WO2007117010A1 - Probe for generating ultrasonic wave - Google Patents

Probe for generating ultrasonic wave Download PDF

Info

Publication number
WO2007117010A1
WO2007117010A1 PCT/JP2007/057878 JP2007057878W WO2007117010A1 WO 2007117010 A1 WO2007117010 A1 WO 2007117010A1 JP 2007057878 W JP2007057878 W JP 2007057878W WO 2007117010 A1 WO2007117010 A1 WO 2007117010A1
Authority
WO
WIPO (PCT)
Prior art keywords
high frequency
probe
plate
ultrasonic wave
piezoelectric ceramic
Prior art date
Application number
PCT/JP2007/057878
Other languages
French (fr)
Japanese (ja)
Inventor
Tetsuya Kodama
Shiro Mori
Original Assignee
Japan Material Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Material Co., Ltd. filed Critical Japan Material Co., Ltd.
Publication of WO2007117010A1 publication Critical patent/WO2007117010A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • A61M37/0092Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin using ultrasonic, sonic or infrasonic vibrations, e.g. phonophoresis

Definitions

  • the present invention can generate two or more different position forces of a high frequency generator plate to generate high frequency waves and destroy hollow microspheres having acousticity over almost the entire surface of the high frequency generator plate, in other words, ultrasonic waves.
  • the present invention relates to a medical ultrasonic wave generation probe capable of efficiently breaking the hollow microspheres, and can be applied to cleaning and sterilization outside of the medical field. For example, cleaning of lake water, seawater, and dams It also relates to an ultrasonic probe that can be used to sterilize food (oysters and laver).
  • the ultrasonic molecule introduction method utilizes the characteristics of ultrasonic waves, and the probe force generated ultrasonic waves (1) increase in percutaneous absorption, (2) hollow microspheres (acoustic nanobubbles or // And introduction of physiologically active substances into cells using a composition or mixture containing microbubbles and exogenous molecules, (3) enhancement of drug effects in vivo, etc.
  • the device is also inexpensive and can introduce exogenous molecules into the affected area non-invasively. Currently, it is used for treatment of cardiovascular diseases including the heart, digestive diseases or malignant tumors. Play an important role.
  • This conventional ultrasonic wave generation probe (B) is as shown in FIG. 3, and is attached roughly to the cylindrical probe body (1 ') and the tip opening of the probe body (1'). Connected to the metal plate (6 ′) and the piezoelectric element (2 ′) disposed on the entire inner surface of the metal plate (6 ′) by direct bonding and electrodes provided on the piezoelectric element (2 ′) It consists of a feed cord (4 ') and (5'). In the probe (B) having such a structure, the entire lower surface of the piezoelectric element (2 ') is bonded to a relatively thick metal plate (6') through the adhesive layer ( ⁇ ') to form the entire outer edge.
  • Patent Document 1 relates to a composition for delivering a biologically active agent which is an exogenous molecule to a specific site of a living body, ie, a biologically active agent introduction composition containing micro hollow spheres.
  • a biologically active agent introduction composition containing micro hollow spheres.
  • Patent Document 1 uses albumin-derived acoustic hollow microspheres (nano or micron bubbles) containing perfluorinated carbon as an internal gas, in which hollow microspheres are used.
  • the frequency is close to the resonance frequency, and the hollow microspheres can be reliably broken at a lower sound pressure.
  • the 1 MHz high frequency ultrasonic wave is acted to cause the breakage, and the shock pressure causes biological activity in the living body.
  • a method is disclosed for introducing a drug. Although this method aims at introducing biologically active agents into specific areas of the living body, such as brain, digestive tract, blood vessels, muscles, and in particular, specific areas of the living body such as cancer tissue, the ultrasonic generation surface of the probe [ In the prior art shown in FIG.
  • FIG. 3 schematically shows the effective range in which the bubbles can be broken as (YG).
  • FIG. 3 Is the effective area that vibrates and breaks up the hollow microspheres, and the peripheral part that occupies most of the area hardly works to break up the bubbles, and there is a problem that the amount of biologically active agent introduced to a specific site is very small. was there.
  • Reference 2 describes an acute myocardial angioplasty treatment that contains hollow microspheres (acoustic nanobubbles or! ⁇ and / or microbubbles) whose internal gas is perfluorocarbon and contains a therapeutic gene.
  • the ultrasonic frequency used is the above-mentioned fixed frequency in the form of the normal distribution, which is the highest at the center of the surface from the ultrasonic generation surface of the ultrasonic generation probe also for hollow microsphere rupture. There is a problem that the effective range is narrow as described above, and the amount of biologically active agent introduced to a specific site is very small.
  • Patent Document 3 introduces or adheres hollow microspheres into or on the surface of a tumor, and the hollow microspheres are ruptured with ultrasound to form at least a portion of tumor cells constituting the tumor.
  • the tumor treatment apparatus comprises: a first ultrasonic transducer for emitting a first ultrasonic wave for confirming the presence of the hollow microspheres administered in vivo; And a second ultrasonic transducer for oscillating a second ultrasonic wave for causing bubbles in the sphere, and information obtained by reflection of the first ultrasonic wave by ultrasonic control means in the tumor treatment apparatus.
  • the ultrasonic wave generation surface of the ultrasonic wave generation probe one that generates ultrasonic waves with a fixed frequency in the form of Gaussian distribution with the highest in the center of the surface is used.
  • the effective area of ultrasonic waves is very narrow, and only hollow microspheres located within a small area of the entire area of the ultrasonic transducer can be ruptured, which takes time for treatment. There was a problem that.
  • the ultrasonic wave generation surface force of the ultrasonic wave generation probe is the central portion (YG) of the surface. It uses ultrasonic waves with a regular distribution like fixed frequency where the sound pressure decreases gradually in three dimensions as the sound pressure goes up to the highest, and all use ultrasonic waves from the probe for ultrasonic wave generation. With respect to the entire generation surface, the effective surface for hollow microsphere breaking is limited to a very small area (YG) in the central portion, and it is not possible to break in a wide peripheral portion, and the amount of drug introduced etc. It can not overcome the shortcoming that it is small (patent documents 1-3).
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2002-145784
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2004-210774
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2004-223175
  • a hollow microsphere having acousticity is used using a probe that emits a single ultrasonic wave of Gaussian distribution shape at a certain fixed frequency, and an external source is placed at a predetermined location of a living body.
  • the basic concept has been to introduce sexual molecules.
  • a high frequency generation plate or a thin plate made of piezoelectric elements alone is made to vibrate a high frequency generation plate in which a thin plate of piezoelectric ceramic is attached to a metal plate, and a large number of needle-like ultrasonic waves including high frequency components are generated. Or almost all over the
  • the regions surrounded by the mesh are made independent of each other, and a large number of ultrasonic waves with force needle-like each region are generated.
  • the hollow microspheres are efficiently ruptured on almost the entire surface of the high frequency generating plate, and the impact pressure of the innumerable cavity bubbles generated by the collapse of the innumerable hollow microspheres is effectively used for extrinsic molecules at predetermined places of the living body.
  • the basic concept is a probe that is particularly effective for medical use, which makes it possible to introduce molecules or to cause the impact pressure of the cavity bubbles to act on a predetermined place of the living body.
  • the high frequency generation plate (2) is
  • the shape of the high frequency generation plate mounting opening (9) can take any shape as required, such as circular, oval or quadrilateral (rectangular or square).
  • shape of the high frequency wave generating plate (2) or the piezoelectric element (2a) is also circular, it can be elliptical or quadrilateral (rectangular or square).
  • the probe (A) of claim 1 uses a high frequency generating plate (2) composed of only one piezoelectric element as shown in FIG. 1, and the high frequency generating plate (2) is In the case where the entire outer periphery is fixed, or in the case of a quadrilateral, of course, the opposite side may be fixed. Good luck,
  • the outer edge (2G) is fixed to the high frequency generating plate mounting opening (9) and is provided, and is constituted by a high frequency generating plate (2) that generates high frequency of 2 or more different position force by voltage application. It is characterized by
  • the probe main body (1) can have a shape according to need, such as in the case of a circular, elliptical or quadrilateral shape of the high frequency generating plate mounting opening (9). This point is the same as in the case of claims 2 and 3.
  • the probe (A) of claim 2 corresponds to [where the outer edge (2G) of one or more metal plates (2M) is fixed]], as shown in FIG. 4 and FIG. 2 or FIG. 5 (b). It is shown. That is,
  • FIG. 4 shows claims 2 and 3 at the same time.
  • the piezoelectric ceramic thin plate (2a) or (2al) "'outer edge of (2a n) (2G) [the piezoelectric ceramic thin plate (2a) is plural rectangular, outer edge (2G) it is in the short side. ] Is bonded to the high frequency generating plate mounting opening (9) (In addition, the long side of the piezoelectric ceramic thin plate is not bonded to the high frequency generating plate mounting opening (9).)
  • gaps (L) are provided at the outer edges (2G) of the plurality of piezoelectric ceramic thin plates (2al).
  • the probe (A) of claim 3 (as described above and shown in FIG. 4 and FIG. 5 (a) together with the claim 2.)
  • a plurality of piezoelectric ceramic thin plates (2al) ′ ′ ′ (2a n ) Is the inner circumferential surface force separation of the probe body (1) [this portion is indicated by a gap (L)].
  • the inner circumferential surface force of the probe main body (1) is also composed of a plurality of piezoelectric ceramic thin plates (2al) '-(2a n ) attached to the thin plate (2M) with a gap (L). It is characterized by
  • a fourth aspect of the present invention is the probe (A) according to any one of the first to third aspects, wherein "the generated high frequency has a needle-like shape".
  • the probe (A) of claim 5 is the probe (A) according to claim 2 or 3, as shown in FIG.
  • the probe (A) of claim 6 is the probe (A) according to any of claims 1 to 5, as shown in FIG.
  • the mesh plate (2e) is further attached to the outer surface of the ceramic thin plate (2M).
  • the high frequency generating plate vibrates by generating high-order waves (two or more waves), if the high frequency generating plate is vibrated by voltage application, the high frequency generating plate A large number of vibration antinodes are formed on almost the entire surface of the Many sound waves are generated.
  • the piezoelectric ceramic thin plate 1 forms ultrasonic waves (Gas) of Gaussian distribution waveform, and the other piezoelectric ceramic thin plates have needle waveform ultrasonic waves.
  • ultrasonic wave (PG) of Gaussian distribution waveform is used to search for and identify a specific site such as an affected area, and then the specific site is detected by needle waveform ultrasonic wave (P).
  • P needle waveform ultrasonic wave
  • FIG. 1 is a cross-sectional view of a first embodiment of the present invention and a drawing showing a state of ultrasonic wave generation thereof.
  • FIG. 2 A cross-sectional view of the second embodiment of the present invention and a drawing showing the state of ultrasonic wave generation
  • FIG. 3 A sectional view of a conventional example and a drawing showing the state of ultrasonic wave generation
  • FIG. 4 A cross-sectional view of the third embodiment of the present invention and a drawing showing the state of ultrasonic wave generation
  • FIG. 5 A drawing showing Embodiment 3 of the present invention and its modification
  • FIG. 6 an exploded perspective view of the probe of the present invention attached with a net
  • FIG. 7 A perspective view and a sectional view of Embodiment 4 of the present invention
  • FIG. 8 Comparison of needle-like ultrasonic waves (a), (b) ( C ) of the present invention and Gaussian-distributed ultrasonic waves (d) of the conventional example
  • FIG. 9 A sectional view of Embodiment 1 of the hollow microspheres used in the present invention
  • FIG. 10 A sectional view of Embodiment 2 of the hollow microspheres used in the present invention
  • FIG. 12 Cross section of Embodiment 4 of hollow microspheres used in the present invention
  • FIG. 13 An imaginary view showing hollow microsphere breaking state by the probe of the present invention
  • FIG. 14 An imaginary view showing hollow fine sphere breaking action by the needle-like ultrasonic wave (a) of the present invention and the Gaussian-distributed ultrasonic wave (b) of the prior art
  • FIG. 17 A picture as a substitute for a drawing showing the effect of introducing exogenous molecules (fluorescent molecules) by hollow microsphere rupture of ultrasonic waves according to the present invention
  • FIG. 18 Comparison graph of the exogenous molecule introduction effect of the probe of the present invention and the conventional probe
  • FIG. 19 ⁇ ⁇ 'A graph comparing gene expression (left) and cell damage rate (right) in cell experiments with the probe of the present invention (Fig. 4) and a conventional Gaussian-distributed ultrasound probe
  • Such substances include, for example, air, nitrogen, oxygen, carbon dioxide, hydrogen, an inert gas such as helium, argon, xenon, krypton, sulfur hexafluoride, sulfur difluoride, trifulf Sulfur fluoride such as trifluoromethyl sulfur pentafluoride, low molecular weight such as methane, ethane, pronone, butane, pentane, cyclopropane, cyclobutane, cyclobutane, cyclopentane, ethylene, propylene, propylene glycol, propylene oxide, propadiene, butene, acetylene and propyne Perfluoro, which is a polymer gas such as hydrocarbons or their halides, CF.
  • an inert gas such as helium, argon, xenon, krypton, sulfur hexafluoride, sulfur difluoride, trifulf Sulfur fluoride such as
  • Carbon in addition, 1, 1, 2, 2, 3, 3, 3-octafluoropropane, ethers such as dimethyl ether, ketones, esters, etc. And the powers that can be used in combination of one or more of these, particularly sulfur hexafluoride, perfluoropropane, perfluorobutane, perfluoropentane, etc. are preferred. . Strong hollow microspheres (10) exert high stability in living organisms.
  • a protein such as albumin, a polycationic lipid, phosphatidyl choline, phosphatidyl serine, phosphatidyl ethanol amine, phosphatidal
  • lipids such as phospholipids such as ethanolamine, higher fatty acids such as palmitic acid and stearic acid, saccharides such as galactose, cholesterol, sterols such as cholesterol, sitosterol, surfactant, natural or synthetic Molecules, etc., and one or two or more of these may be used in combination It is possible to
  • the average particle size of the hollow microspheres (10) is not particularly limited, and is generally about 10011111 to 10 m, but the smaller the minimum diameter is, the more desirable it is actually 0. 05. It is preferably about 10 to 10 / ⁇ . Since the inner diameter of the capillary is about 7 m, it is more preferable that the inner diameter is about 0.55 to 7 / 5 ⁇ .
  • the hollow microspheres (10) may be composed of only the outer shell (11) (FIG. 9), or a water film (10a) containing an exogenous molecule (13) (for example, a drug) inside. May be formed (FIG. 10), or may contain an exogenous molecule (13) in or on the shell (11) of the hollow microsphere (10) (in the case of FIG. 11) or attached (FIG. 10) Alternatively, a water film (10a) containing an exogenous molecule (13) may be formed in the shell (11) (FIG. 12). Of course, the whole hollow space of the hollow microspheres (10) may be filled. In addition, exogenous molecules (13) may be contained in the gas in the sphere. As the type of exogenous molecule (13), appropriate ones such as drugs and genes are adopted depending on the treatment subject.
  • the hollow microspheres (10) are acoustic, they are vibrated by the application of an external force such as an ultrasonic wave, and furthermore, they are resonated or the intensity of the ultrasonic wave depending on the frequency to which the ultrasonic wave is applied. It is crushed and broken by (sound pressure). Then, in the case of rupture, a large number of cavity air bubbles (11a) are generated with the fragments of the hollow microspheres (10) as the core, thereby generating an impact pressure around (FIG. 15). Then, with this impact pressure, the permeability of the cell membrane of the cells (eg, skin (20) and blood vessels or visceral organs) in the vicinity of the cavity (11a) is changed.
  • an external force such as an ultrasonic wave
  • exogenous molecule (13) for example, a drug or gene (nucleic acid) present in the vicinity of the cavity (11a) from the cell membrane causing the permeability change penetrates into the cells and blood vessels of the affected area.
  • the exogenous molecule (13) will circulate throughout the body.
  • the hollow microspheres (10) and the exogenous molecule (13) are, in the case of transdermal, from a liquid medium (120) applied to a gel sheet (12) described later or a cream (121) applied to the skin (20). It is supplied to the affected area, for example by injection, in the case of subcutaneous or visceral.
  • the gel sheet (12) is used to transmit the extrinsic molecule (13) to the body as well as the skin (20), and is a viscous body similar in acoustic impedance to living tissue, and is formed of, for example, silicon.
  • the liquid medium (120) containing molecules (13) is attached by immersion or application.
  • hollow microspheres (10) and extrinsic molecules (13) are fine particles, some of the substances attached to the gel sheet (12) may enter the inside, and the gel sheet (12) is soft, or For this reason, hollow microspheres (10) and exogenous molecules (13) may be previously incorporated into the gel sheet (12) in advance. Also, although not shown, the gel sheet (12) may be perforated and the pores may be filled with the exogenous molecule (13).
  • the exogenous molecules (13) are prepared separately from the hollow microspheres (10) and, in the case as described above, are separately attached by immersion or deposition as described above.
  • the hollow microspheres (10) contain the exogenous molecule (13) as shown in FIGS. 10 to 12, the hollow microspheres (10) are attached to the adhesion surface (12a) of the gel sheet (12).
  • a liquid medium (120) containing When not using the exogenous molecule (13) and using only the impact pressure of the cavity air bubble (11a) (eg, when the impact pressure of the cavity air bubble (11a) damages and kills the cells in the vicinity)
  • the hollow microspheres (10) alone are attached to the adhesive surface (12a) of the gel sheet (12) and used or injected into the affected area, and two or more exogenous molecules (13) are introduced.
  • an exogenous molecule (13) of the same species or different species (especially to the adhesive surface (12a) in contact with the skin (20)) as appropriate, or subcutaneously (or in a predetermined position in the viscera) Can also be injected. These combinations are appropriately selected as necessary. Also. It is also possible to use cream (121) or gel in place of the gel sheet (12). In this case, it is preferable to knead the hollow microspheres (10) and Z or the exogenous molecule (13) in a necessary amount in advance into the cream (121) or gel.
  • the basic type (example 1) of the probe (A) according to the present invention ie, a device for generating a plurality of high-order ultrasonic waves (P) intermittently or with a phase difference
  • the first embodiment will be described below.
  • the first embodiment is generally configured of a cylindrical probe main body (1) and an ultrasonic wave generation plate (2) (in the present embodiment, it is constituted by a single piezoelectric element).
  • the feed cords (4) and (5) are connected to the electrodes (3a) and (3b) respectively provided on the front and back of the ultrasonic wave generation plate (2) composed of the piezoelectric ceramic alone.
  • the electrode positions in the figure are conceptual and do not represent accurate positions.
  • the outer edge (2G) of the ultrasonic wave generation plate (2) contacts, for example, the inner peripheral surface or outer end of the tip cylindrical portion (la) of the probe main body (1), ie, the high frequency generation plate mounting opening (9) It is fixed by wearing.
  • the tip cylindrical portion (la) is screwed off to the probe grip (lb). It is screwed so it can be worn.
  • the probe main body (1) need not be cylindrical as long as it has the high frequency generation plate mounting opening (9), but may be a plate, for example.
  • the shape of the high frequency generation plate attachment opening (9) is not particularly limited, either.
  • the characteristic of the cylindrical probe (A) is that the outer edge (2G) of the disk-like ultrasonic wave generating plate (2) made of a single piece of piezoelectric ceramic is located on the entire circumference (or opposite side in some cases) (A part of the arc or side) is fixed to the RF generator plate attachment opening (9) of the end cylindrical part (la) by adhesion [The adhesion site is shown by (K).
  • Each abdominal force of surface vibration on the generation surface (2S) is also a point where a large number of ultrasonic waves (P) of needle-like waveform are generated intermittently [Fig. L (b) (c)].
  • Figure l (a ') shows surface vibration on the ultrasonic wave generation surface (2S).
  • the frequency of the ultrasonic wave (P) is the same as the natural frequency f of the ultrasonic wave generation plate (2), and a large number of ultrasonic waves (P) having a needle waveform are generated from each antinode of the surface vibration.
  • the main frequency is the same as the natural frequency f of the ultrasonic wave generation plate (2) as described above, but also includes harmonic components of 2f, 3f, 41 ⁇ . (Ie, the natural frequency f is a harmonic Wave components 2f, 3f, 41 " ⁇ ⁇ ⁇ are superimposed.;).
  • the above-mentioned probe (A) has a cylindrical shape.
  • the probe (A) may be a square tube type shown later, or an elliptical surface type (not shown) or any other suitable shape.
  • FIG. 2 shows another example of FIG. 1 (Example 2) in which the ultrasonic wave generation plate (2) is formed of a piezoelectric ceramic thin plate (2a) and a thin plate (2M) 2M) is formed of metal or resin.
  • Aluminum is preferred for metal plates. The reason is that (a) the acoustic impedance is close to the acoustic impedance of water, and (b) it is light, and the ability to prevent corrosion by water by using an anodizing treatment.
  • the piezoelectric ceramic thin plate (2a) is bonded to the thin plate (2M), and the front and back of the piezoelectric ceramic thin plate (2a) is an electrode (3a) (3b) provided on the piezoelectric ceramic thin plate (2a) and the thin plate (2M) respectively.
  • Example 3 [see FIG. 4 and FIG. 5 (a) and its modification, FIG. 5 (b)], the ultrasonic wave generation surface (2S) is a square (square or rectangle), and for one side, hereinafter.
  • probe (A) in order to change (further increase) the number of nodes restricted by the fixed condition of the above-mentioned disc, A plurality of independent piezoelectric ceramic flakes (2al) (2a2) ′ ′ ′ is used, that is, the entire periphery of the outer edge (2G) or the two opposite sides are adhesive [the adhesive layer is indicated by (K)
  • the rectangular piezoelectric ceramic flakes (2al) and (2a2) are attached in parallel to each other on the thin plate (2M) (8 in this embodiment, one of which will be described later as a modified example thereof;
  • Example 3 In the case of [Fig.
  • the ultrasonic wave generation status is slightly different, but the piezoelectric ceramic flakes (2al) (2 a 2)-also show the long side force, and each piezoelectric ceramic flakes (2 al) (2 a 2) ' ⁇ ⁇ ⁇ The abdomen and nodes are formed to form multiple needle ultrasound waves (P).
  • each piezoelectric ceramic flakes (2 al) (2 a 2) is formed with only one needle-like ultrasonic wave. Needle-like ultrasonic waves (P) are formed side by side according to the number of piezoelectric ceramic flakes (2al), (2a2), etc.
  • Each of the electrodes (3al) (3a2)' ⁇ ⁇ ⁇ '(3b) feeder (4 1 ⁇ 42) ⁇ -(5) extends, each feeder (41 ) (42) ⁇ ⁇ ⁇ (5) is integrated into one, and the input signal for ultrasonic wave generation is input intermittently or continuously simultaneously or with phase difference.
  • each piezoelectric ceramic thin film (2al) (2a2) ... is simultaneously or simultaneously with the input signal and intermittently or continuously with a phase difference between the ultrasonic waves (P) of a plurality of needle waveforms.
  • the piezoelectric ceramic (2a) is thus divided into (2al) (2a2) ′ ′ and so on, almost on the entire surface of the ultrasonic wave generating surface (2s), which is the contact surface [eg, skin] of an elephant.
  • the number of ultrasonic waves is doubled by the number of piezoelectric ceramic flakes (2al) ( 2a 2) ′ ′, and there is an advantage that generation can be performed continuously or intermittently or by providing a phase difference.
  • Piezoelectric ceramic thin plate (2a) which is a modification of the third embodiment In the case of a sheet of Si, an example in which the entire periphery of the outer edge (2G) is fixed by the adhesive layer (K), in this case Is the same as in FIG. 2 described above.
  • FIG. 6 shows an example in which a reticulated insulation member (2e) is attached to the surface of the ultrasonic wave generation plate (2) or thin plate (2M) of the probe (A).
  • the regions (2z) in the lattice of the member (2e) vibrate respectively, and a needle-shaped ultrasonic wave (P) is generated for each region (2z) in the lattice.
  • the other points are the same as those of the first embodiment described above.
  • the piezoelectric ceramic (2a) can also be divided by the cylindrical probe (A) to generate ultrasonic waves as many as the number of thin pieces of piezoelectric ceramic.
  • the method of division but as an example, it is also possible to arrange piezoelectric ceramic flakes of approximately isosceles triangle shape with a central force radially, as the oranges are cut in a circle!
  • a method of applying a voltage to the ultrasonic wave generation plate (2) is as shown in FIG. 16.
  • pulse voltage [or AC voltage for only time t] ] Is applied.
  • the intensity (pulse height), the duty ratio (t / T), and the number of applied cycles (X) a wider range of ultrasonic wave generation conditions can be set, which has further effects. It is appropriate that these be decided by the subject.
  • the input timing of the input signal can be changed to give a phase time, and the ultrasonic wave generation plate (2) changes the ultrasonic wave (P) according to the phase difference between different occurrence locations.
  • the plurality of ultrasonic waves (P) having these phase differences cooperate with one another to effectively break the hollow microspheres (10).
  • the frequency of the ultrasonic wave (P) affects the tissue of the skin (20) or the viscera to which it is applied, and the force is usually about 1 MHz because the hollow microspheres (10) are broken.
  • the natural frequency of each piezoelectric ceramic flake (2a 1) (2) ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇
  • FIG. 7 shows the fourth embodiment, in which a disc-like thin plate (2M) is provided around a central metal plate (6 ′), and a conventional piezoelectric ceramic (not shown) is formed on the central metal plate (6 ′). 2 ') is pasted, and a plurality of piezoelectric ceramics (2 a l x 2 a 2)''(2 an ) are provided on the thin plate (2 M) around it, and all or one part of its outer end (2 G) In this example, the part is fixed to the partition wall (17) and the opening (9) by the adhesive layer (K).
  • the ultrasonic wave (PG) of the Gaussian distribution waveform is formed from the central piezoelectric ceramic thin plate (2 '), and the piezoelectric ceramics (2 a1 ) (2a2) ′ ′ (2 an ) around it have a needle-like waveform.
  • a sound wave (P) Form a sound wave (P).
  • a specific region such as the affected area is searched and specified by ultrasonic waves (PG) of Gaussian distribution waveform, and if the affected area is found, the needle waveform ultrasonic wave ( P) rupture the hollow microspheres concentrated at the specific site, and the impact pressure efficiently strikes the surrounding exogenous molecules into surrounding cells or surrounding blood vessels.
  • the ultrasound (PG) force is simply needle waveform ultrasound (P By simply switching to), the affected area can be struck at that time, and treatment can be performed more efficiently.
  • Example 4 the structure as described above is illustrated in FIG. 7, but the structure of Example 4 is of course not limited to this, and the structure shown in Examples 1 to 3 may be obtained. It can apply.
  • the peripheral piezoelectric ceramic plates (2al) to (2an) are circular, and a part of the outer peripheral edge (2G) is the inner peripheral surface of the partition wall (17) or the opening (9)
  • the piezoelectric ceramic plates (2al) to (2an) fixed to the end face may be formed into a fan shape, and the entire outer peripheral edge (2G) may be fixed, or the thin plate (2MG) is excluded. Then, the piezoelectric ceramic plates (2al) to (2an) may be directly fixed in the same manner as in Example 1.
  • the piezoelectric ceramic plate can be formed into any shape, it is not shown, but it is formed in a ring shape, and the thin plate (2MG) and the partition wall (17) and the inner periphery of the opening (9) are formed in the same ring shape. It may be fixed to a surface, or a ring-shaped unitary piezoelectric ceramic plate may be attached directly without a thin plate (2MG).
  • the pressure is also directed outward at the central force.
  • hollow microspheres (10) It exists innumerably in the liquid medium (120) or cream (121) containing the exogenous molecule (13) applied to the gel sheet (12) under the ultrasonic wave generation surface (2s), and it is liquid because of ultrafine particles. It is moving in the medium (120) or cream (121).
  • the metal plate (6) has an entire surface so that the pressure distribution of the ultrasonic wave (PG) obtained as described above has a clear mountain shape (Gaussian distribution). I'm glued. In this case, the central part (YG) is the largest and the lower it goes to the periphery. Then, this ultrasonic wave (PG) is applied at a certain duty ratio and intermittently outputted from the ultrasonic wave generation plate (2).
  • PG ultrasonic wave
  • innumerable hollow microspheres (10) migrate in the liquid medium (120) and the like.
  • ultrasound (PG) of the conventional Gaussian distribution waveform is output
  • the hollow microspheres (10) located in the central portion (YG) of the ultrasound (PG) are ruptured by the strong sound pressure. And, as described above, the surrounding exogenous molecules (13) will be driven into surrounding tissues.
  • the hollow microsphere (10) of the ultrasonic wave (PG) is in the central part (YG).
  • Force The central part (YG) force is also pushed away by the decreasing pressure in the peripheral direction.
  • the ultrasonic wave generation plate (2) when a pulse voltage is applied to the ultrasonic wave generation plate (2), the ultrasonic wave generation plate (2) causes surface vibration, but the number of nodes of surface vibration and diameter The number of nodal circles is determined by the radius of the ultrasonic wave generation plate (2) [piezoelectric element], plate thickness, density, bending synthesis, natural angular frequency, and the generated ultrasonic waves are antinodes of higher order vibration modes. These components are synthesized +12 + 13 + to + & 1 + 1 n and output from the ultrasonic wave generation surface (2s) of the probe (A). The harmonic component is generated in this ultrasonic wave (P). (See Fig. 8 (a) to (c)) and the level may be a much higher peak if the same energy as in the prior art is applied in some cases. Note that Fig. 8 (d) shows the conventional planar ultrasonic wave (Gaussian distributed wave). Form).
  • a plurality of (in other words, two or more) ultrasonic waves (P) generate an ultrasonic wave generation surface (2S) force, so one ultrasonic wave (P) is generated.
  • the ultrasonic wave (P) is needle-like
  • the peak value of the needle-like ultrasonic wave (P) (compared to the peak value of the ultrasonic wave (PG) of the conventional Gaussian distribution waveform for the same input energy If so, the sound pressure is considered to have a higher probability of breaking the hollow microspheres (10) that have penetrated into the high ultrasonic waves (P).
  • the liquid medium (120) containing an infinite number of hollow microspheres (10) and an infinite number of exogenous molecules (13) is stirred in a wide range. It can be considered that the migration of hollow microspheres (10) can be made more active to increase the breakage probability (see FIG. 14 (a)).
  • ultrasonic transducer plurality of piezoelectric ceramic elements (2al) consists of (2a n), their respective is pulsed voltage is applied with a phase if Ru, one ultrasound (P)
  • P ultrasonic wave
  • another ultrasonic wave (P) is generated with a phase difference in the periphery. It is considered that the above-mentioned stirring effect is further enhanced since the bursting of the hollow microspheres (10) in the peripheral part is naturally performed at high density when produced.
  • the liquid medium (120) is filled with the liquid medium (120) carrying the hollow microspheres (10) and the exogenous molecule (13) in "NB + US", and this filling portion is the probe of the present invention shown in FIG. It is the result of applying at high frequency (P) in A).
  • NB + US is a fluorescent molecule (TEXAS-R It can be seen that the exogenous molecule introduction effect of the hollow microspheres (10) having many portions stained with ED (extrinsic molecule) is clear.
  • the method of using the liquid medium (120) carrying the hollow microspheres (10) and the extrinsic molecule (13) is the adhesion surface of the liquid medium (120) to the skin of the gel sheet (12). 12a), and this gel sheet (12) is adhered to the skin surface (20), and even if pulse voltage is applied in this state to generate ultrasonic waves, the nature of the gel sheet (12) It is believed that similar effects can be obtained. Also, because of the above-mentioned relationship, the cream (121) or the like (not shown) such as a gel includes hollow microspheres (10) and exogenous molecules (13) (exogenous molecules (13) carrying hollow microspheres (10) ) May be included.
  • FIG. 18 differs from FIG. 17 in that a luciferase plasmid was injected into the skeletal muscle of a non-transdermal mouse to introduce an exogenous molecule, and ultrasound was applied to the exogenous molecular injection site, and 4 days elapsed.
  • the later data show the relationship between the sample mouse and the number of input pulses applied to it (horizontal axis) and the value of gene expression (expression amount of introduced exogenous molecule) (vertical axis). Note that "R” and “L” are codes indicating whether the sample is the left foot or the right foot of the mouse.
  • the number of pulses (Pulse) is 10, 100, 1000, 2, 20, 200, 50, 500, and the duty ratio is shown by 10%, 20%, 50% in the upper row.
  • the probes of the present invention are mouse Nos. (Mouse No.) 1 to 13, and the conventional probes are mouse Nos. (Mouse No.) 14 to 20.
  • the tendency of the probe of the present invention as a whole generally slightly exceeds the exogenous molecule introduction effect of the conventional probe, and the mouse No. 11 has a duty ratio of 20% to 200 pulses, mouse In the case of No. 12 with a duty ratio of 50% -50 pulses, a high exogenous molecule introduction effect is shown.
  • the variation in the extrinsic molecule introduction effect is considered to be due to the variation in the experimental method due to individual differences and irradiation.
  • FIG. 19 shows that the piezoelectric ceramic elements (2al) (2ab) ′ ′ (2a8) shown in FIG. 4 and FIG. 5 (a) are extrinsic in comparison with the present invention probe and the conventional probe of eight types.
  • Luciferase plasmid was used as the molecule EMT 6 mouse breast cancer cells and C26 mouse colon cancer cells were used.
  • the data described as "patent” are the probes of the present invention, and they are "planar” or "commercially available”.
  • the data described are conventional probes.
  • the number of ultrasonic waves (P) generated is the number of ultrasonic waves generated in one piezoelectric ceramic element X the number of piezoelectric ceramic elements, and the number of needle ultrasonic waves (P) in the probe of the present invention shown in FIG. It is estimated that the number of occurrences of all needle ultrasonic waves (P) is significantly and stably contributes to the extrinsic molecule introduction effect, as compared with the case of the present invention.
  • the pulse voltage applied to both probes (A) and (B) is the same.
  • a plurality of needle-like ultrasonic waves are generated simultaneously and continuously at substantially the entire surface of the contact surface of the probe, and a wide range and a large amount of hollow microspheres are continuously broken in a short time.

Abstract

Exogenous molecules are introduced to a predetermined location by oscillating a high frequency wave generation plate and generating a large number of needle-shaped ultrasonic waves containing high frequency components over the substantially entire surface of the high frequency wave generation plate, thereby breaking countless hollow micro spherical bodies efficiently over the substantially entire surface of the high frequency wave generation plate. The probe for generating ultrasonic wave is characterized by comprising (a) a probe body (1) having an opening (9) for fixing the high frequency wave generation plate, and (b) a high frequency wave generation plate (2) having outer edge (2G) bonded to the opening (9) for fixing the high frequency wave generation plate and generating two or more high frequency waves from different positions through application of a voltage.

Description

明 細 書  Specification
超音波発生用プローブ  Ultrasonic wave generation probe
技術分野  Technical field
[0001] 本発明は、高周波発生板の 2以上の異なる位置力 高周波を発生させ、高周波発 生板のほぼ全面にわたって音響性を有する中空微小球体を破壊することが出来る、 換言すれば超音波で効率よく該中空微小球体を破泡させる事が出来る医療用の超 音波発生用プローブに関するもので、医療分野以外では洗浄、殺菌にも応用が可能 であり、たとえば湖水、海水、ダムの浄ィ匕や、食品(牡蠣、海苔)の滅菌にも利用可能 な超音波発生用プローブに係るものである。  The present invention can generate two or more different position forces of a high frequency generator plate to generate high frequency waves and destroy hollow microspheres having acousticity over almost the entire surface of the high frequency generator plate, in other words, ultrasonic waves. The present invention relates to a medical ultrasonic wave generation probe capable of efficiently breaking the hollow microspheres, and can be applied to cleaning and sterilization outside of the medical field. For example, cleaning of lake water, seawater, and dams It also relates to an ultrasonic probe that can be used to sterilize food (oysters and laver).
背景技術  Background art
[0002] 超音波分子導入法は、超音波の特性を利用するもので、プローブ力 発生した超 音波により、(1)経皮吸収の増大、(2)中空微小球体 (音響性のナノバブル或いは/及 びマイクロバブル)と外因性分子とを含む組成物乃至混合物を利用した細胞内への 生理活性物質の導入、(3)生体内における薬物効果の増強などが報告されており、 操作方法も簡便で装置も安価であり、非侵襲的に外因性分子を患部に導入すること ができる処力 現在では心臓を始めとする循環器疾患、消化器疾患或 、は悪性腫 瘍の治療にぉ 、て重要な役割を果たして 、る。  [0002] The ultrasonic molecule introduction method utilizes the characteristics of ultrasonic waves, and the probe force generated ultrasonic waves (1) increase in percutaneous absorption, (2) hollow microspheres (acoustic nanobubbles or // And introduction of physiologically active substances into cells using a composition or mixture containing microbubbles and exogenous molecules, (3) enhancement of drug effects in vivo, etc. The device is also inexpensive and can introduce exogenous molecules into the affected area non-invasively. Currently, it is used for treatment of cardiovascular diseases including the heart, digestive diseases or malignant tumors. Play an important role.
[0003] この従来型の超音波発生用プローブ (B)は、図 3に示すようなもので、概略、円筒状 のプローブ本体 (1')と、プローブ本体 (1')の先端開口に装着された金属板 (6')と、金属 板 (6')の内面側に直接全面接着させて配置された圧電素子 (2')並びに圧電素子 (2') に設けられた電極に接続された給電コード (4')(5')とで構成されている。このような構 造のプローブ (B)では、比較的厚い金属板 (6')に圧電素子 (2')の下面全面を、接着層 ( Κ')を介して接着して外端縁全周を非接着 [両者の間隙を (じ)で示す。]としているため に、圧電素子 (2')に交流電圧又はパルス電圧を印加した場合、皮膚等への接触面と なる金属面 (6a')からはひとつのガウシアン分布(=正規分布)波形の超音波 (PG)の みが発生する [図 3(b)参照]。図 3(b)では、前記ガウシアン分布波形の超音波 (PG)の 後述する微小中空球体の破泡有効範囲を (YG)で示す。そしてこの一つのガウシアン 分布波形の超音波 (PG)を利用して下記のような外因性分子 (薬剤や遺伝子)の生体 の所定場所への分子導入が行われて 、た。 [0003] This conventional ultrasonic wave generation probe (B) is as shown in FIG. 3, and is attached roughly to the cylindrical probe body (1 ') and the tip opening of the probe body (1'). Connected to the metal plate (6 ′) and the piezoelectric element (2 ′) disposed on the entire inner surface of the metal plate (6 ′) by direct bonding and electrodes provided on the piezoelectric element (2 ′) It consists of a feed cord (4 ') and (5'). In the probe (B) having such a structure, the entire lower surface of the piezoelectric element (2 ') is bonded to a relatively thick metal plate (6') through the adhesive layer (Κ ') to form the entire outer edge. [Non-adhesive] [The gap between the two is shown by. When an AC voltage or pulse voltage is applied to the piezoelectric element (2 ′), one Gaussian distribution (= normal distribution) waveform is generated from the metal surface (6a ′) that is the contact surface to the skin etc. Only ultrasound (PG) is generated [see Figure 3 (b)]. In FIG. 3 (b), the effective bubble-breaking range of the hollow hollow sphere to be described later of the ultrasonic wave (PG) of the Gaussian distribution waveform is indicated by (YG). And this one Gaussian The distribution of ultrasound (PG) was used to introduce the following exogenous molecules (drugs and genes) into predetermined locations in the living body.
[0004] 特許文献 1は、生体の特定部位に外因性分子である生物学的活性薬剤を送達す るための組成物、即ち、微小中空球体を含有する生物学的活性薬剤導入組成物に 超音波を作用させることで、微小中空球体を特定部位で破泡させ、破泡時の衝撃圧 で前記生物学的活性薬剤 (この場合は遺伝子)が特定部位に取り込まれるようにする ものである。 [0004] Patent Document 1 relates to a composition for delivering a biologically active agent which is an exogenous molecule to a specific site of a living body, ie, a biologically active agent introduction composition containing micro hollow spheres. By applying a sound wave, micro hollow spheres are broken at a specific site so that the biologically active agent (in this case, a gene) is incorporated into the specific site by the impact pressure at the time of the broken foam.
[0005] 更に詳述すれば、特許文献 1は、内部ガスとしてパーフルォロカーボンを含有した アルブミン由来の音響性中空微小球体 (ナノ又はミクロンバブル)を使用し、これに中 空微小球体の共振周波数に近い周波数であり、中空微小球体をより低い音圧で確 実に破泡させることができる 1MHzの高周波数超音波を作用させて破泡させ、その 衝撃圧で生体内に生物学的活性薬剤の導入を図る方法が開示されている。この方 法は生体の特定領域、たとえば脳、消化管、血管、筋肉、特に癌組織などの生体の 特定部位への生物学的活性薬剤導入を目指すものであるが、プローブの超音波発 生面 [図 3の従来例では金属板 (6')の外面 (6a')]からは該面の中央部分 (YG)が最も 音圧が高ぐ外に向力うほど立体的に音圧が漸減するガウシアン分布状の固定周波 数での超音波が発生するものを使用している。この場合、超音波発生面の狭い中央 部分 (YG) [前述のように図 3(b)で破泡可能な有効範囲を (YG)として模式的に示す。 ] のみが中空微小球体を振動,破泡させる有効領域となり、大部分を占める周辺部分 は破泡には殆ど働かず、生物学的活性薬剤の特定部位への導入量が非常に少な いという問題があった。  [0005] More specifically, Patent Document 1 uses albumin-derived acoustic hollow microspheres (nano or micron bubbles) containing perfluorinated carbon as an internal gas, in which hollow microspheres are used. The frequency is close to the resonance frequency, and the hollow microspheres can be reliably broken at a lower sound pressure. The 1 MHz high frequency ultrasonic wave is acted to cause the breakage, and the shock pressure causes biological activity in the living body. A method is disclosed for introducing a drug. Although this method aims at introducing biologically active agents into specific areas of the living body, such as brain, digestive tract, blood vessels, muscles, and in particular, specific areas of the living body such as cancer tissue, the ultrasonic generation surface of the probe [ In the prior art shown in FIG. 3, from the outer surface (6a ') of the metal plate (6'), the sound pressure gradually decreases three-dimensionally as the central portion (YG) of the surface moves outward with the highest sound pressure. We use one that generates ultrasonic waves at a fixed frequency like Gaussian distribution. In this case, the narrow central portion (YG) of the ultrasonic wave generation surface [As described above, FIG. 3 (b) schematically shows the effective range in which the bubbles can be broken as (YG). ] Is the effective area that vibrates and breaks up the hollow microspheres, and the peripheral part that occupies most of the area hardly works to break up the bubbles, and there is a problem that the amount of biologically active agent introduced to a specific site is very small. was there.
[0006] 引用文献 2は、内蔵ガスがパーフルォロカーボンである中空微小球体 (音響性のナ ノバブル或!ヽは/及びマイクロバブル)を含み、治療用遺伝子を含有する急性心筋梗 塞治療のための「遺伝子導入剤」に関する発明で、遺伝子導入剤を血中に注入する ことにより、心筋に導入された遺伝子導入剤中の中空微小球体を超音波照射下にて 破泡させ、その衝撃による HGF遺伝子 (=治療用遺伝子)の心筋への導入を可能と したものである。使用超音波周波数は、中空微小球体破泡のためにやはり超音波発 生用プローブの超音波発生面からは面央が最も高い前記正規分布状の固定周波数 の超音波が発生するものを使用しており、前述同様有効範囲が狭く生物学的活性薬 剤の特定部位への導入量が非常に少な 、と 、う問題があった。 [0006] Reference 2 describes an acute myocardial angioplasty treatment that contains hollow microspheres (acoustic nanobubbles or! ヽ and / or microbubbles) whose internal gas is perfluorocarbon and contains a therapeutic gene. In the invention relating to “gene transfer agent”, hollow microspheres in the gene transfer agent introduced into the myocardium are ruptured under ultrasound irradiation by injecting the gene transfer agent into blood, and the impact thereof is It is possible to introduce the HGF gene (= therapeutic gene) into the myocardium by The ultrasonic frequency used is the above-mentioned fixed frequency in the form of the normal distribution, which is the highest at the center of the surface from the ultrasonic generation surface of the ultrasonic generation probe also for hollow microsphere rupture. There is a problem that the effective range is narrow as described above, and the amount of biologically active agent introduced to a specific site is very small.
[0007] 特許文献 3は、腫瘍内またはその表面に中空微小球体を導入し或いは付着させ、 当該中空微小球体を超音波で破泡させることにより、前記腫瘍を構成する腫瘍細胞 の少なくとも一部を死滅させる腫瘍治療装置で、該腫瘍治療装置は生体内に投与さ れた前記中空微小球体の存在を確認するための第 1の超音波を発振する第 1の超 音波振動子と、前記中空微小球体を破泡させるための第 2の超音波を発振する第 2 の超音波振動子とを具備し、腫瘍治療装置内の超音波制御手段によって前記第 1の 超音波の反射波力 得られる情報に基づいて、前記第 2の超音波の発振を制御する ようになっており、第 1の超音波と第 2の超音波 (周波数 = 100kHz〜10MHz、超音 波の出力 =0. l〜30WZcm2)とは、それらの出力及び Z又は周波数が異なるよう に制御されて 、る。この場合もやはり超音波発生用プローブの超音波発生面からは 面央が最も高いガウシアン分布状の固定周波数の超音波が発生するものを使用して いる。この場合も前述同様超音波の有効領域が非常に狭く超音波振動子全面積のう ちの僅かな面積内に位置する中空微小球体しか破裂させることができず、治療に時 間が掛カり過ぎるという問題があった。 [0007] Patent Document 3 introduces or adheres hollow microspheres into or on the surface of a tumor, and the hollow microspheres are ruptured with ultrasound to form at least a portion of tumor cells constituting the tumor. In the tumor treatment apparatus to be killed, the tumor treatment apparatus comprises: a first ultrasonic transducer for emitting a first ultrasonic wave for confirming the presence of the hollow microspheres administered in vivo; And a second ultrasonic transducer for oscillating a second ultrasonic wave for causing bubbles in the sphere, and information obtained by reflection of the first ultrasonic wave by ultrasonic control means in the tumor treatment apparatus. The second ultrasonic wave is controlled based on the first ultrasonic wave and the second ultrasonic wave (frequency = 100 kHz to 10 MHz, ultrasonic wave output = 0. 1 to 30 WZ cm). 2 ) are controlled so that their output and Z or frequency are different, Ru. In this case as well, from the ultrasonic wave generation surface of the ultrasonic wave generation probe, one that generates ultrasonic waves with a fixed frequency in the form of Gaussian distribution with the highest in the center of the surface is used. Also in this case, as in the above case, the effective area of ultrasonic waves is very narrow, and only hollow microspheres located within a small area of the entire area of the ultrasonic transducer can be ruptured, which takes time for treatment. There was a problem that.
[0008] 以上のように音響性を有する中空微小球体、即ちナノバブル或いはマイクロバブル を利用したこの種の装置では、いずれも超音波発生用プローブの超音波発生面力 は面央部分 (YG)が最も音圧が高ぐ外に向力うほど立体的に音圧が漸減する正規分 布状の固定周波数の超音波が発生するものを使用しており、いずれも超音波発生用 プローブの超音波発生面全体に対して、中空微小球体破泡のための有効面が中央 部分のごく僅かな領域 (YG)に限定されてしまい、広い周辺部分での破泡が出来ず薬 剤などの導入量がわずかであるという欠点を克服することができな力つた (特許文献 1 -3)。  As described above, in this type of device using hollow microspheres having acousticity, that is, nanobubbles or microbubbles, the ultrasonic wave generation surface force of the ultrasonic wave generation probe is the central portion (YG) of the surface. It uses ultrasonic waves with a regular distribution like fixed frequency where the sound pressure decreases gradually in three dimensions as the sound pressure goes up to the highest, and all use ultrasonic waves from the probe for ultrasonic wave generation. With respect to the entire generation surface, the effective surface for hollow microsphere breaking is limited to a very small area (YG) in the central portion, and it is not possible to break in a wide peripheral portion, and the amount of drug introduced etc. It can not overcome the shortcoming that it is small (patent documents 1-3).
[0009] 特許文献 1:特開 2002— 145784号公報  Patent Document 1: Japanese Patent Application Laid-Open No. 2002-145784
特許文献 2:特開 2004— 210774号公報  Patent Document 2: Japanese Patent Application Laid-Open No. 2004-210774
特許文献 3:特開 2004— 223175号公報  Patent Document 3: Japanese Patent Application Laid-Open No. 2004-223175
発明の開示 発明が解決しょうとする課題 Disclosure of the invention Problem that invention tries to solve
[0010] 上記のように従来の技術 ·手法では、或る固定周波数でガウシアン分布形状の単 一超音波を発するプローブを使用して音響性を有する中空微小球体を使って生体 の所定場所に外因性分子を導入することを基本概念としてきた。  [0010] As described above, according to the conventional technique · method, a hollow microsphere having acousticity is used using a probe that emits a single ultrasonic wave of Gaussian distribution shape at a certain fixed frequency, and an external source is placed at a predetermined location of a living body. The basic concept has been to introduce sexual molecules.
これに対して本発明は、  On the other hand, the present invention
1)圧電素子単独で構成された高周波発生板或 、は薄 、金属板に圧電セラミックス 薄板を貼り付けた高周波発生板を振動させて、高周波成分を含む数多くの針状の超 音波を高周波発生板のほぼ全面で発生させ、或いは、  1) A high frequency generation plate or a thin plate made of piezoelectric elements alone is made to vibrate a high frequency generation plate in which a thin plate of piezoelectric ceramic is attached to a metal plate, and a large number of needle-like ultrasonic waves including high frequency components are generated. Or almost all over the
2)薄い金属板に複数の圧電セラミックス薄板を張り付けた高周波発生板を使用する ことで、数多くの針状の超音波を各圧電セラミックス薄板に対応部位に発生させ、結 果として高周波発生面のほぼ全面でその数倍の針状の超音波を発生させ、又は、 2) By using a high frequency generating plate in which a plurality of piezoelectric ceramic thin plates are attached to a thin metal plate, a large number of needle-like ultrasonic waves are generated on corresponding portions of each piezoelectric ceramic thin plate. Generate several times of needle-like ultrasonic waves on the entire surface, or
3)高周波発生板にメッシュ状の絶縁板を接着させることで、メッシュで囲まれた領域 をそれぞれ独立した領域とし、各領域力 針状の超音波を数多く発生させるもので、 これにより、無数の中空微小球体を高周波発生板のほぼ全面において効率的に破 泡させ、無数の中空微小球体崩壊で発生する無数のキヤビテーシヨン気泡の衝撃圧 を効果的に利用して生体の所定場所に外因性分子を分子導入すること或いは前記 キヤビテーシヨン気泡の衝撃圧を生体の所定場所に作用させることを可能にする、特 に医療用として有効なプローブを基本概念とする。なお、医療分野の他には洗浄、 殺菌にも応用が可能で、たとえば湖水、海水、ダムの浄ィ匕や、食品 (牡蠣、海苔)の 滅菌にも利用可能である。以下、医療用を代表例として説明する。 3) By bonding the mesh-like insulating plate to the high frequency generating plate, the regions surrounded by the mesh are made independent of each other, and a large number of ultrasonic waves with force needle-like each region are generated. The hollow microspheres are efficiently ruptured on almost the entire surface of the high frequency generating plate, and the impact pressure of the innumerable cavity bubbles generated by the collapse of the innumerable hollow microspheres is effectively used for extrinsic molecules at predetermined places of the living body. The basic concept is a probe that is particularly effective for medical use, which makes it possible to introduce molecules or to cause the impact pressure of the cavity bubbles to act on a predetermined place of the living body. In addition to medical fields, it can also be applied to cleaning and sterilization, for example, it can be used to clean lake water, sea water, dams and dams, and sterilize food (oysters and laver). Hereinafter, medical applications will be described as a representative example.
課題を解決するための手段  Means to solve the problem
[0011] 本発明において、高周波発生板 (2)は、 In the present invention, the high frequency generation plate (2) is
(ィ) 1枚の圧電素子単独で構成された高周波発生板 (2)の場合 (請求項 1)、  (I) In the case of a high frequency generating plate (2) constituted by one piezoelectric element alone (claim 1),
(口) 1乃至複数の圧電素子 (2a)と金属板 (2M)で形成された場合 (請求項 2又は 3)、とが あり、  (Mouth) When it is formed of one or more piezoelectric elements (2a) and a metal plate (2M) (claim 2 or 3),
(口- 1)この場合、圧電素子 (2a)が 1枚の場合にはその外端縁 (2G)の全周或いはその 一部が固着されている場合と (請求項 2)、  (Port 1) In this case, when the number of the piezoelectric elements (2a) is one, the whole circumference or a part of the outer edge (2G) is fixed, and (Claim 2),
(口- 2)圧電素子 (2a)が複数で、その外端縁 (2G)が固着されている場合と離間して間 隙 (L)が設けられて 、る場合 (請求項 3)がある。 (Port-2) There are a plurality of piezoelectric elements (2a) and their outer edges (2G) are fixed and they are separated There is a case where a gap (L) is provided (claim 3).
なお、高周波発生板取付開口 (9)の形状は、円形の場合、楕円形の場合或いは四 辺形 (長方形や正方形)の場合など必要に応じた形状を取ることが出来るし、これに合 わせて高周波発生板 (2)或いは圧電素子 (2a)の形状も円形の場合、楕円形の場合或 いは四辺形 (長方形や正方形)とすることができる。  In addition, the shape of the high frequency generation plate mounting opening (9) can take any shape as required, such as circular, oval or quadrilateral (rectangular or square). When the shape of the high frequency wave generating plate (2) or the piezoelectric element (2a) is also circular, it can be elliptical or quadrilateral (rectangular or square).
[0012] 請求項 1のプローブ (A)は図 1に示されているように 1枚の圧電素子単独で構成され た高周波発生板 (2)を使用したもので、高周波発生板 (2)はその外周全周が固着され て 、る場合或いは四辺形の場合には全周は勿論、その対辺が固着されて 、る場合 とがある。良卩ち、 [0012] The probe (A) of claim 1 uses a high frequency generating plate (2) composed of only one piezoelectric element as shown in FIG. 1, and the high frequency generating plate (2) is In the case where the entire outer periphery is fixed, or in the case of a quadrilateral, of course, the opposite side may be fixed. Good luck,
(a) 高周波発生板取付開口 (9)を有するプローブ本体 (1)と、  (a) a probe body (1) having a high frequency generation plate mounting opening (9),
(b) 前記高周波発生板取付開口 (9)にその外端縁 (2G)が固着されて設けられ、電圧 印加によって異なる位置力 2以上の高周波を発生させる高周波発生板 (2)とで構成 されている事を特徴とする。  (b) The outer edge (2G) is fixed to the high frequency generating plate mounting opening (9) and is provided, and is constituted by a high frequency generating plate (2) that generates high frequency of 2 or more different position force by voltage application. It is characterized by
なお、前述のようにプローブ本体 (1)としてはその高周波発生板取付開口 (9)が円形 の場合、楕円形の場合或いは四辺形の場合など必要に応じた形状を取ることが出来 る。この点は請求項 2, 3の場合も同様である。  As described above, the probe main body (1) can have a shape according to need, such as in the case of a circular, elliptical or quadrilateral shape of the high frequency generating plate mounting opening (9). This point is the same as in the case of claims 2 and 3.
[0013] 請求項 2のプローブ (A)は [1乃至複数の金属板 (2M)の外端縁 (2G)が固着されてい る]場合で、図 4及び図 2又は図 5(b)に示されている。即ち、 [0013] The probe (A) of claim 2 corresponds to [where the outer edge (2G) of one or more metal plates (2M) is fixed]], as shown in FIG. 4 and FIG. 2 or FIG. 5 (b). It is shown. That is,
(a) 高周波発生板取付開口 (9)を有するプローブ本体 (1)と、  (a) a probe body (1) having a high frequency generation plate mounting opening (9),
(b) 前記高周波発生板取付開口 (9)にその外端縁 (2MG)が固着された振動用の薄板 (2M)と、  (b) a thin plate for vibration (2M), the outer edge (2MG) of which is fixed to the high frequency generation plate attachment opening (9);
(c) その外端縁 (2G)が前記高周波発生板取付開口 (9)に固着され且つ前記薄板 (2M )に貼着されている 1乃至複数の圧電セラミックス薄板 (2a)又は (2al)…とで構成されて いる事を特徴とする。この場合も前述のように高周波発生板取付開口 (9)が円形の場 合、楕円形の場合或いは四辺形の場合など必要に応じた形状を取ることが出来る。 なお、圧電セラミックス薄板が 1枚の単体で構成されている場合には (2a)で示し、複数 の場合には (2al) '(2an)で示す。  (c) One or more piezoelectric ceramic thin plates (2a) or (2al) ... whose outer edge (2G) is fixed to the high frequency generating plate mounting opening (9) and is stuck to the thin plate (2M) It is characterized by being composed of Also in this case, as described above, when the high frequency generation plate mounting opening (9) is circular, it can be shaped as needed, such as in the case of an ellipse or in the case of a quadrilateral. In the case where the piezoelectric ceramic thin plate is composed of one single piece, it is indicated by (2a), and in the case of plural pieces, it is indicated by (2al) ′ (2an).
[0014] なお、図 4は請求項 2と 3を同時に示したもので、請求項 2の場合は、 1乃至複数の 圧電セラミックス薄板 (2a)又は (2al)"'(2an)の外端縁 (2G) [圧電セラミックス薄板 (2a)が 長方形で複数の場合、外端縁 (2G)は短辺側にある。 ]が高周波発生板取付開口 (9) に接着されている。(なお、圧電セラミックス薄板の長辺側は、高周波発生板取付開 口 (9)に接着されていない。 ) FIG. 4 shows claims 2 and 3 at the same time. In the case of claim 2, one or more of If the piezoelectric ceramic thin plate (2a) or (2al) "'outer edge of (2a n) (2G) [the piezoelectric ceramic thin plate (2a) is plural rectangular, outer edge (2G) it is in the short side. ] Is bonded to the high frequency generating plate mounting opening (9) (In addition, the long side of the piezoelectric ceramic thin plate is not bonded to the high frequency generating plate mounting opening (9).)
次の請求項 3(この場合、 1枚の場合はない。)の場合は、複数の圧電セラミックス薄 板 (2al)…の外端縁 (2G)には間隙 (L)が設けられている。  In the case of the next claim 3 (in this case, there is not one case), gaps (L) are provided at the outer edges (2G) of the plurality of piezoelectric ceramic thin plates (2al).
[0015] 請求項 3のプローブ (A)は (前述したように請求項 2と共に図 4及び図 5(a)に示されて いる。)複数の圧電セラミックス薄板 (2al)"'(2an)がプローブ本体 (1)の内周面力 離間 [この部分を間隙 (L)で示す。 ]しているもので、 The probe (A) of claim 3 (as described above and shown in FIG. 4 and FIG. 5 (a) together with the claim 2.) A plurality of piezoelectric ceramic thin plates (2al) ′ ′ ′ (2a n ) Is the inner circumferential surface force separation of the probe body (1) [this portion is indicated by a gap (L)].
(a) 高周波発生板取付開口 (9)を有するプローブ本体 (1)と、  (a) a probe body (1) having a high frequency generation plate mounting opening (9),
(b) 前記高周波発生板取付開口 (9)にその外端縁 (2MG)が固着された振動用の薄板 (2M)と、  (b) a thin plate for vibration (2M), the outer edge (2MG) of which is fixed to the high frequency generation plate attachment opening (9);
(c) プローブ本体 (1)の内周面力も間隙 (L)を設けて前記薄板 (2M)に貼着されている 複数の圧電セラミックス薄板 (2al)' · -(2an)とで構成されて 、る事を特徴とする。 (c) The inner circumferential surface force of the probe main body (1) is also composed of a plurality of piezoelectric ceramic thin plates (2al) '-(2a n ) attached to the thin plate (2M) with a gap (L). It is characterized by
[0016] 請求項 4は、請求項 1〜3に記載のいずれかのプローブ (A)において、「生成された 高周波が針状を呈して 、る」事を特徴とする。  [0016] A fourth aspect of the present invention is the probe (A) according to any one of the first to third aspects, wherein "the generated high frequency has a needle-like shape".
[0017] 請求項 5のプローブ (A)は、図 7に示されているように、請求項 2または 3に記載のプ ローブ (A)であって、 The probe (A) of claim 5 is the probe (A) according to claim 2 or 3, as shown in FIG.
「(a) 圧電セラミックス薄板 (2')の 1がガウシアン分布波形の超音波 (PG)を形成し、 (b) 他の圧電セラミックス薄板 (2al)が針状波形の超音波 (P)を形成する」事を特徴と する。  "(A) 1 of piezoelectric ceramic thin plate (2 ') forms ultrasonic wave (PG) of Gaussian distribution waveform, (b) other piezoelectric ceramic thin plate (2al) forms ultrasonic wave (P) of needle waveform It is characterized by
[0018] 請求項 6のプローブ (A)は図 6に示されているように、請求項 1〜5に記載のいずれ かのプローブ (A)であって、「高周波発生板 (2)或いは圧電セラミックス薄板 (2M)の外 面に網板 (2e)が更に貼着されて 、る」事を特徴とする。  The probe (A) of claim 6 is the probe (A) according to any of claims 1 to 5, as shown in FIG. The mesh plate (2e) is further attached to the outer surface of the ceramic thin plate (2M).
発明の効果  Effect of the invention
[0019] 本発明プローブによれば、高周波発生板は高次の波(2つ以上の波)を発生させて 振動するものであるから、電圧印加により高周波発生板を振動させれば高周波発生 板の表面のほぼ全面には振動の腹の部分が多数形成され、この部分から針状の超 音波が多数発生する。換言すれば、高周波発生板のほぼ全面にわたって針状の超 音波が多数発生し、これによつてプローブの高周波発生板を、外因性分子及び中空 微小球体を担持する皮膚被着ゲルシート或いはクリーム (又はジエル)に圧着又は接 触させるだけで高周波発生板のほぼ全面にわたって無数の中空微小球体が断続的 且つ継続的に破泡され、この破泡時の無数の衝撃圧によって外因性分子が高周波 発生板のほぼ全面にわたって短時間で効率よく必要箇所に断続的且つ継続的に打 ち込まれることになる。これによりこれまで以上に高い薬理効果を得られるようになつ た。 According to the probe of the present invention, since the high frequency generating plate vibrates by generating high-order waves (two or more waves), if the high frequency generating plate is vibrated by voltage application, the high frequency generating plate A large number of vibration antinodes are formed on almost the entire surface of the Many sound waves are generated. In other words, a large number of needle-like ultrasonic waves are generated over almost the entire surface of the high frequency generation plate, thereby causing the high frequency generation plate of the probe to be a skin-coated gel sheet or cream (or (Jiel) simply by pressure bonding or contacting, the innumerable hollow microspheres are broken intermittently and continuously over almost the entire surface of the high frequency generating plate, and the extrinsic molecules are generated in the high frequency generating plate by the innumerable impact pressure at the time of the break. It will be intermittently and continuously hit the required part efficiently and in a short time over almost the entire surface of the This has made it possible to obtain higher pharmacological effects than ever before.
[0020] その他、複数の圧電セラミックス薄板が用いられて 、るプローブで、圧電セラミックス 薄板の 1がガウシアン分布波形の超音波 (PG)を形成し、他の圧電セラミックス薄板が 針状波形の超音波 (P)を形成する場合 (図 7)、ガウシアン分布波形の超音波 (PG)によ つて、患部のような特定部位を探査特定し、続いて針状波形超音波 (P)によって当該 特定部位に集中している中空微小球体を前述のように破裂させ、その衝撃圧で、そ の周囲の外因性分子を周辺細胞あるいは周辺の血管に効率よく打ち込む。この場合 、ガウシアン分布波形の超音波 (PG)を中心にその周囲に針状波形超音波 (P)を生成 させるようにしておけば、単に超音波 (PG)力 針状波形超音波 (P)に切り替えるだけで 探索した患部をその時点で叩く事が出来、治療作業をより効率的に行うことができる ようになる。  [0020] In addition, a plurality of piezoelectric ceramic thin plates are used. The piezoelectric ceramic thin plate 1 forms ultrasonic waves (Gas) of Gaussian distribution waveform, and the other piezoelectric ceramic thin plates have needle waveform ultrasonic waves. In the case of forming (P) (FIG. 7), ultrasonic wave (PG) of Gaussian distribution waveform is used to search for and identify a specific site such as an affected area, and then the specific site is detected by needle waveform ultrasonic wave (P). The hollow microspheres concentrated in the above are ruptured as described above, and with the impact pressure, the surrounding exogenous molecules are efficiently bombarded into surrounding cells or surrounding blood vessels. In this case, if needle waveform ultrasound (P) is generated around ultrasonic (PG) of Gaussian distribution waveform, ultrasound (PG) force needle waveform ultrasound (P) is simply generated. By switching to, the affected area can be tapped at that point, and treatment can be performed more efficiently.
図面の簡単な説明  Brief description of the drawings
[0021] [図 1]…本発明の実施例 1の断面図とその超音波発生状況を示す図面 FIG. 1 is a cross-sectional view of a first embodiment of the present invention and a drawing showing a state of ultrasonic wave generation thereof.
[図 2]…本発明の実施例 2の断面図とその超音波発生状況を示す図面  [FIG. 2] A cross-sectional view of the second embodiment of the present invention and a drawing showing the state of ultrasonic wave generation
[図 3]…従来例の断面図とその超音波発生状況を示す図面  [Fig. 3] ... A sectional view of a conventional example and a drawing showing the state of ultrasonic wave generation
[図 4]…本発明の実施例 3の断面図とその超音波発生状況を示す図面  [FIG. 4] A cross-sectional view of the third embodiment of the present invention and a drawing showing the state of ultrasonic wave generation
[図 5]…本発明の実施例 3とその変形例を示す図面  [FIG. 5] A drawing showing Embodiment 3 of the present invention and its modification
[図 6]…本発明のプローブに網を装着したものの分解斜視図  [Fig. 6] ... an exploded perspective view of the probe of the present invention attached with a net
[図 7]…本発明の実施例 4の斜視図とその断面図  [FIG. 7] A perspective view and a sectional view of Embodiment 4 of the present invention
[図 8]…本発明の針状超音波 (a)(b)(C)と従来例のガウシアン分布超音波 (d)の比較図 面 [図 9]…本発明に使用する中空微小球体の実施例 1の断面図 [Fig. 8] ... Comparison of needle-like ultrasonic waves (a), (b) ( C ) of the present invention and Gaussian-distributed ultrasonic waves (d) of the conventional example [FIG. 9] A sectional view of Embodiment 1 of the hollow microspheres used in the present invention
[図 10]…本発明に使用する中空微小球体の実施例 2の断面図  [FIG. 10] A sectional view of Embodiment 2 of the hollow microspheres used in the present invention
[図 11] · · '本発明に使用する中空微小球体の実施例 3の断面図  [Fig. 11] · · · 'Cross-sectional view of the hollow microspheres used in the present invention in Example 3
[図 12]…本発明に使用する中空微小球体の実施例 4の断面図  [FIG. 12] Cross section of Embodiment 4 of hollow microspheres used in the present invention
[図 13]…本発明プローブによる中空微小球体破泡状態を示す想像図  [FIG. 13] An imaginary view showing hollow microsphere breaking state by the probe of the present invention
[図 14]…本発明の針状超音波 (a)と従来例のガウシアン分布超音波 (b)による中空微 小球体破泡作用を示す想像図  [FIG. 14] An imaginary view showing hollow fine sphere breaking action by the needle-like ultrasonic wave (a) of the present invention and the Gaussian-distributed ultrasonic wave (b) of the prior art
[図 15]· ··中空微小球体破泡状態と外因性分子の導入作用を示す想像図  [Fig. 15] · · An imaginary figure showing the hollow microsphere breaking state and the introduction function of the exogenous molecule
[図 16]…プローブ印加電圧の図 [Fig. 16] ... Diagram of the probe applied voltage
[図 17]…本発明超音波の中空微小球体破泡による外因性分子 (蛍光分子)の導入効 果を示す図面代用写真  [Fig. 17] ... A picture as a substitute for a drawing showing the effect of introducing exogenous molecules (fluorescent molecules) by hollow microsphere rupture of ultrasonic waves according to the present invention
[図 18]…本発明プローブと従来プローブの外因性分子導入効果の比較グラフ  [FIG. 18] Comparison graph of the exogenous molecule introduction effect of the probe of the present invention and the conventional probe
[図 19]· · '本発明四角のプローブ(図 4)と従来型のガウシアン分布超音波プローブに よる細胞実験での遺伝子発現 (左)と細胞損傷率 (右)との比較グラフ [Fig. 19] · · 'A graph comparing gene expression (left) and cell damage rate (right) in cell experiments with the probe of the present invention (Fig. 4) and a conventional Gaussian-distributed ultrasound probe
符号の説明 Explanation of sign
(A) 本発明のプローブ (A) Probe of the present invention
(B) 従来例のプローブ (B) Conventional probe
(P) 針状超音波 (P) Needlelike ultrasound
(PG) ガウシアン波形の超音波 (PG) Ultrasonic of Gaussian waveform
(1) プローブ本体  (1) Probe body
(2) 超音波発生板 (単体で超音波発生板となる圧電素子 (圧電セラミックス)) (2a) 薄板と共に超音波発生板を形成する単体の圧電素子 (圧電セラミックス) (2al)〜(2an) 薄板と共に超音波発生板を形成する複数の圧電素子 (圧電セラミックス )  (2) Ultrasonic wave generation plate (Piezoelectric element serving as ultrasonic wave generation plate alone (piezoelectric ceramic)) (2a) Single piezoelectric element forming ultrasonic wave generation plate with thin plate (piezoelectric ceramic) (2al) to (2an) Multiple piezoelectric elements (piezoelectric ceramics) that form an ultrasonic wave generation plate with a thin plate
(2M) 圧電素子と共に超音波発生板を構成することになる薄板  (2M) A thin plate that will constitute an ultrasonic wave generation plate with the piezoelectric element
(3a)(3b) 電極 (3a) (3b) electrode
(4) 給電線  (4) Feeder
(5) 給電線 (6) 金属板 (5) Feeder (6) Metal plate
(10) 中空微小球体  (10) Hollow microspheres
(11) 外殻  (11) Outer shell
(11a) キヤビテーシヨン気泡  (11a) Cavitation bubble
(12) ゲルシート  (12) Gel sheet
(13) 外因性分子  (13) Exogenous molecule
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0023] 以下、本発明を図示実施例に従って順次説明する。本発明に使用する「音響性を 有する微小球体 (10)」とは殻をもつ中空微小球体 (ナノバブル =ナノミクロンレベルの 微小泡又はマイクロバブル =ミクロンレベルの微小泡)で、その内部に、生体に投与 されたとき、生体の温度(37°C付近)にお!/ヽてガス状 (気体状)となる物質が封入され ている。このような物質 (封入ガス)としては、例えば、空気、窒素、酸素、二酸化炭素 、水素、ヘリウム、アルゴン、キセノン、クリプトンのような不活性ガス、六フッ化硫黄、 十フッ化二硫黄、トリフルォロメチル硫黄ペンタフルオリドのようなフッ化硫黄、メタン、 ェタン、プロノ ン、ブタン、ペンタン、シクロプロパン、シクロブタン、シクロペンタン、ェ チレン、プロピレン、プロバジェン、ブテン、アセチレン、プロピンのような低分子量炭 化水素類またはこれらのハロゲン化物、 C Fのような高分子ガスであるパーフルォロ Hereinafter, the present invention will be sequentially described according to the illustrated embodiments. The “microspheres (10) having acoustic properties” used in the present invention are hollow microspheres having a shell (nano bubbles = micro bubbles at the nano micron level or micro bubbles at the micro bubble = micro bubbles at the micro level). When it is administered to the body, a substance that becomes gaseous (gaseous) is enclosed at the temperature of the living body (around 37 ° C). Such substances (filling gas) include, for example, air, nitrogen, oxygen, carbon dioxide, hydrogen, an inert gas such as helium, argon, xenon, krypton, sulfur hexafluoride, sulfur difluoride, trifulf Sulfur fluoride such as trifluoromethyl sulfur pentafluoride, low molecular weight such as methane, ethane, pronone, butane, pentane, cyclopropane, cyclobutane, cyclobutane, cyclopentane, ethylene, propylene, propylene glycol, propylene oxide, propadiene, butene, acetylene and propyne Perfluoro, which is a polymer gas such as hydrocarbons or their halides, CF.
3 8  3 8
カーボン (なお、好ましい具体例の 1つは 1,1, 1,2,2,3,3, 3-ォクタフルォロプロパン)、ジ メチルエーテルのようなエーテル類、ケトン類、エステル類等が挙げられ、これらのう ちの 1種または 2種以上を組み合わせて用いることができる力 特に、六フッ化硫黄、 パーフルォロプロパン、パーフルォロブタン、パーフルォロペンタンが好適である。か 力る中空微小球体 (10)は、生体中での高い安定性を発揮する。  Carbon (in addition, 1, 1, 2, 2, 3, 3, 3-octafluoropropane), ethers such as dimethyl ether, ketones, esters, etc. And the powers that can be used in combination of one or more of these, particularly sulfur hexafluoride, perfluoropropane, perfluorobutane, perfluoropentane, etc. are preferred. . Strong hollow microspheres (10) exert high stability in living organisms.
[0024] また、中空微小球体の膜 (外殻 (11))を構成する材料としては、例えば、アルブミン のようなタンパク質、ポリカチオン性脂質、ホスファチジルコリン、ホスファチジルセリン 、ホスファチジルエタノールァミン、ホスファチダルエタノールァミンのようなリン脂質の ような各種の脂質、パルミチン酸、ステアリン酸のような高級脂肪酸、ガラクトースのよ うな糖類、コレステロール、シトステロールのようなステロール類、界面活性剤、天然ま たは合成分子等が挙げられ、これらのうちの 1種または 2種以上を組み合わせて用い ることがでさる。 Also, as a material constituting the hollow microsphere membrane (outer shell (11)), for example, a protein such as albumin, a polycationic lipid, phosphatidyl choline, phosphatidyl serine, phosphatidyl ethanol amine, phosphatidal Various lipids such as phospholipids such as ethanolamine, higher fatty acids such as palmitic acid and stearic acid, saccharides such as galactose, cholesterol, sterols such as cholesterol, sitosterol, surfactant, natural or synthetic Molecules, etc., and one or two or more of these may be used in combination It is possible to
[0025] 中空微小球体 (10)の平均粒径は、特に限定されず、ー般的には約10011111〜10 mであるが、最小直径は小さければ小さいほど望ましぐ実際には 0. 05〜10 /ζ πι程 度であるのが好ましい。毛細血管の内径が 7 m程度なので、 0. 05〜7 /ζ πι程度で あるのがより好ましい。  The average particle size of the hollow microspheres (10) is not particularly limited, and is generally about 10011111 to 10 m, but the smaller the minimum diameter is, the more desirable it is actually 0. 05. It is preferably about 10 to 10 / ζπι. Since the inner diameter of the capillary is about 7 m, it is more preferable that the inner diameter is about 0.55 to 7 / 5〜πζ.
[0026] 中空微小球体 (10)は、外殻 (11)だけで構成されてもよいし (図 9)、内部に外因性分 子 (13) (例えば薬剤)を含む水膜 (10a)が形成されていてもよいし (図 10)、中空微小球 体 (10)の殻 (11)内或いはその表面に外因性分子 (13)を含有 (図 11は含有の場合)或い は付着 (或いは吸着)させるようにしてもよいし、更にこの殻 (11)内に外因性分子 (13)を 含む水膜 (10a)を形成するようにしてもよい (図 12)。勿論、中空微小球体 (10)の中空空 間全体に充填するようにしてもよい。その他、外因性分子 (13)を球体内のガスに含ま せておいてもよい。外因性分子 (13)の種類としては、処置対象により適宜のもの、例 えば薬剤や遺伝子が採用される。  The hollow microspheres (10) may be composed of only the outer shell (11) (FIG. 9), or a water film (10a) containing an exogenous molecule (13) (for example, a drug) inside. May be formed (FIG. 10), or may contain an exogenous molecule (13) in or on the shell (11) of the hollow microsphere (10) (in the case of FIG. 11) or attached (FIG. 10) Alternatively, a water film (10a) containing an exogenous molecule (13) may be formed in the shell (11) (FIG. 12). Of course, the whole hollow space of the hollow microspheres (10) may be filled. In addition, exogenous molecules (13) may be contained in the gas in the sphere. As the type of exogenous molecule (13), appropriate ones such as drugs and genes are adopted depending on the treatment subject.
[0027] 中空微小球体 (10)は、音響性であるから超音波等の外力が加わることで振動し、更 には超音波の印加された振動数によっては共振して或いは超音波の強さ (音圧)によ つて押し潰されて破泡させられる。そして、破裂した場合には、中空微小球体 (10)の 破片を核として多数のキヤビテーシヨン気泡 (11a)が発生し、これにより周囲に衝撃圧 を発生させる (図 15)。そして、この衝撃圧でキヤビテーシヨン気泡 (11a)近傍の細胞 (例 えば皮膚 (20)や血管又は内臓)の細胞膜の透過性を変化させる。この透過変化を起 こした細胞膜からキヤビテーシヨン気泡 (11a)近傍に存在する外因性分子 (13)、例えば 薬剤や遺伝子 (核酸)が患部の細胞や血管の内部に浸透し、これが血管の場合には 外因性分子 (13)が全身を循環することになる。この中空微小球体 (10)や外因性分子( 13)は経皮の場合、後述するゲルシート (12)に塗着された液体媒体 (120)或いは皮膚( 20)に塗布されたクリーム (121)から供給され、皮下又は内臓の場合には、例えば注射 によって患部に供給される。  Since the hollow microspheres (10) are acoustic, they are vibrated by the application of an external force such as an ultrasonic wave, and furthermore, they are resonated or the intensity of the ultrasonic wave depending on the frequency to which the ultrasonic wave is applied. It is crushed and broken by (sound pressure). Then, in the case of rupture, a large number of cavity air bubbles (11a) are generated with the fragments of the hollow microspheres (10) as the core, thereby generating an impact pressure around (FIG. 15). Then, with this impact pressure, the permeability of the cell membrane of the cells (eg, skin (20) and blood vessels or visceral organs) in the vicinity of the cavity (11a) is changed. An exogenous molecule (13), for example, a drug or gene (nucleic acid) present in the vicinity of the cavity (11a) from the cell membrane causing the permeability change penetrates into the cells and blood vessels of the affected area. The exogenous molecule (13) will circulate throughout the body. The hollow microspheres (10) and the exogenous molecule (13) are, in the case of transdermal, from a liquid medium (120) applied to a gel sheet (12) described later or a cream (121) applied to the skin (20). It is supplied to the affected area, for example by injection, in the case of subcutaneous or visceral.
[0028] ゲルシート (12)は、外因性分子 (13)を皮膚 (20)力も体内へ透過させるために用いら れるもので、生体組織と音響インピーダンスが近似した粘性体であり、例えばシリコン で形成されていて、皮膚 (20)への貼着面 (12a)に無数の中空微小球体 (10)や外因性 分子 (13)を含む液体媒体 (120)の浸漬或いは塗着により付着される。中空微小球体 (1 0)や外因性分子 (13)は微細粒子であるから、ゲルシート (12)に付着したものの一部は 内部に入り込むことがあるし、ゲルシート (12)は柔らカ 、ものであるから予めゲルシー ト (12)内に必要中空微小球体 (10)や外因性分子 (13)を練り込んでおいてもよい。又、 図示していないが、ゲルシート (12)に孔を開け、その孔に外因性分子 (13)を充填する ようにしてもょ、。外因性分子 (13)が中空微小球体 (10)と別個に用意されて 、る場合 には前述同様浸漬或いは塗着により別個に付着される。 [0028] The gel sheet (12) is used to transmit the extrinsic molecule (13) to the body as well as the skin (20), and is a viscous body similar in acoustic impedance to living tissue, and is formed of, for example, silicon. In the past, innumerable hollow microspheres (10) or extrinsic substances on the adhering surface (12a) to the skin (20) The liquid medium (120) containing molecules (13) is attached by immersion or application. Because hollow microspheres (10) and extrinsic molecules (13) are fine particles, some of the substances attached to the gel sheet (12) may enter the inside, and the gel sheet (12) is soft, or For this reason, hollow microspheres (10) and exogenous molecules (13) may be previously incorporated into the gel sheet (12) in advance. Also, although not shown, the gel sheet (12) may be perforated and the pores may be filled with the exogenous molecule (13). The exogenous molecules (13) are prepared separately from the hollow microspheres (10) and, in the case as described above, are separately attached by immersion or deposition as described above.
[0029] 図 10〜12のように中空微小球体 (10)に外因性分子 (13)が含まれる場合にはゲルシ 一ト(12)の貼着面 (12a)に該中空微小球体 (10)を含む液体媒体 (120)の浸漬或いは塗 着により付着させる。外因性分子 (13)を含ませず、キヤビテーシヨン気泡 (11a)の衝撃 圧のみを利用したい場合 (例えば、キヤビテーシヨン気泡 (11a)の衝撃圧により、その 近傍の細胞にダメージを与えて死滅させる場合)には、中空微小球体 (10)のみをゲル シート (12)の貼着面 (12a)に付着させて使用する或いは患部に注射することになるし、 2以上の外因性分子 (13)を導入したい場合には、必要に応じて同種または異なる成 分の外因性分子 (13)を (特に皮膚 (20)に接する貼着面 (12a))に付着させる、又は皮下 ( 或いは内臓の所定位置)に注射することも出来る。これらの組み合わせは必要に応じ て適宜選択される。また。ゲルシート (12)に替えてクリーム (121)或いはジエルを使用 することも可能である。この場合、クリーム (121)或いはジエルに中空微小球体 (10)及 び Z又は外因性分子 (13)とが予め必要量練り込むことが好適である。  When the hollow microspheres (10) contain the exogenous molecule (13) as shown in FIGS. 10 to 12, the hollow microspheres (10) are attached to the adhesion surface (12a) of the gel sheet (12). Application by immersion or application of a liquid medium (120) containing When not using the exogenous molecule (13) and using only the impact pressure of the cavity air bubble (11a) (eg, when the impact pressure of the cavity air bubble (11a) damages and kills the cells in the vicinity) The hollow microspheres (10) alone are attached to the adhesive surface (12a) of the gel sheet (12) and used or injected into the affected area, and two or more exogenous molecules (13) are introduced. If necessary, attach an exogenous molecule (13) of the same species or different species (especially to the adhesive surface (12a) in contact with the skin (20)) as appropriate, or subcutaneously (or in a predetermined position in the viscera) Can also be injected. These combinations are appropriately selected as necessary. Also. It is also possible to use cream (121) or gel in place of the gel sheet (12). In this case, it is preferable to knead the hollow microspheres (10) and Z or the exogenous molecule (13) in a necessary amount in advance into the cream (121) or gel.
[0030] 本発明に係るプローブ (A)(即ち、複数の高次超音波 (P)を断続的に或いは位相差を 設けて発生させる装置)の基本型 (実施例 1)は図 1に示すようなもので、以下、本実施 例 1について説明する。実施例 1は、概略、円筒状のプローブ本体 (1)と、超音波発生 板 (2) (本実施例では圧電素子単体で構成されている。)とで構成されている。圧電セ ラミックス単体で構成された超音波発生板 (2)の表裏にそれぞれ設けられた電極 (3a)( 3b)に給電コード (4)(5)が接続されている。 [図の電極位置は概念的なもので、正確な 位置を表すものではない。 ]そして、超音波発生板 (2)の外端縁 (2G)がプローブ本体 (1 )の先端円筒部 (la)の内周面又は外端、即ち高周波発生板取付開口 (9)に例えば接 着により固着されている。なお、先端円筒部 (la)はネジにてプローブ握り部 (lb)に脱 着可能に螺着されている。なお、プローブ本体 (1)は高周波発生板取付開口 (9)さえあ ればよぐ筒状である必要はなぐ例えば板状のものでもよい。高周波発生板取付開 口 (9)の形状も特に限定されるものではな 、。 The basic type (example 1) of the probe (A) according to the present invention (ie, a device for generating a plurality of high-order ultrasonic waves (P) intermittently or with a phase difference) is shown in FIG. The first embodiment will be described below. The first embodiment is generally configured of a cylindrical probe main body (1) and an ultrasonic wave generation plate (2) (in the present embodiment, it is constituted by a single piezoelectric element). The feed cords (4) and (5) are connected to the electrodes (3a) and (3b) respectively provided on the front and back of the ultrasonic wave generation plate (2) composed of the piezoelectric ceramic alone. [The electrode positions in the figure are conceptual and do not represent accurate positions. Then, the outer edge (2G) of the ultrasonic wave generation plate (2) contacts, for example, the inner peripheral surface or outer end of the tip cylindrical portion (la) of the probe main body (1), ie, the high frequency generation plate mounting opening (9) It is fixed by wearing. The tip cylindrical portion (la) is screwed off to the probe grip (lb). It is screwed so it can be worn. The probe main body (1) need not be cylindrical as long as it has the high frequency generation plate mounting opening (9), but may be a plate, for example. The shape of the high frequency generation plate attachment opening (9) is not particularly limited, either.
[0031] 円筒状のプローブ (A)の特徴は、圧電セラミックス単体で構成された円板状の超音 波発生板 (2)の外端縁 (2G)全周 (場合によっては反対側に位置する円弧又は辺)を先 端円筒部 (la)の高周波発生板取付開口 (9)に接着により固定している点 [接着部位を ( K)で示す。 ]で、或るデューティ比のパルス電圧印加時に超音波発生板 (2) [=単体の 圧電セラミックス]が同心円状に且つ前記同心円に沿って波状に面振動 (高次振動) を起こし、超音波発生面 (2S)における面振動の各腹力も針状波形の超音波 (P)が多 数且つ断続的に発生する点である [図 l(b)(c)]。図 l(a')は超音波発生面 (2S)における 面振動を示す。 [0031] The characteristic of the cylindrical probe (A) is that the outer edge (2G) of the disk-like ultrasonic wave generating plate (2) made of a single piece of piezoelectric ceramic is located on the entire circumference (or opposite side in some cases) (A part of the arc or side) is fixed to the RF generator plate attachment opening (9) of the end cylindrical part (la) by adhesion [The adhesion site is shown by (K). ], When applying a pulse voltage of a certain duty ratio, the ultrasonic wave generation plate (2) [= single piezoelectric ceramic material] causes surface vibration (high-order vibration) in a wave form concentrically and along the concentric circle, ultrasonic wave Each abdominal force of surface vibration on the generation surface (2S) is also a point where a large number of ultrasonic waves (P) of needle-like waveform are generated intermittently [Fig. L (b) (c)]. Figure l (a ') shows surface vibration on the ultrasonic wave generation surface (2S).
[0032] 超音波 (P)の振動数は、超音波発生板 (2)の固有振動数 fと同じで面振動の各腹から 針状波形の超音波 (P)が多数発生する。主たる周波数は前述のように超音波発生板 ( 2)の固有振動数 fと同じであるが、 2f, 3f, 41·· ··.の高調波成分も含む (即ち、固有振動 数 fに高調波成分 2f, 3f, 41"· ··.が重畳される。;)。節直径の数、節円の数は、円板状の 超音波発生板 (2)の周囲固定条件 [=接着部位 (K)に於ける接着に状態]で決定され る。図 1(c)は円板状の超音波発生板 (2)から針状波形の超音波 (P)が多数且つ断続的 に発している状態を示す想像図である。上記のプローブ (A)は円筒状の場合を示した 力 勿論、後に示す角筒型、或いは図示しないが楕円面型その他最適形状とするこ とも可能である。  The frequency of the ultrasonic wave (P) is the same as the natural frequency f of the ultrasonic wave generation plate (2), and a large number of ultrasonic waves (P) having a needle waveform are generated from each antinode of the surface vibration. The main frequency is the same as the natural frequency f of the ultrasonic wave generation plate (2) as described above, but also includes harmonic components of 2f, 3f, 41 ···. (Ie, the natural frequency f is a harmonic Wave components 2f, 3f, 41 "· · · are superimposed.;). The number of nodal diameters, the number of nodal circles, the peripheral fixing condition of the disc-like ultrasonic wave generation plate (2) [= bonding site Figure 1 (c) shows that the disc-shaped ultrasonic wave generation plate (2) emits a large number of pulse wave ultrasonic waves (P) intermittently. The above-mentioned probe (A) has a cylindrical shape. Of course, the probe (A) may be a square tube type shown later, or an elliptical surface type (not shown) or any other suitable shape.
[0033] 図 2は図 1の他の例 (実施例 2)で、超音波発生板 (2)が圧電セラミックス薄板 (2a)と薄 板 (2M)とで形成されている場合で、薄板 (2M)は金属又は樹脂で形成されている。金 属板の場合はアルミニウムが好ましい。その理由は、(a)音響インピーダンスが水の音 響インピーダンスに近いこと、(b)軽いことの 2点で、アルマイト処理をすることで水によ る腐食を防止できる力 である。圧電セラミックス薄板 (2a)は薄板 (2M)に張り合わされ ており、圧電セラミックス薄板 (2a)の表裏或 、は圧電セラミックス薄板 (2a)と薄板 (2M) にそれぞれ設けられた電極 (3a)(3b)に給電コード (4)(5)が接続されている。そして、薄 板 (2M)及び圧電セラミックス薄板 (2a)の外周がプローブ本体 (1)の高周波発生板取付 開口 (9)に例えば接着により固着されている。それ以外の点は図 1と同じである。 FIG. 2 shows another example of FIG. 1 (Example 2) in which the ultrasonic wave generation plate (2) is formed of a piezoelectric ceramic thin plate (2a) and a thin plate (2M) 2M) is formed of metal or resin. Aluminum is preferred for metal plates. The reason is that (a) the acoustic impedance is close to the acoustic impedance of water, and (b) it is light, and the ability to prevent corrosion by water by using an anodizing treatment. The piezoelectric ceramic thin plate (2a) is bonded to the thin plate (2M), and the front and back of the piezoelectric ceramic thin plate (2a) is an electrode (3a) (3b) provided on the piezoelectric ceramic thin plate (2a) and the thin plate (2M) respectively. Power supply cords (4) and (5) are connected to). And, the outer circumference of the thin plate (2M) and the piezoelectric ceramic thin plate (2a) For example, it is fixed to the opening (9) by adhesion. The other points are the same as in Figure 1.
[0034] 実施例 3 [図 4及び図 5(a)とその変形である図 5(b)参照]は超音波発生面 (2S)が四角 (正方形又は長方形で、以下、一方の辺に対して他方の辺が僅かに長い長方形の場 合を代表例とする。)のプローブ (A)で、上記円板の固定条件で制限された節の数を 変更 (更に増加)するために、互いに独立した圧電セラミックス薄片 (2al)(2a2)' "を複 数使用している。即ち、外端縁 (2G)の全周或いはその反対側の 2辺が接着 [接着層を (K)で示す。 ]された薄板 (2M)に長方形の圧電セラミックス薄片 (2al)(2a2) を並列して 貼り付けた (本実施例では 8枚である。 1枚ものについてはその変形例として後述する 。;)。実施例 3 [図 5(a)]の場合では、短冊状の圧電セラミックス薄片 (2al)(2a2)…は互い に離間しており、且つ、その短辺 (2G)も高周波発生板取付開口 (9)力 離間しており、 当該部位に間隙 (L)が形成されている。一方、その変形圆 5(b)]は圧電セラミックス薄 片 (2al)(2a2)…の短辺 (2G)は高周波発生板取付開口 (9)に接着されている。接着層を (K)で示す。 Example 3 [see FIG. 4 and FIG. 5 (a) and its modification, FIG. 5 (b)], the ultrasonic wave generation surface (2S) is a square (square or rectangle), and for one side, hereinafter. In the case where the other side is a rectangle slightly longer than the other side is a representative example) probe (A), in order to change (further increase) the number of nodes restricted by the fixed condition of the above-mentioned disc, A plurality of independent piezoelectric ceramic flakes (2al) (2a2) ′ ′ ′ is used, that is, the entire periphery of the outer edge (2G) or the two opposite sides are adhesive [the adhesive layer is indicated by (K) The rectangular piezoelectric ceramic flakes (2al) and (2a2) are attached in parallel to each other on the thin plate (2M) (8 in this embodiment, one of which will be described later as a modified example thereof; Example 3 In the case of [Fig. 5 (a)], the strip-like piezoelectric ceramic flakes (2al) (2a2) ... are separated from each other, and their short sides (2G) are also attached to the high frequency generating plate Opening (9) Force Separation A gap (L) is formed at the relevant part, while the deformation wedge 5 (b)] is the piezoelectric ceramic thin piece (2al) (2a2) ... the short side (2G) is a high frequency generating plate mounting opening Bonded to (9) The adhesive layer is indicated by (K).
[0035] いずれの場合も超音波発生状況は若干異なるが圧電セラミックス薄片 (2al)(2a2)- の長辺側力も見ると各圧電セラミックス薄片 (2al)(2a2)' · ·には複数の腹と節が形成さ れ、複数の針状超音波 (P)を形成する。一方、圧電セラミックス薄片 (2al)(2a2)" 'の短 辺 (2G)側から見ると各圧電セラミックス薄片 (2al)(2a2) はそれぞれ 1の針状超音波し か形成されないので、圧電セラミックス薄片 (2al)(2a2)…の本数に応じた針状超音波( P)が並んで形成されることになる。図の実施例では、いずれも複数 (この場合は 8枚) の圧電セラミックス薄片 (2al)(2a2)' · ·のそれぞれの電極 (3al)(3a2)' · '(3b)から給電線 (4 1X42)· -(5)が延びており、各給電線 (41)(42)· · ·(5)は一本に纏められており、超音波発 生用入力信号は同時に或いは位相差を以つて間欠的或いは連続的に入力されるよ うになつている。このようにすることで、後述のように各圧電セラミックス薄片 (2al)(2a2) …は入力信号と共に同時に或いは位相差を以つて間欠的或いは連続的に複数の針 状波形の超音波 (P)を対象物の接触面 [例えば皮膚]である超音波発生面 (2s)のほぼ 全面に発生させることになる。このように圧電セラミックス (2a)を、(2al)(2a2)" 'というよう に分割すると圧電セラミックス薄片 (2al)(2a2)" 'の数だけ超音波の数を倍加させ、連 続的又は間欠的或いは位相差を設けて発生させることができるという利点がある。 [0036] 実施例 3の変形例である圧電セラミックス薄片 (2a)力 Si枚ものの場合は、その外端縁 ( 2G)の全周が接着層 (K)によって固着されている例で、この場合は前述した図 2と同じ である。 [0035] In each case, the ultrasonic wave generation status is slightly different, but the piezoelectric ceramic flakes (2al) (2 a 2)-also show the long side force, and each piezoelectric ceramic flakes (2 al) (2 a 2) '· · · The abdomen and nodes are formed to form multiple needle ultrasound waves (P). On the other hand, when viewed from the short side (2G) side of the piezoelectric ceramic flakes (2al) (2 a 2) "', each piezoelectric ceramic flakes (2 al) (2 a 2) is formed with only one needle-like ultrasonic wave. Needle-like ultrasonic waves (P) are formed side by side according to the number of piezoelectric ceramic flakes (2al), (2a2), etc. In the embodiment of the figure, a plurality of (in this case, eight) Piezoelectric ceramic thin film (2al) (2a2) '· · · Each of the electrodes (3al) (3a2)' · · · '(3b) feeder (4 1 × 42) ·-(5) extends, each feeder (41 ) (42) · · · (5) is integrated into one, and the input signal for ultrasonic wave generation is input intermittently or continuously simultaneously or with phase difference. By doing this, as described later, each piezoelectric ceramic thin film (2al) (2a2) ... is simultaneously or simultaneously with the input signal and intermittently or continuously with a phase difference between the ultrasonic waves (P) of a plurality of needle waveforms. The piezoelectric ceramic (2a) is thus divided into (2al) (2a2) ′ ′ and so on, almost on the entire surface of the ultrasonic wave generating surface (2s), which is the contact surface [eg, skin] of an elephant. As a result, the number of ultrasonic waves is doubled by the number of piezoelectric ceramic flakes (2al) ( 2a 2) ′ ′, and there is an advantage that generation can be performed continuously or intermittently or by providing a phase difference. Piezoelectric ceramic thin plate (2a) which is a modification of the third embodiment In the case of a sheet of Si, an example in which the entire periphery of the outer edge (2G) is fixed by the adhesive layer (K), in this case Is the same as in FIG. 2 described above.
[0037] 図 6は前記プローブ (A)の超音波発生板 (2)又は薄板 (2M)の表面に網状の絶縁部 材 (2e)を貼着した例で、このようにすることにより、絶縁部材 (2e)の格子内の領域 (2z) がそれぞれ振動し、格子内の領域 (2z)ごとに針状波形の超音波 (P)が発生することに なる。それ以外の点は上述した実施例 1と同様である。  FIG. 6 shows an example in which a reticulated insulation member (2e) is attached to the surface of the ultrasonic wave generation plate (2) or thin plate (2M) of the probe (A). The regions (2z) in the lattice of the member (2e) vibrate respectively, and a needle-shaped ultrasonic wave (P) is generated for each region (2z) in the lattice. The other points are the same as those of the first embodiment described above.
[0038] なお、図示しないが、前記円筒プローブ (A)でも圧電セラミックス (2a)を分割して圧電 セラミックス薄片の数だけ超音波を発生させることもできる。分割の方法は限定しない がー例を示すと、ミカンを輪切りにしたように、中心力 放射状に略二等辺三角形状 の圧電セラミックス薄片を配置するようにしてもよ!、。  Although not shown, the piezoelectric ceramic (2a) can also be divided by the cylindrical probe (A) to generate ultrasonic waves as many as the number of thin pieces of piezoelectric ceramic. There is no limitation on the method of division, but as an example, it is also possible to arrange piezoelectric ceramic flakes of approximately isosceles triangle shape with a central force radially, as the oranges are cut in a circle!
[0039] 次に、超音波発生板 (2)への電圧の印加の方法であるが図 16に示すように、 1サイク ル (T)に対して (t)時間だけパルス電圧 [或いは交流電圧]を印加する。この時、強度( パルス高さ)やデューティ比 (t/T)、印加サイクル数 (X)を変えることで、より広範囲な超 音波発生条件の設定が可能になり更なる効果がある。これらは対象によって適宜決 定されること〖こなる。  Next, a method of applying a voltage to the ultrasonic wave generation plate (2) is as shown in FIG. 16. For one cycle (T), pulse voltage [or AC voltage for only time t] ] Is applied. At this time, by changing the intensity (pulse height), the duty ratio (t / T), and the number of applied cycles (X), a wider range of ultrasonic wave generation conditions can be set, which has further effects. It is appropriate that these be decided by the subject.
[0040] また、圧電セラミックス単体で構成された円板状の超音波発生板 (2)或いは単一の 圧電セラミックス薄片 (2a)を使用する場合と異なり、複数の圧電セラミックス薄片 (2al)( 2a2)…を使用する場合には、入力信号の入力タイミングを変えて位相時間を与えるこ とができ、発生場所を違えて超音波発生板 (2)はそれぞれの位相差に従って超音波( P)を発生させることになり、これら位相差を有する複数の超音波 (P)が互いに協働して 中空微小球体 (10)を効果的に破泡することができるようになる。なお、超音波 (P)の周 波数は、印加される皮膚 (20)或いは内臓の組織に影響を与えずし力も中空微小球体 (10)を破泡させるため通常 1MHz程度である。勿論、上記条件を満足する限り、複数 の圧電セラミックス薄片 (2al)(2a2)…を使用する場合には、各圧電セラミックス薄片 (2a 1)(2 )· ··の固有振動数を違えることは可能であるし、入力信号の位相差を変えること で、更により複雑な超音波を発生することが可能である。又、音圧を変更するには印 加電圧を変えればよい。 [0041] 図 7は第 4実施例で、中央の金属板 (6')の周囲に円板状の薄板 (2M)が設けられ、中 央の金属板 (6')に従来の圧電セラミックス (2')がはりつけてあり、その周囲の薄板 (2M) に複数の圧電セラミックス (2alX2a2)' ' '(2an)が設けられており、その外端部 (2G)の全 部又は一部が接着層 (K)にて隔壁 (17)及び開口部 (9)に固着されている例である。中 央の圧電セラミックス薄板 (2')からはガウシアン分布波形の超音波 (PG)が形成され、 その周囲の圧電セラミックス (2al)(2a2)"'(2an)が針状波形の超音波 (P)を形成する。 Also, unlike the case of using a disk-shaped ultrasonic wave generation plate (2) made of a single piezoelectric ceramic alone or a single piezoelectric ceramic thin plate (2a), a plurality of piezoelectric ceramic thin plates (2al) (2a2) When ...) is used, the input timing of the input signal can be changed to give a phase time, and the ultrasonic wave generation plate (2) changes the ultrasonic wave (P) according to the phase difference between different occurrence locations. The plurality of ultrasonic waves (P) having these phase differences cooperate with one another to effectively break the hollow microspheres (10). The frequency of the ultrasonic wave (P) affects the tissue of the skin (20) or the viscera to which it is applied, and the force is usually about 1 MHz because the hollow microspheres (10) are broken. Of course, as long as the above conditions are satisfied, when using a plurality of piezoelectric ceramic flakes (2al) (2a2) ..., it is possible to make the natural frequency of each piezoelectric ceramic flake (2a 1) (2) · · · · · · · · · · · · · · It is possible to generate even more complex ultrasound waves by changing the phase difference of the input signal. To change the sound pressure, change the applied voltage. FIG. 7 shows the fourth embodiment, in which a disc-like thin plate (2M) is provided around a central metal plate (6 ′), and a conventional piezoelectric ceramic (not shown) is formed on the central metal plate (6 ′). 2 ') is pasted, and a plurality of piezoelectric ceramics (2 a l x 2 a 2)''(2 an ) are provided on the thin plate (2 M) around it, and all or one part of its outer end (2 G) In this example, the part is fixed to the partition wall (17) and the opening (9) by the adhesive layer (K). The ultrasonic wave (PG) of the Gaussian distribution waveform is formed from the central piezoelectric ceramic thin plate (2 '), and the piezoelectric ceramics (2 a1 ) (2a2) ′ ′ (2 an ) around it have a needle-like waveform. Form a sound wave (P).
[0042] この場合、プローブ (A)を移動させつつガウシアン分布波形の超音波 (PG)によって、 患部のような特定部位を探査特定し、患部が見つかると続!、て針状波形超音波 (P)に よって当該特定部位に集中している中空微小球体を破裂させ、その衝撃圧で、その 周囲の外因性分子を周辺細胞あるいは周辺の血管に効率よく打ち込む。この場合、 ガウシアン分布波形の超音波 (PG)を中心にその周囲に針状波形超音波 (P)を生成さ せるようにしておけば、単に超音波 (PG)力も針状波形超音波 (P)に切り替えるだけで 探索した患部をその時点で叩く事が出来、治療作業をより効率的に行うことができる ようになる。  In this case, while moving the probe (A), a specific region such as the affected area is searched and specified by ultrasonic waves (PG) of Gaussian distribution waveform, and if the affected area is found, the needle waveform ultrasonic wave ( P) rupture the hollow microspheres concentrated at the specific site, and the impact pressure efficiently strikes the surrounding exogenous molecules into surrounding cells or surrounding blood vessels. In this case, if needle waveform ultrasound (P) is generated around ultrasonic (PG) of the Gaussian distribution waveform, then the ultrasound (PG) force is simply needle waveform ultrasound (P By simply switching to), the affected area can be struck at that time, and treatment can be performed more efficiently.
[0043] なお、実施例 4は、前述のとおりの構造が図 7に図示されているが、実施例 4の構造 は当然これに限られず、実施例 1〜3に示された構造すベて適用することができる。 例えば、図 7では周囲の圧電セラミック板 (2al)〜(2an)は円形でその外周縁 (2G)の一 部が隔壁 (17)や開口部 (9)の内周面 (図示していないが端面でも可)に固着されている 力 圧電セラミック板 (2al)〜(2an)を扇形に形成し、その外周縁 (2G)全体を固着するよ うにすることもできるし、薄板 (2MG)を排除して直接圧電セラミック板 (2al)〜(2an)を実 施例 1と同様に直接固着するようにしてもよい。圧電セラミック板はいかなる形状にも 成形できるため、図示していないが、リング状に形成し、前記同様リング状に形成され た薄板 (2MG)と隔壁 (17)や開口部 (9)の内周面に固着してもよいし、リング状の単体圧 電セラミック板を薄板 (2MG)なしで直接取り付けてもよい。  In Example 4, the structure as described above is illustrated in FIG. 7, but the structure of Example 4 is of course not limited to this, and the structure shown in Examples 1 to 3 may be obtained. It can apply. For example, in FIG. 7, the peripheral piezoelectric ceramic plates (2al) to (2an) are circular, and a part of the outer peripheral edge (2G) is the inner peripheral surface of the partition wall (17) or the opening (9) The piezoelectric ceramic plates (2al) to (2an) fixed to the end face may be formed into a fan shape, and the entire outer peripheral edge (2G) may be fixed, or the thin plate (2MG) is excluded. Then, the piezoelectric ceramic plates (2al) to (2an) may be directly fixed in the same manner as in Example 1. Since the piezoelectric ceramic plate can be formed into any shape, it is not shown, but it is formed in a ring shape, and the thin plate (2MG) and the partition wall (17) and the inner periphery of the opening (9) are formed in the same ring shape. It may be fixed to a surface, or a ring-shaped unitary piezoelectric ceramic plate may be attached directly without a thin plate (2MG).
[0044] 次に、超音波 (P)の破泡作用につ 、て説明する。超音波 (P)は針状のものでもガウシ アン波形のものでも図 14(a)(b)に示すように中心部分の音圧が高く、周辺に行くに従 つて次第に音圧が下がる。  [0044] Next, the foam-breaking action of ultrasound (P) will be described. As shown in Figs. 14 (a) and 14 (b), the sound pressure at the central part of the ultrasonic wave (P) is high, and the sound pressure gradually decreases as it goes to the periphery.
[0045] 換言すれば、圧力 (音圧)は中央力も外に向力つている。一方、中空微小球体 (10)は 超音波発生面 (2s)下のゲルシート (12)に塗着された、外因性分子 (13)を含む液状媒 体 (120)或いはクリーム (121)内に無数に存在し、超微粒のため液状媒体 (120)或いは クリーム (121)内を泳動している。 In other words, the pressure (sound pressure) is also directed outward at the central force. On the other hand, hollow microspheres (10) It exists innumerably in the liquid medium (120) or cream (121) containing the exogenous molecule (13) applied to the gel sheet (12) under the ultrasonic wave generation surface (2s), and it is liquid because of ultrafine particles. It is moving in the medium (120) or cream (121).
[0046] 図 14(b)に示すように従来のプローブ (B)にてゲルシート (12)或いはクリーム (121)にガ ゥシアン分布波形の超音波 (PG)を印加すると、前述のように超音波 (PG)の音圧は中 央部分力 周囲に向かって漸減する。中空微小球体の超音波による破泡作用につ V、ては明確ではな 、が以下のように推測される。  As shown in FIG. 14 (b), when ultrasonic waves (PG) of the Gaussian distribution waveform are applied to the gel sheet (12) or the cream (121) with the conventional probe (B), the ultrasonic waves are generated as described above. The sound pressure of (PG) gradually decreases toward the central part force. It is estimated as follows that V, and not clearly, of the bubble-breaking action of hollow microspheres by ultrasonic wave.
[0047] 従来の超音波プローブ (B)は、前述のように得られる超音波 (PG)の圧力分布がなだ らかな山形 (ガウシアン分布)になるように、に金属板 (6)が全面接着している。この場 合は、中央部分 (YG)が最大で周辺に行くほど低下する。そして、この超音波 (PG)は 或るデューティ比で印加されて超音波発生板 (2)から間欠的に出力されている。  [0047] In the conventional ultrasonic probe (B), the metal plate (6) has an entire surface so that the pressure distribution of the ultrasonic wave (PG) obtained as described above has a clear mountain shape (Gaussian distribution). I'm glued. In this case, the central part (YG) is the largest and the lower it goes to the periphery. Then, this ultrasonic wave (PG) is applied at a certain duty ratio and intermittently outputted from the ultrasonic wave generation plate (2).
[0048] 一方、無数の中空微小球体 (10)は液状媒体 (120)等内を泳動している。従来のガウ シアン分布波形の超音波 (PG)が出力されると、この超音波 (PG)の中央部分 (YG)に位 置していた中空微小球体 (10)はその強力な音圧によって破裂し、前述のようにその 周囲の外因性分子 (13)を周辺組織に打ち込むことになる。し力しながら、超音波 (PG) の中央部分 (YG)の近傍に 、る中空微小球体 (10)や超音波 (PG)に近づこうとして 、る 中空微小球体 (10)は中央部分 (YG)力 周辺方向に漸減する圧力によって中央部分 ( YG)力も遠ざけられる方向に押し出される。従って、従来のガウシアン分布波形の超 音波 (PG)の場合には、超音波 (PG)が出力されたとき、たまたま中央部分 (YG)の範囲 内に存在する中空微小球体 (10)のみが破裂するのであって破泡効率が悪 、。  On the other hand, innumerable hollow microspheres (10) migrate in the liquid medium (120) and the like. When ultrasound (PG) of the conventional Gaussian distribution waveform is output, the hollow microspheres (10) located in the central portion (YG) of the ultrasound (PG) are ruptured by the strong sound pressure. And, as described above, the surrounding exogenous molecules (13) will be driven into surrounding tissues. In the vicinity of the central part (YG) of the ultrasonic wave (PG), the hollow microsphere (10) of the ultrasonic wave (PG) is in the central part (YG). ) Force The central part (YG) force is also pushed away by the decreasing pressure in the peripheral direction. Therefore, in the case of the ultrasonic (PG) of the conventional Gaussian distribution waveform, when the ultrasonic (PG) is output, only the hollow microspheres (10) which happen to be in the range of the central portion (YG) burst It is bad and the bubble breaking efficiency is bad.
[0049] これに対して本発明プローブ (A)は、超音波発生板 (2)にパルス電圧を印加すると超 音波発生板 (2)は面振動を起こすが、面振動の節、直径の数、節円の数は、超音波 発生板 (2) [圧電素子]の半径、板厚、密度、曲げ合成、固有角振動数で決定され、発 生する超音波は高次振動モードの腹で発生し、これらが合成 +12+13 +〜+&1+1" n)されてプローブ (A)の超音波発生面 (2s)から出力される。この超音波 (P)には高調波 成分が含まれ且つ互いに並列した針状を呈することになる(図 8の(a)〜 (c)参照)。 そして、そのレベルは場合によっては従来例と同じエネルギを加えた場合、遥かに高 いピーク値を示す事がある。なお、図 8 (d)は、従来の平面超音波 (ガウシアン分布波 形)である。 On the other hand, in the probe (A) of the present invention, when a pulse voltage is applied to the ultrasonic wave generation plate (2), the ultrasonic wave generation plate (2) causes surface vibration, but the number of nodes of surface vibration and diameter The number of nodal circles is determined by the radius of the ultrasonic wave generation plate (2) [piezoelectric element], plate thickness, density, bending synthesis, natural angular frequency, and the generated ultrasonic waves are antinodes of higher order vibration modes. These components are synthesized +12 + 13 + to + & 1 + 1 n and output from the ultrasonic wave generation surface (2s) of the probe (A). The harmonic component is generated in this ultrasonic wave (P). (See Fig. 8 (a) to (c)) and the level may be a much higher peak if the same energy as in the prior art is applied in some cases. Note that Fig. 8 (d) shows the conventional planar ultrasonic wave (Gaussian distributed wave). Form).
[0050] 更に本発明プローブ (A)では、複数 (換言すれば、 2以上)の超音波 (P)が超音波発 生面 (2S)力も発生しているので、一方の超音波 (P)の中央部分 (Y)の周辺に存在し、破 泡せずに当該中央部分 (Y)力 押し出された中空微小球体 (10)はその勢いで隣接し て生成されている他の超音波 (P)内に押し込まれ、その超音波 (P)の中央部分 (Y)で破 泡されることになる(図 13および図 14 (a)参照)。  Furthermore, in the probe (A) of the present invention, a plurality of (in other words, two or more) ultrasonic waves (P) generate an ultrasonic wave generation surface (2S) force, so one ultrasonic wave (P) is generated. The hollow microspheres (10), which are located around the central part (Y) of the core and force-pushed out of the central part (Y) without bursting, are the other ultrasonic waves (P ) And it is broken at the central part (Y) of its ultrasonic wave (P) (see Fig. 13 and Fig. 14 (a)).
[0051] また、超音波 (P)が針状である場合、同じ入力エネルギに対する従来のガウシアン 分布波形の超音波 (PG)のピーク値に比べて針状超音波 (P)のピーク値 (換言すれば、 音圧)は高ぐ超音波 (P)内に侵入した中空微小球体 (10)を破泡する確率がより高くな ると考えられる。加えて、本発明の超音波 (P)は複数生成させることができるので、中 空微小球体 (10)や外因性分子 (13)を無数に含有する液状媒体 (120)を広い範囲で攪 拌することができ、中空微小球体 (10)の泳動作用をより活発にして破泡確率を高める ことができると考えられる(図 14 (a)参照)。  In addition, when the ultrasonic wave (P) is needle-like, the peak value of the needle-like ultrasonic wave (P) (compared to the peak value of the ultrasonic wave (PG) of the conventional Gaussian distribution waveform for the same input energy If so, the sound pressure is considered to have a higher probability of breaking the hollow microspheres (10) that have penetrated into the high ultrasonic waves (P). In addition, since a plurality of ultrasonic waves (P) of the present invention can be generated, the liquid medium (120) containing an infinite number of hollow microspheres (10) and an infinite number of exogenous molecules (13) is stirred in a wide range. It can be considered that the migration of hollow microspheres (10) can be made more active to increase the breakage probability (see FIG. 14 (a)).
[0052] 更に、超音波発生源が複数の圧電セラミック素子 (2al) (2an)で構成され、それぞ れが位相をもってパルス電圧印加されて ヽる場合には、一方の超音波 (P)から押し出 されてその周辺に中空微小球体 (10)が散らばり、該周辺部の中空微小球体 (10)の密 度が上昇した時点でその周辺部に位相差をもって他の超音波 (P)が生成されると当 然高密度でその周辺部の中空微小球体 (10)の破泡が行われるので、前述の攪拌効 果が更に増強されると考えられる。 [0052] Furthermore, ultrasonic transducer plurality of piezoelectric ceramic elements (2al) consists of (2a n), their respective is pulsed voltage is applied with a phase if Ru, one ultrasound (P) When the density of the hollow microspheres (10) in the periphery increases and the density of the hollow microspheres (10) in the periphery increases, another ultrasonic wave (P) is generated with a phase difference in the periphery. It is considered that the above-mentioned stirring effect is further enhanced since the bursting of the hollow microspheres (10) in the peripheral part is naturally performed at high density when produced.
[0053] 次に、本発明プローブ (A)の中空微小球体 (10)による経皮導入効果実証用の図面 に代わる写真 (図 17)で、「コントロール (Control)写真」は中空微小球体 (10)を使用せ ず、本発明プローブ (A)で外因性分子 (13)の経皮導入を図った写真であり、「NB+U Sjは中空微小球体 (10)による経皮導入効果実証写真である。実証方法は次の通り である。孔を明けたゲルシート (12)を皮膚に貼着し、「コントロール」ではこの孔に中空 微小球体 (10)なしで外因性分子 (13)を担持した液体媒体 (120)を、「NB+US」では 中空微小球体 (10)と外因性分子 (13)を担持した液体媒体 (120)を充填し、この充填部 分を図 1の本発明プローブ (A)にて高周波 (P)にて印加した結果である。「コントロール 」と「NB + US」とを比較すると分かるように、「NB + US」の方が蛍光分子 (TEXAS-R ED =外因性分子)で染色された部分が多ぐ中空微小球体 (10)の外因性分子導入 効果が明らかであることが分かる。 Next, in the photograph instead of the drawing for demonstrating the percutaneous introduction effect by the hollow microspheres (10) of the probe (A) of the present invention (FIG. 17), the “Control (photograph)” shows the hollow microspheres (10). B) without using the probe of the present invention (A) for percutaneous introduction of the exogenous molecule (13), and “NB + U Sj is a photograph showing the effect of percutaneous introduction by hollow microspheres (10) The demonstration method is as follows: The perforated gel sheet (12) was attached to the skin, and in the “control”, the exogenous molecule (13) was carried in this hole without hollow microspheres (10). The liquid medium (120) is filled with the liquid medium (120) carrying the hollow microspheres (10) and the exogenous molecule (13) in "NB + US", and this filling portion is the probe of the present invention shown in FIG. It is the result of applying at high frequency (P) in A). As can be seen by comparing “control” and “NB + US”, “NB + US” is a fluorescent molecule (TEXAS-R It can be seen that the exogenous molecule introduction effect of the hollow microspheres (10) having many portions stained with ED (extrinsic molecule) is clear.
[0054] なお、中空微小球体 (10)と外因性分子 (13)とを担持した液体媒体 (120)の使用方法 は同液体媒体 (120)をゲルシート (12)の皮膚への貼着面 (12a)に付着させ、このゲルシ 一ト(12)を皮膚表面 (20)に貼着し、この状態でパルス電圧を印加して超音波を発生さ せるようにしてもゲルシート (12)の性質上同様の効果が得られるものと考えられる。ま た、上述の関係からクリーム (121)或いは図示しないがジエルのようなものに中空微小 球体 (10)や外因性分子 (13)(外因性分子 (13)担持中空微小球体 (10)も含む。)を分散 · 含有させてもよい。 The method of using the liquid medium (120) carrying the hollow microspheres (10) and the extrinsic molecule (13) is the adhesion surface of the liquid medium (120) to the skin of the gel sheet (12). 12a), and this gel sheet (12) is adhered to the skin surface (20), and even if pulse voltage is applied in this state to generate ultrasonic waves, the nature of the gel sheet (12) It is believed that similar effects can be obtained. Also, because of the above-mentioned relationship, the cream (121) or the like (not shown) such as a gel includes hollow microspheres (10) and exogenous molecules (13) (exogenous molecules (13) carrying hollow microspheres (10) ) May be included.
[0055] 図 18は図 17と異なり、経皮的でなぐマウスの骨格筋にルシフェラーゼプラスミドを 注射して外因性分子を導入し、外因性分子注入部位に超音波を印加し、 4日間経過 した後のデータで、試料であるマウスおよびこれに印加した入力パルス数 (横軸)と、 遺伝子発現の値 (導入外因性分子の発現量) (縦軸)との関係である。なお、「R」およ び「L」は、試料であるマウスの左足か右足かを示す符号である。パルス数 (Pulse)は 1 0、 100、 1000、 2、 20、 200、 50、 500であり、デューティ比は上段の 10%、 20%、 50%で 示す。本発明プローブは、マウス No.(Mouse No.)l〜13であり、従来プローブは、マウ ス No.(Mouse No.)14〜20である。  [0055] FIG. 18 differs from FIG. 17 in that a luciferase plasmid was injected into the skeletal muscle of a non-transdermal mouse to introduce an exogenous molecule, and ultrasound was applied to the exogenous molecular injection site, and 4 days elapsed. The later data show the relationship between the sample mouse and the number of input pulses applied to it (horizontal axis) and the value of gene expression (expression amount of introduced exogenous molecule) (vertical axis). Note that "R" and "L" are codes indicating whether the sample is the left foot or the right foot of the mouse. The number of pulses (Pulse) is 10, 100, 1000, 2, 20, 200, 50, 500, and the duty ratio is shown by 10%, 20%, 50% in the upper row. The probes of the present invention are mouse Nos. (Mouse No.) 1 to 13, and the conventional probes are mouse Nos. (Mouse No.) 14 to 20.
[0056] 図 18によれば、図 1に示す本発明プローブでは全体的に傾向として従来プローブ の外因性分子導入効果を若干上回っており、マウス No.11でデューティ比 20%— 200 パルス、マウス No.12でデューティ比 50%— 50パルスの場合、高い外因性分子導入 効果を示している。外因性分子導入効果にバラツキがあるのは個体差や照射にとも なう実験手法のバラツキによるものと考えられる。  According to FIG. 18, according to the probe of the present invention shown in FIG. 1, the tendency of the probe of the present invention as a whole generally slightly exceeds the exogenous molecule introduction effect of the conventional probe, and the mouse No. 11 has a duty ratio of 20% to 200 pulses, mouse In the case of No. 12 with a duty ratio of 50% -50 pulses, a high exogenous molecule introduction effect is shown. The variation in the extrinsic molecule introduction effect is considered to be due to the variation in the experimental method due to individual differences and irradiation.
[0057] 図 19は、図 4、図 5(a)に示す圧電セラミック素子 (2al)(2ab)" '(2a8)が 8本のタイプの 本発明プローブと従来プローブとの比較で、外因性分子としてルシフェラーゼプラス ミドを使用した。細胞は EMT6マウス乳がん細胞および C26マウス結腸癌細胞を用い た。「特許」と記されて 、るデータは本発明プローブであり、「平面」或いは「市販」と記 されているデータは従来プローブである。横軸で「Control(=0,20,50,80)」と記載され ているのは [デューティ比 (%)]で、左の図の縦軸は遺伝子発現強さ (外因性分子の発 現効果 (1MHz))を示し、右の図の縦軸は細胞損傷率 (1MHz)を示す。本発明プロ一 ブのパルス電圧は 、ずれの圧電セラミック素子 (2al)(2ab)' · '(2a8)にも同じ周波数のパ ルス電圧を同時に印加した。図 4等に示す本発明プローブには、各圧電セラミック素 子 (2al)(2a2)' · '(2a8)の 、ずれにも複数の針状超音波 (P)が発生するので、全針状超 音波 (P)の発生数は一つの圧電セラミック素子の超音波発生数 X圧電セラミックス素 子数となり、図 4等に示す本発明プローブの針状超音波 (P)の数は図 1の場合に比べ て大幅且つ安定的に増加し、全針状超音波 (P)の発生数の増大が外因性分子導入 効果の大幅且つ安定的に寄与していると推測される。なお、両プローブ (A)(B)に印加 されるパルス電圧は同じである。 [0057] FIG. 19 shows that the piezoelectric ceramic elements (2al) (2ab) ′ ′ (2a8) shown in FIG. 4 and FIG. 5 (a) are extrinsic in comparison with the present invention probe and the conventional probe of eight types. Luciferase plasmid was used as the molecule EMT 6 mouse breast cancer cells and C26 mouse colon cancer cells were used The data described as "patent" are the probes of the present invention, and they are "planar" or "commercially available". The data described are conventional probes. On the horizontal axis, “Control (= 0, 20, 50, 80)” is described as [duty ratio (%)], and the vertical axis on the left is the gene expression strength (the expression of the exogenous molecule The current effect (1 MHz) is shown, and the vertical axis in the right figure shows the cell damage rate (1 MHz). The pulse voltage of the probe of the present invention applied a pulse voltage of the same frequency simultaneously to the misaligned piezoelectric ceramic element (2al) (2ab) '·' (2a8). In the probe of the present invention shown in FIG. 4 etc., a plurality of needle-like ultrasonic waves (P) are generated even when the piezoelectric ceramic elements (2al) (2a2) '·' (2a8) are displaced. The number of ultrasonic waves (P) generated is the number of ultrasonic waves generated in one piezoelectric ceramic element X the number of piezoelectric ceramic elements, and the number of needle ultrasonic waves (P) in the probe of the present invention shown in FIG. It is estimated that the number of occurrences of all needle ultrasonic waves (P) is significantly and stably contributes to the extrinsic molecule introduction effect, as compared with the case of the present invention. The pulse voltage applied to both probes (A) and (B) is the same.
本発明は複数の針状超音波をプローブの接触面のほぼ全面力 連続的に同時生 成させ、広範囲且つ大量に中空微小球体を短時間で連続的に破泡させ、その衝撃 圧で周囲 (或いは内蔵)の外因性分子を従来にない量で周囲の細胞に打ち込むこと が出来、従来行われていた超音波外因性分子導入をより効率的にすることが出来た 。これによつて患者の負担を大幅に軽減することが出来、医療の進歩に貢献すること が出来た。  According to the present invention, a plurality of needle-like ultrasonic waves are generated simultaneously and continuously at substantially the entire surface of the contact surface of the probe, and a wide range and a large amount of hollow microspheres are continuously broken in a short time. Alternatively, it was possible to implant the exogenous molecules into the surrounding cells in an unprecedented amount, and it was possible to make the conventional ultrasound exogenous molecule introduction more efficient. This significantly reduced the burden on patients and contributed to the advancement of medical care.

Claims

請求の範囲 The scope of the claims
[1] (a) 高周波発生板取付開口を有するプローブ本体と、  [1] (a) A probe body having a high frequency generation plate mounting opening,
(b) 前記高周波発生板取付開口にその外端縁が固着されて設けられ、電圧印加に よって異なる位置から 2以上の高周波を発生させる高周波発生板とで構成されている 事を特徴とするプローブ。  (b) A probe characterized in that the outer edge thereof is fixed to the high frequency generation plate attachment opening and configured by a high frequency generation plate that generates two or more high frequencies from different positions by voltage application. .
[2] (a) 高周波発生板取付開口を有するプローブ本体と、  [2] (a) A probe body having a high frequency generating plate mounting opening,
(b) 前記高周波発生板取付開口にその外端縁が固着された振動用の薄板と、 (b) a thin plate for vibration, the outer edge of which is fixed to the high frequency generation plate attachment opening;
(c) その外端縁が前記高周波発生板取付開口に固着され且つ前記薄板に貼着され ている 1乃至複数の圧電セラミックス薄板とで構成されている事を特徴とするプローブ (c) A probe characterized in that its outer edge is constituted by one or a plurality of piezoelectric ceramic thin plates fixed to the high frequency generation plate mounting opening and stuck to the thin plate.
[3] (a) 高周波発生板取付開口を有するプローブ本体と、 [3] (a) A probe body having a high frequency generating plate mounting opening,
(b) 前記高周波発生板取付開口にその外端縁が固着された振動用の薄板と、 (b) a thin plate for vibration, the outer edge of which is fixed to the high frequency generation plate attachment opening;
(c) プローブ本体の内周面力 間隙を設けて前記薄板に貼着されている複数の圧 電セラミックス薄板とで構成されている事を特徴とするプローブ。 (c) Inner peripheral surface force of probe main body A probe characterized by comprising a plurality of piezoelectric ceramic thin plates attached to the thin plate with a gap.
[4] 生成された高周波の波形が針状を呈している事を特徴とする、請求項 1〜3に記載 の!、ずれかに記載のプローブ。  [4] The waveform according to any one of claims 1 to 3, characterized in that the generated high frequency waveform has a needle shape. , Probe described in any place.
[5] (a) 前記圧電セラミックス薄板の 1がガウシアン分布波形の超音波を形成し、 [5] (a) 1 of the piezoelectric ceramic thin plate forms ultrasonic waves of Gaussian distribution waveform,
(b) 他の前記圧電セラミックス薄板が針状波形の超音波を形成する事を特徴とする、 請求項 2または 3に記載のプローブ。  (b) The probe according to claim 2 or 3, characterized in that the other piezoelectric ceramic thin plate forms a needle waveform ultrasonic wave.
[6] 前記高周波発生板或いは前記圧電セラミックス薄板の外面に網板が更に貼着され ている事を特徴とする、請求項 1〜5に記載のいずれかに記載のプローブ。 [6] The probe according to any one of claims 1 to 5, wherein a mesh plate is further attached to the outer surface of the high frequency generation plate or the piezoelectric ceramic thin plate.
PCT/JP2007/057878 2006-04-12 2007-04-10 Probe for generating ultrasonic wave WO2007117010A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-109894 2006-04-12
JP2006109894A JP2009165499A (en) 2006-04-12 2006-04-12 Probe for generating ultrasonic wave

Publications (1)

Publication Number Publication Date
WO2007117010A1 true WO2007117010A1 (en) 2007-10-18

Family

ID=38581281

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/057878 WO2007117010A1 (en) 2006-04-12 2007-04-10 Probe for generating ultrasonic wave

Country Status (2)

Country Link
JP (1) JP2009165499A (en)
WO (1) WO2007117010A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011074268A1 (en) * 2009-12-16 2011-06-23 財団法人ヒューマンサイエンス振興財団 Ultrasonic drug delivery system for dental use and ultrasonic drug delivery method for dental use

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012036095A (en) * 2010-08-03 2012-02-23 Nippon Rikagaku Yakuhin Kk Composition for sonoporation, and percutaneous drug delivery system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0993698A (en) * 1995-09-25 1997-04-04 Olympus Optical Co Ltd Ultrasonic wave probe
JPH11146878A (en) * 1997-11-17 1999-06-02 Matsushita Electric Ind Co Ltd Ultrasonic wave probe
JP2002239463A (en) * 2001-02-20 2002-08-27 Taiheiyo Cement Corp Ultrasonic wave vibrator
JP2004261253A (en) * 2003-02-28 2004-09-24 Toshiba Corp Ultrasound irradiation apparatus for medical purpose
JP2005037218A (en) * 2003-07-14 2005-02-10 Matsushita Electric Ind Co Ltd Ultrasonic transmitter/receiver and manufacturing method therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0993698A (en) * 1995-09-25 1997-04-04 Olympus Optical Co Ltd Ultrasonic wave probe
JPH11146878A (en) * 1997-11-17 1999-06-02 Matsushita Electric Ind Co Ltd Ultrasonic wave probe
JP2002239463A (en) * 2001-02-20 2002-08-27 Taiheiyo Cement Corp Ultrasonic wave vibrator
JP2004261253A (en) * 2003-02-28 2004-09-24 Toshiba Corp Ultrasound irradiation apparatus for medical purpose
JP2005037218A (en) * 2003-07-14 2005-02-10 Matsushita Electric Ind Co Ltd Ultrasonic transmitter/receiver and manufacturing method therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011074268A1 (en) * 2009-12-16 2011-06-23 財団法人ヒューマンサイエンス振興財団 Ultrasonic drug delivery system for dental use and ultrasonic drug delivery method for dental use
JP2011143242A (en) * 2009-12-16 2011-07-28 Japan Health Science Foundation Ultrasonic drug delivery system for dental use and ultrasonic drug delivery method for dental use
US9452036B2 (en) 2009-12-16 2016-09-27 National Center For Geriatrics And Gerontology Dental ultrasonic drug delivery system and dental ultrasonic drug delivery method

Also Published As

Publication number Publication date
JP2009165499A (en) 2009-07-30

Similar Documents

Publication Publication Date Title
JP4441000B2 (en) Biological tissue processing device
Schroeder et al. Ultrasound, liposomes, and drug delivery: principles for using ultrasound to control the release of drugs from liposomes
US6298264B1 (en) Apparatus and method for macromolecule delivery into living cells
Rao et al. Sonophoresis: recent advancements and future trends
US9669203B2 (en) Methods of enhancing delivery of drugs using ultrasonic waves and systems for performing the same
KR101358374B1 (en) A sonotrode
US20020099356A1 (en) Transmembrane transport apparatus and method
CN102112176B (en) The drug delivery of ultrasonic mediation
Pong et al. In vitro ultrasound-mediated leakage from phospholipid vesicles
US20070083120A1 (en) Pulsed cavitational ultrasound therapy
Zhong et al. Shock wave–inertial microbubble interaction: Methodology, physical characterization, and bioeffect study
EP1874197A2 (en) Ultrasound catheter with cavitation promoting surface
JP2002518142A (en) Sonicphoresis method and apparatus
Kim et al. Laser-generated-focused ultrasound transducers for microbubble-mediated, dual-excitation sonothrombolysis
CN107708742B (en) Bubble formulation (TB) for diagnostic and therapeutic use and method of use thereof
KR20140094956A (en) Method and apparatus for controlling a n ultrasound system
WO2007117010A1 (en) Probe for generating ultrasonic wave
Eisenbrey et al. Ultrasound triggered cell death in vitro with doxorubicin loaded poly lactic-acid contrast agents
US20140107540A1 (en) Ultrasonic irradiation apparatus and method for irradiating ultrasonic wave
CA2577457C (en) Microbubble medical devices
Bismuth et al. Nanobubble-mediated cancer cell sonoporation using low-frequency ultrasound
JP2005334408A (en) Syringe insertion method, its apparatus, and its injection needle
Chen et al. Intracorporeal sonoporation-induced drug/gene delivery using a catheter ultrasound transducer
JP2024034862A (en) Chemical injection device
JP2018002611A (en) Classifying method and classifying apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07741314

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07741314

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP