WO2007122723A1 - Antenna device - Google Patents

Antenna device Download PDF

Info

Publication number
WO2007122723A1
WO2007122723A1 PCT/JP2006/308411 JP2006308411W WO2007122723A1 WO 2007122723 A1 WO2007122723 A1 WO 2007122723A1 JP 2006308411 W JP2006308411 W JP 2006308411W WO 2007122723 A1 WO2007122723 A1 WO 2007122723A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductor
bias line
slot
rectangular
antenna device
Prior art date
Application number
PCT/JP2006/308411
Other languages
French (fr)
Japanese (ja)
Inventor
Yoko Koga
Kazushi Nishizawa
Yasuhiko Urata
Tamotsu Nishino
Hiroaki Miyashita
Shigeru Makino
Original Assignee
Mitsubishi Denki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Denki Kabushiki Kaisha filed Critical Mitsubishi Denki Kabushiki Kaisha
Priority to PCT/JP2006/308411 priority Critical patent/WO2007122723A1/en
Priority to JP2008511922A priority patent/JP4527167B2/en
Publication of WO2007122723A1 publication Critical patent/WO2007122723A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas
    • H01Q13/106Microstrip slot antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0442Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular tuning means

Definitions

  • the present invention relates to an antenna device in which a planar antenna having a polarization switching function with reduced influence of a bias line is realized by loading a switch.
  • High performance means that it can operate in a wide frequency band, has resonance characteristics at multiple frequencies, left-handed rotation, right-handed rotation, vertical rotation, horizontal Z, or those
  • FIG. 8 (a) is a plan view of a conventional antenna device
  • FIG. 8 (b) is a cross-sectional view of the central portion of (a).
  • This antenna device is loaded with a cross-shaped slot 23 inside a microstrip antenna 21 and a star-shaped four PIN diodes 22 in the center, and switches the switch to change the direction of the current flowing on the antenna.
  • the vertical Z horizontal polarization is switched.
  • the diode control device 27 including the bias line is supplied by a coaxial line from a feeding point 24 near the center of the force notch antenna provided under the antenna substrate (dielectric substrate) 25. There is concern that the noise wire will affect the antenna characteristics.
  • a ground conductor 26 is provided on the back surface of the dielectric substrate 25.
  • Non-patent document 1 Eisuke Nishiyama, Koichi Takenaka, Masayoshi Aikawa "Microstrip antenna with orthogonal polarization function" IEICE Transactions B, Vol. J85—B, No. 9, pp. 1519
  • the bias line may affect the antenna characteristics when power is supplied from the vicinity of the center of the patch antenna through the coaxial line.
  • the bias line When wiring on the same plane as the antenna, there will be a part that intersects the antenna pattern and the bias line, which will be a problem when creating the noise line on the substrate with patterning, and further, on the same plane as the antenna.
  • the bias line When the bias line is wired to the antenna, the RF signal propagates through the noise line and affects the antenna characteristics, so there is a problem that it is necessary to take some measures.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to obtain an antenna device capable of reducing the influence of a bias line in a flat antenna. is there.
  • the antenna device is a planar rectangular patch antenna, and includes a dielectric substrate, a ground conductor formed on a back surface of the dielectric substrate, and a rectangle formed on the surface of the dielectric substrate.
  • a switch disposed on a diagonal line of the rectangular first and second conductors so as to couple the first conductor and the second conductor, and on the same plane as the first and second conductors;
  • a tip open stub having a length of Z4, and a second slot wider than the width of the noise line is formed below the bias line near the corner of the rectangular first conductor,
  • the bias line is wired so as to bridge the first conductor at the portion where the first conductor and the second slot intersect, and the feeding point is arranged at the center of the
  • the antenna device according to the present invention has the effect of reducing the influence of the bias line in the planar antenna.
  • FIG. 1 is a perspective view showing a configuration of an antenna apparatus according to Embodiment 1 of the present invention.
  • FIG. 2 is an enlarged view showing a cross section of a region 9 in FIG.
  • FIG. 3 is a perspective view showing a configuration of an antenna apparatus according to Embodiment 2 of the present invention.
  • FIG. 4 is a diagram showing the reflection characteristics of the antenna device according to Example 2 of the present invention.
  • FIG. 5 is a diagram showing radiation characteristics of the antenna device according to Example 2 of the present invention.
  • FIG. 6 is a perspective view showing a configuration of an antenna apparatus according to Embodiment 3 of the present invention.
  • FIG. 7 is a diagram showing another configuration of the antenna apparatus according to Embodiment 3 of the present invention.
  • FIG. 8 is a diagram showing a configuration of a conventional antenna device.
  • FIG. 1 is a perspective view showing a configuration of an antenna device (planar antenna) according to Embodiment 1 of the present invention.
  • FIG. 2 is an enlarged view showing a cross section of the region 9 in FIG.
  • the same reference numerals indicate the same or corresponding parts.
  • an antenna device (planar antenna) according to Example 1 is formed on a dielectric substrate 1, a ground conductor 2 formed on the back surface of the dielectric substrate 1, and a surface of the dielectric substrate 1.
  • First rectangular conductor 4 rectangular annular slot 5, nose wire 6 (6a, 6b, 6c, 6e), open-ended stub 7 connected to bias wire 6 respectively,
  • Four rectangular slots (openings) 8 provided in one conductor 3 and four switches 10 (10a, 10b, 10c, 1 Oe) are provided.
  • FIG. 2 shows a cross section along the bias line 6c, showing a cross section of the slot 8 portion of the first conductor 3 formed on the dielectric substrate 1, and the bias line 6c is the first conductor 3 Passed over the bridge.
  • the switch 10 When the bias voltage is not applied, the switch 10 is in the OFF state, and the first conductor 3 and the second conductor 4 are not connected.
  • Power feeding is performed to the center of the second conductor 4 by a coaxial line or the like.
  • a bias voltage is applied to the bias line 6 to control ONZOFF of the switch 10.
  • the switch 10 to be controlled is selected according to the desired polarization direction.
  • a bias voltage is applied to the noisy wires 6a and 6b, and the switches 10a and 10b are turned on, that is, the switch 10a. 10b, the first conductor 3 and the second conductor 4 are connected.
  • the shape of the slot 5 changes, the direction of the current flowing on the first conductor 3 and the second conductor 4 changes, and the polarization can be directed in a desired direction.
  • the sizes of the first conductor 3 and the second conductor 4 and the width of the slot 5 are optimized in advance so as to achieve matching at a desired frequency. Matching can be achieved by the interaction of the size of the first conductor 3 and the second conductor 4 and the width of the slot 5, but if matching is achieved, the resonance frequency will be reduced to the size of the first conductor 3. The degree of dependence is high.
  • the slot 8 opened in the first conductor 3 has a size that does not affect the path of the current flowing on the first conductor 3 as much as possible.
  • the bias line 6 passed over the first conductor 3 and the first conductor 3 form a capacitor, and electrostatic force is generated in the direction that attracts the two. Arise. This size depends on the distance between the two, the area of the opposing part, the Young's modulus of the material of the bias line 6 and the spring constant. Therefore, the width and length of the bias line 6 must be selected considering the above. Absent.
  • the length of the stub 7 is ⁇ / 4 from the open end and the stub 7 is attached to the bias line 6 at a position of ⁇ ⁇ ⁇ ⁇ 4 from the edge of the first conductor 3, the first conductor 3
  • the bias line 6 ahead of the edge of the edge can be seen at the open end, reducing the propagation of the RF signal and suppressing the above-mentioned effects.
  • the length of the stub 7 and the distance from the edge are optimized at the time of design which is not strictly ⁇ / 4.
  • FIG. 3 is a perspective view showing the configuration of the antenna device according to Embodiment 2 of the present invention.
  • FIG. 4 is a diagram showing the reflection characteristics of the antenna device according to Example 2 of the present invention.
  • FIG. 5 is a diagram showing the radiation characteristics of the antenna device according to Example 2 of the present invention.
  • the conductor pattern 11 connects the first conductor 3 and the second conductor 4.
  • the switch 10 is controlled to be turned off by applying a bias voltage to the bias line 6 as in the first embodiment.
  • the switch 10 to be controlled when switching the polarization is one for the desired polarization direction, the wiring of the bias line 6 and the configuration of the bias circuit become easy.
  • Figure 4 shows the calculated reflection characteristics of the antenna device according to Example 2.
  • the solid line In the case of the structure shown in FIG. 3, a dashed-dotted line b is a stub in the noisy line 6 when analyzed with only the first conductor 3, the second conductor 4, and the switch 10 without the bias line 6. This is the calculation result when 7 is not added.
  • stub 7 By attaching stub 7 in this way, you can raise it if you do not! It can be seen that the reflection characteristics can be improved to the same level as in the case where the noise line 6 is not present.
  • FIG. 5 shows the calculated radiation characteristics of the antenna device according to the second embodiment.
  • d, e, f, and g are the polarization components of the radiation pattern.
  • the coordinate system is as shown in Fig. 3, assuming that switch 10b is ON and switch 10c is OFF.
  • the thin lines e and g are ⁇ components, and the thick lines d and f are ⁇ components.
  • switch 10b is set to ON, the main polarization direction is the vertical direction of the page.
  • FIG. 6 is a perspective view showing the configuration of the antenna apparatus according to Embodiment 3 of the present invention.
  • FIG. 7 is a diagram showing another configuration of the antenna apparatus according to Embodiment 3 of the present invention.
  • FIG. 6 (a) is a front perspective view of a planar antenna (antenna device), and FIG. 6 (b) is a rear perspective view of the planar antenna (antenna device).
  • FIG. 6 the same symbols as those in FIG. 1 are omitted.
  • a slot 12 is opened in the ground conductor 2 under the bias line 6.
  • Switching the polarization direction by ONZOFF of the switch 10 is the same as in the first embodiment.
  • a slot 12 having a length of about ⁇ ⁇ 2 is opened from the edge of the first conductor 3 at a position that is an integral multiple of ⁇ ⁇ 2.
  • the bias line 6 at the edge of the first conductor 3 can be regarded as the force applied to the RF signal as if it were an open end, and propagation of the RF signal is prevented. Can be reduced.
  • the length and position of the slot 12 are optimized at the time of design, which is not strictly ⁇ 2 or an integer multiple of ⁇ 2.
  • the switch 10 may be a MEMS (Micro Electro Mechanical System) switch using a micromachining technology.
  • the planar antenna patterns 3 and 4, the switch 10, and the bias line 6 can be integrally formed, so that the processing accuracy is improved.
  • Micromachining technology is very effective in the high-frequency band where the physical size of the antenna is small, because it allows processing in units of microns.
  • a conductor pattern 13 that forms a capacitor may be formed.
  • the wiring location of the bias line 6 of the planar antenna (antenna device) described above does not necessarily have to be as shown in FIGS. 1 to 7, and the bias line is wired in a cross shape around the planar antenna. Is also possible. In this case, even if the polarization is switched, the relative position of the bias line does not change, so that it is possible to suppress changes in characteristics during operation when the polarization is changed.
  • the shape need not necessarily be a rectangle, and may be a polygon. Also, when it is necessary to load the switch for a purpose other than to provide the polarization switching function, it is effective to provide a stub by passing it over the antenna pattern as in the present invention. .

Abstract

Provided is an antenna device capable of reducing the influences of a bias line in a plane antenna. The antenna device comprises a dielectric substrate, an earthing member formed on the back of the dielectric substrate, a first conductor of a rectangular annulus shape formed on the surface of the dielectric substrate, a second conductor of a rectangular shape so formed on the inner side of the first conductor as to form a closed annular slot, a switch so arranged diagonally of the first and second conductors as to joint the first conductor and the second conductor, a bias line wired on the plane common to the first conductor and the second conductor for controlling the switch, and an open leading end stub connected with the bias line and having a length of a quarter of the wavelength. A wider slot than the width of the bias line is formed in the vicinity of the corner of the first conductor of the rectangular shape. The bias line is wired in a bridge girder shape over the first conductor at the portion where the first conductor and the slot cross, and a feeding point is arranged at the center of the second conductor.

Description

明 細 書  Specification
アンテナ装置  Antenna device
技術分野  Technical field
[0001] この発明は、バイアス線の影響を低減させた偏波切替機能を有する平面アンテナ を、スィッチを装荷することにより実現させたアンテナ装置に関するものである。  [0001] The present invention relates to an antenna device in which a planar antenna having a polarization switching function with reduced influence of a bias line is realized by loading a switch.
背景技術  Background art
[0002] 近年の高周波帯での通信'レーダシステムの開発に伴い、より小形、高性能なアン テナの需要が高まっている。ここで言う高性能とは、広い周波数帯域で動作可能なこ と、多周波で共振特性を持つこと、左旋 Z右旋あるいは垂直 Z水平、あるいはそれら [0002] With the recent development of communication systems and radar systems in the high frequency band, there is an increasing demand for smaller and higher performance antennas. High performance here means that it can operate in a wide frequency band, has resonance characteristics at multiple frequencies, left-handed rotation, right-handed rotation, vertical rotation, horizontal Z, or those
4種の偏波の切替機能'または共有機能を持つことが例として挙げられる。また、アン テナの小型化は、ひいてはレーダ'通信機器の小型化、消費電力の低減へとつなが る。 As an example, it has four types of polarization switching function 'or sharing function. In addition, downsizing of antennas leads to downsizing of radar communication equipment and reduction of power consumption.
[0003] 偏波を切替える従来のアンテナ装置について図 8を参照しながら説明する(例えば 、非特許文献 1参照)。図 8 (a)は、従来のアンテナ装置の平面図、図 8 (b)は、(a)の 中央部分の断面図である。このアンテナ装置は、マイクロストリップアンテナ 21の内部 に十字型のスロット 23と、その中央にスター型に 4個の PINダイオード 22を装荷し、ス イッチを切替えてアンテナ上に流れる電流の向きを変えることで垂直 Z水平偏波を 切替えている。このアンテナ装置では、バイアス線を含むダイオード制御装置 27は、 アンテナ基板 (誘電体基板) 25下に設けられている力 ノツチアンテナの中心近傍の 給電点 24から同軸線路によって給電する場合には、このノィァス線がアンテナ特性 に影響を及ぼすことが懸念される。なお、誘電体基板 25の裏面には、地導体 26が設 けられている。  [0003] A conventional antenna device for switching the polarization will be described with reference to FIG. 8 (see, for example, Non-Patent Document 1). FIG. 8 (a) is a plan view of a conventional antenna device, and FIG. 8 (b) is a cross-sectional view of the central portion of (a). This antenna device is loaded with a cross-shaped slot 23 inside a microstrip antenna 21 and a star-shaped four PIN diodes 22 in the center, and switches the switch to change the direction of the current flowing on the antenna. The vertical Z horizontal polarization is switched. In this antenna device, the diode control device 27 including the bias line is supplied by a coaxial line from a feeding point 24 near the center of the force notch antenna provided under the antenna substrate (dielectric substrate) 25. There is concern that the noise wire will affect the antenna characteristics. A ground conductor 26 is provided on the back surface of the dielectric substrate 25.
[0004] 平面アンテナで偏波切替機能を持たせる場合は、先に例として挙げたアンテナの ようにアンテナパターン内にスロットとスィッチを設け、スィッチの切替によりアンテナ 上の電流の流れを変えることが有効である。しかし、先に述べたようにバイアス線を基 板下に配線することは、給電を中心から行なう場合に特性に影響を及ぼす。この影 響を回避するためにバイアス線をアンテナと同一平面上に配線する場合、アンテナ パターンとバイアス線に交差する部分が生じ、バイアス線をパターユングで基板上に 作成する場合する際に問題となる。 [0004] When a planar antenna has a polarization switching function, it is possible to provide slots and switches in the antenna pattern as in the antenna mentioned above as an example, and change the current flow on the antenna by switching the switches. It is valid. However, as described above, the wiring of the bias line below the substrate affects the characteristics when feeding from the center. To avoid this effect, when the bias line is wired on the same plane as the antenna, the antenna A part intersecting the pattern and the bias line is generated, which becomes a problem when the bias line is formed on the substrate by patterning.
[0005] さらに、アンテナと同一平面上にバイアス線を配線した場合、バイアス線に RF信号 が伝搬しアンテナ特性に、例えば共振周波数、放射パターンのずれ等の影響を及ぼ すため、何らかの対策を講じる必要があった。  [0005] Furthermore, when a bias line is wired on the same plane as the antenna, an RF signal propagates through the bias line and affects the antenna characteristics such as resonance frequency and radiation pattern deviation. There was a need.
[0006] 非特許文献 1 :西山英輔、竹中公一、相川正義共著"直交偏波機能を有するマイクロ ストリップアンテナ"電子情報通信学会論文誌 B、 Vol. J85— B、 No. 9、 pp. 1519[0006] Non-patent document 1: Eisuke Nishiyama, Koichi Takenaka, Masayoshi Aikawa "Microstrip antenna with orthogonal polarization function" IEICE Transactions B, Vol. J85—B, No. 9, pp. 1519
— 1525、 2002年 9月。 — 1525, September 2002.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0007] 上述したように、従来のアンテナ装置では、パッチアンテナの中心近傍から同軸線 路によって給電する場合には、このバイアス線がアンテナ特性に影響を及ぼすことが 懸念され、また、バイアス線をアンテナと同一平面上に配線する場合、アンテナパタ ーンとバイアス線に交差する部分が生じ、ノ ィァス線をパターユングで基板上に作成 する場合する際に問題となり、さらに、アンテナと同一平面上にバイアス線を配線した 場合、ノィァス線に RF信号が伝搬しアンテナ特性に影響を及ぼすため、何らかの対 策を講じる必要があるという問題点があった。  [0007] As described above, in the conventional antenna device, there is a concern that the bias line may affect the antenna characteristics when power is supplied from the vicinity of the center of the patch antenna through the coaxial line. When wiring on the same plane as the antenna, there will be a part that intersects the antenna pattern and the bias line, which will be a problem when creating the noise line on the substrate with patterning, and further, on the same plane as the antenna. When the bias line is wired to the antenna, the RF signal propagates through the noise line and affects the antenna characteristics, so there is a problem that it is necessary to take some measures.
[0008] この発明は、上述のような課題を解決するためになされたもので、その目的は、平 面アンテナにお 、て、バイアス線の影響を低減することができるアンテナ装置を得る ものである。  [0008] The present invention has been made to solve the above-described problems, and an object of the present invention is to obtain an antenna device capable of reducing the influence of a bias line in a flat antenna. is there.
課題を解決するための手段  Means for solving the problem
[0009] この発明に係るアンテナ装置は、平面矩形パッチアンテナであって、誘電体基板と 、前記誘電体基板の裏面に形成された地導体と、前記誘電体基板の表面に形成さ れた矩形の環状の第 1の導体と、前記誘電体基板の表面、かつ閉じた環状の第 1の スロットを形成するように、前記第 1の導体の内側に形成された矩形の第 2の導体と、 前記第 1の導体及び前記第 2の導体を結合するように前記矩形の第 1及び第 2の導 体の対角線上に配置されたスィッチと、前記第 1及び第 2の導体と同一平面上に配 線され、前記スィッチを制御するバイアス線と、前記バイアス線に接続され、波長の 1 Z4の長さを有する先端開放スタブとを設け、前記矩形の第 1の導体の隅付近には、 前記バイアス線の下に前記ノィァス線の幅よりも幅広の第 2のスロットが形成され、前 記バイアス線は、前記第 1の導体と前記第 2のスロットが交差する部分では前記第 1 の導体上を橋げた状に渡されて配線され、給電点が前記第 2の導体の中心に配置さ れているものである。 The antenna device according to the present invention is a planar rectangular patch antenna, and includes a dielectric substrate, a ground conductor formed on a back surface of the dielectric substrate, and a rectangle formed on the surface of the dielectric substrate. An annular first conductor, and a rectangular second conductor formed inside the first conductor so as to form a surface of the dielectric substrate and a closed annular first slot; A switch disposed on a diagonal line of the rectangular first and second conductors so as to couple the first conductor and the second conductor, and on the same plane as the first and second conductors; A bias line that is wired and controls the switch, and is connected to the bias line and has a wavelength of 1 A tip open stub having a length of Z4, and a second slot wider than the width of the noise line is formed below the bias line near the corner of the rectangular first conductor, The bias line is wired so as to bridge the first conductor at the portion where the first conductor and the second slot intersect, and the feeding point is arranged at the center of the second conductor. It is what has been.
発明の効果  The invention's effect
[0010] この発明に係るアンテナ装置は、平面アンテナにおいて、バイアス線の影響を低減 することができると!/、う効果を奏する。  [0010] The antenna device according to the present invention has the effect of reducing the influence of the bias line in the planar antenna.
図面の簡単な説明  Brief Description of Drawings
[0011] [図 1]この発明の実施例 1に係るアンテナ装置の構成を示す斜視図である。  FIG. 1 is a perspective view showing a configuration of an antenna apparatus according to Embodiment 1 of the present invention.
[図 2]図 1の領域 9の断面を拡大して示す図である。  FIG. 2 is an enlarged view showing a cross section of a region 9 in FIG.
[図 3]この発明の実施例 2に係るアンテナ装置の構成を示す斜視図である。  FIG. 3 is a perspective view showing a configuration of an antenna apparatus according to Embodiment 2 of the present invention.
[図 4]この発明の実施例 2に係るアンテナ装置の反射特性を示す図である。  FIG. 4 is a diagram showing the reflection characteristics of the antenna device according to Example 2 of the present invention.
[図 5]この発明の実施例 2に係るアンテナ装置の放射特性を示す図である。  FIG. 5 is a diagram showing radiation characteristics of the antenna device according to Example 2 of the present invention.
[図 6]この発明の実施例 3に係るアンテナ装置の構成を示す斜視図である。  FIG. 6 is a perspective view showing a configuration of an antenna apparatus according to Embodiment 3 of the present invention.
[図 7]この発明の実施例 3に係るアンテナ装置の別の構成を示す図である。  FIG. 7 is a diagram showing another configuration of the antenna apparatus according to Embodiment 3 of the present invention.
[図 8]従来のアンテナ装置の構成を示す図である。  FIG. 8 is a diagram showing a configuration of a conventional antenna device.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0012] この発明の実施例 1〜実施例 3について以下説明する。 [0012] Examples 1 to 3 of the present invention will be described below.
実施例 1  Example 1
[0013] この発明の実施例 1に係るアンテナ装置について図 1及び図 2を参照しながら説明 する。図 1は、この発明の実施例 1に係るアンテナ装置(平面アンテナ)の構成を示す 斜視図である。また、図 2は、図 1の領域 9の断面を拡大して示す図である。なお、以 降では、各図中、同一符号は同一又は相当部分を示す。  An antenna device according to Embodiment 1 of the present invention will be described with reference to FIGS. 1 and 2. FIG. 1 is a perspective view showing a configuration of an antenna device (planar antenna) according to Embodiment 1 of the present invention. FIG. 2 is an enlarged view showing a cross section of the region 9 in FIG. In the following, in each figure, the same reference numerals indicate the same or corresponding parts.
[0014] 図 1において、この実施例 1に係るアンテナ装置(平面アンテナ)は、誘電体基板 1 と、誘電体基板 1の裏面に形成された地導体 2と、誘電体基板 1の表面に形成された 四角形の環状の第 1の導体 3と、誘電体基板 1の表面の第 1の導体 3の内側に形成さ れた四角形の第 2の導体 4と、四角形の環状のスロット 5と、ノ ィァス線 6 (6a、 6b、 6c 、 6e)と、バイアス線 6にそれぞれに接続された先端開放スタブ 7と、第 1の導体 3にあ けられた 4個の四角形のスロット(開口部) 8と、 4個のスィッチ 10 (10a、 10b、 10c、 1 Oe)とが設けられている。 In FIG. 1, an antenna device (planar antenna) according to Example 1 is formed on a dielectric substrate 1, a ground conductor 2 formed on the back surface of the dielectric substrate 1, and a surface of the dielectric substrate 1. Formed on the inside of the first conductor 3 of the rectangular annular shape and the first conductor 3 on the surface of the dielectric substrate 1 Second rectangular conductor 4, rectangular annular slot 5, nose wire 6 (6a, 6b, 6c, 6e), open-ended stub 7 connected to bias wire 6 respectively, Four rectangular slots (openings) 8 provided in one conductor 3 and four switches 10 (10a, 10b, 10c, 1 Oe) are provided.
[0015] 図 2において、バイアス線 6cに沿った断面を示し、誘電体基板 1上に形成された第 1の導体 3のスロット 8部分の断面が表され、バイアス線 6cが第 1の導体 3の上を橋げ た上に渡されている。バイアス電圧の印加がない場合には、スィッチ 10は OFF状態 であり、第 1の導体 3と第 2の導体 4はつながれていない。  FIG. 2 shows a cross section along the bias line 6c, showing a cross section of the slot 8 portion of the first conductor 3 formed on the dielectric substrate 1, and the bias line 6c is the first conductor 3 Passed over the bridge. When the bias voltage is not applied, the switch 10 is in the OFF state, and the first conductor 3 and the second conductor 4 are not connected.
[0016] つぎに、この実施例 1に係るアンテナ装置の動作について図面を参照しながら説明 する。  Next, the operation of the antenna device according to the first embodiment will be described with reference to the drawings.
[0017] 給電は、同軸線路等により第 2の導体 4の中心へ行われる。第 2の導体 4へ給電す ると同時に、バイアス線 6にバイアス電圧を印加し、スィッチ 10の ONZOFFを制御 する。このとき、制御するスィッチ 10は所望の偏波方向に応じて選択される。  Power feeding is performed to the center of the second conductor 4 by a coaxial line or the like. At the same time as supplying power to the second conductor 4, a bias voltage is applied to the bias line 6 to control ONZOFF of the switch 10. At this time, the switch 10 to be controlled is selected according to the desired polarization direction.
[0018] 例えば、図 1において紙面の上下方向に平行に主偏波方向を向けたい場合には、 ノ ィァス線 6a、 6bにバイアス電圧を印加し、スィッチ 10a、 10bを ON、すなわちスィ ツチ 10a、 10bの部分において第 1の導体 3と第 2の導体 4を接続する。こうすることに より、スロット 5の形状が変化し、第 1の導体 3、第 2の導体 4上を流れる電流の向きが 変わり所望の方向へ偏波を向けることが可能となる。  For example, in FIG. 1, when it is desired to direct the main polarization direction parallel to the vertical direction of the paper surface, a bias voltage is applied to the noisy wires 6a and 6b, and the switches 10a and 10b are turned on, that is, the switch 10a. 10b, the first conductor 3 and the second conductor 4 are connected. By doing so, the shape of the slot 5 changes, the direction of the current flowing on the first conductor 3 and the second conductor 4 changes, and the polarization can be directed in a desired direction.
[0019] なお、第 1の導体 3と第 2の導体 4の大きさ、スロット 5の幅は、所望の周波数で整合 が取れるように予め最適化されている。整合は第 1の導体 3と第 2の導体 4の大きさ、 スロット 5の幅の相互作用によって取ることができるが、整合が取れた場合、共振周波 数は第 1の導体 3の大きさへの依存度が高い。  Note that the sizes of the first conductor 3 and the second conductor 4 and the width of the slot 5 are optimized in advance so as to achieve matching at a desired frequency. Matching can be achieved by the interaction of the size of the first conductor 3 and the second conductor 4 and the width of the slot 5, but if matching is achieved, the resonance frequency will be reduced to the size of the first conductor 3. The degree of dependence is high.
[0020] ここで、第 1の導体 3にあけられたスロット 8は、第 1の導体 3上を流れる電流の経路 に対しできるだけ影響を及ぼさない程度の大きさであることが望ましい。しかし、バイ ァス線 6に電圧が印加されたとき、第 1の導体 3の上に渡されたバイアス線 6と第 1の 導体 3とがコンデンサを形成し、両者をひきつける向きに静電気力が生じる。この大き さは両者の距離、対向する部分の面積、バイアス線 6の材質のヤング率やばね定数 に依存する。よって、バイアス線 6の幅と長さは上記を考慮して選択されなければなら ない。 Here, it is desirable that the slot 8 opened in the first conductor 3 has a size that does not affect the path of the current flowing on the first conductor 3 as much as possible. However, when a voltage is applied to the bias line 6, the bias line 6 passed over the first conductor 3 and the first conductor 3 form a capacitor, and electrostatic force is generated in the direction that attracts the two. Arise. This size depends on the distance between the two, the area of the opposing part, the Young's modulus of the material of the bias line 6 and the spring constant. Therefore, the width and length of the bias line 6 must be selected considering the above. Absent.
[0021] さて、スィッチ 10が ONされると、第 2の導体 4へも電流が流れるようになり、バイアス 線 6に RF信号が伝搬する。ここでバイアス線 6に反射点があり RF信号が多重反射を 起こすと、アンテナ特性に影響を及ぼし、共振周波数のずれや交差偏波成分の増加 を引き起こす。  When the switch 10 is turned on, a current also flows through the second conductor 4, and an RF signal propagates to the bias line 6. Here, if there is a reflection point on the bias line 6 and the RF signal causes multiple reflections, the antenna characteristics will be affected, causing a shift in resonant frequency and an increase in cross-polarized components.
[0022] このとき、スタブ 7がその長さを開放端から λ /4として、第 1の導体 3のエッジから λ Ζ4の位置にスタブ 7がバイアス線 6に取り付けられると、第 1の導体 3のエッジから先 のバイアス線 6があたカゝも開放端にみえ、 RF信号の伝搬を低減させ、前記のような影 響を抑えることができる。ここで、スタブ 7の長さやエッジからの距離は、厳密に λ /4 ではなぐ設計時に最適化される。  [0022] At this time, when the length of the stub 7 is λ / 4 from the open end and the stub 7 is attached to the bias line 6 at a position of λ エ ッ ジ 4 from the edge of the first conductor 3, the first conductor 3 The bias line 6 ahead of the edge of the edge can be seen at the open end, reducing the propagation of the RF signal and suppressing the above-mentioned effects. Here, the length of the stub 7 and the distance from the edge are optimized at the time of design which is not strictly λ / 4.
実施例 2  Example 2
[0023] この発明の実施例 2に係るアンテナ装置について図 3から図 5までを参照しながら 説明する。図 3は、この発明の実施例 2に係るアンテナ装置の構成を示す斜視図で ある。また、図 4は、この発明の実施例 2に係るアンテナ装置の反射特性を示す図で ある。さら〖こ、図 5は、この発明の実施例 2に係るアンテナ装置の放射特性を示す図 である。  An antenna apparatus according to Embodiment 2 of the present invention will be described with reference to FIGS. FIG. 3 is a perspective view showing the configuration of the antenna device according to Embodiment 2 of the present invention. FIG. 4 is a diagram showing the reflection characteristics of the antenna device according to Example 2 of the present invention. Further, FIG. 5 is a diagram showing the radiation characteristics of the antenna device according to Example 2 of the present invention.
[0024] ここで、図 1と同様であり説明を要しないものにはその符号を省略する。図 3におい て、導体パターン 11は、第 1の導体 3と第 2の導体 4を接続している。  Here, the same reference numerals as those in FIG. 1 that do not require description are omitted. In FIG. 3, the conductor pattern 11 connects the first conductor 3 and the second conductor 4.
[0025] 図 3において、バイアス線 6にバイアス電圧を印加することによりスィッチ 10の ΟΝΖ OFFを制御することは上記実施例 1と同様である。しかし、偏波を切替える際に制御 するスィッチ 10が所望の偏波方向に対し一つであるため、バイアス線 6の配線やバイ ァス回路の構成が容易となる。  In FIG. 3, the switch 10 is controlled to be turned off by applying a bias voltage to the bias line 6 as in the first embodiment. However, since the switch 10 to be controlled when switching the polarization is one for the desired polarization direction, the wiring of the bias line 6 and the configuration of the bias circuit become easy.
[0026] また、導体パターン 11の存在により、第 1の導体 3と第 2の導体 4の電位が等しくな る。同電位であれば、 OFF時に図 2で示したような、バイアス線 6と平面アンテナ (第 1 の導体 3)によって形成されたコンデンサ内に蓄積された電荷が、スィッチ 10が ON になった際に急激に流れ出ることによるスィッチ 10への負担が低減される。  [0026] Further, due to the presence of the conductor pattern 11, the potentials of the first conductor 3 and the second conductor 4 become equal. If the potential is the same, the charge accumulated in the capacitor formed by the bias line 6 and the planar antenna (first conductor 3), as shown in Fig. 2, when the switch 10 is turned on, is turned off. The burden on switch 10 due to sudden flow out is reduced.
[0027] 次に、本実施例 2に係るアンテナ装置を数値解析した結果について説明する。本 実施例 2に係るアンテナ装置の計算した反射特性を図 4に示す。図 4において、実線 aは図 3に示した構造の場合、一点鎖線 bはバイアス線 6のない、第 1の導体 3と第 2の 導体 4とスィッチ 10のみで解析した場合、破線 cはノ ィァス線 6にスタブ 7をつけな ヽ 場合の計算結果である。このようにスタブ 7をつけることにより、つけない場合で上昇 して!/、た反射特性を、ノ ィァス線 6が無 、場合と同等のレベルまで改善できて 、るこ とが分かる。 Next, the result of numerical analysis of the antenna device according to the second embodiment will be described. Figure 4 shows the calculated reflection characteristics of the antenna device according to Example 2. In Fig. 4, the solid line In the case of the structure shown in FIG. 3, a dashed-dotted line b is a stub in the noisy line 6 when analyzed with only the first conductor 3, the second conductor 4, and the switch 10 without the bias line 6. This is the calculation result when 7 is not added. By attaching stub 7 in this way, you can raise it if you do not! It can be seen that the reflection characteristics can be improved to the same level as in the case where the noise line 6 is not present.
[0028] 本実施例 2に係るアンテナ装置の計算した放射特性を図 5に示す。図 5において、 d、 e、 f、 gは放射パターンの偏波成分である。座標系は図 3内に示したものとし、スィ ツチ 10bを ON、スィッチ 10cを OFFとした場合とする。図 5 (a)は φ = 90° における カット面、 (b)は φ =0° におけるカット面を示す。細線 e、 gは φ成分、太線 d、 fは Θ 成分である。スィッチ 10bを ONとした場合、主偏波方向は紙面上下方向となる。よつ て、 φ = 90° では 0成分、 φ =0° では φ成分が主偏波成分となる。図 5の結果は このことを示しており、また交差偏波成分も抑えられていることを示している。一方、ス イッチ 10cを ΟΝ、スィッチ 10bを OFFとした場合は、偏波方向が紙面左右横方向と なり、 =0° では 0成分、 φ = 90。 では φ成分が主偏波成分となる。このように偏 波方向を切替えることが可能である。  FIG. 5 shows the calculated radiation characteristics of the antenna device according to the second embodiment. In Fig. 5, d, e, f, and g are the polarization components of the radiation pattern. The coordinate system is as shown in Fig. 3, assuming that switch 10b is ON and switch 10c is OFF. Figure 5 (a) shows the cut surface at φ = 90 °, and (b) shows the cut surface at φ = 0 °. The thin lines e and g are φ components, and the thick lines d and f are Θ components. When switch 10b is set to ON, the main polarization direction is the vertical direction of the page. Therefore, when φ = 90 °, the zero component becomes the main polarization component, and when φ = 0 °, the φ component becomes the main polarization component. The result in Fig. 5 shows this, and also shows that the cross-polarized component is suppressed. On the other hand, when switch 10c is set to ΟΝ and switch 10b is set to OFF, the polarization direction is the horizontal direction on the paper, with 0 component at = 0 ° and φ = 90. Then, the φ component becomes the main polarization component. In this way, it is possible to switch the polarization direction.
実施例 3  Example 3
[0029] この発明の実施例 3に係るアンテナ装置について図 6及び図 7を参照しながら説明 する。図 6は、この発明の実施例 3に係るアンテナ装置の構成を示す斜視図である。 また、図 7は、この発明の実施例 3に係るアンテナ装置の別の構成を示す図である。  [0029] An antenna device according to Embodiment 3 of the present invention will be described with reference to Figs. FIG. 6 is a perspective view showing the configuration of the antenna apparatus according to Embodiment 3 of the present invention. FIG. 7 is a diagram showing another configuration of the antenna apparatus according to Embodiment 3 of the present invention.
[0030] 図 6 (a)は平面アンテナ (アンテナ装置)の表面斜視図、図 6 (b)は平面アンテナ(ァ ンテナ装置)の裏面斜視図である。図 6において、図 1と同様のものはその符号を省 略する。スロット 12がバイアス線 6の下の地導体 2に開けられている。  FIG. 6 (a) is a front perspective view of a planar antenna (antenna device), and FIG. 6 (b) is a rear perspective view of the planar antenna (antenna device). In FIG. 6, the same symbols as those in FIG. 1 are omitted. A slot 12 is opened in the ground conductor 2 under the bias line 6.
[0031] スィッチ 10の ONZOFFにより偏波方向を切り替えることは上記実施例 1と同様で ある。 λ Ζ2程度の長さをもつスロット 12を、第 1の導体 3のエッジから λ Ζ2の整数倍 の長さの位置に開ける。この様にすれば、前述した先端開放スタブ 7と同様の作用に より、第 1の導体 3のエッジにおいてバイアス線 6が RF信号にはあた力も開放端のよう にみなせ、 RF信号の伝播を低減できる。ここで、スロット 12の長さ、位置は厳密にそ れぞれ λ Ζ2や、 λ Ζ2の整数倍ではなぐ設計時に最適化を行なう。 [0032] 前述した各平面アンテナ (アンテナ装置)にお 、て、スィッチ 10は、マイクロマシ- ング技術を用いた MEMS (Micro Electro Mechanical System)スィッチであっても良 い。この場合、平面アンテナパターン 3、 4、スィッチ 10、バイアス線 6を一体形成でき るため加工精度が向上する。マイクロマシユング技術は、ミクロン単位の加工を可能と するため、アンテナの物理的なサイズが小さくなる高周波帯において非常に有効で ある。 [0031] Switching the polarization direction by ONZOFF of the switch 10 is the same as in the first embodiment. A slot 12 having a length of about λ Ζ2 is opened from the edge of the first conductor 3 at a position that is an integral multiple of λ Ζ2. In this way, by the same action as the tip open stub 7 described above, the bias line 6 at the edge of the first conductor 3 can be regarded as the force applied to the RF signal as if it were an open end, and propagation of the RF signal is prevented. Can be reduced. Here, the length and position of the slot 12 are optimized at the time of design, which is not strictly λ 2 or an integer multiple of λ 2. [0032] In each of the planar antennas (antenna devices) described above, the switch 10 may be a MEMS (Micro Electro Mechanical System) switch using a micromachining technology. In this case, the planar antenna patterns 3 and 4, the switch 10, and the bias line 6 can be integrally formed, so that the processing accuracy is improved. Micromachining technology is very effective in the high-frequency band where the physical size of the antenna is small, because it allows processing in units of microns.
[0033] また、前述した各平面アンテナ(アンテナ装置)にお 、て、バイアス線 6に高 、抵抗 率を持つ材質を用いることにより、 RF信号をより減衰させ、アンテナ特性に与える影 響を低減することができる。  [0033] Further, in each of the above-described planar antennas (antenna devices), by using a material having a high resistivity for the bias line 6, the RF signal is further attenuated and the influence on the antenna characteristics is reduced. can do.
[0034] RF信号の伝搬を低減するための手段として、前述した先端開放スタブ 7、地導体 2 に設けたスロット 12の他に、図 7に示したように、バイアス線 6に対して並列にコンデン サを形成するような導体パターン 13を形成しても良い。  [0034] As a means for reducing the propagation of the RF signal, in addition to the above-described open-ended stub 7 and the slot 12 provided in the ground conductor 2, as shown in FIG. A conductor pattern 13 that forms a capacitor may be formed.
[0035] 前述した平面アンテナ (アンテナ装置)のバイアス線 6の配線場所は、必ずしも図 1 〜図 7に示した通りである必要は無く、平面アンテナを中心としてバイアス線を十字 型に配線することも可能である。この場合、偏波を切替えた場合でもバイアス線の相 対的な位置が変化しないため、偏波を変えた場合の運用時に特性の変化を抑える 事が出来る。  The wiring location of the bias line 6 of the planar antenna (antenna device) described above does not necessarily have to be as shown in FIGS. 1 to 7, and the bias line is wired in a cross shape around the planar antenna. Is also possible. In this case, even if the polarization is switched, the relative position of the bias line does not change, so that it is possible to suppress changes in characteristics during operation when the polarization is changed.
[0036] 前述した平面アンテナ装置 (アンテナ装置)にお 、て、形状は必ずしも矩形である 必要は無ぐ多角形であっても良い。また、偏波切替機能を持たせるため以外の用 途にてスィッチを負荷する必要があった場合にも、本発明のようにアンテナパターン 上を橋げた状に渡し、スタブを設ける方法は有効である。  [0036] In the above-described planar antenna device (antenna device), the shape need not necessarily be a rectangle, and may be a polygon. Also, when it is necessary to load the switch for a purpose other than to provide the polarization switching function, it is effective to provide a stub by passing it over the antenna pattern as in the present invention. .

Claims

請求の範囲 The scope of the claims
[1] 平面矩形パッチアンテナであって、  [1] A planar rectangular patch antenna,
誘電体基板と、  A dielectric substrate;
前記誘電体基板の裏面に形成された地導体と、  A ground conductor formed on the back surface of the dielectric substrate;
前記誘電体基板の表面に形成された矩形の環状の第 1の導体と、  A rectangular annular first conductor formed on the surface of the dielectric substrate;
前記誘電体基板の表面、かつ閉じた環状の第 1のスロットを形成するように、前記 第 1の導体の内側に形成された矩形の第 2の導体と、  A rectangular second conductor formed inside the first conductor to form a surface of the dielectric substrate and a closed annular first slot;
前記第 1の導体及び前記第 2の導体を結合するように前記矩形の第 1及び第 2の導 体の対角線上に配置されたスィッチと、  Switches disposed on diagonal lines of the rectangular first and second conductors so as to couple the first conductor and the second conductor;
前記第 1及び第 2の導体と同一平面上に配線され、前記スィッチを制御するバイァ ス線と、  A bias line wired on the same plane as the first and second conductors to control the switch;
前記バイアス線に接続され、波長の 1Z4の長さを有する先端開放スタブとを備え、 前記矩形の第 1の導体の隅付近には、前記バイアス線の下に前記バイアス線の幅 よりも幅広の第 2のスロットが形成され、  An open-ended stub connected to the bias line and having a length of 1Z4 of wavelength, and near the corner of the first conductor of the rectangle is wider than the width of the bias line below the bias line. A second slot is formed,
前記バイアス線は、前記第 1の導体と前記第 2のスロットが交差する部分では前記 第 1の導体上を橋げた状に渡されて配線され、  The bias line is wired so as to bridge the first conductor at a portion where the first conductor and the second slot intersect,
給電点が前記第 2の導体の中心に配置されている  The feeding point is located at the center of the second conductor
ことを特徴とするアンテナ装置。  An antenna device characterized by that.
[2] 前記スィッチは、前記矩形の第 1及び第 2の導体の 2つの対角線上に配置された 4 個であり、 [2] The switches are four pieces arranged on two diagonal lines of the rectangular first and second conductors,
前記バイアス線は、 4個のスィッチをそれぞれ制御する 4本であり、  The bias lines are four for controlling four switches,
前記先端開放スタブは、 4本のバイアス線にそれぞれ接続された 4本であり、 かつ  The tip open stubs are four respectively connected to four bias lines; and
前記第 2のスロットは、 4個のスィッチに対応して 4個である  The second slot is 4 corresponding to 4 switches.
ことを特徴とする請求項 1記載のアンテナ装置。  The antenna device according to claim 1, wherein:
[3] 前記スィッチは、前記矩形の第 1及び第 2の導体の第 1の対角線上に配置された 2 個であり、 [3] The switch is two pieces arranged on the first diagonal of the rectangular first and second conductors,
前記バイアス線は、 2個のスィッチをそれぞれ制御する2本であり、 前記先端開放スタブは、 2本のバイアス線にそれぞれ接続された 2本であり、 かつ The bias line is two for controlling two switches, The tip open stubs are two respectively connected to two bias lines; and
前記第 2のスロットは、 2個のスィッチに対応して 2個であり、  The second slot is two corresponding to two switches,
前記矩形の第 1及び第 2の導体の前記第 1の対角線とは別の第 2の対角線上にお いて第 1及び第 2の導体を接続するように前記環状の第 1のスロットをまたいで形成さ れた導体パターンをさらに備えた  The annular first slot is straddled so as to connect the first and second conductors on a second diagonal different from the first diagonal of the rectangular first and second conductors. The conductor pattern further formed
ことを特徴とする請求項 1記載のアンテナ装置。  The antenna device according to claim 1, wherein:
[4] 平面矩形パッチアンテナであって、 [4] Planar rectangular patch antenna,
誘電体基板と、  A dielectric substrate;
前記誘電体基板の裏面に形成された地導体と、  A ground conductor formed on the back surface of the dielectric substrate;
前記誘電体基板の表面に形成された矩形の環状の第 1の導体と、  A rectangular annular first conductor formed on the surface of the dielectric substrate;
前記誘電体基板の表面、かつ閉じた環状の第 1のスロットを形成するように、前記 第 1の導体の内側に形成された矩形の第 2の導体と、  A rectangular second conductor formed inside the first conductor to form a surface of the dielectric substrate and a closed annular first slot;
前記第 1の導体及び前記第 2の導体を結合するように前記矩形の第 1及び第 2の導 体の対角線上に配置されたスィッチと、  Switches disposed on diagonal lines of the rectangular first and second conductors so as to couple the first conductor and the second conductor;
前記第 1及び第 2の導体と同一平面上に配線され、前記スィッチを制御するバイァ ス線とを備え、  A bias line that is wired on the same plane as the first and second conductors and controls the switch;
前記矩形の第 1の導体の隅付近には、前記バイアス線の下に前記バイアス線の幅 よりも幅広の第 2のスロットが形成され、  Near the corner of the rectangular first conductor, a second slot wider than the width of the bias line is formed under the bias line,
前記バイアス線は、前記第 1の導体と前記第 2のスロットが交差する部分では前記 第 1の導体上を橋げた状に渡されて配線され、  The bias line is wired so as to bridge the first conductor at a portion where the first conductor and the second slot intersect,
前記地導体には、前記バイアス線と直交するように、波長の 1Z2の長さを有する第 3のスロットが形成され、  A third slot having a wavelength of 1Z2 is formed in the ground conductor so as to be orthogonal to the bias line,
給電点が前記第 2の導体の中心に配置されている  The feeding point is located at the center of the second conductor
ことを特徴とするアンテナ装置。  An antenna device characterized by that.
[5] 前記スィッチは、前記矩形の第 1及び第 2の導体の 2つの対角線上に配置された 4 個であり、 [5] The switches are four pieces arranged on two diagonal lines of the rectangular first and second conductors,
前記バイアス線は、 4個のスィッチをそれぞれ制御する 4本であり、 前記第 2のスロットは、 4個のスィッチに対応して 4個であり、 The bias lines are four for controlling four switches, The second slot is four corresponding to the four switches,
かつ And
前記第 3のスロットは、 4本のバイアス線に対応して 4個である The third slot is four corresponding to four bias lines.
ことを特徴とする請求項 4記載のアンテナ装置。 The antenna device according to claim 4, wherein:
前記スィッチは、 MEMSスィッチである The switch is a MEMS switch
ことを特徴とする請求項 1から請求項 5までのいずれかに記載のアンテナ装置。 The antenna device according to any one of claims 1 to 5, wherein the antenna device is provided.
PCT/JP2006/308411 2006-04-21 2006-04-21 Antenna device WO2007122723A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2006/308411 WO2007122723A1 (en) 2006-04-21 2006-04-21 Antenna device
JP2008511922A JP4527167B2 (en) 2006-04-21 2006-04-21 Antenna device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/308411 WO2007122723A1 (en) 2006-04-21 2006-04-21 Antenna device

Publications (1)

Publication Number Publication Date
WO2007122723A1 true WO2007122723A1 (en) 2007-11-01

Family

ID=38624651

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/308411 WO2007122723A1 (en) 2006-04-21 2006-04-21 Antenna device

Country Status (2)

Country Link
JP (1) JP4527167B2 (en)
WO (1) WO2007122723A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108539413A (en) * 2018-03-13 2018-09-14 深圳三星通信技术研究有限公司 A kind of adjustable patch-antenna structure of directional diagram and feeder plate
WO2023223893A1 (en) * 2022-05-16 2023-11-23 Agc株式会社 Antenna device

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05167337A (en) * 1991-12-17 1993-07-02 Sony Corp Composite plane antenna
JPH06112727A (en) * 1992-09-29 1994-04-22 Sony Corp Ring-shaped microstrip antenna
JPH10190347A (en) * 1996-12-26 1998-07-21 Nippon Avionics Co Ltd Patch antenna device
JP2001060823A (en) * 1999-08-24 2001-03-06 Matsushita Electric Ind Co Ltd Dual resonant dielectric antenna and onboard radio device
JP3247140B2 (en) * 1992-03-19 2002-01-15 財団法人国際科学振興財団 Slot antenna
JP2003188636A (en) * 2001-12-17 2003-07-04 Tdk Corp Combined antenna
JP3528702B2 (en) * 1999-09-29 2004-05-24 株式会社村田製作所 Oscillator and wireless device
JP2004207775A (en) * 2002-10-31 2004-07-22 Murata Mfg Co Ltd High frequency circuit device and its manufacturing method
JP2005101923A (en) * 2003-09-25 2005-04-14 Advanced Telecommunication Research Institute International Planar array antenna device
JP2005514844A (en) * 2001-12-27 2005-05-19 エイチアールエル ラボラトリーズ,エルエルシー RF-MEMs tuned slot antenna and manufacturing method thereof
JP2005217667A (en) * 2004-01-28 2005-08-11 Nippon Dempa Kogyo Co Ltd Slot line type flat antenna
JP2005244831A (en) * 2004-02-27 2005-09-08 Mitsubishi Electric Corp Rf-mems switch device and antenna device with rf-mems switch apparatus mounted thereon
JP2005340910A (en) * 2004-05-24 2005-12-08 Ricoh Co Ltd Multi-band corresponding microstrip antenna and wireless system using it

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05167337A (en) * 1991-12-17 1993-07-02 Sony Corp Composite plane antenna
JP3247140B2 (en) * 1992-03-19 2002-01-15 財団法人国際科学振興財団 Slot antenna
JPH06112727A (en) * 1992-09-29 1994-04-22 Sony Corp Ring-shaped microstrip antenna
JPH10190347A (en) * 1996-12-26 1998-07-21 Nippon Avionics Co Ltd Patch antenna device
JP2001060823A (en) * 1999-08-24 2001-03-06 Matsushita Electric Ind Co Ltd Dual resonant dielectric antenna and onboard radio device
JP3528702B2 (en) * 1999-09-29 2004-05-24 株式会社村田製作所 Oscillator and wireless device
JP2003188636A (en) * 2001-12-17 2003-07-04 Tdk Corp Combined antenna
JP2005514844A (en) * 2001-12-27 2005-05-19 エイチアールエル ラボラトリーズ,エルエルシー RF-MEMs tuned slot antenna and manufacturing method thereof
JP2004207775A (en) * 2002-10-31 2004-07-22 Murata Mfg Co Ltd High frequency circuit device and its manufacturing method
JP2005101923A (en) * 2003-09-25 2005-04-14 Advanced Telecommunication Research Institute International Planar array antenna device
JP2005217667A (en) * 2004-01-28 2005-08-11 Nippon Dempa Kogyo Co Ltd Slot line type flat antenna
JP2005244831A (en) * 2004-02-27 2005-09-08 Mitsubishi Electric Corp Rf-mems switch device and antenna device with rf-mems switch apparatus mounted thereon
JP2005340910A (en) * 2004-05-24 2005-12-08 Ricoh Co Ltd Multi-band corresponding microstrip antenna and wireless system using it

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108539413A (en) * 2018-03-13 2018-09-14 深圳三星通信技术研究有限公司 A kind of adjustable patch-antenna structure of directional diagram and feeder plate
WO2023223893A1 (en) * 2022-05-16 2023-11-23 Agc株式会社 Antenna device

Also Published As

Publication number Publication date
JPWO2007122723A1 (en) 2009-08-27
JP4527167B2 (en) 2010-08-18

Similar Documents

Publication Publication Date Title
US10971813B2 (en) Switchable patch antenna
US6876280B2 (en) High-frequency switch, and electronic device using the same
WO2013124897A1 (en) Antenna apparatus
US7667651B2 (en) Polarization agile antenna
CN101326681B (en) Differential-feed slot antenna
US20090303133A1 (en) Antenna and communication device having the same
JP2015156537A (en) Radio equipment
JP4197542B2 (en) Differential feed directivity variable slot antenna
JP5675683B2 (en) Antenna device
KR20080023998A (en) Folded dipole loop antenna having a matching circuit on it
WO2007122723A1 (en) Antenna device
US10270165B2 (en) Antenna device
JP2018117173A (en) 90 degree hybrid circuit
JP2007088883A (en) Antenna device
JP5418688B2 (en) Antenna device, antenna module, and portable terminal
JP4475226B2 (en) Antenna device
JP7288087B2 (en) Dual Polarized Antenna Using Shifted Series Feed
US7224239B2 (en) Structural element having a coplanar line
JP4547992B2 (en) High frequency switch and electronic device using the same
TWI835949B (en) Antenna, board and communication device
JP2010273048A (en) Real time delay line
KR20060066635A (en) Planar antenna with matched impedance and/or polarization
TW202042443A (en) Antenna, board and communication device
JP2003069313A (en) Semiconductor package
JPH06104945A (en) Two-phase modulation circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06745542

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2008511922

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06745542

Country of ref document: EP

Kind code of ref document: A1