WO2007119872A1 - Exhaust gas analyzer - Google Patents
Exhaust gas analyzer Download PDFInfo
- Publication number
- WO2007119872A1 WO2007119872A1 PCT/JP2007/058479 JP2007058479W WO2007119872A1 WO 2007119872 A1 WO2007119872 A1 WO 2007119872A1 JP 2007058479 W JP2007058479 W JP 2007058479W WO 2007119872 A1 WO2007119872 A1 WO 2007119872A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- exhaust gas
- light
- passage hole
- sensor
- laser light
- Prior art date
Links
- 238000002485 combustion reaction Methods 0.000 claims abstract description 13
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 claims description 12
- 239000000919 ceramic Substances 0.000 claims description 7
- 239000005304 optical glass Substances 0.000 claims description 5
- 229910052594 sapphire Inorganic materials 0.000 claims description 5
- 239000010980 sapphire Substances 0.000 claims description 5
- 238000007789 sealing Methods 0.000 claims 1
- 239000011521 glass Substances 0.000 abstract description 35
- 239000013307 optical fiber Substances 0.000 abstract description 33
- 239000007789 gas Substances 0.000 description 243
- 238000005259 measurement Methods 0.000 description 43
- 239000000463 material Substances 0.000 description 19
- 239000003054 catalyst Substances 0.000 description 13
- 230000010355 oscillation Effects 0.000 description 11
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 7
- 230000005540 biological transmission Effects 0.000 description 7
- 229910052802 copper Inorganic materials 0.000 description 7
- 239000010949 copper Substances 0.000 description 7
- 238000010586 diagram Methods 0.000 description 7
- 230000001678 irradiating effect Effects 0.000 description 7
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 6
- 230000002238 attenuated effect Effects 0.000 description 6
- 238000012937 correction Methods 0.000 description 6
- 238000004868 gas analysis Methods 0.000 description 6
- 238000003780 insertion Methods 0.000 description 6
- 230000037431 insertion Effects 0.000 description 6
- 239000010445 mica Substances 0.000 description 6
- 229910052618 mica group Inorganic materials 0.000 description 6
- 230000003287 optical effect Effects 0.000 description 6
- 239000001301 oxygen Substances 0.000 description 6
- 229910052760 oxygen Inorganic materials 0.000 description 6
- 230000006378 damage Effects 0.000 description 5
- 230000002093 peripheral effect Effects 0.000 description 5
- 125000006850 spacer group Chemical group 0.000 description 5
- 238000011144 upstream manufacturing Methods 0.000 description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 3
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 229910002091 carbon monoxide Inorganic materials 0.000 description 3
- 230000003197 catalytic effect Effects 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- 238000001745 non-dispersive infrared spectroscopy Methods 0.000 description 3
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 3
- 238000000862 absorption spectrum Methods 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000010408 film Substances 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 230000000149 penetrating effect Effects 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 238000002310 reflectometry Methods 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005489 elastic deformation Effects 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 229910001922 gold oxide Inorganic materials 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 239000011941 photocatalyst Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000002912 waste gas Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/35—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
- G01N21/3504—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/01—Arrangements or apparatus for facilitating the optical investigation
- G01N21/03—Cuvette constructions
- G01N21/031—Multipass arrangements
Definitions
- the present invention relates to an analyzer for exhaust gas discharged from an internal combustion engine such as an automobile, and more particularly, based on the light intensity of laser light that is irradiated with laser light to the exhaust gas in a path through which the exhaust gas flows and that has passed through the exhaust gas.
- the present invention relates to an exhaust gas analyzer that measures and analyzes the concentration and temperature of gas components in exhaust gas. Background art
- this type of exhaust gas analyzer is an in-vehicle type equipped with an NDIR (non-dispersive infrared spectroscopy) type gas analyzer for continuously measuring the HC concentration in the exhaust gas flowing through the exhaust pipe connected to the engine.
- NDIR non-dispersive infrared spectroscopy
- the gas analyzer of the NDIR gas analyzer supplies the sample gas into the cell, irradiates the cell with an infrared light source, and rotates the optical tipper at a predetermined cycle.
- an AC signal is output from the detector as an AC signal and a comparison signal corresponding to the concentrations of HC and H 2 0. From these signals, HC and H in which it is possible to obtain a concentration of 2 0 (e.g., see Patent Document 1).
- the exhaust gas is irradiated with laser light, the laser light transmitted through the exhaust gas is received, the light intensity is measured, and the light intensity attenuated by passing through the exhaust gas is measured from the exhaust gas.
- exhaust gas analyzers that measure the concentration and temperature of certain components.
- the light intensity of the laser beam is measured with a configuration as shown in FIG. That is, a light passage hole 72 through which the laser light R can pass is formed in the sensor base 71 that fixes the light receiving element 70.
- a light passage window 73 that prevents the ingress of exhaust gas and transmits laser light is inserted into the light passage hole 7 2 with a heat-resistant gasket 7 4 interposed therebetween, and a gasket 7 5 is sandwiched on the light passage window 73.
- the fixing ring 7 6 is screwed in.
- the entrance and exit surfaces of this light passage window 73 are usually stray light. In order to prevent interference light, it is not formed in parallel, but one surface is formed in a wedge shape having an inclined surface slightly inclined with respect to the central axis.
- a fixing jig 7 9 made of stainless steel or the like is stacked on the upper part of the sensor base 7 1 with a ceramic base 7 7 and a heat insulating ring 7 8 interposed therebetween, and the light receiving element 70 is fixed to the fixing jig 7 9. It is the composition which becomes. With such a configuration, it is possible to receive laser light while preventing leakage of exhaust gas from the mounting portion of the sensor base 71 of the light receiving element. In addition, the configuration of the irradiation part such as the attachment part of the optical fiber that irradiates the laser beam is almost the same, and the laser beam can be irradiated by preventing the leakage of the exhaust gas. Yes.
- Patent Document 1 Japanese Patent Laid-Open No. 2 0 0 4 1 1 7 2 5 9
- the exhaust gas analyzer having the above structure is an analyzer for directly analyzing exhaust gas discharged from an internal combustion engine such as a vehicle engine in a pipe or a flow path, and fixes a light receiving element to a measurement cell attached to the pipe.
- the light transmission hole formed from the light receiving element mounting surface toward the flow path provided in the measurement cell becomes an invalid space for measurement, which causes a decrease in measurement accuracy.
- the oxygen concentration present in the invalid space cannot be accurately corrected, and the measurement accuracy is reduced.
- the present invention has been made in view of such problems, and an object of the present invention is to provide an exhaust gas analyzer that can improve the measurement accuracy of a gas to be analyzed and can shorten the analysis time. There is.
- an exhaust gas analyzer irradiates exhaust gas emitted from an internal combustion engine with laser light, receives laser light transmitted through the exhaust gas, and is based on the received I-light.
- An exhaust gas analyzer that measures and analyzes the concentration and temperature of components contained in the exhaust gas, the apparatus comprising: an irradiation unit that emits laser light; a light receiving unit that receives laser light; and the irradiation unit A light passage hole that guides the laser light emitted from the light path to a path through which the exhaust gas flows, and a light passage hole that guides the laser light that has passed through the exhaust gas to the light receiving portion. It is characterized in that at least a part of is filled with a translucent member.
- the exhaust gas analyzer of the present invention configured as described above has a light passage path through which a laser beam that measures the component concentration and temperature of exhaust gas passes by filling at least a part of the light passage hole with a translucent member. Since the volume of the gas staying in the exhaust gas can be reduced, the measurement accuracy of the concentration and temperature of the components in the exhaust gas can be increased. In addition, when measuring the light intensity of the laser light that has passed through the exhaust gas and calculating the concentration and temperature of the gas to be analyzed, the influence of the gas present in the passage through which the laser light passes can be reduced, so the correction calculation The calculation time can be shortened and exhaust gas analysis can be completed in a short time.
- a conventional exhaust gas analyzer for example, when a light receiving element or an optical fiber is assembled to a sensor base constituting a sensor unit, the light path is filled with air. If measurement is performed in such a state, nitrogen and oxygen in the air that is filled are also measured together with the measurement of the components in the exhaust gas, so it is necessary to correct the gas that is filled during measurement. . If this gas correction is not performed, nitrogen and oxygen will be added in addition to the exhaust gas components, and the measurement accuracy will deteriorate.
- the exhaust gas analyzer of the present invention since at least a part of the light passage hole through which the laser beam passes is filled with a translucent member, the influence of gas such as air existing in the light passage hole is reduced. Can do.
- the irradiation unit and the light receiving unit are fixed to a sensor base having an exhaust gas passage hole that is supported in the path and through which the exhaust gas passes.
- the light passage hole communicates the exhaust gas passage hole with the irradiation unit and the light receiving unit.
- the sensor-based exhaust gas passage hole is made to correspond to the exhaust gas flow path, and the irradiation unit and the light receiving unit can be fixed to the light passage hole communicating with the exhaust gas passage hole.
- the sensor base can be easily installed in the path through which the current flows.
- the translucent member further includes a gas facing surface close to the exhaust gas passage hole, and an element extending from the gas facing surface along the light passage hole and close to the irradiation unit or the light receiving unit. And the translucent member fills the passage path of the laser beam.
- the translucent material constituting the translucent member is preferably made of optical glass or sapphire.
- the exhaust gas analyzer configured in this way is provided with the gas facing surface of the translucent member close to the exhaust gas passage hole through which the exhaust gas flows, the exhaust gas does not stay in the light passage hole and changes from moment to moment.
- the state of exhaust gas to be measured can be measured in real time.
- the translucent member is extended along the light passage hole, and the element facing surface is close to the irradiation part and the light receiving part and fills the passage path of the laser light in the light passage hole. It is possible to eliminate gas such as air present in the sensor and to correct the received light intensity, thereby improving measurement accuracy and shortening the calculation time of component concentration. Further, by forming the translucent member with optical glass or sapphire, attenuation during transmission of laser light can be reduced, and high-accuracy measurement is possible.
- laser light is emitted to exhaust gas discharged from an internal combustion engine, laser light transmitted through the exhaust gas is received, and the received laser light is converted into light.
- An exhaust gas analyzer that measures and analyzes the concentration and temperature of components contained in the exhaust gas based on the above is equipped with a sensor base that is mounted in a path through which the exhaust gas flows and has an exhaust gas passage hole through which the exhaust gas passes.
- the sensor base is fixed to the sensor base with a pedestal interposed, and an irradiation unit that emits laser light and a light receiving unit that receives laser light, and the laser light emitted from the irradiation unit passes through the exhaust gas.
- the translucent member is opposed to the light passage hole with a heat resistant gasket interposed therebetween, and the light passage hole is sealed in an airtight state.
- the pedestal is preferably formed of ceramics.
- the exhaust gas analyzer of the present invention removes the effect of light absorption by the staying gas by reducing the volume of the gas staying inside the light passage hole through which the laser beam used for exhaust gas analysis passes, and the components contained in the exhaust gas Can be measured with high accuracy.
- the mounting structure of the optical fiber that irradiates the laser light into the exhaust gas and the mounting structure of the light receiving element that measures the light intensity of the laser light that has passed through the exhaust gas can be simplified. As well as damage to parts such as these can be prevented, cost reduction and maintenance can be improved, and gas leakage can be prevented.
- FIG. 1 is a configuration diagram of a main part of an embodiment in which an exhaust gas analyzer according to the present invention is mounted on a vehicle.
- FIG. 2 is a configuration diagram of a main part of another embodiment in which the exhaust gas analyzer according to the present invention is mounted on an engine bench.
- FIG. 3 shows an exhaust gas analyzer that includes a perspective view of the essential parts of one sensor unit in an exploded state.
- FIG. 4A is a front view of the sensor unit of FIG. 3
- FIG. 4B is a cross-sectional view of the sensor base portion of FIG. 4A taken along the line A-A
- FIG. 4C is a B-B line of the sensor base portion of FIG. It is sectional drawing.
- FIG. 5A is a cross-sectional view showing the main part of the light passage hole along the line C-C in FIG. 4A
- FIG. 5B is a perspective view showing the exploded state of the main part of the force S (a). .
- FIG. 6 is a block diagram showing the main configuration of the laser oscillation / light reception controller and the overall configuration of the exhaust gas analyzer including the signal analyzer.
- FIG. 7 is a cross-sectional view showing a main part of a light passage hole portion in a conventional exhaust gas analyzer.
- 1 is an automobile
- 1 A is an engine bench
- 2 is an engine (internal combustion engine)
- Exhaust manifold Exhaust path
- 4 Exhaust pipe (exhaust path)
- 5 First catalytic device (exhaust path)
- 6 Second catalytic device (exhaust path)
- 7 Muffler (exhaust path)
- 8 Exhaust pipe (exhaust path)
- 10 Exhaust gas analyzer
- 1 1 to 14 Sensor part
- 20 Sensor base
- 2 1 Exhaust gas passage hole
- 2 3 Sensor hole (irradiation light passage hole)
- 24 Sensor hole (transmitted light passage hole)
- 25, 25 A to 25 C Optical fiber (irradiation part), 26, 26 A to 26C: Collimator lens (irradiation part), 27
- 2 7 A to 2 7 C Detector (light receiving part)
- 3 Light passage slit
- 40 Glass body (translucent member), 40a: Incident surface (gas facing surface), 40b: Outgoing surface (element facing surface), 41, 42: Gasket, 43: Base, 4 3 a: cylindrical part, 50: laser oscillation 'light receiving controller, 5 2: demultiplexer, 5 3 A to 5 3 C: demultiplexer,
- FIG. 1 is a configuration diagram of a main part in which the exhaust gas analyzer according to the present embodiment is mounted on an automobile.
- Fig. 3 is a main part configuration diagram in a state where the exhaust gas analyzer of Fig. 1 is mounted on an engine bench,
- Fig. 3 is a perspective view showing the sensor unit and its vicinity in an exploded state, and
- Fig. 4 is a detailed diagram of the sensor unit.
- FIG. 5 is a block diagram showing the main configuration of the laser oscillation 'light receiving controller and the overall configuration of the exhaust gas analyzer including the signal analyzer.
- the exhaust gas analyzer of the present embodiment is an apparatus that analyzes exhaust gas discharged from an engine (internal combustion engine) 2 installed in an automobile 1.
- it is a device for analyzing exhaust gas of the engine 2 installed on the engine bench 1A.
- the exhaust gas discharged from each cylinder of the engine 2 is merged in the exhaust manifold 3 and introduced into the first catalyst device 5 through the exhaust pipe 4, and then into the second catalyst device 6, and then through the muffler 7. Released from the exhaust pipe 8 into the atmosphere.
- the exhaust path is composed of exhaust manifold 3, exhaust pipe 4, first catalyst device 5, second catalyst device 6, muffler 7, and exhaust pipe 8.
- Exhaust gas discharged from engine 2 is divided into two catalyst devices 5, Purify with 6, muffle with muffler 7, depressurize and release into the atmosphere.
- the muffler may have two main mufflers and sub mufflers.
- the plurality of members constituting the exhaust path are connected by bolts or the like with the flange portions facing each other.
- the first and second catalytic devices 5 and 6 have an exhaust pipe connected to the upstream and downstream sides of the large-diameter main body, and flanges F and F are fixed to the ends of the exhaust pipe by welding or the like.
- the exhaust pipe 7 is connected to the upstream and downstream sides of the large-diameter main body, and the flanges F and F are fixed to the ends of these exhaust pipes.
- the exhaust pipe 8 at the end is fixed directly to the muffler 7 by welding or the like.
- the exhaust gas analyzer 10 of the present embodiment includes a plurality of (four in the illustrated example) sensor units 11 to 14 installed at a plurality of locations in the exhaust path.
- the first sensor unit 1 1 is installed between the exhaust pipe 4 on the engine side upstream from the first catalyst device 5, and the second sensor unit 1 2 is installed downstream of the first catalyst device 5.
- the third sensor unit 13 is installed on the downstream side of the second catalyst device 6.
- the fourth sensor unit 14 is installed in the exhaust pipe 8 downstream of the muffler 7.
- Sensor section 1 4 is exhaust pipe Even if it is installed in the middle of the pipe 8, it may be installed in the opening at the end of the exhaust pipe. Further, another sensor unit may be installed in the exhaust pipe for each cylinder before joining in the exhaust manifold 3 on the upstream side of the first sensor unit 11.
- the exhaust pipe 4, the first catalyst device 5, the second catalyst device 6, and the muffler 7 are connected by tightening the flange portions F and F with bolts, and the sensor portion is disposed between the members constituting the exhaust path.
- 1 1, 1 2, 1 3 are installed in a state of being sandwiched between flanges F, F.
- the flange portions F and F are formed at both ends of a member constituting the exhaust path, and the joint surfaces of the flange portions intersect each other at right angles to the center line of the exhaust path.
- the sensor parts 1 1 to 1 3 are installed so as to cross the exhaust path between the flange parts F and F.
- the fourth sensor section 14 performs analysis immediately before the exhaust gas is released into the atmosphere. Even if it is installed in the middle of the exhaust pipe 8 protruding from the muffler 7, it is sandwiched between the flange sections F and F. Good.
- the number of sensor units can be set arbitrarily.
- the sensor unit 1 1 has a sensor base 2 0 formed of a rectangular thin plate material.
- This sensor base has an exhaust gas passage hole 2 1 having a diameter d 1 substantially the same as the inner diameter d of the circular cross section of the exhaust pipe unit at the center.
- the exhaust gas passes through the exhaust gas passage hole.
- the exhaust gas passage hole 21 constitutes an exhaust gas introduction path.
- the thickness of the plate-shaped sensor base 20 is preferably as thin as possible within a range in which the laser light emitting part and the light receiving part can be fixed.
- the thickness of the sensor base 20 is preferably about 5 to 20 mm, for example. If it exceeds 2 O mm, the exhaust gas flow tends to be turbulent and pressure loss that cannot be ignored is likely to occur. If it is thinner than 5 mm, the mounting and fixing of the measurement laser beam irradiation part and the light receiving part become complicated.
- the diameter d 1 of the exhaust gas passage hole 21 is preferably the same as the inner diameter d of the circular cross section of the exhaust pipe part. For example, if the inner diameter d of the circular cross section of the exhaust pipe part is 30 mm, If the diameter dl of the passage hole 21 is about 30 ⁇ 1 to 2 mm, an error is allowed.
- the plate material constituting the sensor base 20 a metal plate material or a ceramic plate material is used, but the material is not particularly limited.
- the sensor base 20 is fixed in a state where it is sandwiched between the flanges F and F.
- Gaskets 22 and 22 are sandwiched between F and F and the sensor base 20, and are fixed by a port, a nut, etc. not shown.
- the gasket 22 is formed of an appropriate material and has an exhaust gas passage hole having the same diameter as the inner diameter of the exhaust pipe portion.
- FIG. 3 shows a gasket 2 2, between a flange portion F welded to the downstream end of the exhaust pipe 4 and a flange portion F welded to the end of the exhaust pipe portion 5 a on the upstream side of the catalyst device 5.
- 2 shows a configuration in which the sensor base 20 is fixed with the 2 2 in between.
- the sensor base 20 is formed with two sensor holes 2 3 and 2 4 that penetrate the center of the plate thickness from the end surface toward the exhaust gas passage hole.
- the sensor hole 23 is opened toward the exhaust gas passage hole 21 and constitutes an irradiation light passage hole formed so that the irradiated laser light can reach the light receiving part through the exhaust gas passage hole 21.
- the sensor hole 2 4 opens toward the exhaust gas passage hole 21 and constitutes a transmitted light passage hole formed so that the laser beam can reach the light receiving part.
- the sensor holes 2 3 and 2 4 Is open perpendicular to the direction in which the exhaust gas flows.
- the sensor unit 1 1 has an optical fiber 25 and a collimator lens 26 fixed to the sensor hole 23 as an irradiation unit for irradiating laser light.
- a detector 27 is fixed to the sensor hole 24 as a light receiving portion for receiving the transmitted laser beam.
- the sensor unit 11 reflects the laser beam irradiated from the irradiation side optical fiber 25 so as to cross the exhaust path, is reflected by the two mirrors 30 and 3 1, passes through the exhaust gas, and is attenuated.
- the detector 27 receives the light, and the mirror reflects the irradiated laser light and guides it to the detector.
- the two mirrors 30 and 31 are attached outside the circular exhaust gas passage hole 21 at the center of the sensor base 20 at opposite positions sandwiching the exhaust gas passage hole, respectively.
- Two mirrors are arranged so that their reflecting surfaces are parallel to each other, and are fixed up and down so as to reflect the laser beam for measurement.
- the mirrors 30 and 3 1 are arranged in parallel on the outer periphery of the exhaust gas passage hole 21 so as to face each other with the exhaust gas passage hole interposed therebetween.
- the mirrors 30 and 31 are flat on the outer periphery of the exhaust gas passage hole 21.
- the mirrors 30 and 31 are formed in a rectangular substrate having a thickness of several millimeters. A thin film of gold or platinum is formed on one surface of the substrate as a reflective surface, and M is used as a protective layer on the surface. Thin films of g F 2 and S 1 0 2 are formed. Note that the protective film may not be formed.
- the insertion grooves 3 2 and 3 3 formed on the outer periphery of the exhaust gas passage hole 21 of the sensor base 20 are set to a size that allows the mirrors 30 and 31 to be loosely inserted.
- the insertion grooves 3 2, 33 may penetrate the sensor base 20 and be open on both sides, or may be open on one side and closed on the other side.
- the mirrors 30 and 3 1 are fixed in the insertion grooves 3 2 and 3 3 through the spacers by the mounting screws 3 4. If the mirror is damaged by heat shock, etc., it can be removed by loosening the mounting screws 3 4 and fixed with a new mirror. When the mirror is dirty, it can be removed from the sensor base 20 and cleaned.
- the mirrors 30 and 3 1 are fixed with a spacer (not shown) sandwiched by mounting screws 3 4, the mirrors are prevented from vibrating due to engine vibrations and vibrations in the exhaust pipe and other exhaust paths. is doing.
- a spacer is sandwiched to absorb the difference in thermal expansion between the mirror and the mounting screw, and functions as a cushioning material.
- the spacer those having excellent environmental resistance and elastic deformation are preferable. For example, mica, carbon and copper are preferred. In this way, the mirror is fixed stably without being vibrated even at a high temperature of about 800 ° C. by being fixed with the mounting screw through the spacer.
- the mirrors 30 and 31 are manufactured by coating a reflective material on the surface of a base material such as quartz, sapphire, or ceramic.
- a coating material it is preferable to select a material having high reflectivity suitable for the laser wavelength, such as gold or titanium oxide.
- excellent transparency and heat resistance such as S i 0 2 as a coating to protect the anti Ysa ⁇ e, it is preferable to form the excellent environmental resistance to the uppermost surface.
- a mirror with excellent heat resistance and high reflectivity enables accurate measurement.
- titanium oxide is used as a reflector, titanium oxide alone has excellent environmental resistance and is effective as a photocatalyst for preventing contamination, so it is not necessary to form a protective film, and measurement should be performed as it is. Is preferred.
- a light passage hole is formed between the inner peripheral surface of the exhaust gas passage hole 21 and the insertion grooves 3 2 and 3 3 for fixing the mirror so that the laser beam for measurement can reach the mirror.
- a penetrating slit, a penetrating light passing hole and the like are formed.
- light passage slits 35 and 35 having a width of about several millimeters penetrate from the inner peripheral surface of the exhaust gas passage hole 21 to the insertion grooves 3 2 and 3 3 in the direction orthogonal to the exhaust path.
- the light transmission slit is formed so as to penetrate the inner peripheral surface of the exhaust gas passage hole 21 and the mirrors 30 and 31.
- Mounting holes 3 6 and 3 6 are formed in the sensor base 20 in the horizontal direction adjacent to the mirrors 30 and 3 1, and heaters 3 7 and 3 7 are fixed to these mounting holes by fixing screws. .
- the heaters 3 7 and 3 7 prevent the condensation of the mirror. For example, even if water vapor in the exhaust gas adheres to the mirror surface, the mirror is heated by energizing the heater to vaporize the moisture, and the water vapor is reflected in the mirror. Prevents adhesion to the surface.
- the heating temperature of Mira 30 and 31 is preferably equal to or higher than the dew point of moisture. By preventing dew condensation on the mirror, the reflectance is improved and attenuation due to reflection of the laser beam is prevented.
- the sensor hole 23 constituting the irradiation light passage hole and the sensor hole 24 constituting the transmitted light passage hole are formed by stepped holes having different diameters. That is, in the sensor holes 2 3 and 24, a through hole with a small diameter communicates with the exhaust gas passage hole 21, and a through hole with a large diameter communicates with the outside of the sensor base 20. Sensor holes 2 3 and 2 4 have a small diameter on the exhaust gas passage hole 2 1 side so that the flow of the exhaust gas is less disturbed and the exhaust gas is constantly exchanged and does not stagnate. Has been. When the thickness of the sensor base 20 is about 15 to 20 mm, the diameter of the small diameter part of the sensor hole is preferably about 6 to 8 mm.
- the sensor holes 2 3 and 2 4 have a large diameter on the outer peripheral side of the sensor base 20. Therefore, it is easy to mount the irradiation part such as the optical fiber 25 and the collimator lens 26 and the light receiving part such as the detector 27 and the like.
- the sensor holes 2 3 and 2 4 constituting the light passage hole are different from each other only in the irradiation part and the light receiving part to be fixed. Therefore, the configuration of one sensor hole 2 4 for fixing the detector 27 as the light receiving part is described in detail. explain.
- the sensor hole 24 constitutes a light passage path through which the laser light passes, and at least a part of the light passage hole is filled with a stepped columnar glass body 40 formed of optical glass as a translucent material. Yes.
- a mica-based heat-resistant gasket 41 is disposed in the middle of the sensor hole 24, and the glass body 40 is inserted into the large-diameter portion of the sensor hole 24 so as to come into contact with the gasket 41.
- the interior space is filled. With this configuration, the closed internal space of the sensor hole 24 is not filled with gas such as air.
- the glass body 40 has a lower entrance surface 40 a and an upper exit surface 40 b in FIG. 5 polished, and the outer peripheral surface is formed on a satin surface to prevent fringes. Note that the entrance surface 40 a and the exit surface 40 b are not formed parallel to each other, and one surface is inclined by about 1 degree with respect to the central axis. In this embodiment, the exit surface 40 b is an inclined surface.
- the glass body 40 filling the sensor hole 24 of the light receiving section has a lower incident surface 40 a as a gas facing surface and an upper emitting surface 40 b as an element facing surface facing the detector 27. .
- the glass body 40 that fills the sensor hole 23 of the irradiating portion has an incident surface and an output surface that are opposite to each other, the lower element facing surface is the incident surface, and the upper gas facing surface is the emitting surface.
- the glass body 40 inserted from the large diameter portion does not pass the exhaust gas.
- the incident surface 40 a of the glass body is close to the exhaust gas passage hole 21.
- the exit surface 40 b of the glass body 40 is close to, preferably in contact with, the detector 27, and fills the laser beam passage path of the sensor hole 24.
- the passage path of the laser light passing through the sensor hole 24 is a glass made of a translucent member.
- the laser light that is filled with the glass body 40 and passes through the sensor hole passes through the glass body through almost no space.
- the laser light emitted from the optical fiber and the collimator lens does not pass through the space but passes through the glass body filling the passage path.
- a copper gasket 42 is externally fitted as a gasket to the middle step 40 c of the glass body 40.
- the intermediate step and the incident surface 40a are formed in a parallel state.
- a pedestal 4 3 for fixing the glass body 40 to the sensor base 20 is fixed to the installation surface outside the sensor hole 24, and a cylindrical portion extending from the pedestal into the sensor hole 24 4 3 a is formed in a body-like manner, and this cylindrical portion 4 3 a is in contact with the copper gasket 4 2.
- the length of the cylindrical part 4 3 a and the position of the stepped part of the glass body 40 are determined by the copper gasket 4 when the base 4 3 is fixed with a set screw 4 5 so that it is in close contact with the installation surface of the sensor base 20.
- the two gaskets 4 1 and 4 2 are installed in parallel by forming the incident surface 40 a and the intermediate step 4 O c in parallel, and the exit surface 40 b to be an inclined surface of about 1 degree. The airtight state can be stabilized, and the gasket can be prevented from being damaged.
- An annular heat insulating ring 46 made of a heat insulating material such as ceramic is disposed on the surface of the base 43, and a support ring 47 for fixing the detector 27 is fixed to the surface of the heat insulating ring.
- the support ring is formed of a metal plate material such as stainless steel, and is fixed to the sensor base 20 with a set screw 48 that penetrates the base 43 and the heat insulation ring 46.
- a plurality of screw holes are formed on the circumference of the support ring 47, and the detector 27, which is a light receiving element, is fixed by these screw holes.
- an optical fiber 25 and a collimator lens 26 are fixed to the support ring fixed to the other sensor hole 23 (not shown) as an irradiating portion. In this way, the detector 27 is fixed to the sensor base 20 with the heat insulating ring 46 interposed therebetween, so the high heat of the exhaust gas is not directly transmitted to the detector 26, improving reliability and durability. Can be made.
- a sensor hole 23 that is a light passage hole that guides the measurement laser light to the exhaust gas passage hole
- a sensor that is a light passage hole that guides the transmitted laser light of the laser light irradiated into the exhaust gas to the detector 27.
- the heat insulating ring 4 6 and the support ring 4 7 are sandwiched between the base 4 3 of the irradiation unit.
- the optical fiber 25 and the collimator lens 26 are fixed using set screws 48 to form the irradiation section.
- the irradiation unit for irradiating the exhaust gas with the laser beam and the light receiving unit for receiving the laser beam transmitted through the exhaust gas may be disposed upside down. Further, the sensor unit 11 shown in FIG. 3 may be rotated 90 degrees to irradiate the laser beam in the horizontal direction.
- the sensor hole 23 that guides the laser light to the exhaust gas passage hole 21, and the laser that has passed through the exhaust gas is a laser beam.
- Most of the space in the passage through which is passed is filled with the glass body 40, and the volume of the space is set to almost zero. For this reason, when assembling the detector 27, almost no air enters the sensor hole 24, and the gas existing in this space can be ignored. Further, when the optical fiber 25 or the collimator lens 26 is attached to the sensor hole 23, almost no air enters the sensor hole 23, and the gas existing in this space can be ignored.
- the space between the glass body 40 and the detector 27 or the glass body 40 and the optical fiber 25 For example, when oxygen is measured as an exhaust gas component, the oxygen component in the exhaust gas is about 1% because of the combustion exhaust gas, but the amount of oxygen in this space is 13%. Due to the large amount, the light intensity of the transmitted laser light needs to be greatly corrected. Similar corrections are required for other exhaust gas components. However, in this embodiment, since there is almost no air in the space, it is not necessary to correct the gas existing in the path of the laser beam, the calculation time can be shortened, and the exhaust gas can be analyzed in real time. It becomes possible.
- the optical fiber 25 fixed to the sensor base 20 and the collimator lens 26 and the detector 27 are connected to the laser oscillation / light receiving controller 50 and emitted from the laser oscillation / light receiving controller 50.
- the infrared laser beam is irradiated into the exhaust gas passage hole 21 of the sensor base 20 through the optical fiber 25, and the infrared laser beam that has passed through the exhaust gas is received by the detector 27 on the light receiving side, and the signal line 2 It is configured to be input to laser oscillation / light receiving controller 50 through 8.
- the intensity of light emitted from the optical fiber 25, the intensity of light received through the exhaust gas and received by the detector 27, and the like are supplied to a personal computer 60 as an analyzer.
- the exhaust gas analyzer 10 includes a plurality of sensor units 11 to 14, a laser oscillation / light reception controller 50, and a personal computer 60.
- the laser oscillation 'light receiving controller 50 will be described with reference to FIG.
- Laser oscillation 'Reception controller 50 is an irradiation device that irradiates infrared laser beams of multiple wavelengths.
- Multiple laser diodes LD 1 to LD 5 are connected to a plurality of signal generators such as a function generator (not shown). Supply frequency signal, Laser diodes LD 1 to LD: LD 5 emits infrared laser beams having a plurality of wavelengths corresponding to the respective frequencies.
- Laser oscillation ⁇ Signals of multiple frequencies output from the signal generator of the light receiving controller 50 are supplied to the laser diodes LD i to LD 5 to emit light, for example, LD 1 has a wavelength of about 1300 to 1330 nm, LD 2 is set to generate infrared light in the wavelength band in which the wavelength band where the peak wavelength of the component gas to be detected exists, such as 1330-1360 nm.
- the wavelength of the infrared laser beam that passes through the exhaust gas is set according to the component of the exhaust gas to be detected.
- Carbon monoxide (CO) carbon dioxide (C0 2 ), ammonia (NH 3 ), methane (CH 4 )
- detecting water (H 2 0) use infrared laser light of 5 wavelengths.
- a suitable wavelength for detecting ammonia is 1 530 nm
- a suitable wavelength for detecting carbon monoxide is 1 560 nm
- a suitable wavelength for detecting carbon dioxide is 1 570 nm
- the wavelength suitable for detecting methane is 1680 nm
- the wavelength suitable for detecting water is 1 350 nm.
- infrared laser beams with different wavelengths are used according to the number of exhaust gas components. The gas concentration may be detected at different wavelengths even for the same component, and may be selected from different wavelengths.
- Infrared laser light emitted from each of the laser diodes LD 1 to LD 5 is guided to the demultiplexer 52 by the optical fiber 51, and is demultiplexed by the demultiplexer 52 according to the number of sensors. It is demultiplexed.
- the laser beams emitted from the laser diodes LD 1 to LD 5 in accordance with the three sensor units 11 to 13 are demultiplexed into three.
- the laser light demultiplexed by the demultiplexers 52 is divided into signal light and measurement light by demultiplexers 53 ⁇ , 53 ⁇ , 53C ....
- the duplexers 53 A are for the sensor unit 11
- the duplexers 5 3 B are for the sensor unit 12
- the duplexers 53 C are for the sensor unit 1 ′ 3.
- the signal light divided by the five demultiplexers 53 A ... for the sensor unit 1 1 is multiplexed by the multiplexer 5 4 A through the optical fiber, and the combined signal light in multiple wavelength bands is the optical fiber 56.
- the light is guided to the differential photodetector 57 A through A.
- the measurement light divided by the five demultiplexers 53 A ... is multiplexed by the multiplexer 55 A through the optical fiber, and then by the optical fiber 25 A The light is guided to the irradiation part of the sensor part 11.
- the infrared laser beam demultiplexed by the demultiplexers 5 2 Is divided into signal light and measurement light by the five demultiplexers 5 3 B for the sensor unit 12.
- the signal light is multiplexed.
- signal light is obtained by combining a plurality of wavelength bands, and is guided to the differential photodetector 5 7 B through the optical fiber 56 B.
- the measurement light divided by the five demultiplexers 5 3 B,... Is multiplexed by the multiplexer 5 5 B and guided to the irradiation part of the sensor unit 12 by the optical fiber 25 B.
- the infrared laser light demultiplexed by the demultiplexers 5 2 are examples of the infrared laser light demultiplexed by the demultiplexers 5 2...
- the signal light is multiplexed.
- the signal 54C becomes signal light in multiple wavelengths and is guided to the differential photodetector 57 C through the optical fiber 56 C.
- the measurement light divided by the five demultiplexers 5 3 C ... is multiplexed by the multiplexer 55 C and guided to the irradiation area of the sensor unit 13 by the optical fiber 25 C.
- FIG. 6 three sensor units 1 1 to 1 3 are shown. However, when more sensor units 1 4... Are installed, the demultiplexer 5 2 demultiplexes them into more laser beams. The separated laser light is demultiplexed into measurement light and signal light by more demultiplexers 53, and then the signal laser light is combined by a combiner 54, then a differential photodetector. The light is guided to 5 7... And the measurement laser light is multiplexed by a multiplexer 5 5... And then guided to more sensor sections 14.
- the exhaust gas analyzer 10 is configured to reflect the infrared laser light for measurement by mirrors 30 and 31 to increase the transmission distance in the exhaust gas, and is repeatedly reflected by the mirrors 30 and 31.
- the measured laser beam is received by a detector.
- Sensor unit 1 1 to 1 3
- Photodetector 2 7 A, 2 7 B, 2 7 C connected to photo detector 2 7 A, 5 7 B
- Differential laser detector 5 7 A, 5 7 B , 5 7 C are connected via signal lines 2 8 A, 2 8 B, 2 8 C.
- the signal light combined by the multiplexers 54A, 54B, 54C passes through the optical fibers 5 6 A, 5 6 B, 5 6 C, and the differential photodetectors 5 7 A, 5 7 B, 5 7 C Is guided to.
- the three differential photodetectors 5 7 A, 5 7 B, and 5 7 C are configured to take the difference between the transmitted laser light that has been attenuated by passing through the exhaust gas and the signal laser light that has not passed through the exhaust gas. It has become.
- the signal laser beam is input to a photodiode and converted to an electrical signal.
- An electrical signal corresponding to the difference between the signal light and the measurement light calculated by a differential photodetector For example, the signal is amplified by a preamplifier (not shown) and input to a personal computer 60 as an analysis device via an AZD converter.
- the personal computer 60 analyzes the exhaust gas by calculating the concentration of the components contained in the exhaust gas, the temperature and pressure of the exhaust gas from the input signal.
- the laser light emitted from the optical fiber 25 and the collimator lens 26 is irradiated into the exhaust gas passage hole 21 through which the exhaust gas flows through the sensor hole 23. Reflected downward by the upper mirror 30, then reflected upward by the lower mirror 3 1, repeatedly reflected and entered the sensor hole 2 4 from the lower mirror 3 1, and received by the detector 2 7 The At this time, the sensor holes 2 3 and 24 are filled with a glass body 40 made of a translucent material, and the volume of gas existing in the sensor holes 2 3 and 2 4 is zero or very small. . Since the laser beam in the sensor hole passes through the glass body 40 and hardly passes through the ineffective space, the transmitted laser beam intensity measured by the detector 27 is compared with the gas existing in the middle.
- the exhaust gas analyzer 10 of the present invention transmits, for example, infrared laser light into the exhaust gas, based on the intensity of incident light and the intensity of transmitted light after passing through the exhaust gas.
- concentration of these components is calculated and the exhaust gas is analyzed. That is, the concentration C of the exhaust gas component is calculated from the following formula (1).
- I is the transmitted light intensity
- I o is the incident light intensity
- k is the absorptance
- L is the transmission distance. Therefore, the concentration C of the exhaust gas component is calculated based on the ratio of the transmitted light intensity (I) to the incident light intensity (I o), which is the signal light, and the signal intensity (I / I o).
- the transmitted light intensity I is output through the detector 2 7 (2 7 A, 2 7 B, 2 7 C), and the incident light intensity I o is transmitted through the optical fibers 5 6 A, 5 6 B, 5 6 C. It is output from a photoelectric converter such as a photodiode in the differential photodetectors 5 7 A, 5 7 B, 5 7 C.
- the incident light intensity I o is not transmitted through the exhaust gas. High signal light intensity is used.
- the exhaust gas analyzer 10 of the present embodiment configured as described above will be described below.
- the exhaust gas analyzer 10 is operated while the engine is operating.
- the exhaust gas discharged from the engine 2 is merged in the exhaust manifold 3 as an exhaust path, introduced into the first catalyst device 5 through the exhaust pipe 4, and further introduced into the second catalyst device 6, and then exhausted through the muffler 7. Released from the pipe 8 into the atmosphere.
- the exhaust gas passes through the exhaust gas passage hole 21 formed in the sensor base 20 of the sensor units 11 to 14 installed in the exhaust path.
- the laser light is irradiated into the exhaust gas passage hole 21 and the light intensity of the laser light transmitted through the exhaust gas is measured.
- each laser diode LD 1 by operating the signal generator of the laser oscillation / light receiving controller 50 to supply a signal to each of the laser diodes LD 1 to LD 5, each laser diode LD 1 to: an infrared laser beam having a predetermined wavelength from the LD 5 To emit light.
- the infrared laser light emitted from each of the laser diodes LD 1 to LD 5 reaches the duplexer 52 ⁇ through the optical fibers 51, and is demultiplexed according to the number of sensor units. After that, the demultiplexed infrared laser light is demultiplexed into measurement light and signal light by the demultiplexers 53 A-, 53 ⁇ , 53 C.
- the signal light demultiplexed by the five demultiplexers 53 ⁇ is multiplexed by the multiplexer 54 A to become a signal laser beam, and the differential optical detector 57A Is guided to.
- the measurement light demultiplexed by the five demultiplexers 53 A is multiplexed by the multiplexer 55 A to become measurement laser light, which is guided to the irradiation part of the sensor unit 11 through the optical fiber 25A.
- the other sensor units 12, 1 and 3 are demultiplexed by the demultiplexers 5 2... and then demultiplexed into signal light and measurement light by demultiplexers 53 B-, 53 C... 54 B and 54 C are combined, the signal light is guided to differential optical detectors 57 B and 57 C, and combined by multiplexers 55 B and 55 C. 1 3 Guided to light.
- the infrared laser light for measurement irradiated from the optical fibers 25 (25A, 25B, 25C) of the sensor units 11 to 13 is exhausted through the sensor hole 23 which is an irradiation light passage hole. Irradiated into the exhaust gas passage hole 21 passing therethrough.
- the infrared laser beam crosses the exhaust gas passage hole 2 1 ⁇ that is the exhaust path, and passes through the light passage slit 35 to mirror 3 It reaches 0, is reflected downward by the upper mirror 30, then passes through the light passage slit 35, reaches the mirror 31 and is reflected upward by the lower mirror 31, and repeats reflections in the exhaust gas.
- the transmission distance increases, and the light is received by the detector 2 7 (27 A, 27 B, 27 C) through the sensor hole 24.
- the infrared laser light for measurement passes through the exhaust gas and is attenuated, and the attenuated transmitted light is received by the detector that is the light receiving unit, and the light intensity of the transmitted light (measurement light) is measured.
- the infrared laser light for measurement that has attenuated through the exhaust gas and reached the light receiving section is output as an electrical signal by the detectors 2 7 A, 2 7 B, 2 7 C, and the signal lines 2 8 (2 8 A, 2 8 B, 28 C) and supplied to the differential photodetectors 5 7 A, 5 7 B, 5 7 C.
- the signal laser light is supplied to the differential optical detectors 5 7 A, 5 7 B, and 5 7 C.
- transmitted light (measurement light) and signal light are transmitted for each of a plurality of wavelength components. The absorption spectrum in which the peak wavelength of the specific gas component in the transmitted light is detected is detected.
- the output from the differential photodetector is input to the personal computer 60 which is an analyzer.
- the personal computer 60 calculates and measures the concentration, temperature, and pressure of the components of the exhaust gas based on the peak wavelength of each frequency band of the input absorption spectrum.
- the exhaust gas analyzer 10 of the present embodiment is capable of measuring from exhaust gas at about 80 ° C immediately after exhaust from the engine 2 to exhaust gas at about 100 ° C at the end of the exhaust path. Even cold exhaust gas can be measured.
- the exhaust gas analyzer 10 of the present embodiment includes the sensor hole 23, which is a light passage hole that constitutes a laser light irradiation unit irradiated into the exhaust gas, and the laser light transmitted through the exhaust gas.
- the sensor hole 24, which is a light passage hole that constitutes a light receiving portion that receives light, is filled with a glass body 40 made of a translucent material, and there is no invalid space, so it exists in this space ⁇ Measurement accuracy can be increased without correction for gas.
- correction since correction is not required, the calculation time for the gas concentration and temperature of the components can be shortened, and the exhaust gas can be analyzed in real time.
- the heat-resistant gasket 41 inserted between the glass body 40 and the sensor hole has a pedestal. 4 3 Since the cylindrical part 4 3 a has a pressing force and no torsional force, It is possible to prevent the heat-resistant gasket from being destroyed or damaged. As a result, assembly becomes easy, leakage of exhaust gas can be prevented, and accuracy of exhaust gas analysis can be improved.
- the present invention is not limited to the above-described embodiment, and is within the scope not departing from the spirit of the present invention described in the claims. Various design changes can be made.
- a metal gasket may be arranged on the exhaust gas passage hole side.
- An artificial sapphire may be used instead of the optical glass as a material constituting the translucent member filling at least a part of the light passage hole.
- the laser light emitted from the irradiation unit is repeatedly reflected by two mirrors to increase the transmission distance in the exhaust gas.
- the laser beam is transmitted through the exhaust gas without using a mirror.
- the laser beam may be configured to be directly received by the light receiving element.
- this exhaust gas analyzer can be used to analyze exhaust gas from a combustion apparatus such as a boiler. It can be applied to applications.
- exhaust gas analysis of gasoline engines exhaust gas analysis of diesel engines can be performed, and it can also be applied to exhaust gas analysis applications of other internal combustion engines.
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
An exhaust gas analyzer that applies a laser beam to exhaust gas discharged from an internal combustion engine, receives the laser beam passed through the exhaust gas, and measures and analyzes, based on the received laser beam, the concentration and temperature of components contained in the exhausted gas. The gas analyzer has a sensor base (20) installed in a route where the exhaust gas flows and having an exhaust gas passage hole where the exhaust gas passes. The sensor base has an optical fiber (25) for emitting the laser beam, a detector (27) for receiving the laser beam, a sensor hole (23) for guiding the laser beam emitted from an irradiation section to the exhaust gas passage hole, and a sensor hole (24) for guiding the laser beam, having passed through the exhaust gas, to the detector (27). At least a portion of the sensor holes (23, 24) is filled with a glass body (40) which is a light transmitting member.
Description
明細書 排ガス分析装置 技術分野 Technical description
本発明は、自動車等の内燃機関から排出される排ガスの分析装置に係り、特に、 排ガスが流れる経路中の排ガスにレーザ光を照射し、 排ガス中を透過したレ一ザ 光の光強度に基づいて排ガス中のガス成分の濃度や温度を測定して分析する排ガ ス分析装置に関する。 背景技術 The present invention relates to an analyzer for exhaust gas discharged from an internal combustion engine such as an automobile, and more particularly, based on the light intensity of laser light that is irradiated with laser light to the exhaust gas in a path through which the exhaust gas flows and that has passed through the exhaust gas. The present invention relates to an exhaust gas analyzer that measures and analyzes the concentration and temperature of gas components in exhaust gas. Background art
従来、 この種の排ガス分析装置としては、 エンジンに連なる排気管を流れる排 ガス中の H C濃度を連続的に測定するための N D I R (非分散型赤外分光法) 型 ガス分析計を備える車載型 H C測定装置がある。 この測定装置において、 N D I R型ガス分析計のガス分析部はサンプルガスがセル内に供給され、 赤外光源によ つてセルを照射し、 光チヨッパが所定の周期で回転している状態で、 サンプルガ スがセルに供給されることにより、 検出器から H Cおよび H 2 0のそれぞれの濃 度に対応した交流信号おょぴ比較信号としての交流信号が出力され、 これらの信 号から H Cおよび H 2 0の濃度を得ることができるものである (例えば、 特許文 献 1参照) 。 Conventionally, this type of exhaust gas analyzer is an in-vehicle type equipped with an NDIR (non-dispersive infrared spectroscopy) type gas analyzer for continuously measuring the HC concentration in the exhaust gas flowing through the exhaust pipe connected to the engine. There is an HC measuring device. In this measuring device, the gas analyzer of the NDIR gas analyzer supplies the sample gas into the cell, irradiates the cell with an infrared light source, and rotates the optical tipper at a predetermined cycle. When the gas is supplied to the cell, an AC signal is output from the detector as an AC signal and a comparison signal corresponding to the concentrations of HC and H 2 0. From these signals, HC and H in which it is possible to obtain a concentration of 2 0 (e.g., see Patent Document 1).
また、 排ガスを分析する他の装置として、 排ガスにレーザ光を照射し、 排ガス 中を透過したレーザ光を受光して光強度を測定し、 排ガス中を透過することで減 衰した光強度から排ガス中の特定の成分の濃度や温度を測定する排ガス分析装置 がある。 このよ うな排ガス分析装置では、 図 7に示されるような構成によりレ一 ザ光の光強度を測定している。 すなわち、 受光素子 7 0を固定するセンサベース 7 1には、 レーザ光 Rが通過できる光通過孔 7 2が形成されている。 光通過孔 7 2には、 排ガスの進入を防止しレーザ光を透過する光通過窓 7 3が耐熱ガスケッ ト 7 4を挟んで揷入され、 光通過窓 7 3の上にガスケット 7 5を挟んで固定リン グ 7 6がねじ込まれている。 この光通過窓 7 3の入射面と出射面とは通常は迷光
や干渉光を防止するため平行に形成されず、 一方の面が中心軸に対して僅かに傾 斜した傾斜面を有するゥエツジ型に形成される。 In addition, as another device for analyzing exhaust gas, the exhaust gas is irradiated with laser light, the laser light transmitted through the exhaust gas is received, the light intensity is measured, and the light intensity attenuated by passing through the exhaust gas is measured from the exhaust gas. There are exhaust gas analyzers that measure the concentration and temperature of certain components. In such an exhaust gas analyzer, the light intensity of the laser beam is measured with a configuration as shown in FIG. That is, a light passage hole 72 through which the laser light R can pass is formed in the sensor base 71 that fixes the light receiving element 70. A light passage window 73 that prevents the ingress of exhaust gas and transmits laser light is inserted into the light passage hole 7 2 with a heat-resistant gasket 7 4 interposed therebetween, and a gasket 7 5 is sandwiched on the light passage window 73. The fixing ring 7 6 is screwed in. The entrance and exit surfaces of this light passage window 73 are usually stray light. In order to prevent interference light, it is not formed in parallel, but one surface is formed in a wedge shape having an inclined surface slightly inclined with respect to the central axis.
また、 センサベース 7 1の上部にはセラミック製の台座 7 7、 断熱リング 7 8 を挟んでステンレス等の固定治具 7 9が重ねられ、 この固定治具 7 9に受光素子 7 0が固定される構成となっている。 このような構成により、 受光素子のセンサ ベ一ス 7 1の取付部から排ガスの漏洩を防いでレーザ光を受光することができる。 なお、 レーザ光を照射する光フアイパの取付部等の照射部も光通過窓を備える構 成はほぼ同一となっており、 排ガスの漏洩を防止してレ一ザ光を照射できるよう になっている。 In addition, a fixing jig 7 9 made of stainless steel or the like is stacked on the upper part of the sensor base 7 1 with a ceramic base 7 7 and a heat insulating ring 7 8 interposed therebetween, and the light receiving element 70 is fixed to the fixing jig 7 9. It is the composition which becomes. With such a configuration, it is possible to receive laser light while preventing leakage of exhaust gas from the mounting portion of the sensor base 71 of the light receiving element. In addition, the configuration of the irradiation part such as the attachment part of the optical fiber that irradiates the laser beam is almost the same, and the laser beam can be irradiated by preventing the leakage of the exhaust gas. Yes.
特許文献 1 Patent Literature 1
特開 2 0 0 4— 1 1 7 2 5 9号公報 発明の開示 [Patent Document 1] Japanese Patent Laid-Open No. 2 0 0 4 1 1 7 2 5 9
ところで、 前記構造の排ガス分析装置は、 車両のエンジン等の内燃機関から排 出される排ガスを配管ゃ流路中で直接分析するための分析装置において、 配管に 取り付けられる測定セルに受光素子を固定する場合、 受光素子の取り付け表面か ら測定セル内部に設けられた流路に向かって形成された光透過用孔が測定につい ての無効スペースとなり、 測定精度が低下する要因となる。 具体的には、 温度等 の影響により、 無効スペース内に存在する酸素濃度を精度良く捕正できず、 測定 精度が低下してしまう。 By the way, the exhaust gas analyzer having the above structure is an analyzer for directly analyzing exhaust gas discharged from an internal combustion engine such as a vehicle engine in a pipe or a flow path, and fixes a light receiving element to a measurement cell attached to the pipe. In this case, the light transmission hole formed from the light receiving element mounting surface toward the flow path provided in the measurement cell becomes an invalid space for measurement, which causes a decrease in measurement accuracy. Specifically, due to the influence of temperature and the like, the oxygen concentration present in the invalid space cannot be accurately corrected, and the measurement accuracy is reduced.
また、 前記した他の排ガス分析装置においても、 光通過孔内の無効スペースに 存在する空気等のガスの影響を補正する必要があり、 排ガス成分の濃度を算出す る演算時間が多大となっている。 さらに、 光通過窓 7 3の固定では、 光通過窓の 一方の面が傾斜面であることと、 ガスケット 7 4, 7 5にねじり力が作用するこ とにより、 排ガスの漏洩を防止するための耐熱ガスケット 7 4が破損しやすく、 ガスケットが破損するとガス漏れが発生して測定精度が低下してしまう。そして、 前記の照射部ゃ受光部をセンサベース 7 1に組み付けるとき、 排カ'スを通過させ ずレーザ光を通過させる光通過窓 7 3の位置決めが難しく、 位置ずれによる固定 時の破損が発生しやすく、 破損するとガス漏れの危険性が生じる。
本発明は、 このような問題に鑑みてなされたものであって、 その目的とすると ころは、 分析対象ガスの測定精度を向上させることができ、 分析時間を短縮でき る排ガス分析装置を提供することにある。 また、 排ガス中にレーザ光を照射する 照射部の取付けや、 排ガス中を透過したレーザ光の光強度を測定する受光部の取 付けが容易に行なえ、 ガスケッ トの破損を防止して排ガスの漏洩を防止できる排 ガス分析装置を提供することにある。 In addition, in the other exhaust gas analyzers described above, it is necessary to correct the influence of gas such as air existing in the invalid space in the light passage hole, and the calculation time for calculating the concentration of the exhaust gas component becomes great. Yes. Furthermore, when the light passage window 73 is fixed, one surface of the light passage window is an inclined surface and a torsional force acts on the gaskets 74, 75 to prevent exhaust gas leakage. Heat-resistant gasket 7 4 is easily damaged, and if the gasket is damaged, gas leaks and measurement accuracy decreases. When the above-mentioned irradiating part and the light-receiving part are assembled to the sensor base 71, it is difficult to position the light passage window 73 that allows the laser light to pass through without passing through the waste gas, and breakage occurs due to misalignment. It is easy to do, and if it breaks, there is a risk of gas leakage. The present invention has been made in view of such problems, and an object of the present invention is to provide an exhaust gas analyzer that can improve the measurement accuracy of a gas to be analyzed and can shorten the analysis time. There is. In addition, it is easy to attach an irradiating unit that emits laser light into the exhaust gas and to attach a light receiving unit that measures the light intensity of the laser light that has passed through the exhaust gas, preventing damage to the gasket and leaking the exhaust gas. It is an object of the present invention to provide an exhaust gas analyzer that can prevent the above.
前記目的を達成すべく、 本発明に係る排ガス分析装置は、 内燃機関から排出さ れる排ガスにレーザ光を照射し、 排ガス中を透過したレーザ光を受光し、 受光さ れた I ザ光に基づいて前記排ガス中に含まれる成分の濃度や温度を測定して分 析する排ガス分析装置であって、 この装置は、 レーザ光を照射する照射部および レーザ光を受光する受光部と、 前記照射部から照射されたレーザ光を前記排ガス が流通する経路に導光する光通過孔と、 排ガス中を透過したレーザ光を前記受光 部に導光する光通過孔とを備えており、 前記光通過孔の少なくとも一部を透光性 部材で充填することを特徴としている。 In order to achieve the object, an exhaust gas analyzer according to the present invention irradiates exhaust gas emitted from an internal combustion engine with laser light, receives laser light transmitted through the exhaust gas, and is based on the received I-light. An exhaust gas analyzer that measures and analyzes the concentration and temperature of components contained in the exhaust gas, the apparatus comprising: an irradiation unit that emits laser light; a light receiving unit that receives laser light; and the irradiation unit A light passage hole that guides the laser light emitted from the light path to a path through which the exhaust gas flows, and a light passage hole that guides the laser light that has passed through the exhaust gas to the light receiving portion. It is characterized in that at least a part of is filled with a translucent member.
前記のごとく構成された本発明の排ガス分析装置は、 光通過孔の少なくとも一 部を透光性部材で充填することで、 排ガスの成分濃度や温度を測定するレーザ光 が通過する光通過路内に滞留するガスの体積を低減できるため、 排ガス中の成分 の濃度や温度の測定精度を高めることができる。 また、 排ガス中を透過したレー ザ光の光強度を測定し、 分析対象ガスの濃度や温度を算出するとき、 レーザ光が 通過する途中の通路に存在するガスの影響を少なくできるため、 補正演算が簡略 となって演算時間を短縮でき、 短時間で排ガス分析を完了できる。 The exhaust gas analyzer of the present invention configured as described above has a light passage path through which a laser beam that measures the component concentration and temperature of exhaust gas passes by filling at least a part of the light passage hole with a translucent member. Since the volume of the gas staying in the exhaust gas can be reduced, the measurement accuracy of the concentration and temperature of the components in the exhaust gas can be increased. In addition, when measuring the light intensity of the laser light that has passed through the exhaust gas and calculating the concentration and temperature of the gas to be analyzed, the influence of the gas present in the passage through which the laser light passes can be reduced, so the correction calculation The calculation time can be shortened and exhaust gas analysis can be completed in a short time.
従来の排ガス分析装置では、 例えば、 センサ部を構成するセンサベースに受光 素子や光ファイバを組み付けるとき、 光通路内に空気が充満してしまう。 このよ うな状態で測定を行なうと、 排ガス中の成分の測定と共に充満している空気中の 窒素や酸素も合わせて測定してしまうため、 測定時に充満しているガスに対する 補正を行なう必要がある。 このガス捕正を行なわない場合は排ガスの成分の他に 窒素や酸素が加わって測定精度が劣化してしまう。 本発明の排ガス分析装置は、 レーザ光が通過する光通過孔内の少なくとも一部が透光性部材で充填されている ため、 光通過孔内に存在する空気等のガスの影響を少なくすることができる。
また、 本発明に係る排ガス分析装置の好ましい具体的な態様としては、 前記照 射部おょぴ受光部は、 前記経路中に支持され排ガスが通過する排ガス通過孔を有 するセンサベースに固定されており、 前記光通過孔は、 前記排ガス通過孔と前記 照射部および受光部とを連通することを特徴としている。 この構成によれば、 排 ガスの流れる経路にセンサベースの排ガス通過孔を対応させ、 排ガス通過孔と連 通する光通過孔に照射部と受光部を固定できるため構成を簡略化できると共に、 排ガスが流れる経路中にセンサベースを容易に設置することができる。 In a conventional exhaust gas analyzer, for example, when a light receiving element or an optical fiber is assembled to a sensor base constituting a sensor unit, the light path is filled with air. If measurement is performed in such a state, nitrogen and oxygen in the air that is filled are also measured together with the measurement of the components in the exhaust gas, so it is necessary to correct the gas that is filled during measurement. . If this gas correction is not performed, nitrogen and oxygen will be added in addition to the exhaust gas components, and the measurement accuracy will deteriorate. In the exhaust gas analyzer of the present invention, since at least a part of the light passage hole through which the laser beam passes is filled with a translucent member, the influence of gas such as air existing in the light passage hole is reduced. Can do. Further, as a preferable specific aspect of the exhaust gas analyzer according to the present invention, the irradiation unit and the light receiving unit are fixed to a sensor base having an exhaust gas passage hole that is supported in the path and through which the exhaust gas passes. The light passage hole communicates the exhaust gas passage hole with the irradiation unit and the light receiving unit. According to this configuration, the sensor-based exhaust gas passage hole is made to correspond to the exhaust gas flow path, and the irradiation unit and the light receiving unit can be fixed to the light passage hole communicating with the exhaust gas passage hole. The sensor base can be easily installed in the path through which the current flows.
さらに、 前記透光性部材は、 前記排ガス通過孔に近接するガス対向面と、 該ガ ス対向面から前記光通過孔に沿って延長され前記照射部おょぴノまたは受光部に 近接する素子対向面とを備えており、 透光性部材はレーザ光の通過経路を充填し ていることを特徴としている。そして、前記透光性部材を構成する透光性材料は、 光学ガラスまたはサフアイャで形成されていることが好ましい。 The translucent member further includes a gas facing surface close to the exhaust gas passage hole, and an element extending from the gas facing surface along the light passage hole and close to the irradiation unit or the light receiving unit. And the translucent member fills the passage path of the laser beam. The translucent material constituting the translucent member is preferably made of optical glass or sapphire.
このように構成された排ガス分析装置は、 排ガスが流通する排ガス通過孔に近 接して透光性部材のガス対向面を備えているため、 光通過孔内に排ガスが滞留せ ず、 時々刻々変化する排ガスの状態をリアルタイムで測定することができる。 そ して、 透光性部材は光通過孔に沿って延長され、 素子対向面が照射部ゃ受光部に 近接し光通過孔のレーザ光の通過経路を充填しているため、 光通過孔内に存在す る空気等のガスを排除でき、 受光された光強度の補正を省略することができ、 測 定精度の向上と、 成分濃度等の算出時間の短縮を達成できる。 また、 透光性部材 を光学ガラスあるいはサフアイャで形成することによりレーザ光の透過の際の減 衰を少なくすることができ、 高精度な測定が可能となる。 Since the exhaust gas analyzer configured in this way is provided with the gas facing surface of the translucent member close to the exhaust gas passage hole through which the exhaust gas flows, the exhaust gas does not stay in the light passage hole and changes from moment to moment. The state of exhaust gas to be measured can be measured in real time. The translucent member is extended along the light passage hole, and the element facing surface is close to the irradiation part and the light receiving part and fills the passage path of the laser light in the light passage hole. It is possible to eliminate gas such as air present in the sensor and to correct the received light intensity, thereby improving measurement accuracy and shortening the calculation time of component concentration. Further, by forming the translucent member with optical glass or sapphire, attenuation during transmission of laser light can be reduced, and high-accuracy measurement is possible.
本発明に係る排ガス分析装置の他の態様としては、 内燃機関から排出される排 ガスにレ一ザ光を照射し、 排ガス中を透過したレーザ光を受光し、 受光されたレ 一ザ光に基づいて前記排ガス中に含まれる成分の濃度や温度を測定して分析する 排ガス分析装置は、 排ガスが流通する経路中に装着され排ガスが通過する排ガス 通過孔を有するセンサべ一スを備えており、 このセンサベースは、 該センサべ一 スに台座を挟んで固定されレーザ光を照射する照射部およびレ一ザ光を受光する 受光部と、 前記照射部から照射されたレーザ光を前記排ガス通過孔に導光する光 通過孔と、 排ガス中を透過したレーザ光を受光部に導光する光通過孔と、 該光通
過孔を気密状態に塞ぐ透光性部材とを備えており、 前記台座は、 前記光通過孔内 に揷入され前記透光性部材をセンサベースに押圧する筒状部を備えていることを 特徴としている。 As another aspect of the exhaust gas analyzer according to the present invention, laser light is emitted to exhaust gas discharged from an internal combustion engine, laser light transmitted through the exhaust gas is received, and the received laser light is converted into light. An exhaust gas analyzer that measures and analyzes the concentration and temperature of components contained in the exhaust gas based on the above is equipped with a sensor base that is mounted in a path through which the exhaust gas flows and has an exhaust gas passage hole through which the exhaust gas passes. The sensor base is fixed to the sensor base with a pedestal interposed, and an irradiation unit that emits laser light and a light receiving unit that receives laser light, and the laser light emitted from the irradiation unit passes through the exhaust gas. A light passage hole for guiding light to the hole, a light passage hole for guiding laser light transmitted through the exhaust gas to the light receiving portion, and A translucent member that closes the overhole in an airtight state, and the pedestal includes a cylindrical portion that is inserted into the light passage hole and presses the translucent member against the sensor base. It is a feature.
さらに、 本発明に係る排ガス分析装置の好ましい具体的な他の態様としては、 前記透光性部材は、 耐熱性ガスケットを挟んで前記光通過孔と对接し、 光通過孔 を気密状態に塞ぐことを特徴としている。 そして、 前記台座は、 セラミックスよ り形成されることが好ましい。 このように構成された排ガス分析装置は、 センサ ベースにレーザ光を照射する照射部と、 レーザ光を受光する受光部とを取付ける とき、 台座の筒状部が光通過孔内に挿入され、 透光性部材から形成された光通過 窓をセンサベースに押圧して気密状態に塞ぐため、 ガスケット等のパッキングに ねじり力が作用せず、 ガスケット等の破損を防止することができる。 特に、 雲母 等で形成された耐熱性ガスケットを使用する場合、 ねじり力が作用すると割れや すいが、 本発明では台座の筒状部により押圧して気密を確保するため、 ガスケッ ト等の破損を防止することができ排ガスの漏洩を防止することができる。 台座を セラミックスより形成すると、 排ガスの高熱を遮断できて好ましい。 Furthermore, as another preferable specific aspect of the exhaust gas analyzer according to the present invention, the translucent member is opposed to the light passage hole with a heat resistant gasket interposed therebetween, and the light passage hole is sealed in an airtight state. It is characterized by. The pedestal is preferably formed of ceramics. In the exhaust gas analyzer configured in this manner, when the irradiation unit for irradiating the sensor base with the laser beam and the light receiving unit for receiving the laser beam are attached, the cylindrical portion of the pedestal is inserted into the light passage hole, Since the light passage window formed from the optical member is pressed against the sensor base and sealed in an airtight state, the torsional force does not act on the packing of the gasket and the like, and the damage of the gasket and the like can be prevented. In particular, when using a heat-resistant gasket formed of mica or the like, it is easy to crack when a torsional force is applied, but in the present invention, it is pressed by the cylindrical portion of the pedestal to ensure airtightness. It is possible to prevent exhaust gas from leaking. It is preferable to form the pedestal from ceramics because it can block the high heat of the exhaust gas.
本発明の排ガス分析装置は、 排ガス分析に使用するレーザ光が通過する光通過 孔の内部に滞留するガスの体積を低減することで滞留ガスによる光吸収の影響を 取り除き、 排ガス中に含まれる成分の濃度を精度良く測定することができる。 ま た、 排ガス中にレーザ光を照射する光ファイバ等の取付けと、 排ガス中を透過し たレーザ光の光強度を測定する受光素子の取付け構造を簡略化でき、 取付け時の ガスケットゃ光通過窓等の部品の破損も防止できるため、 コストダウンとメンテ ナンス性を向上できるとともに、 ガス漏れを防止できる。 図面の簡単な説明 The exhaust gas analyzer of the present invention removes the effect of light absorption by the staying gas by reducing the volume of the gas staying inside the light passage hole through which the laser beam used for exhaust gas analysis passes, and the components contained in the exhaust gas Can be measured with high accuracy. In addition, the mounting structure of the optical fiber that irradiates the laser light into the exhaust gas and the mounting structure of the light receiving element that measures the light intensity of the laser light that has passed through the exhaust gas can be simplified. As well as damage to parts such as these can be prevented, cost reduction and maintenance can be improved, and gas leakage can be prevented. Brief Description of Drawings
図 1は、 本発明に係る排ガス分析装置を車両に搭載した一実施形態の要部構 成図である。 FIG. 1 is a configuration diagram of a main part of an embodiment in which an exhaust gas analyzer according to the present invention is mounted on a vehicle.
図 2は、 本発明に係る排ガス分析装置をエンジンベンチに搭載した他の実施 形態の要部構成図である。 FIG. 2 is a configuration diagram of a main part of another embodiment in which the exhaust gas analyzer according to the present invention is mounted on an engine bench.
図 3は、 1つのセンサ部の要部の分解した状態の斜視図を含む排ガス分析装
置の要部構成図である。 Fig. 3 shows an exhaust gas analyzer that includes a perspective view of the essential parts of one sensor unit in an exploded state. FIG.
図 4 Aは図 3のセンサ部の正面図、 図 4 Bは、 図 4 Aのセンサベース部分の A— A線断面図、図 4 Cは、図 4 Aのセンサベース部分の B— B線断面図である。 4A is a front view of the sensor unit of FIG. 3, FIG. 4B is a cross-sectional view of the sensor base portion of FIG. 4A taken along the line A-A, and FIG. 4C is a B-B line of the sensor base portion of FIG. It is sectional drawing.
図 5は、 (a)が図 4 Aの C一 C線に沿う光通過孔部分の要部を示す断面図、 (b) 力 S (a) の要部の分解状態を示す斜視図である。 5A is a cross-sectional view showing the main part of the light passage hole along the line C-C in FIG. 4A, and FIG. 5B is a perspective view showing the exploded state of the main part of the force S (a). .
図 6は、 レーザ発振 ·受光コントローラの要部構成および信号解析装置を含 む排ガス分析装置の全体構成を示すブロック図である。 FIG. 6 is a block diagram showing the main configuration of the laser oscillation / light reception controller and the overall configuration of the exhaust gas analyzer including the signal analyzer.
図 7は、 従来の排ガス分析装置における光通過孔部分の要部を示す断面図で あ "Ο。 図面において、 1 :自動車、 1 A:エンジンベンチ、 2 :エンジン(内燃機関)、 FIG. 7 is a cross-sectional view showing a main part of a light passage hole portion in a conventional exhaust gas analyzer. In the drawing, 1 is an automobile, 1 A is an engine bench, 2 is an engine (internal combustion engine),
3 : ェキゾース トマニホルド (排気経路) 、 4 :排気管 (排気経路) 、 5 :第 1 触媒装置 (排気経路) 、 6 :第 2触媒装置 (排気経路) 、 7 : マフラー (排気経 路) 、 8 :排気パイプ (排気経路) 、 1 0 :排ガス分析装置、 1 1〜 1 4 : セン サ部、 2 0 : センサベース、 2 1 :排ガス通過孔、 2 3 : センサ孔 (照射光通過 孔) 、 24 :センサ孔 (透過光通過孔) 、 2 5, 2 5 A〜 2 5 C:光ファイバ (照 射部) 、 2 6 , 2 6 A〜 2 6 C : コリメータレンズ (照射部) 、 2 7, 2 7 A〜 2 7 C :ディテクタ (受光部) 、 3 0, 3 1 : ミラー、 3 5 :光通過スリット、3: Exhaust manifold (exhaust path), 4: Exhaust pipe (exhaust path), 5: First catalytic device (exhaust path), 6: Second catalytic device (exhaust path), 7: Muffler (exhaust path), 8 : Exhaust pipe (exhaust path), 10: Exhaust gas analyzer, 1 1 to 14: Sensor part, 20: Sensor base, 2 1: Exhaust gas passage hole, 2 3: Sensor hole (irradiation light passage hole), 24: Sensor hole (transmitted light passage hole), 25, 25 A to 25 C: Optical fiber (irradiation part), 26, 26 A to 26C: Collimator lens (irradiation part), 27 , 2 7 A to 2 7 C: Detector (light receiving part), 3 0, 3 1: Mirror, 3 5: Light passage slit,
40 : ガラス体 (透光性部材) 、 4 0 a :入射面 (ガス対向面) 、 4 0 b :出射 面 (素子対向面) 、 4 1, 4 2 : ガスケッ ト、 4 3 :台座、 4 3 a :筒状部、 5 0 : レーザ発振 '受光コントローラ、 5 2 :分波器、 5 3 A〜5 3 C :分波器、40: Glass body (translucent member), 40a: Incident surface (gas facing surface), 40b: Outgoing surface (element facing surface), 41, 42: Gasket, 43: Base, 4 3 a: cylindrical part, 50: laser oscillation 'light receiving controller, 5 2: demultiplexer, 5 3 A to 5 3 C: demultiplexer,
54A〜54 C, 5 5A〜5 5 C :合波器、 5 7 A〜 5 7 C :差分型光検出器、54 A to 54 C, 5 5 A to 5 5 C: multiplexer, 5 7 A to 5 7 C: differential photodetector,
6 0 :パーソナルコンピュータ (分析装置) 、 R : レーザ光、 を示している。 60: Personal computer (analyzer), R: Laser light.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明に係る排ガス分析装置を自動車の内燃機関 (エンジン) からの排 ガス分析装置として用いた場合の一実施の形態を図面に基づき詳細に説明する。 図 1は、 本実施形態に係る排ガス分析装置を自動車に搭載した要部構成図、 図 2
は、 図 1の排ガス分析装置をエンジンベンチに搭載した状態の要部構成図、 図 3 は、 センサ部とその近傍を分解した状態で示す斜視図、 図 4はセンサ部の詳細図 である。 また、 図 5は、 レーザ発振 '受光コントローラの要部構成および信号解 析装置を含む排ガス分析装置の全体構成を示すプロック図である。 Hereinafter, an embodiment in which an exhaust gas analyzer according to the present invention is used as an exhaust gas analyzer from an internal combustion engine (engine) of an automobile will be described in detail with reference to the drawings. FIG. 1 is a configuration diagram of a main part in which the exhaust gas analyzer according to the present embodiment is mounted on an automobile. Fig. 3 is a main part configuration diagram in a state where the exhaust gas analyzer of Fig. 1 is mounted on an engine bench, Fig. 3 is a perspective view showing the sensor unit and its vicinity in an exploded state, and Fig. 4 is a detailed diagram of the sensor unit. FIG. 5 is a block diagram showing the main configuration of the laser oscillation 'light receiving controller and the overall configuration of the exhaust gas analyzer including the signal analyzer.
図 1〜3において、 本実施形態の排ガス分析装置は、 自動車 1に設置されたェ ンジン (内燃機関) 2から排出される排ガスを分析する装置である。 また、 図 2 に示すように、 エンジンベンチ 1 Aに設置されたエンジン 2の排ガスを分析する 装置である。 エンジン 2の各気筒から排出される排ガスは、 ェキゾ一ストマニホ ルド 3で合流され、 排気管 4を通して第 1触媒装置 5に導入され、 さらに第 2触 媒装置 6に導入され、 そのあとマフラー 7を通して排気パイプ 8から大気中に放 出される。排気経路は、ェキゾーストマニホルド 3、排気管 4、第 1触媒装置 5、 第 2触媒装置 6、 マフラー 7、 排気パイプ 8から構成され、 エンジン 2から排出 された排ガスを 2つの触媒装置 5 , 6で浄化し、 マフラー 7により消音、 減圧し て大気中に放出する。 なお、 マフラーはメインマフラーとサブマフラーの 2つを 有するものでもよレ、。 1 to 3, the exhaust gas analyzer of the present embodiment is an apparatus that analyzes exhaust gas discharged from an engine (internal combustion engine) 2 installed in an automobile 1. In addition, as shown in FIG. 2, it is a device for analyzing exhaust gas of the engine 2 installed on the engine bench 1A. The exhaust gas discharged from each cylinder of the engine 2 is merged in the exhaust manifold 3 and introduced into the first catalyst device 5 through the exhaust pipe 4, and then into the second catalyst device 6, and then through the muffler 7. Released from the exhaust pipe 8 into the atmosphere. The exhaust path is composed of exhaust manifold 3, exhaust pipe 4, first catalyst device 5, second catalyst device 6, muffler 7, and exhaust pipe 8. Exhaust gas discharged from engine 2 is divided into two catalyst devices 5, Purify with 6, muffle with muffler 7, depressurize and release into the atmosphere. The muffler may have two main mufflers and sub mufflers.
排気経路を構成する複数の部材は、 フランジ部同士を対接させてボルト等で接 続されている。 例えば、 第 1、 第 2触媒装置 5, 6は大径の本体部の上流、 下流 側に排気パイプ部が連結され、 これらの排気パイプ部の端部にフランジ部 F, F が溶接等により固着されている。 また、 マフラー 7は大径の本体部の上流、 下流 側に排気パイプ部が連結され、 これらの排気パイプ部の端部にフランジ部 F, F が固着されている。 なお、 末端の排気パイプ 8はマフラ一 7に直接溶接等により 固着されている。 このように、 排気経路を構成する複数の部材はフランジ部 Fに より接続され、 排ガスが通過する断面形状が直径 dの円形に形成されている。 本実施形態の排ガス分析装置 1 0は、 前記の排気経路の複数個所に設置された 複数 (図示の例では 4個) のセンサ部 1 1〜 1 4を備えて構成される。 第 1のセ ンサ部 1 1は第 1触媒装置 5より上流側のエンジン側の排気管 4との間に設置さ れ、 第 2のセンサ部 1 2は第 1触媒装置 5の下流側に設置され、 第 3のセンサ部 1 3は第 2触媒装置 6の下流側に設置されている。 そして、 第 4のセンサ部 1 4 はマフラー 7の下流の排気パイプ 8に設置されている。 センサ部 1 4は排気パイ
プ 8の途中に設置されても、 排気パイプの末端の開口部に揷入して設置するもの でもよい。 また、 第 1のセンサ部 1 1の上流側の、 ェキゾ一ス トマニホルド 3で 合流する前の 1気筒毎の排気管に別のセンサ部を設置してもよい。 The plurality of members constituting the exhaust path are connected by bolts or the like with the flange portions facing each other. For example, the first and second catalytic devices 5 and 6 have an exhaust pipe connected to the upstream and downstream sides of the large-diameter main body, and flanges F and F are fixed to the ends of the exhaust pipe by welding or the like. Has been. The exhaust pipe 7 is connected to the upstream and downstream sides of the large-diameter main body, and the flanges F and F are fixed to the ends of these exhaust pipes. The exhaust pipe 8 at the end is fixed directly to the muffler 7 by welding or the like. In this way, the plurality of members constituting the exhaust path are connected by the flange portion F, and the cross-sectional shape through which the exhaust gas passes is formed in a circular shape having a diameter d. The exhaust gas analyzer 10 of the present embodiment includes a plurality of (four in the illustrated example) sensor units 11 to 14 installed at a plurality of locations in the exhaust path. The first sensor unit 1 1 is installed between the exhaust pipe 4 on the engine side upstream from the first catalyst device 5, and the second sensor unit 1 2 is installed downstream of the first catalyst device 5. The third sensor unit 13 is installed on the downstream side of the second catalyst device 6. The fourth sensor unit 14 is installed in the exhaust pipe 8 downstream of the muffler 7. Sensor section 1 4 is exhaust pipe Even if it is installed in the middle of the pipe 8, it may be installed in the opening at the end of the exhaust pipe. Further, another sensor unit may be installed in the exhaust pipe for each cylinder before joining in the exhaust manifold 3 on the upstream side of the first sensor unit 11.
排気管 4や第 1触媒装置 5、 第 2触媒装置 6、 マフラー 7はフランジ部 F, F をボルトで締め付けることで連結されており、 排気経路を構成する部材の間に設 置されるセンサ部 1 1 , 1 2 , 1 3は、 フランジ部 F, Fで挟まれた状態で設置 されている。フランジ部 F , Fは、排気経路を構成する部材の両端部に形成され、 フランジ部同士の接合面は排気経路の中心線に対して直角に交差している。 この 結果、 センサ部 1 1〜 1 3はフランジ部 F, Fに挟まれて排気経路を横切るよう に設置される。 第 4のセンサ部 1 4は排ガスが大気中に放出される直前の分析を 行なうものであり、 マフラ一 7から突出する排気パイプ 8の中間部にフランジ部 F , Fで挟んで設置してもよい。 なお、 センサ部の設置数は任意に設定すればよ い。 The exhaust pipe 4, the first catalyst device 5, the second catalyst device 6, and the muffler 7 are connected by tightening the flange portions F and F with bolts, and the sensor portion is disposed between the members constituting the exhaust path. 1 1, 1 2, 1 3 are installed in a state of being sandwiched between flanges F, F. The flange portions F and F are formed at both ends of a member constituting the exhaust path, and the joint surfaces of the flange portions intersect each other at right angles to the center line of the exhaust path. As a result, the sensor parts 1 1 to 1 3 are installed so as to cross the exhaust path between the flange parts F and F. The fourth sensor section 14 performs analysis immediately before the exhaust gas is released into the atmosphere. Even if it is installed in the middle of the exhaust pipe 8 protruding from the muffler 7, it is sandwiched between the flange sections F and F. Good. The number of sensor units can be set arbitrarily.
各センサ部 1 1〜 1 4は同一構成であり、 1つのセンサ部 1 1について図 3、 図 4を参照して説明する。 センサ部 1 1は矩形状の薄板材から形成されたセンサ ベース 2 0を有し、 このセンサベースは中心部に排気パイプ部の円形断面の内径 dとほぼ同じ直径 d 1の排ガス通過孔 2 1が形成されており、 排ガス通過孔内を 排ガスが通過する。 排ガス通過孔 2 1は排ガスの導入路を構成する。 板状のセン サベース 2 0の厚さはレ一ザ光の照射部と受光部とを固定できる範囲で、 できる だけ薄いことが好ましい。 Each of the sensor units 11 to 14 has the same configuration, and one sensor unit 11 will be described with reference to FIGS. The sensor unit 1 1 has a sensor base 2 0 formed of a rectangular thin plate material. This sensor base has an exhaust gas passage hole 2 1 having a diameter d 1 substantially the same as the inner diameter d of the circular cross section of the exhaust pipe unit at the center. The exhaust gas passes through the exhaust gas passage hole. The exhaust gas passage hole 21 constitutes an exhaust gas introduction path. The thickness of the plate-shaped sensor base 20 is preferably as thin as possible within a range in which the laser light emitting part and the light receiving part can be fixed.
具体的にはセンサベース 2 0の厚さは、例えば 5〜 2 0 mm程度が好適である。 2 O mmを超えると排ガス流れに乱れが生じやすくなり無視できない圧力損失も 生じやすい。 5 m mより薄いと測定用のレーザ光の照射部ゃ受光部の取付固定が 煩雑となる。 なお、 排ガス通過孔 2 1の直径 d 1は排気パイプ部の円形断面の内 径 dと同じ寸法であることが望ましいが、 例えば排気パイプ部の円形断面の内径 dが 3 0 mmの場合、 排ガス通過孔 2 1の直径 d lは、 3 0 ± 1〜2 m m程度で あれば誤差として許容される。 センサベース 2 0を構成する板材としては金属板 材ゃセラミック製の板材を用いているが、 材質については特に問わない。 Specifically, the thickness of the sensor base 20 is preferably about 5 to 20 mm, for example. If it exceeds 2 O mm, the exhaust gas flow tends to be turbulent and pressure loss that cannot be ignored is likely to occur. If it is thinner than 5 mm, the mounting and fixing of the measurement laser beam irradiation part and the light receiving part become complicated. The diameter d 1 of the exhaust gas passage hole 21 is preferably the same as the inner diameter d of the circular cross section of the exhaust pipe part. For example, if the inner diameter d of the circular cross section of the exhaust pipe part is 30 mm, If the diameter dl of the passage hole 21 is about 30 ± 1 to 2 mm, an error is allowed. As the plate material constituting the sensor base 20, a metal plate material or a ceramic plate material is used, but the material is not particularly limited.
センサベース 2 0はフランジ部 F, Fに挟まれた状態で固定され、 フランジ部
F , Fとセンサベース 2 0との間にはガスケット 2 2, 2 2が挟まれた状態で図 示していないポルト、 ナット等により固定される。 ガスケッ ト 2 2は適宜の材料 で形成され、 排気パイプ部の内径と同じ直径の排ガス通過孔が開けられている。 この構成により、 フランジ部 F , Fの間にセンサベース 2 0を挟んで排気経路を 接続しても、排ガスが途中で漏れることはなく、排気経路の長さの増加も少ない。 図 3は、 排気管 4の下流端に溶接されたフランジ部 Fと、 触媒装置 5の上流側の 排気パイプ部 5 aの端部に溶接されたフランジ部 Fとの間に、 ガスケット 2 2 , 2 2を挟んでセンサベース 2 0が固定される構成を示している。 The sensor base 20 is fixed in a state where it is sandwiched between the flanges F and F. Gaskets 22 and 22 are sandwiched between F and F and the sensor base 20, and are fixed by a port, a nut, etc. not shown. The gasket 22 is formed of an appropriate material and has an exhaust gas passage hole having the same diameter as the inner diameter of the exhaust pipe portion. With this configuration, even when the exhaust path is connected with the sensor base 20 sandwiched between the flange portions F and F, the exhaust gas does not leak in the middle, and the increase in the length of the exhaust path is small. FIG. 3 shows a gasket 2 2, between a flange portion F welded to the downstream end of the exhaust pipe 4 and a flange portion F welded to the end of the exhaust pipe portion 5 a on the upstream side of the catalyst device 5. 2 shows a configuration in which the sensor base 20 is fixed with the 2 2 in between.
センサベース 2 0には、 板厚の中央を端面から排ガス通過孔に向けて貫通する 2つのセンサ孔 2 3, 2 4が形成されている。 センサ孔 2 3は排ガス通過孔 2 1 に向けて開口しており、 照射されたレーザ光が排ガス通過孔 2 1を通して受光部 に到達できるように形成された照射光通過孔を構成している。 また、 センサ孔 2 4は排ガス通過孔 2 1に向けて開口しており、 レーザ光が受光部に到達できるよ うに形成された透過光通過孔を構成しており、 センサ孔 2 3, 2 4は排ガスの流 れる方向と直交して開口している。 The sensor base 20 is formed with two sensor holes 2 3 and 2 4 that penetrate the center of the plate thickness from the end surface toward the exhaust gas passage hole. The sensor hole 23 is opened toward the exhaust gas passage hole 21 and constitutes an irradiation light passage hole formed so that the irradiated laser light can reach the light receiving part through the exhaust gas passage hole 21. The sensor hole 2 4 opens toward the exhaust gas passage hole 21 and constitutes a transmitted light passage hole formed so that the laser beam can reach the light receiving part. The sensor holes 2 3 and 2 4 Is open perpendicular to the direction in which the exhaust gas flows.
センサ部 1 1はレーザ光を照射する照射部として光ファイバ 2 5とコリメータ レンズ 2 6がセンサ孔 2 3に固定され、 光ファイバ 2 5から照射され排ガス通過 孔 2 1内に存在する排ガス中を透過したレーザ光を受光する受光部として、 ディ テクタ 2 7がセンサ孔 2 4に固定されている。 すなわち、 センサ部 1 1は、 照射 側の光ファイバ 2 5から排気経路を横切るように照射されたレーザ光が、 2つの ミラ一 3 0 , 3 1で反射され、 排ガス中を透過して減衰し、 ディテクタ 2 7で受 光される構成となっており、 ミラーは照射されたレーザ光を反射してディテクタ に導光している。 The sensor unit 1 1 has an optical fiber 25 and a collimator lens 26 fixed to the sensor hole 23 as an irradiation unit for irradiating laser light. A detector 27 is fixed to the sensor hole 24 as a light receiving portion for receiving the transmitted laser beam. In other words, the sensor unit 11 reflects the laser beam irradiated from the irradiation side optical fiber 25 so as to cross the exhaust path, is reflected by the two mirrors 30 and 3 1, passes through the exhaust gas, and is attenuated. The detector 27 receives the light, and the mirror reflects the irradiated laser light and guides it to the detector.
2つのミラー 3 0 , 3 1は、 図 4に詳細に示すようにセンサベース 2 0の中心 部の円形の排ガス通過孔 2 1外に、 排ガス通過孔を挟持する対向位置において 各々取り付けられており、 ミラーの反射面が互いに平行となるようにして 2枚配 置され、測定用のレーザ光を反射させるように上下に設置固定される。すなわち、 ミラー 3 0 , 3 1は排ガス通過孔 2 1の外周に、 排ガス通過孔を挟んで対向して 平行状態に配置されている。 ミラー 3 0 , 3 1は排ガス通過孔 2 1の外周側に平
行に形成された 2つの揷入溝 3 2, 3 3内に着脱可能に固定されており、 光ファ ィパ 2 5およぴコリメータレンズ 2 6から排ガス通過孔 2 1に向けて照射された レ一ザ光をディテクタ 2 7に到達させる機能を有している。 ミラー 3 0, 3 1は 厚さが数 mm程度の長方形状の基板状に形成され、 基板の一方の面に金やプラチ ナの薄膜が反射面として形成され、 その上に保護層として、 M g F 2や S 1 0 2の 薄膜が形成されている。 なお、 保護膜は形成しなくてもよい。 As shown in detail in FIG. 4, the two mirrors 30 and 31 are attached outside the circular exhaust gas passage hole 21 at the center of the sensor base 20 at opposite positions sandwiching the exhaust gas passage hole, respectively. Two mirrors are arranged so that their reflecting surfaces are parallel to each other, and are fixed up and down so as to reflect the laser beam for measurement. In other words, the mirrors 30 and 3 1 are arranged in parallel on the outer periphery of the exhaust gas passage hole 21 so as to face each other with the exhaust gas passage hole interposed therebetween. The mirrors 30 and 31 are flat on the outer periphery of the exhaust gas passage hole 21. It is detachably fixed in the two insertion grooves 3 2 and 3 3 formed in the row, and irradiated from the optical fiber 25 and collimator lens 26 to the exhaust gas passage hole 21. It has a function to make the laser beam reach the detector 27. The mirrors 30 and 31 are formed in a rectangular substrate having a thickness of several millimeters. A thin film of gold or platinum is formed on one surface of the substrate as a reflective surface, and M is used as a protective layer on the surface. Thin films of g F 2 and S 1 0 2 are formed. Note that the protective film may not be formed.
センサべ一ス 2 0の排ガス通過孔 2 1の外周に形成された揷入溝 3 2, 3 3は、 ミラー 3 0, 3 1が緩く挿入できる程度の大きさに設定されている。挿入溝 3 2 , 3 3はセンサベース 2 0を貫通して両面側に開口しても、 あるいは片面側に開口 して他面側が閉塞している形状でもよい。 ミラー 3 0 , 3 1は揷入溝 3 2 , 3 3 内で取付ビス 3 4によりスぺーサを介して固定されている。 ミラーが熱ショック 等により破損した場合は、 取付ビス 3 4を緩めることで取り外して新しいミラ一 を固定することができる。 また、 ミラ一が汚れたときに、 センサベース 2 0から 取り外して清掃することもできる。 The insertion grooves 3 2 and 3 3 formed on the outer periphery of the exhaust gas passage hole 21 of the sensor base 20 are set to a size that allows the mirrors 30 and 31 to be loosely inserted. The insertion grooves 3 2, 33 may penetrate the sensor base 20 and be open on both sides, or may be open on one side and closed on the other side. The mirrors 30 and 3 1 are fixed in the insertion grooves 3 2 and 3 3 through the spacers by the mounting screws 3 4. If the mirror is damaged by heat shock, etc., it can be removed by loosening the mounting screws 3 4 and fixed with a new mirror. When the mirror is dirty, it can be removed from the sensor base 20 and cleaned.
ミラー 3 0 , 3 1は取付ビス 3 4によりスぺーサ (図示せず) を挟んで固定さ れているため、 エンジンの振動や排気管等の排気経路の振動でミラーが振動する ことを防止している。 ミラーと取付ビスとの熱膨張の差を吸収するためスぺーサ が挟まれており、緩衝材として機能している。スぺーサとしては耐環境性に優れ、 弾性変形するものが好ましい。 例えば、 雲母系やカーボン系、 銅等の板材が好ま しレ、。このように、ミラ一はスぺーサを介して取付ビスで固定されることにより、 8 0 0 °C程度の高温状態でも振動することなく、 安定して固定される。 Since the mirrors 30 and 3 1 are fixed with a spacer (not shown) sandwiched by mounting screws 3 4, the mirrors are prevented from vibrating due to engine vibrations and vibrations in the exhaust pipe and other exhaust paths. is doing. A spacer is sandwiched to absorb the difference in thermal expansion between the mirror and the mounting screw, and functions as a cushioning material. As the spacer, those having excellent environmental resistance and elastic deformation are preferable. For example, mica, carbon and copper are preferred. In this way, the mirror is fixed stably without being vibrated even at a high temperature of about 800 ° C. by being fixed with the mounting screw through the spacer.
ミラー 3 0 , 3 1は石英、 若しくはサフアイャ、 セラミック等の母材の表面に 反射材をコ一ティングして作製する。 コーティング材としては、 金や酸化チタン 等のレーザ波長に合った反射率の高いものを選択することが好ましい。 また、 反 射材を保護するコーティングと して S i 0 2等の透明で耐熱性に優れ、 耐環境性 に優れたものを最上面に形成することが好ましい。 耐熱性に優れ、 反射率の高い ミラーを用いることで精度良い測定が可能となる。 また、 反射材として酸化チタ ンを用いるときは、 酸化チタンが単独で耐環境性に優れ、 光触媒として汚れ防止 に有効であるため保護膜を形成する必要がなく、 そのままの状態で測定すること
が好ましい。 The mirrors 30 and 31 are manufactured by coating a reflective material on the surface of a base material such as quartz, sapphire, or ceramic. As the coating material, it is preferable to select a material having high reflectivity suitable for the laser wavelength, such as gold or titanium oxide. Also, excellent transparency and heat resistance such as S i 0 2 as a coating to protect the anti Ysaÿe, it is preferable to form the excellent environmental resistance to the uppermost surface. Using a mirror with excellent heat resistance and high reflectivity enables accurate measurement. When titanium oxide is used as a reflector, titanium oxide alone has excellent environmental resistance and is effective as a photocatalyst for preventing contamination, so it is not necessary to form a protective film, and measurement should be performed as it is. Is preferred.
排ガス通過孔 2 1の内周面とミラ一を固定する挿入溝 3 2 , 3 3との間には、 測定用のレーザ光がミラ一に到達できるように光通過孔が形成されている。 光通 過孔としては貫通するスリットや、 貫通する光通過孔等が形成される。 本実施形 態では、 排気経路に直交する方向に幅が数 m m程度の光通過スリット 3 5, 3 5 が排ガス通過孔 2 1の内周面から揷入溝 3 2 , 3 3まで貫通して形成され、 光通 過スリットは排ガス通過孔 2 1の内周面とミラー 3 0 , 3 1とを貫通している。 この構成により、 測定用の赤外レーザ光が照射部である光ファイバ 2 5からセン サ孔 2 3を通して排ガス通過孔 2 1内に照射されると上方の光通過スリット 3 5 を通して上方のミラー 3 1に到達し、 上方のミラーで下方に反射され、 次いで下 方の光通過スリット 3 5を通して下方のミラー 3 0に到達し、 下方のミラーで上 方に反射され、 上下で反射を繰返したあとセンサ孔 2 4を通して上方に固定され たディテクタ 2 7に受光される構成となっている。 A light passage hole is formed between the inner peripheral surface of the exhaust gas passage hole 21 and the insertion grooves 3 2 and 3 3 for fixing the mirror so that the laser beam for measurement can reach the mirror. As the light passing hole, a penetrating slit, a penetrating light passing hole and the like are formed. In this embodiment, light passage slits 35 and 35 having a width of about several millimeters penetrate from the inner peripheral surface of the exhaust gas passage hole 21 to the insertion grooves 3 2 and 3 3 in the direction orthogonal to the exhaust path. The light transmission slit is formed so as to penetrate the inner peripheral surface of the exhaust gas passage hole 21 and the mirrors 30 and 31. With this configuration, when an infrared laser beam for measurement is irradiated from the optical fiber 25, which is the irradiation section, into the exhaust gas passage hole 21 through the sensor hole 23, the upper mirror 3 passes through the upper light passage slit 35. 1 and reflected downward by the upper mirror, then reaches the lower mirror 30 through the lower light passage slit 35, reflected upward by the lower mirror, and repeatedly reflected up and down Light is received by the detector 27 fixed upward through the sensor hole 24.
センサベース 2 0にはミラー 3 0 , 3 1に近接して水平方向に取付孔 3 6 , 3 6が形成され、 これらの取付孔にはヒータ 3 7 , 3 7が固定ねじにより固定され ている。 ヒータ 3 7 , 3 7はミラーの結露を防止するものであり、 例えば排ガス 中の水蒸気がミラー表面に付着しても、 ヒータに通電することでミラーを加熱し て水分を気化させ、 水蒸気がミラー表面に付着するのを防止している。 ミラ一 3 0 , 3 1の加熱温度は水分の露点温度以上が好ましい。 ミラーの結露を防止する ことで反射率を向上させ、 レーザ光の反射による減衰を防止している。 Mounting holes 3 6 and 3 6 are formed in the sensor base 20 in the horizontal direction adjacent to the mirrors 30 and 3 1, and heaters 3 7 and 3 7 are fixed to these mounting holes by fixing screws. . The heaters 3 7 and 3 7 prevent the condensation of the mirror. For example, even if water vapor in the exhaust gas adheres to the mirror surface, the mirror is heated by energizing the heater to vaporize the moisture, and the water vapor is reflected in the mirror. Prevents adhesion to the surface. The heating temperature of Mira 30 and 31 is preferably equal to or higher than the dew point of moisture. By preventing dew condensation on the mirror, the reflectance is improved and attenuation due to reflection of the laser beam is prevented.
ここで、 光通過孔の詳細について図 5を参照して説明する。 照射光通過孔を構 成するセンサ孔 2 3、 および透過光通過孔を構成するセンサ孔 2 4は、 直径の異 なる段付孔で形成されている。 すなわち、 センサ孔 2 3 , 2 4は直径の小さい貫 通孔が排ガス通過孔 2 1に連通しており、 直径の大きい貫通孔がセンサべ一ス 2 0の外部に連通している。 センサ孔 2 3, 2 4は排ガス通過孔 2 1側を小径とす ることで、 排ガスの流れを乱すことが少なく、 しかも排ガスが常時入れ替わり滞 留しないように、 小径部の深さが小さく設定されている。 センサベース 2 0の厚 さが 1 5〜 2 0 mm程度の場合、 センサ孔の小径部の直径は 6〜 8 m m程度が好 ましい。 また、 センサ孔 2 3 , 2 4はセンサベース 2 0の外周側を大径とするこ
とで、 光ファイバ 2 5ゃコリメータレンズ 2 6等の照射部、 およびディテクタ 2 7等の受光部の取付けを容易としている。 Here, details of the light passage hole will be described with reference to FIG. The sensor hole 23 constituting the irradiation light passage hole and the sensor hole 24 constituting the transmitted light passage hole are formed by stepped holes having different diameters. That is, in the sensor holes 2 3 and 24, a through hole with a small diameter communicates with the exhaust gas passage hole 21, and a through hole with a large diameter communicates with the outside of the sensor base 20. Sensor holes 2 3 and 2 4 have a small diameter on the exhaust gas passage hole 2 1 side so that the flow of the exhaust gas is less disturbed and the exhaust gas is constantly exchanged and does not stagnate. Has been. When the thickness of the sensor base 20 is about 15 to 20 mm, the diameter of the small diameter part of the sensor hole is preferably about 6 to 8 mm. The sensor holes 2 3 and 2 4 have a large diameter on the outer peripheral side of the sensor base 20. Therefore, it is easy to mount the irradiation part such as the optical fiber 25 and the collimator lens 26 and the light receiving part such as the detector 27 and the like.
光通過孔を構成するセンサ孔 2 3 , 2 4は、 固定される照射部と受光部が異な るだけなので、 受光部としてディテクタ 2 7を固定する一方のセンサ孔 2 4の構 成について詳細に説明する。 センサ孔 2 4はレーザ光が通過する光通過路を構成 しており、 光通過孔の少なくとも一部を透光性材料として光学ガラスで形成した 段付円柱状のガラス体 4 0で充填している。 すなわち、 センサ孔 2 4の途中の段 部には雲母系の耐熱ガスケット 4 1が配置され、 このガスケット 4 1と接触する ようにガラス体 4 0がセンサ孔 2 4の大径部内に揷入され、 内部空間を充填して いる。 この構成により、 センサ孔 2 4の閉じられた内部空間には空気等のガスが 充満しない。 The sensor holes 2 3 and 2 4 constituting the light passage hole are different from each other only in the irradiation part and the light receiving part to be fixed. Therefore, the configuration of one sensor hole 2 4 for fixing the detector 27 as the light receiving part is described in detail. explain. The sensor hole 24 constitutes a light passage path through which the laser light passes, and at least a part of the light passage hole is filled with a stepped columnar glass body 40 formed of optical glass as a translucent material. Yes. In other words, a mica-based heat-resistant gasket 41 is disposed in the middle of the sensor hole 24, and the glass body 40 is inserted into the large-diameter portion of the sensor hole 24 so as to come into contact with the gasket 41. The interior space is filled. With this configuration, the closed internal space of the sensor hole 24 is not filled with gas such as air.
ガラス体 4 0は、 図 5において下方の入射面 4 0 aおよび上方の出射面 4 0 b が研磨され、 外周面はフリンジ対策のために梨地面に形成されている。 なお、 入 射面 4 0 aと出射面 4 0 bとは平行に形成されず、 一方の面が中心軸に対して 1 度程度の傾斜面となっており、 本実施形態では出射面 4 0 bが傾斜面となってい る。 受光部のセンサ孔 2 4を充填するガラス体 4 0は下方の入射面 4 0 aがガス 対向面であり、 上方の出射面 4 0 bがディテクタ 2 7と対向する素子対向面とな つている。 照射部のセンサ孔 2 3を充填するガラス体 4 0は入射面と出射面とが 逆であり、 下方の素子対向面が入射面となり、 上方のガス対向面が出射面となつ ている。 The glass body 40 has a lower entrance surface 40 a and an upper exit surface 40 b in FIG. 5 polished, and the outer peripheral surface is formed on a satin surface to prevent fringes. Note that the entrance surface 40 a and the exit surface 40 b are not formed parallel to each other, and one surface is inclined by about 1 degree with respect to the central axis. In this embodiment, the exit surface 40 b is an inclined surface. The glass body 40 filling the sensor hole 24 of the light receiving section has a lower incident surface 40 a as a gas facing surface and an upper emitting surface 40 b as an element facing surface facing the detector 27. . The glass body 40 that fills the sensor hole 23 of the irradiating portion has an incident surface and an output surface that are opposite to each other, the lower element facing surface is the incident surface, and the upper gas facing surface is the emitting surface.
前記のように、 センサ孔 2 3 , 2 4の排ガス通過孔 2 1に連通する小径部は深 さが小さく設定されているため、 大径部から揷入されるガラス体 4 0は排ガス通 過孔 2 1に近接して配置され、 ガラス体の入射面 4 0 aは排ガス通過孔 2 1と近 接する。 この結果、 センサ孔の小径部に排ガスが滞留して入れ替わらないという ことがなく、 排ガスの状態が変化した場合でもセンサ孔内の排ガスも追従して 時々刻々変化するため、 リアルタイムで排ガスの状態を正確に測定することがで きる。 また、 ガラス体 4 0の出射面 4 0 bはディテクタ 2 7と近接し、 好ましく は接触しており、 センサ孔 2 4のレーザ光の通過経路を充填している。 この構成 により、 センサ孔 2 4を通過するレーザ光の通過経路は透光性部材からなるガラ
ス体 4 0で充填され、 センサ孔を通過するレーザ光は空間を殆ど通らずガラス体 中を通過する。 また、 他方の光通過孔であるセンサ孔 2 3でも、 光ファイバおよ ぴコリメータレンズから照射されたレ一ザ光は空間を通らず、 通過経路を充填し ているガラス体中を通過する。 As described above, since the small diameter portion communicating with the exhaust gas passage hole 21 of the sensor holes 2 3 and 2 4 is set to have a small depth, the glass body 40 inserted from the large diameter portion does not pass the exhaust gas. Located near the hole 21, the incident surface 40 a of the glass body is close to the exhaust gas passage hole 21. As a result, the exhaust gas stays in the small diameter part of the sensor hole and does not change, and even if the state of the exhaust gas changes, the exhaust gas in the sensor hole also changes and changes momentarily. Can be measured accurately. Further, the exit surface 40 b of the glass body 40 is close to, preferably in contact with, the detector 27, and fills the laser beam passage path of the sensor hole 24. With this configuration, the passage path of the laser light passing through the sensor hole 24 is a glass made of a translucent member. The laser light that is filled with the glass body 40 and passes through the sensor hole passes through the glass body through almost no space. In the sensor hole 23 which is the other light passage hole, the laser light emitted from the optical fiber and the collimator lens does not pass through the space but passes through the glass body filling the passage path.
そして、 ガラス体 4 0の中間の段部 4 0 cにはガスケットとして、 銅ガスケッ ト 4 2が外嵌されている。 この中間の段部と入射面 4 0 aとは平行状態に形成さ れている。 センサ孔 2 4の外部の設置面には、 ガラス体 4 0をセンサべ一ス 2 0 に固定するための台座 4 3が固定され、 この台座からセンサ孔 2 4内に延出する 筒状部 4 3 aがー体的に形成され、 この筒状部 4 3 aが銅ガスケット 4 2に接触 する構成となっている。筒状部 4 3 aの長さおよびガラス体 4 0の段部の位置は、 台座 4 3がセンサベース 2 0の設置面に密着するように止めねじ 4 5で固定され たとき、 銅ガスケット 4 2がガラス体 4 0の段部を密着して押圧すると共に、 耐 熱ガスケット 4 1がガラス体 4 0とセンサ孔 2 4の段部に密着し、 排ガスがセン サ孔 2 4内に進入できないように設定されている。 入射面 4 0 aと中間の段部 4 O cとを平行に形成し、 出射面 4 0 bを 1度程度の傾斜面とすることで、 2つの ガスケット 4 1 , 4 2は平行に設置され、 気密状態を安定させることができると 共に、 ガスケッ トの破損等を防止できる。 A copper gasket 42 is externally fitted as a gasket to the middle step 40 c of the glass body 40. The intermediate step and the incident surface 40a are formed in a parallel state. A pedestal 4 3 for fixing the glass body 40 to the sensor base 20 is fixed to the installation surface outside the sensor hole 24, and a cylindrical portion extending from the pedestal into the sensor hole 24 4 3 a is formed in a body-like manner, and this cylindrical portion 4 3 a is in contact with the copper gasket 4 2. The length of the cylindrical part 4 3 a and the position of the stepped part of the glass body 40 are determined by the copper gasket 4 when the base 4 3 is fixed with a set screw 4 5 so that it is in close contact with the installation surface of the sensor base 20. 2 adheres to and presses the step portion of the glass body 40, and the heat-resistant gasket 41 adheres to the step portion of the glass body 40 and sensor hole 24, and exhaust gas cannot enter the sensor hole 24. Is set to The two gaskets 4 1 and 4 2 are installed in parallel by forming the incident surface 40 a and the intermediate step 4 O c in parallel, and the exit surface 40 b to be an inclined surface of about 1 degree. The airtight state can be stabilized, and the gasket can be prevented from being damaged.
台座 4 3の表面にセラミックス等の断熱材からなる円環状の断熱リング 4 6が 配置され、 この断熱リングの表面にディテクタ 2 7を固定する支持リング 4 7が 固定される。 支持リングはステンレススチール等の金属板材から形成され、 台座 4 3および断熱リング 4 6を貫通する止めねじ 4 8でセンサベース 2 0に固定さ れる。 支持リング 4 7には円周上に複数のねじ孔が形成され、 これらのねじ孔に より受光素子であるディテクタ 2 7を固定する。 また、 図示していない他方のセ ンサ孔 2 3に固定される支持リングには、 照射部として光ファイバ 2 5およびコ リメータレンズ 2 6が固定される。 このように、 ディテクタ 2 7は断熱リング 4 6を挟んだ状態でセンサべ一ス 2 0に固定されるため、 排ガスの高熱が直接ディ テクタ 2 6に伝達されず、 信頼性や耐久性を向上させることができる。 An annular heat insulating ring 46 made of a heat insulating material such as ceramic is disposed on the surface of the base 43, and a support ring 47 for fixing the detector 27 is fixed to the surface of the heat insulating ring. The support ring is formed of a metal plate material such as stainless steel, and is fixed to the sensor base 20 with a set screw 48 that penetrates the base 43 and the heat insulation ring 46. A plurality of screw holes are formed on the circumference of the support ring 47, and the detector 27, which is a light receiving element, is fixed by these screw holes. Further, an optical fiber 25 and a collimator lens 26 are fixed to the support ring fixed to the other sensor hole 23 (not shown) as an irradiating portion. In this way, the detector 27 is fixed to the sensor base 20 with the heat insulating ring 46 interposed therebetween, so the high heat of the exhaust gas is not directly transmitted to the detector 26, improving reliability and durability. Can be made.
複数のセンサ部 1 1〜 1 3 ( 1 4 ) を構成するセンサべ一ス 2 0のセンサ孔 2 3 , 2 4に、 排ガスの漏洩を防止すると共に、 測定用のレーザ光を透過させるガ
ラス体等の各種の部品を組み込む動作について説明する。 先ず、 センサ孔 2 3 , 2 4の大径の開放端から雲母系の耐熱ガスケット 4 1を揷入する。 このあと、 セ ンサ孔内に透光性材料から形成したガラス体 4 0を挿入し、 ガスケット 4 1と対 接させる。 次いで、 ガラス体 4 0の小径部に銅ガスケット 4 2を外嵌させ、 台座 4 3の筒状部 4 3 aをセンサ孔 2 3 , 2 4内のガラス体小径部外周に挿入する。 この状態で台座 4 3を止めねじ 4 5によりセンサベース 2 0に固定すると、 筒状 部 4 3 aは銅ガスケット 4 2を押圧し、 ガラス体 4 0は雲母系のガスケット 4 1 を押圧し、 センサ孔 2 3, 2 4への排ガスの進入を防止してレ一ザ光を導光させ ることができる。 Gas that allows the measurement laser light to pass through the sensor holes 2 3 and 2 4 of the sensor base 20 constituting the plurality of sensor sections 1 1 to 1 3 (1 4) while preventing leakage of exhaust gas. An operation of incorporating various parts such as a lath body will be described. First, a mica-based heat-resistant gasket 41 is inserted from the large diameter open ends of the sensor holes 2 3 and 2 4. Thereafter, a glass body 40 made of a translucent material is inserted into the sensor hole and brought into contact with the gasket 41. Next, the copper gasket 42 is fitted on the small diameter portion of the glass body 40, and the cylindrical portion 4 3 a of the base 43 is inserted into the outer periphery of the small diameter portion of the glass body in the sensor holes 2 3 and 24. In this state, when the base 4 3 is fixed to the sensor base 20 with the set screw 4 5, the cylindrical part 4 3 a presses the copper gasket 4 2, and the glass body 40 presses the mica-based gasket 4 1, Laser light can be guided by preventing exhaust gas from entering sensor holes 2 3 and 2 4.
このように、 測定用のレーザ光を排ガス通過孔に導く光通過孔であるセンサ孔 2 3と、 排ガス中に照射されたレーザ光の透過レーザ光をディテクタ 2 7に導く 光通過孔であるセンサ孔 2 4に、 排ガスが漏洩せずレーザ光を通過させるガラス 体 4 0を固定する際に、 衝撃に弱く、 固定時に割れやすい耐熱ガスケット 4 1に はねじり力が作用せず、 押圧力のみが作用して気密状態に保持されるため、 破損 や破壌は確実に防止され気密状態も安定する。また、部品点数が少なく構成され、 組込みが容易であるため作業時間を短縮でき、 筒状部 4 3 aによる押圧面である 段部 4 0 cと耐熱ガスケット 4 1が接触する入射面 4 0 aとが平行であるためガ ラス体 4 0の位置決めも容易に行える。 Thus, a sensor hole 23 that is a light passage hole that guides the measurement laser light to the exhaust gas passage hole, and a sensor that is a light passage hole that guides the transmitted laser light of the laser light irradiated into the exhaust gas to the detector 27. When fixing the glass body 40 through which the exhaust gas does not leak and allows laser light to pass through the hole 24, the heat-resistant gasket 41, which is weak against impact and easily broken, is not subject to torsional force, and only the pressing force is applied. Since it acts and is kept airtight, damage and destruction are reliably prevented and the airtight state is stabilized. In addition, since the number of parts is small and the assembly is easy, the work time can be shortened. The incident surface where the stepped part 40c and the heat-resistant gasket 41 are in contact with each other. And the glass body 40 can be positioned easily.
そして、 センサベース 2 0のセンサ孔 2 3, 2 4に、 排ガスの漏洩を防止する ガラス体 4 0を固定したあと、 断熱リング 4 6、 支持リング 4 7を挟んで照射部 の台座 4 3に止めねじ 4 8を用いて光ファイバ 2 5とコリメ一タレンズ 2 6を固 定して照射部を構成する。 また、 受光部の台座 4 3に同様に止めねじ 4 8を用い てディテクタ 2 7を固定する。 なお、 排ガスにレーザ光を照射する照射部と、 排 ガス中を透過したレーザ光を受光する受光部とは上下反対に配置してもよいこと は勿論である。 また、 図 3に示すセンサ部 1 1を 9 0度回転させてレーザ光を水 平方向に照射するように構成してもよい。 After fixing the glass body 40 to prevent the exhaust gas from leaking into the sensor holes 2 3 and 2 4 of the sensor base 20, the heat insulating ring 4 6 and the support ring 4 7 are sandwiched between the base 4 3 of the irradiation unit. The optical fiber 25 and the collimator lens 26 are fixed using set screws 48 to form the irradiation section. In the same way, fix the detector 2 7 to the pedestal 4 3 of the light receiving part using the set screw 4 8. Of course, the irradiation unit for irradiating the exhaust gas with the laser beam and the light receiving unit for receiving the laser beam transmitted through the exhaust gas may be disposed upside down. Further, the sensor unit 11 shown in FIG. 3 may be rotated 90 degrees to irradiate the laser beam in the horizontal direction.
このように構成されたセンサベース 2 0のレーザ光の照射部およびレーザ光の 受光部において、 レーザ光を排ガス通過孔 2 1に導光するセンサ孔 2 3と、 排ガ ス中を透過したレーザ光をディテクタ 2 7に導光するセンサ孔 2 4は、 レーザ光
が通過する通路内の空間の大部分がガラス体 4 0により充填され、 空間の容積が 殆どゼロに設定されている。 このため、 ディテクタ 2 7を取付ける組立時に、 セ ンサ孔 2 4に空気が殆ど入らず、 この空間内に存在するガスを無視することがで きる。 また、 センサ孔 2 3に光ファイバ 2 5ゃコリメータレンズ 2 6を取付ける とき、 センサ孔 2 3の内部に空気が殆ど入らず、 この空間内に存在するガスを無 視することができる。 In the sensor base 20 configured as described above, in the laser beam irradiation part and the laser light receiving part, the sensor hole 23 that guides the laser light to the exhaust gas passage hole 21, and the laser that has passed through the exhaust gas The sensor hole 2 4 that guides the light to the detector 2 7 is a laser beam. Most of the space in the passage through which is passed is filled with the glass body 40, and the volume of the space is set to almost zero. For this reason, when assembling the detector 27, almost no air enters the sensor hole 24, and the gas existing in this space can be ignored. Further, when the optical fiber 25 or the collimator lens 26 is attached to the sensor hole 23, almost no air enters the sensor hole 23, and the gas existing in this space can be ignored.
センサ孔 2 3 , 2 4の内部空間に透光性部材としてガラス体 4 0が充填されて いないと、 ガラス体 4 0とディテクタ 2 7との空間や、 ガラス体 4 0と光フアイ バ 2 5 との空間内に空気が存在し、 例えば排ガス成分として酸素を測定する場合 に、 排ガス中の酸素の成分は燃焼排ガスのため 1 %程度であるが、 この空間内の 酸素の量が 1 3 %程度と多量であるため、 透過レーザ光の光強度を大幅に捕正す る必要が生じる。 他の排ガス成分についても同様な補正が必要となる。 しかし、 本実施形態では、 空間内に空気は殆ど存在しないため、 レーザ光の通過経路の途 中に存在するガスに対する捕正は不要となり、 演算時間を短縮することができ、 排ガスのリアルタイム分析が可能となる。 If the inner space of the sensor holes 2 3 and 2 4 is not filled with the glass body 40 as a translucent member, the space between the glass body 40 and the detector 27 or the glass body 40 and the optical fiber 25 For example, when oxygen is measured as an exhaust gas component, the oxygen component in the exhaust gas is about 1% because of the combustion exhaust gas, but the amount of oxygen in this space is 13%. Due to the large amount, the light intensity of the transmitted laser light needs to be greatly corrected. Similar corrections are required for other exhaust gas components. However, in this embodiment, since there is almost no air in the space, it is not necessary to correct the gas existing in the path of the laser beam, the calculation time can be shortened, and the exhaust gas can be analyzed in real time. It becomes possible.
このようにセンサベース 2 0に固定された光ファイバ 2 5ゃコリメータレンズ 2 6、 およびディテクタ 2 7はレーザ発振 ·受光コントロ一ラ 5 0に接続され、 レーザ発振 ·受光コントロ一ラ 5 0から出射される赤外レーザ光が光ファイバ 2 5を通してセンサベース 2 0の排ガス通過孔 2 1内に照射され、 排ガス中を透過 した赤外レーザ光が受光側のディテクタ 2 7で受光され、 信号線 2 8を介してレ 一ザ発振 ·受光コントローラ 5 0に入力される構成となっている。 光ファイバ 2 5から照射された発光強度と、 排ガス中を透過してディテクタ 2 7で受光された 受光強度等が、 分析装置であるパーソナルコンピュータ 6 0に供給される。 この ように、 排ガス分析装置 1 0は、 複数のセンサ部 1 1〜 1 4と、 レーザ発振 ·受 光コントローラ 5 0と、 パーソナルコンピュータ 6 0とを備えて構成される。 ここで、 レーザ発振 '受光コントローラ 5 0について、 図 6を参照して説明す る。 レーザ発振 '受光コントローラ 5 0は、 複数の波長の赤外レーザ光を照射す る照射装置として、 複数のレーザダイオード L D 1〜L D 5に、 図示していない ファンクションジェネレータ等の信号発生器から複数の周波数の信号を供給し、
レーザダイォード LD 1〜: LD 5は各周波数に対応してそれぞれ複数の波長の赤 外レーザ光を照射する。 レーザ発振 ·受光コントローラ 50の信号発生器から出 力される複数の周波数の信号がレーザダイォード LD i〜LD 5に供給されて発 光し、 例えば L D 1は波長が 1300〜 1 330 n m程度、 LD 2は 1330〜 1360 nmとレヽぅように、 検出しようとする成分ガスのピーク波長が存在する 波長帯が連続するような波長帯の赤外 I ^一ザ光を発生させるように設定されてい る。 In this way, the optical fiber 25 fixed to the sensor base 20 and the collimator lens 26 and the detector 27 are connected to the laser oscillation / light receiving controller 50 and emitted from the laser oscillation / light receiving controller 50. The infrared laser beam is irradiated into the exhaust gas passage hole 21 of the sensor base 20 through the optical fiber 25, and the infrared laser beam that has passed through the exhaust gas is received by the detector 27 on the light receiving side, and the signal line 2 It is configured to be input to laser oscillation / light receiving controller 50 through 8. The intensity of light emitted from the optical fiber 25, the intensity of light received through the exhaust gas and received by the detector 27, and the like are supplied to a personal computer 60 as an analyzer. As described above, the exhaust gas analyzer 10 includes a plurality of sensor units 11 to 14, a laser oscillation / light reception controller 50, and a personal computer 60. Here, the laser oscillation 'light receiving controller 50 will be described with reference to FIG. Laser oscillation 'Reception controller 50 is an irradiation device that irradiates infrared laser beams of multiple wavelengths. Multiple laser diodes LD 1 to LD 5 are connected to a plurality of signal generators such as a function generator (not shown). Supply frequency signal, Laser diodes LD 1 to LD: LD 5 emits infrared laser beams having a plurality of wavelengths corresponding to the respective frequencies. Laser oscillation · Signals of multiple frequencies output from the signal generator of the light receiving controller 50 are supplied to the laser diodes LD i to LD 5 to emit light, for example, LD 1 has a wavelength of about 1300 to 1330 nm, LD 2 is set to generate infrared light in the wavelength band in which the wavelength band where the peak wavelength of the component gas to be detected exists, such as 1330-1360 nm. The
排ガス中を透過させる赤外レーザ光の波長は、 検出する排ガスの成分に合わせ て設定され、 一酸化炭素 (CO) 、 二酸化炭素 (C02) 、 アンモニア (NH3)、 メタン (CH4) 、 水 (H20) を検出する場合は、 5つの波長の赤外レーザ光を 使用する。例えば、アンモニアを検出するのに適した波長は 1 530 nmであり、 一酸化炭素を検出するのに適した波長は 1 560 nmであり、 二酸化炭素を検出 するのに適した波長は 1 570 nmである。 また、 メタンを検出するのに適した 波長は 1680 nmであり、水を検出するのに適した波長は 1 350 nmである。 さらに、 他の排ガスの成分の濃度を検出する場合は、 排ガス成分の数に合わせて 異なる波長の赤外レーザ光を使用する。 なお、 ガス濃度の検出は、 同じ成分でも 異なる波長である場合があり、 異なる波長の中から選択して用いるようにしても よい。 The wavelength of the infrared laser beam that passes through the exhaust gas is set according to the component of the exhaust gas to be detected. Carbon monoxide (CO), carbon dioxide (C0 2 ), ammonia (NH 3 ), methane (CH 4 ), When detecting water (H 2 0), use infrared laser light of 5 wavelengths. For example, a suitable wavelength for detecting ammonia is 1 530 nm, a suitable wavelength for detecting carbon monoxide is 1 560 nm, and a suitable wavelength for detecting carbon dioxide is 1 570 nm It is. The wavelength suitable for detecting methane is 1680 nm, and the wavelength suitable for detecting water is 1 350 nm. Furthermore, when detecting the concentration of other exhaust gas components, infrared laser beams with different wavelengths are used according to the number of exhaust gas components. The gas concentration may be detected at different wavelengths even for the same component, and may be selected from different wavelengths.
各レーザダイォード LD 1〜LD 5から照射された赤外レ一ザ光は光ファイバ 5 1…により分波器 52…に導光され、 センサ部の数に合わせて分波器 52…に より分波される。 図 6では 3つのセンサ部 1 1〜 1 3に合わせて各レーザダイォ 一ド LD 1〜LD 5から照射されたレーザ光は 3つに分波される。 そして分波器 52…で分波されたレーザ光は、 分波器 53 Α—、 53 Β···、 53 C…により信 号光と測定光に分けられる。 分波器 53 A…はセンサ部 1 1用であり、 分波器 5 3 B…はセンサ部 1 2用、 分波器 53 C…はセンサ部 1' 3用である。 センサ部 1 1用の 5つの分波器 53 A…で分けられた信号光は光ファイバを通して合波器 5 4 Aで合波され、 合波された複数の波長帯の信号光は光ファイバ 56 Aを通して 差分型光検出器 57 Aに導光される。 一方、 5つの分波器 53 A…で分けられた 測定光は光ファイバを通して合波器 55 Aで合波され、 光ファイバ 25 Aにより
センサ部 1 1の照射部に導光される。 Infrared laser light emitted from each of the laser diodes LD 1 to LD 5 is guided to the demultiplexer 52 by the optical fiber 51, and is demultiplexed by the demultiplexer 52 according to the number of sensors. It is demultiplexed. In FIG. 6, the laser beams emitted from the laser diodes LD 1 to LD 5 in accordance with the three sensor units 11 to 13 are demultiplexed into three. The laser light demultiplexed by the demultiplexers 52 is divided into signal light and measurement light by demultiplexers 53Α, 53Β, 53C .... The duplexers 53 A are for the sensor unit 11, the duplexers 5 3 B are for the sensor unit 12, and the duplexers 53 C are for the sensor unit 1 ′ 3. The signal light divided by the five demultiplexers 53 A ... for the sensor unit 1 1 is multiplexed by the multiplexer 5 4 A through the optical fiber, and the combined signal light in multiple wavelength bands is the optical fiber 56. The light is guided to the differential photodetector 57 A through A. On the other hand, the measurement light divided by the five demultiplexers 53 A ... is multiplexed by the multiplexer 55 A through the optical fiber, and then by the optical fiber 25 A The light is guided to the irradiation part of the sensor part 11.
また、 分波器 5 2…で分波された赤外レーザ光は、 センサ部 1 2用の 5つの分 波器 5 3 B…により信号光と測定光に分けられ、 信号光は合波器 54 Bで複数の 波長帯を合波した信号光となり、 光ファイバ 5 6 Bを通して差分型光検出器 5 7 Bに導光される。 5つの分波器 5 3 B…により分けられた測定光は合波器 5 5 B で合波され、 光ファイバ 2 5 Bによりセンサ部 1 2の照射部に導光される。 さら に、 分波器 5 2…で分波された赤外レーザ光は、 センサ部 1 3用の 5つの分波器 5 3 C…により信号光と測定光に分けられ、 信号光は合波器 54 Cで複数の波長 帯の信号光となり、 光ファイバ 5 6 Cを通して差分型光検出器 5 7 Cに導光され る。 5つの分波器 5 3 C…により分けられた測定光は合波器 5 5 Cで合波され、 光ファイバ 2 5 Cによりセンサ部 1 3の照射都に導光される。 The infrared laser beam demultiplexed by the demultiplexers 5 2... Is divided into signal light and measurement light by the five demultiplexers 5 3 B for the sensor unit 12. The signal light is multiplexed. At 54 B, signal light is obtained by combining a plurality of wavelength bands, and is guided to the differential photodetector 5 7 B through the optical fiber 56 B. The measurement light divided by the five demultiplexers 5 3 B,... Is multiplexed by the multiplexer 5 5 B and guided to the irradiation part of the sensor unit 12 by the optical fiber 25 B. Furthermore, the infrared laser light demultiplexed by the demultiplexers 5 2... Is divided into signal light and measurement light by the five demultiplexers 5 3 C for the sensor unit 13. The signal light is multiplexed. The signal 54C becomes signal light in multiple wavelengths and is guided to the differential photodetector 57 C through the optical fiber 56 C. The measurement light divided by the five demultiplexers 5 3 C ... is multiplexed by the multiplexer 55 C and guided to the irradiation area of the sensor unit 13 by the optical fiber 25 C.
図 6では、 3つのセンサ部 1 1〜 1 3を示しているが、 さらに多くのセンサ部 1 4…を設置する場合は、 分波器 5 2でさらに多くのレーザ光に分波し、 分波し たレーザ光をさらに多くの分波器 5 3…で測定光と信号光に分波し、 信号用のレ 一ザ光を合波器 54…で合波してから差分型光検出器 5 7…に導光すると共に、 測定用のレーザ光を合波器 5 5…で合波してから、 さらに多くのセンサ部 1 4— に導光する。 In FIG. 6, three sensor units 1 1 to 1 3 are shown. However, when more sensor units 1 4... Are installed, the demultiplexer 5 2 demultiplexes them into more laser beams. The separated laser light is demultiplexed into measurement light and signal light by more demultiplexers 53, and then the signal laser light is combined by a combiner 54, then a differential photodetector. The light is guided to 5 7... And the measurement laser light is multiplexed by a multiplexer 5 5... And then guided to more sensor sections 14.
また、 排ガス分析装置 1 0は、 測定用の赤外レーザ光をミラー 30 , 3 1で反 射させ排ガス中の透過距離を大きくするように構成されており、 ミラー 3 0, 3 1で繰り返し反射された測定用のレーザ光がディテクタで受光される構成となつ ている。 センサ部 1 1〜 1 3の受光部に接続された受光側のディテクタ 2 7 A, 2 7 B, 2 7 Cはレーザ発振 ·受光コントローラ 5 0の差分型光検出器 5 7 A, 5 7 B, 5 7 Cに信号線 2 8 A, 2 8 B, 2 8 Cを介して接続される。 また、 合 波器 54A, 54 B, 54 Cで合波された信号光は光ファイバ 5 6 A, 5 6 B, 5 6 Cを通して差分型光検出器 5 7 A, 5 7 B, 5 7 Cに導光される。 The exhaust gas analyzer 10 is configured to reflect the infrared laser light for measurement by mirrors 30 and 31 to increase the transmission distance in the exhaust gas, and is repeatedly reflected by the mirrors 30 and 31. The measured laser beam is received by a detector. Sensor unit 1 1 to 1 3 Photodetector 2 7 A, 2 7 B, 2 7 C connected to photo detector 2 7 A, 5 7 B Differential laser detector 5 7 A, 5 7 B , 5 7 C are connected via signal lines 2 8 A, 2 8 B, 2 8 C. The signal light combined by the multiplexers 54A, 54B, 54C passes through the optical fibers 5 6 A, 5 6 B, 5 6 C, and the differential photodetectors 5 7 A, 5 7 B, 5 7 C Is guided to.
3つの差分型光検出器 5 7 A, 5 7 B, 5 7 Cでは、 排ガス中を透過して減衰 した透過レーザ光と、 排ガス中を透過していない信号レーザ光との差を取る構成 となっている。 信号レーザ光はフォトダイオード等に入力され、 電気信号に変換 される。 差分型光検出器で算出された信号光と測定光の差分に相当する電気信号
は、 例えば図示していないプリアンプで増幅され、 AZ D変換器を介して分析装 置であるパーソナルコンピュータ 6 0に入力される。 パーソナルコンピュータ 6 0では、 入力された信号から排ガス中に含まれる成分の濃度や、 排ガスの温度、 圧力等を算出して排ガスを分析する。 The three differential photodetectors 5 7 A, 5 7 B, and 5 7 C are configured to take the difference between the transmitted laser light that has been attenuated by passing through the exhaust gas and the signal laser light that has not passed through the exhaust gas. It has become. The signal laser beam is input to a photodiode and converted to an electrical signal. An electrical signal corresponding to the difference between the signal light and the measurement light calculated by a differential photodetector For example, the signal is amplified by a preamplifier (not shown) and input to a personal computer 60 as an analysis device via an AZD converter. The personal computer 60 analyzes the exhaust gas by calculating the concentration of the components contained in the exhaust gas, the temperature and pressure of the exhaust gas from the input signal.
本実施形態の排ガス分析装置 1 0では、 光ファイバ 2 5およびコリメ一タレン ズ 2 6から照射されたレーザ光はセンサ孔 2 3を通して排ガスが流通している排 ガス通過孔 2 1内に照射され、 上方のミラ一 3 0で下方に反射され、 次いで下方 のミラー 3 1で上方に反射され、 反射を繰り返して下方のミラー 3 1からセンサ 孔 2 4内に進入し、 ディテクタ 2 7で受光される。 このとき、 センサ孔 2 3, 2 4内は、 透光性材料からなるガラス体 4 0で充填され、 センサ孔 2 3 , 2 4内に 存在するガスの体積はゼロ、 あるいは極めて少なくなつている。 そして、 センサ 孔內のレーザ光はガラス体 4 0内を通過し、 無効スペース中を殆ど通過しないた め、 ディテクタ 2 7で測定された透過レーザ光強度を、 途中に存在するガスに対 して捕正する必要がなくなり、 排ガス中の成分の濃度算出時間を短縮できるとと もに、 測定精度を高めることができる。 また、 センサ孔内の少なくとも一部を透 光性部材で充填することで、この空間に存在するガスの影響を減らすことができ、 測定精度を向上させることができる。 In the exhaust gas analyzer 10 of the present embodiment, the laser light emitted from the optical fiber 25 and the collimator lens 26 is irradiated into the exhaust gas passage hole 21 through which the exhaust gas flows through the sensor hole 23. Reflected downward by the upper mirror 30, then reflected upward by the lower mirror 3 1, repeatedly reflected and entered the sensor hole 2 4 from the lower mirror 3 1, and received by the detector 2 7 The At this time, the sensor holes 2 3 and 24 are filled with a glass body 40 made of a translucent material, and the volume of gas existing in the sensor holes 2 3 and 2 4 is zero or very small. . Since the laser beam in the sensor hole passes through the glass body 40 and hardly passes through the ineffective space, the transmitted laser beam intensity measured by the detector 27 is compared with the gas existing in the middle. This eliminates the need for correction, shortens the time required to calculate the concentration of components in the exhaust gas, and increases the measurement accuracy. In addition, by filling at least a part of the sensor hole with the translucent member, the influence of the gas existing in the space can be reduced, and the measurement accuracy can be improved.
本発明の排ガス分析装置 1 0は、 前記したように、 例えば赤外レーザ光を排ガ ス中に透過させ、 入射光の強度と排ガス中を透過したあとの透過光の強度に基づ いて排ガスの成分の濃度を算出し、 排ガスを分析するものである。 すなわち、 排 ガスの成分の濃度 Cは、 以下の数式 (1 ) から算出される。 As described above, the exhaust gas analyzer 10 of the present invention transmits, for example, infrared laser light into the exhaust gas, based on the intensity of incident light and the intensity of transmitted light after passing through the exhaust gas. The concentration of these components is calculated and the exhaust gas is analyzed. That is, the concentration C of the exhaust gas component is calculated from the following formula (1).
C = - 1 n ( I / I o ) / kし… ( 1 ) C =-1 n (I / Io) / k ... (1)
この数式 (1 ) において、 Iは透過光強度、 I oは入射光強度、 kは吸収率、 Lは透過距離である。 したがって、 信号光である入射光強度 (I o ) に対する透 過光強度 (I ) の比、 シグナル強度 ( I / I o ) に基づいて排ガスの成分の濃度 Cは算出される。 透過光強度 Iは、 ディテクタ 2 7 ( 2 7 A , 2 7 B , 2 7 C ) を通して出力され、 入射光強度 I oは、 光ファイバ 5 6 A , 5 6 B , 5 6 Cを通 して差分型光検出器 5 7 A , 5 7 B , 5 7 C内のフォトダイオード等の光電変換 器から出力される。 本実施形態では入射光強度 I oとして、 排ガス中を透過しな
い信号光強度を用いている。 In this equation (1), I is the transmitted light intensity, I o is the incident light intensity, k is the absorptance, and L is the transmission distance. Therefore, the concentration C of the exhaust gas component is calculated based on the ratio of the transmitted light intensity (I) to the incident light intensity (I o), which is the signal light, and the signal intensity (I / I o). The transmitted light intensity I is output through the detector 2 7 (2 7 A, 2 7 B, 2 7 C), and the incident light intensity I o is transmitted through the optical fibers 5 6 A, 5 6 B, 5 6 C. It is output from a photoelectric converter such as a photodiode in the differential photodetectors 5 7 A, 5 7 B, 5 7 C. In this embodiment, the incident light intensity I o is not transmitted through the exhaust gas. High signal light intensity is used.
前記の如く構成された本実施形態の排ガス分析装置 10の動作について以下に 説明する。 エンジンが作動している状態で、 排ガス分析装置 1 0を作動させる。 エンジン 2から排出された排ガスは排気経路であるェキゾ一ス トマニホルド 3で 合流され、 排気管 4を通して第 1触媒装置 5に導入され、 さらに第 2触媒装置 6 に導入され、そのあとマフラー 7を通して排気パイプ 8から大気中に放出される。 そして、 排気経路中に設置されたセンサ部 1 1〜 14のセンサベース 20に形成 された排ガス通過孔 21を排ガスが通過する。 排ガスの特定成分の濃度等を測定 するときは、 排ガス通過孔 2 1内にレーザ光を照射して、 排ガス中を透過したレ 一ザ光の光強度を測定する。 The operation of the exhaust gas analyzer 10 of the present embodiment configured as described above will be described below. The exhaust gas analyzer 10 is operated while the engine is operating. The exhaust gas discharged from the engine 2 is merged in the exhaust manifold 3 as an exhaust path, introduced into the first catalyst device 5 through the exhaust pipe 4, and further introduced into the second catalyst device 6, and then exhausted through the muffler 7. Released from the pipe 8 into the atmosphere. Then, the exhaust gas passes through the exhaust gas passage hole 21 formed in the sensor base 20 of the sensor units 11 to 14 installed in the exhaust path. When measuring the concentration of a specific component of the exhaust gas, the laser light is irradiated into the exhaust gas passage hole 21 and the light intensity of the laser light transmitted through the exhaust gas is measured.
すなわち、 レーザ発振 ·受光コントローラ 50の信号発生器を作動させて各レ 一ザダイォード LD 1〜LD 5に信号を供給して各レーザダイォード LD 1〜: L D 5から所定の波長の赤外レーザ光を発光させる。 各レーザダイォード LD 1〜 LD 5から発光された赤外レーザ光は、 光ファイバ 5 1…を通して分波器 52— に至り、 ここでセンサ部の数に合わせて分波される。 このあと、 分波された赤外 レーザ光は分波器 53 A-, 53 Β···, 53 C…で測定光と信号光に分波される。 That is, by operating the signal generator of the laser oscillation / light receiving controller 50 to supply a signal to each of the laser diodes LD 1 to LD 5, each laser diode LD 1 to: an infrared laser beam having a predetermined wavelength from the LD 5 To emit light. The infrared laser light emitted from each of the laser diodes LD 1 to LD 5 reaches the duplexer 52− through the optical fibers 51, and is demultiplexed according to the number of sensor units. After that, the demultiplexed infrared laser light is demultiplexed into measurement light and signal light by the demultiplexers 53 A-, 53 Β, 53 C.
1つのセンサ部 1 1について詳細に説明すると、 5つの分波器 53 Αで分波さ れた信号光は合波器 54 Aで合波されて信号用レーザ光となり、 差分型光検出器 57Aに導光される。 また、 5つの分波器 53 Aで分波された測定光は合波器 5 5 Aで合波されて測定用レーザ光となり、 センサ部 1 1の照射部に光ファイバ 2 5Aを通して導光される。 他のセンサ部 12, 1 3についても、 同様に分波器 5 2…で分波されたあと、分波器 53 B-, 53 C…で信号光と測定光に分波され、 合波器 54 B, 54 Cで合波されて、 信号光は差分型光検出器 57 B, 57 Cに 導光され、 合波器 55 B, 55 Cで合波されて、 測定光がセンサ部 12, 1 3に 導光される。 One sensor unit 1 1 will be described in detail. The signal light demultiplexed by the five demultiplexers 53 合 is multiplexed by the multiplexer 54 A to become a signal laser beam, and the differential optical detector 57A Is guided to. The measurement light demultiplexed by the five demultiplexers 53 A is multiplexed by the multiplexer 55 A to become measurement laser light, which is guided to the irradiation part of the sensor unit 11 through the optical fiber 25A. The Similarly, the other sensor units 12, 1 and 3 are demultiplexed by the demultiplexers 5 2… and then demultiplexed into signal light and measurement light by demultiplexers 53 B-, 53 C… 54 B and 54 C are combined, the signal light is guided to differential optical detectors 57 B and 57 C, and combined by multiplexers 55 B and 55 C. 1 3 Guided to light.
そして、 センサ部 1 1〜 1 3の光ファイバ 25 (25A, 25 B, 25 C) か ら照射された測定用の赤外レーザ光は、 照射光通過孔であるセンサ孔 23を通し て排ガスが通過している排ガス通過孔 2 1内に照射される。 赤外レーザ光は排気 経路である排ガス通過孔 2 1內を横切り、 光通過スリット 35を通してミラー 3
0に到達し上方のミラ一 3 0で下方に反射され、 ついで光通過スリット 3 5を通 してミラー 3 1に到達し下方のミラー 3 1で上方に反射され、 反射を繰返すこと で排ガス中の透過距離が大きくなり、 最後にセンサ孔 2 4を通してディテクタ 2 7 ( 2 7 A, 2 7 B , 2 7 C ) で受光される。 すなわち、 測定用の赤外レ一ザ光 は排ガス中を透過して減衰され、 減衰された透過光が受光部であるディテクタで 受光され、 透過光 (測定光) の光強度が測定される。 Then, the infrared laser light for measurement irradiated from the optical fibers 25 (25A, 25B, 25C) of the sensor units 11 to 13 is exhausted through the sensor hole 23 which is an irradiation light passage hole. Irradiated into the exhaust gas passage hole 21 passing therethrough. The infrared laser beam crosses the exhaust gas passage hole 2 1 內 that is the exhaust path, and passes through the light passage slit 35 to mirror 3 It reaches 0, is reflected downward by the upper mirror 30, then passes through the light passage slit 35, reaches the mirror 31 and is reflected upward by the lower mirror 31, and repeats reflections in the exhaust gas. Finally, the transmission distance increases, and the light is received by the detector 2 7 (27 A, 27 B, 27 C) through the sensor hole 24. In other words, the infrared laser light for measurement passes through the exhaust gas and is attenuated, and the attenuated transmitted light is received by the detector that is the light receiving unit, and the light intensity of the transmitted light (measurement light) is measured.
排ガス中を通り減衰して受光部に到達した測定用の赤外レーザ光はディテクタ 2 7 A , 2 7 B , 2 7 Cで電気信号として出力され、 信号線 2 8 ( 2 8 A, 2 8 B , 2 8 C ) を介して差分型光検出器 5 7 A, 5 7 B , 5 7 Cに供給される。 一 方、 信号用レーザ光は差分型光検出器 5 7 A , 5 7 B , 5 7 Cに供給され、 差分 型光検出器では、 複数の波長成分毎に透過光 (測定光) と信号光の差を取り、 透 過光のうちの特定ガス成分のピーク波長が検出された吸収スぺク トルが検出され る。 このようにして、 差分型光検出器からの出力が分析装置であるパーソナルコ ンピュータ 6 0に入力される。 パーソナルコンピュータ 6 0は、 入力された吸収 スぺク トルの複数の周波数帯ごとのピーク波長に基づいて、 排ガスの成分の濃度 や温度、 圧力を算出して測定し分析する。 特に、 本実施形態の排ガス分析装置 1 0は、 エンジン 2から排出直後の 8 0 0 °C程度の排ガスから、 排気経路最終の 1 0 0 °C程度の排ガスまで測定可能であり、 エンジン 2の冷えた状態の排ガスでも 測定することができる。 The infrared laser light for measurement that has attenuated through the exhaust gas and reached the light receiving section is output as an electrical signal by the detectors 2 7 A, 2 7 B, 2 7 C, and the signal lines 2 8 (2 8 A, 2 8 B, 28 C) and supplied to the differential photodetectors 5 7 A, 5 7 B, 5 7 C. On the other hand, the signal laser light is supplied to the differential optical detectors 5 7 A, 5 7 B, and 5 7 C. In the differential optical detector, transmitted light (measurement light) and signal light are transmitted for each of a plurality of wavelength components. The absorption spectrum in which the peak wavelength of the specific gas component in the transmitted light is detected is detected. In this way, the output from the differential photodetector is input to the personal computer 60 which is an analyzer. The personal computer 60 calculates and measures the concentration, temperature, and pressure of the components of the exhaust gas based on the peak wavelength of each frequency band of the input absorption spectrum. In particular, the exhaust gas analyzer 10 of the present embodiment is capable of measuring from exhaust gas at about 80 ° C immediately after exhaust from the engine 2 to exhaust gas at about 100 ° C at the end of the exhaust path. Even cold exhaust gas can be measured.
このように、 本実施形態の排ガス分析装置 1 0は、 排ガス中に照射されるレー ザ光の照射部を構成する光通過孔であるセンサ孔 2 3と、 排ガス中を透過したレ 一ザ光を受光する受光部を構成する光通過孔であるセンサ孔 2 4には、 透光性材 料からなるガラス体 4 0が充填されており、 無効スペースが構成されないため、 この空間內に存在するガスに対する補正を行わなくても測定精度を高めることが できる。 また、 補正が不要であるため、 成分のガス濃度や温度等の演算時間を短 縮することができ、 リアルタイムで排ガスを分析することができる。 As described above, the exhaust gas analyzer 10 of the present embodiment includes the sensor hole 23, which is a light passage hole that constitutes a laser light irradiation unit irradiated into the exhaust gas, and the laser light transmitted through the exhaust gas. The sensor hole 24, which is a light passage hole that constitutes a light receiving portion that receives light, is filled with a glass body 40 made of a translucent material, and there is no invalid space, so it exists in this space 內Measurement accuracy can be increased without correction for gas. In addition, since correction is not required, the calculation time for the gas concentration and temperature of the components can be shortened, and the exhaust gas can be analyzed in real time.
また、 センサ孔 2 3 , 2 4を気密状態に塞ぐ光通過窓としてガラス体 4 0を固 定するとき、 ガラス体 4 0とセンサ孔との間に揷入される耐熱ガスケット 4 1に は台座 4 3の筒状部 4 3 aにより押圧力が作用してねじり力が作用しないため、
耐熱ガスケッ トの破壊や破損を防止することができる。 このため、 組立が容易と なると共に、排ガスの漏洩を防止でき、排ガス分析の精度を高めることができる。 以上、 本発明の一実施形態について詳述したが、 本発明は、 前記の実施形態に 限定されるものではなく、 特許請求の範囲に記載された本発明の精神を逸脱しな い範囲で、 種々の設計変更を行うことができるものである。 例えば、 光通過孔の 排ガス漏洩を防止するガスケットとして耐熱性の雲母系ガスケットと、 金属製の 銅ガスケットを使用する例を示したが、材質や数量は適宜設定することができる。 また、 金属製ガスケットを排ガス通過孔側に配置してもよい。 In addition, when fixing the glass body 40 as a light passage window that closes the sensor holes 2 3 and 2 4 in an airtight state, the heat-resistant gasket 41 inserted between the glass body 40 and the sensor hole has a pedestal. 4 3 Since the cylindrical part 4 3 a has a pressing force and no torsional force, It is possible to prevent the heat-resistant gasket from being destroyed or damaged. As a result, assembly becomes easy, leakage of exhaust gas can be prevented, and accuracy of exhaust gas analysis can be improved. As mentioned above, although one embodiment of the present invention has been described in detail, the present invention is not limited to the above-described embodiment, and is within the scope not departing from the spirit of the present invention described in the claims. Various design changes can be made. For example, an example of using a heat-resistant mica-based gasket and a metal copper gasket as a gasket for preventing leakage of exhaust gas from the light passage hole has been shown, but the material and quantity can be set as appropriate. A metal gasket may be arranged on the exhaust gas passage hole side.
光通過孔の少なくとも一部を充填する透光性部材を構成する材科として光学ガ ラスの代わりに人工サフアイャを用いてもよい。 また、 前記の実施形態では、 照 射部から照射したレーザ光を 2つのミラ一により反射を繰り返して排ガス中の透 過距離を長くする構成としたが、 ミラーを使用せずに排ガス中を透過したレ一ザ 光を直接、 受光素子で受光するように構成してもよい。 産業上の利用可能性 An artificial sapphire may be used instead of the optical glass as a material constituting the translucent member filling at least a part of the light passage hole. In the above-described embodiment, the laser light emitted from the irradiation unit is repeatedly reflected by two mirrors to increase the transmission distance in the exhaust gas. However, the laser beam is transmitted through the exhaust gas without using a mirror. The laser beam may be configured to be directly received by the light receiving element. Industrial applicability
本発明の活用例として、 この排ガス分析装置を用いてボイラー等の燃焼装置 の排ガス分析を行うことができ、 自動車の排ガス分析の他に船舶や発電機等で使 用する内燃機関の排ガス分析の用途にも適用できる。 また、 ガソリンエンジンの 排ガス分析の他にディーゼルエンジンの排ガス分析を行なうことができ、 さらに 他の内燃機関の排ガス分析の用途にも適用できる。
As an application example of the present invention, this exhaust gas analyzer can be used to analyze exhaust gas from a combustion apparatus such as a boiler. It can be applied to applications. In addition to exhaust gas analysis of gasoline engines, exhaust gas analysis of diesel engines can be performed, and it can also be applied to exhaust gas analysis applications of other internal combustion engines.
Claims
1 . 内燃機関から排出される排ガスにレーザ光を照射し、 排ガス中を透過したレ 一ザ光を受光し、 受光されたレーザ光に基づいて前記排ガス中に含まれる成分の 濃度や温度を測定して分析する排ガス分析装置であって、 1. Irradiate the exhaust gas discharged from the internal combustion engine with laser light, receive the laser light transmitted through the exhaust gas, and measure the concentration and temperature of the components contained in the exhaust gas based on the received laser light An exhaust gas analyzer for analyzing
該装置は、 レーザ光を照射する照射部およびレーザ光を受光する受光部と、 前 記照射部から照射されたレーザ光を前記排ガスが流通する経路に導光する光通過 孔と、 排ガス中を透過したレーザ光を前記受光部に導光する光通過孔とを備えて おり、 The apparatus includes an irradiation unit that emits laser light, a light receiving unit that receives laser light, a light passage hole that guides laser light emitted from the irradiation unit to a path through which the exhaust gas flows, and exhaust gas. A light passage hole for guiding the transmitted laser light to the light receiving unit,
前記光通過孔の少なくとも一部を透光性部材で充填することを特徴とする排ガ ス分析装置。 An exhaust gas analyzer characterized in that at least a part of the light passage hole is filled with a translucent member.
2 . 前記照射部および受光部は、 前記経路中に支持され排ガスが通過する排ガス 通過孔を有するセンサベースに固定されており、 2. The irradiation unit and the light receiving unit are fixed to a sensor base that is supported in the path and has an exhaust gas passage hole through which exhaust gas passes;
前記光通過孔は、 前記排ガス通過孔と前記照射部および受光部とを連通するこ とを特徴とする請求項 1に記載の排ガス分析装置。 2. The exhaust gas analyzer according to claim 1, wherein the light passage hole communicates the exhaust gas passage hole with the irradiation unit and the light receiving unit.
3 . 前記透光性部材は、 前記排ガス通過孔に近接するガス対向面と、 該ガス対向 面から前記光通過孔に沿つて延長され前記照射部および Zまたは受光部に近接す る素子対向面とを備えており、 前記透光性部材はレーザ光の通過経路を充填して いることを特徴とする請求項 1または 2に記載の排ガス分析装置。 3. The translucent member includes a gas facing surface close to the exhaust gas passage hole, and an element facing surface extending from the gas facing surface along the light passage hole and close to the irradiation unit and the Z or light receiving unit. The exhaust gas analyzer according to claim 1 or 2, wherein the translucent member fills a laser beam passage path.
4 . 前記透光性部材は、 光学ガラスまたはサフアイャで形成されていることを特 徴とする請求項 1〜 3のいずれかに記載の排ガス分析装置。 4. The exhaust gas analyzer according to any one of claims 1 to 3, wherein the translucent member is made of optical glass or sapphire.
5 . 内燃機関から排出される排ガスにレーザ光を照射し、 排ガス中を透過したレ 一ザ光を受光し、 受光されたレーザ光に基づいて前記排ガス中に含まれる成分の 濃度や温度を測定して分析する排ガス分析装置であって、 5. Irradiate the exhaust gas discharged from the internal combustion engine with laser light, receive the laser light transmitted through the exhaust gas, and measure the concentration and temperature of the components contained in the exhaust gas based on the received laser light An exhaust gas analyzer for analyzing
該装置は、 排ガスが流通する経路中に装着され排ガスが通過する排ガス通過孔 を有するセンサベースを備えており、 The apparatus includes a sensor base having an exhaust gas passage hole that is mounted in a path through which exhaust gas flows and through which exhaust gas passes.
該センサベースは、 該センサベースに台座を挟んで固定されレーザ光を照射す る照射部およびレーザ光を受光する受光部と、 前記照射部から照射されたレーザ 光を前記排ガス通過孔に導光する光通過孔と、 排ガス中を透過したレーザ光を前
記受光部に導光する光通過孔と、 該光通過孔を気密状態に塞ぐ透光性部材とを備 えており、 The sensor base is fixed with the pedestal sandwiched between the sensor base and an irradiation unit that emits laser light, a light receiving unit that receives the laser light, and guides the laser light emitted from the irradiation unit to the exhaust gas passage hole. And the laser beam that has passed through the exhaust gas. A light passage hole for guiding light to the light receiving portion, and a translucent member for sealing the light passage hole in an airtight state,
前記台座は、 前記光通過孔内に挿入され前記透光性部材を前記センサベースに 押圧する筒状部を備えていることを特徴とする排ガス分析装置。 The exhaust gas analyzer according to claim 1, wherein the pedestal includes a cylindrical portion that is inserted into the light passage hole and presses the translucent member against the sensor base.
6 . 前記透光性部材は、 耐熱性ガスケットを挟んで前記光通過孔と対接し、 該光 通過孔を気密状態に塞ぐことを特徴とする請求項 5に記載の排ガス分析装置。 6. The exhaust gas analyzer according to claim 5, wherein the translucent member is in contact with the light passage hole with a heat-resistant gasket interposed therebetween, and closes the light passage hole in an airtight state.
7 . 前記台座は、 セラミックスより形成されることを特徴とする請求項 5または 6に記載の排ガス分析装置。
7. The exhaust gas analyzer according to claim 5 or 6, wherein the base is made of ceramics.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006-112519 | 2006-04-14 | ||
JP2006112519A JP2007285826A (en) | 2006-04-14 | 2006-04-14 | Exhaust gas analyzer |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007119872A1 true WO2007119872A1 (en) | 2007-10-25 |
Family
ID=38609626
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2007/058479 WO2007119872A1 (en) | 2006-04-14 | 2007-04-12 | Exhaust gas analyzer |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2007285826A (en) |
WO (1) | WO2007119872A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014016252A (en) * | 2012-07-09 | 2014-01-30 | National Institute Of Advanced Industrial & Technology | Hydrogen azide gas concentration measuring probe |
CN111272655A (en) * | 2018-12-05 | 2020-06-12 | 株式会社堀场Stec | Light absorption analysis device |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4894743B2 (en) * | 2007-12-05 | 2012-03-14 | 株式会社デンソー | Parallel mirror device and manufacturing method thereof |
JP6183227B2 (en) * | 2014-01-22 | 2017-08-23 | 株式会社島津製作所 | Insertion type gas concentration measuring device |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63107845U (en) * | 1987-01-05 | 1988-07-12 | ||
JPH0427846A (en) * | 1990-05-24 | 1992-01-30 | Nippondenso Co Ltd | Measuring apparatus for concentration of fine particle |
JPH04148053A (en) * | 1990-10-12 | 1992-05-21 | Nippon Soken Inc | Smoke control device for diesel engine |
JPH04174344A (en) * | 1990-11-06 | 1992-06-22 | Olympus Optical Co Ltd | Fine particle detection device |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2592165B1 (en) * | 1985-12-23 | 1988-02-19 | Philips Eclairage | DEVICE FOR REGULATING THE WEALTH OF COMBUSTION GASES OF AN EXPLOSION ENGINE. |
-
2006
- 2006-04-14 JP JP2006112519A patent/JP2007285826A/en active Pending
-
2007
- 2007-04-12 WO PCT/JP2007/058479 patent/WO2007119872A1/en active Search and Examination
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63107845U (en) * | 1987-01-05 | 1988-07-12 | ||
JPH0427846A (en) * | 1990-05-24 | 1992-01-30 | Nippondenso Co Ltd | Measuring apparatus for concentration of fine particle |
JPH04148053A (en) * | 1990-10-12 | 1992-05-21 | Nippon Soken Inc | Smoke control device for diesel engine |
JPH04174344A (en) * | 1990-11-06 | 1992-06-22 | Olympus Optical Co Ltd | Fine particle detection device |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014016252A (en) * | 2012-07-09 | 2014-01-30 | National Institute Of Advanced Industrial & Technology | Hydrogen azide gas concentration measuring probe |
CN111272655A (en) * | 2018-12-05 | 2020-06-12 | 株式会社堀场Stec | Light absorption analysis device |
Also Published As
Publication number | Publication date |
---|---|
JP2007285826A (en) | 2007-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4199766B2 (en) | Exhaust gas analysis method and exhaust gas analyzer | |
JP4673887B2 (en) | Exhaust gas analyzer | |
JP4781039B2 (en) | Gas analyzer | |
US7926332B2 (en) | Exhaust gas analyzer and exhaust gas analyzing method | |
JP4732277B2 (en) | Gas analyzer and gas analysis method | |
JP4713227B2 (en) | Exhaust gas analyzer and exhaust gas analysis method | |
JP4485345B2 (en) | Exhaust gas analyzer | |
JP2009243968A (en) | Exhaust gas analyzer and analyzing method | |
WO2007119872A1 (en) | Exhaust gas analyzer | |
JP4842582B2 (en) | Gas analyzer | |
JP5052259B2 (en) | Sensor for exhaust gas analysis | |
JP4490333B2 (en) | Exhaust gas analyzer | |
JP4949999B2 (en) | Exhaust gas analyzer | |
JP4879053B2 (en) | Exhaust gas analyzer | |
JP5199584B2 (en) | Sensor for exhaust gas analysis | |
JP5199592B2 (en) | Sensor for exhaust gas analysis | |
JP5362959B2 (en) | Sensor for exhaust gas analysis | |
JP4878981B2 (en) | Gas analyzer | |
JP5483163B2 (en) | Laser gas analyzer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07741915 Country of ref document: EP Kind code of ref document: A1 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 07741915 Country of ref document: EP Kind code of ref document: A1 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) |