WO2007125574A1 - 映像伝送装置 - Google Patents

映像伝送装置 Download PDF

Info

Publication number
WO2007125574A1
WO2007125574A1 PCT/JP2006/308831 JP2006308831W WO2007125574A1 WO 2007125574 A1 WO2007125574 A1 WO 2007125574A1 JP 2006308831 W JP2006308831 W JP 2006308831W WO 2007125574 A1 WO2007125574 A1 WO 2007125574A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
time length
delay time
video
encoding
Prior art date
Application number
PCT/JP2006/308831
Other languages
English (en)
French (fr)
Inventor
Tsukasa Sugawara
Hiroyuki Konno
Ken Sasada
Original Assignee
Media Global Links Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Media Global Links Co., Ltd. filed Critical Media Global Links Co., Ltd.
Priority to PCT/JP2006/308831 priority Critical patent/WO2007125574A1/ja
Publication of WO2007125574A1 publication Critical patent/WO2007125574A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/164Feedback from the receiver or from the transmission channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/115Selection of the code volume for a coding unit prior to coding

Definitions

  • the present invention relates to a video transmission apparatus for encoding video information by setting a delay time to control a compression rate in accordance with the set delay time.
  • Patent Document 1 JP 2005-51621 A
  • Patent Document 2 Japanese Patent Laid-Open No. 2002-218470
  • compression rate may be used instead of the power image quality described using the term “image quality”.
  • MPEG Motion Picture Experts Group
  • ISOZIEC JTC1 SC29ZWG11 perform lossy compression, so in general, when the compression ratio increases, This is because the image quality of the obtained image is deteriorated.
  • a video transmission apparatus that continuously inputs video information for transmission, encodes and compresses the video information for transmission, and outputs the result, from the start of the encoding to the output.
  • the video transmission apparatus that inputs the maximum value of the allowed time length and controls the compression rate according to the maximum value is disclosed.
  • a compression rate is associated with the maximum value of the time length allowed from the start of the code to the output, and compression is performed based on the association.
  • the rate may be controlled.
  • the relationship between the correspondence between the maximum value of the time length allowed from the start of the code to the output and the compression rate is that the compression rate with respect to the maximum value is
  • the minimum value of the compression rate at the maximum value of the time length below the specified maximum allowable transmission rate may be the lower limit.
  • the compression rate may be associated with the degree of image quality degradation.
  • the maximum value of the time length allowed from the start of the sign key to the output is associated with the degree of image quality deterioration! /! /.
  • the encoding unit is alternatively selected according to the compression rate control. Good.
  • GUI graphical user interface
  • FIG. 1 An example of a graph showing the relationship between delay time and image quality
  • FIG. 4 is a conceptual diagram of a video transmission apparatus according to Embodiment 1.
  • FIG. 5 is a functional block diagram of a video transmission apparatus according to Embodiment 1.
  • FIG. 6 is a configuration diagram of a system in which a video transmission device and a decoding device according to Embodiment 1 are combined.
  • FIG. 8 is a flowchart of processing in the video transmission apparatus according to the first embodiment.
  • FIG. 9 is a functional block diagram of a video transmission apparatus according to Embodiment 2.
  • FIG. 10 is a functional block diagram of a video transmission apparatus according to Embodiment 3.
  • FIG. 11 An example of a table stored by means for associating time length with one compression ratio
  • FIG. 12 An example of a table stored in the association section for the degree of compression rate degradation
  • FIG. 13 is a functional block diagram of a video transmission apparatus according to Embodiment 4.
  • FIG. 14 is a diagram for explaining alternative selection of sign key means.
  • FIG. 15 is another functional block diagram of the video transmission apparatus according to Embodiment 4.
  • FIG. 16 is a flowchart of processing of the video transmission apparatus according to Embodiment 4.
  • Embodiment 1 is a video transmission device that continuously inputs video information for transmission, encodes and compresses the video information for transmission, and outputs the result.
  • a video transmission apparatus that inputs the maximum value of the time length allowed until the time is set and controls the compression rate by the code according to the maximum value will be described.
  • FIG. 1 illustrates the relationship between delay time and image quality.
  • the delay time is used in units of milliseconds, for example, and as the vertical axis, the degree of deterioration in image quality when the decoded video is decoded is, for example, before encoding.
  • 100 points are used as a unit.
  • image quality deterioration is reduced and the image quality is improved because, for example, sufficient time is taken for the encoding process.
  • the delay time is reduced, sufficient encoding cannot be performed, the image quality deteriorates, and the image quality deteriorates.
  • FIG. 2 illustrates the relationship between the compression rate and the image quality. As the horizontal axis, the compression rate is used! /
  • the compression rate is an index indicating how much the amount of information after encoding is relative to the amount of information of video before encoding. For example, the amount of information of video before encoding Is 200 megabytes, and the amount of information after signing is 20 megabytes, it is 1/10. If the index of compression ratio is defined in this way, the general “high compression ratio” is an index of a small value, which is counterintuitive. Therefore, here, for example, the scale of the horizontal axis is obtained by using the reciprocal of the compression rate.
  • FIG. 3 rewrites the relationship between the delay time and the image quality illustrated in FIG. 1 into the relationship between the delay time and the compression rate using the relationship between the compression rate and the image quality illustrated in FIG. It is a thing. As shown in Fig. 3, the compression rate decreases as the delay time increases. Therefore, Figure 3 For example, the compression ratio when the delay time is set to 100 milliseconds can be obtained by using the relationship shown in FIG.
  • FIG. 4 shows an example of the concept of the video transmission apparatus according to the first embodiment.
  • transmission video information is continuously input to the transmission video input unit 403 from the transmission line 401 at a rate of 5 Gbps.
  • video information for transmission is information indicating video for transmission.
  • it is a video that is transmitted from a broadcasting station and is to be relayed to the radio tower of the broadcasting station, and is information that indicates a video that has not been subjected to any operation or particularly compressed. Also, some compression force may be applied.
  • the video transmission device operates as a device for converting and transmitting the compression method.
  • the transmission video information input to the transmission video input unit 403 is encoded and compressed by the encoding unit 404 to be encoded video information.
  • the encoding unit 404 There are various encoding methods. For example, Motion—JPEG (Joint Photographic Experts Group) ⁇ JPEG2000, MPEG-1, MPEG-2, MPEG-4, MPEG-4 AVC (also called H.264) ), MPEG-8 and the like.
  • the code key video information encoded by the code key unit 404 is output to the transmission path 402 by the output unit 405. Since the compression is performed by the encoding unit 404, the information amount of the encoded video information is smaller than the information amount of the transmission video information. Therefore, the maximum allowable transmission rate of the transmission path 402 (for example, sometimes referred to as a band) is smaller than that of the transmission path 401, and if it is arranged, it is 270 Mbps.
  • a force control unit 406 controls the compression rate in the sign key unit 404.
  • the control unit 406 inputs the delay time 407, determines the compression rate 408 according to the delay time, and controls the code key unit 404.
  • the delay time 407. There are various methods for inputting the delay time 407. For example, the relationship between the delay time illustrated in FIG. 3 and the compression rate is displayed as a graph on a bitmap display or the like, and the user is allowed to set the delay time using a GUI component such as a slider.
  • the control unit 406 may acquire the delay time set as such.
  • a web browser operates, and GUI components can be displayed by the web browser.
  • FIG. 5 illustrates a functional block diagram of the video transmission apparatus according to the first embodiment.
  • the video transmission device 500 includes a transmission video input unit 501, an encoding unit 502, an output unit 503, a maximum delay time length input unit 504, and a control unit 505.
  • Transmission video input unit 501 continuously inputs transmission video information. “Continuously” means that input is not performed intermittently, or that there is no continuous input of information at a predetermined input rate or the like. For example, in the case where the transmission video information also includes a column information of frame information indicating a frame, the frame information is input at a predetermined time interval at a predetermined frame rate.
  • the transmission video may include not only video information but also audio information and control information.
  • An “encoding unit” 502 is a unit that encodes and compresses input video information for transmission to generate encoded video information.
  • “encoding” refers to performing predetermined processing on transmission video information to perform compression processing, packet processing, and the like.
  • Predetermined processing includes, for example, DCT (Discrete Cosine Transformation) conversion processing, quantization processing, motion vector detection processing, variable length code processing, and the like in the case of MPEG.
  • a “packet” is a collection of data organized according to a certain rule. The knot may contain an error correction code. Examples of the packet include an IP (Internet Protocol) packet, a TCP (Transmission Control Protocol) packet, and a UDP (User Datagram Protocol) packet. Also, some packets may have similar configurations to ATM cells.
  • the general packet length is 1500 bytes or less. For example, packets longer than this value are divided before transmission and reassembled on the receiving side.
  • Output unit 503 outputs the encoded information for transmission.
  • the “encoded information” is code information obtained by encoding the video information for transmission in the code key unit 502.
  • Output for transmission refers to transmission using an output destination transmission line.
  • the output unit 503 may include a buffer composed of a semiconductor memory or the like. This is because the amount of code key information generated by the code key unit 502 may fluctuate with time, and may temporarily exceed the maximum allowable transmission rate of the output destination transmission line. is there. Therefore The output unit 503 is provided with a buffer such as a FIFO (Fist In First Out) queue by a semiconductor memory. If the amount of code information generated in the code key unit 502 per time exceeds the maximum allowable transmission rate of the output transmission path, a part of the encoded information is temporarily buffered in the queue. Output to the output destination transmission line within the maximum allowable transmission rate.
  • FIFO Transist In First Out
  • the nominated code information is sequentially output. Reduce the amount of sign key information buffered in the queue. It has been described that the process of generating a packet is performed by the encoding unit 502, but instead, the process of generating a packet by the output unit 503 may be performed.
  • “Maximum delay time length input unit” 504 is a unit for inputting a maximum delay time length.
  • the “maximum delay time length” is the maximum value of the time length allowed from the start of transmission video information encoding until the encoded video information is output.
  • code video information means code video information obtained by encoding video information for transmission by the code key unit 502. For example, when the transmission video information is composed of a sequence of frame information, a code of a certain frame information is started by the code key unit 502, and the code video information corresponding to the frame information is output by the output unit. This is the maximum time length from 503 until output to the output destination transmission line.
  • the maximum value of the time length allowed from when the transmission video information is input to the transmission video input unit 501 until the encoded video information is output may be defined as the maximum delay time length.
  • the maximum delay time length is encoded by the decoding device that has received the video information from the time when the transmission video information is input to the video transmission device or from the start of encoding. It may be the time length until video information is decoded and output.
  • FIG. 6 shows that the video transmission apparatus according to the first embodiment operates as a code transmission apparatus 602 that encodes transmission video information transmitted from the transmission path 601, and transmits the code to the transmission path 603.
  • the video information is output, and the decoding video device 604 receives the encoded video information and performs decoding.
  • the result of outputting the result to the transmission line 605 is shown.
  • the time for the encoded video information to travel on the transmission path 603 is constant, and the time until the decoding device 604 decodes the encoded video information and outputs it to the transmission path 605 is almost the same. It is constant.
  • the encoded video information is decoded and output by the decoding video apparatus that has received the encoded video information.
  • Subtract the transmission time length by the transmission line 603, the time length of the decoding key processing by the decoding device 604, and the time length until the decoding key result is output to the transmission line 605 Thus, the time length from encoding to output in the video transmission apparatus can be calculated.
  • the time length of the decoding signal in the decoding device may vary due to compression of the transmission video information in the video encoding device.
  • the processing of the decoding method in the decoding device is known (for example, the encoding device by one person skilled in the art).
  • the time length of the decoding key in the decoding key device should be predicted at the time of the coding time on the video coding key device side. Can do.
  • the maximum delay time length is determined by the decoding video device that receives the coded video information from the time when the transmission video information is input to the video transmission device or from the start of encoding. It may be defined as the length of time until is decoded and output.
  • FIG. 7 shows the reason why a time length from the start of the sign of video information for transmission to the output of the sign video information (this time length is also referred to as "delay time length") occurs. It is a figure for demonstrating one of. In the following, it will be described that the delay time length occurs because the buffering is performed when the rate of occurrence of the information amount of the encoded video information exceeds the bandwidth of the output transmission path.
  • the horizontal axis represents time
  • the vertical axis represents the amount of information that is moved or generated per time or the transmission rate of information.
  • a horizontal line 701 indicates a maximum allowable transmission rate of a transmission path through which transmission video information is transmitted. That is, the transmission speed of the video information for transmission cannot exceed the horizontal line 701.
  • a horizontal line 702 indicates the maximum allowable transmission rate of a transmission path through which encoded video information is output. That is, the transmission speed of the encoded video information to be transmitted cannot exceed the horizontal line 702.
  • the transmission amount per hour of transmission video information changes as indicated by a dotted line 703.
  • the solid line 704 is formed by exceeding the horizontal line 702.
  • the encoded video information corresponding to the portion 705 cannot be output immediately by the output unit 503. For this reason, it will be buffered.
  • the buffered information is then output when the amount of encoded video information falls below the horizontal line 702. Since such processing is performed, a delay time length occurs.
  • Control unit 505 controls the compression rate of encoding by the encoding unit in accordance with the input maximum delay time length. For example, there are mathematical formulas and programs for calculating the maximum delay time length force compression rate, and the compression rate is calculated using the mathematical formulas and programs. In addition, in order to control the compression rate, various parameters of the code key in the code key unit 502 are controlled. For example, of the spatial frequency components obtained by DCT transformation, the range of the high frequency components in which the coefficient is regarded as 0 is controlled, and the quantized value is controlled. In addition, it is possible to appropriately select whether to perform the intra code key or the inter code key.
  • the parameter value of the code key in the code key unit 502 may be calculated so that the compression rate can be calculated indirectly.
  • FIG. 8 exemplifies a flow chart for explaining the processing flow of the video transmission apparatus according to the present embodiment.
  • step S801 processing for inputting the maximum delay time length is performed. This processing is performed by operating the maximum delay time length input unit 504.
  • step S802 a process for obtaining a compression rate according to the maximum delay time length is performed. This processing is performed by operating the control unit 505.
  • step S803 processing for setting an encoding parameter value according to the compression rate is performed. This processing is performed by operating the control unit 505 and setting the encoding unit 502 as an operation target.
  • step S804 a process for encoding and outputting the input video information for transmission is performed.
  • This process is performed by operating the transmission video input unit 501, the encoding unit 502, and the output unit 503.
  • transmission video information is input, encoded, and encoded video information is output.
  • the operation is not limited to such an operation.
  • the maximum delay time length is input in parallel with this processing, and the maximum delay time length is set to the maximum delay time length.
  • the compression rate is controlled.
  • the flowchart of FIG. 8 can also be regarded as a flowchart of processing of a program for realizing the video transmission apparatus according to the present embodiment with a computer.
  • the functional block diagram of FIG. 5 can be regarded as a module configuration diagram of such a program.
  • such a program can be recorded on a medium such as a flexible disk.
  • the video transmission apparatus can control the compression rate by encoding according to the set delay time.
  • FIG. 9 illustrates a functional block diagram of the video transmission apparatus according to the second embodiment.
  • the video transmission device 900 includes a transmission video input unit 901, an encoding unit 902, an output unit 903, a maximum delay time length input unit 904, and a control unit 905.
  • the control unit 905 includes time length-one compression ratio correspondence means 906 and control means 907. Therefore, the video transmission apparatus according to the present embodiment has a configuration in which the control unit of the video transmission apparatus according to the first embodiment further includes a time length-one compression rate association unit 906 and a control unit 907. ing.
  • “Time length-one compression rate association means” 906 is means for associating the compression rate with the maximum delay time length that can be input by the maximum delay time length input unit 904.
  • the information representing the graph illustrated in FIG. 3 is stored in the storage means or the like, thereby associating the maximum delay time length with the compression rate.
  • a table in which the maximum delay time length is associated with the compression rate may be stored in the storage means. When the table is stored, it becomes difficult or impossible to associate the compression rate with all the maximum delay time lengths that can be input by the maximum delay time length input unit 904. In such a case, the compression rate for the maximum delay time length is obtained using a calculation means such as interpolation.
  • the time length-one compression rate association means 906 may associate the maximum delay time length with the parameter value of the sign key without directly associating the maximum delay time length with the compression rate. Good. In this case, since the compression rate is calculated based on the parameter value of the sign key, the maximum delay time length can be associated with the compression rate.
  • Control means 907 is means for causing the encoding unit 902 to execute the encoding code at a compression rate associated with the input maximum delay time length.
  • the encoding parameter value is determined based on the compression rate associated by the time length-one compression rate association means 906 with the input maximum delay time length.
  • the time length-one compression ratio association means 906 associates the maximum delay time length with the parameter value of the code key
  • the code key associated with the input maximum delay time length is used.
  • the sign key section 902 is controlled using the parameter value of.
  • the compression rate associated with the maximum delay time length by the time length-one compression rate association means is encoded by the time length of the delay at the maximum delay time length, and is a predetermined maximum It is desirable that the lower limit is the minimum compression rate when outputting at a transmission rate below the allowable transmission rate. That is, as illustrated in FIG. 7, even if there is a portion 705 exceeding the horizontal line 702, the portion corresponding to this portion is buffered, and the encoded video information is transmitted at a transmission rate of the horizontal line 702 or lower.
  • a compression rate that is equal to or greater than the minimum value of the compression rate such that the time until the completion of outputting the encoded video information of the portion corresponding to the portion 705 is less than or equal to the maximum delay time length is the maximum delay.
  • the compression rate associated with the maximum delay time length by the time length-one compression rate association means is used to perform a predetermined maximum allowable transmission by performing sign coding with the delay time length of the maximum delay time length.
  • the compression rate is obtained from the maximum delay time length by using a graph or a table. It is possible to prevent the process from becoming complicated. This means that if the maximum delay time length changes dynamically, the compression ratio can be changed in response to the change in real time.
  • the correspondence between the maximum delay time length and the compression rate can be understood and predicted, and how much the maximum delay time length is set. Effects such as easier power selection.
  • a video transmission apparatus capable of maintaining the degree of image quality degradation caused by compression by encoding in association with the compression rate.
  • FIG. 10 illustrates a functional block diagram of the video transmission apparatus according to the third embodiment.
  • the video transmission apparatus 1000 includes a transmission video input unit 1001, an encoding unit 1002, an output unit 1003, a maximum delay time length input unit 1004, a control unit 1005, and a compression rate one deterioration related unit 1006.
  • the control unit 1005 may further include a time length-one compression ratio association unit and a control unit. Therefore, the video transmission apparatus according to the present embodiment has a configuration in which the video transmission apparatus according to the first or second embodiment further includes the degree-of-compression-related portion 1006.
  • “Compression rate one degradation degree associating unit” 1006 is a means for holding the degree of image quality degradation caused by compression by the sign of transmission video information in association with the compression rate.
  • the compression rate deterioration degree associating unit 1006 is a means realized by storing, for example, a table or a graph in which the compression rate is associated with the degree of image quality deterioration in the storage means.
  • the image quality may be determined by subjective judgment when a person views a video.
  • the average value of the image quality scores when a number of persons skilled in the art decode and display the video compressed at the respective compression rates, etc.
  • the calculated average value may be used as an index indicating the image quality.
  • the degree of noise such as mosquito noise generated at the time of decoding may be mechanically determined, and the result of the determination may be used as an index indicating image quality.
  • FIG. 11 exemplifies a table stored in the time length-one compression rate association means and the like
  • FIG. 12 illustrates a table stored in the compression rate-one deterioration degree associating unit 1006.
  • the operator of the video transmission device 1000 looks at the two tables illustrated in FIGS. 11 and 12, or by looking at the compression rate output by the video encoding device and the table in FIG.
  • the degree of image quality degradation according to the delay time can be known.
  • the maximum delay time length can be set in consideration of the balance between the delay time and the degree of image quality degradation.
  • the video transmission apparatus it is possible to obtain an effect that the maximum delay time length can be set in consideration of the balance between the delay time and the degree of deterioration of the image quality.
  • a video transmission apparatus having a plurality of encoding means and controlling the compression rate by selecting the encoding means from such encoding means will be described.
  • FIG. 13 illustrates a functional block diagram of the video transmission apparatus according to the fourth embodiment.
  • the video transmission apparatus 1300 includes a transmission video input unit 1301, an encoding unit 1302, an output unit 1303, a maximum delay time length input unit 1304, and a control unit 1305.
  • the sign key unit 1302 includes a plurality of coding means such as a sign key means 1306 and a sign key means 1307. These encoding means are generally encoding means having different compression rates.
  • the sign key unit 1302 includes a sign key means selecting means 1308.
  • the control unit 1305 may include a time length-one compression ratio correspondence unit and a control unit.
  • the video transmission device 1300 may include an association unit with a degree of compression rate degradation.
  • the video transmission apparatus is the video transmission apparatus according to any one of the first to third embodiments.
  • the encoding unit includes a plurality of code key means, and further includes a code key means selection means. It has the composition which has.
  • "Encoding means" is means for encoding transmission video information. As described above, the compression rates are different among the plurality of encoding means. Alternatively, the compression rate may be different because the sign key parameter values are different. I wrote “multiple encoding means", but it is not necessary to actually have multiple circuits and programs corresponding to the encoding means. However, a plurality of encoding means may be realized by being input to the video system (see, for example, the video encoding apparatus described later with reference to FIG. 15). ) 0
  • Encoding means selection means 1308 is means for selecting a plurality of sign key means with respect to the control.
  • the “control” is control of the compression rate by the control unit 1305. That is, the code selection means selection means 1308 is a means for selecting one code quality means capable of encoding transmission video information at the compression ratio when the compression ratio is designated by the control unit 1305. Alternatively, it may be a means for controlling the sign key means to operate at a designated compression rate.
  • “alternative” means that any one of the forces is not limited to the fact that only one sign key means operates at each moment, but the sign section also includes the sign key information. It may mean that there is only one sign key means for passing.
  • FIG. 14 is a diagram for explaining selection of an encoding means in which there is only one encoding means for passing encoded video information to the output unit.
  • the solid line 1401 indicates the temporal change in the amount of code information when the first code means is used for coding
  • the solid line 1402 is coded by the second coding means. Let us show the temporal change in the amount of encoded video information.
  • the transmission rate of the transmission path through which the output unit 1303 outputs the encoded video information is indicated by a dotted line, first, the first encoding means having a low compression rate is used for encoding.
  • the second encoding with a large compression rate is passed to the output unit 1303.
  • the encoding means selection means 1308 switches the alternative selection so that the means passes the encoded video information that has been encoded to the output unit 1303. Thereafter, when the amount of time encoded by the first encoding means falls below the dotted line, encoding from the second encoding means to the first encoding means as indicated by an arrow 1404.
  • the means selection means 1308 switches the alternative selection, and the first encoding means outputs the encoded video information that has been encoded. To pass. Thereafter, alternative selections are similarly switched for the arrows 1405 and 1406.
  • FIG. 15 exemplifies a functional block diagram more specifically showing the hardware configuration of the video transmission apparatus according to the fourth embodiment.
  • the video transmission apparatus includes a transmission video input unit 1501, a coding unit 1502, a post memory 1503 corresponding to an output unit, a maximum delay time length input unit 1504, and a control unit 1505.
  • the transmission video input unit 1501 includes a pre-memory 1506 and a selector 1507.
  • the code 1502 includes a DCT circuit 1508, a quantum circuit 1509, and a Noffman code signal circuit 1510.
  • the control unit 1505 includes a code key table 1511, a predictive encoder 1512, a TBL 1513, a TBL 1514, a selector 1515, and a code key means selecting means 1516.
  • Each of TBL1513 and TBL1514 is a table that corrects the maximum delay time length input to the maximum delay time length input unit 1504 from the compression rate by the sign key by the prediction encoder 1512 and the output result of the DCT circuit 1508. Used for such purposes.
  • the maximum delay time length input unit 1504 acquires, for example, 15 milliseconds as the maximum delay time length input by the user through a LAN (Local Area Network) or the like.
  • the terminal or the like may be directly connected to the video transmission apparatus.
  • the control unit refers to the code key table 1511 as, for example, 0.15 as the compression rate for 15 milliseconds. get.
  • the selector 1507 selects the top input and the selector 1515 selects the bottom input.
  • the transmission video input unit 1501 acquires, for example, HD-SD1 signal (1.5 Gbps) transmission video information, and outputs it to the encoding unit 1502 via the top input of the selector 1507. Do.
  • the quantization circuit 1509 of the encoding unit 1502 quantizes the processing result of the DCT circuit based on the output 0.15 from the code table, and outputs the result to the Huffman code circuit 1510.
  • a nofman code key circuit 1510 performs code keying and outputs compressed code key video information to the post memory 1503.
  • the post memory 1503 can buffer the video information For example, SD-SDI signal (270 Mbps) is output to the transmission line.
  • the control unit refers to the encoding table 1511 and acquires 0.1 as the compression rate. Since the compression ratio has been changed, the selector 1507 and the selector 1515 select the middle input, respectively, under the control of the sign key means selection means 1516.
  • the prememory 1506 delays the input transmission video information, for example, by one frame, and outputs it to the encoding unit 1502 via the middle of the selector 1507. At the same time, the transmission video information input to the transmission video input unit 1501 is also output to the prediction encoder 1512 without delay. Prediction encoder 1512 is used to predict the compression rate.
  • the DCT circuit 1508 performs DCT conversion on the input video information for transmission and outputs it to the quantization circuit 1509.
  • the quantization circuit 1509 performs quantization based on the compression ratio of 0.1 and outputs the result to the Huffman code circuit 1510.
  • the Huffman code circuit 1510 posts the encoded video information obtained by encoding. Output to memory 1503 and output as SD—SDI signal.
  • FIG. 16 is a flowchart for explaining the processing flow of the video transmission apparatus having the hardware configuration capability illustrated in FIG.
  • step S1601 a process for obtaining the maximum delay time length is performed.
  • step S1602 a process for acquiring the compression rate according to the maximum delay time length is performed.
  • step S1603, a process of selecting a sign key means alternatively is performed according to the compression rate.
  • step S1604 processing for inputting video information for transmission is performed.
  • an encoding process is performed.
  • step S1606 the encoded video information is output.
  • step S 1607 it is determined whether or not processing such as encoding should be terminated. If so, the entire processing is terminated. If not, processing returns to step S 1604.
  • the delay time is acquired, and the encoding means with the compression rate corresponding to the acquired delay time is selected, so that the predetermined transmission rate is not exceeded! It is possible to transmit code information such as /.

Abstract

【課題】遅延時間に応じて圧縮率を制御する映像伝送装置を提供する。 【解決手段】伝送用の映像情報である伝送用映像情報を連続して入力し、その伝送用映像情報を符号化することにより圧縮して符号化映像情報とし、その符号化映像情報を伝送するために出力する映像伝送装置であって、伝送用映像情報の符号化の開始からその伝送用映像情報に対応する符号化映像情報の出力がされるまでに許容される時間長の最大値である最大遅延時間長を入力し、その最大遅延時間長に応じて伝送用映像情報の符号化の圧縮率を制御する映像伝送装置を提供する。

Description

明 細 書
映像伝送装置
技術分野
[0001] 本発明は、遅延時間を設定することにより、設定した遅延時間に応じて圧縮率を制 御して映像情報を符号ィ匕する映像伝送装置に関する。
背景技術
[0002] 従来、映像情報を圧縮し符号化する技術が種々提案されて!ヽる。これらの方法の 中には、圧縮による画質の劣化を防止しつつ、圧縮に伴う符号ィヒの結果の出力の遅 延時間を最小にすることを目的とする技術がある (例えば、特許文献 1、特許文献 2な ど参照。)。
特許文献 1:特開 2005— 51621号公報
特許文献 2:特開 2002— 218470号公報
発明の開示
発明が解決しょうとする課題
[0003] し力しながら、遅延時間と画質とはトレードオフの関係にある。そのため、遅延時間 と画質との両方を改善させようとしても、どちらの改善も中途半端になってしまう結果 になることが多い。
[0004] また、現実の映像伝送装置の使用される場面では、遅延時間と画質との両方の向 上を求める場合はあまり多くなぐ画質を犠牲にしても遅延時間が小さくなることを優 先したかったり、あるいは、遅延時間を犠牲にしても画質が小さくなることを優先した 力つたりのいずれかである場合が多い。したがって、現実の映像伝送装置の使用さ れる場面では、遅延時間と画質との 、ずれかを優先できるようになって!/、ることが好ま しい。特に、放送用に映像情報を伝送する場合には、リアルタイム性が要求されるた めに、むしろ、遅延時間が優先されることが多ぐ遅延時間に応じて画質が可変にな つていることが好ましい。
[0005] 従来においては、このように遅延時間に応じて画質を制御する映像伝送装置は出 願人の知る限り、存在しな力つた。 [0006] なお、以上においては、「画質」という言葉を用いて説明した力 画質の代わりに「圧 縮率」という言葉を用いてもよい。例えば、 ISOZIEC JTC1 SC29ZWG11でとし て策定されている MPEG (Moving Picture Experts Group)などの符号化の規 格では、非可逆圧縮が行なわれるため、一般的に、圧縮率が高くなると、復号化した 後に得られる画像の画質が低下してしまうという関係があるためである。
課題を解決するための手段
[0007] そこで、以下では、遅延時間に応じて圧縮率を制御する映像伝送装置を開示する
[0008] すなわち、伝送用映像情報を連続して入力し、伝送用映像情報を符号化して圧縮 し、その結果を出力する映像伝送装置であって、符号ィ匕の開始から出力がされるま でに許容される時間長の最大値を入力し、その最大値に応じて圧縮率を制御する映 像伝送装置にっ ヽて開示を行なう。
[0009] また、映像伝送装置においては、符号ィ匕の開始から出力がされるまでに許容される 時間長の最大値に対して圧縮率を対応付けておき、その対応付けに基づいて、圧縮 率を制御してもよい。
[0010] また、映像伝送装置においては、符号ィ匕の開始から出力がされるまでに許容される 時間長の最大値と圧縮率との対応付における関係は、最大値に対する圧縮率が、所 定の最大許容伝送率以下における時間長の最大値での圧縮率の最小値が下限とな つていてもよい。
[0011] また、映像伝送装置においては、圧縮率と画質の劣化の程度を関連付けておいて もよい。これにより、符号ィ匕の開始から出力がされるまでに許容される時間長の最大 値と画質の劣化の程度が関連付けられて!/、てもよ!/、。
[0012] また、映像伝送装置においては、圧縮率が異なる複数の符号化手段が存在し、圧 縮率の制御に応じて択一的に符号ィ匕手段が選択されるようになっていてもよい。 発明の効果
[0013] 本発明により、遅延時間に応じて圧縮率を制御する映像伝送装置が提供できる。
そのような映像伝送装置を用いれば、例えば、グラフィカルユーザインターフェース( GUI)を用いて遅延時間と圧縮率 (あるいは画質)との対応関係をグラフなどにより表 示しておくことにより、遅延時間を入力したときの圧縮率 (あるいは画質)を、映像伝送 装置の利用者が知ることができる。
図面の簡単な説明
[0014] [図 1]遅延時間と画質との関係を示すグラフの一例図
[図 2]圧縮率と画質との関係を示すグラフの一例図
[図 3]遅延時間と圧縮率との関係を示すグラフの一例図
[図 4]実施形態 1に係る映像伝送装置の概念図
[図 5]実施形態 1に係る映像伝送装置の機能ブロック図
[図 6]実施形態 1に係る映像伝送装置と復号ィヒ装置とを組み合わせたシステムの構 成図
[図 7]遅延時間長が発生する理由の一つを説明するための図
[図 8]実施形態 1に係る映像伝送装置での処理のフローチャート
[図 9]実施形態 2に係る映像伝送装置の機能ブロック図
[図 10]実施形態 3に係る映像伝送装置の機能ブロック図
[図 11]時間長一圧縮率対応付手段などで格納されるテーブルの一例図
[図 12]圧縮率一劣化程度関連付部で格納されるテーブルの一例図
[図 13]実施形態 4に係る映像伝送装置の機能ブロック図
[図 14]符号ィ匕手段の択一的な選択について説明するための図
[図 15]実施形態 4に係る映像伝送装置の別の機能ブロック図
[図 16]実施形態 4に係る映像伝送装置の処理のフローチャート
符号の説明
[0015] 500 映像伝送装置
501 伝送用映像入力部
502 符号化部
503 出力部
504 最大遅延時間長入力部
505 制御部
発明を実施するための最良の形態 [0016] 以下、本発明を実施するための最良の形態について、実施形態として図を参照し ながら説明を行なう。なお、本発明は、これら実施形態に何ら限定されるものではなく 、その要旨を逸脱しない範囲において、種々なる態様で実施し得る。
[0017] (実施形態 1)
実施形態 1として、伝送用映像情報を連続して入力し、伝送用映像情報を符号ィ匕し て圧縮し、その結果を出力する映像伝送装置であって、符号ィ匕の開始から出力がさ れるまでに許容される時間長の最大値を入力し、その最大値に応じて符号ィ匕による 圧縮率を制御する映像伝送装置について説明を行なう。
[0018] 図 1は、遅延時間と画質との関係を例示する。横軸として、遅延時間が例えば、ミリ 秒を単位として用いられており、縦軸として、符号ィ匕を行なった映像を復号ィ匕した場 合の画質の劣化の程度が、例えば、符号化前の画像に対する割合として 100点を満 点とした単位として用いられている。一般的には、遅延時間を大きくすることにより、符 号化の処理に充分な時間をかけられるなどの理由により、画質の劣化は少なくなり、 画質は向上する。また、逆に遅延時間を小さくすると、充分な符号化が行なえず、画 質の劣化は大きくなり、画質は悪化する。
[0019] 図 2は、圧縮率と画質との関係を例示する。横軸として、圧縮率が用いられて!/、る。
ここで、圧縮率とは、符号化前の映像の情報の量に対して、符号化後の情報の量が どれだけになつたかを示す指標であり、例えば、符号化前の映像の情報量が 200メ ガバイトであり、符号ィ匕後の情報の量が 20メガバイトであれば、 10分の 1となる。この ように圧縮率の指標を定義すると、一般にいう「高い圧縮率」は、小さな値の指標とな り、直感に反する。そこでここでは、例えば、圧縮率の逆数を用いて横軸の目盛として いる。
[0020] MPEGなどの符号ィ匕においては、非可逆圧縮が用いられているために、一般的に は、圧縮率が高くなると、復号ィ匕した場合の画質の劣化の程度が大きくなり、画質は 低くなる。逆に、圧縮率が低いと、画質は向上することになる。
[0021] 図 3は、図 2に例示される圧縮率と画質との関係を用いて、図 1に例示される遅延時 間と画質との関係を、遅延時間と圧縮率との関係に書き直したものである。図 3に示 されるように、遅延時間が大きくなるにつれて、圧縮率は小さくなる。したがって、図 3 に示される関係を用いることにより、例えば、遅延時間を 100ミリ秒にしたときの圧縮 率を求めることができる。
[0022] 図 4は、実施形態 1に係る映像伝送装置の概念の一例を示す。伝送路 401から例 えば、 1. 5Gbpsのレートにて、伝送用映像情報が連続して伝送用映像入力部 403 に入力される。ここに、「伝送用映像情報」とは、伝送用の映像を示す情報である。例 えば、放送局から送信され、その放送局の電波塔まで中継されるべき映像であり、何 の操作も、特に何の圧縮もされていない映像を示す情報である。また、何らかの圧縮 力^れていてもよい。この場合には、映像伝送装置は、圧縮の方法を変換して伝送 するための装置として動作する。
[0023] 伝送用映像入力部 403に入力された伝送用映像情報は、符号ィ匕部 404にて符号 化して圧縮がされ、符号ィ匕映像情報とされる。符号化の手法としては、種々のものが あり、例えば、 Motion— JPEG (Joint Photographic Experts Group)ゝ JPEG2 000、 MPEG— 1、 MPEG— 2、 MPEG— 4、 MPEG— 4 AVC (H. 264ともいう)、 MPEG— 8などが例示できる。
[0024] 符号ィ匕部 404で符号ィ匕された符号ィ匕映像情報は、出力部 405により、伝送路 402 へ出力される。符号ィ匕部 404により圧縮が行なわれたので、符号化映像情報の情報 量は伝送用映像情報の情報量より小さくなつている。そのため、伝送路 402の最大 許容伝送率 (例えば、帯域などと呼ばれる場合がある)は、伝送路 401のそれより小さ くなり、 ί列えば、、 270Mbpsとなって! /、る。
[0025] 符号ィ匕部 404での圧縮率を制御するの力 制御部 406である。制御部 406は、遅 延時間 407を入力し、その遅延時間に応じて圧縮率 408を決定して符号ィ匕部 404を 制御する。
[0026] 遅延時間 407の入力方法には種々のものがある。例えば、図 3に例示される遅延 時間と圧縮率との関係を、グラフとしてビットマップディスプレイなどに表示しておき、 スライダーなどの GUI部品を用いて遅延時間を利用者に設定させる。そのように設定 された遅延時間を、制御部 406が取得するようになっていてもよい。また、ビットマツ プディスプレイを備えた装置では、ウェブブラウザが動作し、そのウェブブラウザにより GUI部品が表示されるようになって 、てもよ 、。 [0027] (実施形態 1 :構成)
図 5は、実施形態 1に係る映像伝送装置の機能ブロック図を例示する。映像伝送装 置 500は、伝送用映像入力部 501と、符号化部 502と、出力部 503と、最大遅延時 間長入力部 504と、制御部 505と、を有する。
[0028] 「伝送用映像入力部」 501は、伝送用映像情報を連続して入力する。「連続して」と は、入力が間欠的に行なわれることではないことをいい、あるいは、所定の入力のレ ートなどにおいて情報の入力の絶え間がないことをいう。例えば、伝送用映像情報が フレームを示すフレーム情報の列力も構成されて 、る場合には、フレーム情報が所 定のフレームレートにより所定時間間隔などで入力される。なお、伝送用映像には、 映像情報のみならず、音声情報や制御情報も含まれて 、てもよ ヽ。
[0029] 「符号化部」 502は、入力された伝送用映像情報を符号化して圧縮し、符号化映像 情報とする部である。ここで、「符号化」とは、伝送用映像情報に所定の処理を行ない 、圧縮処理、パケットィ匕処理などを行なうことをいう。「所定の処理」には、たとえば、 M PEGの場合には、 DCT (Discrete Cosine Transformation)変換の処理、量子 化の処理、動きベクトルの検出の処理、可変長符号ィ匕の処理などがある。「パケット」 とは、一定の決まりでまとめられたデータの集合をいう。ノ ケットには、エラー訂正符 号が含まれていてもよい。パケットとしては、一例として、 IP (Internet Protocol)パ ケット、 TCP (Transmission Control Protocol)ノヽケット、 UDP (User Datagra m Protocol)パケットなどを例示することができる。また、パケットの中には、 ATMセ ルゃこれに類似する構成のものも含まれ得る。なお、一般的なパケット長は 1500バ イト以下であり、例えば、この値よりも長いものは、送信前に分割され、受信側で組み 立て直される。
[0030] 「出力部」 503は、前記符号化情報を伝送するために出力する。「前記符号化情報 」とは、符号ィ匕部 502で伝送用映像情報を符号ィ匕して得られた符号ィ匕情報をいう。「 伝送のために出力する」とは、出力先の伝送路を用いて伝送を行なうことを 、う。
[0031] 出力部 503には、半導体メモリなどで構成されるバッファが存在してもよい。なぜな らば、符号ィ匕部 502で発生する符号ィ匕情報の量は時間的に変動し得るため、一時 的に、出力先の伝送路の最大許容伝送率を越える場合があり得るからである。そこで 、出力部 503は、半導体メモリにより、 FIFO (Fist In First Out)のキューなどに よりバッファを設ける。そして、符号ィ匕部 502で発生した符号ィ匕情報の時間あたりの 量が、出力の伝送路の最大許容伝送率を越える場合には、符号化情報の一部が一 時的にキューへバファリングされ、出力先の伝送路へは最大許容伝送率以内で出力 が行なわれるようにする。その後、符号ィ匕部 502で発生した符号ィ匕情報の時間あたり の量が、出力先の伝送路の最大許容伝送率を下回ったときには、ノファリングされて いる符号ィ匕情報を順次に出力して、キューにバファリングされている符号ィ匕情報の量 を減らす。なお、パケットを生成する処理を符号ィ匕部 502で行なうと説明したが、その 代わりに、出力部 503でパケットを生成する処理を行なってもよ 、。
[0032] 「最大遅延時間長入力部」 504は、最大遅延時間長を入力する部である。「最大遅 延時間長」は、伝送用映像情報の符号化の開始から、符号化映像情報が出力される までに許容される時間長の最大値である。ここでの「符号ィ匕映像情報」とは、伝送用 映像情報が符号ィ匕部 502により符号化されて得られる符号ィ匕映像情報を意味する。 例えば、伝送用映像情報がフレーム情報の列からなっている場合には、あるフレーム 情報の符号ィ匕が符号ィ匕部 502により開始され、そのフレーム情報に対応する符号ィ匕 映像情報が出力部 503から出力先の伝送路に出力されるまでの時間長の最大値で ある。
[0033] なお、「符号ィ匕の開始から」と書いたが、伝送用映像情報が伝送用映像入力部 501 に入力されて力も符号ィ匕部 502に到達し符号ィ匕が開始されるまでの時間は、ほぼ一 定と考えられる。そこで、伝送用映像情報が伝送用映像入力部 501に入力されてか ら、符号ィ匕映像情報が出力されるまでに許容される時間長の最大値を最大遅延時間 長と定義してもよい。
[0034] また、最大遅延時間長は、伝送用映像情報が映像伝送装置に入力された時、また は、符号化の開始の時から、符号ィ匕映像情報を受信した復号ィ匕装置により符号ィ匕映 像情報が復号化され出力されるまでの時間長であってもよい。
[0035] 図 6は、実施形態 1に係る映像伝送装置が、伝送路 601から伝送される伝送用映 像情報を符号ィ匕する符号ィ匕装置 602として動作して、伝送路 603へ符号ィ匕映像情 報を出力し、その符号ィ匕映像情報を復号ィ匕装置 604が受信して、復号化を行ない、 その結果を伝送路 605へ出力する状態を示す。多くの場合、符号化映像情報が伝 送路 603を伝わる時間は一定であり、復号ィ匕装置 604が符号ィ匕映像情報を復号ィ匕 して、伝送路 605に出力するまでの時間もほぼ一定である。そこで、伝送用映像情報 が映像伝送装置に入力された時、または、符号化の開始の時から、符号化映像情報 を受信した復号ィ匕装置により符号ィ匕映像情報が復号化され出力されるまでの時間長 から、伝送路 603による伝送時間長と、復号ィ匕装置 604による復号ィ匕の処理の時間 長及び伝送路 605へ復号ィ匕結果を出力するまでの時間長とを、差し引くことにより、 映像伝送装置での符号化から出力までの時間長を計算することができる。
[0036] もちろん、映像符号化装置での伝送用映像情報の圧縮によって、復号化装置での 復号ィ匕の時間長が変動する場合もあり得る。しかし、伝送用映像情報の圧縮を行なう のは、映像符号化装置であるので、復号化装置での復号化方式の処理などが判明 していれば (例えば、一人の当業者によって、符号化装置と復号化装置とを組み合 わせてシステムが構築されるなどの場合)、復号ィ匕装置での復号ィ匕の時間長は、映 像符号ィ匕装置の側で符号ィ匕時に予測することができる。したがって、最大遅延時間 長は、伝送用映像情報が映像伝送装置に入力された時、または、符号化の開始の 時から、符号ィ匕映像情報を受信した復号ィ匕装置により符号ィ匕映像情報が復号化さ れ出力されるまでの時間長であると定義してもよい。
[0037] 図 7は、伝送用映像情報の符号ィ匕の開始から、符号ィ匕映像情報が出力されるまで の時間長 (この時間長を「遅延時間長」ともいう。)が発生する理由の一つを説明する ための図である。以下では、符号化映像情報の情報量の発生の割合が、出力用の 伝送路の帯域を超えた場合に、バファリングが行なわれるので、遅延時間長が発生 することを説明する。すなわち、横軸は時間を示し、縦軸は、時間あたりに移動あるい は生成される情報量あるいは情報の伝送速度を示す。水平線 701は、伝送用映像 情報が伝送される伝送路の最大許容伝送率を示す。すなわち、伝送用映像情報の 伝送速度は、水平線 701を越えることはできない。また、水平線 702は、符号化映像 情報が出力される伝送路の最大許容伝送率を示す。すなわち、伝送される符号化映 像情報の伝送速度は、水平線 702を越えることができな 、。
[0038] 仮に、伝送用映像情報の時間当たりの伝送量が点線 703のように変化したとする。 このとき、伝送用映像情報が符号化されて得られる符号ィ匕映像情報の時間あたりに 発生する情報量が実線 704のように変化したとすると、実線 704が水平線 702を超え ることにより形成される部分 705に相当する符号ィ匕映像情報は直ちに出力部 503に より出力することはできない。このため、バファリングなどされることになる。バファリン グされた情報は、その後、符号ィ匕映像情報の量が水平線 702を下回ったときに出力 されることになる。このような処理が行なわれるために、遅延時間長が発生する。
[0039] 「制御部」 505は、入力された最大遅延時間長に応じて、符号化部による符号化の 圧縮率を制御する。例えば、最大遅延時間長力 圧縮率を算出する数式やプロダラ ムなどがあり、その数式やプログラムを用いて圧縮率を算出する。また、圧縮率を制 御するには、符号ィ匕部 502での符号ィ匕の各種パラメータを制御する。例えば、 DCT 変換で得られる空間周波数成分のうち、係数を 0とみなす高周波成分の範囲を制御 したり、量子化値を制御したりする。また、イントラ符号ィ匕を行なうか、あるいはインタ 一符号ィ匕を行なうかの選択を適宜行なうようになっていてもよい。例えば、圧縮率を 上げるために、 0とみなす周波数成分の範囲に、より低い周波数成分が含まれるよう にしたり、量子化値を大きくしたりするといつた具合である。また、圧縮率を直接算出 などする代わりに、符号ィ匕部 502での符号ィ匕のパラメータ値を算出し、間接的に圧縮 率を算出可能になるようにしてもょ 、。
[0040] (実施形態 1:処理の流れ)
図 8は、本実施形態に係る映像伝送装置の処理の流れを説明するためのフローチ ヤートを例示する。ステップ S801として、最大遅延時間長を入力する処理を行なう。 この処理は、最大遅延時間長入力部 504を動作させることにより行なわれる。ステツ プ S802として、最大遅延時間長に応じて圧縮率を求める処理を行なう。この処理は 、制御部 505を動作させることにより行なわれる。ステップ S803として、圧縮率に応じ て符号化パラメータ値を設定する処理を行なう。この処理は、制御部 505を動作させ 、符号化部 502を動作の対象とすることにより行なわれる。ステップ S804として、入力 された伝送用映像情報を符号ィ匕して出力することを行なう処理を行なう。この処理は 、伝送用映像入力部 501、符号化部 502、出力部 503を動作させることにより行なわ れる。 [0041] なお、図 8のフローチャートでは、最大遅延時間長が入力された後に、伝送用映像 情報の入力、符号化、そして符号ィ匕映像情報の出力が行なわれるようになつている。 しかし、このような動作に限定されるものではない。例えば、伝送用映像情報の入力、 符号化、そして符号ィ匕映像情報の出力の処理が行なわれている間に、この処理とは パラレルに最大遅延時間長が入力され、その最大遅延時間長に応じて圧縮率が制 御される処理が行なわれるようになって 、てもよ 、。
[0042] 図 8のフローチャートは、本実施形態に係る映像伝送装置を計算機で実現するた めのプログラムの処理のフローチャートとみなすことも可能である。そして、図 5の機能 ブロック図は、そのようなプログラムのモジュール構成図とみなすことも可能である。も ちろん、そのようなプログラムをフレキシブルディスクなどの媒体に記録することも可能 である。
[0043] (実施形態 1:主な効果)
本実施形態に係る映像伝送装置によれば、設定などされた遅延時間に応じて符号 化による圧縮率を制御することができる。
[0044] (実施形態 2)
実施形態 2として、最大遅延時間長に対して圧縮率を対応付け、その対応付けを 用いて符号ィ匕の制御を行なう映像伝送装置について説明する。
[0045] (実施形態 2 :構成)
図 9は、実施形態 2に係る映像伝送装置の機能ブロック図を例示する。映像伝送装 置 900は、伝送用映像入力部 901と、符号化部 902と、出力部 903と、最大遅延時 間長入力部 904と、制御部 905と、を有する。制御部 905は、時間長一圧縮率対応 付手段 906と、制御手段 907と、を有している。したがって、本実施形態に係る映像 伝送装置は、実施形態 1に係る映像伝送装置の制御部が、さらに時間長一圧縮率 対応付手段 906と、制御手段 907と、を有している構成となっている。
[0046] 「時間長一圧縮率対応付手段」 906は、最大遅延時間長入力部 904で入力され得 る最大遅延時間長に対して圧縮率を対応付ける手段である。例えば、図 3に例示し たグラフを表わす情報を記憶手段の中などに格納することにより、最大遅延時間長と 圧縮率とを対応付ける。また、グラフを表わす情報を記憶手段の中などに格納するか わりに、最大遅延時間長と圧縮率とを対応付けたテーブルを記憶手段の中などに格 納してもよい。テーブルが格納される場合には、最大遅延時間長入力部 904で入力 され得る全ての最大遅延時間長に圧縮率とを対応付けることは困難となるか不可能 となる。このような場合には、補間などの計算手段を用いて、最大遅延時間長に対す る圧縮率を求める。
[0047] また、時間長一圧縮率対応付手段 906は、最大遅延時間長と圧縮率とを直接対応 付けず、最大遅延時間長と、符号ィ匕のパラメータ値とを関連づけるものであってもよ い。この場合、符号ィ匕のパラメータ値により圧縮率が計算されることになるので、最大 遅延時間長と圧縮率とが対応付けられ得る。
[0048] 「制御手段」 907は、入力される最大遅延時間長に対応付けられる圧縮率で符号 化部 902に符号ィ匕を実行させる手段である。例えば、入力された最大遅延時間長に 、時間長一圧縮率対応付手段 906により対応付けられる圧縮率に基づいて、符号化 のパラメータ値を決定する。あるいは、時間長一圧縮率対応付手段 906が、最大遅 延時間長と、符号ィ匕のパラメータ値とを関連づけるものである場合には、入力される 最大遅延時間長に対応付けられる符号ィ匕のパラメータ値を用いて符号ィ匕部 902を 制御することになる。
[0049] なお、最大遅延時間長に対して時間長一圧縮率対応付手段で対応付けられる圧 縮率は、その最大遅延時間長での遅延の時間長で符号化を行な 、所定の最大許容 伝送率以下の伝送率で出力する際の圧縮率の最小値を下限とする値であることが望 ましい。すなわち、図 7に例示したように、水平線 702を超える部分 705が存在したと しても、この部分に相当する部分をバファリングなどして、水平線 702以下の伝送率 で符号ィ匕映像情報を出力する場合において、部分 705に相当する部分の符号ィ匕映 像情報を出力し終わるまでの時間が、最大遅延時間長以下となるような圧縮率の最 小値以上の圧縮率がその最大遅延時間長と対応付けられるようになって!/、てもよ!/、。 特に、最大遅延時間長に対して時間長一圧縮率対応付手段で対応付けられる圧縮 率を、その最大遅延時間長での遅延の時間長で符号ィ匕を行な 、所定の最大許容伝 送率以下の伝送率で出力する際の圧縮率の最小値と一致させることにより、少ない 画質の劣化で符号ィ匕映像情報を伝送することが可能となる。 [0050] (実施形態 2:主な効果)
本実施形態によれば、最大遅延時間長と圧縮率との対応付けを表わす数式が複 雑となる場合であっても、グラフやテーブルを用いることにより、最大遅延時間長から 圧縮率を取得する際の処理が複雑にならないようにすることができる。このことは、最 大遅延時間長が動的に変化する場合、その変化にリアルタイムに対応して圧縮率を 変更できることを意味する。また、そのようなグラフやテーブルを利用者に示すことに より、最大遅延時間長と圧縮率との対応関係を理解させたり予想させたりすることが でき、最大遅延時間長をどの程度に設定するべき力の選択が容易となるなどの効果 が生ずる。
[0051] (実施形態 3)
実施形態 3として、符号化による圧縮により生じる画質の劣化の程度を圧縮率と関 連付けて保持可能な映像伝送装置にっ 、て説明する。
[0052] (実施形態 3 :構成)
図 10は、実施形態 3に係る映像伝送装置の機能ブロック図を例示する。映像伝送 装置 1000は、伝送用映像入力部 1001と、符号化部 1002と、出力部 1003と、最大 遅延時間長入力部 1004と、制御部 1005と、圧縮率一劣化程度関連付部 1006とを 有する。また、制御部 1005は、時間長一圧縮率対応付手段と、制御手段とをさらに 有していてもよい。したがって、本実施形態に係る映像伝送装置は、実施形態 1また は 2に係る映像伝送装置が、さらに圧縮率一劣化程度関連付部 1006を有する構成 となっている。
[0053] 「圧縮率一劣化程度関連付部」 1006は、伝送用映像情報の符号ィ匕による圧縮で 生じる画質の劣化の程度を、圧縮率と関連付けて保持する手段である。圧縮率一劣 化程度関連付部 1006は、例えば、圧縮率と画質の劣化の程度とを対応付けたテー ブルやグラフを記憶手段に格納することで実現される手段である。
[0054] なお、画質とは、人が映像を見た場合の主観的判断で判定され得るものであっても よい。そのような場合には、画質に客観性を持たせるために、例えば、多数の当業者 にそれぞれの圧縮率で圧縮された映像を復号化して表示させた場合の画質の点数 の平均値などを算出して、その算出された平均値などを画質を示す指標としてもよい 。また、復号ィ匕時に発生するモスキートノイズなどのノイズの程度を機械的に判断し、 その判断の結果を、画質を示す指標としてもよい。
[0055] 図 11は、時間長一圧縮率対応付手段などで格納されるテーブルを例示し、図 12 は、圧縮率一劣化程度関連付部 1006で格納されるテーブルを例示している。映像 伝送装置 1000の操作者は、図 11と図 12とに例示された二つのテーブルを見たり、 あるいは、映像符号化装置などにより出力される圧縮率と図 12のテーブルを見たり することにより、遅延時間に応じた画質の劣化の程度を知ることができ、例えば、遅延 時間と画質の劣化の程度とのバランスを考えて、最大遅延時間長を設定することが できる。
[0056] (実施形態 3:主な効果)
本実施形態に係る映像伝送装置によれば、遅延時間と画質の劣化の程度とのバラ ンスを考えて、最大遅延時間長を設定することができるなどの効果を得ることができる
[0057] (実施形態 4)
実施形態 4として、複数の符号化手段を有し、そのような符号ィ匕手段の中から択一 的に符号ィ匕手段を選択することで圧縮率を制御する映像伝送装置について説明す る。
[0058] (実施形態 4 :構成)
図 13は、実施形態 4に係る映像伝送装置の機能ブロック図を例示する。映像伝送 装置 1300は、伝送用映像入力部 1301と、符号化部 1302と、出力部 1303と、最大 遅延時間長入力部 1304と、制御部 1305と、を有する。符号ィ匕部 1302は、符号ィ匕 手段 1306、符号ィ匕手段 1307など、複数の符号化手段を有する。これらの符号化手 段は、一般的には圧縮率が異なる符号ィ匕手段である。また、符号ィ匕部 1302は、符 号ィ匕手段選択手段 1308を有する。なお、制御部 1305は、時間長一圧縮率対応付 手段と制御手段とを有していてもよい。また、映像伝送装置 1300は、圧縮率一劣化 程度関連付部を有していてもよい。したがって、本実施形態に係る映像伝送装置は 、実施形態 1から 3のいずれか一に係る映像伝送装置において、符号化部が複数の 符号ィ匕手段を有し、さらに符号ィ匕手段選択手段を有する構成となっている。 [0059] 「符号化手段」は、伝送用映像情報を符号化する手段である。上述したように複数 の符号化手段の間では、圧縮率が異なっている。あるいは、符号ィ匕パラメータ値が異 なっていることにより、圧縮率が異なり得るようになつていてもよい。「複数の符号化手 段」と書いたが、実際に符号ィ匕手段に相当する回路やプログラムが実際に複数存在 する必要はなぐ複数の圧縮率や符号化パラメータ値などが一つの回路やプロダラ ムに入力されることで、複数の符号ィ匕手段が実現されるようになって 、てもよ 、 (例え ば、後に図 15を用いて説明される映像符号ィ匕装置を参照されたい。 )0
[0060] 「符号化手段選択手段」 1308は、前記制御に対して複数の符号ィ匕手段力 択一 的に符号ィ匕手段を選択する手段である。「前記制御」とは制御部 1305による圧縮率 の制御である。すなわち、符号ィ匕手段選択手段 1308は、圧縮率が制御部 1305から 指定されると、その圧縮率で伝送用映像情報を符号ィヒできる符号ィヒ手段を一つ選択 する手段である。あるいは、指定された圧縮率で符号ィ匕手段を動作させるように制御 を行なう手段であってもよい。ここに「択一的」とは、どれか一つということである力 各 一瞬毎に、どれか一つの符号ィ匕手段のみが動作するということに限らず、出力部に 符号ィ匕映像情報を渡す符号ィ匕手段が一つだけになることを意味していてもよい。
[0061] 図 14は、出力部に符号化映像情報を渡す符号化手段が一つだけになる符号化手 段の選択について説明する図である。例えば、実線 1401が第一の符号ィ匕手段で符 号ィ匕を行なったときの符号ィ匕映像情報の量の時間変化を示し、実線 1402が第二の 符号化手段で符号化を行なったときの符号化映像情報の量の時間変化を示すとす る。この場合、出力部 1303が符号ィ匕映像情報を出力する伝送路の伝送率が、点線 で示されるものである場合には、最初は、圧縮率の低い第一の符号化手段が、符号 化した符号ィ匕映像情報を出力部 1303に渡して 、るが、実線 1401が最初に点線を 超えそうになった時には、矢印 1403により示されているように、圧縮率の大きい第二 の符号化手段が、符号ィ匕した符号ィ匕映像情報を出力部 1303に渡すように、符号ィ匕 手段選択手段 1308が択一的な選択を切り替える。その後、第一の符号化手段によ る符号化の時間あたりの量が、点線を下回ることになると、矢印 1404に示すように、 第二の符号化手段から第一の符号化手段へ符号化手段選択手段 1308が択一的な 選択を切り替え、第一の符号化手段が、符号ィ匕した符号ィ匕映像情報を出力部 1303 に渡す。以下、矢印 1405、 1406についても同様に択一的な選択の切り替えが行な われる。
[0062] (実施形態 4:より具体的なハードウェア構成など)
図 15は、実施形態 4に係る映像伝送装置のハードウェア構成をより具体的に示す 機能ブロック図を例示する。映像伝送装置は、伝送用映像入力部 1501と、符号ィ匕 部 1502と、出力部に相当するポストメモリ 1503と、最大遅延時間長入力部 1504と、 制御部 1505とから構成されて 、る。
[0063] 伝送用映像入力部 1501は、プレメモリ 1506と、セレクタ 1507とを備えている。符 号ィ匕咅 1502は、 DCT回路 1508と、量子ィ匕回路 1509と、ノヽフマン符号ィ匕回路 151 0とを備えている。制御部 1505は、符号ィ匕テーブル 1511と、予測エンコーダ 1512と 、 TBL1513と、 TBL1514と、セレクタ 1515と、符号ィ匕手段選択手段 1516とを備え ている。 TBL1513と TBL1514とはそれぞれテーブルであり、予測エンコーダ 1512 による符号ィ匕による圧縮率と、 DCT回路 1508の出力結果と、から、最大遅延時間長 入力部 1504に入力された最大遅延時間長を補正するためなどに使用される。
[0064] 以下に、このように構成されて 、る映像伝送装置のハードウェアの動作にっ 、て具 体的な数値等を用いて説明する。最大遅延時間長入力部 1504は、 LAN (Local Area Network)などを介して、利用者が端末など力 入力した最大遅延時間長とし て、例えば 15ミリ秒を取得する。もちろん、端末などは映像伝送装置に直接接続され ていてもよい。符号ィ匕テーブル 1511は、例えば、図 11に例示したものを使用すると 仮定すると、制御部は、 15ミリ秒に対する圧縮率としては、符号ィ匕テーブル 1511を 参照して、例えば、 0. 15を取得する。また、セレクタ 1507は、一番上の入力を選択 し、セレクタ 1515は、一番下の入力を選択しているとする。伝送用映像入力部 1501 は、例えば、 HD— SD1信号(1. 5Gbps)の伝送用映像情報を取得し、セレクタ 150 7の一番上の入力を経由して、符号ィ匕部 1502に出力を行なう。符号化部 1502の量 子化回路 1509は、 DCT回路による処理結果に対して、符号ィ匕テーブルからの出力 である 0. 15に基づいて、量子化を施し、ハフマン符号ィ匕回路 1510に出力する。ノヽ フマン符号ィ匕回路 1510は、符号ィ匕を行ない、圧縮された符号ィ匕映像情報をポストメ モリ 1503へ出力する。ポストメモリ 1503は、符号ィ匕映像情報をバファリングして、例 えば、 SD— SDI信号(270Mbps)として伝送路へ出力する。
[0065] 次に、最大遅延時間長入力部が 5ミリ秒を取得したとすると、制御部は、符号化テ 一ブル 1511を参照して、圧縮率として 0. 1を取得する。圧縮率が変更されたので、 セレクタ 1507、セレクタ 1515は、符号ィ匕手段選択手段 1516による制御により、それ ぞれ、真中の入力を選択する。プレメモリ 1506は、入力された伝送用映像情報を例 えば、 1フレーム分遅延させて、セレクタ 1507の真中を経由して、符号化部 1502へ 出力を行なう。また同時に、伝送用映像入力部 1501に入力された伝送用映像情報 は遅延無しで予測エンコーダ 1512にも出力される。予測エンコーダ 1512は、圧縮 率を予測するために使用される。
[0066] DCT回路 1508は、入力された伝送用映像情報を DCT変換して量子化回路 150 9に出力する。量子化回路 1509は、圧縮率 0. 1に基づいて量子化を行ない、ハフ マン符号ィ匕回路 1510に出力し、ハフマン符号ィ匕回路 1510は、符号化して得られる 符号ィ匕映像情報をポストメモリ 1503へ出力し、 SD— SDI信号として出力が行なわれ る。
[0067] 図 16は、図 15に例示されたノ、一ドウエア構成力もなる映像伝送装置の処理の流れ を説明するフローチャートである。ステップ S1601として、最大遅延時間長を取得す る処理を行なう。ステップ S 1602として、最大遅延時間長に応じて圧縮率を取得する 処理を行なう。ステップ S1603として、圧縮率に応じて、択一的に符号ィ匕手段を選択 する処理を行なう。ステップ S 1604として、伝送用映像情報を入力する処理を行なう 。ステップ S1605として、符号化を行なう処理を行なう。ステップ S1606として、符号 化映像情報を出力する。ステップ S 1607として、符号化等の処理を終了するべきか どうかを判断し、もしそうであれば、処理全体を終了し、そうでなければ、ステップ S 16 04へ戻る。
[0068] (実施形態 4:主な効果)
本実施形態に係る映像伝送装置によれば、遅延時間を取得し、取得した遅延時間 に応じた圧縮率の符号化手段が選択されるので、所定の伝送率を超えな!/ヽように符 号ィ匕映像情報を伝送することが可能となる。

Claims

請求の範囲
[1] 伝送用映像を表わす伝送用映像情報を連続して入力する伝送用映像入力部と、 入力された伝送用映像情報を符号化して圧縮し、符号化映像情報とする符号ィ匕部 と、
前記符号化映像情報を伝送するために出力する出力部と、
伝送用映像情報の符号化の開始から、符号ィヒ映像情報が出力されるまでに許容さ れる時間長の最大値である最大遅延時間長を入力する最大遅延時間長入力部と、 入力された最大遅延時間長に応じて符号化部による符号化の圧縮率を制御する 制御部と、
を有する映像伝送装置。
[2] 制御部は、
最大遅延時間長入力部で入力され得る最大遅延時間長に対して圧縮率を対応付 ける時間長一圧縮率対応付手段と、
入力される最大遅延時間長に対応付けられる圧縮率で符号化部に符号化を実行 させる制御手段と、
を有する請求項 1に記載の映像伝送装置。
[3] 最大遅延過時間長に対して時間長一圧縮率対応付手段で対応付けられる圧縮率 は、その最大遅延時間長での遅延の時間長で符号化を行な 、所定の最大許容伝送 率以下の伝送率で出力する際の圧縮率の最小値を下限とする値である請求項 2に 記載の映像伝送装置。
[4] 伝送用映像情報の符号化による圧縮で生じる画質の劣化の程度を、圧縮率と関連 付けて保持する圧縮率一劣化程度関連付部を有する請求項 1から 3のいずれか一 に記載の映像伝送装置。
[5] 前記符号化部は、
圧縮率が異なる複数の符号化手段と、
前記制御に際して前記複数の符号ィヒ手段力 択一的に符号ィヒ手段を選択する符 号化手段選択手段と
を有する請求項 1から 3のいずれか一に記載の映像伝送装置。 映像伝送装置の動作方法であって、
伝送用映像を表わす伝送用映像情報を連続して入力する伝送用映像入カステツ プと、
入力された伝送用映像情報を符号化して圧縮し、符号化映像情報とする符号化ス テツプと、
前記符号ィヒ映像情報を伝送するために出力する出力ステップと、
伝送用映像情報の符号化の開始から、符号ィヒ映像情報が出力されるまでに許容さ れる時間長の最大値である最大遅延時間長を入力する最大遅延時間長入カステツ プと、
入力された最大遅延時間長に応じて符号化ステップによる符号化の圧縮率を制御 する制御ステップと、
を含む映像伝送装置の動作方法。
PCT/JP2006/308831 2006-04-27 2006-04-27 映像伝送装置 WO2007125574A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/308831 WO2007125574A1 (ja) 2006-04-27 2006-04-27 映像伝送装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/308831 WO2007125574A1 (ja) 2006-04-27 2006-04-27 映像伝送装置

Publications (1)

Publication Number Publication Date
WO2007125574A1 true WO2007125574A1 (ja) 2007-11-08

Family

ID=38655121

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/308831 WO2007125574A1 (ja) 2006-04-27 2006-04-27 映像伝送装置

Country Status (1)

Country Link
WO (1) WO2007125574A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010140765A2 (ko) 2009-06-05 2010-12-09 주식회사 종근당 로수바스타틴의 신규한 제조방법, 이 제조에 유용한 중간체 화합물 및 그의 제조방법
WO2012081299A1 (ja) * 2010-12-16 2012-06-21 株式会社メガチップス 画像処理システム、画像処理システムの動作方法、ホスト装置、プログラム、およびプログラムの作成方法
JP7476257B2 (ja) 2022-06-03 2024-04-30 ソフトバンク株式会社 サーバおよび車両

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01243790A (ja) * 1988-03-25 1989-09-28 Hitachi Ltd 動き補償フレーム間予測符号化装置
JPH07107482A (ja) * 1993-09-30 1995-04-21 Matsushita Electric Ind Co Ltd 符号化制御方式
JPH09130787A (ja) * 1995-10-27 1997-05-16 Toshiba Corp 動画像符号化装置
JP2001157210A (ja) * 1999-09-13 2001-06-08 Matsushita Electric Ind Co Ltd 符号化装置及び符号化方法
JP2005168021A (ja) * 2003-12-01 2005-06-23 Samsung Electronics Co Ltd スケーラブルビデオコーディング及びデコーディング方法と装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01243790A (ja) * 1988-03-25 1989-09-28 Hitachi Ltd 動き補償フレーム間予測符号化装置
JPH07107482A (ja) * 1993-09-30 1995-04-21 Matsushita Electric Ind Co Ltd 符号化制御方式
JPH09130787A (ja) * 1995-10-27 1997-05-16 Toshiba Corp 動画像符号化装置
JP2001157210A (ja) * 1999-09-13 2001-06-08 Matsushita Electric Ind Co Ltd 符号化装置及び符号化方法
JP2005168021A (ja) * 2003-12-01 2005-06-23 Samsung Electronics Co Ltd スケーラブルビデオコーディング及びデコーディング方法と装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010140765A2 (ko) 2009-06-05 2010-12-09 주식회사 종근당 로수바스타틴의 신규한 제조방법, 이 제조에 유용한 중간체 화합물 및 그의 제조방법
WO2012081299A1 (ja) * 2010-12-16 2012-06-21 株式会社メガチップス 画像処理システム、画像処理システムの動作方法、ホスト装置、プログラム、およびプログラムの作成方法
JP2012129847A (ja) * 2010-12-16 2012-07-05 Mega Chips Corp 画像処理システム、画像処理システムの動作方法、ホスト装置、プログラム、およびプログラムの作成方法
CN103202030A (zh) * 2010-12-16 2013-07-10 株式会社巨晶片 图像处理系统、图像处理系统的工作方法、主机装置、程序、以及程序的制作方法
US9406104B2 (en) 2010-12-16 2016-08-02 Megachips Corporation Image processing system, method of operating image processing system, host apparatus, program, and method of making program
CN103202030B (zh) * 2010-12-16 2017-02-22 株式会社巨晶片 图像处理系统、图像处理系统的工作方法、主机装置
JP7476257B2 (ja) 2022-06-03 2024-04-30 ソフトバンク株式会社 サーバおよび車両

Similar Documents

Publication Publication Date Title
US8711929B2 (en) Network-based dynamic encoding
EP1615447B1 (en) Method and system for delivery of coded information streams, related network and computer program product therefor
US7876821B2 (en) Method and an apparatus for controlling the rate of a video sequence; a video encoding device
US7801969B2 (en) Apparatus and method for compression-transmitting and decoding picture information and storage medium stored its control programs
US7809065B2 (en) Picture encoding system conversion device and encoding rate conversion device
EP1638333A1 (en) Rate adaptive video coding
US20080259796A1 (en) Method and apparatus for network-adaptive video coding
JP3668110B2 (ja) 画像伝送システムおよび画像伝送方法
US20050089092A1 (en) Moving picture encoding apparatus
KR100601615B1 (ko) 네트워크 대역폭에 적응적인 영상 압축 장치
US7792374B2 (en) Image processing apparatus and method with pseudo-coded reference data
JP4042597B2 (ja) 画像符号化装置及び方法、プログラム、記録媒体
US7428339B2 (en) Pseudo-frames for MPEG-2 encoding
WO2007125574A1 (ja) 映像伝送装置
JP4321454B2 (ja) 動画像伝送システム、動画像符号化装置、動画像復号化装置、動画像伝送プログラム及び動画像伝送方法
WO2003092302A1 (en) Moving image transferring system, moving image encoding apparatus, moving image decoding apparatus, and moving image transferring program
US20090290636A1 (en) Video encoding apparatuses and methods with decoupled data dependency
WO2005025225A1 (ja) 動画像データ変換方法および装置ならびにプログラム
JP2009246489A (ja) 映像信号切替装置
JP4089753B2 (ja) 画像圧縮符号化装置及び方法、プログラム、並びに記録媒体
KR101072626B1 (ko) 비트율 제어 방법과 장치 및 이를 이용한 분산 비디오 코딩 방법과 장치
JP2004147104A (ja) 動画像符号化装置
Chattopadhyay et al. Adaptive rate control for H. 264 based video conferencing over a low bandwidth wired and wireless channel
KR100950764B1 (ko) 적응적 움직임 벡터 선택 알고리즘을 이용한 비디오 화면축소 변환 부호장치 및 방법
JP2006345166A (ja) 画像圧縮処理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06745759

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06745759

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP