WO2007125937A1 - Photoreactive composition, optical material, optical recording material, volume hologram recording material, optical recording medium, and optical recording method therefor - Google Patents

Photoreactive composition, optical material, optical recording material, volume hologram recording material, optical recording medium, and optical recording method therefor Download PDF

Info

Publication number
WO2007125937A1
WO2007125937A1 PCT/JP2007/058910 JP2007058910W WO2007125937A1 WO 2007125937 A1 WO2007125937 A1 WO 2007125937A1 JP 2007058910 W JP2007058910 W JP 2007058910W WO 2007125937 A1 WO2007125937 A1 WO 2007125937A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensitizer
reaction
reactive group
light
optical recording
Prior art date
Application number
PCT/JP2007/058910
Other languages
French (fr)
Japanese (ja)
Inventor
Makoto Takahashi
Yutaka Sasaki
Hideaki Ito
Jun Endo
Original Assignee
Mitsubishi Chemical Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corporation filed Critical Mitsubishi Chemical Corporation
Priority to JP2008513229A priority Critical patent/JPWO2007125937A1/en
Publication of WO2007125937A1 publication Critical patent/WO2007125937A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/02Details of features involved during the holographic process; Replication of holograms without interference recording
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/2403Layers; Shape, structure or physical properties thereof
    • G11B7/24035Recording layers
    • G11B7/24044Recording layers for storing optical interference patterns, e.g. holograms; for storing data in three dimensions, e.g. volume storage
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • G11B7/245Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing a polymeric component
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/72Photosensitive compositions not covered by the groups G03C1/005 - G03C1/705
    • G03C1/73Photosensitive compositions not covered by the groups G03C1/005 - G03C1/705 containing organic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/02Details of features involved during the holographic process; Replication of holograms without interference recording
    • G03H2001/026Recording materials or recording processes
    • G03H2001/0264Organic recording material
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2260/00Recording materials or recording processes
    • G03H2260/12Photopolymer
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B2007/0003Recording, reproducing or erasing systems characterised by the structure or type of the carrier
    • G11B2007/0009Recording, reproducing or erasing systems characterised by the structure or type of the carrier for carriers having data stored in three dimensions, e.g. volume storage

Definitions

  • Photoreactive composition optical material, optical recording material, volume hologram recording material, optical recording medium, and optical recording method thereof
  • the present invention relates to a photoreactive composition, an optical material, an optical recording material, a volume hologram recording material, an optical recording medium, and an optical recording method thereof.
  • hologram recording has been actively studied because high-density recording, multiple recording, and the like are possible.
  • hologram recording there are known those using an amplitude hologram that utilizes a change in transmittance of a recording material, and those that use a phase hologram that uses a change in refractive index or irregularity of a recording material. .
  • a known volume phase hologram recording material generally uses a photopolymer method in which radical polymerization or cationic polymerization is combined with a sensitizer as a write-once method that does not require wet treatment or bleaching treatment.
  • the photopolymer method is a very simple method that can change the characteristics just by changing the monomer and the matrix to be combined.
  • Patent Document 3 a two-photon absorption optical material
  • Patent Document 1 a two-stage absorption optical material
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2002-318433
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2004-78224
  • Patent Document 3 Japanese Patent Laid-Open No. 2005-99416
  • Non-Patent Literature l The Journal of Physical Chemistry 1981, 85, 123. Disclosure of the Invention Problems to be solved by the invention
  • the present invention was devised in view of the above problems, and by providing a gate function, a photoreactive composition that enables reading of a record without destroying the recorded content when used for holographic recording.
  • An object is to provide an optical material, an optical recording material, a volume hologram recording material, an optical recording medium, and an optical recording method thereof.
  • the present inventor used a photoreactive composition having a sensitizer and a polymer having a reactive group as the material of the hologram recording medium, and Non-destructive readout function (that is, a function capable of reading a record without destroying the recorded content) by using a sensitizer having a reduced electron configuration with respect to the reactive group
  • Non-destructive readout function that is, a function capable of reading a record without destroying the recorded content
  • the gist of the present invention contains a sensitizer (A) excited by absorbing photons, and a polymer (B) having a reactive group (C) capable of causing chemical conversion,
  • the sensitizer (A) resides in a photoreactive composition characterized in that it has a reduced electron configuration with respect to the reactive group (C) (claim 1).
  • the sensitizer (A) is excited by absorbing two or more photons (claim 2).
  • the sensitizer (A) is preferably excited by absorbing photons of different wavelengths having a force of 2 or more (claim 3).
  • the sensitizer (A) is excited to a singlet excited state by absorbing the photons of the first excitation light, and then transitions to the lowest triplet excited state by intersystem crossing, Subsequently, by absorbing photons of the second excitation light having a wavelength different from that of the first excitation light, the multistage excitation type sensitization is excited to a triplet excited state higher than the lowest triplet excited state.
  • the body is preferred (claim 4).
  • the reaction is caused by the contribution of the excited sensitizer (A). It is preferred that the reactive group (c) undergoes chemical conversion to change the optical properties of the photoreactive composition (Claim 5).
  • the chemical conversion is an isomeric reaction (claim 6).
  • Another gist of the present invention resides in an optical material comprising the photoreactive composition (claim 7).
  • Still another subject matter of the present invention lies in an optical recording material characterized in that it also has the above-mentioned optical material force (claim 8).
  • Still another subject matter of the present invention lies in a volume holographic recording material characterized in that the optical recording material force is also provided (claim 9).
  • Still another subject matter of the present invention lies in an optical recording medium comprising a layer containing the optical recording material (claim 10).
  • Still another subject matter of the present invention lies in an optical recording method for an optical recording medium, wherein the excitation light is irradiated to the layer of the optical recording medium. ). At this time, it is preferable to irradiate reference light together with the excitation light, and record a hologram on the layer by interference between the excitation light and the reference light (claim 12).
  • a photoreactive composition capable of reading a record without destroying the recorded content
  • an optical material using the composition an optical recording material
  • an optical recording material an optical recording material
  • FIG. 1 is a diagram schematically showing how electrons move due to photon absorption.
  • FIG. 2 is a diagram schematically showing how electrons move due to photon absorption.
  • FIG. 3 is a diagram schematically showing how electrons move due to photon absorption.
  • FIG. 4 is a diagram showing an example of changes in the sensitizer and the reactive group at the time of reading when the sensitizer has an oxidized electron configuration with respect to the reactive group.
  • FIG. 5 (a) to FIG. 5 (c) show the sensitizer and reactive group at the time of readout when the sensitizer has an oxidized electron configuration with respect to the reactive group, respectively.
  • FIG. 6 is a diagram showing an example of changes in sensitizer (A) and reactive group (C) during readout in the photoreactive composition of the present invention.
  • FIG. 7 (a) to FIG. 7 (c) are examples of the electron arrangement of the sensitizer (A) and the reactive group (C) at the time of readout in the photoreactive composition of the present invention, respectively.
  • FIG. 7 (a) to FIG. 7 (c) are examples of the electron arrangement of the sensitizer (A) and the reactive group (C) at the time of readout in the photoreactive composition of the present invention, respectively.
  • FIG. 8 (a) to FIG. 8 (c) are sensitizers at the time of writing when the reactive group (C) is activated by reduction in the photoreactive composition of the present invention, respectively.
  • FIG. 4 is a diagram illustrating an example of an electron configuration of (A) and a reactive group (C).
  • FIGS. 9 (a) to 9 (c) are sensitizers at the time of writing when the reactive group (C) is activated by energy transfer in the photoreactive composition of the present invention, respectively. It is a figure showing an example of the electronic arrangement
  • FIG. 10 is a diagram schematically showing an outline of a measurement system used in Example 1 of the present invention.
  • the photoreactive composition of the present invention is a sensitizer that is excited by absorbing photons (hereinafter referred to as “excitation light”, which is light that can also excite the sensitizer (A) as appropriate).
  • excitation light which is light that can also excite the sensitizer (A) as appropriate.
  • A) and a polymer (B) are contained. Further, the polymer) has a reactive group (C) capable of causing chemical conversion.
  • the symbols “(A)”, “(B)”, and “(C)” that appear here are symbols for distinguishing sensitizers, polymers, and reactive groups.
  • the photoreactive composition of the present invention may contain other components as long as the effects of the present invention are not significantly impaired.
  • the sensitizer (A) has a reduced electron configuration with respect to the reactive group (C).
  • the sensitizer (A) can donate electrons to the reactive group (C).
  • the highest occupied orbit of the sensitizer (A) (Highest Occ upied Molecular Orbital (HOMO) is higher in energy than the highest occupied orbital of the reactive group (C)!
  • the sensitizer (A) is a substance (a whole compound or a part that exerts its sensitizing action) that is excited by absorbing photons upon irradiation with excitation light.
  • the sensitizer (A) when the sensitizer (A) is appropriately excited, electron or energy transfer occurs due to the contribution of the excited sensitizer (A), and the reactive group.
  • the chemical conversion of (C) is occurring.
  • the sensitizer (A) one having a reduced electron configuration with respect to the reactive group (C) is used.
  • the electron configuration of the sensitizer (A) and the reactive group (C) can be confirmed by measurement of acid reduction potential.
  • sensitizer (A) for example, a known sensitizer can be used.
  • sensitizer Means a molecule
  • sensitizer (A) means the whole or a part of a molecule.
  • compounds that can be used as the sensitizer (A) include synthetic dyes, natural pigments, aromatic compounds, and heterocyclic compounds.
  • synthetic dyes include atalidine dyes, azo dyes, alizarin dyes, anthraquinone dyes, indigoid dyes, carbo dyes, xanthene dyes, quinoline dyes, quinonimine dyes, diphenylmethane dyes, stilbene dyes, thiazoles.
  • synthetic dyes include atalidine dyes, azo dyes, alizarin dyes, anthraquinone dyes, indigoid dyes, carbo dyes, xanthene dyes, quinoline dyes, quinonimine dyes, diphenylmethane dyes, stilbene dyes, thiazoles.
  • examples include dyes, triphenyl methane dyes, nitro dyes, nitroso dyes, pyrazolone dyes, methine dyes, and sulfur dyes.
  • pigments include carotene, flavones, quinones, xanthones, petas-azine, blood pigments (such as porphyrins), chlorophyll, phenazine, phenoxane derivatives, and indole derivatives. .
  • aromatic compound examples include condensed aromatic rings, oligophenylenes, and conjugated genes.
  • heterocyclic compound examples include coumarin, azacoumarin, quinoline, azaquinoline, oxazonole, benzoxazonole, oxazionole, furan, benzofuran, pyrazoline, phthalimide, naphthalimide, pteridine, oligothiophene, heterocyclic salt And so on.
  • a dye such as cyanine, merocyanine, phthalocyanine, porphyrin, xanthene, triallylmethane, acylolidine, azine, chlorophyll.
  • benzophenone, oligothiophene, tetrazine, force rubazole, porphyrin, and the like are particularly preferable because they can function as a multistage excitation sensitizer (described later).
  • the portion exhibiting the sensitizing action of these exemplified compounds is used as the sensitizer (A).
  • the sensitizer (A) may be used alone or in combination of two or more in any combination and ratio.
  • the sensitizers (A) those which are excited by absorbing two or more photons (multiphoton absorption) (for example, a multiphoton absorbing compound or a portion thereof) are preferable.
  • the non-destructive readout function is realized by the combination of the sensitizer (A) and the reactive group (C) that affects the acid-reducibility. If the sensitizer (A) is excited by absorbing two or more photons (for example, a multiphoton absorbing compound or a portion thereof), the sensitizer (A) itself has a nondestructive readout function. This is because it can be realized more stably.
  • Multiphoton absorption refers to an orbital level that is sufficient to supply the reactant (in the present invention, reactive group (C)) with the energy necessary to initiate the reaction (chemical conversion). It is forcibly excited by absorbing a plurality of photons simultaneously or stepwise into the sensitizer.
  • Multiphoton absorption includes (a) one that absorbs light emitted from a single wavelength light source (see Figs. 1 and 2) and (b) one that absorbs light emitted from multiple light sources of different wavelengths ( (See Fig. 3)
  • Multiphoton absorption that absorbs light emitted from a single wavelength light source includes (i) a singlet excited state (S1) force that supplies energy to the reactive group (C), and (ii) a singlet excited state. From (S1) to the triplet excited state (T1) due to intersystem crossing, energy is transferred from there to the reactive group (C). Some supply one.
  • the minimum amount of photon energy required is the amount of energy ⁇ E from the ground state (SO) to the-singlet excited state (S 1).
  • Fig. 1 is a diagram schematically showing how electrons move due to photon absorption.
  • the ground state (SO) and the singlet excited state (S1) represent the existing energy states.
  • the virtual state (Sx) represents an energy state that is one photon higher than the ground state (SO). However, since the virtual state (Sx) is set temporarily and not in the existing energy state, electrons cannot move to the virtual state.
  • Absorption in the case of (i) is an absorption called simultaneous multiphoton absorption (in this example, simultaneous two-photon absorption).
  • simultaneous multiphoton absorption in this example, simultaneous two-photon absorption.
  • the sensitizer (A) when excitation is performed, the sensitizer (A) is irradiated with light (excitation light) and absorbs the two photons, thereby basing the sensitizer (A) on the base.
  • the electrons in the state (SO) move to the singlet excited state (S1).
  • the sensitizer (A) is excited and can react with the reactive group (C).
  • non-resonant two-photon absorption In this way, in simultaneous two-photon absorption, it is sufficient if the actual excited state exists at twice the energy level of the photon used for excitation, so there is no absorption in the absorption spectrum, and the region (non-resonant region) It is possible to excite molecules using light of a wavelength of.
  • the case where two-photon absorption occurs nonlinearly using light with a wavelength in the non-resonant region is called non-resonant two-photon absorption.
  • the efficiency of this non-resonant two-photon absorption is proportional to the square of the photoelectric field applied to the sensitizer (A) (the two-photon absorption squared characteristic). For this reason, in a three-dimensional space, two-photon absorption occurs only in a region where the applied light intensity is high, and no two-photon absorption occurs in a region where the light intensity is low. Therefore, non-resonant two-photon absorption is derived from this square characteristic in comparison with linear absorption where excitation occurs at all positions in proportion to the intensity of the applied photoelectric field. Since excitation occurs only in a predetermined region, the spatial resolution is significantly improved.
  • a laser having a wavelength longer than the wavelength region where linear absorption is performed that is, the wavelength region where one-photon absorption exists
  • a laser having no absorption Often uses light.
  • a laser in a transparent region that is, a laser that emits laser light in a wavelength region where there is no one-photon absorption
  • the laser light is subjected to absorption and scattering. Without reaching the inside of the photoreactive yarn and the product.
  • the two-photon absorption cross section indicating the two-photon absorption, but usually 100GM or more, preferably 1000GM or more, more preferably 10000GM.
  • a sensitizer (A) having the above is preferred.
  • the evaluation method of the two-photon absorption cross section is as follows. The evaluation of the two-photon absorption cross-section of a compound is performed with reference to the open-chamber type Z-scan method described in Reference I (IEEE J. Quant. Electron. 26 (1990) 760).
  • a Ti: sapphire laser and an optical parametric oscillator laser pumped by the laser are used as a light source for measuring the two-photon absorption cross section.
  • the pulse width of the light source pulse is 110 femtoseconds to 130 femtoseconds, the pulse repetition frequency is 76 Hz, and the average power is 10-1QQ mW.
  • the wavelength range is 570 ⁇ ! Measure at ⁇ 1200nm. As described in Document I, the measurement is performed by converging the pulse laser beam from the light source with a lens, scanning the sample to be measured in the direction of travel of the laser beam (Z axis), and Measure the transmittance at the sample position.
  • Figure 2 shows the movement of electrons associated with photon absorption. It is a figure which shows a mode typically.
  • the same reference numerals as those in FIG. 1 denote the same elements as in FIG.
  • the sensitizer (A) is irradiated with excitation light and absorbs two photons, so that electrons in the ground state (SO) move to the singlet excited state (SI). To do. However, in the case of (ii), the electrons in the singlet excited state (S1) move to the triplet excited state (T1) due to intersystem crossing. Thus, the sensitizer (A) is excited and can react with the reactive group (C).
  • any sensitizer (A) can be used as long as it is a compound having absorption and a portion thereof (a portion that exhibits a sensitizing action).
  • the energy is too low, and a large number of photons are required to supply the sensitizer (A) with energy necessary for excitation of the sensitizer (A). In particular, the efficiency can be significantly reduced.
  • sensitization suitable for multiphoton absorption that absorbs light emitted from a single wavelength light source for example, a compound having absorption in the visible region is preferably used.
  • dyes such as cyanine, merocyanine, phthalocyanine, ponolephyrin, xanthene, triarinolemethane, asylidine, azine, chlorophyll, aromatic compounds such as condensed aromatic rings, oligophenolene, conjugated gen, coumarin, azacoumarin, quinoline, azaquinoline.
  • heterocyclic compounds such as oxazole, benzoxazole, oxadiol, furan, benzofuran, pyrazoline, phthalimide, naphthalimide, pteridine, and heterocyclic salts.
  • a portion that exhibits the sensitizing action of these exemplified compounds can be used as a sensitizer (.
  • Multistage absorption is an example of multiphoton absorption that absorbs light emitted from a plurality of light sources having different wavelengths.
  • the sensitizer (A) changes from the ground state (SO) to the singlet excited state (S1) by absorbing the photons of the first light (first excitation light) emitted from the first light source.
  • the lowest triplet excited state (T1) By being excited and then transitioning to the lowest triplet excited state (T1) by intersystem crossing, followed by absorbing photons of the second light (second excitation light) emitted from the second light source
  • T1 the lowest triplet excited state
  • Tn triplet excited state
  • the triplet excited state (Tn) is an orbital level having sufficient energy for the initiation of the reaction, from this triplet excited state (Tn) to the reactive group (C) for the initiation of the reaction. Of energy is supplied.
  • FIG. 3 is a diagram schematically showing how electrons move due to photon absorption.
  • the same reference numerals as those in FIGS. 1 and 2 denote the same elements as those in FIGS.
  • This multistage absorption is an absorption called stepped multiphoton absorption (in this example, stepped two-photon absorption).
  • the sensitizer (A) was in the ground state (SO) of the sensitizer (A) by absorbing one photon of the first light. Electrons move to the singlet excited state (S1). After that, due to intersystem crossing, electrons existing in the singlet excited state (S1) move to the lowest triplet excited state (T1). [0042] Thereafter, the sensitizer (A) absorbs one photon of the second light. By absorbing this photon (second photon), electrons in the lowest triplet excited state (T1) of the sensitizer (A) become triplet excited states (Tn) at higher energy levels. Move to. As a result, the sensitizer ( ⁇ ) is excited and can react with the reactive group (C).
  • the wavelength of the first light causing the first stage excitation is shorter than the wavelength of the second light causing the second stage excitation (high energy). Is preferred.
  • the sensitizer ( ⁇ ) also excites the ground state (SO) force to the singlet excited state (S 1), it absorbs light of the second wavelength only weakly or not at all. Is preferred.
  • the orbital level of the singlet excited state (S1) in the first stage or Z and the lowest triplet excited state (T1) passing through the intersystem crossing from there is the reactive group (C) starting chemical conversion. It is preferable that the orbital level does not have enough energy to be able to start chemical conversion only after being excited to the triplet excited state (Tn) via the second stage excitation. . By selecting such a system, it is not possible to supply sufficient energy to the reactive group (C) with only one of the first light and the second light, and irradiation with light of both wavelengths. It is possible to add a so-called "light gate function" that can start chemical conversion of the reactive group (C) for the first time.
  • stepwise multiphoton absorption is caused by the addition of actual excitation.
  • the excitation wavelength of the first photon that is, the wavelength of the first light
  • the optical recording medium hologram recording medium formed from the photoreactive composition of the present invention is required for excitation after recording. Even if only one wavelength (that is, either the first light or the second light) of the two wavelengths of excitation light (that is, the first light or the second light) is irradiated, the sensitization is performed.
  • the body (A) is never excited.
  • Sensitizers (A) suitable for such stepwise multiphoton absorption include (1) singlet excited state (S (1) Long lifetime, (2) —low fluorescence in the singlet excited state (S 1), that is, good intersystem crossing efficiency, and (3) lowest triplet excited state (T1) Examples include compounds that have a long life span and satisfy at least one of them. It is more preferable that the above requirements are satisfied more. Specific examples of suitable sensitizers (A) that satisfy such requirements include ponorephrine, oligothiophene, xanthene, phthalocyanine, coumarin, oxazole, benzophenone, oligophenolene, and pyrene. In addition, a portion that exhibits the sensitizing action of the compounds shown in these examples can also be used as the sensitizer (A).
  • the quantum yield ( ⁇ ) in the triplet excited state is not particularly limited, but is preferably 0.5 or more, more preferably 0. . 7 or more
  • the triplet-triplet molar extinction coefficient ( ⁇ ) in the wavelength region of the excitation light of the second stage of the sensitizer (A) is not particularly limited, but is preferred.
  • each stage of excitation eg, first stage excitation, second stage excitation, etc.
  • each stage of excitation is independent of each other.
  • Multi-photon absorption that absorbs light emitted from a single wavelength it may occur by absorbing a plurality of photons of each wavelength.
  • a sensitizer (A) that is excited by multiphoton absorption for example, a multiphoton absorption compound or a portion thereof
  • optical recording is performed using the photoreactive composition of the present invention.
  • a medium is manufactured, recording and reproduction can be performed with excitation light having a relatively long wavelength with respect to the optical recording medium. For this reason, it is possible to record and replay using a long wavelength laser that is inexpensive and easily available without using a short wavelength laser that is generally expensive and difficult to obtain.
  • Advantages such as the ability to suppress side reactions that are likely to occur with ultraviolet light and recording with good recording quality can be obtained.
  • stepwise multiphoton absorption is preferable because an optical gate function can be realized. Therefore, as the sensitizer (A), among the multiphoton absorbing compound or a part thereof, a multistep excitation type multiphoton absorption compound (multistage excitation sensitizer) that generates stepwise multiphoton absorption or a part thereof is used. It is preferable to use the part as a sensitizer (A).
  • a multistep excitation type multiphoton absorption compound multistage excitation sensitizer
  • the sensitizer (A) when the sensitizer (A) absorbs two or more photons as described above, it is preferably excited by absorbing two or more different photons.
  • the type of photon wavelength means that the wavelengths are different from each other by 30 nm or more, preferably 50 nm or more.
  • the wavelength of the photon absorbed by the sensitizer (A) is two or more, stepwise multi-photon absorption is possible, and the photoreactive composition of the present invention has an advantage that a photogate function can be realized. be able to.
  • the use of the first excitation light and the second excitation light in the above-described stepwise two-photon absorption is an example of two or more photon wavelengths.
  • the content of the sensitizer (A) contained in the photoreactive composition of the present invention is arbitrary as long as the effects of the present invention are not significantly impaired. 0.001% by weight or more, preferably 0.01% by weight or more, more preferably 0.1% by weight or more, and usually 50% by weight or less, preferably 40% by weight or less, more preferably 30% by weight or less. . If the amount of the sensitizer (A) is too small, the sensitivity may decrease. If the amount is too large, absorption of light used for recording and reproduction increases, and light may not reach the depth direction.
  • the sensitizer (A) is a part of a compound (for example, a functional group)
  • the sensitizer (A) is included in the polymer) unless the effects of the present invention are impaired. Also good.
  • the sensitizer (A) is contained in the polymer (B)
  • the sensitizer (A) is heavy as a part of the main chain that may be contained in the polymer (B) as a side chain. It may be contained in coalescence (B).
  • Any polymer (B) may be used as long as it is a polymer (polymer) having a reactive group (C) capable of causing a predetermined chemical conversion.
  • the reactive group (C) will be described first, and then the polymer) will be described.
  • the reactive group (C) is a group of atoms that can substantially participate in chemical conversion, and causes chemical conversion. Any group can be used. There is no limitation on the chemical transformation in which the reactive group (C) is generated. Any appropriate chemical transformation can be used depending on the use of the photoreactive composition of the present invention. However, it is preferable that the reactive group (C) causes chemical conversion when the sensitizer (A) is appropriately excited. Therefore, it is preferable that the chemical transformation of the reactive group (C) occurs due to the contribution of the excited sensitizer (A).
  • organic reactions can be mentioned as examples of suitable ones. Among these, photoreaction, polymerization reaction, polymer reaction and the like are particularly preferable.
  • examples of the photoreaction include an isomerization reaction, a transfer reaction, a cyclization reaction, a dimerization reaction, a hydrogen abstraction reaction, and an addition reaction.
  • Examples of isomeric reactions include isomerization reactions of olefins, azo compounds, and carbonyl compounds.
  • isomerization reactions of olefins include cis-trans isomerization reactions (eg, cis-trans isomerism such as stilbene, 1,3 pentagen, cyclic olefin, olefins conjugated with carboleyl, and nitrogen compounds). Ii reaction). Further, the isomerization reaction of the azo compound includes a cis-trans isomerization reaction.
  • Examples of the rearrangement reaction include rearrangement reaction of olefin, polyene, and enone compounds, and photorearrangement reaction of carbo-louie compound.
  • rearrangement reactions of olefin and polyene include rearrangement reactions that occur during cyclization and isomerization reactions due to intramolecular rearrangement of protons, rearrangement reactions of di- ⁇ methane compounds (for example, 1,4 pentagen derivatives).
  • a rearrangement reaction that occurs during the formation of bulucyclopropane by the reaction a rearrangement reaction that occurs during the formation of cyclopropane by the photorearrangement of cyclic ⁇ -methane (for example, the rearrangement reaction of norbornagen-quadricicrane) Etc.)) and the like.
  • rearrangement reactions of enone compounds include rearrangement reactions that occur during 1,2-aryl and lumiketone rearrangements in ⁇ , ⁇ -cyclohexenone, photorearrangement reactions of cyclopentenone, ⁇ , Photorearrangement reaction of ⁇ -enone, rearrangement reaction of Genony compound (rearrangement reaction that occurs during the formation of bicyclohexenone or hydroxyketone from 2,5 cyclohexagenone; hetero 2,5 cyclohexagenone, 2, 4 -Rearrangement reaction that occurs during the rearrangement and ring cleavage reaction of cyclohexagenone; Rearrangement reaction that occurs during the photochemical reaction of trobolone (cycloheptatrienone).
  • the photorearrangement reaction of a carbo-Louis compound includes a photorearrangement reaction that occurs in the formation reaction of ketene and aldehyde by decomposition of a cyclic ketone, and a carbon monoxide elimination reaction from a carbonyl compound. Photorearrangement reaction that occurs during the reaction, and photorearrangement reaction that occurs during the formation reaction of the cyclic ether by ring expansion reaction of the cyclic ketone.
  • Examples of the cyclization reaction include a cyclization reaction of Gen and Trien, a photocyclization reaction of stilbene and a derivative thereof, and an intermolecular photocyclization reaction of olefin.
  • the cyclization reaction of gen and triene includes the cyclization reaction that occurs during the formation reaction of cyclobutane by the intramolecular cyclization reaction of non-conjugated gen, and the formation of cyclobutene by intramolecular cyclization of conjugated gen.
  • Examples include a cyclization reaction that occurs during the reaction, a cyclization reaction of cyclic conjugation, a ring formation reaction having triene by ring opening of bicyclohexagen, and a cyclization reaction of heterogene and triene.
  • photocyclization reaction of stilbene and its derivative includes photocyclization reaction that occurs in the synthesis reaction of phenanthrene, photocyclization reaction of azobenzene-aniline derivative, photocyclization of stilbene having anthrone and heterocycle And the like.
  • the intermolecular photocyclization reaction of olefins includes intermolecular photocyclization reaction between conjugated olefin and olefin, intermolecular photocyclization reaction that occurs in the photoaddition reaction to enony compound, and olefin to acetylene. And the intermolecular photocyclization reaction that occurs during the addition reaction of olefins to the aromatic ring.
  • dimerization reaction examples include the photodimerization reaction of olefin.
  • the photodimerization reaction of olefin is the dimer of alkylolefin.
  • divinylcyclobutane by the dimerization of cyclobutane by the dimerization of cyclobutane by the dimerization of cyclobutane the dimerization of cyclobutane by the dimerization of aromatic olefin
  • Photodimer reaction that occurs during the formation reaction photodimer reaction that occurs during the formation reaction of cyclobutane due to the dimerization of the enone compound (for example, the photodimer reaction of a chain enone compound; Photodimer reaction of tenone, cyclohexenone, heterocycle, etc .; photodimer reaction of quinone compounds), photodimer reaction of fumaric acid and maleic acid with their derivatives.
  • Examples of the hydrogen abstraction reaction include a hydrogen abstraction reaction of a carbonyl compound.
  • the hydrogen abstraction reaction of a carbonyl compound includes an intramolecular hydrogen abstraction reaction of an aromatic ketone, a hydrogen abstraction reaction that occurs during the formation reaction of cyclobutanol from a cycloalkyl ketone, and a cyclic ketone.
  • Abstraction reaction during bicycloalcohol formation reaction from ⁇ -diketones hydrogen abstraction reaction within ⁇ -diketone molecule, hydrogen bow I extraction reaction within ⁇ , ⁇ unsaturated ketone molecule, ortho-substituted aromatic ketone Examples include a hydrogen abstraction reaction that occurs during the cyclization and enantiomer reaction, a hydrogen abstraction reaction that occurs during the intramolecular cyclization reaction of phthalimide, and a hydrogen abstraction reaction that occurs during the reduction reaction of carbonyl.
  • Examples of the addition reaction include an addition reaction of a carbonyl compound to olefin.
  • the addition reaction of carbonyl compounds to olefins includes addition reactions that occur during the formation of oxetane by reaction with electron-rich olefins; carbonyl compounds and lack of electrons.
  • Addition reaction that occurs during the formation reaction of oxetane by reaction with olephine Addition reaction that occurs during the formation reaction of oxetane by intramolecular addition reaction of unsaturated ketone;
  • By addition reaction of ketone having electron withdrawing group to olefin Addition reactions that occur during the formation reaction of oxetane; addition reactions to olefins such as benzoquinone, fluoroketone, and nitrobenzene.
  • photoreactions of aromatic compounds include isomeric reactions of benzene and its derivatives, Isomerization reaction of gin and its derivatives, addition reaction to aromatic ring, synthesis reaction of substituted phenol and arlin by photofleece rearrangement, photosubstitution reaction of aromatic compound (nucleophilic reaction of nitroaromatic compound, And photo-substitution reaction of benzene and its analogues, photo-substitution reaction of poly-substituted benzene, photo-addition and substitution reaction to benzo-tolyl).
  • Examples of the polymerization reaction include addition polymerization reaction, transition metal catalyzed polymerization reaction, ring-opening polymerization reaction, cyclopolymerization reaction, polycondensation reaction, polyaddition / addition condensation reaction, and the like.
  • addition polymerization examples include radical polymerization reactions (for example, radical polymerization reactions of ethylene, vinyl chloride, butyl acetate, vinylidene chloride, styrene, butadiene, methacrylic monomers, acrylic monomers, acrylonitrile, etc.); cationic polymerization reactions (for example, cationic polymerization reaction such as styrene, isobutene, butyl ether, N-bulu force rubazole), ion polymerization reaction (eg, cation polymerization reaction such as styrene, butadiene, methacrylic monomer, acrylic monomer, nitroethylene) And ionic polymerization reactions.
  • radical polymerization reactions for example, radical polymerization reactions of ethylene, vinyl chloride, butyl acetate, vinylidene chloride, styrene, butadiene, methacrylic monomers, acrylic monomers, acrylonitrile, etc.
  • the transition metal catalyzed polymerization reaction includes, for example, a polymerization reaction using a Zeiggler-Natta catalyst (for example, a catalytic polymerization reaction of olefin, styrene, acetylene, gen, etc.), or a polymerization reaction using a metathesis catalyst. (For example, catalytic polymerization reaction of cyclic olefin, alkyne, gen, etc.).
  • a Zeiggler-Natta catalyst for example, a catalytic polymerization reaction of olefin, styrene, acetylene, gen, etc.
  • a metathesis catalyst for example, catalytic polymerization reaction of cyclic olefin, alkyne, gen, etc.
  • Examples of the ring-opening polymerization reaction include a ring-opening polymerization reaction of a cyclic monomer.
  • a crosslinking reaction for example, an epoxy-amine reaction, an epoxy mercaptan reaction, an unsaturated ester-amine reaction, an unsaturated ester-mercaptan reaction, a hydrocycle reaction, a urethanization reaction, etc.
  • dendrimer for example, an epoxy-amine reaction, an epoxy mercaptan reaction, an unsaturated ester-amine reaction, an unsaturated ester-mercaptan reaction, a hydrocycle reaction, a urethanization reaction, etc.
  • isomerization reaction and rearrangement reaction are preferred.
  • a reactive group (C) that generates an isomerization reaction or a rearrangement reaction it is possible to obtain the advantage that it is not dependent on the surrounding environment where the free volume is small.
  • the chemical conversion it is also preferable to use one that changes the optical properties of the photoreactive composition of the present invention by the chemical conversion. That is, the sensitizer (A) is excited In such a case, it is preferable to employ a compound in which the reactive group (C) is chemically converted by the contribution of the excited sensitizer (A) and the optical properties of the photoreactive composition of the present invention are changed. ,.
  • the optical characteristics that change include refractive index and Abbe number (reverse dispersion ratio). Among them, refractive index is preferable.
  • the photoreactive composition of the present invention can be suitably used as a hologram recording material.
  • Examples of chemical transformations that can change the optical properties of the photoreactive composition as described above include addition reactions, isomerization reactions, rearrangement reactions, cyclization reactions, and the like. Of these, isomerization reaction, rearrangement reaction, and cyclization reaction are preferable in order to greatly change the refractive index.
  • Particular preferred isomerization reactions include cis-trans isomerization reactions, and among them, more preferable reactions include cis-trans isomerization reactions of azo compounds.
  • rearrangement reactions include intramolecular rearrangement reactions of olefin and polyene.
  • a more preferable reaction is a rearrangement reaction from norbornagen to quadricyclane.
  • particularly suitable cyclization reactions include intermolecular photocyclization reactions, and among them, more preferred reactions include intermolecular photocyclization reactions of anthracene.
  • the refractive index changes as a change in optical characteristics
  • there is no limit to the degree to which the refractive index changes but usually 0.001 or more, preferably 0.01 or more, more preferably 0.05 or more. Chemical transformations that cause this change are preferred. This is because the greater the change in refractive index, the higher the multiplicity of recording and the larger the recording capacity per unit volume.
  • Specific examples of the reactive group (C) that causes chemical conversion as described above include a norbornagen group.
  • porphyrin as the sensitizer (A) and norbornagen group as the reactive group (C).
  • the reactive group (C) one kind may be used alone. Two or more kinds may be used in any combination and in any ratio. Accordingly, the polymer) may have two or more kinds of reactive groups (C).
  • the molecular weight of the reactive group (C) is not limited.
  • the polymer) is a polymer having a reactive group (C).
  • the reactive group (C) may be contained in the polymer (B) as a part of the main chain which may be contained in the polymer (B) as a side chain. Further, it may contain a reactive group (C) that is not contained in the polymer.
  • the polymer (B) may be a polymer obtained by polymerizing only one kind of monomer, or may be a copolymer obtained by copolymerizing two or more kinds of monomers in an arbitrary combination and ratio. ! / Further, there is no limitation on the type of polymerization, and a polymer obtained by any type of polymerization method such as block polymerization, random polymerization, graft polymerization or the like can be used. Furthermore, the polymer) may be linear or branched.
  • suitable polymers (B) include polymetatalylate, polyacrylate, polystyrene, polyester, polyamide, polyurethane, polycarbonate, polyetherol, cenorelose esterol, poly (polyacrylate) having a reactive group (C). Vininoles Estenore, Polyvinylenoatenore, Polysiloxane, Polyolefin derivatives and the like.
  • the polymer (B) may be used alone or in combination of two or more in any combination and ratio.
  • the viewpoint of improving the sensitivity upon photoexcitation is that the polymer is optically transparent in the spectral region (that is, in the wavelength region) absorbed by the sensitizer (A).
  • the polymer preferably has no significant absorption at the wavelength of excitation light (excitation wavelength).
  • the haze of the polymer (B) at a thickness of 1 mm is usually 30% or less, preferably 10% or less, more preferably 5% or less.
  • the haze is preferably as small as possible, and the lower limit is 0%.
  • the polymer (B) is preferably one that does not interfere with the chemical conversion of the reactive group (C). That is, the reactive group (C) is converted into a component other than the reactive group (C) in the molecular structure of the polymer (B). It is preferable that the academic conversion is not disturbed.
  • the polymer (B) may have a substituent other than the reactive group (C) as long as the effects of the present invention are not significantly impaired.
  • the substituent may be used alone or in combination of two or more in any combination and ratio.
  • the weight average molecular weight of the polymer (B) is not limited, and any force as long as the effect of the present invention is not significantly impaired. Usually 1000 or more, preferably 3000 or more, more preferably 5000 or more, and further Preferably it is 10,000 or more. There is no particular upper limit. If the molecular weight is too small, the archive life may be shortened.
  • the weight average molecular weight of the polymer (B) can be measured by GPC (gel permeation chromatography).
  • the viewpoint power to increase the archive life when the photoreactive composition of the present invention is used as an optical recording material or a volume hologram recording material is that the micro-Brownian motion of the polymer (B) is in use. It is preferable to make it smaller. To achieve this, the polymer (B)
  • the glass transition temperature Tg of (B) is suitably 20 ° C or higher, preferably 30 ° C or higher, more preferably 50 ° C or higher, and usually 300 ° C or lower, preferably 290 ° C or lower. More preferably, it is 280 ° C or lower.
  • the content of the polymer (B) contained in the photoreactive composition of the present invention is arbitrary as long as the effects of the present invention are not significantly impaired.
  • the polymer (B) can be produced by bonding the reactive group (C) to an arbitrary polymer (polymer before bonding the reactive group (C)).
  • the reaction performed during the synthesis include urethanization, esterification, etherification, sulfidation, carboxylic acid epoxy reaction, amine-epoxy reaction, thiol epoxy reaction, amidation reaction, acid anhydride-amine reaction, and the like.
  • the photoreactive composition of the present invention may contain other components (additives).
  • an arbitrary additive may be used for the purpose of controlling the excitation of the sensitizer (A) (controlling the excitation wavelength and excitation energy), controlling the reaction, and improving the characteristics. Absent.
  • a sensitization aid is used as an additive for controlling excitation of the sensitizer (A).
  • the additive for controlling the reaction include an initiator, a chain transfer agent, a polymerization terminator, a compatibilizing agent, and a reaction auxiliary agent.
  • additives for improving the properties include dispersants, antifoaming agents, plasticizers, preservatives, stabilizers and the like.
  • the amount of the additive used is arbitrary as long as the effects of the present invention are not significantly impaired.
  • the concentration in the photoreactive composition of the present invention is usually 0.001% by weight or more, preferably 0.01% by weight or more, and usually 30% by weight or less, preferably 10% by weight or less.
  • the sensitizer (A) since the sensitizer (A) has a reduced electron configuration with respect to the reactive group (C), it is used for an optical recording medium such as a hologram recording medium. In addition, it is possible to read the record without destroying the recorded content. The reason why such an excellent advantage can be obtained is assumed as follows.
  • FIG. 4 shows an example of changes in the sensitizer and the reactive group at the time of readout when the sensitizer has an oxidized electron configuration with respect to the reactive group!
  • FIGS. 5 (a) to 5 (c) show the sensitizer and reactive group at the time of readout when the sensitizer has an oxidized electron configuration with respect to the reactive group. It is a figure showing an example of electronic arrangement
  • FIG. 6 is a diagram showing an example of changes in the sensitizer (A) and the reactive group (C) during readout in the photoreactive composition of the present invention.
  • FIG. 7 (a) to FIG. 7 (c) show the electron configuration of the sensitizer (A) and the reactive group (C) at the time of readout, respectively, in the photoreactive composition of the present invention. It is a figure showing an example.
  • a composition having a sensitizer such as sensitizer (A)
  • a substance having a reactive group such as reactive group (C)
  • a volume hologram recording medium is formed using
  • the volume hologram recording medium is irradiated with reading light (reproduction light).
  • the sensitizer When the readout light is irradiated, the sensitizer is excited (see stepl in Fig. 4). At this time, the electrons in the occupied orbit AO of the sensitizer move to an intermediate empty orbit Ax according to the intensity of the readout light (see Fig. 5 (a)). As a result, an occupant orbit AO of the sensitizer becomes empty, and electrons enter. (See Fig. 5 (b)).
  • the sensitizer has an oxidized electron configuration with respect to the reactive group, so the occupied orbital AO of the sensitizer has an energy level higher than the occupied orbital CO of the reactive group. Low. For this reason, electrons move from the occupied orbit CO of the reactive group to the occupied orbit AO of the sensitizer in which the vacancy is generated, as indicated by the solid line arrow in FIG. 5 (b). This electron transfer oxidizes the reactive group (see step 2 in Fig. 4). As shown in Fig. 5 (c), the oxidized reactive group becomes an excited state in which only one electron is present in the occupied orbital CO, and thus becomes an active state that can cause chemical mutation.
  • Reactive groups that have become active may cause chemical transformations. If the reactive group undergoes chemical conversion, the recorded content may be destroyed. In other words, the chemical conversion is a force that occurs when information is written. When this chemical conversion occurs when information is read, the program of the recording section changes and the recorded contents are destroyed.
  • A1 and C1 indicate the vacant orbitals of the sensitizer and the reactive group, respectively.
  • a volume hologram recording medium is formed using the photoreactive composition of the present invention. That is, at the time of reading information, when the reading light is irradiated to the volume hologram recording medium, the sensitizer (A) is excited (see stepl in FIG. 6). At this time, electrons in the occupied orbit AO of the sensitizer (A) move to an intermediate air path Ax corresponding to the intensity of the readout light (see Fig. 7 (a)). As a result, a space is generated in the occupied orbit AO of the sensitizer (A) and electrons can enter (see Fig. 7 (b)).
  • the sensitizer (A) has a reduced electron configuration with respect to the reactive group (C).
  • Occupied orbital AO has a higher energy level than the occupied orbital CO of the reactive group (C). For this reason, electrons do not move from the occupied orbit CO of the reactive group (C) to the occupied orbit AO of the sensitizer (A) in which the vacant space is generated.
  • the intermediate empty orbit AX is made lower than the empty orbit C1 of the reactive group (C) by keeping the energy of the readout light within an appropriate range, etc.
  • the sensitizer (A) If the electron in the occupied track AO is not given too much energy), the electron may not move from the intermediate track Ax to the empty track C 1 of the reactive group (C). (See dashed arrow in Figure 7 (b)). Therefore, the electrons that have moved to the intermediate empty orbit Ax move to the occupied orbit AO of the sensitizer (A) as shown by the solid line arrow in FIG. 7 (b). In this way, the sensitizer (A) relaxes and returns to the state before excitation (see Fig. 7 (c)), and the reactive group (C) is not oxidized. ) Remains inactive (see step 2 in Figure 6). Therefore, the recorded content is not destroyed without the reactive group (C) causing a chemical transformation.
  • A1 represents an empty orbit of the sensitizer (A).
  • the photoreactive composition of the present invention can read a record without destroying the recorded content.
  • the reactive group (C) undergoes chemical transformation when irradiated with appropriate excitation light. That is, in the photoreactive composition of the present invention, chemical reaction can be caused to the reactive group (C) by using light of a certain predetermined condition, and the reactive group (C) is not exposed to light of other conditions. If no chemical conversion occurs! /, It is possible to realize the function (ie, optical gate function). Specifically, the energy force that the irradiated light gives to the sensitizer (A) Chemical conversion occurs depending on whether the intermediate empty orbit Ax is higher or lower than the empty orbit C1 of the reactive group (C). It is possible to control whether or not.
  • the photoreactive composition of the present invention when used for hologram recording, excites the sensitizer (A) and contributes to the reactive group (C) by the contribution of the excited sensitizer (A). It is possible to write information by converting the data.
  • the mechanism is explained below with an example.
  • FIG. 8 (a) to FIG. 8 (c) show the sensitizer (A) and reaction at the time of writing when the reactive group (C) is activated by reduction in the photoreactive composition of the present invention, respectively.
  • AO and A1 represent the occupant and empty orbital electron configurations of the sensitizer (A), respectively
  • CO and C1 represent the groups of the reactive group (C).
  • the energy of the photon is used to move electrons in the occupied orbit AO of the sensitizer (A) to the empty orbit A1 (Fig. 8 (a ) Arrow).
  • the electrons in the occupied orbit AO of the sensitizer (A) move to the empty orbit A1 as shown in FIG. 8 (b).
  • the reactive group (C) has electrons in the vacant orbit C1, and becomes active. Therefore, the reactive group (C) that has become active thereafter undergoes chemical transformation. Therefore, if information is written using this chemical conversion, a volume hologram recording medium can be formed using the photoreactive composition of the present invention. That is, in this volume hologram recording medium, information can be written when the sensitizer (A) absorbs photons.
  • FIG. 9 (a) to FIG. 9 (c) show the sensitizer (A) and reaction during writing when the reactive group (C) is activated by energy transfer in the photoreactive composition of the present invention, respectively. It is a figure showing an example of the electronic arrangement of group (C).
  • AO and A 1 represent the occupant and empty orbital electron configurations of the sensitizer (A), respectively
  • CO and C1 represent the reactive group (C). Represents the electronic configuration of the occupied orbit and empty orbit, respectively.
  • the photoreactive composition of the present invention when writing information, is irradiated with recording light, and the sensitizer (A) absorbs photons of this recording light.
  • the energy of the photon is the same as that explained in the example of reduction using Fig. 8 (a) above, as shown in Fig. 9 (a), the electrons in the occupied orbit AO of the sensitizer (A). Is used to move to orbit A1 (see arrow in Fig. 9 (a)).
  • the electrons in the occupied orbit AO of the sensitizer (A) move to the empty orbit A1 as shown in FIG. 9 (b).
  • a space is generated in the occupied track AO of the sensitizer (A).
  • a volume hologram recording medium that can be used can be formed. That is, this volume hologram recording medium can also write information by the photosensitizer absorbing the photons.
  • the photoreactive composition of the present invention it is possible to lengthen the one-life eve life when a volume hologram recording medium is used. Specifically, how much archive life can be obtained is not uniform depending on the composition of the photoreactive composition, the usage environment of the volume hologram recording medium, and the like.
  • the information written on the volume hologram recording medium using the photoreactive composition of the present invention is usually at least 3 years, preferably at least 10 years, more preferably at least 30 years at room temperature (25 ° C). Have an archive life of.
  • the photoreactive composition of the present invention can be used as a material in any industrial field. Of these, use as an optical material is preferable because the characteristics of the photoreactive composition of the present invention can be effectively utilized.
  • the photoreactive composition of the present invention When the photoreactive composition of the present invention is used as an optical material, the photoreactive composition of the present invention alone can coexist with other components that can be used as an optical material, together with the photoreactive composition, It may be used as an optical material. There are no restrictions on the other components. For example, it is possible to use a light dispersing agent, a coloring material, or the like. The amount of other components used is also arbitrary.
  • optical material is arbitrary, but it is particularly preferable to use it as an optical recording material.
  • the optical recording material is preferably used as a volume hologram recording material. This makes it possible to effectively utilize the advantages of the photoreactive composition of the present invention described above.
  • the optical recording medium of the present invention is formed by using the photoreactive composition of the present invention as an optical recording medium or a volume hologram recording material. As long as it is configured to include the photoreactive composition of the present invention as the material for recording information, the specific configuration is not limited and is arbitrary.
  • the optical recording medium of the present embodiment includes a recording layer formed of an optical recording material.
  • the optical recording material is a material containing at least the photoreactive composition of the present invention.
  • the optical recording medium is configured to include a support and other layers as necessary.
  • the recording layer is a layer on which information is recorded. Information is usually recorded as a hologram.
  • the recording layer contains the photoreactive composition of the present invention. It is made of an optical recording material.
  • the optical recording material may be formed of the photoreactive composition of the present invention alone, but may contain other components as required. Further, how much other components are contained is arbitrary as long as the effects of the present invention are not significantly impaired.
  • the thickness of the recording layer is not limited. Usually, the thickness of the recording layer varies depending on the recording method. However, in the optical recording medium, the thickness of the recording layer is usually 1 ⁇ m or more, preferably 10 ⁇ m or more, and usually 1 cm or less, preferably 2000 ⁇ m or less. If the recording layer is too thick, the selectivity of each hologram may be lowered during multiplex recording on an optical recording medium, and the degree of multiplex recording may be reduced. If the recording layer is too thin, it is difficult to form the entire recording layer uniformly, and it is difficult to perform multiplex recording with a uniform diffraction efficiency of each hologram and a high SZN ratio.
  • the optical recording medium has a support, and the recording layer and other layers are laminated on the support to constitute the optical recording medium.
  • the support is usually required to have the necessary strength and durability. Although there is no restriction
  • the material constituting the support is not limited and may be transparent or opaque.
  • transparent materials include organic materials such as acrylic, polyethylene terephthalate film, polyethylene naphthoate, polycarbonate, polyethylene, polystyrene, and cellulose acetate; and inorganic materials such as glass, silicon, and quartz.
  • organic materials such as acrylic, polyethylene terephthalate film, polyethylene naphthoate, polycarbonate, polyethylene, polystyrene, and cellulose acetate
  • inorganic materials such as glass, silicon, and quartz.
  • polycarbonate, acrylic, polyester, glass and the like are preferable, and acrylic, polycarbonate, and glass are more preferable.
  • an opaque material is cited as the support material, a metal such as aluminum; a metal such as gold, silver, or aluminum on the transparent support, or magnesium fluoride, zirconium oxide, etc. And those coated with a dielectric material.
  • the thickness of the support is not limited. However, usually 0. lmn! It is preferably ⁇ lmm. If the support is too thin, the mechanical strength of the optical recording medium may be insufficient, and if it is too thick, the cost may increase.
  • the surface of the support may be subjected to a surface treatment.
  • This surface treatment is usually performed to improve the adhesion between the support and the recording layer.
  • Examples of surface treatment include corona discharge treatment and forming a layer for surface treatment.
  • examples of the layer for the surface treatment include a layer formed from a halogen phenol or a partially hydrolyzed vinyl chloride-vinyl acetate copolymer (such as an undercoating layer and an undercoat layer). .
  • the surface treatment may be performed for purposes other than the improvement of adhesiveness.
  • examples include a reflective coating process that forms a reflective coating layer made of a metal such as gold, silver, or aluminum; a dielectric coating process that forms a dielectric layer such as magnesium fluoride or zirconium oxide. Is mentioned. These layers may be formed as a single layer or two or more layers.
  • the support may be provided only on one or both of the upper and lower sides of the recording layer of the optical recording medium of the present invention. However, in the case where supports are provided on both the upper and lower sides of the recording layer, at least one of the supports is transparent so as to transmit active energy rays (excitation light, reference light, reproduction light, etc.).
  • a transmissive or reflective hologram can be recorded.
  • a reflection hologram can be recorded.
  • the support may be provided with a pattern for data address.
  • the patterning method is not limited.
  • the support itself may be formed with irregularities, or a pattern may be formed on a reflective layer (described later), or a combination of these methods may be used.
  • it is not necessary to have a support as long as the support layer is not essential and the recording layer and other layers have the required strength and durability.
  • a protective layer In addition to the recording layer and the support described above, other layers may be provided on the optical recording medium.
  • the protective layer is a layer for preventing adverse effects such as a decrease in sensitivity due to oxygen and deterioration in storage stability.
  • a protective layer can be formed of a layer having a water-soluble polymer and the like.
  • the reflective layer is formed when the optical recording medium is configured in a reflective type.
  • the reflective layer may be formed between the support and the recording layer, or may be formed on the outer surface of the support. It is preferable to be between the layers.
  • an antireflection film may be provided on the side where the recording light and the reading light enter and exit, or between the recording layer and the support. .
  • the antireflection film functions to improve the light utilization efficiency and suppress the generation of ghost images.
  • it can be produced by coating the photoreactive composition of the present invention on a support without solvent and forming a recording layer.
  • any coating method can be used. Specific examples include spray method, spin coating method, wire bar method, dip method, air knife coating method, roll coating method, blade coating method, doctor roll coating method and the like.
  • the recording layer in particular, when forming a thick recording layer, it is also possible to use a method of placing in a mold and molding, or a method of coating on a release film and punching the mold.
  • the photoreactive composition of the present invention and a solvent or additive may be mixed to prepare a coating solution, which may be coated on a support and dried to form a recording layer. good.
  • a coating solution which may be coated on a support and dried to form a recording layer. good.
  • any coating method can be used.
  • the same method as described above can be used. Can be adopted.
  • the solvent it is usually preferable to use a solvent that has sufficient solubility for the components used, gives good coating properties, and does not attack a support such as a resin substrate. ,.
  • solvents examples include ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, and methyl amyl ketone; aromatic solvents such as toluene and xylene; methanol, ethanol, propanol Alcohol solvents such as n-butanol, heptanol, hexanol, diacetone alcohol, furfuryl alcohol; ketone alcohol solvents such as diacetone alcohol, 3 -hydroxy- 3 -methyl-2-butanone; tetrahydrofuran, dioxane, etc.
  • ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, and methyl amyl ketone
  • aromatic solvents such as toluene and xylene
  • methanol, ethanol, propanol Alcohol solvents such as n
  • Ether solvents Halogen solvents such as dichloromethane, dichloroethane, chloroform, etc .
  • Cellosolve solvents such as methyl solvosolve, ethinorecero soleb, butinorecellosolve, methyl cecrosolve acetate, ethilce solvate acetate
  • Propylene such as polyethylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monobutyl ether, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, propylene glycol monobutyl ether acetate, dipropylene glycol dimethyl ether
  • Glycol solvents Ethyl acetate, butyl acetate, amyl acetate, butyl acetate, ethylenic glycol diacetate, jetyloxalate, ethyl pyruvate, ethyl
  • the solvent one kind may be used alone, and two kinds or more may be used in optional combination and ratio. Moreover, there is no restriction
  • the photoreactive composition of the present invention is thermoplastic
  • the photoreactive composition of the present invention is molded by, for example, an injection molding method, a sheet molding method, a hot press method, etc.
  • the recording layer is produced by molding the photoreactive composition of the present invention by, for example, a reaction injection molding method or a liquid injection molding method. can do.
  • the molded body has sufficient thickness, rigidity, strength, etc., the molded body can be used as it is as an optical recording medium.
  • a method for producing an optical recording medium for example, a method of producing a recording layer by applying a photoreactive composition melted by heat onto a support, and cooling and solidifying the composition, A method in which a photoreactive composition is applied to a support and cured by thermal polymerization to form a recording layer, and a liquid photoreactive composition is applied to a support and cured by photopolymerization. And a method of manufacturing the recording layer by forming the recording layer.
  • the optical recording medium manufactured in this way can take the form of a self-supporting slab or a disk, and can be used for a three-dimensional image display device, a diffractive optical element, a large-capacity memory, and the like.
  • Both writing (recording) and reading (reproduction) of information with respect to the optical recording medium are performed by light irradiation.
  • the recording layer is irradiated with excitation light from the sensitizer (A), that is, light corresponding to the excitation wavelength of the sensitizer (A), as a recording light. Convert (C) to record information.
  • the reproducing light is irradiated onto the recording layer, and the transmitted light is read if it is a transmissive optical recording medium, and the reflected light is read if it is a reflective optical recording medium. , Play back information.
  • the recording layer is irradiated with reference light together with recording light (also called object light). If the recording light and the reference light are caused to interfere with each other in the recording layer, the interference fringes are recorded as chemical conversion of the reactive group (C) in the recording layer.
  • the reactive group (C) In other words, when the photoreactive composition of the present invention causes a change in refractive index, interference fringes are recorded as a difference in refractive index in the recording layer.
  • a hologram is recorded on the recording layer by the interference fringes recorded in the recording layer.
  • the recording light is used as the first and second lights.
  • the reference light may be used as the first and second light, or one of the recording light and the reference light may be used as the first light and the other as the second light.
  • the recording layer is irradiated with predetermined reproduction light (usually reference light).
  • the irradiated reproduction light is diffracted according to the interference fringes. Since this diffracted light contains the same information as that of the recording layer, it is possible to reproduce the information recorded on the recording layer by reading the diffracted light.
  • the reference light and the reproduction light have wavelengths and intensities that do not cause excitation of the sensitizer (A) and the reactive group (C) by themselves.
  • non-destructive reading at the time of reproduction which has been difficult to realize in the past, becomes possible, and an optical recording medium having an optical gate function can be obtained.
  • the wavelength range of the recording light, the reproduction light, and the reference light is arbitrary depending on each application, and may be in the infrared region, visible light region, or ultraviolet region.
  • solid lasers such as ruby, glass, Nd—YAG (neodymium yttrium aluminum garnet), Nd—YV04 (neodymium yttrium vanadium tetraoxide); Diode lasers such as GaAs and InGaAs; gas lasers such as helium neon, argon, krypton, excimer, and CO;
  • Lasers that are excellent in monochromaticity and directivity, such as one-on-one may be a pulse laser or a continuous wave laser! / ⁇
  • the recording light, the reproducing light, and the reference light are V, and the deviation is not limited to the irradiation amount, so long as it can be recorded and reproduced.
  • the recording light, the reproduction light and the reference light are usually 0.1 to 20 JZC m 2 according to the composition of the recording layer forming composition, the type of polymerization initiator of the reactive group (C), and the blending amount. Irradiate in the range of.
  • Mn represents a number average molecular weight
  • Mw represents a weight average molecular weight
  • a polymer (B) having a reactive group (C) was synthesized by an operation corresponding to the description on page 2 of “Photoresponsive Polymers, 1764, 2001”.
  • Sensitizer (A) uses 5, 10, 15, 20-tetra [3,5 bis (trifluoromethyl) phenol]-21H, 23H porphyrin platinum (II), and polymer (B Using NBD-PS synthesized in Synthesis Example 1 as above, a sample was produced as an optical recording medium as follows.
  • NBD-PS (1. Og) synthesized in Synthesis Example 1 and 5, 10, 15, 20-tetra [3,5 bis (trifluoromethyl) phenol] 21H, 23H-porphyrin platinum (II) (50 mg) was used as a tetrahydrofuran solution, cast on a glass substrate, and dried to form a 200 / zm thick film as a sample.
  • the specific method of casting is as follows. It was cast on a slide glass substrate and left to stand in the dark at room temperature for 12 hours to dry. After that, it was dried by heating in an oven at 80 ° C for 2 hours. After drying by heating, place a Teflon (registered trademark) film with a thickness of 50 m on both sides of the slide glass as a spacer and heat it in an oven at 80 ° C for 1 hour by fixing it with another glass slide with a cover and a clip. Thus, a smooth recording medium (sample) having a thickness of 50 m was obtained.
  • the casting method was the same as in Example 1.
  • the casting method was the same as in Example 1.
  • sensitizer (A) 2, 2 ,: 5, 2 "-Terthiophene-5-Carboxaldehyde (2, 2,: 5, 2" -Terthiophene-5-carboxaldehyde) (manufactured by Tokyo Chemical Industry Co., Ltd.) is used.
  • the casting method was the same as in Example 1.
  • the casting method was the same as in Example 1.
  • the casting method was the same as in Example 1.
  • sensitizer (A) 2, 2,: 5,2 "-terthiophene (2, 2,: 5,2" -Terthiophene) (manufactured by Wako Pure Chemical Industries, Ltd.) is used, and a polymer ( As B), polysilane (trade name: Ogsol SI-10-10, manufactured by Osaka Gas Co., Ltd.) was used to prepare a sample as an optical recording medium as follows.
  • a film with a thickness of 50 m was formed by casting and drying on top, and used as a sample.
  • the casting method was the same as in Example 1.
  • FIG. 10 is a diagram schematically showing an outline of the measurement system used in this example.
  • the light source for hologram recording is a diode that excites the Nd—YV04 crystal with a diode, and uses a non-linear optical crystal LiB 2 O (also referred to as “LBO”) to obtain 532 nm light.
  • LiB 2 O also referred to as “LBO”
  • Verdi—V2 Verdi—V2
  • Laser2 a diode laser capable of obtaining light of 405 nm
  • Laser2 a diode laser capable of obtaining light of 405 nm
  • the bisector of the angle formed by the two beams is perpendicular to the recording surface, and the vibration planes of the electric field vectors of the two beams obtained by the division are two intersecting lines. It was made to be parallel to the plane containing the beam.
  • the hologram was recorded on the recording layer of the sample [Sample] by the interference of the light [L1, L2] from Laserl and Laser2.
  • the 405 nm light [L2] is blocked, and one of the two 532 nm lights [L1] obtained by the division is blocked, and recording is performed at the same angle as during recording.
  • the diffracted light irradiated on the surface was recorded using a power meter (not shown) and a detector (Newport 2930-C, 918-SL) [PD1, PD2].
  • the diffraction efficiency of a hologram is given by the ratio of the diffracted light intensity to the incident light intensity.
  • Table 1 below shows the results of measuring the sample prepared by the above preparation method using the above measurement method.
  • the beam irradiation intensity during recording is L Recording was performed with the aserl beam intensity set to lWcm- 2 and the Laser2 set to 80mWcm- 2 .
  • the irradiation time of Laserl and Laser2 was 3000 seconds in Example 1, 500 / second in Example 2, and 200 / second in Examples 3-7!
  • the recording state does not change even if the sample after recording is exposed to 532 nm light [L1]. In the absence of 405 nm gate light [L2], It became apparent that no recording occurred and no light was exposed to the readout light. This confirmed that non-destructive reading is possible.
  • the Tl level of the sensitizer ( ⁇ ) 2, 2 ': 5, 2 "-terthiophene has sufficient energy to chemically change the reactive group of the polymer NBD PS.
  • the energy for starting the reaction is supplied to the reactive group only after reaching the Tn level.
  • the present invention can be used in any industrial field, but is particularly suitable for use in an optical recording medium such as a hologram recording medium.

Abstract

This invention provides a photoreactive composition which, when used in hologram recording, can realize reading of record without reducing a residual record capacity. The photoreactive composition comprises a sensitizer (A), which is exited upon photon absorption, and a polymer (B) containing a chemically convertible reactive group (C). In this case, the sensitizer (A) takes a reduced electron configuration relative to the reactive group (C).

Description

明 細 書  Specification
光反応性組成物、光学材料、光記録材料、体積ホログラム記録材料、光 記録媒体、及びその光記録方法  Photoreactive composition, optical material, optical recording material, volume hologram recording material, optical recording medium, and optical recording method thereof
技術分野  Technical field
[0001] 本発明は、光反応性組成物、光学材料、光記録材料、体積ホログラム記録材料、 光記録媒体、及びその光記録方法に関するものである。  [0001] The present invention relates to a photoreactive composition, an optical material, an optical recording material, a volume hologram recording material, an optical recording medium, and an optical recording method thereof.
背景技術  Background art
[0002] 近年、高密度記録や多重記録等が可能であることなどから、ホログラム記録が活発 に検討されている。このようなホログラム記録には、記録材料の透過率変化を利用し た振幅ホログラムを利用したものや、記録材料の屈折率変化、凹凸変化などを用い た位相ホログラムを利用したものが知られている。  [0002] In recent years, hologram recording has been actively studied because high-density recording, multiple recording, and the like are possible. As such hologram recording, there are known those using an amplitude hologram that utilizes a change in transmittance of a recording material, and those that use a phase hologram that uses a change in refractive index or irregularity of a recording material. .
[0003] 公知の体積位相型ホログラム記録材料には、湿式処理や漂白処理が不必要なライ トワンス方式として、増感剤にラジカル重合ゃカチオン重合を組み合わせたフォトポリ マー方式が一般的である。フォトポリマー方式は、モノマーや組み合わせるマトリック スを変えるだけで特性を変えることが可能であり、非常に簡便な方式である。  A known volume phase hologram recording material generally uses a photopolymer method in which radical polymerization or cationic polymerization is combined with a sensitizer as a write-once method that does not require wet treatment or bleaching treatment. The photopolymer method is a very simple method that can change the characteristics just by changing the monomer and the matrix to be combined.
[0004] しかし、従来の増感剤を用いたフォトポリマー方式では、記録時に生じる体積収縮 を抑制することが困難であった。  [0004] However, in the conventional photopolymer method using a sensitizer, it is difficult to suppress volume shrinkage that occurs during recording.
そこで、このような体積収縮の抑制改良として、ホログラム記録技術に関し、重合反 応ではなぐ転位反応による異性化反応を組み合わせた検討がある(特許文献 1, 2 参照)。  Therefore, as an improvement in the suppression of such volume shrinkage, there is a study on holographic recording technology that combines an isomerization reaction by a rearrangement reaction rather than a polymerization reaction (see Patent Documents 1 and 2).
また、この他、 2光子吸収型の光学材料 (特許文献 3参照)や、 2段階吸収型の光学 材料 (非特許文献 1参照)をホログラム記録に適用することも提案されている。  In addition, it has also been proposed to apply a two-photon absorption optical material (see Patent Document 3) or a two-stage absorption optical material (see Non-Patent Document 1) to hologram recording.
[0005] 特許文献 1 :特開 2002— 318433号公報 Patent Document 1: Japanese Patent Application Laid-Open No. 2002-318433
特許文献 2:特開 2004— 78224号公報  Patent Document 2: Japanese Patent Application Laid-Open No. 2004-78224
特許文献 3:特開 2005 - 99416号公報  Patent Document 3: Japanese Patent Laid-Open No. 2005-99416
非特許文献 l :The Journal of Physical Chemistry 1981, 85, 123. 発明の開示 発明が解決しょうとする課題 Non-Patent Literature l: The Journal of Physical Chemistry 1981, 85, 123. Disclosure of the Invention Problems to be solved by the invention
[0006] し力しながら、特許文献 1〜3、非特許文献 1に記載の技術によってホログラム記録 を行なう場合、読出し時に再生光により記録部が露光されると、記録部のホログラム が変化し、記録内容が破壊されてしまっていた。  However, in the case where hologram recording is performed by the techniques described in Patent Documents 1 to 3 and Non-Patent Document 1, when the recording unit is exposed by reproduction light during reading, the hologram of the recording unit changes, The recorded contents were destroyed.
本発明は上記の課題に鑑みて創案されたもので、ゲート機能の付与により、ホログ ラム記録に用いた場合に記録内容を破壊させることなく記録の読み出しを行なうこと を可能にした光反応性組成物、それを用いた光学材料、光記録材料、体積ホロダラ ム記録材料、光記録媒体及びその光記録方法を提供することを目的とする。  The present invention was devised in view of the above problems, and by providing a gate function, a photoreactive composition that enables reading of a record without destroying the recorded content when used for holographic recording. An object is to provide an optical material, an optical recording material, a volume hologram recording material, an optical recording medium, and an optical recording method thereof.
課題を解決するための手段  Means for solving the problem
[0007] 本発明者は上記の課題を解決するべく鋭意検討した結果、ホログラム記録媒体の 材料として、増感体と反応基を有する重合体とを有する光反応性組成物を使用する と共に、当該増感体として、前記反応基に対して還元型の電子配置を有するものを 使用することにより、非破壊読み出し機能 (即ち、記録内容を破壊させることなく記録 の読み出しを行なうことが可能な機能)を有するホログラム記録媒体を実現することが できることを見出し、本発明を完成させた。  [0007] As a result of intensive studies to solve the above-mentioned problems, the present inventor used a photoreactive composition having a sensitizer and a polymer having a reactive group as the material of the hologram recording medium, and Non-destructive readout function (that is, a function capable of reading a record without destroying the recorded content) by using a sensitizer having a reduced electron configuration with respect to the reactive group The present inventors have found that a hologram recording medium having the above can be realized and completed the present invention.
[0008] 即ち、本発明の要旨は、光子を吸収することにより励起される増感体 (A)と、化学 変換を生じうる反応基 (C)を有する重合体 (B)とを含有し、該増感体 (A)が、該反応 基 (C)に対して還元型の電子配置を有することを特徴とする、光反応性組成物に存 する(請求項 1)。  [0008] That is, the gist of the present invention contains a sensitizer (A) excited by absorbing photons, and a polymer (B) having a reactive group (C) capable of causing chemical conversion, The sensitizer (A) resides in a photoreactive composition characterized in that it has a reduced electron configuration with respect to the reactive group (C) (claim 1).
[0009] このとき、該増感体 (A)は、 2以上の光子を吸収することにより励起されるものが好 ましい (請求項 2)。また、該増感体 (A)力 2以上の異なる波長の光子を吸収するこ とにより励起されることが好ま ヽ(請求項 3)。  At this time, it is preferable that the sensitizer (A) is excited by absorbing two or more photons (claim 2). The sensitizer (A) is preferably excited by absorbing photons of different wavelengths having a force of 2 or more (claim 3).
[0010] さらに、該増感体 (A)が、第一の励起光の光子を吸収することにより一重項励起状 態に励起され、その後、項間交差により最低三重項励起状態に移行し、続いて、前 記第一の励起光とは異なる波長の第二の励起光の光子を吸収することにより、前記 最低三重項励起状態より高い三重項励起状態に励起される多段階励起型増感体で あることが好ま 、 (請求項 4)。  [0010] Further, the sensitizer (A) is excited to a singlet excited state by absorbing the photons of the first excitation light, and then transitions to the lowest triplet excited state by intersystem crossing, Subsequently, by absorbing photons of the second excitation light having a wavelength different from that of the first excitation light, the multistage excitation type sensitization is excited to a triplet excited state higher than the lowest triplet excited state. The body is preferred (claim 4).
[0011] また、該増感体 (A)が励起された場合、励起された該増感体 (A)の寄与により該反 応基 (c)が化学変換し、該光反応性組成物の光学特性が変化することが好ま ヽ ( 請求項 5)。 [0011] When the sensitizer (A) is excited, the reaction is caused by the contribution of the excited sensitizer (A). It is preferred that the reactive group (c) undergoes chemical conversion to change the optical properties of the photoreactive composition (Claim 5).
また、前記化学変換が異性ィ匕反応であることが好まし ヽ (請求項 6)。  Further, it is preferable that the chemical conversion is an isomeric reaction (claim 6).
[0012] 本発明の別の要旨は、前記の光反応性組成物を含有することを特徴とする、光学 材料に存する(請求項 7)。 [0012] Another gist of the present invention resides in an optical material comprising the photoreactive composition (claim 7).
本発明の更に別の要旨は、前記の光学材料力もなることを特徴とする、光記録材 料に存する(請求項 8)。  Still another subject matter of the present invention lies in an optical recording material characterized in that it also has the above-mentioned optical material force (claim 8).
[0013] 本発明の更に別の要旨は、前記の光記録材料力もなることを特徴とする、体積ホロ グラム記録材料に存する(請求項 9)。 [0013] Still another subject matter of the present invention lies in a volume holographic recording material characterized in that the optical recording material force is also provided (claim 9).
本発明の更に別の要旨は、前記の光記録材料を含む層を備えることを特徴とする 、光記録媒体に存する(請求項 10)。  Still another subject matter of the present invention lies in an optical recording medium comprising a layer containing the optical recording material (claim 10).
[0014] 本発明の更に別の要旨は、前記の光記録媒体の前記層に対して、前記励起光を 照射することを特徴とする、光記録媒体への光記録方法に存する (請求項 11)。 このとき、前記励起光と共に参照光を照射し、前記励起光と前記参照光との干渉に よって前記層にホログラムを記録することが好ま ヽ(請求項 12)。 [0014] Still another subject matter of the present invention lies in an optical recording method for an optical recording medium, wherein the excitation light is irradiated to the layer of the optical recording medium. ). At this time, it is preferable to irradiate reference light together with the excitation light, and record a hologram on the layer by interference between the excitation light and the reference light (claim 12).
発明の効果  The invention's effect
[0015] 本発明によれば、ホログラム記録に用いた場合に記録内容を破壊させることなく記 録の読み出しを行なうことを可能にした光反応性組成物、それを用いた光学材料、 光記録材料、体積ホログラム記録材料、光記録媒体及びその光記録方法及びホログ ラム記録方法を提供することができる。  [0015] According to the present invention, when used for hologram recording, a photoreactive composition capable of reading a record without destroying the recorded content, an optical material using the composition, and an optical recording material Further, it is possible to provide a volume hologram recording material, an optical recording medium, an optical recording method thereof, and a hologram recording method.
図面の簡単な説明  Brief Description of Drawings
[0016] [図 1]図 1は光子吸収に伴う電子の移動の様子を模式的に示す図である。 [0016] FIG. 1 is a diagram schematically showing how electrons move due to photon absorption.
[図 2]図 2は光子吸収に伴う電子の移動の様子を模式的に示す図である。  [FIG. 2] FIG. 2 is a diagram schematically showing how electrons move due to photon absorption.
[図 3]図 3は光子吸収に伴う電子の移動の様子を模式的に示す図である。  [FIG. 3] FIG. 3 is a diagram schematically showing how electrons move due to photon absorption.
[図 4]図 4は増感体が反応基に対して酸化型の電子配置を有している場合において 、読み出し時の増感体及び反応基の変化の一例を表わす図である。  FIG. 4 is a diagram showing an example of changes in the sensitizer and the reactive group at the time of reading when the sensitizer has an oxidized electron configuration with respect to the reactive group.
[図 5]図 5 (a)〜図 5 (c)は、それぞれ、増感体が反応基に対して酸化型の電子配置 を有している場合において、読み出し時の増感体及び反応基の電子配置の一例を 表わす図である。 [FIG. 5] FIG. 5 (a) to FIG. 5 (c) show the sensitizer and reactive group at the time of readout when the sensitizer has an oxidized electron configuration with respect to the reactive group, respectively. Example of electronic configuration FIG.
[図 6]図 6は本発明の光反応組成物にぉ 、て、読み出し時の増感体 (A)及び反応基 (C)の変化の一例を表わす図である。  FIG. 6 is a diagram showing an example of changes in sensitizer (A) and reactive group (C) during readout in the photoreactive composition of the present invention.
[図 7]図 7 (a)〜図 7 (c)は、それぞれ、本発明の光反応性組成物において、読み出し 時の増感体 (A)及び反応基 (C)の電子配置の一例を表わす図である。  [FIG. 7] FIG. 7 (a) to FIG. 7 (c) are examples of the electron arrangement of the sensitizer (A) and the reactive group (C) at the time of readout in the photoreactive composition of the present invention, respectively. FIG.
[図 8]図 8 (a)〜図 8 (c)は、それぞれ、本発明の光反応性組成物において、還元によ り反応基 (C)が活性となる場合の書き込み時の増感体 (A)及び反応基 (C)の電子配 置の一例を表わす図である。  [FIG. 8] FIG. 8 (a) to FIG. 8 (c) are sensitizers at the time of writing when the reactive group (C) is activated by reduction in the photoreactive composition of the present invention, respectively. FIG. 4 is a diagram illustrating an example of an electron configuration of (A) and a reactive group (C).
[図 9]図 9 (a)〜図 9 (c)は、それぞれ、本発明の光反応性組成物において、エネルギ 一移動により反応基 (C)が活性となる場合の書き込み時の増感体 (A)及び反応基( C)の電子配置の一例を表わす図である。  [FIG. 9] FIGS. 9 (a) to 9 (c) are sensitizers at the time of writing when the reactive group (C) is activated by energy transfer in the photoreactive composition of the present invention, respectively. It is a figure showing an example of the electronic arrangement | positioning of (A) and a reactive group (C).
[図 10]図 10は本発明の実施例 1で用いた測定系の概要を模式的に表わす図である 発明を実施するための最良の形態  FIG. 10 is a diagram schematically showing an outline of a measurement system used in Example 1 of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
[0017] 以下、本発明について実施形態や例示物等を示して説明するが、本発明は以下 の実施形態や例示物等に限定されるものではなぐ本発明の要旨を逸脱しない限り 、任意に変更して実施することができる。  [0017] Hereinafter, the present invention will be described with reference to embodiments, examples, and the like. However, the present invention is not limited to the following embodiments, examples, and the like, and may be arbitrarily selected without departing from the gist of the present invention. It can be changed and implemented.
[0018] [I.光反応性組成物]  [0018] [I. Photoreactive Composition]
本発明の光反応性組成物は、光子 (以下適宜、増感体 (A)を励起しうる光子力もな る光を「励起光」 、う)を吸収することにより励起される増感体 (A)と、重合体 (B)とを 含有する。また、重合体 )は、化学変換を生じうる反応基 (C)を有している。  The photoreactive composition of the present invention is a sensitizer that is excited by absorbing photons (hereinafter referred to as “excitation light”, which is light that can also excite the sensitizer (A) as appropriate). A) and a polymer (B) are contained. Further, the polymer) has a reactive group (C) capable of causing chemical conversion.
なお、ここで登場した「 (A)」、「(B)」及び「(C)」と 、う記号は、増感体、重合体及び 反応基を区別するための記号である。また、本発明の光反応性組成物は、本発明の 効果を著しく損なわな ヽ限り、その他の成分を含有して 、てもよ 、。  The symbols “(A)”, “(B)”, and “(C)” that appear here are symbols for distinguishing sensitizers, polymers, and reactive groups. The photoreactive composition of the present invention may contain other components as long as the effects of the present invention are not significantly impaired.
[0019] ただし、本発明の光反応性組成物においては、増感体 (A)は、反応基 (C)に対し て還元型の電子配置を有している。ここで、増感体 (A)が反応基 (C)に対して還元 型の電子配置を有しているとは、増感体 (A)が反応基 (C)に対して電子を供与でき る電子配置のことを言い、具体的には、増感体 (A)の最高被占軌道 (Highest Occ upied Molecular Orbital ; HOMO)が、反応基(C)の最高被占軌道よりも高い エネノレギーにあることを!、う。 However, in the photoreactive composition of the present invention, the sensitizer (A) has a reduced electron configuration with respect to the reactive group (C). Here, when the sensitizer (A) has a reduced electron configuration with respect to the reactive group (C), the sensitizer (A) can donate electrons to the reactive group (C). Specifically, the highest occupied orbit of the sensitizer (A) (Highest Occ upied Molecular Orbital (HOMO) is higher in energy than the highest occupied orbital of the reactive group (C)!
[0020] [1—1.増感体 (A) ]  [0020] [1-1. Sensitizer (A)]
増感体 (A)は、励起光の照射により光子を吸収して励起される物質 (ィ匕合物全体 又はその増感作用を発揮する部分)である。本発明の光反応性組成物では、増感体 (A)が適切に励起された場合には、当該励起された増感体 (A)の寄与により電子や エネルギーの移動等が生じ、反応基 (C)の化学変換が生じるようになって 、る。  The sensitizer (A) is a substance (a whole compound or a part that exerts its sensitizing action) that is excited by absorbing photons upon irradiation with excitation light. In the photoreactive composition of the present invention, when the sensitizer (A) is appropriately excited, electron or energy transfer occurs due to the contribution of the excited sensitizer (A), and the reactive group. The chemical conversion of (C) is occurring.
[0021] ただし、増感体 (A)としては、反応基 (C)に対して還元型の電子配置を有して!/、る ものを用いるようにする。ここで、増感体 (A)及び反応基 (C)の電子配置は、酸ィ匕還 元電位測定により確認することが可能である。  [0021] However, as the sensitizer (A), one having a reduced electron configuration with respect to the reactive group (C) is used. Here, the electron configuration of the sensitizer (A) and the reactive group (C) can be confirmed by measurement of acid reduction potential.
[0022] 増感体 (A)としては、例えば、公知の増感剤を用いることができる。なお、ここで「増 感剤」と!、う用語は分子を表わし、「増感体 (A)」と 、う用語は分子の全体又は一部で あることを表わす。増感体 (A)として使用しうる化合物の例を挙げると、合成染料、天 然色素、芳香族化合物、ヘテロ環化合物などが挙げられる。  [0022] As the sensitizer (A), for example, a known sensitizer can be used. Here, the term “sensitizer”! Means a molecule, and the term “sensitizer (A)” means the whole or a part of a molecule. Examples of compounds that can be used as the sensitizer (A) include synthetic dyes, natural pigments, aromatic compounds, and heterocyclic compounds.
合成染料の具体例としては、アタリジン染料、ァゾ染料、ァリザリン染料、アントラキ ノン染料、インジゴイド染料、カルボ-ゥム染料、キサンテン染料、キノリン染料、キノ ンィミン染料、ジフエ-ルメタン染料、スチルベン染料、チアゾール染料、トリフエ-ル メタン染料、ニトロ染料、ニトロソ染料、ピラゾロン染料、メチン染料、硫化染料などが 挙げられる。  Specific examples of synthetic dyes include atalidine dyes, azo dyes, alizarin dyes, anthraquinone dyes, indigoid dyes, carbo dyes, xanthene dyes, quinoline dyes, quinonimine dyes, diphenylmethane dyes, stilbene dyes, thiazoles. Examples include dyes, triphenyl methane dyes, nitro dyes, nitroso dyes, pyrazolone dyes, methine dyes, and sulfur dyes.
[0023] また、天然色素の具体例としては、カロチン、フラボン類、キノン類、キサントン類、 ぺタシァ-ジン、血液色素(ポルフィリンなど)、クロロフィル、フエナジン、フエナキサ ン誘導体、インドール誘導体などが挙げられる。  [0023] Specific examples of natural pigments include carotene, flavones, quinones, xanthones, petas-azine, blood pigments (such as porphyrins), chlorophyll, phenazine, phenoxane derivatives, and indole derivatives. .
[0024] さらに、芳香族化合物の具体例としては、縮芳香環、オリゴフエ-レン、共役ジェン などが挙げられる。  [0024] Furthermore, specific examples of the aromatic compound include condensed aromatic rings, oligophenylenes, and conjugated genes.
また、ヘテロ環化合物の具体例としては、クマリン、ァザクマリン、キノリン、ァザキノリ ン、ォキサゾーノレ、ベンゾキサゾーノレ、ォキサジォーノレ、フラン、ベンゾフラン、ピラゾ リン、フタルイミド、ナフタルイミド、プテリジン、オリゴチォフェン、ヘテロ環塩などが挙 げられる。 [0025] この他、増感体 (A)としては、シァニン、メロシアニン、フタロシアニン、ポルフィリン、 キサンテン、トリアリルメタン、ァシリジン、ァジン、クロロフィル等の色素を使用すること も可能である。 Specific examples of the heterocyclic compound include coumarin, azacoumarin, quinoline, azaquinoline, oxazonole, benzoxazonole, oxazionole, furan, benzofuran, pyrazoline, phthalimide, naphthalimide, pteridine, oligothiophene, heterocyclic salt And so on. In addition, as the sensitizer (A), it is also possible to use a dye such as cyanine, merocyanine, phthalocyanine, porphyrin, xanthene, triallylmethane, acylolidine, azine, chlorophyll.
これらの中でも、特に、ベンゾフエノン、オリゴチォフェン、テトラジン、力ルバゾール 、ポルフィリンなどが、多段階励起型増感体 (後述する)として機能しうるため、好まし い。  Among these, benzophenone, oligothiophene, tetrazine, force rubazole, porphyrin, and the like are particularly preferable because they can function as a multistage excitation sensitizer (described later).
また、例えば、これらの例示した化合物の増感作用を発揮する部分を増感体 (A)と して使用することちでさる。  In addition, for example, the portion exhibiting the sensitizing action of these exemplified compounds is used as the sensitizer (A).
なお、増感体 (A)は、 1種を単独で用いても良ぐ 2種以上を任意の組み合わせ及 び比率で併用しても良い。  The sensitizer (A) may be used alone or in combination of two or more in any combination and ratio.
[0026] また、増感体 (A)の中でも、 2以上の光子を吸収すること(多光子吸収)により励起 されるもの(例えば、多光子吸収化合物又はその部分)が好ましい。後述するように、 本発明の光反応性組成物では、増感体 (A)と反応基 (C)との酸ィ匕還元性にかかる 組み合わせにより非破壊読み出し機能の実現を図るものである力 増感体 (A)として 2以上の光子を吸収することにより励起されるもの(例えば、多光子吸収化合物又は その部分)を使用すれば、増感体 (A)自体の性質として非破壊読み出し機能をより 安定して実現することができるためである。 [0026] Among the sensitizers (A), those which are excited by absorbing two or more photons (multiphoton absorption) (for example, a multiphoton absorbing compound or a portion thereof) are preferable. As will be described later, in the photoreactive composition of the present invention, the non-destructive readout function is realized by the combination of the sensitizer (A) and the reactive group (C) that affects the acid-reducibility. If the sensitizer (A) is excited by absorbing two or more photons (for example, a multiphoton absorbing compound or a portion thereof), the sensitizer (A) itself has a nondestructive readout function. This is because it can be realized more stably.
以下、この多光子吸収について詳細に説明する。  Hereinafter, this multiphoton absorption will be described in detail.
[0027] 多光子吸収とは、反応 (化学変換)を開始するために必要なエネルギーを反応体( 本発明では、反応基 (C) )に供給するのに十分な軌道準位以上にまで、複数の光子 を同時に又は段階的に増感体に吸収させることで強制的に励起することである。多 光子吸収には、(a)単一波長の光源力 発せられる光を吸収するもの(図 1及び図 2 参照)と、(b)複数の異なる波長の光源力 発せられる光を吸収するもの(図 3参照) がある。 [0027] Multiphoton absorption refers to an orbital level that is sufficient to supply the reactant (in the present invention, reactive group (C)) with the energy necessary to initiate the reaction (chemical conversion). It is forcibly excited by absorbing a plurality of photons simultaneously or stepwise into the sensitizer. Multiphoton absorption includes (a) one that absorbs light emitted from a single wavelength light source (see Figs. 1 and 2) and (b) one that absorbs light emitted from multiple light sources of different wavelengths ( (See Fig. 3)
[0028] (a)単一波長の光源から発せられる光を吸収する多光子吸収  [0028] (a) Multiphoton absorption that absorbs light emitted from a single wavelength light source
単一波長の光源から発せられる光を吸収する多光子吸収には、 (i)一重項励起状 態 (S1)力 反応基 (C)にエネルギーを供給するものと、(ii)一重項励起状態 (S1)か ら項間交差によって三重項励起状態 (T1)に移行し、そこから反応基 (C)にエネルギ 一を供給するものがある。 Multiphoton absorption that absorbs light emitted from a single wavelength light source includes (i) a singlet excited state (S1) force that supplies energy to the reactive group (C), and (ii) a singlet excited state. From (S1) to the triplet excited state (T1) due to intersystem crossing, energy is transferred from there to the reactive group (C). Some supply one.
[0029] (i)の場合に最低限必要な光子のエネルギー量の和は、基底状態(SO)から該ー 重項励起状態(S 1)までのエネルギー量 Δ Eとなる。  [0029] In the case of (i), the minimum amount of photon energy required is the amount of energy ΔE from the ground state (SO) to the-singlet excited state (S 1).
一方 (ii)の場合には、基底状態 (SO)から、項間交差の際にエネルギーを損失して も該三重項励起状態 (T1)を与えることが可能な一重項励起状態 (S1)の軌道準位 までのエネルギー量 Δ Eが必要となり、 (i)よりも高 、エネルギーを必要とする。  On the other hand, in the case of (ii), the singlet excited state (S1) that can give the triplet excited state (T1) from the ground state (SO) even if energy is lost during intersystem crossing. An energy amount Δ E up to the orbital level is required, which is higher than (i).
[0030] この点を、光子が 2つ吸収されて増感体 (A)が励起される場合を例に挙げて、詳し く説明する。 [0030] This point will be described in detail by taking as an example the case where two photons are absorbed and the sensitizer (A) is excited.
図 1は、光子吸収に伴う電子の移動の様子を模式的に示す図である。また、図 1に おいて、基底状態 (SO)及び一重項励起状態 (S1)は実存するエネルギー状態を表 わす。また、仮想状態 (Sx)は、基底状態 (SO)よりも光子 1つ分だけ高いエネルギー 状態を表わす。ただし、仮想状態 (Sx)は仮に設定したものであって実存するェネル ギー状態ではなぐこのため、電子は仮想状態には移動できない。  Fig. 1 is a diagram schematically showing how electrons move due to photon absorption. In Fig. 1, the ground state (SO) and the singlet excited state (S1) represent the existing energy states. The virtual state (Sx) represents an energy state that is one photon higher than the ground state (SO). However, since the virtual state (Sx) is set temporarily and not in the existing energy state, electrons cannot move to the virtual state.
[0031] (i)の場合の吸収は、同時多光子吸収 (この例では、同時 2光子吸収)と呼ばれる吸 収である。図 1に示すように、励起を行なう際には、増感体 (A)には光 (励起光)が照 射され、その光子 2つを吸収することにより、増感体 (A)の基底状態 (SO)にあった電 子は一重項励起状態 (S1)に移動する。これにより、増感体 (A)は励起され、反応基 (C)を活性ィ匕できるようになる。 [0031] Absorption in the case of (i) is an absorption called simultaneous multiphoton absorption (in this example, simultaneous two-photon absorption). As shown in Fig. 1, when excitation is performed, the sensitizer (A) is irradiated with light (excitation light) and absorbs the two photons, thereby basing the sensitizer (A) on the base. The electrons in the state (SO) move to the singlet excited state (S1). As a result, the sensitizer (A) is excited and can react with the reactive group (C).
このように、同時 2光子吸収では、励起に用いた光子の 2倍のエネルギー準位に実 励起状態が存在すれば良 、ので、吸収スペクトルで吸収の全く存在しな 、領域 (非 共鳴領域)の波長の光を用いて分子を励起することが可能である。なお、このように 非共鳴領域の波長の光を用いて非線形的に 2光子吸収が起こる場合を非共鳴 2光 子吸収という。  In this way, in simultaneous two-photon absorption, it is sufficient if the actual excited state exists at twice the energy level of the photon used for excitation, so there is no absorption in the absorption spectrum, and the region (non-resonant region) It is possible to excite molecules using light of a wavelength of. The case where two-photon absorption occurs nonlinearly using light with a wavelength in the non-resonant region is called non-resonant two-photon absorption.
[0032] この非共鳴 2光子吸収の効率は、増感体 (A)に印加される光電場の 2乗に比例す る(2光子吸収の 2乗特性)。このため、 3次元空間においては、印加される光強度が 大きな領域でのみ 2光子吸収が起こり、光強度が弱い領域では 2光子吸収が起こら ない。したがって、印加された光電場の強度に比例してすべての位置で励起が起こ る線形吸収に比べて、非共鳴 2光子吸収では、この 2乗特性に由来して空間内部の 所定の領域でのみで励起が起こるため、空間分解能が著しく向上する。 [0032] The efficiency of this non-resonant two-photon absorption is proportional to the square of the photoelectric field applied to the sensitizer (A) (the two-photon absorption squared characteristic). For this reason, in a three-dimensional space, two-photon absorption occurs only in a region where the applied light intensity is high, and no two-photon absorption occurs in a region where the light intensity is low. Therefore, non-resonant two-photon absorption is derived from this square characteristic in comparison with linear absorption where excitation occurs at all positions in proportion to the intensity of the applied photoelectric field. Since excitation occurs only in a predetermined region, the spatial resolution is significantly improved.
[0033] なお、通常は、非共鳴 2光子吸収を誘起する場合には、線形吸収する波長領域( 即ち、 1光子吸収が存在する波長領域)よりも長波長でかつ吸収の存在しない波長 のレーザー光を用いることが多い。このため、励起光の光源として、透明領域のレー ザ一(即ち、 1光子吸収が存在しない波長領域のレーザー光を発するレーザー)を用 いることが可能であり、レーザー光が吸収や散乱を受けずに光反応性糸且成物の内部 まで到達できる。  [0033] Normally, when non-resonant two-photon absorption is induced, a laser having a wavelength longer than the wavelength region where linear absorption is performed (that is, the wavelength region where one-photon absorption exists) and having no absorption. Often uses light. For this reason, it is possible to use a laser in a transparent region (that is, a laser that emits laser light in a wavelength region where there is no one-photon absorption) as a light source of excitation light, and the laser light is subjected to absorption and scattering. Without reaching the inside of the photoreactive yarn and the product.
なお、上述した例においては 2つの光子を吸収する 2光子吸収の場合を例に挙げ て説明したが、 3以上の光子を吸収する多光子吸収においても同様の利点を得るこ とがでさる。  In the example described above, the case of two-photon absorption that absorbs two photons has been described as an example, but the same advantage can be obtained in multi-photon absorption that absorbs three or more photons.
[0034] また、非共鳴 2光子吸収を誘起する場合には、 2光子吸収のしゃすさを示す 2光子 吸収断面積において特に制限はないが、通常 100GM以上、好ましくは 1000GM 以上、より好ましくは 10000GM以上を持つような増感体 (A)が好ましい。なお、 2光 子吸収断面積の評価方法は以下の通りである。化合物の 2光子吸収断面積の評価 は文献 I (IEEE J. Quant. Electron. 26 (1990) 760)に記載のオープンァノ一 チヤ一型 Zスキャン法を参考に行なう。二光子吸収断面積測定用の光源には、 Ti:サ ファイアノ ルスレーザー及びそのレーザーにより励起される光パラメトリック発振器レ 一ザ一を用いる。光源となるパルスのパルス幅は 110フェムト秒〜 130フェムト秒で、 パルスの繰り返し周波数は 76Hzであり、平均パワーは 10— 1QQmWのものを用いる。波 長範囲は 570ηπ!〜 1200nmで測定を行なう。測定は、文献 Iに記載があるように、光 源からのパルスレーザービームをレンズで集光し、そのレーザービームの進行方向( Z軸)に被測定試料をスキャンして、 Z軸上の各試料位置において透過率を測定する 。得られた各試料位置における透過率の曲線、入射平均パワー、入射波長、入射パ ルス幅、試料濃度、及び、試料厚み等から文献 II (Chem. Phys. Lett. 372, 386 ( 2003) )に記載の方法により二光子吸収断面積を得る。なお、 1GMとは、分子,光子 各一個あたり 1 X 10— 5°cm4'秒(1GM= 1 X 10— 5°cm4' s/ (molecule 'photon) )を 意味する。 [0034] Further, when non-resonant two-photon absorption is induced, there is no particular limitation on the two-photon absorption cross section indicating the two-photon absorption, but usually 100GM or more, preferably 1000GM or more, more preferably 10000GM. A sensitizer (A) having the above is preferred. The evaluation method of the two-photon absorption cross section is as follows. The evaluation of the two-photon absorption cross-section of a compound is performed with reference to the open-chamber type Z-scan method described in Reference I (IEEE J. Quant. Electron. 26 (1990) 760). As a light source for measuring the two-photon absorption cross section, a Ti: sapphire laser and an optical parametric oscillator laser pumped by the laser are used. The pulse width of the light source pulse is 110 femtoseconds to 130 femtoseconds, the pulse repetition frequency is 76 Hz, and the average power is 10-1QQ mW. The wavelength range is 570ηπ! Measure at ~ 1200nm. As described in Document I, the measurement is performed by converging the pulse laser beam from the light source with a lens, scanning the sample to be measured in the direction of travel of the laser beam (Z axis), and Measure the transmittance at the sample position. From the obtained transmittance curve, incident average power, incident wavelength, incident pulse width, sample concentration, sample thickness, etc. in each sample position, refer to Document II (Chem. Phys. Lett. 372, 386 (2003)). A two-photon absorption cross section is obtained by the method described. Note that the 1GM, means molecules, photons each one per 1 X 10- 5 ° cm 4 'seconds (1GM = 1 X 10- 5 ° cm 4' the s / (molecule 'photon)) .
[0035] 次に、(ii)の場合の吸収について説明する。図 2は、光子吸収に伴う電子の移動の 様子を模式的に示す図である。また、図 2において、図 1と同様の符号は、図 1と同様 のものを表わす。 Next, absorption in the case of (ii) will be described. Figure 2 shows the movement of electrons associated with photon absorption. It is a figure which shows a mode typically. In FIG. 2, the same reference numerals as those in FIG. 1 denote the same elements as in FIG.
(ii)の場合においても、増感体 (A)は励起光を照射され、その光子 2つを吸収する ことにより、基底状態 (SO)にあった電子は一重項励起状態 (SI)に移動する。ただし 、(ii)の場合においては、一重項励起状態 (S1)の電子は、項間交差により三重項励 起状態 (T1)に移動する。そして、これにより、増感体 (A)は励起され、反応基 (C)を 活性ィ匕できるようになる。  In the case of (ii) as well, the sensitizer (A) is irradiated with excitation light and absorbs two photons, so that electrons in the ground state (SO) move to the singlet excited state (SI). To do. However, in the case of (ii), the electrons in the singlet excited state (S1) move to the triplet excited state (T1) due to intersystem crossing. Thus, the sensitizer (A) is excited and can react with the reactive group (C).
[0036] (ii)の場合も、生じている吸収現象は同時多光子吸収であり、上記 (i)の場合と同 様に非共鳴 2光子吸収が可能であり、 (i)の場合と同様の利点を得ることができる。 ただし、(ii)の場合には、一重項励起状態 (S1)から三重項励起状態 (T1)に項間 交差が生じる際にエネルギーが失われることになるため、増感体 (A)を励起させるた めには (i)の場合よりも高 、エネルギーが必要となる。 [0036] In the case of (ii), the occurring absorption phenomenon is simultaneous multiphoton absorption, and non-resonant two-photon absorption is possible as in the case of (i) above. You can get the benefits of However, in the case of (ii), energy is lost when the intersystem crossing occurs from the singlet excited state (S1) to the triplet excited state (T1), so the sensitizer (A) is excited. In order to do this, higher energy is required than in (i).
なお、上述した例においては 2つの光子を吸収する 2光子吸収の場合を例に挙げ て説明したが、 3以上の光子を吸収する多光子吸収においても同様の利点を得るこ とがでさる。  In the example described above, the case of two-photon absorption that absorbs two photons has been described as an example, but the same advantage can be obtained in multi-photon absorption that absorbs three or more photons.
[0037] 上述した (i) (ii)いずれの場合にも、その基底状態 (SO)から必要な励起状態 (S1 又は T1)までのエネルギー量 Δ Eに相当するエネルギーを、複数の光子を用いて強 制的に供給することになる。このため、吸収を有する化合物及びその部分 (増感作用 を発揮する部分)であれば増感体 (A)としては特に限定されずに用いることができる  [0037] In any of the above cases (i) and (ii), the energy corresponding to the energy amount ΔE from the ground state (SO) to the necessary excited state (S1 or T1) is used by using a plurality of photons. Will be forcibly supplied. Therefore, any sensitizer (A) can be used as long as it is a compound having absorption and a portion thereof (a portion that exhibits a sensitizing action).
[0038] し力し現実的には、紫外領域の多光子吸収を用いるとエネルギーが高過ぎ、増感 体 (A)及び反応基 (C)そのもの、あるいは、その他の成分等を破壊する可能性があ る。また、本発明の光反応性組成物で光記録媒体を作製した場合には、支持体等の 光記録媒体の構成部材を破損する可能性もある。 [0038] However, in reality, if multiphoton absorption in the ultraviolet region is used, the energy is too high, and the sensitizer (A) and the reactive group (C) itself, or other components may be destroyed. There is. In addition, when an optical recording medium is produced with the photoreactive composition of the present invention, the constituent members of the optical recording medium such as a support may be damaged.
一方、励起光として赤外領域の光を用いた場合にはエネルギーが低過ぎ、増感体 (A)の励起に必要なエネルギーを増感体 (A)に供給するのに多数の光子を要する ことになつて、効率が著しく低下する可能性がある。  On the other hand, when infrared light is used as excitation light, the energy is too low, and a large number of photons are required to supply the sensitizer (A) with energy necessary for excitation of the sensitizer (A). In particular, the efficiency can be significantly reduced.
[0039] そのため、単一波長の光源から発せられる光を吸収する多光子吸収に適した増感 体 (A)としては、例えば、可視領域に吸収を有する化合物が好ましく用いられる。例 えば、シァニン、メロシアニン、フタロシアニン、ポノレフィリン、キサンテン、トリァリノレメタ ン、ァシリジン、ァジン、クロロフィルなどの色素や、縮芳香環、オリゴフエ-レン、共役 ジェンなどの芳香族化合物や、クマリン、ァザクマリン、キノリン、ァザキノリン、ォキサ ゾール、ベンゾキサゾール、ォキサジオール、フラン、ベンゾフラン、ピラゾリン、フタ ルイミド、ナフタルイミド、プテリジン、ヘテロ環塩などのへテロ環化合物などが挙げら れる。また、これらの例示したィ匕合物の増感作用を発揮する部分を増感体 ( として 使用することちできる。 [0039] Therefore, sensitization suitable for multiphoton absorption that absorbs light emitted from a single wavelength light source. As the body (A), for example, a compound having absorption in the visible region is preferably used. For example, dyes such as cyanine, merocyanine, phthalocyanine, ponolephyrin, xanthene, triarinolemethane, asylidine, azine, chlorophyll, aromatic compounds such as condensed aromatic rings, oligophenolene, conjugated gen, coumarin, azacoumarin, quinoline, azaquinoline. And heterocyclic compounds such as oxazole, benzoxazole, oxadiol, furan, benzofuran, pyrazoline, phthalimide, naphthalimide, pteridine, and heterocyclic salts. In addition, a portion that exhibits the sensitizing action of these exemplified compounds can be used as a sensitizer (.
[0040] (b)複数の異なる波長の光源から発せられる光を吸収する多光子吸収 [0040] (b) Multiphoton absorption that absorbs light emitted from light sources of different wavelengths
複数の異なる波長の光源から発せられる光を吸収する多光子吸収としては、多段 階吸収が挙げられる。これは、第一の光源力 発せられた第一の光 (第一の励起光) の光子を吸収することにより増感体 (A)が基底状態 (SO)から一重項励起状態 (S1) に励起され、その後、項間交差により最低三重項励起状態 (T1)に移行し、続いて、 第二の光源から発せられた第二の光 (第二の励起光)の光子を吸収することによって 、最低三重項励起状態 (T1)より高 1、三重項励起状態 (Tn)へと励起される現象であ る。なお、第一の光と第二の光とは、その波長が異なっているものとする。この場合に は、三重項励起状態 (Tn)が反応開始に十分なエネルギーを有する軌道準位であ ればよぐこの三重項励起状態 (Tn)から反応基 (C)に、反応開始のためのエネルギ 一が供給される。  Multistage absorption is an example of multiphoton absorption that absorbs light emitted from a plurality of light sources having different wavelengths. This is because the sensitizer (A) changes from the ground state (SO) to the singlet excited state (S1) by absorbing the photons of the first light (first excitation light) emitted from the first light source. By being excited and then transitioning to the lowest triplet excited state (T1) by intersystem crossing, followed by absorbing photons of the second light (second excitation light) emitted from the second light source This is a phenomenon in which the lowest triplet excited state (T1) is excited to a higher triplet excited state (Tn). It is assumed that the first light and the second light have different wavelengths. In this case, it is sufficient if the triplet excited state (Tn) is an orbital level having sufficient energy for the initiation of the reaction, from this triplet excited state (Tn) to the reactive group (C) for the initiation of the reaction. Of energy is supplied.
[0041] この多段階の吸収につ!、て、光子が 2つ吸収されて増感体 (A)が励起される場合 を例に挙げて、詳しく説明する。  [0041] With regard to this multi-stage absorption, the case where two photons are absorbed and the sensitizer (A) is excited will be described in detail.
図 3は、光子吸収に伴う電子の移動の様子を模式的に示す図である。また、図 3に おいて、図 1及び図 2と同様の符号は、図 1及び図 2と同様のものを表わす。  FIG. 3 is a diagram schematically showing how electrons move due to photon absorption. In FIG. 3, the same reference numerals as those in FIGS. 1 and 2 denote the same elements as those in FIGS.
この多段階の吸収は、段階的多光子吸収 (この例では、段階的 2光子吸収)と呼ば れる吸収である。図 3に示すように、励起を行なう際には、増感体 (A)が第一の光の 光子 1つを吸収することにより、増感体 (A)の基底状態 (SO)にあった電子は一重項 励起状態 (S1)に移動する。その後、項間交差により、一重項励起状態 (S1)に存在 する電子は最低三重項励起状態 (T1)に移動する。 [0042] その後、増感体 (A)は、第二の光の光子 1つを吸収する。この光子(2つ目の光子) を吸収することにより、増感体 (A)の最低三重項励起状態 (T1)にある電子は、より高 いエネルギー準位にある三重項励起状態 (Tn)に移動する。これにより、増感体 (Α) は励起され、反応基 (C)を活性ィ匕できるようになる。 This multistage absorption is an absorption called stepped multiphoton absorption (in this example, stepped two-photon absorption). As shown in Figure 3, during excitation, the sensitizer (A) was in the ground state (SO) of the sensitizer (A) by absorbing one photon of the first light. Electrons move to the singlet excited state (S1). After that, due to intersystem crossing, electrons existing in the singlet excited state (S1) move to the lowest triplet excited state (T1). [0042] Thereafter, the sensitizer (A) absorbs one photon of the second light. By absorbing this photon (second photon), electrons in the lowest triplet excited state (T1) of the sensitizer (A) become triplet excited states (Tn) at higher energy levels. Move to. As a result, the sensitizer (Α) is excited and can react with the reactive group (C).
[0043] 段階的多光子吸収の系においては、一段階目の励起を起こす第一の光の波長は 、二段階目の励起を起こす第二の光の波長よりも短 、 (高エネルギーである)ことが 好ましい。また、これに加えて、増感体 (Α)が基底状態 (SO)力も一重項励起状態 (S 1)へ励起する際、第二の波長の光を弱くしか吸収しない、または全く吸収しないこと が好ましい。  [0043] In the stepwise multiphoton absorption system, the wavelength of the first light causing the first stage excitation is shorter than the wavelength of the second light causing the second stage excitation (high energy). Is preferred. In addition, when the sensitizer (Α) also excites the ground state (SO) force to the singlet excited state (S 1), it absorbs light of the second wavelength only weakly or not at all. Is preferred.
[0044] また、一段階目の一重項励起状態 (S1)又は Z及びそこから項間交差を経た最低 三重項励起状態 (T1)の軌道準位は、反応基 (C)が化学変換を開始するに十分な エネルギーを有さず、二段階目の励起を経て三重項励起状態 (Tn)に励起されて初 めて化学変換開始が可能となるような軌道準位であることが好まし 、。こうした系を選 ぶことで、第一の光及び第二の光のうち、どちらか一方の波長の光のみでは反応基( C)に十分なエネルギーを供給できず、双方の波長の光の照射があることで始めて反 応基 (C)の化学変換が開始できる、所謂「光ゲート機能」を付与することが可能となる  [0044] The orbital level of the singlet excited state (S1) in the first stage or Z and the lowest triplet excited state (T1) passing through the intersystem crossing from there is the reactive group (C) starting chemical conversion. It is preferable that the orbital level does not have enough energy to be able to start chemical conversion only after being excited to the triplet excited state (Tn) via the second stage excitation. . By selecting such a system, it is not possible to supply sufficient energy to the reactive group (C) with only one of the first light and the second light, and irradiation with light of both wavelengths. It is possible to add a so-called "light gate function" that can start chemical conversion of the reactive group (C) for the first time.
[0045] 即ち、上述したように、段階的多光子吸収は実励起の足し合わせにより生じる。この ため、 1光子目の励起波長 (即ち、第一の光の波長)は、必ず吸収の存在する領域( 共鳴領域)でなければ生じない。このため、段階的 2光子吸収を生じる増感体 (A)を 用いる場合、本発明の光反応性組成物により形成した光記録媒体 (ホログラム記録 媒体)に対して、記録後に、励起に必要な 2波長の励起光 (即ち、第一の光及び第二 の光)のうち、 1波長(即ち、第一の光及び第二の光のうちいずれか一方)のみを照射 しても、増感体 (A)が励起することはないのである。 That is, as described above, stepwise multiphoton absorption is caused by the addition of actual excitation. For this reason, the excitation wavelength of the first photon (that is, the wavelength of the first light) must be generated unless it is in a region where there is absorption (resonance region). For this reason, when the sensitizer (A) that generates stepwise two-photon absorption is used, the optical recording medium (hologram recording medium) formed from the photoreactive composition of the present invention is required for excitation after recording. Even if only one wavelength (that is, either the first light or the second light) of the two wavelengths of excitation light (that is, the first light or the second light) is irradiated, the sensitization is performed. The body (A) is never excited.
なお、上述した例においては 2つの光子を吸収する 2光子吸収の場合を例に挙げ て説明したが、 3以上の光子を吸収する段階的多光子吸収においても同様の利点を 得ることができる。  In the above example, the case of two-photon absorption in which two photons are absorbed has been described as an example. However, the same advantage can be obtained in stepped multiphoton absorption in which three or more photons are absorbed.
[0046] このような段階的多光子吸収に適した増感体 (A)としては、 (1)一重項励起状態 (S 1)の寿命が長いこと、 (2)—重項励起状態 (S 1)の蛍光が少ない、即ち、項間交差 効率が良好であること、及び(3)最低三重項励起状態 (T1)の寿命が長いこと、のう ちの少なくとも 1つを満たすィ匕合物が挙げられる。また、前記の要件は、より多く満た していることが、より好ましい。このような要件を満たす好適な増感体 (A)の具体例を 挙げると、ポノレフィリン、オリゴチォフェン、キサンテン、フタロシアニン、クマリン、ォキ サゾール、ベンゾフエノン、オリゴフエ-レン、ピレン等が挙げられる。また、これらの例 示した化合物の増感作用を発揮する部分を増感体 (A)として使用することもできる。 [0046] Sensitizers (A) suitable for such stepwise multiphoton absorption include (1) singlet excited state (S (1) Long lifetime, (2) —low fluorescence in the singlet excited state (S 1), that is, good intersystem crossing efficiency, and (3) lowest triplet excited state (T1) Examples include compounds that have a long life span and satisfy at least one of them. It is more preferable that the above requirements are satisfied more. Specific examples of suitable sensitizers (A) that satisfy such requirements include ponorephrine, oligothiophene, xanthene, phthalocyanine, coumarin, oxazole, benzophenone, oligophenolene, and pyrene. In addition, a portion that exhibits the sensitizing action of the compounds shown in these examples can also be used as the sensitizer (A).
[0047] なお、段階的多光子吸収に適した増感体 (A)に関して、三重項励起状態の量子収 率(Φ )について特に制限はないが、好ましくは 0. 5以上、より好ましくは 0. 7以上、[0047] Regarding the sensitizer (A) suitable for stepwise multiphoton absorption, the quantum yield (Φ) in the triplet excited state is not particularly limited, but is preferably 0.5 or more, more preferably 0. . 7 or more
T T
さらに好ましくは 0. 9以上が望ましい。また、増感体 (A)の二段階目の励起光の波長 領域における三重項一三重項モル吸光係数( ε )について特に制限はないが、好ま  More preferably, 0.9 or more is desirable. The triplet-triplet molar extinction coefficient (ε) in the wavelength region of the excitation light of the second stage of the sensitizer (A) is not particularly limited, but is preferred.
Τ  Τ
し < ίま 10, 000以上、より好まし <ίま 50, 000以上、さらに好まし <ίま 100, 000以上力 望ましい。なお、三重項励起状態の量子収率(Φ )  <Ί or more than 10,000, more preferred <ί or more than 50, 000, more preferred <ί or more, more than 100,000 power is desirable. The quantum yield of the triplet excited state (Φ)
Τ及び三重項一三重項モル吸光 係数( ε )の評価方法 ίま、文献 III (J. Chem. Soc., Faraday Trans. 1, 73 ( 197 τ  Evaluation method of Τ and triplet single triplet molar extinction coefficient (ε) ί, III (J. Chem. Soc., Faraday Trans. 1, 73 (197 τ
7) 1319)に記載の方法を用いる。この際、レーザー光源として、 Q—スィッチ YAGレ 一ザ一の第 3高調波または第 4高調波を使用する。  7) Use the method described in 1319). At this time, the third harmonic or fourth harmonic of the Q-switch YAG laser is used as the laser light source.
[0048] また、複数の異なる波長の光源力 発せられる光を吸収する多光子吸収において は、各段階の励起 (例えば、一段階目の励起、二段階目の励起等)は、それぞれ独 立に、「 (a)単一波長の光源力 発せられる光を吸収する多光子吸収」で説明したよ うに、それぞれの波長の光子を複数吸収することによって起こってもよ 、。  [0048] In multiphoton absorption that absorbs light emitted from a plurality of light sources having different wavelengths, each stage of excitation (eg, first stage excitation, second stage excitation, etc.) is independent of each other. As described in “(a) Multi-photon absorption that absorbs light emitted from a single wavelength”, it may occur by absorbing a plurality of photons of each wavelength.
[0049] さらに、増感体 (A)として多光子吸収により励起されるもの(例えば、多光子吸収化 合物又はその部分)を使用すると、本発明の光反応性組成物を用いて光記録媒体を 作製した場合に、当該光記録媒体に対して比較的長!、波長の励起光で記録や再生 を行なうことが可能となる。このため、一般に高価で入手しにくい短波長レーザーを用 いず、安価で入手しやすい長波長レーザーを使用して記録再生できること、本来は 紫外線レーザーで起こるような反応を可視光レーザーで起こせるため、紫外光では 生じやすい副反応を抑制でき、記録品質の良好な記録ができること、などの利点を 得ることができる。 [0050] また、上述した多光子吸収の中でも、光ゲート機能を実現することができるため、段 階的多光子吸収が好ましい。したがって、増感体 (A)としては、多光子吸収化合物 又はその部分の中でも、段階的多光子吸収を生じる多段階励起型の多光子吸収化 合物 (多段階励起型増感体)又はその部分を増感体 (A)として使用することが好まし い。 [0049] Further, when a sensitizer (A) that is excited by multiphoton absorption (for example, a multiphoton absorption compound or a portion thereof) is used, optical recording is performed using the photoreactive composition of the present invention. When a medium is manufactured, recording and reproduction can be performed with excitation light having a relatively long wavelength with respect to the optical recording medium. For this reason, it is possible to record and replay using a long wavelength laser that is inexpensive and easily available without using a short wavelength laser that is generally expensive and difficult to obtain. Advantages such as the ability to suppress side reactions that are likely to occur with ultraviolet light and recording with good recording quality can be obtained. [0050] Among the multiphoton absorptions described above, stepwise multiphoton absorption is preferable because an optical gate function can be realized. Therefore, as the sensitizer (A), among the multiphoton absorbing compound or a part thereof, a multistep excitation type multiphoton absorption compound (multistage excitation sensitizer) that generates stepwise multiphoton absorption or a part thereof is used. It is preferable to use the part as a sensitizer (A).
[0051] さらに、上記のように増感体 (A)が 2以上の光子を吸収する場合には、 2以上の異 なる波長の光子を吸収することにより励起されることが好ましい。ここで、光子の波長 の種類とは、波長が互いに 30nm以上、好ましくは 50nm以上異なる場合を言う。増 感体 (A)が吸収する光子の波長が 2種類以上であることにより、段階的多光子吸収 が可能となり、本発明の光反応性組成物に光ゲート機能を実現できるという利点を得 ることができる。なお、上記段階的 2光子吸収の際に第一の励起光と第二の励起光と を使用したことは、光子の波長が 2種類以上であることの一例である。  [0051] Further, when the sensitizer (A) absorbs two or more photons as described above, it is preferably excited by absorbing two or more different photons. Here, the type of photon wavelength means that the wavelengths are different from each other by 30 nm or more, preferably 50 nm or more. When the wavelength of the photon absorbed by the sensitizer (A) is two or more, stepwise multi-photon absorption is possible, and the photoreactive composition of the present invention has an advantage that a photogate function can be realized. be able to. The use of the first excitation light and the second excitation light in the above-described stepwise two-photon absorption is an example of two or more photon wavelengths.
[0052] また、本発明の光反応性組成物が含有する増感体 (A)の含有率は本発明の効果 を著しく損なわない限り任意であるが、光反応性組成物に対して、通常 0. 001重量 %以上、好ましくは 0. 01重量%以上、より好ましくは 0. 1重量%以上、また、通常 50 重量%以下、好ましくは 40重量%以下、より好ましくは 30重量%以下である。増感体 (A)が少なすぎると感度が低下する可能性があり、多すぎると記録や再生に使用す る光の吸収が大きくなり、深さ方向に光が届きにくくなる可能性がある。  [0052] The content of the sensitizer (A) contained in the photoreactive composition of the present invention is arbitrary as long as the effects of the present invention are not significantly impaired. 0.001% by weight or more, preferably 0.01% by weight or more, more preferably 0.1% by weight or more, and usually 50% by weight or less, preferably 40% by weight or less, more preferably 30% by weight or less. . If the amount of the sensitizer (A) is too small, the sensitivity may decrease. If the amount is too large, absorption of light used for recording and reproduction increases, and light may not reach the depth direction.
なお、増感体 (A)が化合物の部分 (例えば、官能基など)である場合には、本発明 の効果を損なわない限り、増感体 (A)は、重合体 )に含まれていても良い。増感体 (A)が重合体 (B)に含まれている場合、増感体 (A)は、側鎖として重合体 (B)に含ま れていてもよぐ主鎖の一部として重合体 (B)に含まれていてもよい。  In the case where the sensitizer (A) is a part of a compound (for example, a functional group), the sensitizer (A) is included in the polymer) unless the effects of the present invention are impaired. Also good. When the sensitizer (A) is contained in the polymer (B), the sensitizer (A) is heavy as a part of the main chain that may be contained in the polymer (B) as a side chain. It may be contained in coalescence (B).
[0053] さらに、増感体 (A)と反応基 (C)との比率に制限は無い。  [0053] Further, there is no limitation on the ratio of the sensitizer (A) to the reactive group (C).
[0054] [I 2.重合体 (B)及び反応基 (C) ]  [0054] [I 2. Polymer (B) and Reactive Group (C)]
重合体 (B)は、所定の化学変換を生じうる反応基 (C)を有する重合体 (ポリマー)で あれば任意のものの使用することができる。ここでは、まず反応基 (C)について説明 し、次いで、重合体 )について説明を行なう。  Any polymer (B) may be used as long as it is a polymer (polymer) having a reactive group (C) capable of causing a predetermined chemical conversion. Here, the reactive group (C) will be described first, and then the polymer) will be described.
[0055] 反応基 (C)は、化学変換に実質的に関与しうる原子の集団であり、化学変換を生じ る任意の基を用いることができる。反応基 (C)が生じる化学変換に制限は無ぐ本発 明の光反応性組成物の用途に応じて適切な化学変換を任意に用いることができる。 ただし、反応基 (C)は、増感体 (A)が適切に励起した場合には化学変換を生じるよう にすることが好ましい。したがって、反応基 (C)の化学変換は、励起した増感体 (A) の寄与により生じるようにすることが好ま 、。 [0055] The reactive group (C) is a group of atoms that can substantially participate in chemical conversion, and causes chemical conversion. Any group can be used. There is no limitation on the chemical transformation in which the reactive group (C) is generated. Any appropriate chemical transformation can be used depending on the use of the photoreactive composition of the present invention. However, it is preferable that the reactive group (C) causes chemical conversion when the sensitizer (A) is appropriately excited. Therefore, it is preferable that the chemical transformation of the reactive group (C) occurs due to the contribution of the excited sensitizer (A).
[0056] 反応基 (C)の化学変換の中でも好適なものの例を挙げると有機反応が挙げられる 。この中でも、特に、光反応、重合反応、高分子反応などが好ましい。 [0056] Among the chemical transformations of the reactive group (C), organic reactions can be mentioned as examples of suitable ones. Among these, photoreaction, polymerization reaction, polymer reaction and the like are particularly preferable.
例えば、光反応としては、異性化反応、転移反応、環化反応、二量化反応、水素引 き抜き反応、付加反応などが挙げられる。  For example, examples of the photoreaction include an isomerization reaction, a transfer reaction, a cyclization reaction, a dimerization reaction, a hydrogen abstraction reaction, and an addition reaction.
以下、好適な化学変換の具体例を挙げる。なお、以下に例示する化学変換におい ては化合物同士の反応を例示しているが、これらの化学変換においては例示された 化合物の一部が反応基 (C)として機能して反応が進行していると見るべきである。し たがって、ここで例示された化学変換を反応基 (C)に適用する場合には、例示される 化合物の化学変化を生じる部分 (この部分が反応基 (C)に相当する)を当該化合物 に代えて化学変換を適用する。  Specific examples of suitable chemical transformations are given below. In the chemical transformations exemplified below, the reactions between the compounds are exemplified, but in these chemical transformations, some of the exemplified compounds function as reactive groups (C) and the reaction proceeds. Should be seen. Therefore, when the chemical transformation exemplified here is applied to the reactive group (C), a moiety that causes a chemical change of the exemplified compound (this part corresponds to the reactive group (C)) is taken as the compound. Instead of chemical conversion.
[0057] 異性ィ匕反応の例としては、ォレフィン、ァゾィ匕合物、カルボニル化合物の異性化反 応などが挙げられる。  [0057] Examples of isomeric reactions include isomerization reactions of olefins, azo compounds, and carbonyl compounds.
具体例を挙げると、ォレフィンの異性ィ匕反応としては、シス トランス異性ィ匕反応( 例えば、スチルベン、 1, 3 ペンタジェン、環状ォレフィン、カルボ-ルと共役するォ レフイン、窒素化合物などのシス トランス異性ィ匕反応)などが挙げられる。また、ァゾ 化合物の異性ィ匕反応としては、シス—トランス異性ィ匕反応が挙げられる。  Specific examples of isomerization reactions of olefins include cis-trans isomerization reactions (eg, cis-trans isomerism such as stilbene, 1,3 pentagen, cyclic olefin, olefins conjugated with carboleyl, and nitrogen compounds). Ii reaction). Further, the isomerization reaction of the azo compound includes a cis-trans isomerization reaction.
[0058] 転位反応の例としては、ォレフィン、ポリェン、ェノン化合物の転位反応、カルボ- ルイ匕合物の光転位反応などが挙げられる。  [0058] Examples of the rearrangement reaction include rearrangement reaction of olefin, polyene, and enone compounds, and photorearrangement reaction of carbo-louie compound.
具体例を挙げると、ォレフィン及びポリェンの転位反応としては、プロトンの分子内 転位による環化反応及び異性化反応の際に生じる転位反応、ジー π メタン化合物 の転位反応(例えば、 1, 4 ペンタジェン誘導体によるビュルシクロプロパンの生成 反応の際に生じる転位反応、環状ジー π メタンの光転位によるシクロプロパンの生 成反応の際に生じる転位反応 (例えば、ノルボルナジェン—クヮドリシクランの転位反 応等)等)などが挙げられる。 Specific examples of such rearrangement reactions of olefin and polyene include rearrangement reactions that occur during cyclization and isomerization reactions due to intramolecular rearrangement of protons, rearrangement reactions of di-π methane compounds (for example, 1,4 pentagen derivatives). A rearrangement reaction that occurs during the formation of bulucyclopropane by the reaction, a rearrangement reaction that occurs during the formation of cyclopropane by the photorearrangement of cyclic π-methane (for example, the rearrangement reaction of norbornagen-quadricicrane) Etc.)) and the like.
[0059] また、例えば、ェノン化合物の転位反応としては、 α , βーシクロへキセノンにおけ る 1, 2—ァリール及びルミケトン転位の際に生じる転位反応、シクロペンテノンの光転 位反応、 β , γ—ェノンの光転位反応、ジェノンィ匕合物の転位反応(2, 5 シクロへ キサジェノンよりビシクロへキセノンゃヒドロキシケトンの生成反応の際に生じる転位 反応;ヘテロ 2, 5 シクロへキサジェノン、 2, 4ーシクロへキサジェノンの転位及 び環開裂反応の際に生じる転位反応;トロボロン (シクロヘプタトリエノン)類の光化学 反応の際に生じる転位反応)などが挙げられる。 [0059] Further, for example, rearrangement reactions of enone compounds include rearrangement reactions that occur during 1,2-aryl and lumiketone rearrangements in α, β-cyclohexenone, photorearrangement reactions of cyclopentenone, β, Photorearrangement reaction of γ-enone, rearrangement reaction of Genony compound (rearrangement reaction that occurs during the formation of bicyclohexenone or hydroxyketone from 2,5 cyclohexagenone; hetero 2,5 cyclohexagenone, 2, 4 -Rearrangement reaction that occurs during the rearrangement and ring cleavage reaction of cyclohexagenone; Rearrangement reaction that occurs during the photochemical reaction of trobolone (cycloheptatrienone).
[0060] さらに、例えば、カルボ-ルイ匕合物の光転位反応としては、環状ケトンの分解による ケテン及びアルデヒドの生成反応の際に生じる光転位反応、カルボニル化合物から の一酸化炭素の脱離反応の際に生じる光転位反応、環状ケトンの環拡大反応による 環状エーテルの生成反応の際に生じる光転位反応などが挙げられる。 [0060] Further, for example, the photorearrangement reaction of a carbo-Louis compound includes a photorearrangement reaction that occurs in the formation reaction of ketene and aldehyde by decomposition of a cyclic ketone, and a carbon monoxide elimination reaction from a carbonyl compound. Photorearrangement reaction that occurs during the reaction, and photorearrangement reaction that occurs during the formation reaction of the cyclic ether by ring expansion reaction of the cyclic ketone.
[0061] 環化反応の例としては、ジェン及びトリェンの環化反応、スチルベンとその誘導体と の光環化反応、ォレフィンの分子間光環化反応などが挙げられる。  [0061] Examples of the cyclization reaction include a cyclization reaction of Gen and Trien, a photocyclization reaction of stilbene and a derivative thereof, and an intermolecular photocyclization reaction of olefin.
具体例を挙げると、ジェン及びトリェンの環化反応としては、非共役ジェンの分子 内環化反応によるシクロブタンの生成反応の際に生じる環化反応、共役ジェンの分 子内環化によるシクロブテンの生成反応の際に生じる環化反応、環状共役ジェンの 環化反応、ビシクロへキサジェンの開環によるトリェンを有する環形成反応、複素環 ジェン及びトリェンの環化反応などが挙げられる。  For example, the cyclization reaction of gen and triene includes the cyclization reaction that occurs during the formation reaction of cyclobutane by the intramolecular cyclization reaction of non-conjugated gen, and the formation of cyclobutene by intramolecular cyclization of conjugated gen. Examples include a cyclization reaction that occurs during the reaction, a cyclization reaction of cyclic conjugation, a ring formation reaction having triene by ring opening of bicyclohexagen, and a cyclization reaction of heterogene and triene.
[0062] また、例えば、スチルベンとその誘導体の光環化反応としては、フエナントレンの合 成反応の際に生じる光環化反応、ァゾベンゼンゃァニリン誘導体の光環化反応、ァ ントロン及び複素環を有するスチルベンの光環化反応などが挙げられる。  [0062] Further, for example, photocyclization reaction of stilbene and its derivative includes photocyclization reaction that occurs in the synthesis reaction of phenanthrene, photocyclization reaction of azobenzene-aniline derivative, photocyclization of stilbene having anthrone and heterocycle And the like.
[0063] さらに、ォレフィンの分子間光環化反応としては、共役ォレフィンとォレフィンの分子 間光環化反応、エノンィ匕合物への光付加反応の際に生じる分子間光環化反応、ォ レフインのアセチレンへの付加反応の際に生じる分子間光環化反応、ォレフィンの芳 香族環への付加反応の際に生じる分子間光環化反応などが挙げられる。  [0063] Further, the intermolecular photocyclization reaction of olefins includes intermolecular photocyclization reaction between conjugated olefin and olefin, intermolecular photocyclization reaction that occurs in the photoaddition reaction to enony compound, and olefin to acetylene. And the intermolecular photocyclization reaction that occurs during the addition reaction of olefins to the aromatic ring.
[0064] 二量ィ匕反応の例としては、ォレフィンの光二量ィ匕反応などが挙げられる。  [0064] Examples of the dimerization reaction include the photodimerization reaction of olefin.
具体例を挙げると、ォレフィンの光二量ィ匕反応としては、アルキルォレフィンの二量 化によるシクロブタンの生成反応の際に生じる光二量ィ匕反応、芳香族ォレフインの二 量ィ匕によるシクロブタンの生成反応の際に生じる光二量ィ匕反応、共役ォレフィンの二 量ィ匕によるジビニルシクロブタンの生成反応の際に生じる光二量ィ匕反応、ェノン化合 物のニ量ィ匕によるシクロブタンの生成反応の際に生じる光二量ィ匕反応 (例えば、鎖 状ェノン化合物の光二量ィ匕反応;シクロペンテノン、シクロへキセノン、ヘテロ環等の 光二量ィ匕反応;キノン系化合物の光二量ィ匕反応)、フマル酸及びマレイン酸とその誘 導体との光二量ィヒ反応などが挙げられる。 As a specific example, the photodimerization reaction of olefin is the dimer of alkylolefin. Of divinylcyclobutane by the dimerization of cyclobutane by the dimerization of cyclobutane by the dimerization of cyclobutane, the dimerization of cyclobutane by the dimerization of aromatic olefin, Photodimer reaction that occurs during the formation reaction, photodimer reaction that occurs during the formation reaction of cyclobutane due to the dimerization of the enone compound (for example, the photodimer reaction of a chain enone compound; Photodimer reaction of tenone, cyclohexenone, heterocycle, etc .; photodimer reaction of quinone compounds), photodimer reaction of fumaric acid and maleic acid with their derivatives.
[0065] 水素引き抜き反応の例としては、カルボ二ルイ匕合物の水素引き抜き反応などが挙 げられる。  [0065] Examples of the hydrogen abstraction reaction include a hydrogen abstraction reaction of a carbonyl compound.
具体例を挙げると、カルボ二ルイ匕合物の水素引き抜き反応としては、芳香族ケトン の分子内水素引き抜き反応、シクロアルキルケトンからのシクロブタノールの生成反 応の際に生じる水素引き抜き反応、環状ケトンからのビシクロアルコールの生成反応 の際に生じる水素引き抜き反応、 α—ジケトンの分子内での水素引抜き反応、 α , β 不飽和ケトンの分子内での水素弓 I抜き反応、オルト置換芳香族ケトンの環化とエノ 一ルイ匕反応の際に生じる水素引き抜き反応、フタルイミドの分子内環化反応の際に 生じる水素引き抜き反応、カルボニルの還元反応の際に生じる水素引き抜き反応な どが挙げられる。  For example, the hydrogen abstraction reaction of a carbonyl compound includes an intramolecular hydrogen abstraction reaction of an aromatic ketone, a hydrogen abstraction reaction that occurs during the formation reaction of cyclobutanol from a cycloalkyl ketone, and a cyclic ketone. Abstraction reaction during bicycloalcohol formation reaction from α-diketones, hydrogen abstraction reaction within α-diketone molecule, hydrogen bow I extraction reaction within α, β unsaturated ketone molecule, ortho-substituted aromatic ketone Examples include a hydrogen abstraction reaction that occurs during the cyclization and enantiomer reaction, a hydrogen abstraction reaction that occurs during the intramolecular cyclization reaction of phthalimide, and a hydrogen abstraction reaction that occurs during the reduction reaction of carbonyl.
[0066] 付加反応の例としては、カルボ二ルイ匕合物のォレフィンへの付加反応などが挙げら れる。  [0066] Examples of the addition reaction include an addition reaction of a carbonyl compound to olefin.
具体例を挙げると、カルボ二ルイ匕合物のォレフィンへの付加反応としては、電子豊 富なォレフィンとの反応によるォキセタンの生成反応の際に生じる付加反応;カルボ 二ルイ匕合物と電子欠如ォレフィンとの反応によるォキセタンの生成反応の際に生じる 付加反応;不飽和ケトンの分子内付加反応によるォキセタンの生成反応の際に生じ る付加反応;電子吸引基を持つケトンのォレフィンへの付加反応によるォキセタンの 生成反応の際に生じる付加反応;ベンゾキノン、フロロケトン、ニトロベンゼン等のォレ フィンへの付加反応などが挙げられる。  For example, the addition reaction of carbonyl compounds to olefins includes addition reactions that occur during the formation of oxetane by reaction with electron-rich olefins; carbonyl compounds and lack of electrons. Addition reaction that occurs during the formation reaction of oxetane by reaction with olephine; Addition reaction that occurs during the formation reaction of oxetane by intramolecular addition reaction of unsaturated ketone; By addition reaction of ketone having electron withdrawing group to olefin Addition reactions that occur during the formation reaction of oxetane; addition reactions to olefins such as benzoquinone, fluoroketone, and nitrobenzene.
[0067] また、その他、化学変換としては、芳香族化合物の光反応なども挙げられる。芳香 族化合物の光反応としては、例えば、ベンゼン及びその誘導体の異性ィ匕反応、ピリ ジン及びその誘導体の異性化反応、芳香族環への付加反応、光フリース転位による 置換フエノール及びァ-リンの合成反応、芳香族化合物の光置換反応 (ニトロ芳香族 化合物の求核反応、ァ-ソ一ルゃハ口ベンゼンおよびその類似体の光置換反応、多 置換ベンゼンの光置換反応、ベンゾ-トリルへの光付加や置換反応)などが挙げら れる。 [0067] Other chemical conversions include photoreactions of aromatic compounds. Examples of photoreactions of aromatic compounds include isomeric reactions of benzene and its derivatives, Isomerization reaction of gin and its derivatives, addition reaction to aromatic ring, synthesis reaction of substituted phenol and arlin by photofleece rearrangement, photosubstitution reaction of aromatic compound (nucleophilic reaction of nitroaromatic compound, And photo-substitution reaction of benzene and its analogues, photo-substitution reaction of poly-substituted benzene, photo-addition and substitution reaction to benzo-tolyl).
[0068] また、重合反応としては、例えば、付加重合反応、遷移金属触媒重合反応、開環 重合反応、環化重合反応、重縮合反応、重付加 ·付加縮合反応などが挙げられる。 付加重合としては、例えば、ラジカル重合反応 (例えば、エチレン、塩化ビニル、酢 酸ビュル、塩化ビ-リデン、スチレン、ブタジエン、メタクリルモノマー、アクリルモノマ 一、アクリロニトリル等のラジカル重合反応);カチオン重合反応 (例えば、スチレン、ィ ソブテン、ビュルエーテル、 N—ビュル力ルバゾール等のカチオン重合反応)、ァ- オン重合反応(例えば、スチレン、ブタジエン、メタクリルモノマー、アクリルモノマー、 ニトロエチレン等のァ-オン重合反応)などのイオン重合反応などが挙げられる。  [0068] Examples of the polymerization reaction include addition polymerization reaction, transition metal catalyzed polymerization reaction, ring-opening polymerization reaction, cyclopolymerization reaction, polycondensation reaction, polyaddition / addition condensation reaction, and the like. Examples of the addition polymerization include radical polymerization reactions (for example, radical polymerization reactions of ethylene, vinyl chloride, butyl acetate, vinylidene chloride, styrene, butadiene, methacrylic monomers, acrylic monomers, acrylonitrile, etc.); cationic polymerization reactions ( For example, cationic polymerization reaction such as styrene, isobutene, butyl ether, N-bulu force rubazole), ion polymerization reaction (eg, cation polymerization reaction such as styrene, butadiene, methacrylic monomer, acrylic monomer, nitroethylene) And ionic polymerization reactions.
[0069] また、遷移金属触媒重合反応としては、例えば、 Zeiggler— Natta触媒を用いた重 合反応 (例えば、ォレフィン、スチレン、アセチレン、ジェン等の触媒重合反応)、メタ セシス触媒を用いた重合反応 (例えば、環状ォレフィン、アルキン、ジェン等の触媒 重合反応)などが挙げられる。  [0069] The transition metal catalyzed polymerization reaction includes, for example, a polymerization reaction using a Zeiggler-Natta catalyst (for example, a catalytic polymerization reaction of olefin, styrene, acetylene, gen, etc.), or a polymerization reaction using a metathesis catalyst. (For example, catalytic polymerization reaction of cyclic olefin, alkyne, gen, etc.).
また、開環重合反応としては、例えば、環状モノマーの開環重合反応などが挙げら れる。  Examples of the ring-opening polymerization reaction include a ring-opening polymerization reaction of a cyclic monomer.
[0070] さらに、高分子反応としては、例えば、架橋反応 (例えば、エポキシーァミン反応、 エポキシ メルカプタン反応、不飽和エステルーァミン反応、不飽和エステルーメル カブタン反応、ヒドロシクルイ匕反応、ウレタン化反応など);デンドリマーの合成などが 挙げられる。  [0070] Further, as the polymer reaction, for example, a crosslinking reaction (for example, an epoxy-amine reaction, an epoxy mercaptan reaction, an unsaturated ester-amine reaction, an unsaturated ester-mercaptan reaction, a hydrocycle reaction, a urethanization reaction, etc.); dendrimer And the like.
[0071] 上記の化学変換の中でも、異性化反応及び転位反応が好ま 、。反応基 (C)とし て異性化反応や転位反応を生じるものを使用することにより、自由体積が小さぐ周 囲の環境に依存しにく ヽと 、う利点を得ることができる。  [0071] Among the above chemical transformations, isomerization reaction and rearrangement reaction are preferred. By using a reactive group (C) that generates an isomerization reaction or a rearrangement reaction, it is possible to obtain the advantage that it is not dependent on the surrounding environment where the free volume is small.
[0072] また、化学変換としては、当該化学変換が生じることによって本発明の光反応性組 成物の光学特性が変化するものを使用することも好ましい。即ち、増感体 (A)が励起 された場合、励起された増感体 (A)の寄与により反応基 (C)が化学変換し、本発明 の光反応性組成物の光学特性が変化するようなものを採用することが好まし 、。ここ で変化する光学特性としては、屈折率、アッベ数 (逆分散率)などが挙げられるが、中 でも、屈折率が好ましい。これにより、本発明の光反応性組成物をホログラム記録材 料として好適に使用することができるようになる。 [0072] In addition, as the chemical conversion, it is also preferable to use one that changes the optical properties of the photoreactive composition of the present invention by the chemical conversion. That is, the sensitizer (A) is excited In such a case, it is preferable to employ a compound in which the reactive group (C) is chemically converted by the contribution of the excited sensitizer (A) and the optical properties of the photoreactive composition of the present invention are changed. ,. Examples of the optical characteristics that change include refractive index and Abbe number (reverse dispersion ratio). Among them, refractive index is preferable. As a result, the photoreactive composition of the present invention can be suitably used as a hologram recording material.
[0073] 上記のように光反応性組成物の光学特性を変化させうる化学変換の例としては、付 加反応、異性化反応、転位反応、環化反応などが挙げられる。中でも、屈折率を大き く変化させるため、異性化反応、転位反応、環化反応が好ましい。 [0073] Examples of chemical transformations that can change the optical properties of the photoreactive composition as described above include addition reactions, isomerization reactions, rearrangement reactions, cyclization reactions, and the like. Of these, isomerization reaction, rearrangement reaction, and cyclization reaction are preferable in order to greatly change the refractive index.
特に好適な異性化反応の具体例を挙げると、シス トランス異性化反応が挙げられ 、その中でも更に好ましい反応としては、ァゾィ匕合物のシス一トランス異性ィ匕反応が 挙げられる。  Specific examples of particularly preferred isomerization reactions include cis-trans isomerization reactions, and among them, more preferable reactions include cis-trans isomerization reactions of azo compounds.
また、特に好適な転位反応の具体例を挙げると、ォレフィンやポリェンの分子内転 位反応が挙げられ、その中でも更に好ましい反応としては、ノルボルナジェンからクヮ ドリシクランへの転位反応が挙げられる。  Further, specific examples of particularly suitable rearrangement reactions include intramolecular rearrangement reactions of olefin and polyene. Among them, a more preferable reaction is a rearrangement reaction from norbornagen to quadricyclane.
さらに、特に好適な環化反応の具体例を挙げると、分子間光環化反応が挙げられ、 その中でも更に好ましい反応としては、アントラセンの分子間光環化反応が挙げられ る。  Furthermore, specific examples of particularly suitable cyclization reactions include intermolecular photocyclization reactions, and among them, more preferred reactions include intermolecular photocyclization reactions of anthracene.
なお、これらの化学変換において、光反応性組成物のどの部分が反応基 (C)とし て作用するかは明らかではないが、少なくとも化学変換反応に関与する部分は反応 基 (C)として作用して 、るものと推察される。  In these chemical transformations, it is not clear which part of the photoreactive composition acts as the reactive group (C), but at least the part involved in the chemical transformation reaction acts as the reactive group (C). It is presumed that
[0074] また、光学特性の変化として屈折率が変化する場合、屈折率が変化する程度に制 限は無いが、通常 0. 001以上、好ましくは 0. 01以上、より好ましくは 0. 05以上の変 化を生じるような化学変換が好ましい。屈折率変化が大きいほど、記録の多重度を上 げることができ、単位体積当たりの記録容量が大きくできるためである。  [0074] Further, when the refractive index changes as a change in optical characteristics, there is no limit to the degree to which the refractive index changes, but usually 0.001 or more, preferably 0.01 or more, more preferably 0.05 or more. Chemical transformations that cause this change are preferred. This is because the greater the change in refractive index, the higher the multiplicity of recording and the larger the recording capacity per unit volume.
[0075] 上記のような化学変換を生じる反応基 (C)の具体例を挙げると、ノルボルナジェン 基などが挙げられる。  [0075] Specific examples of the reactive group (C) that causes chemical conversion as described above include a norbornagen group.
[0076] 特に、中でも増感体 (A)としてポルフィリンを使用し、反応基 (C)としてノルボルナジ ェン基を使用することが好ま U、。 なお、反応基 (C)は、 1種を単独で用いても良ぐ 2種以上を任意の組み合わせ及 び比率で用いることができる。したがって、重合体 )は、 2種以上の反応基 (C)を有 していてもよい。 [0076] In particular, it is preferable to use porphyrin as the sensitizer (A) and norbornagen group as the reactive group (C). As the reactive group (C), one kind may be used alone. Two or more kinds may be used in any combination and in any ratio. Accordingly, the polymer) may have two or more kinds of reactive groups (C).
[0077] また、反応基 (C)の分子量に制限は無い。 [0077] The molecular weight of the reactive group (C) is not limited.
[0078] さらに、一つの重合体 (B)が有する反応基 (C)の数にも制限は無い。  [0078] Furthermore, there is no limit to the number of reactive groups (C) that one polymer (B) has.
[0079] 次に、重合体 )について説明する。  [0079] Next, the polymer) will be described.
重合体 )は、反応基 (C)を有する重合体である。この際、反応基 (C)は、側鎖とし て重合体 (B)に含まれていても良ぐ主鎖の一部として重合体 (B)に含まれていても 良い。また、カロえて、重合体 )に含まれない反応基 (C)を含有していても良い。  The polymer) is a polymer having a reactive group (C). At this time, the reactive group (C) may be contained in the polymer (B) as a part of the main chain which may be contained in the polymer (B) as a side chain. Further, it may contain a reactive group (C) that is not contained in the polymer.
[0080] 重合体(B)は、 1種のモノマーのみが重合した重合体であってもよく、 2種以上のモ ノマーが任意の組み合わせ及び比率で共重合した共重合体であってもよ!/、。また、 重合のタイプにも制限は無ぐブロック重合、ランダム重合、グラフト重合等、任意のタ イブの重合法による重合体を使用することができる。さらに、重合体 )は、直鎖状で あってもよぐ有枝鎖状であってもよい。  [0080] The polymer (B) may be a polymer obtained by polymerizing only one kind of monomer, or may be a copolymer obtained by copolymerizing two or more kinds of monomers in an arbitrary combination and ratio. ! / Further, there is no limitation on the type of polymerization, and a polymer obtained by any type of polymerization method such as block polymerization, random polymerization, graft polymerization or the like can be used. Furthermore, the polymer) may be linear or branched.
[0081] 好適な重合体 (B)の例を挙げると、反応基 (C)を有する、ポリメタタリレート、ポリアク リレート、ポリスチレン、ポリエステル、ポリアミド、ポリウレタン、ポリカーボネート、ポリ エーテノレ、セノレロースエステノレ、ポリビニノレエステノレ、ポリビニノレエーテノレ、ポリシロキ サン、ポリオレフイン誘導体などが挙げられる。  [0081] Examples of suitable polymers (B) include polymetatalylate, polyacrylate, polystyrene, polyester, polyamide, polyurethane, polycarbonate, polyetherol, cenorelose esterol, poly (polyacrylate) having a reactive group (C). Vininoles Estenore, Polyvinylenoatenore, Polysiloxane, Polyolefin derivatives and the like.
なお、重合体 (B)は、 1種を単独で用いても良ぐ 2種以上を任意の組み合わせ及 び比率で併用しても良い。  The polymer (B) may be used alone or in combination of two or more in any combination and ratio.
[0082] 中でも、光励起の際の感度を向上させる観点力 は、重合体 )としては、増感体( A)が吸収するスペクトル領域内(即ち、波長領域内)で光学的に透明であることが好 ましい。即ち、重合体 )は、励起光の波長 (励起波長)で有意な吸収を有しないこと が好ましい。具体的には、重合体 (B)の厚さ lmmでのヘイズ力 通常 30%以下、好 ましくは 10%以下、より好ましくは 5%以下である。なお、ヘイズは小さいほど好ましく 、下限は 0%である。  [0082] Among them, the viewpoint of improving the sensitivity upon photoexcitation is that the polymer is optically transparent in the spectral region (that is, in the wavelength region) absorbed by the sensitizer (A). Is preferred. That is, the polymer) preferably has no significant absorption at the wavelength of excitation light (excitation wavelength). Specifically, the haze of the polymer (B) at a thickness of 1 mm is usually 30% or less, preferably 10% or less, more preferably 5% or less. The haze is preferably as small as possible, and the lower limit is 0%.
[0083] また、重合体 (B)としては、反応基 (C)の化学変換を妨害しな 、ものが好ま 、。即 ち、重合体 (B)の分子構造における反応基 (C)以外の部分により、反応基 (C)の化 学変換が妨害されな 、ようになって 、ることが好ま 、。 [0083] The polymer (B) is preferably one that does not interfere with the chemical conversion of the reactive group (C). That is, the reactive group (C) is converted into a component other than the reactive group (C) in the molecular structure of the polymer (B). It is preferable that the academic conversion is not disturbed.
[0084] さらに、重合体 (B)は、本発明の効果を著しく損なわない限り、反応基 (C)以外に 置換基を有していてもよい。なお、置換基は、 1種を単独で用いても良ぐ 2種以上を 任意の組み合わせ及び比率で併用しても良 、。  [0084] Furthermore, the polymer (B) may have a substituent other than the reactive group (C) as long as the effects of the present invention are not significantly impaired. In addition, the substituent may be used alone or in combination of two or more in any combination and ratio.
[0085] また、重合体 (B)の重量平均分子量に制限は無ぐ本発明の効果を著しく損なわな い限り任意である力 通常 1000以上、好ましくは 3000以上、より好ましくは 5000以 上、更に好ましくは 10000以上である。なお、上限は特にない。分子量が小さすぎる と、アーカイブライフが短くなるおそれがある。なお、重合体 (B)の重量平均分子量は 、 GPC (ゲルパーミエーシヨンクロマトグラフィー)により測定することができる。  [0085] Further, the weight average molecular weight of the polymer (B) is not limited, and any force as long as the effect of the present invention is not significantly impaired. Usually 1000 or more, preferably 3000 or more, more preferably 5000 or more, and further Preferably it is 10,000 or more. There is no particular upper limit. If the molecular weight is too small, the archive life may be shortened. The weight average molecular weight of the polymer (B) can be measured by GPC (gel permeation chromatography).
[0086] 中でも、本発明の光反応性組成物を光記録材料又は体積ホログラム記録材料とし て使用した場合のアーカイブライフを長くする観点力 は、使用時に重合体 (B)のミ クロブラウン運動が小さくなるようにすることが好ましい。これを実現するため、重合体 [0086] Among them, the viewpoint power to increase the archive life when the photoreactive composition of the present invention is used as an optical recording material or a volume hologram recording material is that the micro-Brownian motion of the polymer (B) is in use. It is preferable to make it smaller. To achieve this, the polymer
(B)のガラス転移温度 Tgは、好適には、通常 20°C以上、好ましくは 30°C以上、より 好ましくは 50°C以上、また、通常 300°C以下、好ましくは 290°C以下、より好ましくは 280°C以下である。 The glass transition temperature Tg of (B) is suitably 20 ° C or higher, preferably 30 ° C or higher, more preferably 50 ° C or higher, and usually 300 ° C or lower, preferably 290 ° C or lower. More preferably, it is 280 ° C or lower.
[0087] 本発明の光反応性組成物が含有する重合体 (B)の含有率は本発明の効果を著し く損なわない限り任意である。  [0087] The content of the polymer (B) contained in the photoreactive composition of the present invention is arbitrary as long as the effects of the present invention are not significantly impaired.
[0088] また、重合体 (B)の合成方法に制限は無い。例えば、任意の重合体 (反応基 (C)を 結合させる前の重合体)に反応基 (C)を結合させて、重合体 (B)を製造することがで きる。合成時に行なう反応としては、例えば、ウレタン化、エステル化、エーテル化、ス ルフイド化、カルボン酸 エポキシ反応、アミンーエポキシ反応、チオール ェポキ シ反応、アミド化反応、酸無水物ーァミン反応等が挙げられる。  [0088] Further, there is no limitation on the synthesis method of the polymer (B). For example, the polymer (B) can be produced by bonding the reactive group (C) to an arbitrary polymer (polymer before bonding the reactive group (C)). Examples of the reaction performed during the synthesis include urethanization, esterification, etherification, sulfidation, carboxylic acid epoxy reaction, amine-epoxy reaction, thiol epoxy reaction, amidation reaction, acid anhydride-amine reaction, and the like. .
[0089] [1- 3.その他の成分]  [0089] [1-3. Other ingredients]
本発明の光反応性組成物には、上述した増感体 (A)及び重合体 (B)以外に、その 他の成分 (添加剤)を含有させてもょ ヽ。  In addition to the sensitizer (A) and polymer (B) described above, the photoreactive composition of the present invention may contain other components (additives).
添加剤としては、例えば、増感体 (A)の励起の制御 (励起波長や励起エネルギー の制御など)、反応の制御、特性の改良などの目的で、任意の添加剤を用いても構 わない。増感体 (A)の励起の制御のための添加剤としては、例えば、増感補助剤が 挙げられる。また、反応の制御のための添加剤としては、例えば、開始剤、連鎖移動 剤、重合停止剤、相溶化剤、反応補助剤などが挙げられる。さらに、特性の改良のた めの添加剤としては、分散剤、消泡剤、可塑剤、防腐剤、安定剤などが挙げられる。 As the additive, for example, an arbitrary additive may be used for the purpose of controlling the excitation of the sensitizer (A) (controlling the excitation wavelength and excitation energy), controlling the reaction, and improving the characteristics. Absent. As an additive for controlling excitation of the sensitizer (A), for example, a sensitization aid is used. Can be mentioned. Examples of the additive for controlling the reaction include an initiator, a chain transfer agent, a polymerization terminator, a compatibilizing agent, and a reaction auxiliary agent. Further, additives for improving the properties include dispersants, antifoaming agents, plasticizers, preservatives, stabilizers and the like.
[0090] 添加剤の使用量は、本発明の効果を著しく損なわない限り任意である。ただし、本 発明の光反応性組成物中の濃度として、通常 0. 001重量%以上、好ましくは 0. 01 重量%以上、また、通常 30重量%以下、好ましくは 10重量%以下とする。  [0090] The amount of the additive used is arbitrary as long as the effects of the present invention are not significantly impaired. However, the concentration in the photoreactive composition of the present invention is usually 0.001% by weight or more, preferably 0.01% by weight or more, and usually 30% by weight or less, preferably 10% by weight or less.
[0091] [1-4.作用]  [0091] [1-4. Action]
本発明の光反応性組成物は、増感体 (A)が反応基 (C)に対して還元型の電子配 置を有しているため、ホログラム記録媒体などの光記録媒体に用いた場合に、記録 内容を破壊させることなく記録の読み出しを行なうことが可能である。このような優れ た利点を得ることができる理由は、以下のように推察される。  In the photoreactive composition of the present invention, since the sensitizer (A) has a reduced electron configuration with respect to the reactive group (C), it is used for an optical recording medium such as a hologram recording medium. In addition, it is possible to read the record without destroying the recorded content. The reason why such an excellent advantage can be obtained is assumed as follows.
[0092] 図 4は、増感体が反応基に対して酸化型の電子配置を有して!/、る場合にぉ 、て、 読み出し時の増感体及び反応基の変化の一例を表わす図である。また、図 5 (a)〜 図 5 (c)は、それぞれ、増感体が反応基に対して酸化型の電子配置を有している場 合において、読み出し時の増感体及び反応基の電子配置の一例を表わす図である 。さらに、図 6は、本発明の光反応組成物において、読み出し時の増感体 (A)及び 反応基 (C)の変化の一例を表わす図である。また、図 7 (a)〜図 7 (c)は、それぞれ、 本発明の光反応性組成物にぉ 、て、読み出し時の増感体 (A)及び反応基 (C)の電 子配置の一例を表わす図である。  FIG. 4 shows an example of changes in the sensitizer and the reactive group at the time of readout when the sensitizer has an oxidized electron configuration with respect to the reactive group! FIG. FIGS. 5 (a) to 5 (c) show the sensitizer and reactive group at the time of readout when the sensitizer has an oxidized electron configuration with respect to the reactive group. It is a figure showing an example of electronic arrangement | positioning. Further, FIG. 6 is a diagram showing an example of changes in the sensitizer (A) and the reactive group (C) during readout in the photoreactive composition of the present invention. FIG. 7 (a) to FIG. 7 (c) show the electron configuration of the sensitizer (A) and the reactive group (C) at the time of readout, respectively, in the photoreactive composition of the present invention. It is a figure showing an example.
[0093] 光記録媒体の一例として、増感体 (増感体 (A)など)と、反応基 (反応基 (C)など)を 有する物質 (重合体 (B)など)とを有する組成物を用いて体積ホログラム記録媒体を 形成した場合を想定する。  [0093] As an example of an optical recording medium, a composition having a sensitizer (such as sensitizer (A)) and a substance having a reactive group (such as reactive group (C)) (such as polymer (B)) Assume that a volume hologram recording medium is formed using
まず、増感体が反応基に対して酸化型の電子配置を有して 、る場合につ!、て説明 する。体積ホログラム記録媒体に記録された情報を読み出すためには、体積ホロダラ ム記録媒体に読み出し光 (再生光)を照射する。  First, the case where the sensitizer has an oxidized electron configuration with respect to the reactive group will be described. In order to read the information recorded on the volume hologram recording medium, the volume hologram recording medium is irradiated with reading light (reproduction light).
[0094] 読み出し光が照射されると、増感体は励起する(図 4の stepl参照)。この際、増感 体の被占軌道 AOにあった電子は、読み出し光の強さに応じた中間の空軌道 Axに 移動する(図 5 (a)参照)。そうすると、増感体の被占軌道 AOに空きが生じ、電子が入 ることができるようになる(図 5 (b)参照)。 [0094] When the readout light is irradiated, the sensitizer is excited (see stepl in Fig. 4). At this time, the electrons in the occupied orbit AO of the sensitizer move to an intermediate empty orbit Ax according to the intensity of the readout light (see Fig. 5 (a)). As a result, an occupant orbit AO of the sensitizer becomes empty, and electrons enter. (See Fig. 5 (b)).
[0095] この例では、増感体が反応基に対して酸化型の電子配置を有しているので、増感 体の被占軌道 AOは反応基の被占軌道 COよりもエネルギー準位が低い。このため、 前記の空きが生じた増感体の被占軌道 AOには、図 5 (b)に実線矢印で示すように、 反応基の被占軌道 COから電子が移動する。この電子の移動により、反応基は酸化さ れる(図 4の step2参照)。酸化された反応基は、図 5 (c)に示すように被占軌道 COに 電子を 1つしか持たない励起状態となるため、化学変異を生じうる活性な状態となる。  [0095] In this example, the sensitizer has an oxidized electron configuration with respect to the reactive group, so the occupied orbital AO of the sensitizer has an energy level higher than the occupied orbital CO of the reactive group. Low. For this reason, electrons move from the occupied orbit CO of the reactive group to the occupied orbit AO of the sensitizer in which the vacancy is generated, as indicated by the solid line arrow in FIG. 5 (b). This electron transfer oxidizes the reactive group (see step 2 in Fig. 4). As shown in Fig. 5 (c), the oxidized reactive group becomes an excited state in which only one electron is present in the occupied orbital CO, and thus becomes an active state that can cause chemical mutation.
[0096] 活性な状態となった反応基は、化学変換を生じる可能性がある。反応基が化学変 換を生じると、記録内容の破壊を招くことがある。即ち、化学変換は情報の書き込み 時に生じるものである力 この化学変換が情報の読み出し時に生じると、記録部のホ ログラムが変化し、記録内容が破壊されてしまって 、た。  [0096] Reactive groups that have become active may cause chemical transformations. If the reactive group undergoes chemical conversion, the recorded content may be destroyed. In other words, the chemical conversion is a force that occurs when information is written. When this chemical conversion occurs when information is read, the program of the recording section changes and the recorded contents are destroyed.
なお、図 5 (a)〜図 5 (c)において、 A1及び C1はそれぞれ増感体及び反応基の空 軌道を示す。  In FIGS. 5 (a) to 5 (c), A1 and C1 indicate the vacant orbitals of the sensitizer and the reactive group, respectively.
[0097] これに対し、本発明の光反応性組成物を用いて体積ホログラム記録媒体を形成し た場合には、以下のようになる。即ち、情報の読み出し時、体積ホログラム記録媒体 に読み出し光が照射されると、増感体 (A)は励起する(図 6の stepl参照)。この際、 増感体 (A)の被占軌道 AOにあった電子は、読み出し光の強さに応じた中間の空軌 道 Axに移動する(図 7 (a)参照)。そうすると、増感体 (A)の被占軌道 AOに空きが生 じ、電子が入ることができるようになる(図 7 (b)参照)。  On the other hand, when a volume hologram recording medium is formed using the photoreactive composition of the present invention, it is as follows. That is, at the time of reading information, when the reading light is irradiated to the volume hologram recording medium, the sensitizer (A) is excited (see stepl in FIG. 6). At this time, electrons in the occupied orbit AO of the sensitizer (A) move to an intermediate air path Ax corresponding to the intensity of the readout light (see Fig. 7 (a)). As a result, a space is generated in the occupied orbit AO of the sensitizer (A) and electrons can enter (see Fig. 7 (b)).
[0098] ところが、本発明の光反応性組成物においては、増感体 (A)が反応基 (C)に対し て還元型の電子配置を有しているため、増感体 (A)の被占軌道 AOは反応基 (C)の 被占軌道 COよりもエネルギー準位が高い。このため、前記の空きが生じた増感体 (A )の被占軌道 AOには、反応基 (C)の被占軌道 COから電子が移動することはない。さ らに、読み出し光のエネルギーを適切な範囲に収めること等により、中間の空軌道 A Xが反応基 (C)の空軌道 C1よりも低くなるようにすれば (即ち、増感体 (A)の被占軌 道 AOにあった電子に、大きすぎるエネルギーを与えないようにすれば)、中間の空軌 道 Axから反応基 (C)の空軌道 C 1に電子が移動することもな ヽ(図 7 (b)の破線矢印 参照)。 [0099] したがって、中間の空軌道 Axに移動した電子は、図 7 (b)に実線矢印で示すように 増感体 (A)の被占軌道 AOに移動する。このように、増感体 (A)が緩和して励起前の 状態に戻ることになり(図 7 (c)参照)、反応基 (C)が酸化されることは無いため、反応 基 (C)は不活性のままである(図 6の step2参照)。したがって、反応基 (C)が化学変 換を生じることは無ぐ記録内容が破壊されることもない。 However, in the photoreactive composition of the present invention, the sensitizer (A) has a reduced electron configuration with respect to the reactive group (C). Occupied orbital AO has a higher energy level than the occupied orbital CO of the reactive group (C). For this reason, electrons do not move from the occupied orbit CO of the reactive group (C) to the occupied orbit AO of the sensitizer (A) in which the vacant space is generated. Furthermore, if the intermediate empty orbit AX is made lower than the empty orbit C1 of the reactive group (C) by keeping the energy of the readout light within an appropriate range, etc. (that is, the sensitizer (A) If the electron in the occupied track AO is not given too much energy), the electron may not move from the intermediate track Ax to the empty track C 1 of the reactive group (C). (See dashed arrow in Figure 7 (b)). Therefore, the electrons that have moved to the intermediate empty orbit Ax move to the occupied orbit AO of the sensitizer (A) as shown by the solid line arrow in FIG. 7 (b). In this way, the sensitizer (A) relaxes and returns to the state before excitation (see Fig. 7 (c)), and the reactive group (C) is not oxidized. ) Remains inactive (see step 2 in Figure 6). Therefore, the recorded content is not destroyed without the reactive group (C) causing a chemical transformation.
なお、図 7 (a)〜図 7 (c)において、 A1は増感体 (A)の空軌道を表わす。  In FIGS. 7 (a) to 7 (c), A1 represents an empty orbit of the sensitizer (A).
[0100] 以上のようにして、本発明の光反応性組成物は、記録内容を破壊させることなく記 録の読み出しを行なうことが可能となっているものと推察される。また、後述するように 、適切な励起光を照射すれば、反応基 (C)は化学変換を生じることになる。即ち、本 発明の光反応性組成物においては、ある所定の条件の光を用いれば反応基 (C)に 化学変換を生ぜしめることができ、それ以外の条件の光では反応基 (C)が化学変換 を生じな!/、ようにすることができると!/、う機能 (即ち、光ゲート機能)を実現することが 可能となる。具体的には、照射する光が増感体 (A)に与えるエネルギー力 中間の 空軌道 Axが反応基 (C)の空軌道 C1に比べて高 、か低 、かにより、化学変換が生じ るか否かをコントロールすることが可能となるのである。  [0100] As described above, it is presumed that the photoreactive composition of the present invention can read a record without destroying the recorded content. As will be described later, the reactive group (C) undergoes chemical transformation when irradiated with appropriate excitation light. That is, in the photoreactive composition of the present invention, chemical reaction can be caused to the reactive group (C) by using light of a certain predetermined condition, and the reactive group (C) is not exposed to light of other conditions. If no chemical conversion occurs! /, It is possible to realize the function (ie, optical gate function). Specifically, the energy force that the irradiated light gives to the sensitizer (A) Chemical conversion occurs depending on whether the intermediate empty orbit Ax is higher or lower than the empty orbit C1 of the reactive group (C). It is possible to control whether or not.
[0101] また、本発明の光反応性組成物は、ホログラム記録に利用した場合に、増感体 (A) を励起させ、当該励起した増感体 (A)の寄与により反応基 (C)をィ匕学変換させること により、情報の書き込みが可能である。以下、そのメカニズムについて例を挙げて説 明する。  [0101] The photoreactive composition of the present invention, when used for hologram recording, excites the sensitizer (A) and contributes to the reactive group (C) by the contribution of the excited sensitizer (A). It is possible to write information by converting the data. The mechanism is explained below with an example.
[0102] 励起した増感体 (A)の寄与により反応基 (C)が化学変換を生じるメカニズムとして は、例えば、還元により反応基 (C)が活性になる場合と、エネルギー移動により反応 基 (C)が活性になる場合とが挙げられる。  [0102] As a mechanism for causing the reactive group (C) to undergo chemical conversion due to the contribution of the excited sensitizer (A), for example, when the reactive group (C) is activated by reduction, and the reactive group (C) is activated by energy transfer ( And C) becomes active.
まず、還元により反応基 (C)が活性となる場合について説明する。  First, the case where the reactive group (C) is activated by reduction will be described.
図 8 (a)〜図 8 (c)は、それぞれ、本発明の光反応性組成物において、還元により反 応基 (C)が活性となる場合の書き込み時の増感体 (A)及び反応基 (C)の電子配置 の一例を表わす図である。また、図 8 (a)〜図 8 (c)において、 AO及び A1は増感体( A)の被占軌道及び空軌道の電子配置をそれぞれ表わし、 CO及び C1は反応基 (C) の被占軌道及び空軌道の電子配置をそれぞれ表わす。 [0103] 本例において、情報の書き込み時には、本発明の光反応性組成物に記録光が照 射され、増感体 (A)はこの記録光の光子を吸収する。そして、図 8 (a)に示すように、 当該光子のエネルギーは、増感体 (A)の被占軌道 AOにある電子を空軌道 A1に移 動するために使用される(図 8 (a)の矢印参照)。これにより、増感体 (A)の被占軌道 AOにあった電子は、図 8 (b)に示すように、空軌道 A1に移動する。 FIG. 8 (a) to FIG. 8 (c) show the sensitizer (A) and reaction at the time of writing when the reactive group (C) is activated by reduction in the photoreactive composition of the present invention, respectively. It is a figure showing an example of the electronic arrangement of group (C). In FIGS. 8 (a) to 8 (c), AO and A1 represent the occupant and empty orbital electron configurations of the sensitizer (A), respectively, and CO and C1 represent the groups of the reactive group (C). Represents the electronic arrangement of the horoscope and the empty orbit, respectively. In this example, when information is written, the photoreactive composition of the present invention is irradiated with recording light, and the sensitizer (A) absorbs photons of this recording light. Then, as shown in Fig. 8 (a), the energy of the photon is used to move electrons in the occupied orbit AO of the sensitizer (A) to the empty orbit A1 (Fig. 8 (a ) Arrow). As a result, the electrons in the occupied orbit AO of the sensitizer (A) move to the empty orbit A1 as shown in FIG. 8 (b).
[0104] 増感体 (A)の空軌道 A1に移動した電子は、その後、図 8 (b)において矢印で示す ように、反応基 (C)の空軌道 C1に移動する。即ち、反応基 (C)は増感体 (A)カも電 子を受け取り、還元される。  [0104] The electrons moved to the vacant orbit A1 of the sensitizer (A) then move to the vacant orbit C1 of the reactive group (C) as shown by the arrows in FIG. 8 (b). That is, the reactive group (C) also receives electrons from the sensitizer (A) and is reduced.
そして、その結果、図 8 (c)に示すように、反応基 (C)は空軌道 C1に電子を有する ことになり、活性な状態となる。したがって、その後、活性な状態となった反応基 (C) は、化学変換を生じる。よって、この化学変換を利用して情報の書き込みを行なうよう にすれば、本発明の光反応性組成物を用いて、体積ホログラム記録媒体を形成でき るのである。即ち、この体積ホログラム記録媒体は、増感体 (A)が光子を吸収すること によって、情報の書き込みが可能となっている。  As a result, as shown in FIG. 8 (c), the reactive group (C) has electrons in the vacant orbit C1, and becomes active. Therefore, the reactive group (C) that has become active thereafter undergoes chemical transformation. Therefore, if information is written using this chemical conversion, a volume hologram recording medium can be formed using the photoreactive composition of the present invention. That is, in this volume hologram recording medium, information can be written when the sensitizer (A) absorbs photons.
[0105] 次に、エネルギー移動により反応基 (C)が活性となる場合について説明する。  Next, the case where the reactive group (C) is activated by energy transfer will be described.
図 9 (a)〜図 9 (c)は、それぞれ、本発明の光反応性組成物において、エネルギー 移動により反応基 (C)が活性となる場合の書き込み時の増感体 (A)及び反応基 (C) の電子配置の一例を表わす図である。また、図 9 (a)〜図 9 (c)において、 AO及び A 1は増感体 (A)の被占軌道及び空軌道の電子配置をそれぞれ表わし、 CO及び C1 は反応基 (C)の被占軌道及び空軌道の電子配置をそれぞれ表わす。  FIG. 9 (a) to FIG. 9 (c) show the sensitizer (A) and reaction during writing when the reactive group (C) is activated by energy transfer in the photoreactive composition of the present invention, respectively. It is a figure showing an example of the electronic arrangement of group (C). In FIGS. 9 (a) to 9 (c), AO and A 1 represent the occupant and empty orbital electron configurations of the sensitizer (A), respectively, and CO and C1 represent the reactive group (C). Represents the electronic configuration of the occupied orbit and empty orbit, respectively.
[0106] 本例においても、情報の書き込み時には、本発明の光反応性組成物に記録光が 照射され、増感体 (A)はこの記録光の光子を吸収する。当該光子のエネルギーは、 上記の図 8 (a)を用いて還元による例で説明したのと同様に、図 9 (a)に示すように増 感体 (A)の被占軌道 AOにある電子を空軌道 A1に移動するために使用される(図 9 ( a)の矢印参照)。これにより、増感体 (A)の被占軌道 AOにあった電子は、図 9 (b)に 示すように、空軌道 A1に移動する。また、これに伴い、増感体 (A)の被占軌道 AOに は空きが生じる。  Also in this example, when writing information, the photoreactive composition of the present invention is irradiated with recording light, and the sensitizer (A) absorbs photons of this recording light. The energy of the photon is the same as that explained in the example of reduction using Fig. 8 (a) above, as shown in Fig. 9 (a), the electrons in the occupied orbit AO of the sensitizer (A). Is used to move to orbit A1 (see arrow in Fig. 9 (a)). As a result, the electrons in the occupied orbit AO of the sensitizer (A) move to the empty orbit A1 as shown in FIG. 9 (b). Along with this, a space is generated in the occupied track AO of the sensitizer (A).
[0107] 増感体 (A)の空軌道 A1に移動した電子は、その後、図 9 (b)において実線矢印で 示すように、反応基 (C)の空軌道 CIに移動する。また、この際、増感体 (A)の空軌 道 A 1と反応基 (C)の空軌道 C 1との間にはエネルギー差があるため、当該電子の移 動に起因してエネルギー(+ Δ Ε)が生じる。このエネルギー(+ Δ Ε)を、反応基(C) の被占軌道 COから増感体 (A)の被占軌道 AOに電子を移動させるためのエネルギ 一( Δ E' )として用いることにより、図 9 (b)にお 、て破線矢印で示すように、反応基 (C)の被占軌道 COから増感体 (A)の被占軌道 AOに電子が移動する。 [0107] The electrons that have moved to the empty orbit A1 of the sensitizer (A) are then shown by solid arrows in Fig. 9 (b). As shown, move to the empty orbital CI of the reactive group (C). At this time, since there is an energy difference between the air trajectory A 1 of the sensitizer (A) and the air trajectory C 1 of the reactive group (C), the energy ( + Δ Ε) occurs. By using this energy (+ Δ Ε) as the energy (Δ E ′) for moving electrons from the occupied orbital CO of the reactive group (C) to the occupied orbital AO of the sensitizer (A), In FIG. 9 (b), the electrons move from the occupied orbital CO of the reactive group (C) to the occupied orbital AO of the sensitizer (A), as indicated by the dashed arrows.
[0108] 上記の電子の移動により、図 9 (c)に示すように、増感体 (A)では被占軌道 AOに電 子が 2つ存在し、空軌道 A1には電子が存在しない状態となる。一方、反応基 (C)で は被占軌道 CO及び空軌道 C1のそれぞれに電子が 1つずつ存在する状態となる。 空軌道 C1に電子を有することになつた反応基 (C)は活性な状態となる。したがって 、その後、活性な状態となった反応基 (C)は、化学変換を生じる。  [0108] Due to the above-mentioned electron movement, as shown in Fig. 9 (c), in the sensitizer (A), two electrons exist in the occupied orbit AO, and no electrons exist in the empty orbit A1. It becomes. On the other hand, in the reactive group (C), one electron exists in each of the occupied orbital CO and the empty orbital C1. The reactive group (C) that has an electron in the vacant orbit C1 becomes active. Accordingly, the reactive group (C) that is subsequently activated undergoes chemical transformation.
[0109] なお、本例においては、増感体 (A)及び反応基 (C)の電子の数に変化はなぐ酸 化や還元は生じない。しかし、増感体 (A)力も反応基 (C)へエネルギー(Δ Ε— Δ Ε' )の移動が生じることになり、結果的に、この移動したエネルギーによって反応基 (C) が励起されたことになる。本例がエネルギー移動により反応基 (C)が活性になるとい うのは、このためである。  [0109] In this example, no oxidation or reduction occurs without any change in the number of electrons of the sensitizer (A) and the reactive group (C). However, the sensitizer (A) force also causes the transfer of energy (Δ Ε— Δ Ε ') to the reactive group (C). As a result, the reactive group (C) is excited by this transferred energy. It will be. This is why the reactive group (C) is activated by energy transfer in this example.
[0110] よって、このエネルギー移動により活性となった反応基 (C)の化学変換を利用して 情報の書き込みを行なうようにすれば、本発明の光反応性組成物を用いて、情報の 書き込みができる体積ホログラム記録媒体を形成できるのである。即ち、この体積ホ ログラム記録媒体も、増感体 (Α)が光子を吸収することによって、情報の書き込みが 可能となっている。  [0110] Therefore, if the information is written using the chemical conversion of the reactive group (C) activated by this energy transfer, the information can be written using the photoreactive composition of the present invention. Thus, a volume hologram recording medium that can be used can be formed. That is, this volume hologram recording medium can also write information by the photosensitizer absorbing the photons.
[0111] また、本発明の光反応性組成物によれば、体積ホログラム記録媒体とした場合のァ 一力イブライフを長くすることが可能である。具体的にどの程度のアーカイブライフを 得ることができるかは、光反応性組成物の組成や、体積ホログラム記録媒体の使用 環境などに応じて一様ではない。ただし、本発明の光反応性組成物を用いた体積ホ ログラム記録媒体に書き込んだ情報は、室温(25°C)において、通常 3年以上、好ま しくは 10年以上、より好ましくは 30年以上のアーカイブライフを有する。  [0111] Further, according to the photoreactive composition of the present invention, it is possible to lengthen the one-life eve life when a volume hologram recording medium is used. Specifically, how much archive life can be obtained is not uniform depending on the composition of the photoreactive composition, the usage environment of the volume hologram recording medium, and the like. However, the information written on the volume hologram recording medium using the photoreactive composition of the present invention is usually at least 3 years, preferably at least 10 years, more preferably at least 30 years at room temperature (25 ° C). Have an archive life of.
[0112] このように長いアーカイブライフを実現することができた理由は定かではないが、本 発明者の検討によれば、反応基 (C)が重合体 (B)に結合しているからと推察される。 即ち、重合体 (B)が反応基 (C)を有するようにしているため、協同的相互作用が働き 、これにより、長いアーカイブライフが実現されているものと推察される。 [0112] The reason why such a long archive life could be realized is not clear, but this book According to the inventors' investigation, it is presumed that the reactive group (C) is bonded to the polymer (B). That is, since the polymer (B) has the reactive group (C), a cooperative interaction works, and it is assumed that a long archive life is realized.
[0113] [II.用途] [0113] [II. Applications]
本発明の光反応性組成物は、材料として、産業上の任意の分野において使用可 能である。中でも、光学材料として使用すると、本発明の光反応性組成物の特性を有 効に活用することができるため、好ましい。  The photoreactive composition of the present invention can be used as a material in any industrial field. Of these, use as an optical material is preferable because the characteristics of the photoreactive composition of the present invention can be effectively utilized.
本発明の光反応性組成物を光学材料として使用する場合、本発明の光反応性組 成物単独で光学材料として使用しても良ぐその他の成分を光反応性組成物と共存 させて、光学材料として使用してもよい。その他の成分に制限は無ぐ例えば、光分 散剤、色材などを使用することが可能である。また、その他の成分の使用量も、任意 である。  When the photoreactive composition of the present invention is used as an optical material, the photoreactive composition of the present invention alone can coexist with other components that can be used as an optical material, together with the photoreactive composition, It may be used as an optical material. There are no restrictions on the other components. For example, it is possible to use a light dispersing agent, a coloring material, or the like. The amount of other components used is also arbitrary.
[0114] 光学材料の用途も任意であるが、特に、光記録材料として使用することが好ましい 。また、光記録材料は、体積ホログラム記録材料として使用することが好ましい。これ により、上述した本発明の光反応性組成物の利点を有効に活用することが可能にな る。  [0114] The use of the optical material is arbitrary, but it is particularly preferable to use it as an optical recording material. The optical recording material is preferably used as a volume hologram recording material. This makes it possible to effectively utilize the advantages of the photoreactive composition of the present invention described above.
[0115] [III.光記録媒体]  [0115] [III. Optical Recording Medium]
本発明の光記録媒体は、本発明の光反応性組成物を、光記録媒体または体積ホ ログラム記録材料として使用して形成されるものである。情報の記録が行なわれる部 分の材料として、本発明の光反応性組成物が含まれるように構成してあれば、具体 的な構成に制限は無く任意である。  The optical recording medium of the present invention is formed by using the photoreactive composition of the present invention as an optical recording medium or a volume hologram recording material. As long as it is configured to include the photoreactive composition of the present invention as the material for recording information, the specific configuration is not limited and is arbitrary.
以下、本発明の光記録媒体の一実施形態について詳しく説明する。  Hereinafter, an embodiment of the optical recording medium of the present invention will be described in detail.
[0116] 本実施形態の光記録媒体は、光記録材料により形成された記録層を備える。光記 録材料は、少なくとも本発明の光反応性組成物を含有する材料である。また、光記録 媒体は、必要に応じて、支持体及びその他の層を備えて構成される。 [0116] The optical recording medium of the present embodiment includes a recording layer formed of an optical recording material. The optical recording material is a material containing at least the photoreactive composition of the present invention. The optical recording medium is configured to include a support and other layers as necessary.
[0117] [III 1.記録層] [0117] [III 1. Recording layer]
記録層は、情報が記録される層である。情報は、通常、ホログラムとして記録される 。本実施形態の光記録媒体において、記録層は、本発明の光反応性組成物を含有 する光記録材料により形成されて ヽる。 The recording layer is a layer on which information is recorded. Information is usually recorded as a hologram. In the optical recording medium of the present embodiment, the recording layer contains the photoreactive composition of the present invention. It is made of an optical recording material.
[0118] 光記録材料は、本発明の光反応性組成物単独により形成されていても良いが、必 要に応じて、その他の成分を含有していてもよい。また、その他の成分をどの程度含 有するかは、本発明の効果を著しく損なわない限り任意である。  [0118] The optical recording material may be formed of the photoreactive composition of the present invention alone, but may contain other components as required. Further, how much other components are contained is arbitrary as long as the effects of the present invention are not significantly impaired.
その他の成分の具体例としては、アクリル、ポリエテレンテレフタレート、ポリカーボ ネート、ポリエチレン、ポリプロピレン、ポリスチレン、酢酸セルロース、ポリウレタンなど が挙げられる。これらは 1種のみを含有していてもよぐ 2種以上を任意の組み合わせ 及び比率で併用してもよい。なお、本発明は上記の具体例のみに限定されるもので はない。  Specific examples of other components include acrylic, polyethylene terephthalate, polycarbonate, polyethylene, polypropylene, polystyrene, cellulose acetate, polyurethane and the like. These may contain only one type, or two or more types may be used in any combination and ratio. The present invention is not limited to the above specific examples.
[0119] また、記録層の厚みに制限は無い。通常、記録層の厚みは、記録方法などにより異 なる。ただし、光記録媒体においては、記録層の厚みは、通常 1 μ m以上、好ましく は 10 μ m以上、また、通常 lcm以下、好ましくは 2000 μ m以下である。記録層が厚 すぎると光記録媒体における多重記録の際、各ホログラムの選択性が低くなり多重記 録の度合いが低くなる可能性がある。また、記録層が薄すぎると記録層全体を均一 に成形することが困難であり、各ホログラムの回折効率が均一で、かつ SZN比の高 い多重記録が難しくなる可能性がある。  [0119] The thickness of the recording layer is not limited. Usually, the thickness of the recording layer varies depending on the recording method. However, in the optical recording medium, the thickness of the recording layer is usually 1 μm or more, preferably 10 μm or more, and usually 1 cm or less, preferably 2000 μm or less. If the recording layer is too thick, the selectivity of each hologram may be lowered during multiplex recording on an optical recording medium, and the degree of multiplex recording may be reduced. If the recording layer is too thin, it is difficult to form the entire recording layer uniformly, and it is difficult to perform multiplex recording with a uniform diffraction efficiency of each hologram and a high SZN ratio.
[0120] [III 2.支持体] [0120] [III 2. Support]
通常、光記録媒体は支持体を有し、記録層や、その他の層などは、当該支持体上 に積層されて光記録媒体を構成する。  Usually, the optical recording medium has a support, and the recording layer and other layers are laminated on the support to constitute the optical recording medium.
支持体は、通常、必要な強度及び耐久性を有しているものであればよい。 その形状に制限は無いが、通常は、平板状又はフィルム状に形成される。  The support is usually required to have the necessary strength and durability. Although there is no restriction | limiting in the shape, Usually, it forms in flat form or a film form.
[0121] また、支持体を構成する材料にも制限は無ぐ透明であっても不透明であっても良 い。 [0121] Further, the material constituting the support is not limited and may be transparent or opaque.
支持体の材料として透明のものを挙げると、アクリル、ポリエチレンテレフタレートフィ ルム、ポリエチレンナフトエート、ポリカーボネート、ポリエチレン、ポリスチレン、酢酸 セルロースなどの有機材料;ガラス、シリコン、石英などの無機材料が挙げられる。こ の中でも、ポリカーボネート、アクリル、ポリエステル、ガラスなどが好ましぐ特に、ァク リル、ポリカーボネート、ガラスがより好ましい。 [0122] 一方、支持体の材料として不透明のものを挙げると、アルミ等の金属;前記の透明 支持体上に、金、銀、アルミ等の金属、又は、フッ化マグネシウム、酸ィ匕ジルコニウム 等の誘電体をコーティングしたものなどが挙げられる。 Examples of transparent materials include organic materials such as acrylic, polyethylene terephthalate film, polyethylene naphthoate, polycarbonate, polyethylene, polystyrene, and cellulose acetate; and inorganic materials such as glass, silicon, and quartz. Among these, polycarbonate, acrylic, polyester, glass and the like are preferable, and acrylic, polycarbonate, and glass are more preferable. [0122] On the other hand, when an opaque material is cited as the support material, a metal such as aluminum; a metal such as gold, silver, or aluminum on the transparent support, or magnesium fluoride, zirconium oxide, etc. And those coated with a dielectric material.
[0123] 支持体の厚みに制限は無い。ただし、通常は、 0. lmn!〜 lmmであることが好まし い。支持体が薄すぎると光記録媒体の機械的強度が不足する可能性があり、厚すぎ ると、コストが高くなる可能性がある。  [0123] The thickness of the support is not limited. However, usually 0. lmn! It is preferably ~ lmm. If the support is too thin, the mechanical strength of the optical recording medium may be insufficient, and if it is too thick, the cost may increase.
[0124] また、支持体の表面には、表面処理を施すようにしてもょ 、。この表面処理は、通 常、支持体と記録層との接着性を向上させるためになされるものである。表面処理の 例としては、コロナ放電処理をしたり、表面処理のための層を形成したりすることが挙 げられる。ここで、表面処理のための層としては、ハロゲンィ匕フエノール又は部分的に 加水分解された塩化ビニル—酢酸ビニル共重合体から形成された層(アンダーコー ティング層、下塗り層等)などが挙げられる。  [0124] In addition, the surface of the support may be subjected to a surface treatment. This surface treatment is usually performed to improve the adhesion between the support and the recording layer. Examples of surface treatment include corona discharge treatment and forming a layer for surface treatment. Here, examples of the layer for the surface treatment include a layer formed from a halogen phenol or a partially hydrolyzed vinyl chloride-vinyl acetate copolymer (such as an undercoating layer and an undercoat layer). .
[0125] さらに、表面処理は、接着性の向上以外の目的で行なってもよい。その例としては 、例えば、金、銀、アルミ等の金属を素材とする反射コート層を形成する反射コート処 理;フッ化マグネシウムや酸化ジルコニウム等の誘電体層を形成する誘電体コート処 理などが挙げられる。また、これらの層は、単層で形成しても良ぐ 2層以上を形成し ても良い。  [0125] Furthermore, the surface treatment may be performed for purposes other than the improvement of adhesiveness. Examples include a reflective coating process that forms a reflective coating layer made of a metal such as gold, silver, or aluminum; a dielectric coating process that forms a dielectric layer such as magnesium fluoride or zirconium oxide. Is mentioned. These layers may be formed as a single layer or two or more layers.
[0126] また、支持体は、本発明の光記録媒体の記録層の上側及び下側の 、ずれか一方 にのみ設けるようにしても良ぐ両方に設けるようにしてもよい。ただし、記録層の上下 両側に支持体を設ける場合、支持体の少なくとも 、ずれか一方は活性エネルギー線 (励起光、参照光、再生光など)を透過させるよう透明にする。  [0126] Further, the support may be provided only on one or both of the upper and lower sides of the recording layer of the optical recording medium of the present invention. However, in the case where supports are provided on both the upper and lower sides of the recording layer, at least one of the supports is transparent so as to transmit active energy rays (excitation light, reference light, reproduction light, etc.).
記録層の両側に透明支持体を有する光記録媒体の場合、透過型、または反射型 のホログラムが記録可能である。また、片側に反射特性を有する支持体を用いる場合 は、反射型のホログラムが記録可能である。  In the case of an optical recording medium having a transparent support on both sides of the recording layer, a transmissive or reflective hologram can be recorded. In addition, when a support having reflection characteristics on one side is used, a reflection hologram can be recorded.
[0127] さらに、支持体には、データアドレス用のパターユングを設けたものであっても良い 。パターニング方法に制限は無いが、例えば、支持体自体に凹凸を形成してもよぐ 反射層(後述する)にパターンを形成してもよぐこれらを組み合わせた方法により形 成しても良い。 ただし、支持体は必須のものではなぐ記録層やその他の層が必要な強度や耐久 性を有して ヽれば、支持体を有して ヽなくても良 ヽ。 [0127] Furthermore, the support may be provided with a pattern for data address. The patterning method is not limited. For example, the support itself may be formed with irregularities, or a pattern may be formed on a reflective layer (described later), or a combination of these methods may be used. However, it is not necessary to have a support as long as the support layer is not essential and the recording layer and other layers have the required strength and durability.
[0128] [III 3.他の層]  [0128] [III 3. Other layers]
光記録媒体には、上述した記録層及び支持体の他、その他の層を設けても良い。 例えば、保護層、反射層、反射防止層 (反射防止膜)などを設けるようにしてもよい。  In addition to the recording layer and the support described above, other layers may be provided on the optical recording medium. For example, a protective layer, a reflective layer, an antireflection layer (antireflection film), or the like may be provided.
[0129] 保護層は、酸素による感度低下や保存安定性の劣化等の悪影響を防止するため の層である。保護層の具体的構成に制限は無く公知のものを任意に適用することが 可能である。例えば、水溶性ポリマー等力もなる層を保護層を形成することができる。  [0129] The protective layer is a layer for preventing adverse effects such as a decrease in sensitivity due to oxygen and deterioration in storage stability. There is no restriction | limiting in the specific structure of a protective layer, It is possible to apply a well-known thing arbitrarily. For example, a protective layer can be formed of a layer having a water-soluble polymer and the like.
[0130] また、反射層は、光記録媒体を反射型に構成する際に形成される。反射型の光記 録媒体の場合、反射層は支持体と記録層との間に形成されていても良ぐ支持体の 外側面に形成されていてもよいが、通常は、支持体と記録層との間にあることが好ま しい。  [0130] The reflective layer is formed when the optical recording medium is configured in a reflective type. In the case of a reflective optical recording medium, the reflective layer may be formed between the support and the recording layer, or may be formed on the outer surface of the support. It is preferable to be between the layers.
[0131] さらに、透過型、反射型のいずれの光記録媒体とも、記録光及び読み出し光が入 射及び出射する側、あるいは、記録層と支持体との間に反射防止膜を設けても良い 。反射防止膜は、光の利用効率を向上させ、かつゴースト像の発生を抑制する働き をする。  [0131] Further, in any of the transmission type and reflection type optical recording media, an antireflection film may be provided on the side where the recording light and the reading light enter and exit, or between the recording layer and the support. . The antireflection film functions to improve the light utilization efficiency and suppress the generation of ghost images.
[0132] [III 4.製造方法]  [0132] [III 4. Manufacturing Method]
光記録媒体の製造方法に制限は無い。  There is no limitation on the method of manufacturing the optical recording medium.
例えば、無溶剤で支持体上に本発明の光反応性組成物を塗布し、記録層を形成 して製造することできる。この際、塗布方法としては任意の方法を使用することができ る。具体例を挙げると、スプレー法、スピンコート法、ワイヤーバー法、ディップ法、ェ ァーナイフコート法、ロールコート法、及びブレードコート法、ドクターロールコート法 などが挙げられる。  For example, it can be produced by coating the photoreactive composition of the present invention on a support without solvent and forming a recording layer. At this time, any coating method can be used. Specific examples include spray method, spin coating method, wire bar method, dip method, air knife coating method, roll coating method, blade coating method, doctor roll coating method and the like.
また、記録層の形成に際し、特に膜厚の厚い記録層を形成する場合、型に入れて 成型する方法や、離型フィルム上に塗工して型を打ち抜く方法を用いることもできる。  In forming the recording layer, in particular, when forming a thick recording layer, it is also possible to use a method of placing in a mold and molding, or a method of coating on a release film and punching the mold.
[0133] また、本発明の光反応性組成物と溶剤又は添加剤とを混合して塗布液を調製し、 これを支持体上に塗布、乾燥して記録層を形成して製造しても良い。この場合も塗布 方法としては任意の方法を使用することができ、例えば、上述したのと同様の方法を 採用することができる。 [0133] Alternatively, the photoreactive composition of the present invention and a solvent or additive may be mixed to prepare a coating solution, which may be coated on a support and dried to form a recording layer. good. In this case, any coating method can be used. For example, the same method as described above can be used. Can be adopted.
また、溶剤に制限はないが、通常は、使用成分に対して十分な溶解度を持ち、良 好な塗膜性を与え、榭脂基板等の支持体を侵さな ヽものを使用することが好ま 、。  Although there is no limitation on the solvent, it is usually preferable to use a solvent that has sufficient solubility for the components used, gives good coating properties, and does not attack a support such as a resin substrate. ,.
[0134] 溶剤の例を挙げると、アセトン、メチルェチルケトン、メチルイソブチルケトン、シクロ へキサノン、メチルアミルケトン等のケトン系溶剤;トルエン、キシレン等の芳香族系溶 剤;メタノール、エタノール、プロパノール、 n—ブタノール、ヘプタノール、へキサノー ル、ジアセトンアルコール、フルフリルアルコール等のアルコール系溶剤;ジアセトン アルコール、 3—ヒドロキシ— 3—メチル— 2—ブタノン等のケトンアルコール系溶剤; テトラヒドロフラン、ジォキサン等のエーテル系溶剤;ジクロロメタン、ジクロロエタン、ク ロロホルム等のハロゲン系溶剤;メチルセ口ソルブ、ェチノレセロソノレブ、ブチノレセロソ ルブ、メチルセ口ソルブアセテート、ェチルセ口ソルブアセテート等のセロソルブ系溶 剤;プロピレングリコールモノメチルエーテル、プロピレングリコールモノェチルエーテ ル、プロピレングリコールモノブチルエーテル、プロピレングリコーノレモノメチノレエーテ ルアセテート、プロピレングリコールモノェチルエーテルアセテート、プロピレングリコ ールモノブチルエーテルアセテート、ジプロピレングリコールジメチルエーテル等の プロピレングリコール系溶剤;酢酸ェチル、酢酸ブチル、酢酸ァミル、酢酸ブチル、ェ チレングリコールジアセテート、ジェチルォキサレート、ピルビン酸ェチル、ェチルー 2—ヒドロキシブチレートェチルァセトアセテート、乳酸メチル、乳酸ェチル、 2—ヒドロ キシイソ酪酸メチル、 3—メトキシプロピオン酸メチル等のエステル系溶剤;テトラフル ォロプロパノール、オタタフノレォロペンタノール、へキサフノレオロブタノ一ノレ等のパー フルォロアルキルアルコール系溶剤;ジメチルホルムアミド、ジメチルァセトアミド、 N メチルピロリドン、ジメチルスルホキシド等の高極性溶剤; n—へキサン、 n—ォクタ ン等の鎖状炭化水素系溶剤;シクロへキサン、メチルシクロへキサン、ェチルシクロへ キサン、ジメチルシクロへキサン、 n—ブチルシクロへキサン、 tert—ブチルシクロへ キサン、シクロオクタン等の環状炭化水素系溶剤;或いはこれらの混合溶剤などが挙 げられる。 [0134] Examples of solvents include ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, and methyl amyl ketone; aromatic solvents such as toluene and xylene; methanol, ethanol, propanol Alcohol solvents such as n-butanol, heptanol, hexanol, diacetone alcohol, furfuryl alcohol; ketone alcohol solvents such as diacetone alcohol, 3 -hydroxy- 3 -methyl-2-butanone; tetrahydrofuran, dioxane, etc. Ether solvents; Halogen solvents such as dichloromethane, dichloroethane, chloroform, etc .; Cellosolve solvents such as methyl solvosolve, ethinorecero soleb, butinorecellosolve, methyl cecrosolve acetate, ethilce solvate acetate; Propylene such as polyethylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monobutyl ether, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, propylene glycol monobutyl ether acetate, dipropylene glycol dimethyl ether Glycol solvents: Ethyl acetate, butyl acetate, amyl acetate, butyl acetate, ethylenic glycol diacetate, jetyloxalate, ethyl pyruvate, ethyl 2-hydroxybutyrate ethyl acetate, methyl lactate, ethyl lactate, Ester solvents such as methyl 2-hydroxyisobutyrate and methyl 3-methoxypropionate; tetrafluoropropanol, otata fanolopene Perfluoroalkyl alcohol solvents such as tananol, hexafnoreorobutanol monole; High polar solvents such as dimethylformamide, dimethylacetamide, N-methylpyrrolidone, dimethylsulfoxide; n-hexane, n-octane Chain hydrocarbon solvents such as cyclohexane, methylcyclohexane, ethylcyclohexane, dimethylcyclohexane, n-butylcyclohexane, tert-butylcyclohexane, cyclooctane, etc .; or these And mixed solvents.
[0135] なお、溶剤は、 1種を単独で用いても良ぐ 2種以上を任意の組み合わせ及び比率 で併用しても良い。 また、溶剤の使用量に制限は無い。ただし、塗布効率、取り扱い性の面から、固形 分濃度 1重量%〜1000重量%程度の塗布液を調製することが好ましい。 [0135] As the solvent, one kind may be used alone, and two kinds or more may be used in optional combination and ratio. Moreover, there is no restriction | limiting in the usage-amount of a solvent. However, from the viewpoint of coating efficiency and handleability, it is preferable to prepare a coating solution having a solid content concentration of about 1% by weight to 1000% by weight.
[0136] さらに、本発明の光反応組成物が熱可塑性の場合は、例えば射出成形法、シート 成形法、ホットプレス法などによって本発明の光反応組成物を成形して、また、本発 明の光反応組成物が揮発性成分の少な ヽ (光)熱硬化性の場合は、例えば反応射 出成形法、液体射出成形法によって本発明の光反応組成物を成形して、記録層を 製造することができる。この場合、成形体が十分な厚み、剛性、強度などを有するな らば、当該成形体をそのまま光記録媒体とすることができる。  [0136] Furthermore, when the photoreactive composition of the present invention is thermoplastic, the photoreactive composition of the present invention is molded by, for example, an injection molding method, a sheet molding method, a hot press method, etc. When the photoreactive composition of the present invention is low in volatile components (light) thermosetting, the recording layer is produced by molding the photoreactive composition of the present invention by, for example, a reaction injection molding method or a liquid injection molding method. can do. In this case, if the molded body has sufficient thickness, rigidity, strength, etc., the molded body can be used as it is as an optical recording medium.
[0137] また、光記録媒体の製造方法としては、例えば、熱により融解した光反応性組成物 を支持体に塗布し、冷却して固化させて記録層を形成して製造する方法、液状の光 反応性組成物を支持体に塗布し、熱重合させることで硬化させて記録層を形成して 製造する方法、液状の光反応性組成物を支持体に塗布し、光重合させることで硬化 させて記録層を形成して製造する方法なども挙げられる。  [0137] In addition, as a method for producing an optical recording medium, for example, a method of producing a recording layer by applying a photoreactive composition melted by heat onto a support, and cooling and solidifying the composition, A method in which a photoreactive composition is applied to a support and cured by thermal polymerization to form a recording layer, and a liquid photoreactive composition is applied to a support and cured by photopolymerization. And a method of manufacturing the recording layer by forming the recording layer.
[0138] このようにして製造された光記録媒体は、自立型スラブまたはディスクの形態をとる ことができ、三次元画像表示装置や回折光学素子、及び大容量メモリ、その他に使 用できる。  [0138] The optical recording medium manufactured in this way can take the form of a self-supporting slab or a disk, and can be used for a three-dimensional image display device, a diffractive optical element, a large-capacity memory, and the like.
[0139] [III 5.記録'再生方法]  [0139] [III 5.Recording 'playback method]
光記録媒体に対する情報の書き込み (記録)及び読み出し (再生)は、いずれも、光 の照射によって行なわれる。  Both writing (recording) and reading (reproduction) of information with respect to the optical recording medium are performed by light irradiation.
記録の際には、増感体 (A)の励起光、即ち、増感体 (A)の励起波長に相当する光 を、記録光として記録層に対して照射し、当該記録光により反応基 (C)を変換させて 、情報の記録を行なう。一方、情報の再生を行なう場合には、再生光を記録層に照 射し、透過型の光記録媒体であれば透過光を読み取り、反射型の光記録媒体であ れば反射光を読み取って、情報の再生を行なう。  In recording, the recording layer is irradiated with excitation light from the sensitizer (A), that is, light corresponding to the excitation wavelength of the sensitizer (A), as a recording light. Convert (C) to record information. On the other hand, when reproducing information, the reproducing light is irradiated onto the recording layer, and the transmitted light is read if it is a transmissive optical recording medium, and the reflected light is read if it is a reflective optical recording medium. , Play back information.
[0140] また、当該光記録媒体に情報を体積ホログラム等のホログラムとして記録する場合 には、記録光 (物体光とも呼ばれる)と共に、参照光を記録層に対して照射するように する。記録光と参照光とを記録層において干渉させるようにすれば、その干渉縞が、 記録層内の反応基 (C)の化学変換として記録される。例えば、反応基 (C)が化学変 換した場合に本発明の光反応性組成物が屈折率変化を生じるものである場合には、 干渉縞が記録層内の屈折率差として記録されるのである。そして、前記の記録層内 に記録された干渉縞により、記録層にホログラムが記録されるのである。 [0140] When information is recorded on the optical recording medium as a hologram such as a volume hologram, the recording layer is irradiated with reference light together with recording light (also called object light). If the recording light and the reference light are caused to interfere with each other in the recording layer, the interference fringes are recorded as chemical conversion of the reactive group (C) in the recording layer. For example, the reactive group (C) In other words, when the photoreactive composition of the present invention causes a change in refractive index, interference fringes are recorded as a difference in refractive index in the recording layer. A hologram is recorded on the recording layer by the interference fringes recorded in the recording layer.
[0141] なお、段階的多光子吸収により増感体 (A)を励起させて情報の記録を行なう場合、 励起光については、例えば、前記記録光を第一及び第二の光として使用しても良ぐ 参照光を第一及び第二の光として使用しても良ぐ記録光及び参照光の一方を第一 の光とし他方を第二の光として使用しても良 、。  [0141] In the case where information is recorded by exciting the sensitizer (A) by stepwise multiphoton absorption, for example, the recording light is used as the first and second lights. The reference light may be used as the first and second light, or one of the recording light and the reference light may be used as the first light and the other as the second light.
[0142] 記録層に記録されたホログラムを再生する場合は、所定の再生光 (通常は、参照光 )を記録層に照射する。照射された再生光は前記干渉縞に応じて回折を生じる。この 回折光は前記記録層と同様の情報を含むものであるので、前記回折光を読み取るこ とにより、記録層に記録された情報の再生を行なうことが可能である。  [0142] When reproducing a hologram recorded on the recording layer, the recording layer is irradiated with predetermined reproduction light (usually reference light). The irradiated reproduction light is diffracted according to the interference fringes. Since this diffracted light contains the same information as that of the recording layer, it is possible to reproduce the information recorded on the recording layer by reading the diffracted light.
[0143] ただし、参照光及び再生光は、単独では増感体 (A)及び反応基 (C)の励起を生じ させない波長及び強度にする。これにより、従来は実現困難であった再生時の非破 壊読取りが可能となり、光ゲート機能を有する光記録媒体を得ることが可能となるの である。  [0143] However, the reference light and the reproduction light have wavelengths and intensities that do not cause excitation of the sensitizer (A) and the reactive group (C) by themselves. As a result, non-destructive reading at the time of reproduction, which has been difficult to realize in the past, becomes possible, and an optical recording medium having an optical gate function can be obtained.
[0144] なお、記録光、再生光及び参照光は、その波長領域はそれぞれの用途に応じて任 意であり、赤外領域でも可視光領域でも紫外領域でも構わない。これらの光の中でも 好適なものとしては、例えば、ルビー、ガラス、 Nd—YAG (ネオジム一イットリウムァ ルミ-ゥムガーネット)、 Nd—YV04 (ネオジム一イットリウムバナジウムテトラオキサイ ド)等の固体レーザー; GaAs、 InGaAs等のダイオードレーザー;ヘリウム ネオン、 アルゴン、クリプトン、エキシマ、 COなどの気体レーザー;色素を有するダイレ  Note that the wavelength range of the recording light, the reproduction light, and the reference light is arbitrary depending on each application, and may be in the infrared region, visible light region, or ultraviolet region. Among these lights, preferred are solid lasers such as ruby, glass, Nd—YAG (neodymium yttrium aluminum garnet), Nd—YV04 (neodymium yttrium vanadium tetraoxide); Diode lasers such as GaAs and InGaAs; gas lasers such as helium neon, argon, krypton, excimer, and CO;
2  2
一ザ一等の、単色性と指向性に優れたレーザーが挙げられる。なお、用いるレーザ 一はパルスレーザーであっても連続(Continuous Wave)レーザーであってもよ!/ヽ  Lasers that are excellent in monochromaticity and directivity, such as one-on-one. The laser used may be a pulse laser or a continuous wave laser! / ヽ
[0145] また、記録光、再生光及び参照光は、 V、ずれも照射量に制限は無ぐ記録及び再 生が可能である範囲であれば任意である。ただし、極端に少ない場合は反応基 (C) の化学変換が不完全過ぎて記録層の耐熱性、機械特性が十分に発現されな!ヽ可能 性があり、逆に極端に多い場合は記録層の光反応性組成物が劣化を生じる可能性 がある。したがって、記録光、再生光及び参照光は、記録層の形成組成物の組成、 反応基 (C)の重合開始剤の種類、及び配合量等に合わせて、通常、 0. 1〜20JZC m2の範囲で照射する。 [0145] Further, the recording light, the reproducing light, and the reference light are V, and the deviation is not limited to the irradiation amount, so long as it can be recorded and reproduced. However, if the amount is extremely small, the chemical conversion of the reactive group (C) is too incomplete, and the heat resistance and mechanical properties of the recording layer may not be fully expressed. Of photoreactive compositions can cause degradation There is. Therefore, the recording light, the reproduction light and the reference light are usually 0.1 to 20 JZC m 2 according to the composition of the recording layer forming composition, the type of polymerization initiator of the reactive group (C), and the blending amount. Irradiate in the range of.
実施例  Example
[0146] 以下、本発明のついて実施例を示して具体的に説明するが、本発明は以下の実施 例に限定されるものではなぐ本発明の要旨を逸脱しない限り任意に変更して実施 することができる。なお、 Mnは数平均分子量を表わし、 Mwは重量平均分子量を表 わす。  [0146] Hereinafter, the present invention will be described in detail with reference to examples. However, the present invention is not limited to the following examples, and may be arbitrarily modified without departing from the gist of the present invention. be able to. Mn represents a number average molecular weight, and Mw represents a weight average molecular weight.
[0147] [合成例 1 :重合体 (B)の合成]  [0147] [Synthesis Example 1: Synthesis of polymer (B)]
以 、「;synthesis and Photochemical Property of Polymers with Pe ndant Donor― Acceptor― Type Norbornadiene Moieties N. Kawasni ma ; A. Kameyama; T. Nishikubo; T. Nagai:  “; Synthesis and Photochemical Property of Polymers with Pendant Donor-Acceptor-Type Norbornadiene Moieties N. Kawasni ma; A. Kameyama; T. Nishikubo; T. Nagai:
Photoresponsive Polymers, 1764, 2001」の第 2頁の記載に相当する操 作により、反応基 (C)を有する重合体 (B)を合成した。  A polymer (B) having a reactive group (C) was synthesized by an operation corresponding to the description on page 2 of “Photoresponsive Polymers, 1764, 2001”.
[0148] (合成段階 1 : MTMPN (Methyl 1, 4, 5, 6 - Tetramethyl - 3 - phenyl - 2 , 5 ― norbornadiene— 2— carboxylate)の合成) [0148] (Synthesis step 1: MTMPN (Synthesis of Methyl 1, 4, 5, 6-Tetramethyl-3-phenyl-2, 5-norbornadiene— 2-carboxylate))
冷却管を備えた 50mlフラスコに、 Methyl 3 - phenylprop - 2 -ynolate (MPP ) (8g、 50mmol)と 1, 2, 3, 4— Tetramethyl— 1, 3 - cyclopentadiene ( 12g, 1 OOmmol)を入れ、マグネチックスターラーで攪拌しつつ 100°Cで 8時間反応させた。 この粗生成物をシリカゲルカラムクロマトグラフィで精製し、溶剤を除去すると、目的 生成物である MTMPNを淡黄色の油状物として得た。収量は 13g (収率 92%)であ つた o  In a 50 ml flask equipped with a condenser, put Methyl 3-phenylprop-2 -ynolate (MPP) (8 g, 50 mmol) and 1, 2, 3, 4— Tetramethyl— 1, 3- cyclopentadiene (12 g, 1 OOmmol), The mixture was reacted at 100 ° C for 8 hours while stirring with a magnetic stirrer. The crude product was purified by silica gel column chromatography, and the solvent was removed to obtain the target product MTMPN as a pale yellow oil. Yield was 13 g (92% yield) o
[0149] (合成段階 2 :TMPNC (1, 4, 5, 6 - Tetramethyl - 3 - phenyl - 2 , 5— norbo rnadiene— 2— car Doxylic acid)の合成)  [0149] (Synthesis step 2: Synthesis of TMPNC (1, 4, 5, 6-Tetramethyl-3-phenyl-2, 5— norbo rnadiene— 2— car Doxylic acid))
MTMPN (3. 36g、 12mmol)と水酸化カリウム(2. 4g、 36mmol)を、メタノール Z水 = 25Z5 (ml)の混合溶剤に溶解し、室温で 48時間攪拌して加水分解した。反 応終了後水で希釈し、分液漏斗に移してジクロロメタンで 2回洗浄した後、三角フラス コに移した。これを塩酸を用いて酸性とし、沈殿した粗生成物を濾取し、ジクロロメタ ンに溶解して再び分液漏斗に移した。これを水で数回洗浄し、三角フラスコに移して 無水硫酸マグネシウムで乾燥した。溶剤を留去し、残渣をジクロロメタン zへキサンで 再結晶して目的生成物を得た。収量は 1. 92g (収率 60%)であった。 MTMPN (3.36 g, 12 mmol) and potassium hydroxide (2.4 g, 36 mmol) were dissolved in a mixed solvent of methanol Z water = 25 Z5 (ml) and stirred at room temperature for 48 hours for hydrolysis. After completion of the reaction, it was diluted with water, transferred to a separatory funnel, washed twice with dichloromethane, and then transferred to a triangular flask. This was acidified with hydrochloric acid, and the precipitated crude product was collected by filtration and washed with dichlorometa. And dissolved in a separatory funnel. This was washed several times with water, transferred to an Erlenmeyer flask and dried over anhydrous magnesium sulfate. The solvent was distilled off, and the residue was recrystallized from dichloromethane z hexane to obtain the desired product. The yield was 1.92 g (yield 60%).
[0150] (合成段階 3:ノルボルナジェンで置換されたポリスチレン (PSt)重合体の合成) ポリ(P クロロメチノレスチレン) (Mn= 2. 6 X 104、 Mw/Mn= l. 40) (3. 07g、 2 Ommol)と TMPNC (5. 49g、 22mmol)をジメチルスルホキシド(DMSO ;40ml)に 溶かし、 1, 8 ジァザビシクロ一 [5, 4, 0]— 7 ゥンデセン(DBU ; 3. 2g、 22mmo 1)をここに加え、 70°Cで 6時間加熱した。反応終了後、大量のメタノールに加えて再 沈し、濾取した固体をテトラヒドロフラン Zメタノールで更に 2回再沈した後、減圧乾燥 機で溶剤を完全に除去し、 目的物を得た。収量は 5. 4g (収率 70%)であった。これ を NBD—PSと称する。 [0150] (Synthesis step 3: Synthesis of polystyrene (PSt) polymer substituted with norbornagen) Poly (P chloromethylolstyrene) (Mn = 2.6 X 10 4 , Mw / Mn = l. 40) (3 07 g, 2 Ommol) and TMPNC (5.49 g, 22 mmol) dissolved in dimethyl sulfoxide (DMSO; 40 ml). 1,8 diazabicyclo [5, 4, 0] -7 undecene (DBU; 3.2 g, 22 mmo 1 ) Was added here and heated at 70 ° C for 6 hours. After completion of the reaction, it was reprecipitated in a large amount of methanol, and the solid collected by filtration was reprecipitated twice more with tetrahydrofuran Zmethanol, and then the solvent was completely removed with a vacuum dryer to obtain the desired product. The yield was 5.4 g (yield 70%). This is called NBD-PS.
[0151] [実施例 1] [0151] [Example 1]
<サンプル調製 >  <Sample preparation>
増感体 (A)として 5, 10, 15, 20—テトラ [3, 5 ビス(トリフルォロメチル)フエ-ル] - 21H, 23H ポルフィリンプラチナ(II)を使用し、また、重合体 (B)として上記合成 例 1で合成した NBD— PSを使用して、以下のようにして、光記録媒体としてサンプル を作製した。  Sensitizer (A) uses 5, 10, 15, 20-tetra [3,5 bis (trifluoromethyl) phenol]-21H, 23H porphyrin platinum (II), and polymer (B Using NBD-PS synthesized in Synthesis Example 1 as above, a sample was produced as an optical recording medium as follows.
すなわち、合成例 1で合成した NBD— PS (1. Og)と 5, 10, 15, 20—テトラ [3, 5 ビス(トリフルォロメチル)フエ-ル ] 21H, 23H—ポルフィリンプラチナ(II) (50m g)をテトラヒドロフラン溶液とし、ガラス基板上にキャスト、乾燥して厚み 200 /z mの膜 を形成して、サンプルとした。  That is, NBD-PS (1. Og) synthesized in Synthesis Example 1 and 5, 10, 15, 20-tetra [3,5 bis (trifluoromethyl) phenol] 21H, 23H-porphyrin platinum (II) (50 mg) was used as a tetrahydrofuran solution, cast on a glass substrate, and dried to form a 200 / zm thick film as a sample.
[0152] なお、キャストの具体的な方法としては以下の通りである。スライドガラス基板上にキ ャストし、 12時間室温で暗所にて放置し乾燥した。その後、 80°Cのオーブン内にて 2 時間加熱乾燥した。加熱乾燥後、スライドガラスの両側にスぺーサ一として厚さ 50 mのテフロン (登録商標)フィルムを置き、別のスライドガラスでカバー及びクリップで 固定したものを 80°Cのオーブンで 1時間加熱し、厚さ 50 mの平滑な記録媒体 (サ ンプル)を得た。  [0152] The specific method of casting is as follows. It was cast on a slide glass substrate and left to stand in the dark at room temperature for 12 hours to dry. After that, it was dried by heating in an oven at 80 ° C for 2 hours. After drying by heating, place a Teflon (registered trademark) film with a thickness of 50 m on both sides of the slide glass as a spacer and heat it in an oven at 80 ° C for 1 hour by fixing it with another glass slide with a cover and a clip. Thus, a smooth recording medium (sample) having a thickness of 50 m was obtained.
[0153] [実施例 2] <サンプル調製 > [0153] [Example 2] <Sample preparation>
増感体 (A)として 2, 2,:5, 2"—テルチオフェン(2, 2,:5, 2" -Terthiophene) ( 和光純薬工業株式会社製)を使用し、また、重合体 (B)として上記合成例 1で合成し た NBD— PSを使用して、以下のようにして、光記録媒体としてサンプルを作製した。 すなわち、合成例 1で合成した NBD— PS (1. Og)と 2, 2,:5, 2"—テルチオフェン (2mg)を、メチルェチルケトン Zトルエン = 1. 8/1. 2 (ml)の混合溶媒に溶解し、 ガラス基板上にキャスト、乾燥して厚み 50 /z mの膜を形成し、サンプルとした。  As the sensitizer (A), 2, 2,: 5,2 "-terthiophene (2, 2,: 5,2" -Terthiophene) (manufactured by Wako Pure Chemical Industries, Ltd.) is used, and a polymer ( Using NBD-PS synthesized in Synthesis Example 1 as B), a sample was produced as an optical recording medium as follows. That is, NBD—PS (1. Og) synthesized in Synthesis Example 1 and 2, 2,: 5, 2 ”-terthiophene (2 mg) were mixed with methyl ethyl ketone Z toluene = 1. 8/1. 2 (ml ), And cast on a glass substrate and dried to form a 50 / zm-thick film as a sample.
なお、キャスト方法は実施例 1と同様に行なった。  The casting method was the same as in Example 1.
[0154] [実施例 3] [Example 3]
増感体 (A)として 2, 2,:5, 2"—テルチオフェン(2, 2,:5, 2" -Terthiophene) ( 和光純薬工業株式会社製)を使用し、また、重合体 (B)として Poly (vinyl cinnama te) (Aldrich社製、 average Mw= 200000 (GPC測定))を使用して、以下のよう にして、光記録媒体としてサンプルを作製した。  As the sensitizer (A), 2, 2,: 5,2 "-terthiophene (2, 2,: 5,2" -Terthiophene) (manufactured by Wako Pure Chemical Industries, Ltd.) is used, and a polymer ( Poly (vinyl cinnamate) (manufactured by Aldrich, average Mw = 200000 (GPC measurement)) was used as B), and a sample was prepared as an optical recording medium as follows.
すなわち、 Poly (vinyl cinnamate) (1. Og)と 2, 2,:5, 2,,一テルチオフェン(2m g)を、メチルェチルケトン/トルエン = 1. 8/1. 2 (ml)の混合溶媒に溶解し、ガラス 基板上にキャスト、乾燥して厚み 50 mの膜を形成し、サンプルとした。  That is, Poly (vinyl cinnamate) (1. Og) and 2, 2 ,: 5, 2, 1 terthiophene (2 mg), methyl ethyl ketone / toluene = 1. 8/1. 2 (ml) The sample was dissolved in a mixed solvent, cast on a glass substrate, and dried to form a 50-m thick film as a sample.
なお、キャスト方法は実施例 1と同様に行なった。  The casting method was the same as in Example 1.
[0155] [実施例 4] [0155] [Example 4]
増感体 (A)として 2, 2,:5, 2 "—ターチォフェンー5—カルボキシアルデヒド(2, 2, : 5, 2" -Terthiophene - 5 - carboxaldehyde) (東京化成工業株式会社製)を使 用し、また、重合体(B)として Poly vinyl cinnamate) (Aldrich社製、 average Mw= 200000 (GPC測定))を使用して、以下のようにして、光記録媒体としてサン プルを作製した。  As the sensitizer (A), 2, 2 ,: 5, 2 "-Terthiophene-5-Carboxaldehyde (2, 2,: 5, 2" -Terthiophene-5-carboxaldehyde) (manufactured by Tokyo Chemical Industry Co., Ltd.) is used. A sample was prepared as an optical recording medium in the following manner using Polyvinyl cinnamate (Aldrich, average Mw = 200000 (GPC measurement)) as the polymer (B).
すなわち、 Poly (vinyl cinnamate) (1. 0g)と 2, 2,:5, 2,,一テルチオフェン(2m g)を、メチルェチルケトン/トルエン = 1. 8/1. 2 (ml)の混合溶媒に溶解し、ガラス 基板上にキャスト、乾燥して厚み 50 mの膜を形成し、サンプルとした。  That is, Poly (vinyl cinnamate) (1.0 g) and 2, 2 ,: 5, 2, 1 terthiophene (2 mg), methyl ethyl ketone / toluene = 1. 8/1. 2 (ml) The sample was dissolved in a mixed solvent, cast on a glass substrate, and dried to form a 50-m thick film as a sample.
なお、キャスト方法は実施例 1と同様に行なった。  The casting method was the same as in Example 1.
[0156] [実施例 5] 増感体 (A)として 1, 4 bis[2—(5— phenyloxazolyl) ]benzene (東京化成工業 株式会社製)を使用し、また、重合体 (B)として上記合成例 1で合成した NBD—PS を使用して、以下のようにして、光記録媒体としてサンプルを作製した。 [0156] [Example 5] 1,4 bis [2- (5-phenyloxazolyl)] benzene (manufactured by Tokyo Chemical Industry Co., Ltd.) was used as the sensitizer (A), and the NBD— synthesized in Synthesis Example 1 above as the polymer (B) — A sample was prepared as an optical recording medium using PS as follows.
すなわち、上記合成例 1で合成した NBD—PS (1. Og)と 1, 4-bis[2- (5-phe nyloxazolyl) ]benzene (2mg)を、メチルェチルケトン Zトルエン = 1. 8/1. 2 (ml )の混合溶媒に溶解し、ガラス基板上にキャスト、乾燥して厚み 50 mの膜を形成し 、サンプルとした。  That is, NBD-PS (1. Og) and 1,4-bis [2- (5-phenyloxazolyl)] benzene (2 mg) synthesized in Synthesis Example 1 were converted to methyl ethyl ketone Z toluene = 1. 8 / 1. Dissolved in 2 (ml) of mixed solvent, cast on a glass substrate and dried to form a 50 m thick film as a sample.
なお、キャスト方法は実施例 1と同様に行なった。  The casting method was the same as in Example 1.
[0157] [実施例 6] [0157] [Example 6]
増感体 (A)として 4, 4, -ビス (ジェチルァミノ)ベンゾフヱノン (保土谷化学社製)を 使用し、また、重合体 (B)として上記合成例 1で合成した NBD— PSを使用して、以 下のようにして、光記録媒体としてサンプルを作製した。  Using 4, 4, -bis (jetylamino) benzophenone (Hodogaya Chemical Co., Ltd.) as the sensitizer (A), and using NBD-PS synthesized in Synthesis Example 1 as the polymer (B) A sample was prepared as an optical recording medium as follows.
すなわち、上記合成例 1で合成した NBD—PS (1. Og)と 4, 4 '—ビス(ジェチルァ ミノ)ベンゾフエノン(2mg)を、メチルェチルケトン Zトルエン = 1. 8/1. 2 (ml)の混 合溶媒に溶解し、ガラス基板上にキャスト、乾燥して厚み 50 mの膜を形成し、サン プルとした。  That is, NBD-PS (1. Og) synthesized in Synthesis Example 1 and 4,4′-bis (jetylamino) benzophenone (2 mg) were mixed with methyl ethyl ketone Z toluene = 1. 8/1. ) Was dissolved in a mixed solvent, cast on a glass substrate and dried to form a 50 m thick film, which was used as a sample.
なお、キャスト方法は実施例 1と同様に行なった。  The casting method was the same as in Example 1.
[0158] [実施例 7] [Example 7]
増感体 (A)として 2, 2,:5, 2"—テルチオフェン(2, 2,:5, 2" -Terthiophene) ( 和光純薬工業株式会社製)を使用し、また、重合体 (B)としてポリシラン (商品名:ォ グソール SI— 10— 10、大阪ガス株式会社製)を使用して、以下のようにして、光記録 媒体としてサンプルを作製した。  As the sensitizer (A), 2, 2,: 5,2 "-terthiophene (2, 2,: 5,2" -Terthiophene) (manufactured by Wako Pure Chemical Industries, Ltd.) is used, and a polymer ( As B), polysilane (trade name: Ogsol SI-10-10, manufactured by Osaka Gas Co., Ltd.) was used to prepare a sample as an optical recording medium as follows.
すなわち、ポリシラン(1. Og)と 2, 2' : 5, 2"—テルチオフェン(2mg)を、メチルェ チルケトン Zトルエン = 1. 8/1. 2 (ml)の混合溶媒に溶解し、ガラス基板上にキャス ト、乾燥して厚み 50 mの膜を形成し、サンプルとした。  That is, polysilane (1. Og) and 2, 2 ': 5, 2 "-terthiophene (2 mg) were dissolved in a mixed solvent of methyl ethyl ketone Z toluene = 1. 8/1. A film with a thickness of 50 m was formed by casting and drying on top, and used as a sample.
なお、キャスト方法は実施例 1と同様であった。  The casting method was the same as in Example 1.
[0159] <測定 > [0159] <Measurement>
図 10は、本実施例で用いた測定系の概要を模式的に表わす図である。 ホログラム記録用の光源は、ダイオードにより Nd— YV04結晶を励起し、さらに非 線形光学結晶 LiB O (「LBO」ともいう)を用いて 532nmの光が得られるもの(コヒレ FIG. 10 is a diagram schematically showing an outline of the measurement system used in this example. The light source for hologram recording is a diode that excites the Nd—YV04 crystal with a diode, and uses a non-linear optical crystal LiB 2 O (also referred to as “LBO”) to obtain 532 nm light.
3 5  3 5
ント社製 Verdi— V2) (以下適宜、「Laserl」という)と、ダイオードレーザーで 405nm の光が得られるもの(SONY社製)(以下適宜、「Laser2」という)を用いた。  Verdi—V2) (hereinafter referred to as “Laserl”) and a diode laser capable of obtaining light of 405 nm (manufactured by SONY) (hereinafter referred to as “Laser2” as appropriate) were used.
[0160] Laserlから発せられる波長 532nmの光〔L1〕を偏光ビームスプリッタ〔PBS〕により 分割し、分割された光それぞれをミラー〔M1, M2〕で反射させて、 2本のビームのな す角が 50. 00° になるように記録面上にて交差させた。なお、図 10において、 Lase rlから発せられた光は破線にて示す。  [0160] Light [L1] with a wavelength of 532 nm emitted from Laserl is split by a polarizing beam splitter [PBS], and each split light is reflected by mirrors [M1, M2] to form an angle between two beams Was crossed on the recording surface so as to be 50.00 °. In FIG. 10, light emitted from Lase rl is indicated by a broken line.
このとき、 2本のビームのなす角の 2等分線が記録面に対して垂直になるようにし、 更に、分割によって得られた 2本のビームの電場ベクトルの振動面は、交差する 2本 のビームを含む平面と平行になるようにした。  At this time, the bisector of the angle formed by the two beams is perpendicular to the recording surface, and the vibration planes of the electric field vectors of the two beams obtained by the division are two intersecting lines. It was made to be parallel to the plane containing the beam.
[0161] Laserlからの波長 532nmの光〔L1〕の記録面への照射と同時に、 Laser2から波 長 405nmの光〔L2〕を照射し、ミラー〔M3〕で反射させて、サンプル〔 Sample]の記 録面に照射した。この際、記録面上における 532nmの光〔L1〕の交差領域に対して 、波長 405nmの光〔L2〕が記録面と垂直となるように照射した。なお、図 10において 、 Laser2から発せられた光は一点鎖線にて示す。また、サンプル〔Sample〕を透過 した光〔L2〕は、ビームストツ 〔BS〕に当たるようにした。  [0161] Simultaneously irradiating the recording surface of the light [L1] with a wavelength of 532 nm from Laserl, irradiating the light [L2] with a wavelength of 405 nm from Laser2, reflecting it with the mirror [M3], and The recording surface was irradiated. At this time, the light [L2] having a wavelength of 405 nm was irradiated to the intersecting region of the light [L1] of 532 nm on the recording surface so as to be perpendicular to the recording surface. In FIG. 10, the light emitted from Laser 2 is indicated by a one-dot chain line. The light [L2] that passed through the sample [Sample] was made to strike the beam stock [BS].
これにより、 Laserl及び Laser2からの光〔L1, L2〕の干渉によって、サンプル〔Sa mple]の記録層にホログラムが記録された。  Thereby, the hologram was recorded on the recording layer of the sample [Sample] by the interference of the light [L1, L2] from Laserl and Laser2.
[0162] ホログラムの記録後、 405nmの光 [L2]を遮断し、また、分割によって得られた 2本 の 532nmの光〔L 1〕のうち一方を遮断し、記録時と同様の角度で記録面に照射した 回折された光をパワーメータ(図示省略)とディテクタ (ニューポート社製 2930— C、 918-SL) [PD1, PD2〕を用いて記録した。ホログラムの回折効率は、回折された 光の強度の入射光強度に対する比で与えられる。  [0162] After recording the hologram, the 405 nm light [L2] is blocked, and one of the two 532 nm lights [L1] obtained by the division is blocked, and recording is performed at the same angle as during recording. The diffracted light irradiated on the surface was recorded using a power meter (not shown) and a detector (Newport 2930-C, 918-SL) [PD1, PD2]. The diffraction efficiency of a hologram is given by the ratio of the diffracted light intensity to the incident light intensity.
[0163] <結果 > [0163] <Result>
上記調製法により作製したサンプルを、上記測定方法を用いて測定した結果を以 下の表 1に示す。なお、上記の各実施例においては、記録時のビーム照射強度は L aserlのビーム強度を lWcm— 2に、 Laser2を 80mWcm— 2〖こ、それぞれ設定して記録 を行なった。 Laserl及び Laser2の照射時間は、実施例 1においては 3000秒、実施 例 2にお!/、ては 500秒、実施例 3〜7にお!/、ては 200秒であった。 Table 1 below shows the results of measuring the sample prepared by the above preparation method using the above measurement method. In each of the above embodiments, the beam irradiation intensity during recording is L Recording was performed with the aserl beam intensity set to lWcm- 2 and the Laser2 set to 80mWcm- 2 . The irradiation time of Laserl and Laser2 was 3000 seconds in Example 1, 500 / second in Example 2, and 200 / second in Examples 3-7!
[表 1]  [table 1]
[表 1 :回折効率の測定結果]
Figure imgf000039_0001
[Table 1: Measurement results of diffraction efficiency]
Figure imgf000039_0001
[0164] 前記の結果から、各サンプルにお 、て回折効率が得られ、本記録材料にホロダラ ム記録を行うことが可能であることが示された。  [0164] From the above results, it was shown that diffraction efficiency was obtained for each sample, and that the recording material could be subjected to holodal recording.
[0165] また、前記のいずれの実施例においても、記録後のサンプルに 532nmの光〔L1〕 を露光しても記録状態に変化はなぐ 405nmのゲート光〔L2〕の非存在下ではホログ ラム記録は起こらず、読み出し光によって感光することはないことが明ら力となった。 これによつて、非破壊読出しが可能であることが確認された。  In any of the above-described embodiments, the recording state does not change even if the sample after recording is exposed to 532 nm light [L1]. In the absence of 405 nm gate light [L2], It became apparent that no recording occurred and no light was exposed to the readout light. This confirmed that non-destructive reading is possible.
[0166] [実施例 8]  [Example 8]
(増感体 (A) 2, 2' : 5, 2"—テルチオフェン及び重合体(B)の励起エネルギーの測 定)  (Measurement of excitation energy of sensitizer (A) 2, 2 ': 5, 2 "-terthiophene and polymer (B))
文献 m (j. Chem. Soc. , Faraday Trans. 1, 73 (1977) 1319)に記載の方法 を用いて、増感体 (A)である 2, 2' : 5, 2"—テルチオフェンの Tl—Tn吸収を測定し た。レーザー光源として、 Q スィッチ YAGレーザーの第 3高調波または第 4高調波 を使用した。また、 T1から SOに落ちる際のりん光を測定した。測定の結果、 Tl— Tn 吸収の吸収端は 600nmであり、 T1 30ェネルギーは72011111でぁることが判明した 。これらの結果より、 30—1¾ェネルギーは33011111でぁることがゎかった。  Using the method described in the literature m (j. Chem. Soc., Faraday Trans. 1, 73 (1977) 1319), the sensitizer (A) 2, 2 ': 5, 2 "-terthiophene Tl-Tn absorption was measured, and the third or fourth harmonic of a Q-switched YAG laser was used as the laser source, and the phosphorescence when falling from T1 to SO was measured. The absorption edge of Tl—Tn absorption is 600 nm, and the T1 30 energy was found to be 72011111. These results indicated that the 30-1¾ energy was 33011111.
[0167] 次に、同様にして、重合体(B)である NBD— PSの T1から SOに落ちる際のりん光 を測定した。その結果、 T1— S0エネルギーは 400nmであることがわかった。  [0167] Next, the phosphorescence of NBD-PS, which is the polymer (B), when falling from T1 to SO was measured in the same manner. As a result, the T1-S0 energy was found to be 400 nm.
[0168] これらの結果より、増感体 (Α) 2, 2' : 5, 2"—テルチオフェンの Tl準位は、重合体 NBD PSの反応基を化学変化するのに十分なエネルギーは有さな 、が、 Tn準位 になり初めて反応基に反応開始のためのエネルギーが供給されることが実験的に示 された。 産業上の利用可能性 [0168] From these results, the Tl level of the sensitizer (Α) 2, 2 ': 5, 2 "-terthiophene has sufficient energy to chemically change the reactive group of the polymer NBD PS. However, it has been experimentally shown that the energy for starting the reaction is supplied to the reactive group only after reaching the Tn level. Industrial applicability
[0169] 本発明は産業上の任意の分野に使用することができるが、特に、ホログラム記録媒 体等の光記録媒体に用いて好適である。  The present invention can be used in any industrial field, but is particularly suitable for use in an optical recording medium such as a hologram recording medium.
[0170] 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れるこ となく様々な変更が可能であることは当業者に明らかである。  [0170] Although the invention has been described in detail using specific embodiments, it will be apparent to those skilled in the art that various modifications can be made without departing from the spirit and scope of the invention.
なお本出願は、 2006年 4月 28日付で出願された日本特許出願 (特願 2006— 12 6394号)に基づいており、その全体が引用により援用される。  This application is based on a Japanese patent application filed on April 28, 2006 (Japanese Patent Application No. 2006-12 6394), which is incorporated by reference in its entirety.

Claims

請求の範囲 The scope of the claims
[I] 光子を吸収することにより励起される増感体 (A)と、  [I] A sensitizer (A) excited by absorbing photons,
化学変換を生じうる反応基 (C)を有する重合体 (B)とを含有し、  A polymer (B) having a reactive group (C) capable of causing chemical conversion, and
該増感体 (A)が、該反応基 (C)に対して還元型の電子配置を有する  The sensitizer (A) has a reduced electron configuration with respect to the reactive group (C).
ことを特徴とする、光反応性組成物。  A photoreactive composition characterized by the above.
[2] 該増感体 (A)が、 2以上の光子を吸収することにより励起される [2] The sensitizer (A) is excited by absorbing two or more photons
ことを特徴とする、請求項 1記載の光反応性組成物。  The photoreactive composition according to claim 1, wherein:
[3] 該増感体 (A)が、 2以上の異なる波長の光子を吸収することにより励起される ことを特徴とする、請求項 2記載の光反応性組成物。 [3] The photoreactive composition according to claim 2, wherein the sensitizer (A) is excited by absorbing two or more photons having different wavelengths.
[4] 該増感体 (A)が、第一の励起光の光子を吸収することにより一重項励起状態に励 起され、その後、項間交差により最低三重項励起状態に移行し、続いて、前記第一 の励起光とは異なる波長の第二の励起光の光子を吸収することにより、前記最低三 重項励起状態より高い三重項励起状態に励起される多段階励起型増感体である ことを特徴とする、請求項 3記載の光反応性組成物。 [4] The sensitizer (A) is excited to the singlet excited state by absorbing the photons of the first excitation light, and then transitions to the lowest triplet excited state by intersystem crossing. A multi-stage excitation type sensitizer that is excited to a triplet excited state higher than the lowest triplet excited state by absorbing photons of the second excitation light having a wavelength different from that of the first excited light. The photoreactive composition according to claim 3, wherein
[5] 該増感体 (A)が励起された場合、励起された該増感体 (A)の寄与により該反応基 [5] When the sensitizer (A) is excited, the reactive group is contributed by the excited sensitizer (A).
(C)が化学変換し、該光反応性組成物の光学特性が変化する  (C) undergoes chemical conversion, and the optical properties of the photoreactive composition change.
ことを特徴とする、請求項 1〜4の 、ずれか一項に記載の光反応性組成物。  The photoreactive composition according to any one of claims 1 to 4, wherein the photoreactive composition is characterized by that.
[6] 前記化学変換が異性化反応である [6] The chemical transformation is an isomerization reaction
ことを特徴とする、請求項 1〜5のいずれか一項に記載の光反応性組成物。  The photoreactive composition according to any one of claims 1 to 5, wherein
[7] 請求項 1〜6の 、ずれか一項に記載の光反応性組成物を含有する [7] The photoreactive composition according to any one of claims 1 to 6 is contained.
ことを特徴とする、光学材料。  An optical material characterized by the above.
[8] 請求項 7に記載の光学材料からなる [8] The optical material according to claim 7.
ことを特徴とする、光記録材料。  An optical recording material characterized by the above.
[9] 請求項 8記載の光記録材料からなる [9] The optical recording material according to claim 8.
ことを特徴とする、体積ホログラム記録材料。  A volume hologram recording material characterized by the above.
[10] 請求項 8記載の光記録材料を含む層を備える [10] A layer comprising the optical recording material according to claim 8
ことを特徴とする、光記録媒体。  An optical recording medium characterized by the above.
[II] 請求項 10記載の光記録媒体の前記層に対して、前記励起光を照射する ことを特徴とする、光記録媒体への光記録方法。 [II] The excitation light is applied to the layer of the optical recording medium according to claim 10. An optical recording method for recording on an optical recording medium.
前記励起光と共に参照光を照射し、前記励起光と前記参照光との干渉によって前 記層にホログラムを記録する  Irradiate reference light together with the excitation light, and record a hologram on the layer by interference between the excitation light and the reference light.
ことを特徴とする、請求項 11記載の光記録媒体への光記録方法。 12. The method of optical recording onto an optical recording medium according to claim 11,
PCT/JP2007/058910 2006-04-28 2007-04-25 Photoreactive composition, optical material, optical recording material, volume hologram recording material, optical recording medium, and optical recording method therefor WO2007125937A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008513229A JPWO2007125937A1 (en) 2006-04-28 2007-04-25 Photoreactive composition, optical material, optical recording material, volume hologram recording material, optical recording medium, and optical recording method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006126394 2006-04-28
JP2006-126394 2006-04-28

Publications (1)

Publication Number Publication Date
WO2007125937A1 true WO2007125937A1 (en) 2007-11-08

Family

ID=38655463

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/058910 WO2007125937A1 (en) 2006-04-28 2007-04-25 Photoreactive composition, optical material, optical recording material, volume hologram recording material, optical recording medium, and optical recording method therefor

Country Status (3)

Country Link
JP (1) JPWO2007125937A1 (en)
TW (1) TW200804968A (en)
WO (1) WO2007125937A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011054266A (en) * 2009-08-31 2011-03-17 General Electric Co <Ge> Composition, optical data storage medium and method for using optical data storage medium
JP2011053676A (en) * 2009-08-31 2011-03-17 General Electric Co <Ge> Composition, optical data storage medium and method for using the optical data storage medium
WO2011102545A1 (en) * 2010-02-18 2011-08-25 Fujifilm Corporation Non-resonant two-photon absorption recording material and non-resonant two-photon absorption compound
JP2012022317A (en) * 2010-07-16 2012-02-02 Lg Chem Ltd Photoreactive polymer and preparation method of the same
JP2012053974A (en) * 2010-08-31 2012-03-15 General Electric Co <Ge> Use of appended dyes in optical data storage media

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200081398A1 (en) * 2018-09-06 2020-03-12 Facebook Technologies, Llc Photosensitive polymers for volume holography

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03285941A (en) * 1990-03-31 1991-12-17 Res Dev Corp Of Japan Light-heat energy accumulating and converting material
JPH0616865A (en) * 1992-06-29 1994-01-25 Res Dev Corp Of Japan Light and thermal energy conversion polymer composition
JP2002318433A (en) * 2001-03-30 2002-10-31 Eastman Kodak Co Optical recording material
JP2004078224A (en) * 2002-08-19 2004-03-11 Eastman Kodak Co Optical recording material
JP2005099416A (en) * 2003-09-25 2005-04-14 Fuji Photo Film Co Ltd Hologram recording method and hologram recording material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03285941A (en) * 1990-03-31 1991-12-17 Res Dev Corp Of Japan Light-heat energy accumulating and converting material
JPH0616865A (en) * 1992-06-29 1994-01-25 Res Dev Corp Of Japan Light and thermal energy conversion polymer composition
JP2002318433A (en) * 2001-03-30 2002-10-31 Eastman Kodak Co Optical recording material
JP2004078224A (en) * 2002-08-19 2004-03-11 Eastman Kodak Co Optical recording material
JP2005099416A (en) * 2003-09-25 2005-04-14 Fuji Photo Film Co Ltd Hologram recording method and hologram recording material

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011054266A (en) * 2009-08-31 2011-03-17 General Electric Co <Ge> Composition, optical data storage medium and method for using optical data storage medium
JP2011053676A (en) * 2009-08-31 2011-03-17 General Electric Co <Ge> Composition, optical data storage medium and method for using the optical data storage medium
WO2011102545A1 (en) * 2010-02-18 2011-08-25 Fujifilm Corporation Non-resonant two-photon absorption recording material and non-resonant two-photon absorption compound
JP2011192374A (en) * 2010-02-18 2011-09-29 Fujifilm Corp Non-resonant two-photon absorption recording material and non-resonant two-photon absorption compound
US8449794B2 (en) 2010-02-18 2013-05-28 Fujifilm Corporation Non-resonant two-photon absorption recording material and non-resonant two-photon absorption compound
JP2012022317A (en) * 2010-07-16 2012-02-02 Lg Chem Ltd Photoreactive polymer and preparation method of the same
JP2012053974A (en) * 2010-08-31 2012-03-15 General Electric Co <Ge> Use of appended dyes in optical data storage media

Also Published As

Publication number Publication date
TW200804968A (en) 2008-01-16
JPWO2007125937A1 (en) 2009-09-10

Similar Documents

Publication Publication Date Title
JP5496823B2 (en) Optical data storage medium and method of use thereof
JP5705480B2 (en) Composition, optical data storage medium and method of using optical data storage medium
JP5738554B2 (en) Composition, optical data storage medium and method of using optical data storage medium
JP5759308B2 (en) Use of additional dyes in optical data storage media.
WO2007125937A1 (en) Photoreactive composition, optical material, optical recording material, volume hologram recording material, optical recording medium, and optical recording method therefor
JP5903252B2 (en) Optical data storage medium and method of using the same
US20030162124A1 (en) Compound which performs non-resonant two-photon absorption, non-resonant two-photon light-emitting compound and non-resonant two-photon absorption induction method and process for emitting light thereby, optical data recording medium and process for recording data thereon, and two-photon polymerizable composition and process for polymerization thereof
US20100302927A1 (en) Optical data storage medium and methods for using the same
JP4906371B2 (en) Two-photon absorbing material and its use
JP5179291B2 (en) Optical recording composition and holographic recording medium
JP4963367B2 (en) Two-photon absorption material
JP2004280899A (en) Optical information recording medium and information recording method
JP5042513B2 (en) Two-photon absorption materials and their applications
JP4996115B2 (en) Two-photon absorption materials and their applications
JP4969881B2 (en) Two-photon absorption materials and their applications
JP2008195616A (en) Polymerizable compound, optical recording composition, holographic recording medium and information-recording method
JP2009191094A (en) Optical recording compound, optical recording composition and holographic recording medium
Liu et al. Two-photon absorption of photochromic diarylethene and its application to rewritable holographic recording
JP2009069812A (en) Compound for optical recording, composition for optical recording, holographic recording medium and information recording method
JP2010237621A (en) Composition for optical information recording material, and optical information recording medium having optical information recording layer formed of the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07742345

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2008513229

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07742345

Country of ref document: EP

Kind code of ref document: A1