oven.
(c)該重質留分の少なくとも一部を石炭と混合し、 加熱して該石炭を改質しながら 熱分解する。  (c) At least a part of the heavy fraction is mixed with coal and heated to thermally decompose while reforming the coal.
' 前記石炭としては、 劣質炭および/または非微粘結炭を用いることが好ましい。 なお、 前記劣質炭の石炭化度 (R。) は、 R。<0. 68である。 前記非微粘結炭 の石炭化度 (R。) は、 0. 68〜0. 80である。 石炭化度は、 石炭に光を照射 したときの反射光の割合であり、 J I S M 8816に従って測定される。 'It is preferable to use inferior coal and / or non-coking coal as the coal. In addition, the degree of coalification (R.) of the inferior quality coal is R. <0.68. The degree of coalification (R.) of the non-slightly caking coal is 0.68 to 0.80. The degree of coalification is the ratio of reflected light when the coal is irradiated with light, and is measured according to JISM 8816.
ここで、 原料となるプラスチックとして廃プラスチックを用いた場合、 前記重質 留分は、 塩素が濃縮されているので、 そのままでは用途が見当たらない。 そこで、 本発明では、 コータスの原料とならない前記劣質炭、 あるいは単独ではコータスの 原料とはならない前記非微粘結炭などと混合して、 加熱処理を行う。 加熱処理は、 300〜500°C、 とりわけ 350〜450°Cで行うのが好ましい。 300°C以上 の方が、 改質が起こり易く、 また 500°C以下の方が操業上有利である。 雰囲気は、 窒素雰囲気、 あるいは還元性雰囲気がよく、 反応圧は 0. 1〜15. 2MP a (1 〜150気圧) がよレ、。 また、 水素雰囲気の場合は、 改質効果が一層良好になるの で好ましい。 この加熱処理によっても、 重質留分に含まれる塩素分のほとんどが劣 質炭、 非微粘結炭に存在する無機物と反応して、 NaC l、 KC 1、 CaC l 2、 Mg C 12などの安定な塩化物を形成する。 このため、 コークス炉における高温乾 留でも塩化水素 (HC 1) などの装置を腐食するような有害物質を発生し難くなる。 劣質炭およぴ非微粘結炭は、 重質留分と反応することによって、 コークス製造用の 原料炭とほぼ同等の品質の石炭 (改質炭) となる。 これにより、 劣質炭や非微粘結 炭の有効利用が可能となる。 Here, when waste plastic is used as the raw material plastic, the heavy fraction is enriched with chlorine, and as such, no use can be found. Therefore, in the present invention, the heat treatment is performed by mixing with the inferior coal that does not become the raw material for Kotas, or the non-slightly caking coal that does not become the raw material for Kotas alone. The heat treatment is preferably performed at 300 to 500 ° C, particularly 350 to 450 ° C. When the temperature is 300 ° C or higher, reforming is likely to occur, and when the temperature is 500 ° C or lower, the operation is advantageous. The atmosphere should be a nitrogen atmosphere or a reducing atmosphere, and the reaction pressure should be 0.1 to 15.2 MPa (1 to 150 atmospheres). In addition, a hydrogen atmosphere is preferable because the reforming effect is further improved. Even with this heat treatment, most of the chlorine contained in the heavy fraction reacts with the inorganic substances present in the poor coal and non-slightly caking coal, resulting in NaC l, KC 1, CaC l 2 , Mg C 1 2 Forms stable chlorides. For this reason, it is difficult to generate harmful substances that corrode equipment such as hydrogen chloride (HC 1) even in high temperature distillation in a coke oven. Inferior coal and non-slightly caking coal react with the heavy fraction, and become coal (modified coal) of almost the same quality as coking coal for coke production. This makes it possible to effectively use inferior or non-coking coal.
また、 本発明では、 前記の分留工程の前に脱塩素する工程をさらに追加するのが 好ましい。 本発明で言う脱塩素とは、 水素化分解工程の生成物から塩素化合物を除 去することである。 これには、 除去する際に分子の形態で塩素化合物を取り除くこ とは当然のほ力、 c 1 -イオンとその対イオンとして取り除かれるなど、 生成物か ら別個にでてきても、 生成物のほうからみれば、 塩素を含有する分子が抜けている とみることができるケースも含む。 具体的には、 重力沈降、 液体サイクロン、 遠心 分離、 あるいは液 -液抽出による水洗浄などが脱塩素法として例示できる。 In the present invention, it is preferable to further add a dechlorination step before the fractional distillation step. The dechlorination referred to in the present invention is to remove a chlorine compound from the product of the hydrocracking process. For this purpose, it is natural to remove the chlorine compound in the form of a molecule when removing it, and it is removed as a c 1 -ion and its counter ion. From the point of view, the molecule containing chlorine is missing. Including cases that can be seen. Specifically, gravity precipitation, hydrocyclone, centrifugation, or water washing by liquid-liquid extraction can be exemplified as the dechlorination method.
本発明の方法を、 資源の再利用すなわち廃プラスチックのケミカルリサイクリン グに適用することに主眼におけば、 本努明の原料としては、 ベンゼン環含有プラス チックを含有する廃プラスチックを用いるのが推奨される。 しかし、 このような廃 プラスチックにはポリ塩化ビュルなどの塩素含有ブラスチックも含まれていること が多く、 前記の溶解工程および Zまたは水素化分解工程で、 この塩素含有プラスチ ックの全部あるいは一部も分解されて塩化水素などの塩素化合物を発生することも ある。'あるいは、 このような廃プラスチックには、 醤油、 味噌、 食塩などの塩化ァ ルカリ塩などが混入していることも多い。 そこで、.本発明の方法では、 上記脱塩素 工程として遠心分離工程あるいは水洗浄工程のいずれかを設けるのが好ましい。  If the method of the present invention is mainly applied to the reuse of resources, that is, chemical recycling of waste plastics, waste plastics containing benzene ring-containing plastics are used as raw materials for this effort. Recommended. However, such waste plastics often contain chlorine-containing plastics such as polychlorinated butyl, and all or one of the chlorine-containing plastics is used in the above-described dissolution process and Z or hydrocracking process. Some parts are also decomposed to generate chlorine compounds such as hydrogen chloride. 'Or, such waste plastics often contain alkali salt such as soy sauce, miso, and salt. Therefore, in the method of the present invention, it is preferable to provide either a centrifugation step or a water washing step as the dechlorination step.
[遠心分離工程]  [Centrifuge separation process]
該水素化分解工程と分留工程の間に固液分離機、 ここではするための遠心分離ェ 程を設けることによって、 該プラスチックの溶液中の塩素分や触媒などの固形分を 残渣として分離して除去できる。 この工程を経ると、 該分留のボトム油をさらに減 圧蒸留すると固形分が含まれない良質のピッチ (水添ピッチ) を取得することがで きる。  By installing a solid-liquid separator between the hydrocracking step and the fractionating step, here, a centrifugal separation step, the solid content such as chlorine and catalyst in the plastic solution is separated as a residue. Can be removed. Through this step, a high-quality pitch (hydrogenated pitch) free from solids can be obtained by further reducing-pressure distillation of the bottom oil of the fractional distillation.
[水洗浄工程]  [Water washing process]
この工程は、 上記の溶解工程あるいは水素化分解工程で得られた該プラスチック の溶液に水を添加して混合し、 該溶液中の水溶性塩素分、 あるいは該溶液に懸濁し ている水溶性塩素分などを水に抽出後、 分液して除去する。 具体的には、 液-液抽 出による水洗浄工程が例示できる。  In this step, water is added to and mixed with the plastic solution obtained in the dissolution step or hydrocracking step, and the water-soluble chlorine content in the solution or the water-soluble chlorine suspended in the solution is mixed. After extracting the water into water, it is removed by liquid separation. Specifically, a water washing process by liquid-liquid extraction can be exemplified.
この工程での水との混合処理は、 バッチ式、 連続式のいずれでも構わない。 処理 温度は、 1 5 0〜 2 5 0 °Cが好ましい。 1 5 0 °C以上であれば、 混合状態がより良 好となり、 塩素分の水への移行が容易になる。 また、 洗浄効率は高温になっても飽 和するため、 経済的には 2 5 0 °C以下が適当である。 The mixing treatment with water in this step may be either batch type or continuous type. processing The temperature is preferably 1550 to 2550 ° C. If it is 1500 ° C or higher, the mixed state becomes better and the transfer of chlorine to water becomes easier. In addition, since the cleaning efficiency is saturated even at high temperatures, it is economically appropriate to be 2500 ° C or less.
溶液に対する水の添加量は、 質量比で 0 . 1〜: L 0倍、 とりわけ 1〜4倍が好ま しい。 0 . 1倍以上であれば、 溶液と水の相分離の操作が容易である。 また、 水の 量を多くしても、 水溶性塩素分の抽出量は飽和するので、 経済的には 1 0倍程度で よい。  The amount of water added to the solution is preferably from 0.1 to: L 0 times, particularly 1 to 4 times by weight. If it is 0.1 times or more, the operation of phase separation of the solution and water is easy. In addition, even if the amount of water is increased, the extraction amount of water-soluble chlorine is saturated, so it may be about 10 times economically.
本発明の方法では、 上記の遠心分離工程あるいは水洗浄工程によつて塩素分の多 くが除去されているので、 次の分留工程では、 塩素分の極めて少ない沸点 3 3 0 °C 以上の重質留分が得られる。 遠心分離工程、 あるいは水洗浄工程のない従来の方法 では、 沸点が 3 3 0 °C以上の重質留分に含まれる塩素化合物を蒸留によって除去し ようとすると、 蒸留温度を高くする必要がある。 蒸留温度を高くすると、 熱による 重縮合が起こり、 芳香族化合物が重質化、 すなわち高沸点化するため、 留出せず、 蒸留による分離、 回収が困難であ.る。 以下、 上述のプラスチックの処理に好適な装置について記載する。 なお、 前記プ ラスチックの処理装置とベンゼン類の製造装置は、 同一の構成とすることができる。 すなわち、 本願は、 撹拌機と 2 5 0 °Cまでの加熱装置を備えた溶解槽、 5 0 0 °C で 1 2 0 Kg/cm2Gに耐え得る圧力反応容器、 分留器、 および塩化水素と塩素ガス に耐性を有する熱分解槽を備えたプラスチックの処理装置の発明も提供する。 In the method of the present invention, most of the chlorine content is removed by the above-described centrifugal separation step or water washing step. Therefore, in the next fractionation step, the boiling point of 33 ° C. or higher is extremely low. A heavy fraction is obtained. In the conventional method without a centrifugal separation process or a water washing process, it is necessary to increase the distillation temperature when attempting to remove chlorine compounds contained in heavy fractions having a boiling point of 330 ° C or higher by distillation. . When the distillation temperature is raised, polycondensation due to heat occurs, and the aromatic compound becomes heavier, that is, has a higher boiling point, so that it cannot be distilled off and is difficult to separate and recover by distillation. Hereinafter, an apparatus suitable for the above-described plastic processing will be described. The plastic processing apparatus and the benzene production apparatus may have the same configuration. That is, the present application includes a dissolution tank equipped with a stirrer and a heating device up to 250 ° C., a pressure reaction vessel capable of withstanding 120 kg / cm 2 G at 500 ° C., a fractionator, and a chloride. An invention of a plastic processing apparatus provided with a thermal decomposition tank resistant to hydrogen and chlorine gas is also provided.
図 1は、 本発明のプラスチックの処理装置の一実施形態を示す概略説明図である。 ただし、 本発明は、 図 1に限定されるものではない。 以下、,図面に基づいて説明す る。 ベンゼン環含有プラスチック (以下、 ベンゼン環含有プラスチックを含有する混 合プラスチックあるいは廃プラスチックでも同様に利用できる) 11、 コールター ル (溶剤) 12、 および触媒 13は、 撹拌機 (図示せず) と 2 5 0 °Cまでの加熱装置FIG. 1 is a schematic explanatory view showing an embodiment of the plastic processing apparatus of the present invention. However, the present invention is not limited to FIG. The following description is based on the drawings. Benzene ring-containing plastics (hereinafter also applicable to mixed plastics or waste plastics containing benzene ring-containing plastics) 11, coal tar (solvent) 12, and catalyst 13 are agitator (not shown) and 2 5 Heating device up to 0 ° C
(図示せず) を備えた溶解槽 1で混合され溶解される。 溶解槽の加熱温度は 1 5 0 〜4 0 0 °Cが好ましい。 ここで得られたベンゼン環含有プラスチックの溶液はポン プ (図示せず) などにより 5 0 0 °Cで 1 2 0 Kg/cm¾に耐え得る圧力反応容器 (水 素化分解反応器とも呼ぶ) 3に送液される。 It is mixed and dissolved in a dissolution tank 1 equipped with (not shown). The heating temperature of the dissolution tank is preferably 1550 to 400 ° C. The solution of the benzene ring-containing plastic obtained here is a pressure reactor (also called a hydrocracking reactor) that can withstand 120 kg / cm¾ at 500 ° C with a pump (not shown) 3 The liquid is sent to
また、 圧力反応容器 3には、 水素あるいは水素を主成分とするガスが供給される。 この際、 図 1では経済性向上を指向して圧力反応容器 3から排出されるガスの大部 分を循環して、 水素濃度を所定濃度に維持するように一部を排ガス 21 として捨て、 水素 15をメークアップするようにしている。 しかし、 排出されるガスを循環せず に、 このプラントの加熱源とする、 水素の全量を新たに供給しつつ圧力反応容器 3 から排出されるガスの全量を捨てる、 あるいは他の用途に用いることもできる。 圧力反応容器 3においては、 触媒 1 3の効果により、 廃プラスチックにポリスチ レンが含有されていれば、 その分子鎖 (主鎖) の切断と水素化分解反応が生じ、 主 にェチルベンゼンが生成する。 さらにェチルベンゼンのアルキル鎖の分解やその生 成物の不均化反応で B T X類 (ベンゼン、 トルエン、 キシレンなど) とメタン、 ェ タンなどが生成する。 従来のプラスチックの熱分解法のみではベンゼン環に不飽和 のアルケンが付いているスチレンの生成が多い。 しカ し、 本発明の水素化分解反応 では、 反応が温和に進むことと、 ポリスチレンの主鎖の切断部分に水素原子が供給 されることにより、 ベンゼン環にアルキル鎖 (飽和炭化水素) が付加しているェチ ルベンゼンが多くなる。 また、 このェチルベンゼンのアルキル基は単結合で、 スチ レンの場合の二重結合より切断されやすいので、 ベンゼンやトルエンの収率が増え る。 In addition, hydrogen or a gas containing hydrogen as a main component is supplied to the pressure reaction vessel 3. At this time, in FIG. 1, the majority of the gas discharged from the pressure reaction vessel 3 is circulated in order to improve economic efficiency, and a part of the gas is discarded as the exhaust gas 21 so as to maintain the hydrogen concentration at a predetermined concentration. I'm trying to make 15 up. However, do not circulate the exhausted gas, use it as a heating source for this plant, discard the entire amount of gas discharged from the pressure reaction vessel 3 while supplying a new amount of hydrogen, or use it for other purposes. You can also. In the pressure reaction vessel 3, if the waste plastic contains polystyrene, the molecular chain (main chain) is broken and hydrocracking reaction occurs mainly due to the effect of the catalyst 13 to produce ethylbenzene. Furthermore, BTXs (benzene, toluene, xylene, etc.), methane, ethane, etc. are generated by the decomposition of the alkyl chain of ethylbenzene and the disproportionation reaction of the product. The conventional thermal decomposition of plastics alone often produces styrene with an unsaturated alkene on the benzene ring. However, in the hydrocracking reaction of the present invention, the reaction proceeds mildly, and hydrogen atoms are supplied to the main chain cleavage part of the polystyrene, whereby an alkyl chain (saturated hydrocarbon) is added to the benzene ring. More ethylbenzene is used. In addition, the alkyl group of ethylbenzene is a single bond and is more easily cleaved than the double bond of styrene, which increases the yield of benzene and toluene. The
なお、 ポリエチレン、 ポリプロピレンが存在する場合は、 主鎖の切断が主体とな るため、 主に C 3〜C 4のガス留分を生成する。  In addition, when polyethylene or polypropylene is present, the main chain is mainly broken, so that mainly C 3 to C 4 gas fractions are produced.
また、 それ以外のフエノール樹脂で代表される熱硬化性樹脂、 ポリエチレンテレ フタレートなども水素化分解によってベンゼン類となるほか、 一部は重質油類 (ピ ツチも含む) となる。 一方、 溶剤として用いたコールタールは、 ガス中の水素との 反応により一部に分解がつて軽質化するが、 ごく一部は重縮合反応のためピッチ留 分を生成することもある。 こ-の際、 プラスチック水素化分解で生成した単環の芳香 族化合物、 ならびに溶剤中の単環、 2環、 あるいは 3環などの芳香族化合物と塩素 が反応して、 0 . 1〜0 . 2質量%程度の芳香族塩素化合物が副生して、 分解油の 有機塩素化合物の濃度が高くなる。  In addition, other thermosetting resins such as phenol resin, polyethylene terephthalate, etc. become benzenes by hydrocracking, and some become heavy oils (including pitches). On the other hand, coal tar used as a solvent is partly decomposed and lightened by reaction with hydrogen in the gas, but a part of it may produce pitch fraction due to polycondensation reaction. At this time, chlorine reacts with a monocyclic aromatic compound formed by hydrogenolysis of a plastic, and an aromatic compound such as a monocyclic, bicyclic or tricyclic ring in a solvent, and 0.1 to 0.00. About 2% by mass of aromatic chlorine compounds are by-produced, and the concentration of organochlorine compounds in cracked oil increases.
圧力反応容器 3から排出される液状生成物は、 蒸留塔 (分留塔) 6に送られ、 C 3〜C 4のガス留分 22、 B T X留分 23、 軽質留分 24、 重質留分 25に分留される。 なお、 図 1では、 蒸留塔 6は 1つとしているが、 常圧蒸留塔と減圧蒸留塔を併設 して分留を細分化してもよい。 蒸留塔は、 常圧蒸留塔、 減圧蒸留塔 (真空蒸留塔) など、 通常のものを使用できる。 また、 ベンゼン類留分から精製したベンゼン類を 回収するため、 専用の蒸留器などの精製装置を設けてもよい。 軽質留分 2 4に有機 塩素化合物が含まれている場合は、 これらの沸点がそれほど高くないため、 精密蒸 留などで容易に取り除くことができる。 すなわち、 前記有機塩素化合物は低沸点な ので、 蒸留において重縮合せず、 分留できる。  The liquid product discharged from the pressure reaction vessel 3 is sent to a distillation column (fractional distillation column) 6 where C 3 to C 4 gas fraction 22, BTX fraction 23, light fraction 24, heavy fraction Fractionated to 25. In FIG. 1, the number of distillation columns 6 is one, but fractional distillation may be subdivided by providing an atmospheric distillation column and a vacuum distillation column. As the distillation column, ordinary ones such as an atmospheric distillation column and a vacuum distillation column (vacuum distillation column) can be used. In addition, in order to recover the purified benzenes from the benzene fraction, a purification device such as a dedicated distiller may be provided. If the light fractions 24 contain organochlorine compounds, their boiling points are not so high that they can be easily removed by precision distillation. That is, since the organochlorine compound has a low boiling point, it can be fractionated without polycondensation in distillation.
一方、 上述したように、 重質留分 2 5は塩素が濃縮されているので、 そのままで は用途が見当たらない。  On the other hand, as described above, the heavy fraction 25 is concentrated in chlorine, and as such, no use can be found.
し力 し、 蒸留塔で分留された重質留分は、 水素化分解反応で水添されて水素含有 量が多くなつている、 すなわち分子内に多くの水素原子を有する分子構造、 つまりHowever, the heavy fraction fractionated in the distillation tower is hydrogenated in the hydrocracking reaction and contains hydrogen. The amount is increasing, that is, the molecular structure with many hydrogen atoms in the molecule, that is,
H/C (水素原子と炭素原子の比) が大きくなつている。 そのため、 該重質留分を 熱分解すれば、 ベンゼン類をはじめとする軽質留分の増産が可能になる'と同時に、 コータスを得ることもできる力 溶剤の重質留分の単なる熱分解に比べその量はす くなくなる。 H / C (ratio of hydrogen atom to carbon atom) is getting bigger. Therefore, if the heavy fraction is pyrolyzed, it is possible to increase the production of light fractions such as benzenes. At the same time, it is possible to obtain coatas. In comparison, the amount is very short.
そこで本発明の装置は、 該重質留分を有効に利用するための塩化水素と塩素ガス に耐性を有する熱分解槽 7を有する。 なかでも、 該熱分解槽 7が、 コーカー、 コー クス炉および石炭改質炉からなる群より選ばれた少なくと 1種であるプラスチック の処理装置であるのが好ましい。 なお、 熱分解槽 7での温度は 400〜600°Cが好ま しい。 例えば、'重質留分 25は、 コーカーのような熱分解槽 7に送られて、 分解 B T X留分 28とコータス 26となって排出される。  Therefore, the apparatus of the present invention has a thermal decomposition tank 7 having resistance to hydrogen chloride and chlorine gas for effectively using the heavy fraction. Among these, it is preferable that the pyrolysis tank 7 is a plastic processing apparatus that is at least one selected from the group consisting of a coker, a coke oven, and a coal reforming furnace. The temperature in the pyrolysis tank 7 is preferably 400 to 600 ° C. For example, the 'heavy fraction 25 is sent to a pyrolysis tank 7 such as a coker, and discharged as a cracked BTX fraction 28 and a coatas 26.
なお、 図 1では、 オプションとして洗浄塔 9も設置されている。 分解 B T X留分 28には、 重質留分 25にもともと存在する塩素に由来する塩化水素 (熱分解槽 7で の分解で発生) 27が含まれているため、 例えばガスの洗浄塔 9で洗浄することで 取り除かれる。 洗浄塔 9で用いる洗浄液としては、 水、 水酸化ナトリウムや水酸化 カリゥムなどを用いることができる。 このようにして得られたコータス 26の塩素 濃度は著しく低下しているので、 焼結機、 コークス炉、 あるいは高炉などの既存プ 口セスで原料として適切に処分できる。  In Fig. 1, an optional washing tower 9 is also installed. Decomposition BTX fraction 28 contains hydrogen chloride derived from chlorine originally present in heavy fraction 25 (generated by decomposition in pyrolysis tank 7) 27. To remove it. As the cleaning liquid used in the cleaning tower 9, water, sodium hydroxide, potassium hydroxide, or the like can be used. Since the chlorine concentration of the Cotas 26 obtained in this way is significantly reduced, it can be properly disposed as a raw material in existing processes such as sintering machines, coke ovens, or blast furnaces.
図 2は、 本発明に係る他のプラスチックの処理装置の一実施形態を示す概略図で ある。 図 1に示した実施形態と異なるところは、 洗浄塔 9はないが、 熱分解槽 7と してコークス炉を用いた例である。 この装置にて、 重質留分 2 5は石炭 1 6と共に 熱分解槽 (コータス炉) 7に供給され、 石炭のコータス化工程で熱分解される。 得 られたコータス 2 6は、 高炉などに供給され製鉄原料などとして利用される。 図 3は、 本発明に係る他のプラスチックの処理装置の一実施形態を示す概略図で ある。 図 2に示した実施形態と異なるところは、 熱分解槽 7に代えて石炭混合機 8 を用いた例である。 分留工程で得られた重質留分 2 5を非微粘結炭 1 6と共に石炭 混合機 8で混合し、 配合炭を構成する石炭 3 1を得る装置である。 得られた石炭は、 別途、 配合炭に加えられてコークス炉 (図示せず) にて熱分解される。 FIG. 2 is a schematic view showing an embodiment of another plastic processing apparatus according to the present invention. A difference from the embodiment shown in FIG. 1 is an example in which a coke oven is used as the pyrolysis tank 7 although the washing tower 9 is not provided. In this equipment, the heavy fraction 25 is supplied to the pyrolysis tank (coatus furnace) 7 together with the coal 16 and pyrolyzed in the coal-coating process. The obtained Kotas 26 is supplied to blast furnaces and used as a raw material for iron making. FIG. 3 is a schematic view showing an embodiment of another plastic processing apparatus according to the present invention. A difference from the embodiment shown in FIG. 2 is an example in which a coal mixer 8 is used instead of the pyrolysis tank 7. It is a device that obtains coal 31 that constitutes blended coal by mixing heavy fraction 25 obtained in the fractionation step together with non-slightly caking coal 16 with coal mixer 8. The obtained coal is separately added to the blended coal and pyrolyzed in a coke oven (not shown).
なお、 本発明では、 重質留分 2 5と石炭 1 6とを石炭混合機 8において混合し、 必要により成型して石炭 (非微粘結炭) 1 6の改質を行うこともできる。  In the present invention, heavy fraction 25 and coal 16 can be mixed in coal mixer 8 and molded as necessary to reform coal (non-slightly caking coal) 16.
本願では、 該分留器の前に、 遠心分離機、 あるいは 2 5 0 °Cまでの加熱装置と注 水装置を備えた分液器のいずれかをさらに備えたプラスチックの処理装置の発明も 提供する。.  The present application also provides an invention of a plastic processing apparatus further provided with either a centrifuge or a separator equipped with a heating device and a water injection device up to 250 ° C. before the fractionator. To do. .
図 4は、 本発明に係る他のプラスチックの処理装置の一実施形態を示す概略図で ある。 図 2に示した実施形態と異なるところは、 圧力反応容器 3と蒸留塔 6との間 に水洗浄装置として液一液抽出器 2を設けて、 圧力反応容器 3で生成した水素化分 解反応生成物中の水溶性塩素分 2 7の除去を行うものである。 水素化分解反応の生 成物に水を添加、 混合することにより、 水素化分解反応生成物中の N a C 1 、 K C 1 、 F e C 1 2などが大幅に水相に移行する。 塩素分が移行した水を分離、 除去す ることにより、 水素化分解油に含まれる塩素の量が低下する。 そのため、 加熱処理 工程において、 安定な塩化物を形成する割合が図 2の場合よりさらに多くなり、 好 適である。 FIG. 4 is a schematic view showing an embodiment of another plastic processing apparatus according to the present invention. The difference from the embodiment shown in FIG. 2 is that a liquid one-liquid extractor 2 is provided as a water washing device between the pressure reaction vessel 3 and the distillation column 6 and the hydrogenolysis reaction generated in the pressure reaction vessel 3 is performed. The removal of water-soluble chlorine content 27 in the product is performed. By adding and mixing water to the hydrocracking reaction product, Na a C 1, KC 1, Fe C 1 2, etc. in the hydrocracking reaction product are greatly transferred to the water phase. Separation and removal of water with transferred chlorine content reduces the amount of chlorine contained in hydrocracked oil. Therefore, in the heat treatment process, the ratio of forming stable chlorides is higher than in the case of FIG. 2, which is preferable.
図 5は、 本発明に係る他のプラスチックの処理装置の一実施形態を示す概略図で ある。 図 2に示した実施形態と異なるところは、 圧力反応容器 3と蒸留塔 6との間 に遠心分離機 5を設けて、 圧力反応容器 3で生成した水素化分解反応生成物中の塩 素分 2 7の除去を行うものである。 水素化分解反応の生成物は、 低粘性のため常温 で遠心分離機 5に供給して分離してもよいが、 2 0 0 °Cくらレ、で供給して高温で遠 心分離する方が、 分離効率が一層よくなるので好ましい。 遠心分離機 5の残渣分と して塩素分 2 7が分離され、 上澄液として塩素分が低減した水素化分解反応生成物 が得 れる。 上澄の水素化分解反応生成物は、 蒸留塔 6に送液され、 C 3〜C 4の ガス留分 2 2、 B T Xが含有されている B T X留分 2 3、 軽質留分 2 4、 重質留分 2 5に分留される。 塩素分がすくない重質留分 2 5は、 熱分解槽 7におくられる。 実施例 FIG. 5 is a schematic view showing an embodiment of another plastic processing apparatus according to the present invention. The difference from the embodiment shown in FIG. 2 is that a centrifugal separator 5 is provided between the pressure reaction vessel 3 and the distillation column 6, and the hydrogen content in the hydrocracking reaction product produced in the pressure reaction vessel 3 is different. 2 7 is to be removed. The product of hydrocracking reaction is normal temperature due to low viscosity However, it is preferable to supply at 200 ° C. for centrifugal separation at a high temperature because the separation efficiency is further improved. Chlorine content 27 is separated as the residue from the centrifugal separator 5, and a hydrocracking reaction product with reduced chlorine content is obtained as the supernatant. The supernatant hydrocracking reaction product is sent to the distillation column 6 where C 3 to C 4 gas fraction 2 2, BTX containing BTX fraction 2 3, light fraction 2 4, heavy It is fractionated into mass fractions 25. The heavy fraction 25 with less chlorine content is placed in the pyrolysis tank 7. Example
. [発明例 1 ]  [Invention Example 1]
図 5に示した処理装置用いた。 廃プラスチックとして、 魚市場から回収したポリ スチレンを破碎したものを、 9.6kg/hrで、 200°Cに保持した溶解槽 1に供給し、 溶剤としてコールタール留分のアントラセン油を 22.4kgZ rで供給じた。 触媒と して転炉ダスト (F e 23) を 1.5kgZhrの割合で添加した。 圧力反応容器 3の 温度は 450°C, 反応圧は lO.lMPa (100気圧) 、 滞留時間は 1 hrで水素化反応を 行った。 なお、 この際、 水素ガス 1 5を 2.5Nm3Zlir で供給した。 反応生成物は、 遠心分離機 5で残渣を除去した後、 上澄液を蒸留塔 (分留塔) 6に送り、 沸点が 1 80¾までの B T Xを主体とする留分 (B T X留分) 2 3、 沸点が 180〜330°Cの軽 質留分 2 4、 および沸点が 330°C以上の重質留分 2 5に分けた。 重質留分 2 5につ いては、 コーカー (熱分解槽 7 ) に供給して 500°Cで熱分解し、 分解 B T X留分 (図示せず) とコータス 2 6を得た。 得られたコータス中の塩素分は 0.03質量0 /0 であり、 焼結機の原科に供した。 、 The processing apparatus shown in FIG. 5 was used. Waste plastic recovered from the fish market is supplied to dissolution tank 1 held at 200 ° C at 9.6 kg / hr, and anthracene oil in the coal tar fraction is 22.4 kgZr as a solvent. Supplied. Was added converter dust (F e 23) at a rate of 1.5kgZhr as a catalyst. The hydrogenation reaction was performed at a temperature of 450 ° C, a reaction pressure of lO.lMPa (100 atm), and a residence time of 1 hr. At this time, hydrogen gas 15 was supplied at 2.5 Nm 3 Zlir. After removing the residue from the reaction product with a centrifugal separator 5, the supernatant is sent to a distillation column (fractional distillation column) 6 and a fraction mainly composed of BTX having a boiling point up to 1 80¾ (BTX fraction) 2 3. Divided into light fraction 24 with a boiling point of 180-330 ° C and heavy fraction 25 with a boiling point of 330 ° C or higher. The heavy fraction 25 was supplied to a coker (pyrolysis tank 7) and pyrolyzed at 500 ° C to obtain a decomposed BTX fraction (not shown) and coatas 26. Chlorine content in the resulting Kotasu is 0.03 mass 0/0, were subjected to the original family of sintering machines. ,
一方、 分解 B T X留分は、 水酸化ナトリウム水溶液を洗浄液とする洗浄塔 (図示 せず) にてガス洗浄した。 洗浄塔で含有される塩化水素を除去 (洗浄液のラインも 図示せず) された BTX留分は、 蒸留塔 6から留出した BTX留分 2 3と併せて、 小型の蒸留塔で精製してベンゼン類を回収した。 ベンゼン類の回収量を表 1に示す。 一方、 比較例 1として、 重質留分の熱分解を行わなかった以外は、 発明例 1と同 一の水素化分解と蒸留操作を行った。 この場合のベンゼン類の回収量を表 1に併せ て示した。 On the other hand, the decomposed BTX fraction was gas-washed in a washing tower (not shown) using a sodium hydroxide aqueous solution as a washing liquid. Removes hydrogen chloride contained in the washing tower. The BTX fraction (not shown) was combined with the BTX fraction 23 distilled from the distillation column 6 and purified with a small distillation column to collect benzenes. Table 1 shows the amount of benzene recovered. On the other hand, as Comparative Example 1, the same hydrocracking and distillation operations as in Invention Example 1 were performed except that the heavy fraction was not pyrolyzed. The amount of benzene recovered in this case is also shown in Table 1.
[発明例 2]  [Invention Example 2]
図 2に示したフローの処理装置を用い、 プラスチックとして都巿ごみの廃プラス チックを模擬して、 ポリスチレン 3 0質量0 /0、 ポリエチレン 3 5質量0 /0、 ポリプロ ピレン 3 0質量0 /0、 および塩化ビュル 5質量%の混合物 1 1を調製した。 この混合 物を 9. 6 k g/Υι rで、 2 0 0 °Cに保持した溶解槽 1に供給し、 溶剤 1 2として コールタール留分のアントラセン油を 22. 4k gZh rで供給した。 触媒 1 3と して転炉ダスト ( F e 23が主成分) を 1. 5 k g Z h rの割合で添加した。 Using a flow of processing apparatus shown in FIG. 2, to simulate the waste plastic City巿waste as plastic, polystyrene 3 0 mass 0/0, polyethylene 35 weight 0/0, polypropylene 3 0 mass 0/0 And a mixture 11 of 5% by weight of butyl chloride was prepared. This mixture was supplied at 9.6 kg / Υι r to dissolution tank 1 maintained at 200 ° C., and anthracene oil from the coal tar fraction was supplied at 22.4 kg ghr as solvent 12. Converter dust as a catalyst 1 3 (F e 23 main component) was added 1 at a rate of 5 kg Z hr.
圧力反応容器 3の温度は 4 5 0°C、 反応圧は 1 0. IMP a ( 1 00気圧) 、 滞 留時間は 1 h rで水素化分解を行った。 なお、 この際、 水素ガス 1 5を 2. 5 Nm Vh rで供給した。 反応生成物 (分解油) は、 蒸留塔 6に送り、 C 3〜C 4のガ ス留分 2 2、 沸点が 20 0°Cまでのベンゼン類を含む留分 (ベンゼン類留分) 2 3、 沸点が 2 00〜3 3 0°Cの軽質留分 24、 および沸点が 3 3 0°C以上の重質留分 2 5に分けた。  The hydrocracking was carried out at a temperature of 4500 ° C in the pressure reaction vessel 3, a reaction pressure of 10 IMP a (100 atm), and a residence time of 1 hr. At this time, hydrogen gas 15 was supplied at 2.5 Nm Vhr. The reaction product (cracked oil) is sent to the distillation column 6 and a C 3 to C 4 gas fraction 2 2, a fraction containing benzenes with a boiling point up to 200 ° C. (benzene fraction) 2 3 It was divided into a light fraction 24 having a boiling point of 200-330 ° C and a heavy fraction 25 having a boiling point of 330 ° C or higher.
重質留分 2 5が 1 6. O k g/h rで排出されてきたため、 劣質炭としてインド ネシァ産のプリマ炭 1 6を 2 0 0 J I Sメッシュ全通に粉碎したものを 1 0. O k g/h rで添加して、 加熱処理槽 7に導入した。 4 0 0 °Cで 1 h rの滞留時間をと り、 劣質炭の改質を行うとともに、 重質留分の塩素を安定な状態に固定した。  Since heavy fraction 25 was discharged at 1 6. O kg / hr, 10.00 O kg / It was added at hr and introduced into the heat treatment tank 7. The residence time was 1 hour at 400 ° C, reforming the inferior coal, and fixing the chlorine in the heavy fraction in a stable state.
得られた加熱処理物 (改質炭) を X線光電子分光装置および X線回折装置により 分析した。 この改質炭には N a C 1、 KC 1、 F eC l 2、 Ca C l 2、 Mg C 12 などとして塩素が安定な状態で存在することを確認した。 The heat-treated product (modified coal) obtained was subjected to X-ray photoelectron spectroscopy and X-ray diffractometer. analyzed. The N a C 1 to modified coal, KC 1, F eC l 2 , Ca C l 2, chlorine as such Mg C 1 2 was confirmed to exist in a stable state.
また、 下記により改質炭のコータス化試験を行った。 まず、 粘結炭のベース配合 炭に、 発明例 2として 10質量%の改質炭を配合したもの、 および、 比較例 2とし て 10質量%の非改質炭を配合したものの 2種類の配合炭を作製した。 ベース配合 炭は、 表 2に示す石炭化度 (Ro) 、 ギセラー最高流動度 (MF) 、 全イナート分 Also, the following test was conducted on the reformed coal. First, there are two types of blending: caking coal base blended coal with 10% by weight modified coal as Invention Example 2 and 10% by weight non-modified coal with Comparative Example 2. Charcoal was made. The base blended coal is as shown in Table 2. Coalization degree (Ro), Gisela maximum fluidity (MF), and total inert
(T I) 、 および灰分、 ならびに混合 (配合割合) の 4銘柄 (A炭、 B炭、 C炭、 D炭) の石炭 (コークス用原料炭) を混合して調製した。 そして、 各配合炭につい て缶焼試験を行った。 すなわち、 炉温 1100°Cのコークス炉の中で 7時間の乾留 を実施したのち:; 炉から出して散水して消火した。 配合炭の充填密度は 0. 8TZ m3とした。 こうしてコータスを作製したのち、 J I Sに準拠してコータスのドラ ム強度 (D I 3°15) を測定した。 表 3に測定結果を示す。 なお、 缶焼試験とは、 実稼動のコータス炉の炉幅 45 cm程度とほぼ同じ 2つ辺の長さを有する直方体の 鋼製の缶 (容積 20リツトル) を用いた焼成試験のことである。 It was prepared by mixing (TI), ash, and coal (coking coal for coke) of four brands (A Coal, B Coal, C Coal, and D Coal). A can firing test was conducted for each blended coal. That is, after 7 hours of dry distillation in a coke oven with a furnace temperature of 1100 ° C :; The packing density of the coal blend was 0. 8TZ m 3. After preparing the coatus in this way, the drum strength (DI 3 ° 15 ) of the coatus was measured according to JIS. Table 3 shows the measurement results. The can firing test is a firing test using a rectangular steel can (20 liters in volume) that has two sides that are almost the same length as the 45-cm furnace width of the actual Kotas furnace. .
表 3に示すように、 発明例 2のドラム強度の方が比較例 2のそれに比べて向上し ており、 劣質炭が改質されていることがわかる。  As shown in Table 3, the drum strength of Invention Example 2 is improved as compared with that of Comparative Example 2, indicating that the inferior coal has been modified.
[発明例 3]  [Invention Example 3]
図 3に示したフローの処理装置を用い、 プラスチックとして都市ごみの廃プラス チックを模擬して、 ポリスチレン 30質量0 /0、 ポリエチレン 35質量0 /0、 ポリプロ ピレン 30質量%、 および塩化ビュル 5質量0 /0の混合物 11を調製した。 この混合 物を 9. 6 k gZli rで、 200°Cに保持した溶解槽に供給し、 溶剤 12としてコ 一ルタール留分のアントラセン油を 22. 4 k gZh rで供給した。 触媒 13とし て転炉ダスト ( F e 2〇。が主成分) を 1. 5 k g/h rの割合で添加した。 圧力反応容器 3の温度は 450°C、 反応圧は 10. IMP a (100気圧) 、 滞 留時間は 1 h rで水素化分解を行った。 なお、 この際、 水素ガス 15を 2. 5 Nm '3/h rで供給した。 反応生成物 (分解油) は、 蒸留塔 6に送り、 C3〜C4のガ ス留分 22、 沸点が 200°Cまでのベンゼン類を含む留分 (ベンゼン類留分) 23、 沸点が 200〜330°Cの軽質留分 24、 および沸点が 330°C以上の重質留分 2 5に分けた。 Using a flow of processing apparatus shown in FIG. 3, to simulate the waste plastic in municipal waste as plastic, polystyrene 30 mass 0/0, polyethylene 35 weight 0/0, polypropylene 30 wt%, and chloride Bulle 5 mass 0/0 mixture 11 was prepared. This mixture was fed at 9.6 kgZlir to a dissolution tank maintained at 200 ° C., and an anthracene oil of a coal tar fraction as solvent 12 was fed at 22.4 kgZhr. Converter dust as a catalyst 13 (F e 2 〇. Main component) was added 1 at a rate of 5 kg / hr. The hydrocracking was performed at a temperature of 450 ° C, a reaction pressure of 10. IMP a (100 atm), and a residence time of 1 hr. At this time, hydrogen gas 15 was supplied at 2.5 Nm ′ 3 / hr. The reaction product (cracked oil) is sent to the distillation tower 6 and the gas fraction 22 of C3 to C4, the fraction containing benzene having a boiling point up to 200 ° C (benzene fraction) 23, the boiling point 200 to 200 Divided into light fraction 24 at 330 ° C and heavy fraction 25 with boiling point above 330 ° C.
重質留分 25が 16. O k g/ rで留出してきたため、 重質留分 25と石炭 (南アフリカ共和国産のウイットバンク炭を 60 J I Sメッシュ全通に粉碎したも の) 16を混合して、 成型機をかねている石炭混合機 8に導入した。 重質留分は、 搬送性をよくするために 80°Cとしたが、 成型温度は常温 (20〜30°C) で、 石 炭に対して 10質量%の量を加えた。  Since heavy fraction 25 was distilled at 16. O kg / r, mixed heavy fraction 25 and coal (wheatbank coal from South Africa, ground to 60 JIS mesh) 16 Introduced into a coal mixer 8 that also serves as a molding machine. The heavy fraction was 80 ° C to improve transportability, but the molding temperature was room temperature (20-30 ° C), and an amount of 10% by mass was added to the coal.
粘結炭のベース配合炭に、 発明例 3として 10質量%の改質炭を配合したもの、 および、 比較例 3として 10質量%のウイットバンク炭を配合したものの 2種類の 配合炭を作製した。 ベース配合炭は、 表 2に示す石炭化度 (Ro) 、 ギセラー最高 流動度 (MF) 、 全イナート分 (T I) 、 および灰分、 ならびに混合 (配合割合) の 4銘柄 (A炭、 B炭、 C炭、 D炭) の石炭 (コータス用原料炭) を混合して調製 した。 そして、 各配合炭 15 k gについて缶焼試験を行った。 すなわち、 炉温 11 00°Cのコークス炉の中で 7時間の乾留を実施したのち、 炉から出して散水して消 火した。 配合炭の充填密度は 0. 8T/m3とした。 こうしてコータスを作製した のち、 J I Sに準拠してコータスのドラム強度 (D I 3°15) を測定した。 表 4に 測定結果を示す。 Two types of blended coal were produced: a mixture of caking coal base blended with 10% by weight modified coal as Invention Example 3, and a blend of 10% by weight Witbank coal as Comparative Example 3. . The base blended coal has four grades (Coal A, B Coal, Coal Degree (Ro), Gisser Maximum Fluidity (MF), Total Inert (TI), and Ash (as well as blending ratio) shown in Table 2. Coal (coking coal for Cotas) was prepared by mixing C coal and D coal. A can firing test was conducted on 15 kg of each blended coal. In other words, after 7 hours of dry distillation in a coke oven with a furnace temperature of 1100 ° C, the water was discharged from the furnace and sprinkled with fire. The packing density of the blended coal was 0.8 T / m 3 . After preparing the coatus in this way, the drum strength (DI 3 ° 15 ) of coatus was measured according to JIS. Table 4 shows the measurement results.
また、 発明例 3については、 乾留の際発生するガス中に含有される塩化水素の濃 度を測定した。 測定は、 発生ガスをすベて 1つの容器に捕集しておき、 乾留が終了 してから分析した。 塩化水素濃度の測定結果を表 4にあわせて示す。 In Invention Example 3, the concentration of hydrogen chloride contained in the gas generated during dry distillation was measured. For the measurement, all the generated gas is collected in one container and the dry distillation is completed. And then analyzed. The measurement results of hydrogen chloride concentration are also shown in Table 4.
さらに、 比較例 4として、 比較例 3と同様の配合炭と重質留分 (発明例 3の配合 炭に存在する量と同じ 0. 15 k g) を、 別々に置いて缶焼き試験のときの炉温と 同じ 1100°Cで熱分解して発生する塩化水素量を調べた。 なお、 昇温速度も 3°C Zm i nで同じとした。 表 4に分析結果を示す。  Furthermore, as Comparative Example 4, the same blended coal and heavy fraction as in Comparative Example 3 (0.15 kg, the same as the amount present in the blended coal of Inventive Example 3) were placed separately and subjected to the can firing test. The amount of hydrogen chloride generated by thermal decomposition at 1100 ° C, the same as the furnace temperature, was investigated. The heating rate was the same at 3 ° C Zmin. Table 4 shows the analysis results.
表 4に示すように、 発明例 3のドラム強度の方が比較例 3のそれに比べて向上し ており、 石炭が改質されていることがわかる。 また、 表 4から、 発明例 3において、 重質留分に含まれる塩素の大半が石炭中の無機物と反応して、 N a C 1、 KC 1、 C a C 12、 Mg C 12などの安定な塩化物を形成して、 装置を腐食する塩化水素 の発生量が少なくなつていることがわかる。 As shown in Table 4, the drum strength of Invention Example 3 is higher than that of Comparative Example 3, indicating that the coal is being reformed. Further, from Table 4, in the invention example 3, the majority of the chlorine contained in the heavy fraction reacts with inorganic matter in the coal, N a C 1, KC 1 , C a C 1 2, Mg C 1 2 , etc. It can be seen that the amount of hydrogen chloride that corrodes the equipment is reduced by forming stable chlorides.
表 1 table 1
発明例 1 比較例 1  Invention Example 1 Comparative Example 1
ベンゼン類回収量 11.5 Kg/hr 9.8 Kg/hr d d  Benzene recovery 11.5 Kg / hr 9.8 Kg / hr d d
表 2 0 0  Table 2 0 0
粘 $riJ Ro MF TI 灰分 ベース配合炭での  Viscosity $ riJ Ro MF TI
(%) (ddpm) (%) (%) 配合割合 (質量%) (%) (ddpm) (%) (%) Mixing ratio (mass%)
A灰 21222 17.9 8. 8 15A gray 21222 17.9 8. 8 15
B炭 1.2フ 39 9. 7 32B Charcoal 1.2 F 39 9. 7 32
C炭 1.22 54 36.2 7. 5 23C charcoal 1.22 54 36.2 7. 5 23
D炭 513 3 C1.0 6.3 30 ベース配合炭 1. 10 234 31.4 8.0 D charcoal 513 3 C1.0 6.3 30 Base coal 1.10 234 31.4 8.0
(加重平均) 表 3  (Weighted average) Table 3
本発明例 2 比較例 2  Invention Example 2 Comparative Example 2
DI 30 15 91 . 1 80.3 DI 30 15 91. 1 80.3
表 4 Table 4
Figure imgf000026_0001
Figure imgf000026_0001
(ppm (ppm
産業上の利用可能性 Industrial applicability
本発明によれば、 ベンゼン環含有プラスチック、 特には、 ベンゼン環含有プラス チックを少なくとも含有する廃プラスチックなどを原料として、 化学工業や.医薬品 工業にて極めて有用なベンゼン類を取得すると同時に、 副生する他の分解油の有効 利用を図ることができる。 よって、 廃プラスチックのケミカルリサイクルとして広 く産業に貢献することができる。  According to the present invention, a benzene ring-containing plastic, particularly a waste plastic containing at least a benzene ring-containing plastic, is used as a raw material, and at the same time, benzenes that are extremely useful in the chemical industry and the pharmaceutical industry are obtained. This makes it possible to effectively use other cracked oils. Therefore, it can contribute widely to industry as chemical recycling of waste plastic.

Claims

請 求 の 範 囲 The scope of the claims
1 . ベンゼン環を有するプラスチックを、 水に難溶性な溶剤に溶解する工程; 得られた該ベンゼン環を有するプラスチックの溶液を水素化分解する工程; 該水素化分解工程の生成物を分留する工程;および 1. a step of dissolving a plastic having a benzene ring in a solvent hardly soluble in water; a step of hydrocracking the obtained plastic solution having the benzene ring; fractionating a product of the hydrocracking step A process; and
該分留工程の重質留分の少なくとも一部を熱分解する工程;  Pyrolyzing at least a portion of the heavy fraction of the fractionation step;
を有するプラスチックの処理方法。 A method for processing plastic.
2 . さらに、 該分留工程の前に、 脱塩素する工程を有する請求項 1に記載のブラ スチックの処理方法。  2. The plastic treatment method according to claim 1, further comprising a dechlorination step before the fractionation step.
3 . 該脱塩素が、 遠心分離による請求項 2に記載のプラスチックの処理方法。 3. The method for treating plastic according to claim 2, wherein the dechlorination is performed by centrifugation.
4 . 該脱塩素が、 水洗浄である請求項 2に記載のプラスチックの処理方法。4. The method for treating plastic according to claim 2, wherein the dechlorination is washing with water.
5 . 該熱分解が、 該重質留分の少なくとも一部のコークス化である請求項 1に記 載のプラスチックの処理方法。 5. The method for treating plastic according to claim 1, wherein the thermal decomposition is coking of at least a part of the heavy fraction.
6 . 該熱分解を、 該重質留分の少なくとも一部をコークス炉に装入し、 石炭のコ 一タス化と一緒に行う請求項 1に記載のプラスチックの処理方法。  6. The method for treating plastic according to claim 1, wherein the thermal decomposition is performed together with coal coalification by charging at least a part of the heavy fraction into a coke oven.
7 . 該コークス炉の装入の前に、 該重質留分の少なくとも一部を該石炭と混合す る請求項 6に記載のプラスチックの処理方法。  7. The plastic processing method according to claim 6, wherein at least a part of the heavy fraction is mixed with the coal before charging the coke oven.
8 . 該重質留分の少なくとも一部を該石炭と混合する際の温度が、 2 0〜1 0 0 °Cである請求項 7に記載のプラスチックの処理方法。  8. The method for treating plastic according to claim 7, wherein the temperature at which at least a part of the heavy fraction is mixed with the coal is 20 to 100 ° C.
9 . 該重質留分の少なくとも一部と該石炭との混合物を成形する請求項 7あるい は請求項 8に記載のブラスチックの処理方法。  9. The method for treating a plastic according to claim 7 or 8, wherein a mixture of at least a part of the heavy fraction and the coal is formed.
1 0 . 該熱分解を、 該重質留分の少なくとも一部を石炭と混合し、 加熱して該石 炭を改質する工程で行う請求項 2に記載のプラスチックの処理方法。 10. The method for treating plastic according to claim 2, wherein the thermal decomposition is performed in a step of modifying at least a part of the heavy fraction with coal and heating to reform the coal.
11. 該熱分解を、 400〜 600 °Cで行う請求項 1、 請求項 5、 請求項 6およ ぴ請求項 10のいずれかに記載のプラスチックの処理方法。 11. The method for treating plastic according to claim 1, wherein the thermal decomposition is performed at 400 to 600 ° C.
12. 該重質留分の沸点が、 330°C以上である請求項 1に記載のプラスチック の処理方法。  12. The method for treating plastic according to claim 1, wherein the boiling point of the heavy fraction is 330 ° C or higher.
13. 該ベンゼン環を有するプラスチックが、 ベンゼン環を有するプラスチック と他のプラスチックとの混合物である請求項 1に記載のプラスチックの処理方法。  13. The plastic treatment method according to claim 1, wherein the plastic having a benzene ring is a mixture of a plastic having a benzene ring and another plastic.
14. 該ベンゼン環を有するプラスチックが、 ベンゼン環を有するプラスチック を少なくとも含有する廃プラスチックである請求項 1に記載のプラスチックの処理 方法。  14. The plastic treatment method according to claim 1, wherein the plastic having a benzene ring is waste plastic containing at least a plastic having a benzene ring.
15. 該ベンゼン環を有するプラスチックが、 少なくともポリスチレンを含有す るプラスチックである請求項 1に記載のプラスチックの処理方法。  15. The plastic processing method according to claim 1, wherein the plastic having a benzene ring is a plastic containing at least polystyrene.
16. 該溶剤が、 コールタールおよびコールタール蒸留留分からなる群より選ば れる少なくとも 1種である請求項 1に記載のプラスチックの処理方法。  16. The method for treating plastic according to claim 1, wherein the solvent is at least one selected from the group consisting of coal tar and coal tar distillation fraction.
17. 前記水素化分解反応工程の生成物がベンゼン類である請求項 1に記載のプ ラスチックの処理方法。  17. The method for treating a plastic according to claim 1, wherein the product of the hydrocracking reaction step is benzene.
18. 撹拌機と 250°Cまでの加熱装置を備えた溶解槽;  18. Dissolution tank with stirrer and heating device up to 250 ° C;
500°Cで 120Kg/cm2Gに耐え得る圧力反応容器; Pressure reactor capable of withstanding 120Kg / cm 2 G at 500 ° C;
分留器;および  A fractionator; and
塩化水素と塩素ガスに耐性を有する熱分解槽;  Thermal cracking tank resistant to hydrogen chloride and chlorine gas;
を備えたプラスチックの処理装置。 Plastic processing equipment with.
19. 該分留器の前に、 遠心分離機をさらに備えた請求項 18に記載のプラスチ ックの処理装置。  19. The plastic processing apparatus according to claim 18, further comprising a centrifuge before the fractionator.
20. 該分留器の前に、 250°Cまでの加熱装置と注水装置を備えた分液器をさ らに備えた請求項 1 8に記載のプラスチックの処理装置。 20. Before the fractionator, place a separator equipped with a heating device up to 250 ° C and a water injection device. The plastic processing apparatus according to claim 18, further provided.
2 1 . 該熱分解槽が、 コークス炉、 コーカーおよび石炭改質炉からなる群より選 ばれた少なくと 1種である請求項 1 8に記載のプラスチックの処理装置。  21. The plastic processing apparatus according to claim 18, wherein the pyrolysis tank is at least one selected from the group consisting of a coke oven, a coker and a coal reforming furnace.
2 2 . プラスチックと溶剤を混合、 加熱して前記プラスチックを溶解する溶解ェ 程と、  2 2. A melting step in which the plastic and solvent are mixed and heated to dissolve the plastic,
該溶解工程で得られたプラスチック溶液を触媒の存在下で水素化分解反応させて、 水素化分解反応を行う水素化分解工程と、  Hydrocracking reaction of the plastic solution obtained in the dissolving step in the presence of a catalyst to perform hydrocracking reaction; and
該水素化分解工程で生成した水素化分解反応生成物を蒸留して、 重質留分を得る蒸 '留工程と、  A distillation process in which a hydrocracking reaction product produced in the hydrocracking process is distilled to obtain a heavy fraction;
該蒸留工程で得られた重質留分を熱分解する熱分解工程とを有することを特徴とす るプラスチックの処理方法。 And a pyrolysis step of pyrolyzing the heavy fraction obtained in the distillation step.
PCT/JP2007/059406 2006-04-27 2007-04-25 Method for processing plastic and apparatus therefor WO2007126121A1 (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2006-123188 2006-04-27
JP2006123188A JP2007291290A (en) 2006-04-27 2006-04-27 Method for treating plastic material
JP2006-123187 2006-04-27
JP2006123187A JP2007291289A (en) 2006-04-27 2006-04-27 Method for treating plastic material, device for the same, method for producing benzenes and device for the same
JP2006-130127 2006-05-09
JP2006130127A JP2007302732A (en) 2006-05-09 2006-05-09 Method for treating plastic and method for producing benzene
JP2006131543A JP2007302766A (en) 2006-05-10 2006-05-10 Method and apparatus for treating plastic
JP2006-131543 2006-05-10

Publications (1)

Publication Number Publication Date
WO2007126121A1 true WO2007126121A1 (en) 2007-11-08

Family

ID=38655639

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/059406 WO2007126121A1 (en) 2006-04-27 2007-04-25 Method for processing plastic and apparatus therefor

Country Status (1)

Country Link
WO (1) WO2007126121A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009298877A (en) * 2008-06-11 2009-12-24 Jfe Chemical Corp Treatment method for plastic
CN103666512A (en) * 2012-09-17 2014-03-26 上海宝钢化工有限公司 Dechlorination method for tar
CN105505425A (en) * 2014-09-24 2016-04-20 上海宝钢化工有限公司 Pretreatment system and method for non-corrosive sodium-free asphalt production
US10865348B2 (en) 2016-07-13 2020-12-15 Sabic Global Technologies B.V. Process which does simultaneous dehydrochlorination and hydrocracking of pyrolysis oils from mixed plastic pyrolysis while achieving selective hydrodealkylation of C9+ aromatics
CN115011368A (en) * 2022-07-08 2022-09-06 中国矿业大学 Method for producing hydrogen by low-rank coal and waste plastic in cooperation and utilizing components in high value

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07216361A (en) * 1994-01-27 1995-08-15 Kansai Coke & Chem Co Ltd Preparation of coke
JPH09500412A (en) * 1993-07-20 1997-01-14 ビーエーエスエフ アクチエンゲゼルシャフト How to reuse plastic in a steam cracker
JPH1161148A (en) * 1997-08-21 1999-03-05 Jgc Corp Treatment of waste plastic
JP2003253038A (en) * 2002-03-05 2003-09-10 Mitsubishi Materials Corp Method and apparatus for removing chlorine from heat decomposition product of resin-containing waste
JP2003321682A (en) * 2002-02-28 2003-11-14 Jfe Steel Kk Method for treating waste plastic

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09500412A (en) * 1993-07-20 1997-01-14 ビーエーエスエフ アクチエンゲゼルシャフト How to reuse plastic in a steam cracker
JPH07216361A (en) * 1994-01-27 1995-08-15 Kansai Coke & Chem Co Ltd Preparation of coke
JPH1161148A (en) * 1997-08-21 1999-03-05 Jgc Corp Treatment of waste plastic
JP2003321682A (en) * 2002-02-28 2003-11-14 Jfe Steel Kk Method for treating waste plastic
JP2003253038A (en) * 2002-03-05 2003-09-10 Mitsubishi Materials Corp Method and apparatus for removing chlorine from heat decomposition product of resin-containing waste

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009298877A (en) * 2008-06-11 2009-12-24 Jfe Chemical Corp Treatment method for plastic
CN103666512A (en) * 2012-09-17 2014-03-26 上海宝钢化工有限公司 Dechlorination method for tar
CN103666512B (en) * 2012-09-17 2015-08-05 上海宝钢化工有限公司 A kind of Dechlorination method for tar
CN105505425A (en) * 2014-09-24 2016-04-20 上海宝钢化工有限公司 Pretreatment system and method for non-corrosive sodium-free asphalt production
US10865348B2 (en) 2016-07-13 2020-12-15 Sabic Global Technologies B.V. Process which does simultaneous dehydrochlorination and hydrocracking of pyrolysis oils from mixed plastic pyrolysis while achieving selective hydrodealkylation of C9+ aromatics
CN115011368A (en) * 2022-07-08 2022-09-06 中国矿业大学 Method for producing hydrogen by low-rank coal and waste plastic in cooperation and utilizing components in high value
CN115011368B (en) * 2022-07-08 2023-09-12 中国矿业大学 Method for preparing hydrogen by synergy of low-rank coal and waste plastic and high-value utilization of components

Similar Documents

Publication Publication Date Title
JP7130632B2 (en) Maximizing high-value chemicals from mixed plastics using various steam cracker configurations
JP3385025B2 (en) How to process used or waste plastic
WO2007126120A1 (en) Method for processing plastic and apparatus therefor
JP2011147925A (en) Metal recovery method for recovering metal from hydrocracked heavy effluent
RU2010120474A (en) METHOD FOR HYDRAULIC PROCESSING OF HEAVY AND EXTREME OIL AND OIL RESIDUES
KR20140026450A (en) A process for separation and purification of sodium sulfide
WO2007126121A1 (en) Method for processing plastic and apparatus therefor
Wu et al. Production of pyrolysis oil with low bromine and antimony contents from plastic material containing brominated flame retardants and antimony trioxide
JP2534461B2 (en) Syngas production method
CN114507542A (en) Method and system for preparing light oil product from waste plastics
WO2003042289A1 (en) Method and apparatus for the processing of carbon-containing polymeric materials
JP4943816B2 (en) Method for producing hydrocracking product, method for treating plastic and method for producing benzenes
JP2003321682A (en) Method for treating waste plastic
US9567654B2 (en) Binder for metallurgical coke and a process for making same
WO2007126123A1 (en) Method for processing plastic
JP5111246B2 (en) Plastic processing method
JP4154929B2 (en) Method for producing useful substances from plastic
JP2007302766A (en) Method and apparatus for treating plastic
CN114479900B (en) Catalytic cracking method and system for waste plastics
JP2007291290A (en) Method for treating plastic material
CN116670258A (en) Process for the hydrodeoxygenation of polymer waste
JP2023532532A (en) Methods and systems for processing plastic waste materials
JP2007302788A (en) Method for producing hydrocracked product, method for treating plastic and method for producing benzene
JP2007291289A (en) Method for treating plastic material, device for the same, method for producing benzenes and device for the same
JP2007302732A (en) Method for treating plastic and method for producing benzene

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07742841

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07742841

Country of ref document: EP

Kind code of ref document: A1