WO2007124682A1 - Procédé et dispositif de gestion de porteuse de service à débit binaire garanti dans un réseau évolutif - Google Patents

Procédé et dispositif de gestion de porteuse de service à débit binaire garanti dans un réseau évolutif Download PDF

Info

Publication number
WO2007124682A1
WO2007124682A1 PCT/CN2007/001328 CN2007001328W WO2007124682A1 WO 2007124682 A1 WO2007124682 A1 WO 2007124682A1 CN 2007001328 W CN2007001328 W CN 2007001328W WO 2007124682 A1 WO2007124682 A1 WO 2007124682A1
Authority
WO
WIPO (PCT)
Prior art keywords
service
bearer
evolved
bit rate
information
Prior art date
Application number
PCT/CN2007/001328
Other languages
English (en)
French (fr)
Inventor
Zongjie Wang
Yongfeng Deng
Xudong Yang
Chengyu Yu
Original Assignee
Huawei Technologies Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co., Ltd. filed Critical Huawei Technologies Co., Ltd.
Priority to EP07720901A priority Critical patent/EP2015524A4/en
Publication of WO2007124682A1 publication Critical patent/WO2007124682A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters

Definitions

  • the present invention relates to a mobile communication evolution network, and more particularly to a method and apparatus for processing a guaranteed bit rate service in an evolved network.
  • the Universal Mobile Telecommunications System is a third-generation mobile communication system (3G) that uses Wideband Code Division Multiple Access (WCDMA) air interface technology. It is also commonly referred to as UMTS. WCDMA communication system.
  • 3G Third-generation mobile communication system
  • WCDMA Wideband Code Division Multiple Access
  • UMTS adopts a structure similar to that of the second generation mobile communication system (2G), including the Radio Access Network (RAN) and the Core Network (CN).
  • the RAN is used to handle all wireless related functions, and the CN handles all voice calls and data connections in the UMTS and implements switching and routing functions with the external network.
  • the CN is logically divided into Circuit Switched (CS) and Packet Switched (PS).
  • CS Circuit Switched
  • PS Packet Switched
  • the RAN and CN together with the User Equipment (UE) constitute the entire UMTS.
  • FIG. 1 shows the network structure diagram of the UTRAN.
  • the UTRAN contains one or more Radio Network Subsystems (RNS) 22.
  • An R S 22 is composed of a Radio Network Controller (RNC) 24 and one or more base stations NodeB 26.
  • the interface between the RNC 24 and the CN 30 is the Iu interface, and the NodeB 26 and the RNC 24 are connected via the lub interface.
  • the RNCs 24 are interconnected via the Iur interface, which can be connected via a direct physical connection or transport network between the RNCs 24.
  • the RNC 24 is used to allocate and control the radio resources of the NodeB 26 to which it is connected or associated.
  • NodeB 26 completes the data stream conversion between the lub interface and the Iu interface, and also participates in some radio resource management.
  • the NodeB 26 is a base station for a WCDMA system, including a wireless transceiver and baseband processing components. Interconnecting with the RC 24 through a standard lub interface, mainly processing the physical layer protocol of the Iu interface. It The main functions are spread spectrum, modulation, channel coding, despreading, demodulation, channel decoding, and the conversion of baseband signals and RF signals.
  • the RNC 24 is used to control the radio resources of the UTRAN, and mainly performs functions such as connection establishment and disconnection, handover, macro diversity, and radio resource management control.
  • the above network termination architecture is based on the previous version of the 3GPP (3rd Generation Partnership Project) R6.
  • 3GPP 3rd Generation Partnership Project
  • 3GPP is researching a new evolutionary network architecture, hoping to provide a low latency, high data rate, high system capacity and coverage, and low cost.
  • a fully IP-based network to meet the needs of mobile network applications over the next decade or more.
  • the evolved network architecture is a completely new network architecture, all the nodes, functions and processes of the existing architecture will undergo substantial changes.
  • 3GPP provides a wireless LTE evolution network (Long Term Evolution, long term evolution;
  • the architecture of the access network part is evolved from a two-node structure of a NodeB and an RNC of a 3G network to a single-node architecture of only one node eNB.
  • the eNB is an evolved base station NodeB with the functionality of most of the previous Radio Network Controllers (RNCs).
  • the Access Gateway (AGW) has most of the functions or functional combinations of the previous core network nodes, such as the SGSN (Service GPRS Supporting Node) or the GGSN (Gateway GPRS Support Node).
  • the Outer ARQ (Outer Automatic-Repeat Request) function is mainly placed at the eNB.
  • the Quality of Service (QoS) architecture in the evolved network can implement end-to-end services from the UE to the peer entity.
  • the end-to-end service consists of two parts, including the System Architeure Evolution (SAE) bearer service from the UE to the evolved core network, and the external bearer service from the evolved core network to the peer entity.
  • SAE bearer service implements service establishment/data transmission from the UE to the core network, and includes a SAE radio bearer service corresponding to the air interface radio bearer from the UE to the eNB and a SAE transport bearer service corresponding to the slave eNB to the evolved core network AGW.
  • FIG 4 shows a schematic diagram of the SAE bearer service architecture.
  • the SAE bearer is associated with the QoS type, and one SAE bearer can be mapped to the SAE radio bearer and the SAE transport bearer.
  • the uplink service data stream accesses the uplink packet filters ULPF U1 and U2 of the UE from the application/service layer.
  • Service data flow is packet flow Aggregate, several packet streams form a service data stream.
  • the packet filter is filtered based on the data packet, and the packet flows of the same QoS type in the service data flow are aggregated together, and the uplink service of the service data flow is bound to the SAE bearer, and the RB-ID is identified by the packet filter and the radio bearer.
  • the downlink service data stream is accessed from the application/service layer to the downlink packet filters DLPF D1 and D2 of the core network.
  • the downlink packet filters DLPF D1 and D2 aggregate the packet flows of the same QoS type in the downlink service data flow, and establish a mapping relationship between the packet filter and the transport bearer identity AB-ID, according to the QoS type of the packet flow. Stripped into two SAE transport bearers and establishes a communication link with the eNB.
  • the eNB establishes a mapping between the RB-ID and the AB-ID to implement data exchange between the radio bearer and the transport bearer.
  • FIG. 5 is a flowchart showing a SAE bearer establishment in the prior art.
  • the evolved core network negotiates with the UE to establish a default IP bearer, that is, a SAE bearer with a non-guaranteed bit rate (Non Guantee Bit Rate, Non-GBR), and the AB-ID of the SAE bearer is A8.
  • the upper layer network sends a resource request to the evolved core network, where the request includes the service quality information, the uplink binding type Ul, and the downlink binding type D1.
  • the evolved core network maps the received quality of service information to information such as QCI (Quality Classification Indicator) Q5.
  • the QCI is actually an index to a list of parameters stored inside the upper network.
  • the resource request carries the index, and transparently transmits the index to the eNB, so that the eNB can determine the current parameter to establish a radio bearer according to the parameter list pointed by the index.
  • the uplink binding type and the downlink binding type correspond to different packet filters, and different binding types can be selected to determine different packet filters to filter the corresponding packet flows from the data stream.
  • the evolved core network sends a request to the eNB to establish a radio bearer, the request including QCI Q5 and AB-ID A8.
  • the eNB determines the RB-ID R3 according to the QCI call related parameters, and establishes a mapping relationship between the AB-ID and the RB-ID.
  • step 54 the eNB establishes a radio bearer with the UE according to the RB-ID R3, and after performing the bearer setup, step 55 is performed, and the acknowledgment information is returned to the core network, where the acknowledgment information carries the RB-ID of the established radio bearer.
  • the UE, the eNB, and the evolved core network respectively confirm respective parameters, and the UE uses the radio bearer RB-ID R3, and the eNB establishes a mapping relationship between the RB-ID R3 and the QCI Q5 and the AB-ID A8, and the evolved core network sets the RB-ID R3 and the QCI Q5. And AB-ID A8 establishes a mapping relationship.
  • the evolved core network sends an SAE bearer request to the UE through a non-access stratum (NAS), and the request establishes a mapping between the uplink binding type U1 and the RB-ID R3. Department.
  • the UE feeds back the confirmation information to the evolved core network through the NAS.
  • the UE successfully establishes a mapping relationship between the uplink binding type and the RB-ID R3, and the evolved core network establishes a mapping relationship between the downlink binding type and the QCI Q5 and the AB-ID A8.
  • FIG. 6 is a flowchart showing a modification of a SAE bearer in a Non-GBR service in the prior art.
  • the upper layer sends a command to update the resource to the core network.
  • the command includes the QoS parameter and the uplink binding type U2 and the downlink binding type D2.
  • the evolved core network maps the received service quality information to information such as QCI.
  • the QCI is the same as the QCI of the original service, but the uplink and downlink binding types change, that is, the new packet filter is used to operate the service data stream.
  • step 62 the core network changes the SAE bearer by using the NAS command, and the uplink binding type U2 is required to establish a mapping relationship with the previously established radio bearer RB-ID R3.
  • step 63 the UE feeds back the confirmation information.
  • the uplink binding type U2 establishes a mapping relationship with the RB-ID R3, and the downlink binding type D2 establishes a mapping relationship with the QCI Q5 and the AB-ID A8.
  • the prior art can be used for the establishment and modification of the SAE bearer of the Non-GBR service
  • the services in the actual application are more than the Non-GBR service, and more are GBR services such as voice communication and video communication.
  • the SAE bearer setup process in the prior art cannot be used for the SAE bearer of the GBR service.
  • Embodiments of the present invention provide a method for establishing/modifying GBR service bearers, which makes up for the deficiencies of the prior art.
  • the evolved core network sends a service bearer establishment/modification request to the evolved access network, where the request carries the service bit rate parameter information;
  • the evolved access network determines the radio resource with the user equipment according to the service bit rate parameter information, and establishes/modifies the service bearer that has a mapping relationship with the radio resource.
  • the embodiment of the invention provides a processing device for guaranteeing a bit rate service bearer in an evolved network, which includes:
  • a service bearer requesting unit configured to send a service bearer establishment/modification request to the evolved access network, where the service bearer establishment/modification request includes service bit rate parameter information;
  • the service bearer response unit is configured to receive the response of the evolved access network to the service bearer establishment/modification request
  • the response includes a radio resource determined according to the service bit rate parameter information, and a bearer setup/modification unit, configured to establish a service bearer that has a mapping relationship with the radio resource.
  • the embodiment of the invention further provides a processing device for guaranteeing a bit rate service bearer in an evolved network, which includes:
  • a service bearer request receiving unit configured to receive a service bearer establishment/modification request of the evolved core network, where the request includes service bit rate parameter information;
  • a resource allocation unit configured to: determine, according to the service bit rate parameter information, a radio resource, and send the radio resource to the evolved core network in response to the service bearer setup/modification request;
  • a service bearer unit configured to establish/modify a service bearer that has a mapping relationship with the radio resource.
  • the service bit rate parameter information is added in the service establishment/modification request, and the bit rate parameter is referenced when the service bearer is established/modified, and the bearer establishment of the GBR service such as voice communication and video communication in the evolved network is realized. /modify.
  • FIG. 1 is a structural diagram of a UMTS terrestrial wireless access network in the prior art
  • FIG. 2 is a schematic diagram of a two-layer node architecture of an evolved network in the prior art
  • FIG. 3 is a diagram of a QoS architecture in an evolved network in the prior art
  • FIG. 4 is a schematic diagram of a SAE bearer service architecture in the prior art
  • FIG. 5 is a flowchart showing the establishment of a SAE bearer in the prior art
  • FIG. 6 is a flow chart showing a modification of a SAE bearer in the prior art
  • FIG. 7 is a flowchart showing a GBR service bearer establishment in the embodiment of the present invention.
  • FIG. 8 is a flowchart showing a method for establishing/modifying a service for simplifying signaling when there is no QoS parameter negotiation according to an embodiment of the present invention
  • FIG. 9 is a flowchart showing a modification of an existing QoS class in an embodiment of the present invention.
  • FIG. 10 is a structural diagram of Embodiment 1 of a GBR service bearer setup/modification system according to the present invention
  • FIG. 11 is a structural diagram of Embodiment 2 of a GBR service bearer setup/modification system according to the present invention.
  • the method for establishing and modifying the bearer of the evolved network GBR service includes establishing/ The service bit rate parameter information is added to the request for modifying the service, and the AGW requests the radio resource from the eNB, and carries the service bit rate parameter information in the radio resource request.
  • the eNB instructs the UE to configure/modify the service bearer; the eNB responds to the service bearer configuration/modification request and feeds back the acknowledgement information to the evolved core network.
  • the evolved core network sends a request to the UE to establish/modify the SAE bearer through the NAS command, and the UE responds to the request and feeds back the acknowledgement information through the NAS command.
  • FIG. 7 is a flowchart of a GBR service setup/modification bearer in an evolved network according to an embodiment of the present invention.
  • the evolved core network AGW receives the QoS request established by the service bearer, and the request carries the QoS parameter and the uplink and downlink binding type.
  • the AGW may map the QoS parameters to parameters such as QCI, A P classification retention priority, MBR, and GBR, or a candidate list of MBR and GBR.
  • the QCI in the embodiment of the present invention is a category indication of the QoS; the ARP classification retention priority is used as an indication parameter of the service priority, and the system can perform different operations on the services of different priorities and preferentially process the high priority service; The maximum possible bit rate; GBR establishes the minimum bit rate required for this service.
  • the uplink and downlink binding types correspond to the uplink and downlink packet filters of the UE and the core network.
  • the AGW sends a service bearer setup request to the eNB, and transparently transmits parameters such as QCI, ARP classification retention priority, MBR, and GBR in the service bearer setup request.
  • the eNB and the AGW negotiate the parameters, and after negotiating and determining the parameters that can be implemented by the new current channel resource, go to step 73; if the current channel If the resource can implement the parameters required in the service bearer setup request, go to step 73.
  • the eNB instructs the UE to configure the radio bearer according to the parameter determined in step 72, and determines the RB-ID used by the radio bearer.
  • the eNB responds to the radio bearer setup request to the AGW, and returns parameters such as MBR and GBR used in configuring the radio bearer, and the RB-ID to the core network.
  • step 75 the evolved core network sends an SAE bearer setup request to the UE by using the NAS command, and the request carries the currently used MBR and GBR parameters, the RB-ID, and the uplink binding type, and maps the uplink packet filter and the RB-ID. relationship.
  • step 76 the UE feeds back the confirmation information that the SAE bearer is successfully established through the NAS command.
  • the evolved core network AGW receives the service modified QoS request.
  • the request also carries the QoS parameter and the uplink and downlink binding type corresponding to the new packet filter, and the AGW can use the QoS.
  • the parameters are mapped to the established QCI (QoS Class Indicator), ARP Class Reservation Priority, MBR and GBR parameters, or a candidate list of MBR and GBR.
  • the AGW sends a service bearer modification request to the eNB, and transparently transmits parameters such as QCI, ARP classification retention priority, MBR, and GBR in the service bearer modification request.
  • the eNB and the AGW negotiate the parameters, and after negotiating and determining the parameters that can be implemented by the new current channel resource, go to step 73; if the current channel If the resource can implement the parameters required in the service bearer modification request, go to step 73 directly.
  • the eNB instructs the UE to modify the radio bearer according to the parameter determined in step 72, and determines the RB-ID used by the modified radio bearer.
  • the eNB responds to the service bearer modification request to the AGW, and returns parameters such as MBR and GBR and RB-ID used when configuring the radio bearer to the core network.
  • the evolved core network sends an SAE bearer modification request to the UE by using the NAS command, where the request carries the currently used MBR and GBR parameters, the RB-ID, and the uplink binding type corresponding to the new uplink packet filter, and the new The uplink packet filter establishes a mapping relationship with the RB-ID.
  • the UE returns an acknowledgement message that the SAE bearer 4 tampering succeeds to the evolved core network.
  • FIG. 8 is a flowchart showing a service establishment/modification method for simplifying signaling when there is no QoS parameter negotiation, and the process is used in a network in which the eNB does not have parameter negotiation capability.
  • the evolved core network receives the QoS request for establishing/modifying the service bearer, and the request carries the QoS parameter and the uplink and downlink binding types.
  • the evolved core network maps the QoS parameters to parameters such as QCI, ARP classification retention priority, MBR, and GBR.
  • the evolved core network indicates parameters such as QCI, MBR, and GBR, requests the access network to establish a radio bearer, or modifies the relevant bearer parameters.
  • the evolved core network sends the access layer signaling to the eNB with the NAS layer configuration parameter.
  • the NAS layer configuration parameter includes an uplink binding type.
  • the eNB indicates that the UE radio bearer parameter and the NAS layer configuration parameter establish a bearer, and the eNB and the RB-ID establish a mapping relationship; or the eNB and the UE modify the current radio bearer, according to the uplink binding type in the NAS layer information, the new bearer
  • the upstream filter establishes a mapping relationship with the RB-ID.
  • the eNB sends the service bearer setup/modification acknowledgement information to the evolved core network.
  • the evolved core network receives a request to modify the QoS class, and determines a QCI (QoS Class Indicator Parameter) according to the request, where the QCI indicates to the evolved core network that the QoS class is required to be modified.
  • the evolved core network indicates The QCI parameter requests the bearer from the eNB.
  • the eNB negotiates the parameter with the evolved core network, and updates the QoS class indication parameter according to the negotiation result.
  • the eNB instructs the UE to modify the radio bearer, and after the configuration modification is completed, step 94 is performed to feed back the modification confirmation information to the evolved core network, including the new QoS class parameter. It can be completed by a program to instruct related hardware, and the program can be stored in a computer.
  • the storage medium may be a read only memory, a random access memory, a magnetic disk, an optical disk, or the like.
  • the GBR service bearer is established.
  • the first embodiment of the system can have the structure shown in FIG.
  • the access gateway 100 includes a service bearer requesting unit 120, a service bearer response unit 130, and a bearer setup tampering unit 140, and may further include an upper layer service requesting unit 110.
  • the evolved base station 200 includes a service bearer request receiving unit 210.
  • the resource allocation unit 220 and the service carrying unit 230; the system further includes a user equipment 300.
  • the upper layer service requesting unit 110 of the access gateway 100 receives the service establishment/modification QoS request from the upper layer application, where the request carries the QoS parameter and the uplink and downlink binding type information; the upper layer service requesting unit 110 maps the QoS parameter to the service bit. Rate parameters and other parameters.
  • the service bearer requesting unit 120 sends a service bearer setup/modification request to the service bearer request receiving unit 210 of the evolved base station 200, where the service bearer setup/modification request includes service bitrate parameter information.
  • the service bearer request receiving unit 210 of the evolved base station 200 outputs information such as a bit rate parameter to the resource allocation unit 220.
  • the resource allocating unit 220 determines the radio resource according to the service bit rate parameter information and the user equipment 300, and determines the determined radio resource in the service.
  • the resource allocation unit 220 may include a parameter negotiation module. When the evolved access network fails to meet the requirement of the service bit rate parameter information, the parameter negotiation module negotiates with the access gateway 100 to determine new service bit rate parameter information, and is configured by the resource allocation unit. 220 transmitting the updated service bit rate parameter information to the access gateway in response to the service bearer setup/modification request The service of 100 carries the response unit 130.
  • the service bearer response unit 130 of the access gateway 100 outputs the determined radio resource to the bearer setup/modification unit 140, and the bearer setup/modification unit 140 establishes/modifies the mapping relationship with the radio resource by the service bearer unit 230 of the evolved base station 200.
  • Business hosting
  • the bearer setup/modification unit 140 may include a bearer request module 141 and a bearer response module 142.
  • the bearer requesting module 141 obtains the uplink binding type information from the upper layer service requesting unit 110, and the SAE bearer setup/modification request including the uplink binding information is sent to the user equipment 300 by the evolved base station 200, and is established with the user equipment 300 according to the uplink binding information.
  • the service bearer having a mapping relationship with the radio resource received from the service bearer response unit 130 is modified.
  • the bearer response module 142 receives the response of the user equipment 300 to the SAE bearer setup/modification request.
  • the GBR service bearer establishment/modification system embodiment 2 may have the structure shown in FIG.
  • the access gateway 100 includes a service bearer requesting unit 120, a service bearer response unit 130, a bearer setup/modification unit 140, and a bearer information unit 150, and may also include an upper layer service request unit 110.
  • the evolved base station 200 includes a service bearer.
  • the request receiving unit 210, the resource allocating unit 220, and the service carrying unit 230; the system further includes a user equipment 300.
  • the upper layer service requesting unit 110 of the access gateway 100 receives the service establishment/modification QoS request from the upper layer application, where the request carries the QoS parameter and the uplink and downlink binding type information; the upper layer service requesting unit 110 maps the QoS parameter to the service bit. Rate parameters and other parameters.
  • the service bearer requesting unit 120 sends a service bearer setup/modification request to the service bearer request receiving unit 210 of the evolved base station 200, where the service bearer setup/modification request includes service bit rate parameter information, and may also include downlink binding type information.
  • the bearer information unit 150 obtains the uplink binding type information from the upper layer service requesting unit 110, and transmits it to the service bearer unit 230 of the evolved base station 200 in the NAS layer bearer information.
  • the service bearer request receiving unit 210 of the evolved base station 200 outputs the bit rate parameter and the like to the resource allocation unit 220.
  • the resource allocating unit 220 determines the radio resource according to the service bit rate parameter information and the user equipment 300, and the determined radio resource is in the service bearer.
  • the service-loaded response unit 130 sent to the access gateway 100 in response to the establishment of the tamper request, and outputs the determined radio resource to the service bearer unit 230.
  • the service bearer unit 230 of the evolved base station 200 is responsible for establishing/modifying and determining the determined wireless resource
  • the service bearer unit 230 may include a radio bearer module 231 and a transport bearer module 232.
  • the radio bearer module receives the uplink binding type information from the bearer information unit 150 in the access gateway 100 and the radio resource determined by the resource allocation unit 220, and establishes/modifies the mapping with the radio resource according to the uplink binding type information.
  • the wireless bearer of the relationship is responsible for establishing/modifying and determining the determined wireless resource
  • the service bearer unit 230 may include a radio bearer module 231 and a transport bearer module 232.
  • the radio bearer module receives the uplink binding type information from the bearer information unit 150 in the access gateway 100 and the radio resource determined by the resource allocation unit 220, and establishes/modifies the mapping with the radio resource according to the uplink binding type information.
  • the wireless bearer of the relationship is responsible for establishing/modifying and determining the determined wireless
  • the bearer setup/modification unit 140 of the access gateway 100 obtains the downlink binding type information from the upper-layer service clearing unit 110, and the transport bearer module 232 of the evolved base station 200 can obtain the downlink binding type information from the service bearer request receiving unit 210, and the bearer is established.
  • The/modification unit 140 and the transmission bearer module 232 establish/modify the transmission bearer according to the downlink binding type information.
  • the resource allocation unit 220 of the evolved base station 200 transmits a response to the traffic bearer setup/modification request to the traffic bearer response unit 130 of the access gateway 100, the response including the determined radio resources.
  • the service bearer response unit 130 outputs the determined radio resource to the bearer establishment unit 140 to establish a mapping between the radio resource, the service bit rate parameter, and the downlink bundling type information.
  • the service bit rate parameter information of the MBR, the GBR, and the like are added in the service establishment/modification request, and the bit rate parameter is referenced when the service bearer is established/modified, and the GBR such as voice communication and video communication in the evolved network is realized. Bearer establishment/modification of the service.

Landscapes

  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

一卜
演进网络中保证比特率业务承载的处理方法及装置 本申请要求于 2006 年 5 月 1 日提交中国专利局、 申请号为 200610060646.4、 发明名称为"演进网络中保证比特率业务承载的建立修改 方法"的中国专利申请的优先权, 其全部内容通过引用结合在本申请中。
技术领域
本发明涉及移动通信演进网络, 尤指一种演进网络中保证比特率业务 的处理方法及装置。
背景技术
通用移动通信系统 ( Universal Mobile Telecommunications System, UMTS ) 是采用宽带码分多址接入( Wideband Code Division Multiple Access, WCDMA ) 空中接口技术的第三代移动通信系统(3G ), 通常也把 UMTS称为 WCDMA 通信系统。
UMTS 采用了与第二代移动通信系统(2G ) 类似的结构, 包括无线接入 网( Radio Access Network, RAN )和核心网( Core Network, CN )。 其中 RAN 用于处理所有与无线有关的功能, 而 CN处理 UMTS 内所有的话音呼叫和数 据连接, 并实现与外部网络的交换和路由功能。 CN从逻辑上分为电路交换 ( Circuit Switched, CS )和分组交换( Packet Switched, PS )。 RAN、 CN与用 户设备( User Equipment, UE )一起构成了整个 UMTS。
图 1示出了 UTRAN的网络结构图。 UTRAN包含一个或多个无线网络子 系统( Radio Network Subsystem, RNS ) 22。 一个 R S 22由一个无线网絡控 制器( Radio Network Controller, RNC ) 24和一个或多个基站 NodeB 26组成。 RNC 24与 CN 30之间的接口是 Iu接口, NodeB 26与 RNC 24通过 lub接口连 接。 在 UTRAN内部, RNC 24之间通过 Iur接口互联, Iur接口可以通过 RNC 24之间的直接物理连接或传输网来连接。 RNC 24用来分配和控制与之相连或 相关的 NodeB 26的无线资源。 NodeB 26则完成 lub接口与 Iu接口之间的数据 流的转换, 同时也参与一部分无线资源管理。
NodeB 26是 WCDMA系统的基站, 包括无线收发信机和基带处理部件。 通过标准的 lub接口与 R C 24互连, 主要完成 Iu接口物理层协议的处理。 它 的主要功能是扩频、 调制、 信道编码以及解扩、 解调、 信道解码, 还包括基带 信号和射频信号的相互转换等功能。
RNC 24用于控制 UTRAN的无线资源,主要完成连接建立和断开、切换、 宏分集合并、 无线资源管理控制等功能。
以上的网终架构基于 3GPP ( 3rd Generation Partnership Project ) R6以前 的版本, 目前 3GPP正在研究一种全新的演进网络架构,希望提供一种低时延、 高数据速率、 高系统容量和覆盖、 低成本、 完全基于 IP的网络, 以满足未来 十年甚至更长时间内移动网络的应用需求。由于演进网络架构是一种全新的网 络架构, 因此现有架构的所有节点、 功能和流程都将发生实质性的变化。
3GPP提供了一种无线 LTE演进网络( Long Term Evolution, 长期演进;
3GPP的网络长期演进项目的专用简写)。 如图 2所示, 在该演进网络中,接入 网络部分的架构由 3G网络的 NodeB和 RNC的两节点结构演进为只有一个节 点 eNB的单节点架构。 eNB是演进后的基站 NodeB, 具有以前大部分的无线 网络控制器(RNC )的功能。 接入网关(Access Gateway, AGW )具有以前核 心网节点, 譬如 SGSN ( Service GPRS Supporting Node ,服务 GPRS支持节点) 或者 GGSN ( Gateway GPRS Support Node, 网关 GPRS支持节点)的大部分功 能或者功能组合。 其中, Outer ARQ ( Outer Automatic-Repeat Request, 外层自 动请求重传)功能主要放在 eNB处。
如图 3所示, 演进网络中服务质量(Quality of Service, Qos )架构可实现 UE到对等实体(Peer entity )的端到端服务。 该端到端服务由两部分组成, 包 括从 UE到演进核心网的系统架构演进系统( System Architeure Evolution, SAE ) 承载服务、 以及从演进核心网到对等实体的外部承载服务。 该 SAE承载服务 实现 UE到核心网的业务建立 /数据传输, 包括对应从 UE到 eNB的空口无线 承载的 SAE无线承载服务和对应从 eNB到演进核心网 AGW的 SAE传输承载 服务。
图 4所示为 SAE承载服务构架示意图。 SAE承载与 QoS类型关联, 一个 SAE承载可以映射为 SAE无线承载和 SAE传输承载。上行服务数据流从应用 /服务层接入 UE端的上行链路包过滤器 ULPF U1和 U2。服务数据流是包流的 聚集, 数个包流组成一个服务数据流。 包过滤器基于数据包进行过滤, 将服务 数据流中 QoS类型相同的包流聚合在一起, 同时将服务数据流上行业务绑定 在 SAE承载上, 通过包过滤器与无线承载身份识别 RB-ID之间建立的映射关 系, 把包流剥离成两个 SAE无线承载, 并与 eNB建立通信链接。 下行服务数 据流从应用 /服务层接入核心网的下行链路包过滤器 DLPF D1和 D2。 下行包 过滤器 DLPF D1和 D2将下行服务数据流中 QoS类型相同的包流聚合在一起, 通过包过滤器与传输承载身份识别 AB-ID之间建立的映射关系, 把包流根据 其 QoS类型剥离成两个 SAE传输承载, 并与 eNB建立通信链接。 eNB建立 RB-ID与 AB-ID之间的映射, 实现无线承载和传输承载之间的数据交换。
如图 5所示为现有技术中 SAE承载建立流程图示。 在步骤 51, 演进核心 网与 UE协商建立缺省 IP承载,即建立一无保证比特率业务(Non Gurantee Bit Rate, Non-GBR ) 的 SAE承载, 该 SAE承载的 AB-ID为 A8。 在步骤 52, 上 层网络向演进核心网发出资源请求,该请求中包括服务质量信息、上行绑定类 型 Ul、 及下行绑定类型 Dl。 演进核心网将收到的服务质量信息映射为 QCI ( Quality Classification Indicator, 质量类别指示) Q5等信息。 QCI实际为一 指向上层网络内部保存的参数列表的一个索引。 资源请求携带该索引, 并将索 引透传至 eNB, 使得 eNB可以根据该索引指向的参数列表, 确定当前的参数 以建立无线承载。上行绑定类型及下行绑定类型对应不同的包过滤器,选择不 同的绑定类型可以确定不同的包过滤器,以从^ ^务数据流中将对应的包流过滤 出来。 在步骤 53, 演进核心网向 eNB发出建立无线承载的请求, 该请求中包 括 QCI Q5以及 AB-ID A8。 eNB根据 QCI调用相关参数确定 RB-ID R3, 并建 立 AB-ID与 RB-ID的映射关系。 在步骤 54, eNB与 UE根据 RB-ID R3建立 无线承载, 并在承载建立完成后执行步骤 55, 向核心网返回确认信息, 该确 认信息中携带建立的无线承载的 RB-ID。 UE、 eNB和演进核心网分别确认各 自参数, UE使用无线承载 RB-ID R3, eNB将 RB-ID R3与 QCI Q5及 AB-ID A8 建立映射关系,演进核心网将 RB-ID R3与 QCI Q5及 AB-ID A8建立映射关系。 之后, 在步骤 56, 演进核心网通过非接入层(Non Access Stratum, NAS ) 向 UE发送 SAE承载请求, 该请求将上行绑定类型 U1与 RB-ID R3建立映射关 系。 在步骤 57, UE通过 NAS向演进核心网反馈确认信息。 至此, UE成功地 将上行绑定类型与 RB-ID R3 建立映射关系, 演进核心网将下行绑定类型与 QCI Q5及 AB-ID A8建立映射关系。
如图 6所示为现有技术中 Non-GBR业务修改 SAE承载的流程图示。 SAE 承载建立完成后, 如业务发生变化需要修改, 执行步骤 61 , 上层网络向核心 网发送更新资源的命令,该指令中包括服务质量参数信息及上行绑定类型 U2、 下行绑定类型 D2。 演进核心网将收到的服务质量信息映射为 QCI等信息, 该 QCI与原业务的 QCI相同, 但是上行、 下行绑定类型产生变化, 即选用新的 包过滤器对服务数据流进行操作。 在步骤 62, 核心网通过 NAS命令更改 SAE 承载, 要求将上行绑定类型 U2与之前建立的无线承载 RB-ID R3建立映射关 系。 在步骤 63, UE反馈确认信息。 此时上行绑定类型 U2与 RB-ID R3建立 映射关系, 下行绑定类型 D2与 QCI Q5及 AB-ID A8建立映射关系。
现有技术虽然可以用于 Non-GBR业务 SAE承载的建立和修改,但是实际 应用中的业务除了 Non-GBR业务外, 更多的是如语音通信、视频通信等 GBR 业务。 现有技术中的 SAE承载建立流程无法用于 GBR业务的 SAE承载。
发明内容
本发明的实施例提供了一种可用于 GBR业务承载的建立 /修改的方法, 弥补了现有技术的不足。 演进核心网向演进接入网发送业务承载建立 /修改请求, 该请求中携带业 务比特率参数信息;
演进接入网根据所述业务比特率参数信息与用户设备确定无线资源; 建立 /修改与所述无线资源具有映射关系的业务承载。
本发明实施例提供了一种演进网络中保证比特率业务承载的处理装置,包 括:
业务承载请求单元, 用于向演进接入网发送业务承载建立 /修改请求, 该 业务承载建立 /修改请求中包括业务比特率参数信息;
业务承载响应单元, 用于接收演进接入网对业务承载建立 /修改请求的响 应, 该响应中包括根据所述业务比特率参数信息所确定的无线资源; 承载建立 /修改单元, 用于建立 爹改与所述无线资源具有映射关系的业务 承载。
本发明实施例还提供一种演进网络中保证比特率业务承载的处理装置,包 括:
业务承载请求接收单元, 用于接收演进核心网的业务承载建立 /修改请求, 该请求中包括业务比特率参数信息;
资源分配单元, 用于 4艮据所述业务比特率参数信息确定无线资源, 并将所 述无线资源在对业务承载建立 /修改请求的响应中发送给演进核心网;
业务承载单元, 用于建立 /修改与所述无线资源具有映射关系的业务承载。 本发明实施例在业务建立 /修改的请求中加入业务比特率参数信息, 并在 业务承载建立 /修改时引用该比特率参数, 实现了在演进网络中语音通信、 视 频通信等 GBR业务的承载建立 /修改。
附图说明
图 1 为现有技术中 UMTS地面无线接入网络的结构图示;
图 2为现有技术中演进网络两层节点架构示意图;
图 3为现有技术中演进网络中 QoS架构图示;
图 4为现有技术中 SAE承载服务架构示意图;
图 5为现有技术中 SAE承载建立的流程图示;
图 6为现有技术中 SAE承载修改的流程图示;
图 7为本发明实施例中 GBR业务承载建立 ί爹改的流程图示;
图 8为本发明实施例中无 QoS参数协商时简化信令的业务建立 /修改方法 流程图示;
图 9为本发明实施例中修改已有 QoS类别的流程图示;
图 10为本发明中 GBR业务承载建立 /修改系统实施例一的结构图示; 图 11为本发明中 GBR业务承载建立 /修改系统实施例二的结构图示。
具体实施方式
本发明实施例中, 演进网络 GBR业务承载的建立修改方法包括在建立 / 修改业务的请求中加入业务比特率参数信息, AGW向 eNB请求无线资源, 并 在该无线资源请求中携带业务比特率参数信息。 eNB指示 UE配置 /修改业务 承载; eNB 响应业务承载配置 /修改请求, 并向演进核心网反馈确认信息。 演 进核心网通过 NAS命令向 UE发送要求建立 /修改 SAE承载, UE响应该请求, 并通过 NAS命令反馈确认信息。
如图 7所示为本发明实施例演进网络中 GBR业务建立 /修改承载的流程图 示。 在 GBR业务承载的建立过程中, 在步骤 71 , 演进核心网 AGW接收业务 承载建立的 QoS请求, 该请求中携带 QoS参数、上行下行绑定类型。 AGW可 以将该 QoS参数映射为 QCI、 A P分类保留优先级、 MBR和 GBR等参数, 或者 MBR和 GBR的一个候选列表。本发明实施例中的 QCI为 QoS的类别指 示; ARP分类保留优先级作为业务优先级的指示参数, 可实现系统对不同优 先级的业务进行区别操作、 优先处理高优先级业务; MBR为该业务可能的最 大比特率; GBR为该业务建立要求的最小比特率。 上行、 下行绑定类型分别 与 UE、 核心网侧的上下行包过滤器对应。 在步骤 72, AGW向 eNB发送业务 承载建立请求, 并在该业务承载建立请求中透传 QCI、 ARP分类保留优先级、 MBR和 GBR等参数。如当前的信道资源不能实现业务承载建立请求中要求的 MBR和 GBR等参数, 则 eNB与 AGW对参数进行协商, 并在协商确定新的 当前信道资源能够实现的参数后转步骤 73; 如果当前信道资源能够实现业务 承载建立请求中要求的参数, 则直接执行步骤 73。 在步骤 73 , eNB根据步骤 72中确定的参数指示 UE配置无线承载,确定无线承载所使用的 RB-ID。在步 骤 74, eNB向 AGW响应无线承载建立请求, 并向核心网返回配置无线承载 时使用的 MBR和 GBR等参数、以及 RB-ID。在步骤 75,演进核心网通过 NAS 命令向 UE发送 SAE承载建立请求, 该请求携带当前使用的 MBR和 GBR参 数、 RB-ID, 以及上行绑定类型, 将上行包过滤器与 RB-ID建立映射关系。 在 步骤 76, UE通过 NAS命令反馈 SAE承载建立成功的确认信息。
相应地, 在步骤 71, 在 GBR业务承载的 i 改过程中, 演进核心网 AGW 接收业务修改的 QoS请求。 与 GBR业务承载的建立过程对应, 该请求中也携 带了 QoS参数及对应新的包过滤器的上下行绑定类型, AGW可以将该 QoS 参数映射为已经建立的 QCI ( QoS 类别指示)、 ARP分类保留优先级、 MBR 和 GBR等参数,或者 MBR和 GBR的一个候选列表。在步骤 72, AGW向 eNB 发送业务承载修改请求, 并在该业务承载修改请求中透传 QCI、 ARP分类保 留优先级、 MBR和 GBR等参数。如当前的信道资源不能实现业务承载修改请 求中要求的 MBR和 GBR等参数, 则 eNB与 AGW对参数进行协商, 并在协 商确定新的当前信道资源能够实现的参数后转步骤 73; 如果当前信道资源能 够实现业务承载修改请求中要求的参数,则直接执行步骤 73。在步骤 73, eNB 才艮据步骤 72中确定的参数指示 UE修改无线承载, 确定修改后无线承载所使 用的 RB-ID。 在步骤 74, eNB向 AGW响应业务承载修改请求, 并向核心网 返回配置无线承载时使用的 MBR和 GBR等参数、 以及 RB-ID。 在步骤 75, 演进核心网通过 NAS命令向 UE发送 SAE承载修改请求, 该请求携带当前使 用的 MBR和 GBR参数、 RB-ID,以及对应新的上行包过滤器的上行绑定类型 , 将新的上行包过滤器与 RB-ID建立映射关系。在步骤 76, UE向演进核心网返 回 SAE承载 4爹改成功的确认信息。
如图 8所示为无 QoS参数协商时简化信令的业务建立 /修改方法流程图示, 该流程用于 eNB不具备参数协商能力的网络中。 在步骤 81, 演进核心网接收 业务承载建立 /修改的 QoS请求, 该请求中携带 QoS参数以及上行、 下行绑定 类型。 演进核心网将该 QoS参数映射为 QCI、 ARP分类保留优先级、 MBR和 GBR等参数。 在步骤 82, 演进核心网指示 QCI、 MBR和 GBR等参数, 请求 接入网建立无线承载, 或修改相关承栽参数; 同时, 演进核心网向 eNB发送 接入层信令时附带 NAS层配置参数,该 NAS层配置参数中包括上行绑定类型。 在步骤 83, eNB指示 UE无线承载参数及 NAS层配置参数建立承载, 根据 器与 RB-ID建立映射关系; 或 eNB与 UE修改当前无线承载, 根据 NAS层信 息中的上行绑定类型将新的上行过滤器与 RB-ID建立映射关系。 在步骤 84, 承载建立 /修改完成后, eNB向演进核心网发送业务承载建立 /修改确认信息。
如图 9所示为业务需要的 QoS承载已经建立时, 修改已有业务 QoS类别 的流程图示。 由于 SAE承载与 QoS类型相互关联, 因此, 业务的 QoS类型发 生修改时, 相应的 SAE承载也要进行调整。 在步骤 91, 演进核心网接收修改 QoS类别的请求, 根据该请求确定 QCI ( QoS类别指示参数), 该 QCI向演进 核心网表明要求被修改后的 QoS类另 t在步骤 92,演进核心网指示 QCI参数, 向 eNB请求承载;如当前的信道资源不能实现新的 QoS类别指示参数的要求, 则 eNB与演进核心网对该参数进行协商, 按照协商结果更新 QoS类别指示参 数。 在步驟 93, eNB指示 UE配置修改无线承载, 并在配置修改完成后执行 步骤 94, 向演进核心网反馈修改确认信息, 其中包括新 QoS类别参数。 是可以通过程序来指令相关的硬件来完成,所述的程序可以存储于一计算机可 骤。 所述的存储介质可以是只读存储器、 随机存储器、 磁碟、 光盘等。
本发明中 GBR业务承载建立 ί爹改系统实施例一可以具有图 10所示的结 构。 在所述系统中, 接入网关 100包括业务承载请求单元 120、 业务承载响应 单元 130和承载建立 ίι爹改单元 140, 还可以包括上层业务请求单元 110; 演进 基站 200包括业务承载请求接收单元 210、 资源分配单元 220和业务承载单元 230; 该系统还包括用户设备 300。
接入网关 100的上层业务请求单元 110从上层应用接收业务建立 /修改的 QoS请求, 该请求中携带 QoS参数以及上行、 下行绑定类型信息; 上层业务 请求单元 110将该 QoS参数映射为业务比特率参数以及其他参数。 业务承载 请求单元 120向演进基站 200的业务承载请求接收单元 210发送业务承载建立 /修改请求, 该业务承载建立 /修改请求中包括业务比特率参数信息。 演进基站 200 的业务承载请求接收单元 210将比特率参数等信息输出至资源分配单元 220; 资源分配单元 220根据业务比特率参数信息和用户设备 300确定无线资 源, 并将所确定无线资源在对业务承载建立 /修改请求的响应中发送给接入网 关 100的业务承载响应单元 130。 资源分配单元 220可以包括参数协商模块, 当演进接入网无法满足该业务比特率参数信息的要求时,参数协商模块与接入 网关 100协商确定新的业务比特率参数信息,并由资源分配单元 220将更新的 业务比特率参数信息在对业务承载建立 /修改请求的响应中发送至接入网关 100的业务承载响应单元 130。 接入网关 100的业务承载响应单元 130将所确 定的无线资源输出至承载建立 /修改单元 140, 承载建立 /修改单元 140通过演 进基站 200的业务 载单元 230建立 /修改与该无线资源具有映射关系的业务 承载。
本实施例中, 承载建立 /修改单元 140可以包括承载请求模块 141和承载 响应模块 142。 承载请求模块 141从上层业务请求单元 110获得上行绑定类型 信息, 通过演进基站 200向用户设备 300发送包括上行绑定信息的 SAE承载 建立 /修改请求, 与用户设备 300根据上行绑定信息建立 /修改与从业务承载响 应单元 130接收的无线资源具有映射关系的业务承载。承载响应模块 142接收 用户设备 300对 SAE承载建立 /修改请求的响应。
本发明中 GBR业务承载建立 /修改系统实施例二可以具有图 11所示的结 构。 在所述系统中, 接入网关 100包括业务承载请求单元 120、 业务承载响应 单元 130、 承载建立 /修改单元 140和承载信息单元 150, 还可以包括上层业务 请求单元 110; 演进基站 200包括业务承载请求接收单元 210、 资源分配单元 220和业务承载单元 230; 该系统还包括用户设备 300。
接入网关 100的上层业务请求单元 110从上层应用接收业务建立 /修改的 QoS请求, 该请求中携带 QoS参数以及上行、 下行绑定类型信息; 上层业务 请求单元 110将该 QoS参数映射为业务比特率参数以及其他参数。 业务承载 请求单元 120向演进基站 200的业务承载请求接收单元 210发送业务承载建立 /修改请求, 该业务承载建立 /修改请求中包括业务比特率参数信息, 还可以包 括下行绑定类型信息。承载信息单元 150从上层业务请求单元 110获得上行绑 定类型信息, 将其在 NAS层承载信息中发送给演进基站 200的业务承载单元 230。 演进基站 200的业务承载请求接收单元 210将比特率参数等信息输出至 资源分配单元 220;资源分配单元 220根据业务比特率参数信息和用户设备 300 确定无线资源, 将所确定无线资源在对业务承载建立 ίι爹改请求的响应中发送 给接入网关 100的业务 载响应单元 130, 并将所确定的无线资源输出至业务 承载单元 230。
演进基站 200的业务承载单元 230负责建立 /修改与所确定的无线资源具 有映射关系的业务承载,本实施例中业务承载单元 230可以包括无线承载模块 231和传输承载模块 232。 无线承载模块接收来自接入网关 100中承载信息单 元 150的上行绑定类型信息和资源分配单元 220所确定的无线资源,根据上行 绑定类型信息与用户设备 300建立 /修改与该无线资源具有映射关系的无线承 载。 接入网关 100的承载建立 /修改单元 140从上层业务清求单元 110获得下 行绑定类型信息,演进基站 200的传输承载模块 232可以从业务承载请求接收 单元 210获得下行绑定类型信息,承载建立 /修改单元 140和传输承载模块 232 根据该下行绑定类型信息建立 /修改传输承载。
演进基站 200的资源分配单元 220向接入网关 100的业务承载响应单元 130发送对业务承载建立 /修改请求的响应 , 该响应中包括所确定的无线资源。 业务承载响应单元 130将所确定的无线资源输出至承载建立 ί 改单元 140,以 建立该无线资源、 业务比特率参数和下行绑定类型信息之间的映射。
本发明实施例在业务建立 /修改的请求中加入 MBR、 GBR等业务比特率参 数信息, 并在业务承载建立 /修改时引用该比特率参数, 实现了在演进网络中 语音通信、 视频通信等 GBR业务的承载建立 /修改。
以上所述仅为本发明的较佳实施例而已, 并不用以限制本发明, 凡在本发 明的精神和原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发 明的保护范围之内。

Claims

权 利 要 求
1. 演进网络中保证比特率业务承载的处理方法, 其特征在于, 该方法包 括:
演进核心网向演进接入网发送业务承载建立 /修改请求 , 该请求中携带业 务比特率参数信息;
演进接入网根据所述业务比特率参数信息确定无线资源;
建立 /修改与所述无线资源具有映射关系的业务 载。
2. 如权利要求 1所述的方法, 其特征在于, 所述方法向演进接入网发送 无线资源请求前还包括: 演进核心网接收业务建立 /修改请求, 根据其中包括 的服务质量参数确定业务比特率参数信息。
3. 如权利要求 2所述的方法, 其特征在于, 所述建立 /修改与无线资源具 有映射关系的业务承载包括:
演进接入网向演进核心网发送对无线资源请求的响应,其中包括确定的无 线资源;
演进核心网向用户设备指示建立 /修改与所述无线资源具有映射关系的业 务承载。
4. 如权利要求 3所述的方法, 其特征在于, 所述演进接入网确定无线资 源包括: 当演进接入网的无线资源不能满足所述业务比特率参数信息的要求 时, 演进接入网与演进核心网协商更新业务比特率参数信息;
所述对无线资源请求的响应中还包括更新的业务比特率参数信息。
5. 如权利要求 3或 4所述的方法, 其特征在于: 所述业务承载包括无线 承载; 所述业务建立 /修改请求中还包括上行绑定类型信息;
演进核心网在向用户设备指示建立 /修改 S AE承载时携带上行绑定类型信 息, 用户设备在建立 /修改 SAE承载时根据该上行绑定类型信息建立上行包过 滤装置与无线承载之间的映射关系。
6. 如权利要求 2所述的方法, 其特征在于, 所述业务承载包括无线承载; 所述方法在演进接入网确定无线资源前还包括:演进核心网向演进接入网 发送非接入层承载信息; 所述建立 /修改与无线资源具有映射关系的业务承载包括: 演进接入网向 用户设备发送所述非接入层承载信息,与用户设备按照所述非接入层承载信息 和所述无线资源建立 /修改无线承载。
7. 如权利要求 6所述的方法, 其特征在于: 所述业务建立 /修改请求中还 包括上行绑定类型信息; 所述非接入层承载信息包括所述上行绑定类型信息; 用户设备在建立 /修改无线承载时根据所述上行绑定类型信息建立上行包过滤 装置与无线承载之间的映射关系。
8. 如权利要求 1所述的方法, 其特征在于: 所述业务承载包括传输承载; 所述业务建立 /修改请求中还包括下行绑定类型信息 , 演进核心网在建立 /修改 业务承载时根据该下行绑定类型信息建立下行包过滤装置与传输承载之间的 映射关系。
9. 如权利要求 1所述的方法, 其特征在于: 所述业务比特率参数包括业 务建立的保证比特率参数和业务可能的最大比特率参数,或保证比特率参数和 最大比特率参数的一个候选列表。
10. 如权利要求 1所述的方法, 其特征在于: 所述演进核心网发送的业务 承载建立 /修改请求中还包括分类保留优先级参数。
11. 如权利要求 6所述的方法, 其特征在于: 所述方法在修改已有业务的 QoS类别时还包括:
演进核心网接收业务 QoS类别修改请求, 其中包括修改后的 QoS类别; 演进核心网向演进接入网指示被修改后的 QoS类别, 并请求修改业务承 载;
演进接入网与用户设备重新配置无线承载, 并响应业务承载修改请求。
12.一种演进网络中保证比特率业务承载的处理装置,其特征在于, 包括: 业务承载请求单元, 用于向演进接入网发送业务承载建立 /修改请求, 该 业务承载建立 /修改请求中包括业务比特率参数信息;
业务承载响应单元, 用于接收演进接入网对业务承载建立 /修改请求的响 应, 该响应中包括根据所述业务比特率参数信息所确定的无线资源;
承载建立 /修改单元, 用于建立 /修改与所述无线资源具有映射关系的业务 承载。
13. 如权利要求 12所述的装置, 其特征在于, 所述装置还包括上层业务 请求单元, 用于接收业务建立 /修改请求, 并根据其中包括的服务质量参数确 定所述业务比特率参数信息。
14. 如权利要求 13所述的装置, 其特征在于: 所述业务建立 /修改请求中 还包括上行绑定类型信息;
所述承载建立 /修改单元包括:
承载请求模块, 用于向用户设备发送包括所述上行绑定信息的 SAE承载 建立 /修改请求, 与用户设备根据所述上行绑定信息建立 /修改与所述无线资源 具有映射关系的业务承载;
承载响应模块, 用于接收用户设备对 SAE承载建立 /修改请求的响应。
15. 如权利要求 14所述的装置, 其特征在于: 当演进接入网无法满足所 述业务比特率参数信息的要求时, 所述演进接入网对业务承载建立 /修改请求 的响应中还包括演进接入网与演进核心网协商更新的业务比特率参数信息。
16. 如权利要求 13所述的装置, 其特征在于: 所述业务建立 /修改请求中 还包括上行绑定类型信息; 所述业务承载包括无线承载;
所述装置还包括承载信息单元, 用来向演进接入网发送非接入层承载信 息,该非接入层承载信息中包括所述上行绑定类型信息,供演进接入网据以建 立无线 载。
17. 如权利要求 16所述装置, 其特征在于: 所述业务建立 /修改请求中还 包括下行绑定类型信息; 所述业务承载还包括传输承载; 所述承载建立 /修改 单元根据所述下行绑定信息与演进接入网建立传输承载。
18.如权利要求 12所述的装置,其特征在于,所述装置为接入网关 AGW。
19.一种演进网络中保证比特率业务承载的处理装置,其特征在于, 包括: 业务承载请求接收单元, 用于接收演进核心网的业务承载建立 /修改请求, 该请求中包括业务比特率参数信息;
资源分配单元, 用于根据所述业务比特率参数信息确定无线资源, 并将所 述无线资源在对业务承载建立 /修改请求的响应中发送给演进核心网; 业务承载单元, 用于建立 /修改与所述无线资源具有映射关系的业务承载。
20. 如权利要求 19所述的装置, 其特征在于: 所述业务承载包括无线承 载和传输承载; 所述无线资源请求中包括下行绑定类型信息;
所述业务承载单元包括:
无线承载模块,用于接收演进核心网的包括上行绑定类型信息的非接入层 承载信息, 并根据所述上行绑定类型信息与用户设备建立 /修改与所述无线资 源具有映射关系的无线承载;
传输承载模块, 用于根据所述下行绑定类型信息与演进核心网建立 /修改 传输承载。
21. 如权利要求 19所述的装置, 其特征在于: 所述装置为演进基站。
PCT/CN2007/001328 2006-05-01 2007-04-23 Procédé et dispositif de gestion de porteuse de service à débit binaire garanti dans un réseau évolutif WO2007124682A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP07720901A EP2015524A4 (en) 2006-05-01 2007-04-23 METHOD AND DEVICE FOR TREATING A CARRIER FOR A SERVICE WITH GUARANTEED BITRATES IN AN ADVANCED NETWORK

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200610060646.4 2006-05-01
CNB2006100606464A CN100499927C (zh) 2006-05-01 2006-05-01 演进网络中保证比特率业务承载的建立修改方法

Publications (1)

Publication Number Publication Date
WO2007124682A1 true WO2007124682A1 (fr) 2007-11-08

Family

ID=38655072

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2007/001328 WO2007124682A1 (fr) 2006-05-01 2007-04-23 Procédé et dispositif de gestion de porteuse de service à débit binaire garanti dans un réseau évolutif

Country Status (3)

Country Link
EP (1) EP2015524A4 (zh)
CN (1) CN100499927C (zh)
WO (1) WO2007124682A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101562842B (zh) * 2008-04-16 2011-05-04 大唐移动通信设备有限公司 一种资源分配方法、系统及装置
CN109997392A (zh) * 2016-11-26 2019-07-09 华为技术有限公司 无线接入网络配置方法、装置和系统

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101572862B (zh) * 2008-05-02 2013-11-06 三星电子株式会社 支持3g系统和lte系统间互通的方法和设备
CN101651894B (zh) * 2008-08-15 2012-07-04 华为技术有限公司 承载服务质量的更新方法及装置
EP2505031A1 (en) 2009-11-27 2012-10-03 Telefonaktiebolaget LM Ericsson (publ) Telecommunications method, protocol and apparatus for improved quality of service handling
CN105357774B (zh) * 2009-11-27 2019-02-19 瑞典爱立信有限公司 针对改进服务质量处理的电信方法、协议和设备
CN101789880B (zh) * 2010-01-22 2012-09-05 中国电信股份有限公司 基于IP接入网实现上行QoS的方法和多业务接入网关
WO2012045352A1 (en) * 2010-10-06 2012-04-12 Telefonaktiebolaget L M Ericsson (Publ) Uplink traffic separation in an edge node of a communication network
EP2692197B1 (en) 2011-03-31 2017-05-03 Telefonaktiebolaget LM Ericsson (publ) Method and arrangement in a communications system for handling a gbr bearer
US8817690B2 (en) * 2011-04-04 2014-08-26 Qualcomm Incorporated Method and apparatus for scheduling network traffic in the presence of relays
WO2012103737A1 (zh) * 2011-07-01 2012-08-09 华为技术有限公司 承载的处理方法和装置
US9119111B2 (en) * 2011-08-12 2015-08-25 Alcatel Lucent Method and apparatus for controlling wireless uplink sessions
CN104770016B (zh) * 2013-08-30 2019-03-08 华为技术有限公司 非接入层消息的处理方法、用户设备和网络侧设备
CN105264958B (zh) * 2014-01-10 2019-08-13 华为技术有限公司 一种承载电路语音业务的方法及装置
US9787595B2 (en) * 2014-03-24 2017-10-10 Intel IP Corporation Evolved node-B and mobility management entity and user equipment and methods for supporting attended and unattended services
US11039369B2 (en) * 2018-08-10 2021-06-15 Mediatek Inc. Handling 5G QoS rules on QoS operation errors
CN111436077B (zh) * 2019-01-14 2023-05-12 大唐移动通信设备有限公司 一种业务建立方法、实体及装置、介质
CN110730481B (zh) * 2019-10-30 2022-05-20 武汉信科移动通信技术有限公司 集群承载服务质量参数的自适应方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002078383A1 (en) * 2001-03-27 2002-10-03 Ericsson Inc. Short access for realizing a signaling radio bearer in geran
WO2003098948A1 (en) * 2002-05-21 2003-11-27 Nokia Corporation Repacking procedure for streaming packet switched services
WO2005096655A1 (en) * 2004-03-30 2005-10-13 Nokia Corporation Delivering services in a wireless communications system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002078383A1 (en) * 2001-03-27 2002-10-03 Ericsson Inc. Short access for realizing a signaling radio bearer in geran
WO2003098948A1 (en) * 2002-05-21 2003-11-27 Nokia Corporation Repacking procedure for streaming packet switched services
WO2005096655A1 (en) * 2004-03-30 2005-10-13 Nokia Corporation Delivering services in a wireless communications system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"3rd Generation Partnership Project; Technical Specification Group Services And System Aspects; 3GPP System Architecture Evolution; Report on Technical Options and Conclusions (Release 7)", 3GPP TR 23.882 DRAFT V1.1.0, April 2006 (2006-04-01), XP008099473 *
See also references of EP2015524A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101562842B (zh) * 2008-04-16 2011-05-04 大唐移动通信设备有限公司 一种资源分配方法、系统及装置
CN109997392A (zh) * 2016-11-26 2019-07-09 华为技术有限公司 无线接入网络配置方法、装置和系统
CN109997392B (zh) * 2016-11-26 2021-10-26 华为技术有限公司 无线接入网络配置方法、装置和系统

Also Published As

Publication number Publication date
EP2015524A1 (en) 2009-01-14
CN100499927C (zh) 2009-06-10
EP2015524A4 (en) 2011-03-16
CN101043644A (zh) 2007-09-26

Similar Documents

Publication Publication Date Title
WO2007124682A1 (fr) Procédé et dispositif de gestion de porteuse de service à débit binaire garanti dans un réseau évolutif
TWI722403B (zh) 預設服務品質規則管理方法及使用者設備
EP3482582B1 (en) Methods and apparatus for managing data communication in wireless communication network
TWI754244B (zh) Pdu會話的管理方法和使用者設備
JP4838320B2 (ja) データパケットの伝送におけるサービス品質を指定する方法および装置
US10548044B2 (en) Mobile communication system, QoS control station and mobile station
JP4733093B2 (ja) 無線通信システム及び無線通信方法
US8144650B2 (en) Method and arrangement relating to communications network services request activation
US8953596B2 (en) Conserving network capacity by releasing QoS resources
US20090016344A1 (en) Method and apparatus for controlling bearers of service data flows
EP1929716B1 (en) Preserved bearers
WO2009049529A1 (fr) Procédé d'établissement de support de charge et dispositif associé
WO2012103779A1 (zh) 一种无线承载的建立方法、接入点设备、用户设备及系统
CN112911726A (zh) 一种用户平面承载建立的方法及装置
WO2008131692A1 (fr) Procédé de distribution de ressource et système de réseau sans fil dans un système de communication
WO2021088977A1 (zh) 一种数据传输的方法及相关设备
CN107295564A (zh) 一种基于流的承载管理方法、数据传输方法及装置
CN109041144A (zh) 一种系统间信息交互方法,无线通信系统和用户设备
WO2009018777A1 (fr) Procédé et appareil de distribution et de transfert d'une identité de support dans un réseau évolué
WO2012119564A1 (zh) 一种用户面配置参数的处理方法及装置
WO2022012361A1 (zh) 一种通信方法及装置
WO2011026391A1 (zh) 服务网关的负载重分配方法、系统及服务网关
TW202044900A (zh) 處理pdn連接的方法及使用設備
WO2012126330A1 (zh) 联合传输方法及系统
WO2011157177A2 (zh) 一种业务流控制的方法及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07720901

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007720901

Country of ref document: EP