WO2007124661A1 - A power control parameter configuration method for high speed shared information channel by node b - Google Patents

A power control parameter configuration method for high speed shared information channel by node b Download PDF

Info

Publication number
WO2007124661A1
WO2007124661A1 PCT/CN2007/001045 CN2007001045W WO2007124661A1 WO 2007124661 A1 WO2007124661 A1 WO 2007124661A1 CN 2007001045 W CN2007001045 W CN 2007001045W WO 2007124661 A1 WO2007124661 A1 WO 2007124661A1
Authority
WO
WIPO (PCT)
Prior art keywords
parameter
node
tpc
speed shared
shared information
Prior art date
Application number
PCT/CN2007/001045
Other languages
French (fr)
Chinese (zh)
Inventor
Zijiang Ma
Wei Fang
Zhifeng Ma
Original Assignee
Zte Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zte Corporation filed Critical Zte Corporation
Publication of WO2007124661A1 publication Critical patent/WO2007124661A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/28TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission
    • H04W52/286TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission during data packet transmission, e.g. high speed packet access [HSPA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/362Aspects of the step size

Definitions

  • the present invention relates to the field of mobile communication technologies, and in particular, to a method for configuring a Node B high-speed shared information channel power control parameter in a time division synchronous code division multiple access TD-SCDMA system, including a wireless network controller configuring a high speed shared information channel for a Node B.
  • the power control step size parameter and the method used by the Node B to generate a transmit power control command for the high speed shared information channel are described by the Node B to generate a transmit power control command for the high speed shared information channel.
  • HSDPA High Speed Downlink Packet Access
  • HSDPA High Speed Downlink Packet Access
  • HSDPA introduces a new transport channel HS-DSCH (High Speed Downlink Shared Channel), where users share downlink code resources and power resources for time division multiplexing. This structure is suitable for bursty packet data services.
  • the downlink physical channel HS-SCCH High Speed Shared Control Channel
  • HS-PDSCH High Speed Physical Downlink Shared Channel
  • the UE By reading the information on the HS-SCCH, the UE (user equipment) can find the HS-DSCH resource configured for the UE according to the physical layer information such as the code channel, the time slot, and the modulation mode, and the UE transmits the HS- The SICH (High Speed Shared Information Channel) to Node B (Node B) feeds back channel quality information (CQI) and block decoding information (ACK/ACK) of the HS-DSCH channel.
  • the SICH High Speed Shared Information Channel
  • Node B Node B
  • CQI channel quality information
  • ACK/ACK block decoding information
  • the chip rate of the TD-SCDMA system is 1.28 Mcps, also known as LCR TDD (low chip rate rate time division duplex mode).
  • the HS-SCCH channel and the HS-SICH channel allocated by the Node B to the UE are For the occurrence of the Node B, the UE may allocate 1 to 4 HS-SCCH physical channels, and correspondingly, the UE is allocated 1 to 4 HS-SICH physical channels. All HS-SCCHs allocated for one UE are referred to as one HS-SCCH set, and correspondingly there is also a corresponding HS-SICH set. The UE may only use one of the set at a TTI (Transmit Time Interval) time. HS-SCCH and a corresponding HS-SICH.
  • TTI Transmit Time Interval
  • the UE transmits the HS-SICH to the Node B, and the corresponding HS-SCCH transmitted by the Node B to the ⁇ requires power control.
  • the power control of HS-SICH includes open loop power control and closed loop power control.
  • the UE receives and stores the parameters of the high layer configuration in advance, including: PRX HS - SICH (HS-SICH expected value), TPC Step Size (transmission power control step size), Ack-Nack Power Offset (transmitted power offset), and the like, and The transmit power of the open-loop control and the closed-loop control of the HS-SICH is calculated according to the received TPC (Transmission Power Control) parameter carried on the HS-SCCH.
  • PRX HS - SICH HS-SICH expected value
  • TPC Step Size transmission power control step size
  • Ack-Nack Power Offset transmitted power offset
  • the TPC command used by the UE in the HS-SICH closed-loop power control process is generated by the Node B and carried on the HS-SCCH physical channel and sent to the UE.
  • the location of the TPC information on the physical layer is displayed, indicating that the TPC command is configured on the physical channel, where the SS symbol is a Synchronization Shift Symbol(s), and the intermediate code (Midamble)
  • the SS symbol is a Synchronization Shift Symbol(s)
  • the intermediate code Midamble
  • the method in which the Node B generates the TPC command compares the HS-SICH target value with the measured HS-SICH power value, and also needs to consider the impact of the ACK/NACK information carried on the HS-SICH on the HS-SICH power measurement value.
  • the TPC command needs to be adjusted based on the comparison between the predicted value of the HS-SICH and the actual measured value.
  • the ACK/ACK information is carried on the HS-SICH physical channel sent by the UE to the Node B, as shown in the following table.
  • Table 1 ACK/NACK information on HS-SICH
  • the ACK/NACK information carried by the UE on the HS-SICH is ACK (1)
  • the UE cannot correctly receive data from the Node B the UE is in the uplink physics.
  • the ACK/NACK information carried on the channel HS-SICH is NACK ( 0 ).
  • the DPCH includes UL DPCH (uplink dedicated physical channel) And DL DPCH (Downlink Dedicated Physical Channel), and describes the calculation method of the transmit power of the DPCH (Dedicated Physical Channel), including open loop power control and closed loop power control, and a method in which the Node B generates a TPC command.
  • the method in which the Node B generates the TPC command for the closed-loop power control of the HS-SICH channel and the method of the TPC command for the closed-loop power control of the dedicated channel are different.
  • the method in which the Node B generates a TPC command for closed loop power control of the HS-SICH is not described in the current protocol.
  • the Node B calculates the TPC command for the closed-loop power control of the HS-SICH, it is generally required to use the HS-SICH TPC step size to predict the received power.
  • the network side The upper layer (the RRC layer of the RC, the radio resource control layer of the radio network controller) sends the high layer signaling to the Node B.
  • the uplink TPC step size information element for the HS-SICH is not configured, and the HS cannot be predicted. - SICH power value.
  • the technical problem to be solved by the present invention is to provide a node in a TD-SCDMA system.
  • the configuration method of the B-speed shared information channel power control parameter is used to implement the power control step parameter HS-SICH TPC step size configured by the radio network controller for the Node B to configure the high-speed shared information channel, and the Node B uses the parameter to generate the high-speed shared
  • the transmit power control command TPC of the information channel is used to better implement closed loop power control of the HS-SICH.
  • the present invention provides a method for configuring a high-speed shared information channel "TPC step size" parameter for a node B by a network-side upper layer, including:
  • the network-side upper layer When the high-level shared information channel "TPC step size" parameter is configured for the user equipment, the network-side upper layer also sends the parameter to the node B through the high-level signaling of the BAP protocol, and configures the high-speed shared information channel for the node B.
  • TPC step size Parameters.
  • the network side high layer is a radio resource control layer of the radio link controller.
  • the network side high layer sends the parameter to the Node B by providing an information element including a high speed shared information channel "TPC step size" parameter in the message sent to the Node B during the execution of the NBAP protocol.
  • the NBAP protocol execution process includes: a radio link establishment process, a radio link addition process, a synchronous radio link reconfiguration preparation process, or an asynchronous radio link reconfiguration process.
  • the message includes: a radio link setup request message, a radio link add request message, a radio link reconfiguration preparation message, or a radio link reconfiguration request message.
  • the information unit includes "HS-DSCH TDD Information" and "HS-DSCH"
  • the present invention also provides a method for a Node B to configure a "TPC" parameter for high speed sharing information channel closed loop power control, comprising the following steps:
  • the parameter is also sent to the node B through the high layer signaling of the BAP protocol, and the "TPC step size” parameter is configured for the node B;
  • Node B obtains the parameters "Ack-Nack power offset", "HS-SICH SIR Target” and "TPC step size” configured by the upper layer, and obtains the actual power measurement value P HS _ SICH of the high speed shared information channel by measurement, And decoding ACK/NACK information carried on the high speed shared information channel;
  • the Node B obtains the transmit power value of the high-speed shared information channel configured by the upper layer of the user equipment according to the parameter "Ack-Nack power offset" of the high-level configuration, the measured PHS-SICH, and the ACK/NACK information obtained by decoding. ;
  • the Node B compares the parameter "HS-SICH SIR Target" of the high-level configuration with the transmit power value of the current high-speed shared information channel configured by the upper layer of the user equipment, and initially determines the current time according to the comparison result.
  • the node ⁇ transmits the power value according to the high-speed shared information channel configured by the upper layer of the user equipment last time, the value of the "TPC" parameter generated by the node ⁇ last time, and the "TPC step” configured by the network-side upper layer as the node ⁇
  • the size" parameter calculates the predicted power value of the high-speed shared information channel
  • the Node B compares the current high-speed shared information channel predicted power value with the transmit power value of the local high-speed shared information channel configured by the user equipment upper layer, and determines the current "TPC" according to the comparison result adjustment. "The value of the parameter.
  • the method further includes the steps of:
  • Node B carries the current "TPC" parameter on the high speed shared control channel and sends it to the user equipment.
  • the network side high layer is a radio resource control layer on the network side.
  • the transmit power of the high-speed shared information channel configured by the upper layer of the user equipment is the actual power measurement value PHS-SICH of the high-speed shared information channel received by the Node B minus the "Ack-Nack power offset". " parameter value;
  • the transmit power of the high-speed shared information channel configured by the upper layer of the user equipment is the actual power measurement value PHS-SICH of the high-speed shared information channel received by the Node B.
  • step (4)
  • the "TPC” parameter is set to "up”.
  • the current high-speed shared information channel prediction power value the high-speed shared information channel transmission power value configured by the user equipment upper layer last time minus the network-side high-level
  • the current high-speed shared information channel prediction power value the high-speed shared information channel transmission power value configured by the user equipment upper layer last time plus the network-side high-level
  • step (6) In the step (6):
  • the "TPC" parameter value determined in step (4) is not modified;
  • the "TPC" parameter value determined in step (4) is modified.
  • the step (6) further includes:
  • the modification is performed in the step.
  • the value of the "TPC” parameter determined in (4). Wherein, in the modifying step, if the initially determined “TPC” parameter is “up”, then it is changed to “down”; if the initially determined “TPC” parameter is “down”, then It was changed to "up”.
  • the network side high layer sends the parameter to the node B by providing an information element including a "TPC step size" parameter in a message sent to the node B during the execution of the NBAP protocol. .
  • the NBAP protocol process includes: a radio link establishment process, a wireless link addition process, a synchronous radio link reconfiguration preparation process, or an asynchronous radio link reconfiguration process.
  • the message includes: a radio link setup request message, a radio link add request message, a radio link reconfiguration preparation message, or a radio link reconfiguration request message.
  • the information unit includes "HS-DSCH TDD Information", "HS-DSCH Information To Modify", and "HS-DSCH Information To Modify Unsynchronised”.
  • the wireless network controller configures the power control step parameter HS-SICH TPC step size of the high speed shared information channel for the Node B, and the Node B uses the parameter to generate and adjust the information channel for high speed sharing.
  • the transmit power control command TPC can better achieve closed loop power control of the HS-SICH.
  • BRIEF abstract 1 is a schematic diagram showing the location of TPC information configuration on a physical layer in a 1.28 Mcps TDD system
  • FIG. 2 is a flow chart of a Node B generating a TPC command for HS-SICH closed loop power control in an embodiment of the present invention.
  • Preferred embodiment of the invention
  • the present invention provides a method for a radio network controller (RNC) to configure an HS-SICH TPC step size for a Node B (Node B), including:
  • the RNC When configuring and updating the high-speed shared information channel TPC step size parameter for the UE, the RNC also configures and updates the high-speed shared information channel TPC step size parameter for the Node B to ensure that the parameter value is the same on the UE and the Node B.
  • the RNC sends the parameter to the UE through the high-level signaling of the RRC protocol on the Uu interface, and correspondingly passes the high-level signaling of the BAP protocol on the Iub interface.
  • This parameter is sent to Node B.
  • the UE uses this parameter to calculate the transmit power of the closed loop power control of the HS-SICH, and the Node B uses this parameter to predict the HS-SICH transmit power of the UE.
  • the specific method for the RNC to configure and update the TPC step size parameter of the high speed shared information channel for the Node B is:
  • the message sent by the RNC to the Node B includes information units, which also include an information unit for adjusting the power control step size of the HS-SICH closed-loop power control (HS-SICH).
  • the TPC step size may be referred to as a "TPC step size" information element, and the RNC adjusts the value of the information unit to adjust the power control step size ( TPC step size ) for the UE closed loop power control;
  • the message sent from the RNC to the Node B includes: a radio link setup request message, a radio link addition request message, and a radio link reconfiguration preparation. a radio link reconfiugration preparation message, a radio link reconfiguration request message, or the like;
  • one or more of the following information units may be included, but the information is generally not configured in one message at the same time: "HS-DSCH TDD Information", "HS-DSCH Information To Modify,, and” HS-DSCH Information To Modify Unsynchronised”.
  • the present invention provides a method for the Node B to generate TPC parameters for HS-SICH closed loop power control. As shown in FIG. 2, the method includes the following steps:
  • Step 201 First, when the RNC configures and updates the high-speed shared information channel TPC step size parameter for the UE, the RNC also configures and updates the high-speed shared information channel TPC step size parameter for the Node B accordingly;
  • Step 202 The Node B knows the high-level configuration parameters Ack-Nack power offset and HS-SICH SIR Target, obtains the high-speed shared information channel TPC step size, and the Node B measures the actual power value of the HS-SICH: PHS.SICH (measured value), and decoding the ACK/NACK information carried on the HS-SICH;
  • Step 203 First, the Node B determines whether the ACK/NACK information is an ACK, and obtains an HS-SICH transmit power value calculated by the UE in a higher layer according to the following formula: PHS-SICH;
  • Step 204 When the ACK/NACK information is ACK, PHS-SICH (measured value) - Ack-Nack power offset;
  • Step 206 Then, compare the target value of the HS-SICH with the PHS- SI CH calculated by the UE in step 204 or 205 to calculate the TPC;
  • Step 207 When PHS-SICH > HS-SICH SIR Target, the TPC command is set to "down" (down)
  • Step 209 The Node B further adjusts the TPC command generated in step 207 or 208 according to the comparison result between the predicted power value of the HS-SICH and the HS-SICH transmit power configured by the UE upper layer.
  • the Node B predicts the transmit power value of the HS-SICH configured by the UE in the upper layer according to the transmit power value of the HS-SICH configured by the UE at the last time, the last TPC command, and the HS-SICH TPC step size.
  • the method is as follows:
  • This HS-SICH predicted power value HS-SICH power value of the last UE high-level configuration - TPC step size
  • This HS-SICH predicted power value HS-SICH power value of the last UE high-level configuration + TPC step size
  • TPC step size is a power control step size.
  • Step 210 Compare whether the predicted power value of the HS-SICH matches the HS-SICH transmit power value of the UE high-level configuration.
  • Step 211 When the predicted power value of the HS-SICH matches the HS-SICH transmit power value configured by the UE, the Node B will not modify the TPC command generated by the step 207 or 208, and proceeds to step 214;
  • Step 212 When the predicted power value of the HS-SICH does not match the HS-SICH transmit power value of the UE high-level configuration, and it is determined in step 213 that the previous "several" comparison result does not match, the Node B will modify step 207. Or 208 generated TPC command, such as: modify the TPC command "down” generated in step 207 to "up”, or modify the TPC command "up” generated in step 208 to "down”, wherein Compare "several times,,, can be 3 ⁇ 5 times;
  • Step 214 the Node B calculates the obtained TPC command word, which is carried on the HS-SCCH physical channel, and is sent to the UE for the HS-SICH closed-loop control process of the UE.
  • the present invention implements a power control step size parameter HS-SICH TPC step size for a wireless network controller to configure a high-speed shared information channel for a Node B, and the Node B uses the parameter to generate and adjust a high-speed shared information channel. Transmit power control command TPC, which can better realize the industrial applicability of closed-loop power control for HS-SICH
  • the invention provides a method for configuring a Node B high-speed shared information channel power control parameter, and implements a power control of a high-speed shared information channel for a Node B in a time-division synchronous code division multiple access TD-SCDMA system.
  • the step size parameter HS-SICH TPC step size, and the Node B uses this parameter to generate and adjust the transmit power control command TPC for the high speed shared information channel, which can better realize the closed loop power control of the HS-SICH.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

The invention discloses a power control parameter configuration method for high speed shared information channel (HS-SICH) by Node B. When the high layer of network side configures the “TPC step size” parameter for user equipment (UE), it also uses the high layer signaling of NBAP protocol to send the said parameter to Node B. By Using the way, the high layer of network side configures the “TPC step size” parameter for Node B. Based on the following parameters: the said “TPC step size” parameter, the “Ack-Nack power offset” parameter, the “HS-SICH SIR Target” parameter, the actual power measurement value of HS-SICH (PHS-SICH), the decoded ACK/NACK information loaded in HS-SICH, the Node B generates the transmitted power control (TPC) parameter, which is used for HS-SICH. By computing the anticipated power value of HS-SICH, the Node B modifies the said TPC parameter and decides the said TPC parameter more exactly. The said method can realize the closed-loop power control of HS-SICH better.

Description

一种节点 B髙速共享信息信道功率控制春数的配置方法 技术领域  Method for configuring spring number of node B idle sharing information channel power control
本发明涉及移动通讯技术领域, 尤其涉及时分同步码分多址 TD-SCDMA 系统中一种节点 B 高速共享信息信道功率控制参数的配置方 法, 包括无线网络控制器为节点 B 配置高速共享信息信道的功率控制步长 参数和节点 B使用该参数产生用于高速共享信息信道的发射功率控制命令 的方法。 背景技术  The present invention relates to the field of mobile communication technologies, and in particular, to a method for configuring a Node B high-speed shared information channel power control parameter in a time division synchronous code division multiple access TD-SCDMA system, including a wireless network controller configuring a high speed shared information channel for a Node B. The power control step size parameter and the method used by the Node B to generate a transmit power control command for the high speed shared information channel. Background technique
HSDPA (高速下行分组接入)技术是一种针对多用户提供高速下行数 据业务的技术。 适合于多某体、 Internet等大量下载信息的业务。 HSDPA引 入了一种新的传输信道 HS-DSCH (高速下行共享信道) , 用户共享下行码 资源和功率资源, 进行时分复用。 这种结构适用于突发性分组数据业务。 下 行物理信道 HS-SCCH (高速共享控制信道)用于承载 HS-PDSCH (高速物 理下行共享信道)上用来解码的物理层控制信令。 通过读取 HS-SCCH上的 信息, UE (用户设备)可以根据其指定的码道、 时隙、 调制方式等物理层 信息找到为该 UE配置的 HS-DSCH资源, 同时, UE通过发射 HS-SICH (高 速共享信息信道)到 Node B (节点 B )反馈该 HS-DSCH信道的信道质量 信息(CQI )和数据块解码信息(ACK/ ACK )等。  HSDPA (High Speed Downlink Packet Access) technology is a technology that provides high speed downlink data services for multiple users. It is suitable for a large number of services such as multimedia and Internet. HSDPA introduces a new transport channel HS-DSCH (High Speed Downlink Shared Channel), where users share downlink code resources and power resources for time division multiplexing. This structure is suitable for bursty packet data services. The downlink physical channel HS-SCCH (High Speed Shared Control Channel) is used to carry physical layer control signaling for decoding on the HS-PDSCH (High Speed Physical Downlink Shared Channel). By reading the information on the HS-SCCH, the UE (user equipment) can find the HS-DSCH resource configured for the UE according to the physical layer information such as the code channel, the time slot, and the modulation mode, and the UE transmits the HS- The SICH (High Speed Shared Information Channel) to Node B (Node B) feeds back channel quality information (CQI) and block decoding information (ACK/ACK) of the HS-DSCH channel.
TD-SCDMA系统的码片数率为 1.28Mcps, 又称 LCR TDD (低码片数率 时分双工模式) , 根据 3GPP协议, Node B分配给 UE的 HS-SCCH信道和 HS-SICH信道是成对出现的, Node B为 UE可能分配 1 ~ 4条 HS-SCCH物 理信道,对应的, 也为该 UE分配有 1 ~ 4条 HS-SICH物理信道。 为一个 UE 分配的所有 HS-SCCH称为一个 HS-SCCH 集, 相应的也有一个对应的 HS-SICH集, UE在一个 TTI ( Transmit Time Interval, 发射时间间隔)时刻, 只可能使用该集合中一个 HS-SCCH和一个对应的 HS-SICH。  The chip rate of the TD-SCDMA system is 1.28 Mcps, also known as LCR TDD (low chip rate rate time division duplex mode). According to the 3GPP protocol, the HS-SCCH channel and the HS-SICH channel allocated by the Node B to the UE are For the occurrence of the Node B, the UE may allocate 1 to 4 HS-SCCH physical channels, and correspondingly, the UE is allocated 1 to 4 HS-SICH physical channels. All HS-SCCHs allocated for one UE are referred to as one HS-SCCH set, and correspondingly there is also a corresponding HS-SICH set. The UE may only use one of the set at a TTI (Transmit Time Interval) time. HS-SCCH and a corresponding HS-SICH.
在 TD-SCDMA系统中, UE (移动终端)发射到 Node B的 HS-SICH, 和对应的 Node B发射到 ΌΕ的 HS-SCCH都需要进行功率控制。在 LCR TDD 中, HS-SICH的功率控制包括开环功控和闭环功控。 In the TD-SCDMA system, the UE (mobile terminal) transmits the HS-SICH to the Node B, and the corresponding HS-SCCH transmitted by the Node B to the 需要 requires power control. At LCR TDD The power control of HS-SICH includes open loop power control and closed loop power control.
UE事先接收并存储高层配置的参数, 包括: PRXHS-SICH ( HS-SICH的期 望值) 、 TPC Step Size (发射功率控制步长) 、 Ack-Nack Power Offset (发 射功率偏移量)等, 并根据接收到的 HS-SCCH上承载的 TPC (发射功率控 制)参数, 计算 HS-SICH的开环控制和闭环控制的发射功率。 The UE receives and stores the parameters of the high layer configuration in advance, including: PRX HS - SICH (HS-SICH expected value), TPC Step Size (transmission power control step size), Ack-Nack Power Offset (transmitted power offset), and the like, and The transmit power of the open-loop control and the closed-loop control of the HS-SICH is calculated according to the received TPC (Transmission Power Control) parameter carried on the HS-SCCH.
UE进行 HS-SICH闭环功率控制过程中所使用的 TPC命令, 是 Node B 产生的, 并承载在 HS-SCCH物理信道上, 发送到 UE。 如图 1所示, 显示 了 TPC信息在物理层上的位置, 表明 TPC命令是配置在物理信道上的, 其 中, SS 符号是同步偏移符号(Synchronization Shift Symbol(s) ) , 中间码 (Midamble)是 TDD系统特有的, 主要用于信道估计, TPC符号表示发射功 率控制符号( Transmit Power Control Symbol(s) ) , 144和 864分别表示码片 速率( Chip(s) ) 。  The TPC command used by the UE in the HS-SICH closed-loop power control process is generated by the Node B and carried on the HS-SCCH physical channel and sent to the UE. As shown in FIG. 1, the location of the TPC information on the physical layer is displayed, indicating that the TPC command is configured on the physical channel, where the SS symbol is a Synchronization Shift Symbol(s), and the intermediate code (Midamble) It is unique to TDD systems, mainly for channel estimation, TPC symbol indicates Transmit Power Control Symbol(s), and 144 and 864 represent chip rate (Chip(s)), respectively.
Node B产生 TPC命令的方法为 HS-SICH目标值和测量到的 HS-SICH 功率值相比较, 同时需要考虑到 HS-SICH上承载的 ACK/NACK信息对于 HS-SICH功率测量值的影响, 还需要根据 HS-SICH的预测值和实际测量值 的比较结果来调整 TPC命令。  The method in which the Node B generates the TPC command compares the HS-SICH target value with the measured HS-SICH power value, and also needs to consider the impact of the ACK/NACK information carried on the HS-SICH on the HS-SICH power measurement value. The TPC command needs to be adjusted based on the comparison between the predicted value of the HS-SICH and the actual measured value.
UE发送到 Node B的 HS-SICH物理信道上承载了 ACK/ ACK信息,如 下表。 表 1: HS-SICH上的 ACK/NACK信息
Figure imgf000004_0001
当 UE可以正确地接收到来自 Node B的数据时, UE在 HS-SICH上承 载的 ACK/NACK信息为 ACK ( 1 ) , 当 UE不能正确地接收到来自 Node B 的数据时, UE在上行物理信道 HS-SICH上承载的 ACK/NACK信息为 NACK ( 0 ) 。
The ACK/ACK information is carried on the HS-SICH physical channel sent by the UE to the Node B, as shown in the following table. Table 1: ACK/NACK information on HS-SICH
Figure imgf000004_0001
When the UE can correctly receive data from the Node B, the ACK/NACK information carried by the UE on the HS-SICH is ACK (1), and when the UE cannot correctly receive data from the Node B, the UE is in the uplink physics. The ACK/NACK information carried on the channel HS-SICH is NACK ( 0 ).
在目前的 3GPP协议中, DPCH 包括 UL DPCH (上行专用物理信道) 和 DL DPCH (下行专用物理信道) , 并说明了 DPCH (专用物理信道) 的 发射功率的计算方法, 包括开环功率控制和闭环功率控制, 和 Node B产生 TPC命令的方法。 In the current 3GPP protocol, the DPCH includes UL DPCH (uplink dedicated physical channel) And DL DPCH (Downlink Dedicated Physical Channel), and describes the calculation method of the transmit power of the DPCH (Dedicated Physical Channel), including open loop power control and closed loop power control, and a method in which the Node B generates a TPC command.
但是, 由于高速共享信道和专用物理信道的特点不同, Node B产生用 于 HS-SICH信道的闭环功率控制的 TPC命令的方法和用于专用信道的闭环 功率控制的 TPC命令的方法是不同的, 在目前的协议中并没有说明 Node B 产生用于 HS-SICH的闭环功率控制的 TPC命令的方法。  However, due to the different characteristics of the high-speed shared channel and the dedicated physical channel, the method in which the Node B generates the TPC command for the closed-loop power control of the HS-SICH channel and the method of the TPC command for the closed-loop power control of the dedicated channel are different. The method in which the Node B generates a TPC command for closed loop power control of the HS-SICH is not described in the current protocol.
而且, 在 Node B计算用于 HS-SICH的闭环功率控制的 TPC命令时, 一般需要使用上行步长( HS-SICH TPC step size )预测接收到的功率, 而在 目前的协议中, 网络侧的高层(R C的 RRC层, 无线网络控制器的无线资 源控制层)发送到 Node B的高层信令,没有配置用于 HS-SICH的上行 TPC step size这个信息单元, 也就不能够预测本次 HS-SICH功率值。  Moreover, when the Node B calculates the TPC command for the closed-loop power control of the HS-SICH, it is generally required to use the HS-SICH TPC step size to predict the received power. In the current protocol, the network side The upper layer (the RRC layer of the RC, the radio resource control layer of the radio network controller) sends the high layer signaling to the Node B. The uplink TPC step size information element for the HS-SICH is not configured, and the HS cannot be predicted. - SICH power value.
发明内容 Summary of the invention
本发明所要解决的技术问题在于, 在 TD-SCDMA系统中提供一种节点 The technical problem to be solved by the present invention is to provide a node in a TD-SCDMA system.
B高速共享信息信道功率控制参数的配置方法,用于实现无线网络控制器为 节点 B配置高速共享信息信道的功率控制步长参数 HS-SICH TPC step size 和节点 B使用该参数产生用于高速共享信息信道的发射功率控制命令 TPC, 用于更好的实现对 HS-SICH的闭环功率控制。 The configuration method of the B-speed shared information channel power control parameter is used to implement the power control step parameter HS-SICH TPC step size configured by the radio network controller for the Node B to configure the high-speed shared information channel, and the Node B uses the parameter to generate the high-speed shared The transmit power control command TPC of the information channel is used to better implement closed loop power control of the HS-SICH.
本发明提供一种由网络侧高层为节点 B 配置高速共享信息信道 "TPC step size" 参数的方法, 包括:  The present invention provides a method for configuring a high-speed shared information channel "TPC step size" parameter for a node B by a network-side upper layer, including:
网络侧高层在为用户设备配置高速共享信息信道 "TPC step size" 参数 时, 也相应的通过 BAP协议的高层信令将该参数发送给节点 B, 为节点 B 配置高速共享信息信道 "TPC step size" 参数。  When the high-level shared information channel "TPC step size" parameter is configured for the user equipment, the network-side upper layer also sends the parameter to the node B through the high-level signaling of the BAP protocol, and configures the high-speed shared information channel for the node B. "TPC step size "Parameters.
其中, 所述网络侧高层为无线链路控制器的无线资源控制层。  The network side high layer is a radio resource control layer of the radio link controller.
所述网络侧高层通过在 NBAP协议执行过程中, 在发送到节点 B的消 息中提供包括有高速共享信息信道 "TPC step size" 参数的信息单元' 来将 该参数发送给节点 B。 其中, 所述 NBAP协议执行过程包括: 无线链路建立过程, 无线链路增 加过程, 同步无线链路重配置准备过程, 或异步无线链路重配置过程。 The network side high layer sends the parameter to the Node B by providing an information element including a high speed shared information channel "TPC step size" parameter in the message sent to the Node B during the execution of the NBAP protocol. The NBAP protocol execution process includes: a radio link establishment process, a radio link addition process, a synchronous radio link reconfiguration preparation process, or an asynchronous radio link reconfiguration process.
其中,所述消息包括:无线链路建立请求消息,无线链路增加请求消息, 无线链路重配置准备消息, 或无线链路重配置请求消息。  The message includes: a radio link setup request message, a radio link add request message, a radio link reconfiguration preparation message, or a radio link reconfiguration request message.
其中, 所述信息单元包括 "HS-DSCH TDD Information" 、 "HS-DSCH The information unit includes "HS-DSCH TDD Information" and "HS-DSCH"
Information To Modify ,, 和 " HS-DSCH Information To Modify Unsynchronised"。 Information To Modify ,, and " HS-DSCH Information To Modify Unsynchronised".
本发明还提供一种节点 B 配置用于高速共享信息信道闭环功率控制的 "TPC" 参数的方法, 包括如下步骤: The present invention also provides a method for a Node B to configure a "TPC" parameter for high speed sharing information channel closed loop power control, comprising the following steps:
( 1 )由网络侧高层在为用户设备配置 "TPC step size" 参数时, 也相应 的通过 BAP协议的高层信令将该参数发送给节点 B, 为节点 B配置 "TPC step size" 参数;  (1) When the network side high layer configures the "TPC step size" parameter for the user equipment, the parameter is also sent to the node B through the high layer signaling of the BAP protocol, and the "TPC step size" parameter is configured for the node B;
( 2 )节点 B获取由高层配置的参数" Ack-Nack power offset"、 "HS-SICH SIR Target"及 "TPC step size" , 通过测量获得高速共享信息信道的实际功 率测量值 PHS_SICH, 并解码高速共享信息信道上承载的 ACK/NACK信息;(2) Node B obtains the parameters "Ack-Nack power offset", "HS-SICH SIR Target" and "TPC step size" configured by the upper layer, and obtains the actual power measurement value P HS _ SICH of the high speed shared information channel by measurement, And decoding ACK/NACK information carried on the high speed shared information channel;
( 3 )节点 B根据所述高层配置的参数 "Ack-Nack power offset" 、 测量 得到的 PHS-SICH, 以及解码获得的 ACK/NACK信息, 获得用户设备高层配置 的高速共享信息信道的发射功率值; (3) The Node B obtains the transmit power value of the high-speed shared information channel configured by the upper layer of the user equipment according to the parameter "Ack-Nack power offset" of the high-level configuration, the measured PHS-SICH, and the ACK/NACK information obtained by decoding. ;
( 4 )节点 B将所述高层配置的参数 "HS-SICH SIR Target" , 与所述由 用户设备高层配置的本次高速共享信息信道的发射功率值相比较,并根据比 较结果初步确定本次 "TPC" 参数的值;  (4) The Node B compares the parameter "HS-SICH SIR Target" of the high-level configuration with the transmit power value of the current high-speed shared information channel configured by the upper layer of the user equipment, and initially determines the current time according to the comparison result. The value of the "TPC" parameter;
( 5 ) 节点 Β根据上次由用户设备高层配置的高速共享信息信道发射功 率值、 节点 Β上次产生的 "TPC" 参数的值, 及所述由网络侧高层为节点 Β 配置的 "TPC step size" 参数, 计算出本次高速共享信息信道预测功率值; (5) The node Β transmits the power value according to the high-speed shared information channel configured by the upper layer of the user equipment last time, the value of the "TPC" parameter generated by the node Β last time, and the "TPC step" configured by the network-side upper layer as the node Β The size" parameter calculates the predicted power value of the high-speed shared information channel;
( 6 )节点 B将所述本次高速共享信息信道预测功率值与所述由用户设 备高层配置的本地高速共享信息信道的发射功率值相比较,并根据比较结果 调整确定所述本次 "TPC" 参数的值。 所述方法进一步还包括步骤: (6) The Node B compares the current high-speed shared information channel predicted power value with the transmit power value of the local high-speed shared information channel configured by the user equipment upper layer, and determines the current "TPC" according to the comparison result adjustment. "The value of the parameter. The method further includes the steps of:
( 7 )节点 B将所述本次 "TPC" 参数承载在高速共享控制信道上, 发 送到用户设备。  (7) Node B carries the current "TPC" parameter on the high speed shared control channel and sends it to the user equipment.
其中, 所述网络侧高层为网络侧的无线资源控制层。  The network side high layer is a radio resource control layer on the network side.
所述步骤(3 ) 中:  In the step (3):
当 ACK/NACK信息为 ACK时, 用户设备高层配置的高速共享信息信 道的发射功率为节点 B 接收到的该高速共享信息信道的实际功率测量值 PHS-SICH减去所述 "Ack-Nack power offset" 参数值;  When the ACK/NACK information is ACK, the transmit power of the high-speed shared information channel configured by the upper layer of the user equipment is the actual power measurement value PHS-SICH of the high-speed shared information channel received by the Node B minus the "Ack-Nack power offset". " parameter value;
当 ACK/NACK信息为 NACK时,用户设备高层配置的高速共享信息信 道的发射功率为节点 B 接收到的该高速共享信息信道的实际功率测量值 PHS-SICH。  When the ACK/NACK information is NACK, the transmit power of the high-speed shared information channel configured by the upper layer of the user equipment is the actual power measurement value PHS-SICH of the high-speed shared information channel received by the Node B.
所述步骤(4 ) 中:  In the step (4):
如果所述用户设备高层配置的高速共享信息信道的发射功率值大于所 述 "HS-SICH SIR Target" 参数, 则将 "TPC" 参数设置为 "down" ;  If the transmit power value of the high-speed shared information channel configured by the user equipment is higher than the "HS-SICH SIR Target" parameter, set the "TPC" parameter to "down";
如果所述用户设备高层配置的高速共享信息信道的发射功率值小于或 等于所述 "HS-SICH SIR Target" 参数, 则将 "TPC" 参数设置为 "up" 。  If the transmit power value of the high speed shared information channel configured by the high layer of the user equipment is less than or equal to the "HS-SICH SIR Target" parameter, the "TPC" parameter is set to "up".
所述步骤(5 ) 中:  In the step (5):
当节点 B 上次产生的 "TPC" 参数是 "down" 时, 本次高速共享信息 信道预测功率值 =上次由用户设备高层配置的高速共享信息信道发射功率 值减去所述由网络侧高层为节点 B配置的 "TPC step size" 参数;  When the "TPC" parameter generated by the node B is "down", the current high-speed shared information channel prediction power value = the high-speed shared information channel transmission power value configured by the user equipment upper layer last time minus the network-side high-level The "TPC step size" parameter configured for Node B;
当节点 B上次产生的 "TPC" 参数是 "up" 时, 本次高速共享信息信道 预测功率值 =上次由用户设备高层配置的高速共享信息信道发射功率值加 上所述由网络侧高层为节点 B配置的 "TPC step size" 参数。  When the "TPC" parameter generated by the node B is "up", the current high-speed shared information channel prediction power value = the high-speed shared information channel transmission power value configured by the user equipment upper layer last time plus the network-side high-level The "TPC step size" parameter configured for Node B.
所述步骤(6 ) 中:  In the step (6):
当所述本次高速共享信息信道预测功率值与所述由用户设备高层配置 的本地高速共享信息信道的发射功率值相符时, 则不修改在步骤(4 ) 中确 定的 "TPC" 参数值; 当所述本次高速共享信息信道预测功率值与所述由用户设备高层配置 的本地高速共享信息信道的发射功率值不相符时, 则修改在步驟(4 ) 中确 定的 "TPC" 参数值。 When the current high-speed shared information channel predicted power value is consistent with the transmit power value of the local high-speed shared information channel configured by the user equipment upper layer, the "TPC" parameter value determined in step (4) is not modified; When the current high speed shared information channel predicted power value does not match the transmit power value of the local high speed shared information channel configured by the user equipment upper layer, the "TPC" parameter value determined in step (4) is modified.
所述步骤(6 )进一步还包括:  The step (6) further includes:
当本次高速共享信息信道预测功率值与所述由用户设备高层配置的本 地高速共享信息信道的发射功率值不相符,且本次比较之前连续多次的比较 结果也不相符时, 修改在步驟(4 ) 中确定的 "TPC" 参数值。 其中, 在所 述修改步骤中, 如果所述初步确定的 "TPC" 参数为 "up" , 则将其修改为 "down" ; 如果所述初步确定的 "TPC" 参数为 "down" , 则将其修改为 "up" 。  When the current high-speed shared information channel predicted power value does not match the transmit power value of the local high-speed shared information channel configured by the upper layer of the user equipment, and the comparison results of the consecutive multiple times before the comparison do not match, the modification is performed in the step. The value of the "TPC" parameter determined in (4). Wherein, in the modifying step, if the initially determined "TPC" parameter is "up", then it is changed to "down"; if the initially determined "TPC" parameter is "down", then It was changed to "up".
所述步骤(1 ) 中, 所述网络侧高层通过在 NBAP协议执行过程中, 在 发送到节点 B的消息中提供包括有 "TPC step size" 参数的信息单元, 来将 该参数发送给节点 B。  In the step (1), the network side high layer sends the parameter to the node B by providing an information element including a "TPC step size" parameter in a message sent to the node B during the execution of the NBAP protocol. .
所述步骤(1 ) 中, 所述 NBAP协议过程包括: 无线链路建立过程, 无 线链路增加过程, 同步无线链路重配置准备过程, 或异步无线链路重配置过 程。  In the step (1), the NBAP protocol process includes: a radio link establishment process, a wireless link addition process, a synchronous radio link reconfiguration preparation process, or an asynchronous radio link reconfiguration process.
所述步骤(1 ) 中, 所述消息包括: 无线链路建立请求消息, 无线链路 增加请求消息, 无线链路重配置准备消息, 或无线链路重配置请求消息。  In the step (1), the message includes: a radio link setup request message, a radio link add request message, a radio link reconfiguration preparation message, or a radio link reconfiguration request message.
所述步骤(1 ) 中, 所述信息单元包括 "HS-DSCH TDD Information" 、 "HS-DSCH Information To Modify" 和 "HS-DSCH Information To Modify Unsynchronised"。  In the step (1), the information unit includes "HS-DSCH TDD Information", "HS-DSCH Information To Modify", and "HS-DSCH Information To Modify Unsynchronised".
应用本发明所述的方法,实现了无线网络控制器为节点 B配置高速共享 信息信道的功率控制步长参数 HS-SICH TPC step size,并且节点 B使用该参 数产生并调节用于高速共享信息信道的发射功率控制命令 TPC,能够更好的 实现对 HS-SICH的闭环功率控制。 Applying the method of the present invention, the wireless network controller configures the power control step parameter HS-SICH TPC step size of the high speed shared information channel for the Node B, and the Node B uses the parameter to generate and adjust the information channel for high speed sharing. The transmit power control command TPC can better achieve closed loop power control of the HS-SICH.
附图概述 图 1是在 1.28Mcps TDD系统中的 TPC信息配置在物理层上的位置示意 图; BRIEF abstract 1 is a schematic diagram showing the location of TPC information configuration on a physical layer in a 1.28 Mcps TDD system;
图 2是本发明实施例中 Node B产生用于 HS-SICH闭环功率控制的 TPC 命令的流程图。 本发明的较佳实施方式  2 is a flow chart of a Node B generating a TPC command for HS-SICH closed loop power control in an embodiment of the present invention. Preferred embodiment of the invention
下面将结合具体实施例及附图对本发明所述的方法进行详细说明。  The method of the present invention will be described in detail below with reference to specific embodiments and drawings.
本发明提供了一种无线网络控制器 (RNC ) 为节点 B ( Node B ) 配置 HS-SICH TPC step size的方法, 包括:  The present invention provides a method for a radio network controller (RNC) to configure an HS-SICH TPC step size for a Node B (Node B), including:
RNC在为 UE配置和更新高速共享信息信道 TPC step size参数时,也相 应地为 Node B配置和更新高速共享信息信道 TPC step size参数以保证该参 数值在 UE和 Node B上相同。  When configuring and updating the high-speed shared information channel TPC step size parameter for the UE, the RNC also configures and updates the high-speed shared information channel TPC step size parameter for the Node B to ensure that the parameter value is the same on the UE and the Node B.
其中, 为了保持 HS-SICH TPC step size参数的一致性, RNC不但将此 参数在 Uu接口上通过 RRC协议的高层信令发送给 UE, 也相应地在 Iub接 口上通过 BAP协议的高层信令将此参数发送给 Node B。 UE使用该参数计 算 HS-SICH的闭环功率控制的发射功率, Node B使用该参数预测 UE的 HS-SICH发射功率。  In order to maintain the consistency of the HS-SICH TPC step size parameter, the RNC sends the parameter to the UE through the high-level signaling of the RRC protocol on the Uu interface, and correspondingly passes the high-level signaling of the BAP protocol on the Iub interface. This parameter is sent to Node B. The UE uses this parameter to calculate the transmit power of the closed loop power control of the HS-SICH, and the Node B uses this parameter to predict the HS-SICH transmit power of the UE.
所述 RNC为 Node B配置和更新该高速共享信息信道 TPC step size参数 的具体方法为:  The specific method for the RNC to configure and update the TPC step size parameter of the high speed shared information channel for the Node B is:
在 NBAP协议的一些过程中, 在 RNC发送到 Node B的消息中包括一 些信息单元, 这些信息单元中还包括一个用于 HS-SICH闭环功率控制的调 整功率控制步长的信息单元(HS-SICH TPC step size ) , 可称之为 "TPC step size" 信息单元, RNC通过配置和更新该信息单元的数值以调整用于 UE闭 环功率控制的功率控制步长( TPC step size ) ;  In some processes of the NBAP protocol, the message sent by the RNC to the Node B includes information units, which also include an information unit for adjusting the power control step size of the HS-SICH closed-loop power control (HS-SICH). The TPC step size ) may be referred to as a "TPC step size" information element, and the RNC adjusts the value of the information unit to adjust the power control step size ( TPC step size ) for the UE closed loop power control;
NBAP 协议的这些过程包括: 无线链路建立过程 ("radio link setup procedure" ) , 无线链路增加过程( "radio link addition procedure" ) , 同步无 线链路重配置准备过程 ( "synchronized radio link reconfiguration preparation procedure" ) , 异步无线链路重配置过程 ( "unsynchronized radio link reconfigruarion procedure" )等; These processes of the NBAP protocol include: "radio link setup procedure", "radio link addition procedure", and synchronous radio link reconfiguration preparation ("synchronized radio link reconfiguration preparation"Procedure" ) , asynchronous wireless link reconfiguration process ( "unsynchronized radio link Reconfigruarion procedure");
在以上过程中, 从 RNC发送到 Node B的消息, 包括: 无线链路建立请 求消息( radio link setup request message ) ,无线链路增加请求消息( radio link addition request message ) , 无线链路重配置准备消息 ( radio link reconfiugration preparation message ) , 无线链路重配置请求消息 ( radio link reconfiguration request message )等;  In the above process, the message sent from the RNC to the Node B includes: a radio link setup request message, a radio link addition request message, and a radio link reconfiguration preparation. a radio link reconfiugration preparation message, a radio link reconfiguration request message, or the like;
在以上过程的以上消息中, 可以包括以下信息单元的一个或多个,但这 些信息一般不同时配置在一个消息中: "HS-DSCH TDD Information"、 "HS-DSCH Information To Modify,,和 "HS-DSCH Information To Modify Unsynchronised"。  In the above message of the above process, one or more of the following information units may be included, but the information is generally not configured in one message at the same time: "HS-DSCH TDD Information", "HS-DSCH Information To Modify,, and" HS-DSCH Information To Modify Unsynchronised".
本发明提供了一种 Node B产生用于 HS-SICH闭环功率控制的 TPC参 数的方法, 如图 2所示, 包括以下步骤:  The present invention provides a method for the Node B to generate TPC parameters for HS-SICH closed loop power control. As shown in FIG. 2, the method includes the following steps:
步骤 201 : 首先, RNC在为 UE配置和更新高速共享信息信道 TPC step size参数时,也相应地为 Node B配置和更新高速共享信息信道 TPC step size 参数;  Step 201: First, when the RNC configures and updates the high-speed shared information channel TPC step size parameter for the UE, the RNC also configures and updates the high-speed shared information channel TPC step size parameter for the Node B accordingly;
步骤 202: Node B 已知高层配置的参数 Ack-Nack power offset和 HS-SICH SIR Target, 获取所述高速共享信息信道 TPC step size, 且 Node B 测量得到 HS-SICH的实际功率值: PHS.SICH (测量值) , 并解码 HS-SICH上 ^载的 ACK/NACK信息;  Step 202: The Node B knows the high-level configuration parameters Ack-Nack power offset and HS-SICH SIR Target, obtains the high-speed shared information channel TPC step size, and the Node B measures the actual power value of the HS-SICH: PHS.SICH (measured value), and decoding the ACK/NACK information carried on the HS-SICH;
步骤 203: 首先, Node B判断 ACK/NACK信息是否为 ACK, 再根据以 下公式, 得到 UE高层计算的 HS-SICH发射功率值: PHS-SICH;  Step 203: First, the Node B determines whether the ACK/NACK information is an ACK, and obtains an HS-SICH transmit power value calculated by the UE in a higher layer according to the following formula: PHS-SICH;
步錄 204: 当 ACK/NACK信息为 ACK时,
Figure imgf000010_0001
PHS-SICH (测量值 ) - Ack-Nack power offset;
Step 204: When the ACK/NACK information is ACK,
Figure imgf000010_0001
PHS-SICH (measured value) - Ack-Nack power offset;
步骤 205: 当 ACK/NACK信息为 NACK时, PHS-SICH= PHS-SICH (测量值) ; Step 205: When the ACK/NACK information is NACK, PHS-SICH = PHS-SICH (measured value);
步骤 206: 然后, 将 HS-SICH的目标值和步骤 204或 205得到的 UE高 层计算的 PHS-SICH相比较, 以计算 TPC; Step 206: Then, compare the target value of the HS-SICH with the PHS- SI CH calculated by the UE in step 204 or 205 to calculate the TPC;
步骤 207: 当 PHS-SICH >HS-SICH SIR Target时, TPC命令设置为" down" (下调); Step 207: When PHS-SICH > HS-SICH SIR Target, the TPC command is set to "down" (down)
步骤 208: 当 PHS.SICH <= HS-SICH SIR Target时, TPC命令设置为" up" (上调);  Step 208: When PHS.SICH <= HS-SICH SIR Target, the TPC command is set to "up" (up);
步骤 209: Node B根据 HS-SICH的预测功率值和 UE 高层配置的 HS-SICH发射功率相比较的比较结果,进一步调整步骤步骤 207或 208所产 生的 TPC命令。  Step 209: The Node B further adjusts the TPC command generated in step 207 or 208 according to the comparison result between the predicted power value of the HS-SICH and the HS-SICH transmit power configured by the UE upper layer.
其中, Node B根据上次 UE高层配置的 HS-SICH的发射功率值、 上次 TPC命令和 HS-SICH TPC step size, 预测本次 UE高层配置的 HS-SICH的 发射功率值, 方法如下:  The Node B predicts the transmit power value of the HS-SICH configured by the UE in the upper layer according to the transmit power value of the HS-SICH configured by the UE at the last time, the last TPC command, and the HS-SICH TPC step size. The method is as follows:
当上次 Node B产生的 TPC命令是 "down"时:  When the last TPC command generated by Node B is "down":
本次 HS-SICH预测功率值 =上次 UE高层配置的 HS-SICH功率值 - TPC step size  This HS-SICH predicted power value = HS-SICH power value of the last UE high-level configuration - TPC step size
当上次 Node B产生的 TPC命令是 "up"时:  When the last TPC command generated by Node B is "up":
本次 HS-SICH预测功率值 =上次 UE高层配置的 HS-SICH功率值 + TPC step size  This HS-SICH predicted power value = HS-SICH power value of the last UE high-level configuration + TPC step size
其中: TPC step size就是一个功率控制步长。  Where: TPC step size is a power control step size.
步骤 210: 比较 HS-SICH的预测功率值和 UE高层配置的 HS-SICH发 射功率值是否相符。  Step 210: Compare whether the predicted power value of the HS-SICH matches the HS-SICH transmit power value of the UE high-level configuration.
步骤 211: 当 HS-SICH的预测功率值和 UE高层配置的 HS-SICH发射 功率值相符时, Node B将不修改步骤 207或 208所产生的 TPC命令, 进入 步驟 214;  Step 211: When the predicted power value of the HS-SICH matches the HS-SICH transmit power value configured by the UE, the Node B will not modify the TPC command generated by the step 207 or 208, and proceeds to step 214;
步骤 212: 当 HS-SICH的预测功率值和 UE高层配置的 HS-SICH发射 功率值不相符时, 且在步驟 213中确定之前的 "几次" 比较结果也不符时, Node B将修改步骤 207或 208所产生的 TPC命令, 如: 将步骤 207所产生 的 TPC命令" down"修改为 "up", 或将步骤 208所产生的 TPC命令" up"修改 为" down" , 其中, 所说的比较 "几次,, , 可以是 3 ~ 5次;  Step 212: When the predicted power value of the HS-SICH does not match the HS-SICH transmit power value of the UE high-level configuration, and it is determined in step 213 that the previous "several" comparison result does not match, the Node B will modify step 207. Or 208 generated TPC command, such as: modify the TPC command "down" generated in step 207 to "up", or modify the TPC command "up" generated in step 208 to "down", wherein Compare "several times,,, can be 3 ~ 5 times;
如果步骤 213中判断为前几次比较结果为相符的, 则转到步骤 211; 步骤 214: 最后, Node B将计算得到的 TPC命令字, 承载在 HS-SCCH 物理信道上, 发送到 UE, 用于 UE的 HS-SICH闭环控制过程。 If it is determined in step 213 that the previous comparison results are consistent, then go to step 2 11; Step 214: Finally, the Node B calculates the obtained TPC command word, which is carried on the HS-SCCH physical channel, and is sent to the UE for the HS-SICH closed-loop control process of the UE.
综上所述,本发明实现了无线网络控制器为节点 B配置高速共享信息信 道的功率控制步长参数 HS-SICH TPC step size,并且节点 B使用该参数产生 并调节用于高速共享信息信道的发射功率控制命令 TPC,能够更好的实现对 HS-SICH的闭环功率控制 工业实用性  In summary, the present invention implements a power control step size parameter HS-SICH TPC step size for a wireless network controller to configure a high-speed shared information channel for a Node B, and the Node B uses the parameter to generate and adjust a high-speed shared information channel. Transmit power control command TPC, which can better realize the industrial applicability of closed-loop power control for HS-SICH
本发明所提供的一种节点 B 高速共享信息信道功率控制参数的配置方 法, 在时分同步码分多址 TD-SCDMA系统中, 实现了无线网絡控制器为节 点 B配置高速共享信息信道的功率控制步长参数 HS-SICH TPC step size,并 且节点 B使用该参数产生并调节用于高速共享信息信道的发射功率控制命 令 TPC, 能够更好的实现对 HS-SICH的闭环功率控制。  The invention provides a method for configuring a Node B high-speed shared information channel power control parameter, and implements a power control of a high-speed shared information channel for a Node B in a time-division synchronous code division multiple access TD-SCDMA system. The step size parameter HS-SICH TPC step size, and the Node B uses this parameter to generate and adjust the transmit power control command TPC for the high speed shared information channel, which can better realize the closed loop power control of the HS-SICH.

Claims

权 利 要 求 书 Claim
1、 一种由网络侧高层为节点 B配置高速共享信息信道 "TPC step size" 参数的方法, 其特征在于, 包括:  A method for configuring a high-speed shared information channel "TPC step size" parameter for a node B by a network-side upper layer, wherein the method includes:
网络侧高层在为用户设备配置高速共享信息信道 "TPC step size" 参数 5 时, 也相应的通过 NBAP协议的高层信令将该参数发送给节点 为节点 B 配置高速共享信息信道 "TPC step size" 参数。  When the high-level shared information channel "TPC step size" parameter 5 is configured for the user equipment, the network-side upper layer also sends the parameter to the node through the high-level signaling of the NBAP protocol to configure the high-speed shared information channel "TPC step size" for the node B. parameter.
2、 如权利要求 1所述的方法, 其特征在于, 所述网络侧高层为无线链 路控制器的无线资源控制层。  2. The method according to claim 1, wherein the network side high layer is a radio resource control layer of the radio link controller.
3、如权利要求 1所述的方法,其特征在于,所述网络侧高层通过在 NBAP 0 协议执行过程中, 在发送到节点 B 的消息中提供包括有高速共享信息信道 "TPC step size" 参数的信息单元, 来将该 "TPC step size" 参数发送给节点 B。  The method according to claim 1, wherein the network side high layer provides a "TPC step size" parameter including a high speed shared information channel in a message sent to the Node B during execution of the NBAP 0 protocol. Information unit to send the "TPC step size" parameter to Node B.
4、 如权利要求 3所述的方法, 其特征在于, 所述 NBAP协议执行过程 包括: 无线链路建立过程, 无线链路增加过程, 同步无线链路重配置准备过 4. The method according to claim 3, wherein the NBAP protocol execution process comprises: a radio link setup process, a radio link addition process, and a synchronous radio link reconfiguration preparation.
L5 程, 或异步无线链路重配置过程。 L5 process, or asynchronous wireless link reconfiguration process.
5、 如权利要求 3所述的方法, 其特征在于, 所述消息包括: 无线链路 建立请求消息, 无线链路增加请求消息, 无线链路重配置准备消息, 或无线 链路重配置请求消息。  5. The method according to claim 3, wherein the message comprises: a radio link setup request message, a radio link add request message, a radio link reconfiguration preparation message, or a radio link reconfiguration request message .
6、如权利要求 3所述的方法,其特征在于,所述信息单元包括 "HS-DSCH Z0 TDD Information" 、 "HS-DSCH Information To Modify" 和 HS-DSCH 6. The method of claim 3, wherein the information element comprises "HS-DSCH Z0 TDD Information", "HS-DSCH Information To Modify", and HS-DSCH
Information To Modify Unsynchronised" 0 Information To Modify Unsynchronised" 0
7、 一种节点 B配置用于高速共享信息信道闭环功率控制的 "TPC" 参 数的方法, 其特征在于, 包括如下步骤: A method for configuring a "TPC" parameter for high-speed shared information channel closed-loop power control, wherein the method includes the following steps:
25 ( 1 )由网络侧高层在为用户设备配置 "TPC step size" 参数时, 也相应 的通过 NBAP协议的高层信令将该参数发送给节点 B, 为节点 B配置 "TPC step size" 参数;  25 (1) When the "TPC step size" parameter is configured for the user equipment by the network-side higher layer, the parameter is also sent to the node B through the high-level signaling of the NBAP protocol, and the "TPC step size" parameter is configured for the node B;
( 2 )节点 B获取由高层配置的参数" Ack-Nack power offset"、 "HS-SICH SIR Target" 及 "TPC step size" , 通过测量获得高速共享信息信道的实际功 率测量值 PHS_SICH, 并解码高速共享信息信道上承载的 ACK/ ACK信息;(2) Node B acquires the parameters "Ack-Nack power offset" and "HS-SICH" configured by the upper layer. SIR Target" and "TPC step size", obtain the actual power measurement value P HS _ SICH of the high speed shared information channel, and decode the ACK/ACK information carried on the high speed shared information channel;
( 3 )节点 B根据所述高层配置的参数 "Ack-Nack power offset" 、 测量 得到的 PHS-SICH, 以及解码获得的 ACK/NACK信息, 获得用户设备高层配置 的高速共享信息信道的发射功率值; (3) The Node B obtains the transmit power of the high-speed shared information channel configured by the upper layer of the user equipment according to the parameter "Ack-Nack power offset" of the high-level configuration, the measured P HS - SICH , and the ACK/NACK information obtained by decoding. value;
( 4 )节点 B将所述高层配置的参数 "HS-SICH SIR Target" , 与所述由 用户设备高层配置的本次高速共享信息信道的发射功率值相比较,并根据比 较结果初步确定本次 "TPC" 参数的值;  (4) The Node B compares the parameter "HS-SICH SIR Target" of the high-level configuration with the transmit power value of the current high-speed shared information channel configured by the upper layer of the user equipment, and initially determines the current time according to the comparison result. The value of the "TPC" parameter;
( 5 ) 节点 B根据上次由用户设备高层配置的高速共享信息信道发射功 率值、 节点 B上次产生的 "TPC" 参数的值, 及所述由网络侧高层为节点 B 配置的 "TPC step size" 参数, 计算出本次高速共享信息信道预测功率值; (5) The Node B transmits the power value according to the high-speed shared information channel configured by the upper layer of the user equipment last time, the value of the "TPC" parameter generated by the Node B last time, and the "TPC step" configured by the network-side upper layer as the Node B. The size" parameter calculates the predicted power value of the high-speed shared information channel;
( 6 ) 节点 B将所述本次高速共享信息信道预测功率值与所述由用户设 备高层配置的本地高速共享信息信道的发射功率值相比较,并根据比较结果 调整确定所述本次 "TPC" 参数的值。 (6) The Node B compares the current high-speed shared information channel predicted power value with the transmit power value of the local high-speed shared information channel configured by the user equipment upper layer, and determines the current "TPC" according to the comparison result adjustment. "The value of the parameter.
8、 如权利要求 7所述的方法, 其特征在于, 进一步包括步骤:  8. The method of claim 7, further comprising the steps of:
( 7 ) 节点 B将所述本次调整确定的 "TPC" 参数承载在高速共享控制 信道上, 发送到用户设备。  (7) Node B carries the "TPC" parameter determined by the current adjustment on the high-speed shared control channel, and sends it to the user equipment.
9、 如权利要求 7所述的方法, 其特征在于, 所述网络侧高层为网络侧 的无线资源控制层。  The method according to claim 7, wherein the network side high layer is a radio resource control layer on the network side.
10、 如权利要求 7所述的方法, 其特征在于, 所述步驟(3 ) 中: 当 ACK/NACK信息为 ACK时, 用户设备高层配置的高速共享信息信 道的发射功率为节点 B 接收到的该高速共享信息信道的实际功率测量值 PHS-SICH减去所述 "Ack-Nack power offset" 参数值;  The method according to claim 7, wherein in the step (3): when the ACK/NACK information is ACK, the transmit power of the high-speed shared information channel configured by the upper layer of the user equipment is received by the Node B. Subtracting the "Ack-Nack power offset" parameter value from the actual power measurement value PHS-SICH of the high speed shared information channel;
当 ACK/NACK信息为 NACK时,用户设备高层配置的高速共享信息信 道的发射功率为节点 B 接收到的该高速共享信息信道的实际功率测量值  When the ACK/NACK information is NACK, the transmit power of the high-speed shared information channel configured by the upper layer of the user equipment is the actual power measurement value of the high-speed shared information channel received by the Node B.
11、 如权利要求 7所述的方法, 其特征在于, 所述步骤(4 ) 中: 如果所述用户设备高层配置的高速共享信息信道的发射功率值大于所 述 "HS-SICH SIR Target" 参数, 则将 "TPC" 参数设置为 "down" ; 如果所述用户设备高层配置的高速共享信息信道的发射功率值小于或 等于所述 "HS-SICH SIR Target" 参数, 则将 "TPC" 参数设置为 "up" 。 The method according to claim 7, wherein in the step (4): if the transmit power value of the high-speed shared information channel configured by the user equipment is higher than The "HS-SICH SIR Target" parameter sets the "TPC" parameter to "down"; if the transmit power value of the high-speed shared information channel configured by the user equipment is less than or equal to the "HS-SICH SIR Target" For the parameter, set the "TPC" parameter to "up".
12、 如权利要求 7所述的方法, 其特征在于, 所述步骤(5 ) 中: 当节点 B上次产生的 "TPC" 参数是 "down" 时, 本次高速共享信息 信道预测功率值-上次由用户设备高层配置的高速共享信息信道发射功率 值减去所述由网络侧高层为节点 B配置的 "TPC step size" 参数;  12. The method according to claim 7, wherein in the step (5): when the "TPC" parameter generated by the node B last time is "down", the current high-speed shared information channel predicted power value - The high-speed shared information channel transmit power value configured by the user equipment upper layer last time minus the "TPC step size" parameter configured by the network side upper layer for the node B;
当节点 B上次产生的 "TPC" 参数是 "up" 时, 本次高速共享信息信道 预测功率值 =上次由用户设备高层配置的高速共享信息信道发射功率值加 上所述由网络侧高层为节点 B配置的 "TPC step size" 参数。  When the "TPC" parameter generated by the node B is "up", the current high-speed shared information channel prediction power value = the high-speed shared information channel transmission power value configured by the user equipment upper layer last time plus the network-side high-level The "TPC step size" parameter configured for Node B.
13、 如权利要求 7所述的方法, 其特征在于, 所述步骤(6 ) 中: 当所述本次高速共享信息信道预测功率值与所述由用户设备高层配置 的本地高速共享信息信道的发射功率值相符时, 则不修改在步骤(4 ) 中确 定的 "TPC" 参数值;  The method according to claim 7, wherein in the step (6): when the current high-speed shared information channel predicted power value and the local high-speed shared information channel configured by the user equipment upper layer When the transmit power values match, the value of the "TPC" parameter determined in step (4) is not modified;
当所述本次高速共享信息信道预测功率值与所述由用户设备高层配置 的本地高速共享信息信道的发射功率值不相符时, 则修改在步骤(4 ) 中确 定的 "TPC" 参数值。  When the current high speed shared information channel predicted power value does not match the transmit power value of the local high speed shared information channel configured by the user equipment upper layer, the "TPC" parameter value determined in step (4) is modified.
14、 如权利要求 13所述的方法, 其特征在于, 所述步骤(6 )进一步包 括:  14. The method according to claim 13, wherein the step (6) further comprises:
当本次高速共享信息信道预测功率值与所述由用户设备高层配置的本 地高速共享信息信道的发射功率值不相符,且本次比较之前连续多次的比较 结果也不相符时, 修改在步驟(4 ) 中确定的 "TPC" 参数值。  When the current high-speed shared information channel predicted power value does not match the transmit power value of the local high-speed shared information channel configured by the upper layer of the user equipment, and the comparison results of the consecutive multiple times before the comparison do not match, the modification is performed in the step. The value of the "TPC" parameter determined in (4).
15、 如权利要求 13或 14所述的方法, 其特征在于, 所述修改步骤, 如 果所述初步确定的 "TPC"参数为 "up" , 则将其修改为 "down" ; 如果所 述初步确定的 "TPC" 参数为 "down" , 则将其修改为 "up" 。  The method according to claim 13 or 14, wherein the modifying step, if the initially determined "TPC" parameter is "up", then modifying it to "down"; if the preliminary If the determined "TPC" parameter is "down", modify it to "up".
16、 如权利要求 7所述的方法, 其特征在于, 所述步骤(1 ) 中, 所述 网络侧高层通过在 BAP协议执行过程中, 在发送到节点 B的消息中提供 包括有 "TPC step size" 参数的信息单元, 来将该参数发送给节点 B。 The method according to claim 7, wherein in the step (1), the network side high layer provides the "TPC step" in the message sent to the node B during the execution of the BAP protocol. The information element of the size" parameter to send this parameter to Node B.
17、 如权利要求 7所述的方法, 其特征在于, 所迷步骤 u ) 甲,17. The method of claim 7 wherein said step u) A,
NBAP协议过程包括: 无线链路建立过程, 无线链路增加过程, 同步无线链 路重配置准备过程, 或异步无线链路重配置过程。 The NBAP protocol process includes: a radio link setup procedure, a radio link addition procedure, a synchronous radio link reconfiguration preparation process, or an asynchronous radio link reconfiguration procedure.
18、 如权利要求 7所述的方法, 其特征在于, 所述步驟(1 ) 中, 所述 消息包括: 无线链路建立请求消息, 无线链路增加请求消息, 无线链路重配 置准备消息, 或无线链路重配置请求消息。  The method according to claim 7, wherein in the step (1), the message comprises: a radio link setup request message, a radio link add request message, a radio link reconfiguration preparation message, Or a radio link reconfiguration request message.
19、 如权利要求 7所述的方法, 其特征在于, 所述步骤(1 ) 中, 所述 信息单元包括 "HS-DSCH TDD Information" 、 "HS-DSCH Information To Modify" 和 "HS-DSCH Information To Modify Unsynchronised,,。  The method according to claim 7, wherein in the step (1), the information unit includes "HS-DSCH TDD Information", "HS-DSCH Information To Modify", and "HS-DSCH Information". To Modify Unsynchronised,,.
PCT/CN2007/001045 2006-04-30 2007-03-30 A power control parameter configuration method for high speed shared information channel by node b WO2007124661A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200610077555.1 2006-04-30
CNB2006100775551A CN100544228C (en) 2006-04-30 2006-04-30 A kind of collocation method of node B high-speed sharing information channel power control parameter

Publications (1)

Publication Number Publication Date
WO2007124661A1 true WO2007124661A1 (en) 2007-11-08

Family

ID=38655056

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2007/001045 WO2007124661A1 (en) 2006-04-30 2007-03-30 A power control parameter configuration method for high speed shared information channel by node b

Country Status (2)

Country Link
CN (1) CN100544228C (en)
WO (1) WO2007124661A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101534547B (en) * 2009-04-15 2011-12-07 北京天碁科技有限公司 Mobile terminal and downward power control method
CN102378338B (en) * 2010-08-12 2015-08-12 中兴通讯股份有限公司 The method and system that a kind of semi-continuous scheduling mode power controls
CN102378334B (en) * 2010-08-12 2015-08-12 中兴通讯股份有限公司 The method and system of acquiring size of closed loop power control region
CN103369652B (en) * 2012-03-30 2016-03-16 展讯通信(上海)有限公司 Method for controlling downlink power, device and mobile terminal

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1406006A (en) * 2001-09-17 2003-03-26 华为技术有限公司 Method for identifying service quality of user's interface transmission network layer in wireless switch-in network
WO2003096569A1 (en) * 2002-05-09 2003-11-20 Nokia Corporation Multiple level power control command signaling
KR20040016330A (en) * 2002-08-16 2004-02-21 삼성전자주식회사 Apparatus for controlling transmission power of high speed shared information channel in time division duplexing code division multiple access communication system using high speed downlink packet access scheme and method thereof
US20050124373A1 (en) * 2003-11-21 2005-06-09 Interdigital Technology Corporation Wireless communication method and apparatus for controlling the transmission power of downlink and uplink coded composite transport channels based on discontinuous transmission state values
CN1750428A (en) * 2005-11-02 2006-03-22 中兴通讯股份有限公司 High speed shared control channels and method for realizing high speed shared information channel power

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1406006A (en) * 2001-09-17 2003-03-26 华为技术有限公司 Method for identifying service quality of user's interface transmission network layer in wireless switch-in network
WO2003096569A1 (en) * 2002-05-09 2003-11-20 Nokia Corporation Multiple level power control command signaling
KR20040016330A (en) * 2002-08-16 2004-02-21 삼성전자주식회사 Apparatus for controlling transmission power of high speed shared information channel in time division duplexing code division multiple access communication system using high speed downlink packet access scheme and method thereof
US20050124373A1 (en) * 2003-11-21 2005-06-09 Interdigital Technology Corporation Wireless communication method and apparatus for controlling the transmission power of downlink and uplink coded composite transport channels based on discontinuous transmission state values
CN1750428A (en) * 2005-11-02 2006-03-22 中兴通讯股份有限公司 High speed shared control channels and method for realizing high speed shared information channel power

Also Published As

Publication number Publication date
CN100544228C (en) 2009-09-23
CN101064539A (en) 2007-10-31

Similar Documents

Publication Publication Date Title
US8681771B2 (en) Uplink synchronous control method and apparatus of the high speed shared information channel
KR100967852B1 (en) Method, apparatus and computer program providing signaling of zero/full power allocation for high speed uplink packet accessHSUPA
JP6422129B2 (en) Terminal device, method, and integrated circuit
JP4927870B2 (en) Method, system and apparatus for distributing resources of base station nodes
AU2007269598B2 (en) Wireless communication method of selecting an enhanced uplink transport format combination by setting a scheduling grant payload to the highest payload that can be transmitted
WO2007098675A1 (en) Method for updating the power control parameter and the transmitting power of the high speed share information channel
US20090180433A1 (en) Method of controlling transmission power in a wireless communication system
WO2007051412A1 (en) Implement method for power control of the high speed shared control channel and the high speed shared information channel
CN114423082A (en) Method for multi-uplink carrier data transmission in mobile communication and apparatus therefor
CN101990779B (en) Method and apparatus for correcting power in uplink synchronization in td-scdma handover
US8768396B2 (en) Method and device for realizing power control on a control channel
KR20070121575A (en) Method and apparatus for maintaining uplink timing synchronization in mobile communication system
JPWO2005076655A1 (en) Mobile station, base station, communication system, and communication method
WO2007124661A1 (en) A power control parameter configuration method for high speed shared information channel by node b
TW201121347A (en) Method and apparatus for improving synchronization shift command transmission efficiency in TD-SCDMA uplink synchronization
EP2223439B1 (en) Method for selecting reference e-tfci based on requested service
KR101388312B1 (en) A method of controlling transmission power in a wireless communication system
BR112016022035B1 (en) USER EQUIPMENT AND BASE STATIONS TO CONTROL UPLOAD LINK POWER
CN101552628B (en) Method and device for controlling launching power of shared control channel
JP2006054677A (en) Mobile communication system and mobile station
WO2012019487A1 (en) Method and system for power control in semi-persistent scheduling mode
WO2012019488A1 (en) Method and system for controlling synchronization in semi-persistent scheduling mode
WO2014161158A1 (en) Channel configuration method, device and system
TW201244517A (en) Power headroom reporting for carrier aggregation
WO2010069268A1 (en) Power control method and device for high speed shared information channel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07720619

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07720619

Country of ref document: EP

Kind code of ref document: A1