Rotorblatt einer Windenergieanlage
Beschreibung
Die Erfindung betrifft ein Rotorblatt einer Windenergieanlage mit einer Oberseite (Saugseite) und einer Unterseite (Druckseite), wobei entlang einer Längsachse zwischen einer Rotorblattwurzel und einer Rotorblattspitze Profile im Querschnitt mit einer Vorderkante und einer Hinterkante ausgebildet sind, für jedes Profil jeweils eine
Auslegungsanströmrichtung vorbestimmt ist und die Profile im äußeren, der Rotorblattspitze zugewandten Bereich mit einer relativen Dicke von weniger als 30 % ausgebildet sind. Darüber hinaus betrifft die Erfindung eine Windenergieanlage sowie eine Verwendung einer Aufsatzvorrichtung. Überdies betrifft die Erfindung ein Verfahren zur
Herstellung eines Rotorblatts einer Windenergieanlage.
Der Wirkungsgrad von Rotorblättern einer Windenergieanlage wird durch den Anströmwinkel, also den Winkel zwischen der Rotorblatt- profilsehne und der Anströmrichtung der Luft, bestimmt. Bei Windenergieanlagen hängt insbesondere der Anströmwinkel von der Rotorblattgeschwindigkeit und somit von der Rotordrehzahl und der
Windgeschwindigkeit ab.
Damit sich bei einem aerodynamischen Auftrieb eines Rotorblatts die Auftriebskraft voll entfalten kann, muss die Strömung des Win- des möglichst lange am Profil des Rotorblatts anliegen. Hierbei sollte das Rotorblatt immer unter einem günstigen Winkel angeströmt werden. Die Größe und der Winkel der Anströmgeschwindigkeit ändern sich hierbei in Abhängigkeit der Windgeschwindigkeit und der Umlaufgeschwindigkeit im jeweiligen Punkt eines Rotorblatts. Da- durch, dass die Umfangsgeschwindigkeit an der Rotorblattspitze am größten ist und zur Rotornabe hin abnimmt, ergibt sich daraus eine Zunahme des Anströmwinkels relativ zur Rotorebene von der Blattspitze in Richtung Nabe. Um zu gewährleisten, dass das Rotorblatt an jedem Punkt optimal angeströmt wird, werden die Rotorblätter mit einer Verwindung ausgeführt.
Rotorblätter einer Windenergieanlage sind in DE-A-198 15 519 und DE-A-10 2004 007 487 beschrieben. Ein weiteres Rotorblatt einer Windturbine ist in WO-A-2002/008600 offenbart.
Ausgehend von diesem Stand der Technik besteht die Aufgabe der vorliegenden Erfindung darin, ein Rotorblatt einer Windenergieanlage bereit zu stellen sowie den Betrieb einer Windenergieanlage zu verbessern, wodurch beim Einsatz eines derartigen Rotorblatts der Energieertrag an einer Windenergieanlage optimiert bzw. erhöht wird.
Gelöst wird diese Aufgabe bei einem Rotorblatt der eingangs genannten Art dadurch, dass entlang der Längsachse im inneren, der Rotorblattwurzel zugeordneten Bereich an Profilen mit einer relativen Dicke von mehr als 30 % auf der Druckseite eine Aufsatzvorrichtung angeordnet ist, die eine Aufsatzanströmfläche sowie einen
der Vorderkante zugewandten Aufpunkt der Aufsatzanströmfläche und einen der Hinterkante zugewandten Endpunkt der Aufsatzanströmfläche aufweist, wobei der Aufpunkt der Aufsatzanströmfläche in einem Bereich zwischen der Vorderkante und der Hinterkante der Profile angeordnet ist, so dass die Tangente an das Profil im Aufpunkt in einem Winkelbereich zwischen +20° und -20°, insbesondere zwischen +15° und -15°, zur Auslegungsanströmrichtung des Profils ausgebildet ist.
Die Erfindung beruht auf dem Gedanken, dass ein Rotorblattprofil im inneren Bereich, d.h. mit einer größeren relativen Dicke von mehr als 30 %, insbesondere mehr als 50 % relativer Dicke, durch eine zusätzlich ausgebildete Anströmfläche bzw. Aufsatzanströmfläche durch die Aufsatzvorrichtung auf der Druckseite des Rotorblatts eine optimierte aerodynamische Ausbildung erhält. Durch die zusätzlich ausgebildete Anströmfläche, die beispielsweise nachträglich nach Fertigung eines kompletten Rotorblatts auf eine bevorzugte Stelle im inneren Bereich des Rotorblatts aufgebracht wird, wird eine Art Wölbungserhöhung an den bevorzugten Profilen des Rotor- blatts ausgebildet, die zu einer Auftriebserhöhung führt.
Unter der relativen Dicke eines Rotorblattprofils wird im Allgemeinen das Verhältnis der (größten) Profildicke zur Sehnenlänge des Profils verstanden.
Bei dickeren Profilen, bei denen üblicherweise die Strömung des Windes auf der Druckseite im Rotornaben nahen Bereich abzulösen droht, werden die Aufpunkte der Aufsatzvorrichtung in einem Bereich der Profilkontur angeordnet, bei denen die Berührenden bzw. die Tangenten im jeweiligen Aufpunkt in etwa parallel zur Anströmrichtung bzw. zur (vorbestimmten) Auslegungsanströmrichtung liegen bzw. ausgebildet sind. Dadurch sind die Aufpunkte der erfin-
- A -
dungsgemäßen Aufsatzvorrichtung auf der Druckseite des Rotorblattprofils im inneren Bereich bei relativen Profildicken von mehr als 30 %, vorzugsweise mehr als 50 %, bestimmt bzw. gekennzeichnet. Hierbei ist eine Toleranz von etwa ± 20° zwischen der Be- rührenden im Aufpunkt an das Profil und der Auslegungsanströmrichtung von Vorteil bzw. möglich. Typischerweise liegen die Profile im inneren Bereich mit einer relativen Dicke von mehr als 50 % vor.
Gemäß der Erfindung weisen die Rotorblattprofile (als Primärprofile) im Innenbereich, der in seiner Konstruktion und bei der Fertigung sehr aufwäπdig ist, mit der ausgebildeten bzw. angeordneten Aufsatzanströmfläche der Aufsatzvorrichtung eine Art Sekundärprofile auf, so dass die Zunahme des Anströmwinkels im Rotornaben nahen Bereich durch die zusätzlich ausgebildete Anströmfläche be- rücksichtigt wird und der Energieertrag damit gesteigert wird.
Beim Übergang zwischen der druckseitigen Strömungsfläche des Rotorblatts und der anschließenden Anströmfläche der Aufsatzvorrichtung ist nach wie vor eine anliegende Strömung des Mediums bzw. Winds vorgesehen.
Mit der erfindungsgemäßen Aufsatzvorrichtung werden die aerodynamischen Profileigenschaften eines Rotorblatts im Hinblick auf einen verbesserten Energieertrag (im jährlichen Mittel) verbessert. Gemäß der Erfindung wird der Profilauftrieb von inneren Profilschnitten für relative Profildicken von 100 % bis 30 % effektiv erhöht. Dadurch, dass die Aufsatzvorrichtung vor dem Ablösepunkt der Strömung am Profil bezogen auf die Vorderkante des Profils angeordnet ist, wird die Leistung eines Rotors im Jahresmittel bis zu 3,0 % gesteigert.
Eine weitere Lösung der Aufgabe oder eine bevorzugte Ausfüh-
rungsform des Rotorblatts besteht darin, dass entlang der Längsachse im inneren, der Rotorblattwurzel zugeordneten Bereich an Profilen mit einer relativen Dicke von mehr als 30 % auf der Druckseite eine Aufsatzvorrichtung, die eine Aufsatzanströmfläche sowie einen der Vorderkante zugewandten Aufpunkt der Aufsatzanströmfläche und einen der Hinterkante zugewandten Endpunkt der Aufsatzanströmfläche aufweist, angeordnet ist, wobei der Aufpunkt der Aufsatzanströmfläche vor dem Ablösepunkt der Windströmung auf der Druckseite bzw. vor dem Ablösepunkt des das Rotorblatt an- strömenden Mediums auf der Druckseite ausgebildet ist. Hierdurch wird ein Strömungsabriss im zentrumsnahen Bereich des Rotorblatts auf der Druckseite vermieden oder zumindest stromabwärts verschoben.
Gemäß der Erfindung liegt bei einer vorbestimmten Auslegungs- schnelllaufzahl eine so genannte Auslegungsanströmrichtung vor, die für jedes Querschnittsprofil des Rotorblatts unterschiedlich ausgebildet ist. Die Schnelllaufzahl λ eines Rotorblatts bzw. einer Windenergieanlage ist eine wichtige Kennzahl für die Auslegung von Windenergieanlagen. Sie gibt das Verhältnis der Umfangsgeschwindigkeit des Rotors (Blattspitzengeschwindigkeit) zur Windgeschwindigkeit an. Die Schnelllaufzahl gibt an, wie schnell sich die Flügel in Relation zum Wind bewegen.
Grundsätzlich verändern sich während des Betriebs einer Windenergieanlage die Schnelllaufzahlen in Folge der Windgeschwindigkeit und der Rotordrehzahl. Bei der Auslegungsschnelllaufzahl erreicht der Rotor einer Windenergieanlage seinen maximalen Leistungsbeiwert (fester Rotorkennwert). Daher liegt bei einer entspre- chenden Auslegungsschnelllaufzahl eines Rotorblatts eine entsprechende vorbestimmte Auslegungsanströmrichtung für jedes Profil
vor.
In einer bevorzugten Weiterbildung des Rotorblatts wird vorgeschlagen, dass die Schnelllaufzahl des Rotorblatts zwischen 7 und 1 1 liegt.
Darüber hinaus ist weiterhin von Vorteil, wenn die Profile im inneren Bereich eine relative Dicke von mehr als 50 % aufweisen.
Außerdem zeichnen sich die Profile dadurch aus, dass die Tangente im Aufpunkt der Aufsatzanströmfläche im Wesentlichen parallel zur Auslegungsanströmrichtung ausgebildet ist.
Günstig ist es ferner, wenn der Endpunkt der Aufsatzanströmfläche bezogen auf die Anströmrichtung vor der Hinterkante des Rotorblatts endet.
Weiterhin sind insbesondere die Aufpunkte der Aufsatzanströmfläche bzw. der Aufsatzvorrichtung von innen nach außen, d. h. entlang der Längsachse, kontinuierlich verbunden. Ferner sind die Endpunkte der Aufsatzvorrichtung von innen nach außen kontinuierlich verbunden, so dass die Aufsatzvorrichtung als eine Art Bauteil oder Körper ausgebildet ist.
Eine gekrümmte räumliche Struktur der Aufsatzvorrichtung ergibt sich, wenn sich der Abstand der Endpunkte oder der Abreißpunkte der Aufsatzanströmfläche (bzw. der Aufsatzvorrichtung) von der Vorderkante des Rotorblatts entlang der Längsachse von innen nach außen zumindest in einem Längsachsenabschnitt vergrößert. Hierdurch wird eine Art gekrümmte Aufsatzvorrichtung oder eine Art
Spoilereinrichtung mit einer nach innen zurücklaufenden d.h. zur Hinterkante gebogenen Konstruktion ausgebildet, wobei die nach
innen zur Hinterkante ausgebildete Krümmung der Aufsatzvorrichtung sich durch die Verdrehung der Anströmrichtung ergibt.
Dazu ist weiter vorgesehen, dass die Aufsatzvorrichtung nach Art eines Spoilers mit einer Luftieitfläche in Form der Aufsatzanstömflä- che ausgebildet ist, wodurch die Energieeffizienz des Rotorblatts im inneren Bereich gesteigert wird.
Des Weiteren ist es von Vorteil, wenn die Aufsatzvorrichtung auf das Rotorblatt geklebt wird oder ist. Hierbei kann die Aufsatzvorrichtung nachträglich nach Herstellung des Rotorblatts im inneren Bereich auf der Druckseite angeordnet werden. Dementsprechend ist insbesondere die Aufsatzvorrichtung nachrüstbar oder nachgerüstet. In der Praxis hat dies vorteilhafterweise zur Folge, dass gar keine oder keine signifikante Erhöhung der Anlagenbelastung im
Vergleich zu den Lastannahmen des Auslegungsverfahrens stattfindet.
In einer bevorzugten Ausgestaltung ist es ferner möglich, dass die Aufsatzvorrichtung von einer Ruheposition in eine Arbeitsposition gebracht wird oder ist. Hierbei kann beispielsweise die Anströmfläche der Aufsatzvorrichtung entsprechend eingestellt oder bei entsprechender Windlast eingefahren werden, wodurch die Aufsatzanströmfläche der Aufsatzvorrichtung eng am üblichen Profil des Ro- torblatts anliegt.
Außerdem ist es in einer Weiterbildung bevorzugt, wenn der Endpunkt der Aufsatzanströmfläche als Strömungsabreißpunkt auf der Druckseite des Profils ausgebildet ist.
Ferner wird die Aufgabe gelöst durch eine Windenergieanlage, die mit wenigstens einem Rotorblatt, wie voransteheπd beschrieben,
ausgerüstet ist.
Eine weitere Lösung der Aufgabe besteht in einer Verwendung einer Aufsatzvorrichtung, die in einem inneren Bereich eines erfindungs- gemäßen, voranstehend beschriebenen Rotorblatts angeordnet wird oder ist.
Außerdem wird die Aufgabe gelöst durch ein Verfahren zur Herstellung eines Rotorblatts einer Windenergieanlage, wobei eine Auf- satzvorrichtung im inneren Bereich eines Rotorblatts angeordnet wird, so dass das Rotorblatt in einer Ausführungsform gemäß den oben genannten Möglichkeiten ausgebildet ist. Zur Vermeidung von Wiederholungen wird auf die voranstehenden Ausführungen zu dem oben beschriebenen Rotorblatt ausdrücklich verwiesen.
Die Erfindung wird nachfolgend anhand von Ausführungsbeispielen exemplarisch beschrieben, wobei bezüglich aller im Text nicht näher erläuterten erfindungsgemäßen Einzelheiten ausdrücklich auf die Zeichnungen verwiesen wird. Es zeigen:
Fig. 1 überlagerte Profilschnitte eines erfindungsgemäßen Rotorblatts;
Fig. 2 überlagerte Profilschnitte eines weiteren erfin- dungsgemäßen Rotorblatts;
Fig. 3 eine perspektivische Darstellung eines Rotorblatts im inneren Bereich mit einer erfindungsgemäßen Aufsatzvorrichtung;
Fig. 4a bis 4d jeweils Profilschnitte eines erfindungsgemäßen Rotorblatts und
Fig. 5 einen Profilschnitt eines weiteren erfindungsgemäßen Rotorblatts.
In den folgenden Figuren sind jeweils gleiche oder gleichartige EIe- mente bzw. entsprechende Teile mit denselben Bezugsziffern versehen, so dass von einer entsprechenden erneuten Vorstellung abgesehen wird.
In Fig. 1 sind mehrere überlagerte Profilschnitte 21 , 22, 23, 24, 25 eines Rotorblatts 60 (vgl. Fig. 3) von der Rotorblattwurzel in inneren
Bereich zum äußeren Bereich dargestellt. Das innerste Profil 21 weist in diesem Beispiel die größte relative Dicke aus. Das Profil 25 ist mit einer relativen Dicke von 45 % das dünnste Profil im inneren Bereich. Die überlagerten Profilschnitte 21 , 22, 23, 24, 25 geben einen Profilverlauf eines Rotorblatts in verschiedenen Abschnitten wieder. Aus Gründen der Übersichtlichkeit wurde von der Darstellung von Profilen mit einer relativen Dicke von weniger als 30 % im äußeren Bereich abgesehen.
Darüber hinaus ist in Fig. 1 mit dem Bezugszeichen 1 1 die Rotorebene in einer vorbestimmten Betriebsstellung des Rotorblatts eingezeichnet. Die verschiedenen Profilschnitte 21 , 22, 23, 24, 25 sind entlang einer Auffädelachse von der Rotorblattwurzel nach außen zur Rotorblattspitze aufgefädelt.
Aus Fig. 1 geht hervor, dass die relative Dicke der Profilschnitte 21 bis 25 von innen (Profil 21 ) nach außen (Profil 25) abnimmt. Das heißt, dass das Profil 21 im inneren Bereich näher an der Rotorblattwurzel als die nachfolgenden Profilschnitte 22 bis 25 angeord- net ist.
Entsprechend zum (inneren) Profilschnitt 21 ist in Fig. 1 die dazu-
gehörige vorbestimmte Auslegungsanströmrichtung 31 eingezeichnet. Darüber hinaus sind für die Profile 23, 25 die entsprechenden jeweiligen Auslegungsanströmrichtungen 33, 35 eingezeichnet. Überdies sind in Fig . 1 für die Profilschnitte 21 , 22, 23 jeweils die Aufpunkte 41 , 42, 43 eines erfindungsgemäßen Aufsatzkörpers 51 als Aufsatzvorrichtung auf der Druckseite der Profile 21 bis 25 im Querschnitt dargestellt.
In Fig. 1 sind die Querschnitte des Aufsatzkörpers 51 an den jewei- ligen Profilschnitten 21 bis 25 eingezeichnet, wobei der Querschnitt des Aufsatzkörpers 51 an den Profilschnitten 21 bis 25 jeweils nach Art eines Dreiecks oder dergleichen oder annähernd dreiecksförmig ausgebildet ist.
Der entsprechende Aufpunkt 41 bis 43 des Aufsatzkörpers 51 an den jeweiligen Profilen 21 bis 23 ist beispielsweise dadurch bestimmt, dass die Berührende im Aufpunkt 41 bis 43, d.h. die Tangente an das jeweilige Profil parallel oder mit einer geringen Neigung von ± 20°, insbesondere ± 15°, zur jeweiligen Auslegungsan- Strömrichtung 31 , 33 und 35 des dazugehörigen Profilschnitts 21 , 23 sowie 25 ausgebildet ist. Hierbei ist der Aufpunkt 41 bis 43 an dem Profil 21 bis 23 vor dem jeweiligen druckseitigen Strömungsabrisspunkt des entsprechenden Profils 21 bis 23 angeordnet.
Durch den nachträglich aufgebrachten bzw. nachrüstbaren Aufsatzkörper 51 werden die Profileigenschaften des Rotorblatts 60 im inneren Bereich, d.h. im Bereich mit einer Profildicke von mehr als 30 %, insbesondere 50 %, verbessert, da mit dem Aufsatzkörper 51 eine Wölbungserhöhung auf der Druckseite des Rotorblatts 60 aus- gebildet wird. Bevor die Strömung auf der Druckseite der Profile 21 bis 23 sich ablöst, wird durch die Aufsatzvorrichtung 51 auf der Druckseite eine Aufsatzanströmfläche (vgl. Fig. 3, Bezugszeichen
52) der Aufsatzvorrichtung bzw. des Aufsatzkörpers 51 ausgebildet, wodurch der Profilauftrieb des Rotorblatts im inneren Bereich und damit der Energieertrag verbessert werden. Ein etwas vergrößerter Profilwiderstand durch ein vergrößertes Totwassergebiet wird hier- bei in Kauf genommen bzw. toleriert.
Aus den Profilschnitten 21 bis 25 geht ferner hervor, dass die Position des Aufsatzkörpers 51 mit seinen entsprechenden Aufpunkte 41 bis 43 sich von Profil zu Profil unterscheidet bzw. verändert, so dass zunächst im inneren Profilschnitt 21 zum nächsten benachbarten Profilschnitt 22 der Aufpunkt 41 in der Projektion entlang der Auffädelachse hinter dem Aufpunkt 42 des nachfolgenden äußeren Profilschnitts 22 liegt.
Mit zunehmendem Rotorblattradius liegen die Aufpunkte 43 und die weiteren Aufpunkte, die aus Gründen der Übersichtlichkeit nicht bezeichnet sind, zunehmend mehr von der vorderen Profilkante entfernt. Das heißt, dass der Abstand zwischen den Aufpunkten 42, 43 und den weiter außen liegenden Aufpunkten und der Vorderkante des entsprechenden Profils sich vergrößert.
Darüber hinaus vergrößert sich die Winkelposition der Aufpunkte 41 , 42, 43 mit größer werdendem Rotorradius, wobei die Winkelpositionen bezogen auf die Rotorblattebene um die Rotorblattlängs- achse gemessen werden.
Die Länge der Aufsatzvorrichtung 51 entlang der Auffädelachse oder einer anderen vorbestimmten Achse wird in Abhängigkeit der Länge des Rotorblatts festgelegt. Je nach Schlankheit des Rotor- blattes kann die Länge der Aufsatzvorrichtung etwa 15% bis 25% der Rotorblattlänge betragen. Das bedeutet, dass bei einer Windenergieanlage mit einer Leistung von 1 ,5 MW und einer Rotorblatt-
länge von 37 m die Länge der Aufsatzvorrichtung beispielsweise 5,5 m beträgt, bei einer Windenergieanlage mit einer Leistung von 2 MW und einer Rotorblattlänge von 45 m die Länge der Aufsatzvorrichtung beispielsweise 7 m beträgt und bei einer Windenergieanla- ge mit einer Leistung von 5 MW und einer Rotorblattlänge von 61 m sowie einer schlanken Blattgeometrie die Länge der Aufsatzvorrichtung beispielsweise 15,5 m (bei relativ dicken Profilen) beträgt.
Die Querschnittsform der Aufsatzvorrichtung 51 ist dabei nicht ent- scheidend, die Dreiecksform ist insbesondere aus strukturellen
Gründen besonders vorteilhaft. Bei bekannten Windenergieanlagen mit bereits installierten Rotorblättern ist die Aufsatzvorrichtung 51 nachrüstbar, da in der Praxis keine Erhöhung der Anlagenbelastung im Vergleich zu den hohen Lastannahmen des Auslegungsverfah- rens entsteht.
Hierbei liegt die Erkenntnis zugrunde, dass die mit einfachen Berechnungsverfahren vorhergesagten sowie theoretisch ermittelten Auftriebsbeiwerte im Rotorblattinnenbereich real nicht erreicht wer- den. Mit der erfindungsgemäßen Aufsatzvorrichtung werden die Profileigenschaften eines Rotorblatts so verbessert, dass die ursprünglichen Annahmen auch in der Praxis erreicht werden.
Die Geometrie einer vorteilhaften Positionierung der Aufsatzvorrich- tung 51 ist beispielhaft für ein Rotorblatt mit einer Länge von 37 m in der Figur 1 gezeigt. Neben den Auslegungsanströmrichtungen für einen Radius (von der Rotornabe) von 2.8 m (Profil 21 ), 4 m (Profil 22), 5 m (Profil 23), 6 m (Profil 24) und 7 m (Profil 25) ist auch die Rotorebene 1 1 eingetragen.
Es ist zu erkennen, dass die Position der Aufsatzvorrichtung 51 mit
zunehmendem Rotorradius von der Blattvorderkante weg nach hinten wandert. Der absolute Abstand des Abreißpunktes als Referenzpunkt der Aufsatzvorrichtung 51 zur jeweiligen Blattvorderkante vergrößert sich. Eine Ausnahme bildet lediglich der innerste Profilschnitt 21 bei einem Radius vom 2.8 m.
Bezogen auf die Rotorblattebene 1 1 ergeben sich folgende Winkelpositionen der Aufsatzvorrichtung gemessen um die Rotorblattlängsachse:
Es ist zu erkennen, dass für die inneren Profile ab einem vorbestimmten Profil die Winkelposition der Aufsatzvorrichtung mit größer werdendem Rotorradius zunimmt. Beim Übergang von dem innersten Profil 21 (Radius 2.8 m) zum nächsten Profil 22 (Radius 4 m) nimmt die Winkelposition der Aufsatzvorrichtung 51 leicht ab.
In Fig. 2 ist eine weitere bevorzugte Ausführungsform für ein Rotorblatt dargestellt, bei der die Profile 21 bis 25 asymmetrisch auf der Blattlängsachse bzw. Auffädelachse angeordnet sind. Hierdurch wird der Blattfreigang vor einem Turm einer Windenergieanlage entsprechend vergrößert. Die entsprechenden Auslegungsanströmrichtungen 31 bis 35 sind zu den zugehörigen Profilschnitten 21 bis 25
ebenfalls jeweils eingezeichnet.
Die Höhe der Aufsatzvorrichtung 51 beträgt in den Ausführungsbeispielen in Fig. 1 und Fig. 2 im Kreiszylinderbereich des Rotorblatts ca. 10 % des Zylinderdurchmessers, im Bereich einer Profildicke von 45 % ca. 8 % der Profildicke. Mit größerer Höhe der Aufsatzvorrichtung 51 wird die aerodynamische Wirksamkeit zunehmen, wobei bei den Ausführungsformen darauf zu achten ist, dass ein guter Kompromiss für den Bauaufwand für eine zusätzliche Aufsatzvor- richtung 51 und die Zusatzbelastung für ein Rotorblatt sowie die damit zu erzielende Ertragssteigerung erreicht wird.
In den Ausführungsbeispielen in Fig. 1 und 2 ist erkennbar, dass die Aufsatzvorrichtung 51 im inneren Bereich (Profil 21) zur Hinterkante des Profils zurück läuft. Da im inneren Bereich die Anströmung stark dreht, wird der Kreiszylinder des Rotorblatts mit der Aufsatzvorrichtung 51 ebenfalls entgegen dem Uhrzeigersinn gedreht, wodurch die Position der Aufsatzvorrichtung 51 nach oben wandert. Durch diese Rückdrehung ergibt sich eine insgesamt gebogene oder gekrümmte Form der Aufsatzvorrichtung 51 entlang der Auffädelachse des Rotorblatts.
Alternativ sieht eine bevorzugte Ausführungsform vor, auf das Rückdrehen der Aufsatzvorrichtung im Innenbereich zu verzichten. Dies ist hinsichtlich des Energieertrags geringfügig schlechter, ermöglicht aber eine sehr einfache, im Wesentlichen gerade Geometrie der Aufsatzvorrichtung und somit eine einfache Bauausführung.
Dadurch, dass durch die Aufsatzvorrichtung 51 eine Aufsatzan- strömfläche im inneren Bereich eines Rotorblatts vorliegt, wird die
Effizienz des Rotorblatts in der Nähe des Rotorblattsanschlusses in seiner Energieausbeute gesteigert. Hierdurch wird eine energieer-
tragsoptimierte Ausführung eines Rotorblatts ermöglicht. Beispielsweise kann die Aufsatzvorrichtung 51 in Form eines Spoilers bei der Herstellung der Rotorblätter angeordnet werden, so dass keine komplette Änderung des Herstellungsvorgangs eines Rotorblatts durchgeführt werden muss.
Als geeignetes Material zur Herstellung einer Aufsatzvorrichtung 51 eignet sich beispielsweise glasfaserverstärkter Kunststoff (GFK). Im Abreißpunkt, d.h. am Endpunkt der Anströmfläche bzw. der Aufsatz- anströmfläche der Aufsatzvorrichtung 51 ist bevorzugt, eine scharfe
Kante als Endkante auszubilden. An der Innenseite im Bereich der scharfen Endpunkte der Aufsatzvorrichtung 51 im Bereich der Endkante ist die Ecke aus Festigkeitsgründen vorteilhafterweise abgerundet. Dadurch ergibt sich an der Aufsatzvorrichtung eine sehr ho- he Festigkeit bei einem geringen Gewicht der Aufsatzvorrichtung.
Hierbei ist es von Vorteil, wenn die Aufsatzvorrichtung 51 in Richtung der Blattlängsachse vergleichsweise elastisch ausgeführt ist, d .h. , dass dadurch sehr hohe Dehnungen in Längsrichtung in einem Toleranzbereich liegen.
In weiteren Ausführungsformen ist vorgesehen, dass die Aufsatzvorrichtung in eine Arbeitsposition gebracht wird. Hierbei ist die Aufsatzvorrichtung aktivierbar ausgebildet, um bei Windgeschwindig- keiten unterhalb der Nenngeschwindigkeit bei eingeschalteter oder zugeschalteter Aufsatzvorrichtung 51 den Energieertrag zu steigern. Bei hohen Windgeschwindigkeiten wird durch Einklappen bzw. Einfahren oder Abschalten der Aufsatzanströmfläche bzw. der Aufsatzvorrichtung 51 die Belastung des Rotorblatts reduziert, indem die Aufsatzanströmfläche eng am normalen Rotorblattprofil anliegt.
Insbesondere eignet sich zum Einschalten bzw. Zuschalten der Auf-
satzvorrichtung ein Luftsack im Innern der Vorrichtung, wodurch das innere Volumen der Aufsatzvorrichtung verringert oder vergrößert wird, so dass sich unterschiedliche Anstellwinkel der Aufsatzvorrichtung 51 in Bezug auf die Druckseite des Rotorblatts ergeben. Insbe- sondere wird durch den Luftsack oder eine andere schaltbare Einrichtung die Aufsatzvorrichtung 51 von einer Ruheposition in eine Arbeitsposition gebracht, wobei dieser Vorgang reversibel ausgebildet ist.
In Fig. 3 ist femer eine perspektivische Ansicht eines inneren Bereichs eines Rotorblatts 60 in einer perspektivischen Darstellung dargestellt. Das Rotorblatt 60 verfügt über einen kreisförmigen Ro- torblattanschluss 61. Im Anschluss an den runden Kreisquerschnitt des Rotorblatts 60 schließt sich im Vorderkanten abgewandten Be- reich der Aufsatzkörper 51 an, der nach Art eines Spoilers auf der
Druckseite des Rotorblatts 60 angeordnet ist.
Auf der Rückseite des Rotorblatts 60 setzt oberhalb des Rotorblattanschlusses 61 die Hinterkante 62 an. Der Aufsatzkörper 51 verfügt über eine Aufsatzanströmfläche 52, wobei beim Übergang von der normalen Strömungsfläche des Rotorblatts 60 zur Aufsatzanströmfläche 52 die entsprechenden Aufpunkte der Profile liegen. Die eingezeichnete Linie 53 bildet somit eine Art Verbindungslinie der Aufpunkte. Die Aufsatzanströmfläche 52 der Aufsatzvorrichtung 51 wird durch die Verbindungslinie 54 der Aufsatzanströmfläche 52 begrenzt. Entlang der Verbindungslinie 54 sind die Endpunkte der Aufsatzanströmfläche 52.
In den Figuren 4a bis 4d sind vorteilhafte Ausbildungsformen einer Aufsatzvorrichtung 51 bzw. modifizierte Profile aus Fig. 1 gezeigt.
Die eingezeichneten Profile 21 , 22, 23, 25 entsprechen dabei den in
Fig. 1 gezeigten Profilschnitten. Die modifizierten Profilschnitte 21 ,
22, 23, 25 weisen in diesem Ausführungsbeispiel eine sehr hohe aerodynamischer Güte auf, so dass die Energieausbeute eines Rotorblatts im inneren Rotornaben nahen Bereich maximiert wird oder ist. Hierdurch ergibt sich im Hinblick auf den erzielbaren zusätzli- chen Energieertrag eine optimierte Aufsatzvorrichtung 151 (im Vergleich zu der anderen Aufsatzvorrichtung 51 (vgl. Fig. 1 oder Fig. 2).
Es ist in den Figuren 4a bis 4d jeweils in dieser Darstellung die Lage der Aufpunkte der einzelnen Profilschnitte 21 , 22, 24, 25 sowie die lokale Anströmrichtung 31 , 32, 33 und 35 gut zu erkennen. Fig.
4a bis. 4c zeigen sehr deutlich, dass die Profilkontur bei den dicken Profilen im Bereich des Aufpunkts 41 , 42, 43 im Wesentlichen parallel zur Anströmrichtung liegt.
Nur der ganz außen liegende Profilschnitt 25 in Fig. 4d zeigt eine schon etwas größere Abweichung der Profilkontur im Aufpunkt 45 von der Anströmrichtung (ca. 12°). Das dort im Außenbereich der Aufsatzvorrichtung 151 liegende, schon etwas dünnere Profil ermöglicht der Strömung bereits einen geringen Druckanstieg durch eine zurücklaufende Profilkontur zu ertragen. Hierdurch ist erst kurz vor dem potentiellen Abreißpunkt der Aufpunkt 45 der Aufsatzvorrichtung 1 51 positioniert, wobei die Profilkontur durch die Aufsatzvorrichtung 151 nach außen gezogen wird, so dass die Strömung erst wesentlich weiter hinten am Abreißpunkt der Aussatzvorrich- tung 151 abreißt.
Die energieertragsoptimierte Ausführung der Aufsatzvorrichtung 1 51 weist eine noch stärkere Verschiebung des Abreißpunktes von der Blattvorderkante weg auf als die Geometrie der in Fig. 1 und 2 ge- zeigten Ausführung. Allerdings ist der Bauaufwand für eine derartige
Ausatzvorrichtung hoch.
Eine derartige Aufsatzvorrichtung ist insbesondere dann sehr sinnvoll, wenn Rotorblätter gleich bei der Herstellung verbessert werden sollen, wobei keine komplett neue Rotorblattform gebaut werden muss. Die dargestellte Aufsatzvorrichtung kann auf einfache Weise an einem vorhandenen Rotorblatt montiert werden.
Fig. 5 zeigt die Ausführung einer Aufsatzvorrichtung 51 mit Klebelaschen 71 , 72 im Querschnitt an einem Profil. Bei einem Rotorblatt mit einer Länge von 37 m und einer Länge der Aufsatzvorrichtung von etwa 5,5 m erweisen sich Klebelaschen 71 , 72 mit einer Breite von 50 bis 80 mm als vorteilhaft. Die Aufsatzvorrichtung 51 selbst ist aus 2 bis 4 mm dickem GFK (laminiertes Gewebe oder Faserspritz) gefertigt. Der Abreißpunkt ist zur Erzielung einer hohen aerodynamischen Güte als möglichst scharfe Ecke ausgeführt.
Der bei einer aufgeklebten Aufsatzvorrichtung 51 bzw. aufgeklebten Spoiler unvermeidliche Kontursprung im Aufpunkt 45 sollte möglichst klein gehalten werden, maximal 5 mm, insbesondere 2 bis 3 mm. Zur Widerstandsregulierung ist eine Ausrundung mit Klebe- masse (z.B. Sikaflex) von Vorteil.
In der Innenkontur wird diese Ecke aus Festigkeitsgründen vorteilhaft etwas ausgerundet. Durch den Dreiecksquerschnitt ergibt sich für die aufgeklebte Aufsatzvorrichtung 51 eine sehr hohe Festigkeit bei geringem Gewicht.
Bezugszeichenliste
1 1 Rotorebene
21 Profil
22 Profil
23 Profil
24 Profil
25 Profil
31 Auslegungsanströmrichtung
32 Ausleg ungsanströmrichtung
33 Auslegungsanströmrichtung
41 Aufpunkt
42 Aufpunkt
43 Aufpunkt
51 Aufsatzvorrichtung
52 Aufsatzanströmfläche
53 Linie
54 Verbindungslinie
60 Rotorblatt
61 Rotorblattanschluss
62 Hinterkante
71 Klebelasche
72 Klebelasche
151 Aufsatzvorrichtung