WO2007116880A1 - Light source module - Google Patents

Light source module Download PDF

Info

Publication number
WO2007116880A1
WO2007116880A1 PCT/JP2007/057446 JP2007057446W WO2007116880A1 WO 2007116880 A1 WO2007116880 A1 WO 2007116880A1 JP 2007057446 W JP2007057446 W JP 2007057446W WO 2007116880 A1 WO2007116880 A1 WO 2007116880A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
prism
light source
source module
led
Prior art date
Application number
PCT/JP2007/057446
Other languages
French (fr)
Japanese (ja)
Inventor
Tadao Iwaki
Original Assignee
Miraial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miraial Co., Ltd. filed Critical Miraial Co., Ltd.
Publication of WO2007116880A1 publication Critical patent/WO2007116880A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/02Refractors for light sources of prismatic shape
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1809Diffraction gratings with pitch less than or comparable to the wavelength
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • the present invention relates to a light source module, and in particular, at least three primary color LEDs (Light-Emitting
  • Diode Diode
  • a light source module having an X-type dichroic prism.
  • LED module As a light source module (LED module) that obtains white light from the light emitted from the three primary color LEDs, the light from each of the three primary color LEDs is converted into parallel light by a lens, and then the reflecting surface force of the dichroic mirror A triangular prism intersecting in a letter shape has been proposed to combine and emit the three primary colors (see Patent Document 1).
  • a dichroic mirror a dielectric multilayer mirror in which high-refractive-index dielectric thin films and low-refractive-index dielectric thin films are alternately laminated with a predetermined film thickness, or a period of about 1/10 of a wavelength.
  • Sub-wavelength grating mirrors are known by forming periodic gratings (convex parts) with a predetermined pitch.
  • Patent Document 1 JP 2005-183005
  • a dielectric multilayer mirror is formed on a glass or plastic right-angle plane processed into a triangular prism, and the dielectric multilayer mirror surface is joined with an optical adhesive. It is usual to form.
  • a dielectric multilayer film is formed on a substrate by vacuum evaporation. Since many films are stacked by the putter method, the film formation time (man-hours) becomes long and expensive, and the X-type dichroic prism using the film also requires long man-hours and becomes expensive. Has a problem.
  • the sub-wavelength grating has many fine convex portions that are easily damaged, and thus has not been used for a dichroic mirror provided on a contact surface of a plurality of triangular prisms.
  • the present invention provides a light source module having at least three primary color LEDs and an optical device including a dichroic light mirror that additively mixes light from the LEDs, and functions as the dichroic mirror.
  • the portion includes an airtight space defined by a parallel plane having a predetermined gap, and a sub-wavelength grating provided on at least one plane of the airtight space.
  • the optical device is an X-type dichroic prism and the three primary color LEDs are a red LED, a green LED, and a blue LED
  • the X surface of the X-type dichroic prism In the portion where the light reflecting surface is located, a predetermined gap is formed in an airtight manner from the environment, and the first surface that reflects the red light from the red LED and transmits the other light is a different prism surface.
  • the second surface that reflects blue light from the blue LED and transmits the other light is also formed on the same surface that includes a different prism surface and is orthogonal to the first surface.
  • a sub-wavelength grating that selectively reflects the red light is formed on the first surface, and a sub-wavelength grating that selectively reflects the blue light is formed on the second surface. It is preferable that the light is emitted from the three primary color LEDs.
  • an inexpensive light source module can be provided while reducing the number of manufacturing steps.
  • FIG. 1 is a schematic cross-sectional view showing the structure of a light source module according to a first embodiment.
  • FIG. 2 is a perspective view showing a second side prism of the first embodiment.
  • FIG. 3 is an enlarged cross-sectional view around an airtight space in the first embodiment.
  • FIG. 4 is an enlarged cross-sectional view of the surface of the subwavelength grating according to the first embodiment.
  • FIG. 5 is a drawing for explaining an additive color mixing method in the first embodiment.
  • FIG. 6 is a CIE chromaticity diagram for explaining the effect of the light source module according to the first embodiment.
  • FIG. 7 is a drawing for explaining a conventional method of forming white light.
  • FIG. 8 is a schematic cross-sectional view showing the structure of a light source module according to a second embodiment.
  • FIG. 9 is a schematic sectional view showing a detailed configuration of an LED in a second embodiment.
  • FIG. 10 is a schematic cross-sectional view showing the structure of a light source module according to a third embodiment.
  • FIG. 11 is a schematic sectional view showing the structure of a light source module according to a fourth embodiment.
  • FIG. 12 is a schematic sectional view showing the structure of another embodiment (1) obtained by modifying the fourth embodiment.
  • FIG. 13 is a schematic sectional view showing the structure of another embodiment (2) obtained by modifying the fourth embodiment.
  • FIG. 14 is a schematic cross-sectional view showing an additive color mixing structure in a light source module according to another embodiment.
  • IE ... light source module, 2R ... red LED, 2G ... green LED, 2B ... blue LED, 3 ... base prism, 4 ... first side prism, 5 ... second side prism, 6 ... Upper prism, 7-9 ... Flexible printed circuit board (FPC), 10-13, 20 ... Joint, 14 ... Airtight space, 21 ... Recess, 22, 22A, 22B ... Sub-wavelength grating, 40, 41 ... Auxiliary prism 50-52 ... Condensing lens, 60-63 ... Fresnel lens.
  • FPC Flexible printed circuit board
  • FIG. 1 is a diagram showing a schematic structure of a light source module according to a first embodiment, and shows a section of an X-type dichroic prism.
  • the light source module is expressed as up, down, left, and right based on the state shown in FIG.
  • a light source module 1 according to the first embodiment includes a red LED 2R, a green LED 2G and a blue LED 2B, which are three primary color LEDs, and an X-type dichroic prism.
  • the X-type dichroic prism includes a base prism 3, a first side prism 4, a second side prism 5, and an upper prism 6.
  • the base prism 3 is a prism having a substantially right-angled isosceles triangle with a right angle located upward, and has a portion protruding from the bottom side to the left and right.
  • a green LED 2G mounted on the end of the printed wiring board 7 is joined.
  • a film-like printed wiring board FPC Flexible Printed Circuit
  • the direction of the emitted light from the green LED 2G is the direction toward the right apex of the prism of a right isosceles triangle.
  • the first side prism 4 has a prism shape of a substantially right isosceles triangle with a right angle located on the right side, and is on the left side to join the protruding portion on the left side of the base prism 3 on its upper surface. It has an overhanging portion that extends.
  • the projecting portion on the left side of the base prism 3 and the projecting portion of the first side prism 4 are joined together by an optical adhesive to constitute a joint 10.
  • the protruding portion of the first side prism 4 has a stepped shape, and the end force of the printed wiring board 7 on which the red LED 2R is mounted is mounted and bonded to the upper surface.
  • the red LED2R is positioned in the center of the bottom side of the first side prism 4, and the direction of the light emitted from the red LED2R is the right-angled apex of the right isosceles triangular prism in the first side prism 4. It is the direction toward.
  • the second side prism 5 is a prism having a substantially right isosceles triangle shape with a right angle on the left side.
  • the second side prism 5 is on the right side of the base prism 3 so as to be joined to the right protruding portion on the upper surface. It has an overhanging portion that extends.
  • the protruding portion on the right side of the base prism 3 and the protruding portion of the first side prism 4 are bonded together by an optical adhesive to form a bonded portion 11.
  • the projecting portion of the second side prism 5 has a stepped shape, and the end portion of the printed wiring board 9 on which the blue LED 2B is mounted is placed and bonded on the upper surface thereof.
  • the blue LED2B is located at the center of the bottom of the second side prism 5, and the blue LED2
  • the direction of the light emitted from B is the direction toward the right-angled apex of the right isosceles triangular prism in the second side prism 5.
  • the upper prism 6 is a prism having a generally right isosceles triangular shape with a right angle located downward, and has a portion slightly protruding from the bottom side to the left and right.
  • the upper ends of the first side prism 4 and the second side prism 5 described above are flat surfaces, and these flat surfaces and the portions protruding to the left and right of the upper prism 6 are joined by an optical adhesive, and the joint portion 12 And 13 are configured.
  • the distances from the center of the X-type dichroic prism consisting of the base prism 3, the first side prism 4, the second side prism 5, and the upper prism 6 to the light emitting points of the red LED 2R, the green LED 2G, and the blue LED 2B are equal. It is made like that.
  • the base prism 3 In the base prism 3, the first side prism 4, the second side prism 5, and the upper prism 6, the surfaces facing the surfaces of other prisms in the prism shape of a right isosceles triangle are shown in FIG.
  • the bottoms are flat concave portions 21A and 21B except for the peripheral joint portion 20.
  • the concave portions 21A and 21B have sub-wavelength gratings 22A and 22B as optical functional layers. Is provided. These sub-wavelength gratings 22A and 22B have different color components to be reflected, as will be described later.
  • the X-shaped portion of the X-type dichroic prism is an airtight space 14 as shown in FIG.
  • FIG. 3 is an enlarged cross-sectional view around the airtight space 14.
  • the airtight space 14 has two planes extending from the center in the upper right direction, the lower left direction, the upper left direction, and the lower right direction.
  • the surface extending in the upper right direction and the lower left direction corresponds to the first surface in the claims, and the surface extending in the upper left direction and the lower right direction corresponds to the second surface in the claims.
  • the two sub-wavelength gratings 22A reflects red light emitted from the red LED 2R and transmits light of other colors emitted from the green LED 2G and the blue LED 2B.
  • the two sub-wavelength gratings 22A provided on the two planes extending in the lower left direction from the center also reflect the red light emitted from the red LED2R, and the green LED2G and blue LED2B. Forces light of another color emitted.
  • the two sub-wavelength gratings 22B provided on the two planes extending in the upper left direction from the center reflect the blue light emitted from the blue LED 2B and are emitted from the green LED 2G and the red LED 2R. It transmits light of other colors.
  • the two sub-wavelength gratings 22B provided on the two planes extending from the center to the lower-right direction reflect the blue light emitted from the blue LED 2B and the other emitted from the green LED 2G and the red LED 2R. The light of the color is transmitted.
  • the pitch of the grating (protrusion) (see FIG. 4 described later). (Refer to p in Fig. 4) is about 400 nm, the lattice width (see d in Fig. 4 to be described later) is about 310 nm, and the grating height (see h in Fig. 4 to be described later) is about 220 nm.
  • the pitch of the grating (projections) is about 440 nm and the grating width is It is good if the grid height is about 220nm.
  • Fig. 1 the power of the green LED 2G is shown in a position where the green light emitted from the green LED 2G is transmitted without being reflected.
  • the arrangement of the three primary colors LEDs 2R, 2G, and 2B is shown here. It is not limited. If the sub-wavelength grating that reflects the green light emitted from the green LED2G is made of polycarbonate, the pitch of the grating (protrusions) is about 350 nm, the grating width is about 230 nm, and the grating height is about 220 nm. Just do it.
  • the joint 20 (10-13) has a protrusion or protrusion provided on one surface thereof. It is preferable to provide a fitting portion 23 formed of a recess or a groove provided on the other surface so that the prisms 3 to 6 can be appropriately positioned. In the case where the fitting portion 23 is formed of a ridge and a groove, it contributes to an improvement in airtightness.
  • a sub-wavelength grating 22 is produced by transferring (imprinting) a polymer film functioning as the sub-wavelength grating 22 onto the substrate 2.
  • a sub-wavelength grating 22 is produced by direct processing on the substrate using, for example, a technique.
  • the second production method includes a case where the unevenness of the sub-wavelength grating 22 is directly produced on the surface of the substrate using a mold.
  • the subwavelength grating 22 is fabricated by attaching a strip (foil) to the surface of the substrate.
  • a strip foil
  • the surface of a semiconductor substrate such as silicon, germanium, or a compound semiconductor is processed to form a sub-wavelength grating 22, and the semiconductor substrate on which the sub-wavelength grating 22 is formed is bonded to a base material.
  • FIG. 4 is an enlarged cross-sectional view of the surface of the sub-wavelength grating 22 (22A, 22B) according to the first embodiment.
  • FIG. 4 shows the sub-wavelength grating 22 manufactured using a mold. Yes.
  • the extending direction of the protrusions arranged in a lattice shape is not parallel to the normal direction of the sub-wavelength grating 22 but is inclined as shown in FIG.
  • the extending direction of the protrusions arranged in a lattice shape is parallel to the pressing direction of the mold and the pulling direction of the mold, so that the protrusions are not easily damaged during manufacturing using the mold.
  • the mold drawing direction is perpendicular to the sub-wavelength grating forming surface
  • the red light emitted from the red LED 2R is reflected in the hermetic space 14 by the sub-wavelength grating 22A extending from the center to the upper right and lower left, and upward. It is changed to light that is suitable for.
  • the sub-wavelength grating 22A extended to the upper right and lower left reflects only the wavelength component (wavelength band) of the desired red component, even if the light emitted from the red LED2R contains a wavelength component other than the desired red component. It is supposed to be.
  • the blue light emitted from the blue LED 2B is reflected in the airtight space 14 by the sub-wavelength grating 22B extending from the center to the upper left and the lower right, and is changed to an upward force and light. .
  • the sub-wavelength grating 22B extended in the upper left and lower right has a desired blue component wavelength component (wavelength band) even if the light emitted from the blue LED 2B includes a wavelength component other than the desired blue component. ) Only.
  • the green LED 2G emits upward force Green light passes through the sub-wavelength gratings 22A and 22B positioned in the traveling direction in the airtight space 14 as they are, and the upward force and light remain as they are. Light is emitted from the light source module 1 of the first embodiment.
  • Each sub-wavelength grating 22A, 22B has only the wavelength component (wavelength band) of the desired green component even if the directional light contains a wavelength component other than the desired green component above the green LED 2G. You may pass it through.
  • the light power emitted from the three primary colors LEDs 2R, 2G, and 2B is added in the state where the optical axes are substantially aligned by the X-type dichroic prism in the light source module 1 of the first embodiment. Illuminates an object (not shown) as mixed illumination and white illumination light
  • the light quantity control means for electrically controlling the quantity of light emitted from the LEDs 2R, 2G, 2B is provided on the printed wiring boards 8, 9, 10. It is mounted or provided externally so that the additive color mixture ratio can be varied. That is, as shown in FIG. 5, the light intensity of the desired bands (R, G, B) from the LEDs 2R, 2G, 2B can be controlled independently.
  • Each of the LEDs 2R, 2G, and 2B may have a built-in photodiode as a photodetector for detecting the light amount, and the detected light amount may be fed back to the light amount control means.
  • the sub-wavelength grating Since the sub-wavelength grating is provided in an airtight space formed by joining a plurality of prisms and separated from the outside air, a highly reliable functional film can be obtained.
  • the sub-wavelength grating has many fine gratings (protrusions) and is easily damaged, and its function is deteriorated or impaired by adhesion of water or oil. Since it is provided, damage can be prevented and adhesion of water or oil can be prevented, and a highly reliable functional film can be obtained.
  • FIG. 7 shows a spectrum in a case where a white phosphor is arranged on the optical path of light from a blue LED to achieve white.
  • point A shows the chromaticity of the blue LED
  • point B shows the chromaticity at the peak position of the light excited by the yellow phosphor.
  • the conventional method intends to obtain the chromaticity of an arbitrary point on the line segment AB by adjusting the amount of light from the blue LED and adjusting the coating amount of the yellow phosphor.
  • this white light actually contains red and green components. Therefore, it is possible to reproduce colors in the range indicated by the color triangle ACD in FIG.
  • the color triangle obtained by additively mixing the emitted light from the three primary colors LED of red LED2R, green LED2G and blue LED2B is the light of each LED2R, 2G, 2B power. Because of the extremely high color purity, the large color triangle AEF shown in Fig. 6 becomes possible, and a wide range of color reproduction is possible.
  • the sub-wavelength gratings having the same function are provided on both surfaces of the parallel plane, the light control function carried by the sub-wavelength gratings can be reliably achieved.
  • the sub-wavelength grating may be provided only on one surface of the parallel plane.
  • FIG. 8 is a schematic cross-sectional view showing the structure of the light source module according to the second embodiment.
  • FIG. 2 is a diagram corresponding to FIG. 1 according to the first embodiment, and the same and corresponding parts as those in FIG. 1 are denoted by the same reference numerals.
  • the base prism 3, the first side prism 4, and the second side prism 5 have, for example, a cylindrical hole at the center of the bottom surface.
  • the fitting receiving portions 3H, 4H, 5H are provided, and any of the corresponding LEDs 2G, 2R, 2B are fitted into the fitting receiving portions 3H, 4H, 5H.
  • each LED2G, 2R, 2B is inserted into the corresponding fitting receiving portion 3H, 4H, 5H and bonded and fixed, so that the position and emission direction of each LED2G, 2R, 2B can be obtained. It is possible to easily perform cornering.
  • FIG. 9 is a schematic cross-sectional view showing the configuration of the LED 30 (2R, 2G, 2B) in the second embodiment. Note that the horizontal direction in FIG. 9 corresponds to the normal direction of the paper in FIG.
  • the LED 30 includes an LED chip 31, a wire 34 for connecting the wiring 33 of the flexible printed wiring board 32 (7-9) and the LED chip 31, and the LED chip 31 and the wire 34 are sealed and a lens. And a sealing lens 35 that exhibits its function.
  • the sealing lens 35 has a cylindrical shape that fits with the fitting receiving portions 3H, 4H, and 5H, and its tip side converts the emitted light from the LED chip 31 into divergent light that is as close to parallel light as possible.
  • the lens shape is as follows.
  • the sealing lens 35 is omitted when the light emitted from the LED chip 31 is small or when each prism (3 to 6) has a condensing lens as in an embodiment described later. Power S can be.
  • the support base on which the LED chip 31 is mounted and fixed has the function of grounding the LED chip 31 at the same time as determining the light emitting point position of the LED chip 31 at an appropriate position on the optical axis.
  • the light source module 1A of the second embodiment is also the first This is the same as the light source module 1 of the embodiment.
  • the second embodiment can provide the same effects as those of the first embodiment.
  • the three primary color LEDs are attached by fitting, there is an effect that the positions of the three primary color LEDs can be easily made appropriate.
  • FIG. 10 is a schematic cross-sectional view showing the structure of the light source module according to the third embodiment, and is a drawing corresponding to FIG. 1 according to the first embodiment. Are denoted by the same reference numerals.
  • the red LED 2R force is provided so that the emitted light travels upward, and the red LED 2R is connected to the first side prism 4.
  • the first auxiliary prism 40 for integrally changing the traveling direction of the light from above to the right is integrally provided.
  • the blue LED 2B is provided so that the emitted light travels upward, and the traveling direction of the light from the blue LED 2B is indicated on the second side prism 5.
  • a second auxiliary prism 41 for converting from the top to the left is integrally provided.
  • the distances from the light emitting points of the LEDs 2R, 2G, and 2B to the X-shaped center are equal.
  • FIG. 10 unlike FIG. 1 according to the first embodiment, the printed wiring board 8 on which the red LED 2R is mounted and the printed wiring board 9 on which the blue LED 2B is mounted are shown in the base prism 3. Although what was provided in the overhang
  • the light source module 1B of the third embodiment is also the first This is the same as the light source module 1 of the embodiment.
  • the printed wiring boards having the same configuration can be applied to the printed wiring boards 7 to 9 for the respective color components. It is possible to do so.
  • each of the prisms 3 to 6 on which the sub-wavelength grating is formed can be made of plastic, the auxiliary prisms 40 and 41 can be integrated and the degree of freedom of the outer diameter shape can be improved. Therefore, the design can be made flexible. This also applies to the case where the condenser lens as in the fourth to sixth embodiments described later is integrated with the prism (3-6).
  • the arrangement as in the third embodiment eliminates the need to adjust the optical axis direction of each LED 2R, 2G, 2B, and facilitates the optical axis adjustment of each LED 2R, 2G, 2B.
  • FIG. 11 is a schematic cross-sectional view showing the structure of the light source module according to the fourth embodiment, which is a drawing corresponding to FIG. 10 according to the third embodiment, and is the same as or corresponding to FIG. Are indicated by the same reference numerals.
  • a condensing lens (third condensing lens) 50 that condenses the light emitted from the green LED 2G is provided integrally with the base prism 3
  • a condenser lens (first condenser lens) 51 that condenses the light emitted from the red LED 2R is provided integrally with the first side prism 4
  • Optical lens) 52 is provided integrally with the second side prism 5.
  • each prism 3, 4, 5 is secured so as to secure a predetermined distance from each LED 2G, 2R, 2B to the condenser lenses 50-52 so that the condenser lenses 50-52 function effectively.
  • the shape is selected.
  • the same effects as those of the third embodiment can be obtained.
  • the condensing lens is provided so that the light from each LED is parallel light (or divergent light close thereto), additive color mixture can be executed more appropriately.
  • the characteristics of the dichroic mirror by the sub-wavelength gratings (22A, 22B) can reduce the incident angle dependency.
  • the optical characteristics of the mirror can be performed only for substantially parallel incident light, and the optical characteristics of the dichroic mirror can be improved.
  • FIG. 12 shows a light source module according to another embodiment (1) obtained by modifying a part of the fourth embodiment.
  • the light source module 1D shown in FIG. 12 is a light source module of the fourth embodiment.
  • Condensation lens 50-52 in Le 1C is replaced with Fresnel lens 60-62
  • FIG. 13 shows a light source module according to another embodiment (2) obtained by modifying a part of the fourth embodiment.
  • the light source module 1E shown in FIG. 13 is different from the light source module 1D shown in FIG. 12 in that a Fresnel lens 63 is provided on the surface of the upper prism 6 where additive color mixture light is emitted.
  • the light condensing function is realized by being distributed to the Fresnel lens 60 to 62 and the Fresnel lens 63.
  • the Fresnel lens 63 is not necessarily a condensing lens (or convex lens), and may be a diverging lens (or concave lens) depending on the usage.
  • the three primary colors are red, green, and blue.
  • any three independent colors on the chromaticity coordinates may be applied to the three primary colors.
  • the present invention can also be applied to a light source module that additively mixes four or more primary colors (for example, the method shown in FIG. 14 described later can be expanded to add and mix four or more primary colors).
  • the straight light from the red LED or the blue LED is emitted from the green LED, indicating that the light emitted from the green LED goes straight by the X-type dichroic prism. Even if it is made to be light, it is good.
  • the arrangement of the LEDs 2R, 2G, and 2B is not limited to that of each of the above embodiments.
  • the optical device that additively mixes the light from the three primary color LEDs may be another optical device having a force S and a dichroic mirror indicating that it is an X-type dichroic prism.
  • an optical device in which three optical elements having dichroic mirror surfaces are arranged in parallel may be used.
  • the part that functions as a dichroic mirror is an airtight space defined by a parallel plane, and at least one of the parallel planes is provided with a sub-wavelength grating that functions as a dichroic mirror. This is necessary (for example, see FIG. 1 (B) of JP-A-2006-13127).
  • the light source module of the present invention can be used, for example, as an automobile headlight, a backlight of a liquid crystal panel for image display, indoor lighting, an illumination light source in a measuring device, and the like. Also Since an arbitrary chromaticity can be realized, it is suitable for an apparatus that desires an arbitrary chromaticity such as an illumination light source in a measuring apparatus.

Abstract

It is possible to provide a cheap light source module by reducing the number of manufacturing steps. The light source module includes, for example, at least three-primary color LED and an X-type dichroic prism. A predetermined gap is hermetically formed from the environment on the X-plane of the X-type dichroic prism where a light reflection plane is positioned. A first plane reflecting the light of the first band is formed on the same plane containing a different prism plane. A second plane reflecting the light of the second band is formed on the same plane containing a different prism plane and orthogonally intersecting the first plane. On the first plane is formed a sub wavelength grating for selectively reflecting the light of the first band. On the second plane is formed a sub wavelength grating for selectively reflecting the light of the second band. The lights emitted from the three-primary color LED are added and mixed substantially on the same optical axis by an X-type dichroic prism for output.

Description

明 細 書  Specification
光源モジュール 技術分野  Light source module technology
[0001] 本発明は光源モジュールに関し、特に、少なくとも 3原色 LED (Light— Emitting  [0001] The present invention relates to a light source module, and in particular, at least three primary color LEDs (Light-Emitting
Diode)と X型ダイクロイツクプリズムとを有する光源モジュールに適用し得る。  Diode) and a light source module having an X-type dichroic prism.
背景技術  Background art
[0002] 近年、大画面液晶表示装置やプロジェクタの発展に伴って、より色純度の高い画像 を実現するために、 3原色の LEDからの発光光を加法混色して白色光を得る光源モ ジュールが提案されている。ここで、色度座標上の独立した 3色を用いることによって 、これら 3色で形成される色三角形の範囲内にある任意の色を表現することができ、 3 原色とは、このような色度座標上の独立した 3色をいう。一般的には、赤、緑、青(青 紫)が光の 3原色として用いられることが多ぐ最近では、色再現範囲を拡げるため、 これらの 3色に黄色を混色した 4原色を用いることもある。  [0002] In recent years, with the development of large-screen liquid crystal display devices and projectors, a light source module that obtains white light by additively mixing light emitted from three primary color LEDs in order to realize images with higher color purity. Has been proposed. Here, by using three independent colors on the chromaticity coordinates, it is possible to represent any color within the range of the color triangle formed by these three colors. Three independent colors on the degree coordinate. In general, red, green, and blue (blue-violet) are often used as the three primary colors of light. Recently, in order to expand the color reproduction range, use four primary colors that are mixed with yellow in these three colors. There is also.
[0003] 3原色 LEDからの発光光から白色光を得る光源モジュール(LEDモジュール)とし ては、各 3原色 LEDからの光をレンズで平行光に変換した後、ダイクロイツクミラーの 反射面力 ¾字型に交差した三角プリズムで 3原色を合波混色して出射するものが提 案されてレ、る (特許文献 1参照)。  [0003] As a light source module (LED module) that obtains white light from the light emitted from the three primary color LEDs, the light from each of the three primary color LEDs is converted into parallel light by a lens, and then the reflecting surface force of the dichroic mirror A triangular prism intersecting in a letter shape has been proposed to combine and emit the three primary colors (see Patent Document 1).
[0004] 一方、ダイクロイツクミラーとしては、高屈折率誘電体薄膜と低屈折率誘電体薄膜と を所定の膜厚で交互に積層した誘電体多層膜ミラーや、波長の 1/10程度の周期 を持った周期格子(凸部)を所定のピッチで形成することによるサブ波長格子ミラーが 知られている。  [0004] On the other hand, as a dichroic mirror, a dielectric multilayer mirror in which high-refractive-index dielectric thin films and low-refractive-index dielectric thin films are alternately laminated with a predetermined film thickness, or a period of about 1/10 of a wavelength. Sub-wavelength grating mirrors are known by forming periodic gratings (convex parts) with a predetermined pitch.
特許文献 1 :特開 2005— 183005号公報  Patent Document 1: JP 2005-183005
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] 従来の X型ダイクロイツクプリズムは、三角プリズムに加工されたガラスやプラスチッ ク直角面上に誘電体多層膜ミラーを形成して、誘電体多層膜ミラー面を光学接着剤 で接合して形成するのが通常である。誘電体多層膜は、基板上に真空蒸着法ゃス パッタ法によって多くの膜を積層して成膜するため、成膜時間(工数)が長くなり、高 価なものとなり、それを用いる X型ダイクロイツクプリズムも、製造工数が長く高価にな るという課題を有する。 [0005] In the conventional X-type dichroic prism, a dielectric multilayer mirror is formed on a glass or plastic right-angle plane processed into a triangular prism, and the dielectric multilayer mirror surface is joined with an optical adhesive. It is usual to form. A dielectric multilayer film is formed on a substrate by vacuum evaporation. Since many films are stacked by the putter method, the film formation time (man-hours) becomes long and expensive, and the X-type dichroic prism using the film also requires long man-hours and becomes expensive. Has a problem.
[0006] 一方、サブ波長格子は、損傷し易い微細な凸部を多数有するため、複数の三角プ リズムの接触面に設けられるダイクロイツクミラーに用いられることはなかった。  [0006] On the other hand, the sub-wavelength grating has many fine convex portions that are easily damaged, and thus has not been used for a dichroic mirror provided on a contact surface of a plurality of triangular prisms.
課題を解決するための手段  Means for solving the problem
[0007] 本発明は、少なくとも 3原色 LEDと、上記各 LEDからの光を加法混色する、ダイク口 イツクミラーを含む光学装置とを有する光源モジュールにおレ、て、上記ダイクロイツク ミラーとして機能する面部分が、所定の間隙を有する平行平面で規定される気密空 間と、この気密空間の少なくとも一方の平面に設けられたサブ波長格子とを有するこ とを特徴とする。 [0007] The present invention provides a light source module having at least three primary color LEDs and an optical device including a dichroic light mirror that additively mixes light from the LEDs, and functions as the dichroic mirror. The portion includes an airtight space defined by a parallel plane having a predetermined gap, and a sub-wavelength grating provided on at least one plane of the airtight space.
[0008] ここで、上記光学装置が、 X型ダイクロイツクプリズムであって、上記 3原色 LEDが、 赤色 LED、緑色 LED及び青色 LEDである場合には、上記 X型ダイクロイツクプリズ ムの X面における光反射面が位置する部分には、所定の間隙が環境から気密に形 成されており、上記赤色 LEDからの赤色光を反射し、それ以外の光を透過する第 1 面は異なるプリズム面を含む同一面上に形成され、上記青色 LEDからの青色光を反 射し、それ以外の光を透過する第 2面も異なるプリズム面を含み上記第 1面と直交す る同一面上に形成され、上記第 1面には上記赤色光を選択的に反射するサブ波長 格子が形成されており、上記第 2面には上記青色光を選択的に反射するサブ波長格 子が形成されており、上記 3原色 LEDから出射されるようにすることが好ましい。 発明の効果  [0008] Here, when the optical device is an X-type dichroic prism and the three primary color LEDs are a red LED, a green LED, and a blue LED, the X surface of the X-type dichroic prism In the portion where the light reflecting surface is located, a predetermined gap is formed in an airtight manner from the environment, and the first surface that reflects the red light from the red LED and transmits the other light is a different prism surface. The second surface that reflects blue light from the blue LED and transmits the other light is also formed on the same surface that includes a different prism surface and is orthogonal to the first surface. A sub-wavelength grating that selectively reflects the red light is formed on the first surface, and a sub-wavelength grating that selectively reflects the blue light is formed on the second surface. It is preferable that the light is emitted from the three primary color LEDs. The invention's effect
[0009] 本発明によれば、製造工数を抑えて安価な光源モジュールを提供することができる 図面の簡単な説明  [0009] According to the present invention, an inexpensive light source module can be provided while reducing the number of manufacturing steps.
[0010] [図 1]第 1の実施形態に係る光源モジュールの構造を示す概略断面図である。  FIG. 1 is a schematic cross-sectional view showing the structure of a light source module according to a first embodiment.
[図 2]第 1の実施形態の第 2サイドプリズムを示す斜視図である。  FIG. 2 is a perspective view showing a second side prism of the first embodiment.
[図 3]第 1の実施形態における気密空間回りの拡大断面図である。  FIG. 3 is an enlarged cross-sectional view around an airtight space in the first embodiment.
[図 4]第 1の実施形態に係るサブ波長格子の表面の拡大断面図である。 [図 5]第 1の実施形態における加法混色方法の説明に供する図面である。 FIG. 4 is an enlarged cross-sectional view of the surface of the subwavelength grating according to the first embodiment. FIG. 5 is a drawing for explaining an additive color mixing method in the first embodiment.
[図 6]第 1の実施形態に係る光源モジュールの効果の説明に供する CIEの色度図で ある。  FIG. 6 is a CIE chromaticity diagram for explaining the effect of the light source module according to the first embodiment.
[図 7]従来の白色光の形成方法を説明するための図面である。  FIG. 7 is a drawing for explaining a conventional method of forming white light.
[図 8]第 2の実施形態に係る光源モジュールの構造を示す概略断面図である。  FIG. 8 is a schematic cross-sectional view showing the structure of a light source module according to a second embodiment.
[図 9]第 2の実施形態における LEDの詳細構成を示す概略断面図である。  FIG. 9 is a schematic sectional view showing a detailed configuration of an LED in a second embodiment.
[図 10]第 3の実施形態に係る光源モジュールの構造を示す概略断面図である。  FIG. 10 is a schematic cross-sectional view showing the structure of a light source module according to a third embodiment.
[図 11]第 4の実施形態に係る光源モジュールの構造を示す概略断面図である。  FIG. 11 is a schematic sectional view showing the structure of a light source module according to a fourth embodiment.
[図 12]第 4の実施形態を変形した他の実施形態(1)の構造を示す概略断面図である  FIG. 12 is a schematic sectional view showing the structure of another embodiment (1) obtained by modifying the fourth embodiment.
[図 13]第 4の実施形態を変形した他の実施形態(2)の構造を示す概略断面図である FIG. 13 is a schematic sectional view showing the structure of another embodiment (2) obtained by modifying the fourth embodiment.
[図 14]他の実施形態に係る光源モジュールにおける加法混色構造を示す概略断面 図である。 FIG. 14 is a schematic cross-sectional view showing an additive color mixing structure in a light source module according to another embodiment.
符号の説明  Explanation of symbols
[0011] 1、 1A〜: IE…光源モジュール、 2R…赤色 LED、 2G…緑色 LED、 2B…青色 LE D、 3…ベースプリズム、 4…第 1サイドプリズム、 5…第 2サイドプリズム、 6…アッパー プリズム、 7〜9…フレキシブルなプリント配線基板(FPC)、 10〜13、 20…接合部、 14…気密空間、 21…凹部、 22、 22A、 22B…サブ波長格子、 40、 41…補助プリズ ム、 50〜52…集光レンズ、 60〜63…フレネノレレンズ。  [0011] 1, 1A-: IE ... light source module, 2R ... red LED, 2G ... green LED, 2B ... blue LED, 3 ... base prism, 4 ... first side prism, 5 ... second side prism, 6 ... Upper prism, 7-9 ... Flexible printed circuit board (FPC), 10-13, 20 ... Joint, 14 ... Airtight space, 21 ... Recess, 22, 22A, 22B ... Sub-wavelength grating, 40, 41 ... Auxiliary prism 50-52 ... Condensing lens, 60-63 ... Fresnel lens.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0012] (A)第 1の実施形態 [0012] (A) First embodiment
以下、本発明による光源モジュールの第 1の実施形態を、図面を参照しながら詳述 する。  Hereinafter, a first embodiment of a light source module according to the present invention will be described in detail with reference to the drawings.
[0013] 図 1は、第 1の実施形態に係る光源モジュールの概略構造を示す図面であり、 X型 ダイクロイツクプリズムの部分については断面で示している。光源モジュールには、上 下左右という概念がないものである力 以下では、説明の便宜上、図 1に示した状態 に基づいて、上下左右を表現する。 [0014] 図 1において、第 1の実施形態の光源モジュール 1は、 3原色 LEDである赤色 LED 2R、緑色 LED2G及び青色 LED2Bと、 X型ダイクロイツクプリズムを有する。 X型ダイ クロイツクプリズムは、ベースプリズム 3、第 1サイドプリズム 4、第 2サイドプリズム 5及び アッパープリズム 6を備える。 FIG. 1 is a diagram showing a schematic structure of a light source module according to a first embodiment, and shows a section of an X-type dichroic prism. In the following, for the sake of convenience of explanation, the light source module is expressed as up, down, left, and right based on the state shown in FIG. In FIG. 1, a light source module 1 according to the first embodiment includes a red LED 2R, a green LED 2G and a blue LED 2B, which are three primary color LEDs, and an X-type dichroic prism. The X-type dichroic prism includes a base prism 3, a first side prism 4, a second side prism 5, and an upper prism 6.
[0015] ベースプリズム 3は、上方に直角が位置する概ね直角二等辺三角形の角柱状のも のであり、その底辺部から、左右に張り出した部分を有する。  [0015] The base prism 3 is a prism having a substantially right-angled isosceles triangle with a right angle located upward, and has a portion protruding from the bottom side to the left and right.
[0016] ベースプリズム 3の底辺部の中央には、プリント配線基板 7の端部に搭載された緑 色 LED2Gが接合されている。プリント配線基板 7としては、フィルム状プリント配線基 板 FPC (Flexible Printed Circuit)を用いることが多レ、。緑色 LED2Gからの射 出光の方向は、直角二等辺三角形の角柱状の直角頂部に向かう方向である。  [0016] At the center of the bottom side of the base prism 3, a green LED 2G mounted on the end of the printed wiring board 7 is joined. As the printed wiring board 7, a film-like printed wiring board FPC (Flexible Printed Circuit) is often used. The direction of the emitted light from the green LED 2G is the direction toward the right apex of the prism of a right isosceles triangle.
[0017] 第 1サイドプリズム 4は、右方に直角が位置する概ね直角二等辺三角形の角柱状の ものであり、ベースプリズム 3の左側の張り出し部分と、その上面で接合するための左 方に延びる張り出し部分を有している。ベースプリズム 3の左側の張り出し部分と、第 1サイドプリズム 4の張り出し部分とが光学接着剤によって接合され、接合部 10を構 成する。  [0017] The first side prism 4 has a prism shape of a substantially right isosceles triangle with a right angle located on the right side, and is on the left side to join the protruding portion on the left side of the base prism 3 on its upper surface. It has an overhanging portion that extends. The projecting portion on the left side of the base prism 3 and the projecting portion of the first side prism 4 are joined together by an optical adhesive to constitute a joint 10.
[0018] 第 1サイドプリズム 4の張り出し部分は段状になっており、その上面には、赤色 LED 2Rが搭載されたプリント配線基板 7の端部力 載置、接合されている。赤色 LED2R は、第 1サイドプリズム 4の底辺部の中央に位置するようになされており、赤色 LED2 Rからの射出光の方向は、第 1サイドプリズム 4における直角二等辺三角形の角柱状 の直角頂部に向かう方向である。  [0018] The protruding portion of the first side prism 4 has a stepped shape, and the end force of the printed wiring board 7 on which the red LED 2R is mounted is mounted and bonded to the upper surface. The red LED2R is positioned in the center of the bottom side of the first side prism 4, and the direction of the light emitted from the red LED2R is the right-angled apex of the right isosceles triangular prism in the first side prism 4. It is the direction toward.
[0019] 第 2サイドプリズム 5は、左方に直角が位置する概ね直角二等辺三角形の角柱状の ものであり、ベースプリズム 3の右側の張り出し部分と、その上面で接合するための右 方に延びる張り出し部分を有している。ベースプリズム 3の右側の張り出し部分と、第 1サイドプリズム 4の張り出し部分とが光学接着剤によって接合され、接合部 11を構 成する。  [0019] The second side prism 5 is a prism having a substantially right isosceles triangle shape with a right angle on the left side. The second side prism 5 is on the right side of the base prism 3 so as to be joined to the right protruding portion on the upper surface. It has an overhanging portion that extends. The protruding portion on the right side of the base prism 3 and the protruding portion of the first side prism 4 are bonded together by an optical adhesive to form a bonded portion 11.
[0020] 第 2サイドプリズム 5の張り出し部分は段状になっており、その上面には、青色 LED 2Bが搭載されたプリント配線基板 9の端部が、載置、接合されている。青色 LED2B は、第 2サイドプリズム 5の底辺部の中央に位置するようになされており、青色 LED2 Bからの射出光の方向は、第 2サイドプリズム 5における直角二等辺三角形の角柱状 の直角頂部に向かう方向である。 [0020] The projecting portion of the second side prism 5 has a stepped shape, and the end portion of the printed wiring board 9 on which the blue LED 2B is mounted is placed and bonded on the upper surface thereof. The blue LED2B is located at the center of the bottom of the second side prism 5, and the blue LED2 The direction of the light emitted from B is the direction toward the right-angled apex of the right isosceles triangular prism in the second side prism 5.
[0021] アッパープリズム 6は、下方に直角が位置する概ね直角二等辺三角形の角柱状の ものであり、その底辺部から、僅かに左右に張り出した部分を有する。上述した第 1サ イドプリズム 4及び第 2サイドプリズム 5の上端部が平面となされており、これら平面と、 アッパープリズム 6の左右に張り出した部分とが、光学接着剤によって接合され、接 合部 12及び 13を構成する。  [0021] The upper prism 6 is a prism having a generally right isosceles triangular shape with a right angle located downward, and has a portion slightly protruding from the bottom side to the left and right. The upper ends of the first side prism 4 and the second side prism 5 described above are flat surfaces, and these flat surfaces and the portions protruding to the left and right of the upper prism 6 are joined by an optical adhesive, and the joint portion 12 And 13 are configured.
[0022] ベースプリズム 3、第 1サイドプリズム 4、第 2サイドプリズム 5及びアッパープリズム 6 でなる X型ダイクロイツクプリズムの中心から、赤色 LED2R、緑色 LED2G及び青色 LED2Bの発光点までの距離は等しくなるようになされている。  [0022] The distances from the center of the X-type dichroic prism consisting of the base prism 3, the first side prism 4, the second side prism 5, and the upper prism 6 to the light emitting points of the red LED 2R, the green LED 2G, and the blue LED 2B are equal. It is made like that.
[0023] ベースプリズム 3、第 1サイドプリズム 4、第 2サイドプリズム 5及びアッパープリズム 6 において、直角二等辺三角形の角柱状における、他のプリズムの面と対向する面は 、図 2に、第 2サイドプリズム 5について例示するように、周辺の接合部 20を除いて底 部が平面の凹部 21A、 21Bとなっており、この凹部 21A、 21Bには、光機能層として のサブ波長格子 22A、 22Bが設けられている。これらサブ波長格子 22A及び 22Bは 、後述するように、反射する色成分が異なっている。  In the base prism 3, the first side prism 4, the second side prism 5, and the upper prism 6, the surfaces facing the surfaces of other prisms in the prism shape of a right isosceles triangle are shown in FIG. As illustrated for the side prism 5, the bottoms are flat concave portions 21A and 21B except for the peripheral joint portion 20. The concave portions 21A and 21B have sub-wavelength gratings 22A and 22B as optical functional layers. Is provided. These sub-wavelength gratings 22A and 22B have different color components to be reflected, as will be described later.
[0024] 上述したような凹部 21A、 21Bなどの存在により、 X型ダイクロイツクプリズムにおけ る X字状の部分は、図 1に示すように、気密空間 14となっている。  [0024] Due to the presence of the recesses 21A and 21B as described above, the X-shaped portion of the X-type dichroic prism is an airtight space 14 as shown in FIG.
[0025] 図 3は、気密空間 14回りの拡大断面図である。気密空間 14は、中心から、右上方 向、左下方向、左上方向、右下方向にそれぞれ 2面ずつ延びる平面を有している。 なお、右上方向及び左下方向に延びる面が、特許請求の範囲における第 1面に該 当し、左上方向及び右下方向に延びる面が、特許請求の範囲における第 2面に該 当する。  FIG. 3 is an enlarged cross-sectional view around the airtight space 14. The airtight space 14 has two planes extending from the center in the upper right direction, the lower left direction, the upper left direction, and the lower right direction. The surface extending in the upper right direction and the lower left direction corresponds to the first surface in the claims, and the surface extending in the upper left direction and the lower right direction corresponds to the second surface in the claims.
[0026] 中心力 右上方向に延びる 2面の平面にそれぞれ設けられた 2つのサブ波長格子  [0026] Central force Two sub-wavelength gratings respectively provided on two planes extending in the upper right direction
22Aは、赤色 LED2Rから出射された赤色光を反射すると共に、緑色 LED2G及び 青色 LED2Bから出射された他の色の光を透過させるものである。中心から左下方向 に延びる 2面の平面にそれぞれ設けられた 2つのサブ波長格子 22Aも同様に、赤色 LED2Rから出射された赤色光を反射すると共に、緑色 LED2G及び青色 LED2B 力 出射された他の色の光を透過させるものである。 22A reflects red light emitted from the red LED 2R and transmits light of other colors emitted from the green LED 2G and the blue LED 2B. Similarly, the two sub-wavelength gratings 22A provided on the two planes extending in the lower left direction from the center also reflect the red light emitted from the red LED2R, and the green LED2G and blue LED2B. Forces light of another color emitted.
[0027] また、中心から左上方向に延びる 2面の平面にそれぞれ設けられた 2つのサブ波長 格子 22Bは、青色 LED2Bから出射された青色光を反射すると共に、緑色 LED2G 及び赤色 LED2Rから出射された他の色の光を透過させるものである。中心から右下 方向に延びる 2面の平面にそれぞれ設けられた 2つのサブ波長格子 22Bも同様に、 青色 LED2Bから出射された青色光を反射すると共に、緑色 LED2G及び赤色 LED 2Rから出射された他の色の光を透過させるものである。  [0027] The two sub-wavelength gratings 22B provided on the two planes extending in the upper left direction from the center reflect the blue light emitted from the blue LED 2B and are emitted from the green LED 2G and the red LED 2R. It transmits light of other colors. Similarly, the two sub-wavelength gratings 22B provided on the two planes extending from the center to the lower-right direction reflect the blue light emitted from the blue LED 2B and the other emitted from the green LED 2G and the red LED 2R. The light of the color is transmitted.
[0028] 例えば、赤色 LED2Rから出射された赤色光(その波長を 680nmとする)を反射す るサブ波長格子を、ポリカーボネートを用いて構成する場合に、格子 (突起)のピッチ (後述する図 4の p参照)を約 400nm、格子幅(後述する図 4の d参照)を約 310nm、 格子高さ(後述する図 4の h参照)を約 220nmとすれば良レ、。また例えば、青色 LED 2Bから出射された光線 (その波長を 450nmとする)を反射するサブ波長格子を、ポリ カーボネートを用いて構成する場合に、格子(突起)のピッチを約 440nm、格子幅を 約 220nm、格子高さを約 220nmとすれば良レ、。  [0028] For example, when a sub-wavelength grating that reflects red light (having a wavelength of 680 nm) emitted from the red LED 2R is made of polycarbonate, the pitch of the grating (protrusion) (see FIG. 4 described later). (Refer to p in Fig. 4) is about 400 nm, the lattice width (see d in Fig. 4 to be described later) is about 310 nm, and the grating height (see h in Fig. 4 to be described later) is about 220 nm. For example, when a sub-wavelength grating that reflects light emitted from the blue LED 2B (having a wavelength of 450 nm) is made of polycarbonate, the pitch of the grating (projections) is about 440 nm and the grating width is It is good if the grid height is about 220nm.
[0029] 図 1では、緑色 LED2Gから出射された緑色光が反射することなく透過するような位 置に、緑色 LED2Gを設けたものを示した力 3原色 LED2R、 2G、 2Bの配置はこれ に限定されるものではない。仮に、緑色 LED2Gから出射された緑色光を反射させる サブ波長格子を、ポリカーボネートを用いて構成する場合に、格子(突起)のピッチを 約 350nm、格子幅を約 230nm、格子高さを約 220nmとすれば良い。  [0029] In Fig. 1, the power of the green LED 2G is shown in a position where the green light emitted from the green LED 2G is transmitted without being reflected. The arrangement of the three primary colors LEDs 2R, 2G, and 2B is shown here. It is not limited. If the sub-wavelength grating that reflects the green light emitted from the green LED2G is made of polycarbonate, the pitch of the grating (protrusions) is about 350 nm, the grating width is about 230 nm, and the grating height is about 220 nm. Just do it.
[0030] なお、図 1及び図 2では図示を省略している力 図 3に示すように、接合部 20 (10〜 13)には、その一方の面に設けられた突部又は突条と、他方の面に設けられた凹部 又は凹条とでなる嵌合部 23を設け、プリズム 3〜6を適切に位置決めできるようにす ることが好ましい。嵌合部 23が、突条及び凹条でなる場合には、気密性の向上にも 寄与している。  [0030] It should be noted that the force not shown in FIG. 1 and FIG. 2, as shown in FIG. 3, the joint 20 (10-13) has a protrusion or protrusion provided on one surface thereof. It is preferable to provide a fitting portion 23 formed of a recess or a groove provided on the other surface so that the prisms 3 to 6 can be appropriately positioned. In the case where the fitting portion 23 is formed of a ridge and a groove, it contributes to an improvement in airtightness.
[0031] サブ波長格子 22 (22A、 22B)を基材 (プリズム 3〜6)に設ける方法(作製方法)と しては、例えば、以下の方法を適用することができる。第 1は、基材 2に、サブ波長格 子 22として機能する高分子膜を転写 (インプリント)し、サブ波長格子 22を作製する。 第 2は、基材が高分子の基材の場合には、イオンビームを照射したり、フォト微細加 ェ技術を用いたりして基材に対する直接の加工を施すことにより、サブ波長格子 22 を作製する。第 2の作製方法には、金型を用いて、基材の表面にサブ波長格子 22の 凹凸を直接作製する場合が含まれる。第 3に、基材の表面にストリップ (箔)を貼り付 けていくことにより、サブ波長格子 22を作製する。第 4に、シリコン、ゲルマニウム又は 化合物半導体などの半導体基板の表面を加工してサブ波長格子 22を形成し、サブ 波長格子 22が形成された半導体基板を基材に接合する。 [0031] As a method (manufacturing method) for providing the sub-wavelength grating 22 (22A, 22B) on the base material (prisms 3 to 6), for example, the following method can be applied. First, a sub-wavelength grating 22 is produced by transferring (imprinting) a polymer film functioning as the sub-wavelength grating 22 onto the substrate 2. Second, when the substrate is a polymer substrate, it is irradiated with an ion beam or photo fine processing. The sub-wavelength grating 22 is produced by direct processing on the substrate using, for example, a technique. The second production method includes a case where the unevenness of the sub-wavelength grating 22 is directly produced on the surface of the substrate using a mold. Third, the subwavelength grating 22 is fabricated by attaching a strip (foil) to the surface of the substrate. Fourth, the surface of a semiconductor substrate such as silicon, germanium, or a compound semiconductor is processed to form a sub-wavelength grating 22, and the semiconductor substrate on which the sub-wavelength grating 22 is formed is bonded to a base material.
[0032] 図 4は、第 1の実施形態に係るサブ波長格子 22 (22A、 22B)の表面の拡大断面図 であり、例えば、金型を利用して作製されるサブ波長格子 22を示している。サブ波長 格子 22は、格子状に配置される突起の伸長方向が、図 4に示すように、サブ波長格 子 22の法線方向と平行ではなく傾斜している。格子状に配置される突起の伸長方向 は、金型のプレス方向、金型の抜き方向に平行になっており、金型を利用した作製 時に突起が損傷し難くなされている。もちろん、金型の抜き方向がサブ波長格子形 成面に対して垂直な場合は、突起の伸長方向がサブ波長格子形成面に垂直になる ようにサブ波長格子を設計するのが好ましい。  FIG. 4 is an enlarged cross-sectional view of the surface of the sub-wavelength grating 22 (22A, 22B) according to the first embodiment. For example, FIG. 4 shows the sub-wavelength grating 22 manufactured using a mold. Yes. In the sub-wavelength grating 22, the extending direction of the protrusions arranged in a lattice shape is not parallel to the normal direction of the sub-wavelength grating 22 but is inclined as shown in FIG. The extending direction of the protrusions arranged in a lattice shape is parallel to the pressing direction of the mold and the pulling direction of the mold, so that the protrusions are not easily damaged during manufacturing using the mold. Of course, when the mold drawing direction is perpendicular to the sub-wavelength grating forming surface, it is preferable to design the sub-wavelength grating so that the extending direction of the protrusion is perpendicular to the sub-wavelength grating forming surface.
[0033] 第 1の実施形態の光源モジュール 1において、赤色 LED2Rが出射した赤色光は、 気密空間 14内を、中心から右上及び左下に伸長されているサブ波長格子 22Aによ つて反射されて上方に向力う光に変更される。右上及び左下に伸長されているサブ 波長格子 22Aは、赤色 LED2Rが出射した光が所望する赤成分以外の波長成分を 含んでいたとしても、所望する赤成分の波長成分 (波長帯域)だけを反射するものと なっている。  [0033] In the light source module 1 of the first embodiment, the red light emitted from the red LED 2R is reflected in the hermetic space 14 by the sub-wavelength grating 22A extending from the center to the upper right and lower left, and upward. It is changed to light that is suitable for. The sub-wavelength grating 22A extended to the upper right and lower left reflects only the wavelength component (wavelength band) of the desired red component, even if the light emitted from the red LED2R contains a wavelength component other than the desired red component. It is supposed to be.
[0034] また、青色 LED2Bが出射した青色光は、気密空間 14内を、中心から左上及び右 下に伸長されているサブ波長格子 22Bによって反射されて上方に向力、う光に変更さ れる。  [0034] The blue light emitted from the blue LED 2B is reflected in the airtight space 14 by the sub-wavelength grating 22B extending from the center to the upper left and the lower right, and is changed to an upward force and light. .
[0035] 左上及び右下に伸長されているサブ波長格子 22Bは、青色 LED2Bが出射した光が 所望する青成分以外の波長成分を含んでいたとしても、所望する青成分の波長成分 (波長帯域)だけを反射するものとなっている。  [0035] The sub-wavelength grating 22B extended in the upper left and lower right has a desired blue component wavelength component (wavelength band) even if the light emitted from the blue LED 2B includes a wavelength component other than the desired blue component. ) Only.
[0036] さらに、緑色 LED2Gが出射した上方に向力 緑色光は、気密空間 14内の進行方 向に位置するサブ波長格子 22A、 22Bをそのまま透過して上方に向力、う光のまま、 第 1の実施形態の光源モジュール 1から出射される。なお、各サブ波長格子 22A、 2 2Bは、緑色 LED2Gが出射した上方に向力 光が所望する緑成分以外の波長成分 を含んでいたとしても、所望する緑成分の波長成分 (波長帯域)だけを通過させるも のとなつていても良い。 [0036] Further, the green LED 2G emits upward force Green light passes through the sub-wavelength gratings 22A and 22B positioned in the traveling direction in the airtight space 14 as they are, and the upward force and light remain as they are. Light is emitted from the light source module 1 of the first embodiment. Each sub-wavelength grating 22A, 22B has only the wavelength component (wavelength band) of the desired green component even if the directional light contains a wavelength component other than the desired green component above the green LED 2G. You may pass it through.
[0037] 以上のようにして、 3原色 LED2R、 2G、 2Bから出射された光力 第 1の実施形態 の光源モジュール 1における X型ダイクロイツクプリズムによって、ほぼ光軸が揃えら れた状態で加法混色され、白色の照明光として、図示しない被照明物体を照明する  [0037] As described above, the light power emitted from the three primary colors LEDs 2R, 2G, and 2B is added in the state where the optical axes are substantially aligned by the X-type dichroic prism in the light source module 1 of the first embodiment. Illuminates an object (not shown) as mixed illumination and white illumination light
[0038] 第 1の実施形態の光源モジュール 1において、図示は省略するが、各 LED2R、 2G 、 2Bからの出射光量を電気的に制御する光量制御手段がプリント配線基板 8、 9、 1 0に実装されていたり、外部に外付けで設けられていたりしており、加法混色比率を 可変させることができるようになされている。すなわち、図 5に示すような、各 LED2R、 2G、 2Bからの所望帯域 (R、 G、 B)の光強度を、独立して制御可能となされている。 [0038] In the light source module 1 of the first embodiment, although not shown, the light quantity control means for electrically controlling the quantity of light emitted from the LEDs 2R, 2G, 2B is provided on the printed wiring boards 8, 9, 10. It is mounted or provided externally so that the additive color mixture ratio can be varied. That is, as shown in FIG. 5, the light intensity of the desired bands (R, G, B) from the LEDs 2R, 2G, 2B can be controlled independently.
[0039] また、各 LED2R、 2G、 2Bは、光量を検出するための光検出器としてのフォトダイォ ードを内蔵していて、検出光量を光量制御手段にフィードバックするようにしていても 良い。  [0039] Each of the LEDs 2R, 2G, and 2B may have a built-in photodiode as a photodetector for detecting the light amount, and the detected light amount may be fed back to the light amount control means.
[0040] 第 1の実施形態の光源モジュール 1によれば、以下のような効果(1)〜(5)を奏する こと力 Sできる。  [0040] According to the light source module 1 of the first embodiment, the following effects (1) to (5) can be achieved.
[0041] (1)ダイクロイツクミラーとして合波を行う機能層を、誘電体多層膜ではなぐサブ波 長格子で形成したため、工数の力かる成膜工程を省略することが可能となり、製造が 容易になり、大幅なコストダウンが可能となる。  [1] (1) Since the functional layer that performs multiplexing as a dichroic mirror is formed with a sub-wavelength grating that is not a dielectric multilayer film, it is possible to omit a film-forming process that requires man-hours and facilitates manufacture. Thus, a significant cost reduction is possible.
[0042] (2)サブ波長格子を、複数のプリズムの接合によって形成した気密空間内に設けて 、外気と隔離して構成しているために、高い信頼性の機能膜とすることができる。すな わち、サブ波長格子は、微細な多くの格子 (突起)を有して損傷し易ぐまた、水や油 などの付着によって機能が低下又は損なわれるものであるが、気密空間内に設けて いるので、損傷を防止でき、また、水や油などの付着を防止でき、高い信頼性の機能 膜とすることができる。  (2) Since the sub-wavelength grating is provided in an airtight space formed by joining a plurality of prisms and separated from the outside air, a highly reliable functional film can be obtained. In other words, the sub-wavelength grating has many fine gratings (protrusions) and is easily damaged, and its function is deteriorated or impaired by adhesion of water or oil. Since it is provided, damage can be prevented and adhesion of water or oil can be prevented, and a highly reliable functional film can be obtained.
[0043] (3) 3原色光源 (LED)からの光の加法混色で白色を得ているために、より大きな色 三角形が実現でき、被照明物体の色再現範囲を広くすることができる。図 6は、この 効果を説明するための CIEの色度図である。図 7は、 LEDを 1個用いて白色光を得る 場合の説明図である。 [0043] (3) Since the white color is obtained by additive color mixture of light from the three primary color light sources (LEDs), a larger color A triangle can be realized, and the color reproduction range of the illuminated object can be widened. Figure 6 is a CIE chromaticity diagram for explaining this effect. FIG. 7 is an explanatory diagram for obtaining white light using one LED.
[0044] 図 7は、青色 LEDからの光の光路上に黄色蛍光体を配して白色を実現しょうとした 場合のスペクトラムを示している。図 6において、点 Aは青色 LEDの色度を示しており 、点 Bは黄色の蛍光体によって励起される光のピーク位置における色度を示している 。そのため、従来方法では、青色 LEDからの光の光量の調整や、黄色蛍光体の塗 布量を調整することにより、線分 AB上の任意の点の色度を得ることを意図している。 しかし、図 7に示した青色 LEDと黄色蛍光体とを組み合わせた白色 LEDスぺクトノレ から分かるように、実際は、この白色光には赤色成分や緑色成分が含まれている。従 つて、実質的には図 6の色三角形 ACDで示される範囲の色を再現することが可能と なる。  [0044] FIG. 7 shows a spectrum in a case where a white phosphor is arranged on the optical path of light from a blue LED to achieve white. In FIG. 6, point A shows the chromaticity of the blue LED, and point B shows the chromaticity at the peak position of the light excited by the yellow phosphor. For this reason, the conventional method intends to obtain the chromaticity of an arbitrary point on the line segment AB by adjusting the amount of light from the blue LED and adjusting the coating amount of the yellow phosphor. However, as can be seen from the white LED spectrum that combines the blue LED and yellow phosphor shown in Figure 7, this white light actually contains red and green components. Therefore, it is possible to reproduce colors in the range indicated by the color triangle ACD in FIG.
[0045] 一方、第 1の実施形態のように、赤色 LED2R、緑色 LED2G及び青色 LED2Bの 3 原色 LEDからの発光光を加法混色して得られる色三角形は、各 LED2R、 2G、 2B 力 の光の色純度が極めて高いために、図 6に示すような大きな色三角形 AEFとなり 、広い範囲の色再現が可能となる。  [0045] On the other hand, as in the first embodiment, the color triangle obtained by additively mixing the emitted light from the three primary colors LED of red LED2R, green LED2G and blue LED2B is the light of each LED2R, 2G, 2B power. Because of the extremely high color purity, the large color triangle AEF shown in Fig. 6 becomes possible, and a wide range of color reproduction is possible.
[0046] 従って、 3原色光源(LED)力もの光の加法混色比率の調整により、三角形 AEF内 の任意の色度の出射光を、第 1の実施形態の光源モジュール 1から射出することが でき、照明光の色の多様性を高くしている。  [0046] Therefore, by adjusting the additive color mixture ratio of light of three primary color light sources (LEDs), it is possible to emit light of arbitrary chromaticity within the triangle AEF from the light source module 1 of the first embodiment. , Increase the variety of color of illumination light.
[0047] (4)光源として LEDを用いるため、高速変調が可能な長寿命な光源モジュールと なっている。  [0047] (4) Since an LED is used as the light source, it is a long-life light source module capable of high-speed modulation.
[0048] (5)同一の作用を果たすサブ波長格子が、平行平面の両面に設けられているので 、そのサブ波長格子が担っている光の制御機能を確実に果たすことができる。なお、 平行平面の一面だけにサブ波長格子が設けられていても良いことは勿論である。  [0048] (5) Since the sub-wavelength gratings having the same function are provided on both surfaces of the parallel plane, the light control function carried by the sub-wavelength gratings can be reliably achieved. Of course, the sub-wavelength grating may be provided only on one surface of the parallel plane.
[0049] (B)第 2の実施形態  [0049] (B) Second embodiment
次に、本発明による光源モジュールの第 2の実施形態を、図面を参照しながら詳述 する。  Next, a second embodiment of the light source module according to the present invention will be described in detail with reference to the drawings.
[0050] 図 8は、第 2の実施形態に係る光源モジュールの構造を示す概略断面図であり、第 1の実施形態に係る図 1に対応する図面であり、図 1との同一、対応部分には同一符 号を付して示している。 FIG. 8 is a schematic cross-sectional view showing the structure of the light source module according to the second embodiment. FIG. 2 is a diagram corresponding to FIG. 1 according to the first embodiment, and the same and corresponding parts as those in FIG. 1 are denoted by the same reference numerals.
[0051] 図 8に示す第 2の実施形態の光源モジュール 1 Aにおいては、ベースプリズム 3、第 1サイドプリズム 4及び第 2サイドプリズム 5の底面中央部には、例えば、円柱状の孔 でなる嵌合受部 3H、 4H、 5Hが設けられており、この嵌合受部 3H、 4H、 5Hに、対 応するいずれかの LED2G、 2R、 2Bが嵌合されている。このようにすることによって、 各 LED2G、 2R、 2Bを対応する嵌合受部 3H、 4H、 5Hに揷入し、接着固定すること によって、各 LED2G、 2R、 2Bの光軸方向の位置及び出射角出しを容易に行うこと が可能となる。  In the light source module 1 A of the second embodiment shown in FIG. 8, the base prism 3, the first side prism 4, and the second side prism 5 have, for example, a cylindrical hole at the center of the bottom surface. The fitting receiving portions 3H, 4H, 5H are provided, and any of the corresponding LEDs 2G, 2R, 2B are fitted into the fitting receiving portions 3H, 4H, 5H. By doing this, each LED2G, 2R, 2B is inserted into the corresponding fitting receiving portion 3H, 4H, 5H and bonded and fixed, so that the position and emission direction of each LED2G, 2R, 2B can be obtained. It is possible to easily perform cornering.
[0052] 図 9は、第 2の実施形態における LED30 (2R、 2G、 2B)の構成を示す概略断面図 である。なお、図 9の左右方向は、図 8の紙面法線方向に対応している。  FIG. 9 is a schematic cross-sectional view showing the configuration of the LED 30 (2R, 2G, 2B) in the second embodiment. Note that the horizontal direction in FIG. 9 corresponds to the normal direction of the paper in FIG.
[0053] LED30は、 LEDチップ 31と、フレキシブルなプリント配線基板 32 (7〜9)の配線 3 3と LEDチップ 31とを接続させるワイヤー 34と、 LEDチップ 31及びワイヤー 34を封 止すると共にレンズ機能を発揮する封止レンズ 35とを有する。封止レンズ 35は、嵌 合受部 3H、 4H、 5Hと嵌合する円筒状をしていると共に、その先端側が、 LEDチッ プ 31からの射出光をできるだけ平行光に近い発散光に変換するようなレンズ形状を している。この封止レンズ 35は、 LEDチップ 31からの出射光が小さい場合や、後述 する実施形態のように、各プリズム(3〜6)が集光レンズを有している場合には、省略 すること力 Sできる。また、 LEDチップ 31を載せて固定する支持台は、 LEDチップ 31 の発光点位置を光軸上の適切な位置に決めると同時に、 LEDチップ 31を接地する 機能を有している。  [0053] The LED 30 includes an LED chip 31, a wire 34 for connecting the wiring 33 of the flexible printed wiring board 32 (7-9) and the LED chip 31, and the LED chip 31 and the wire 34 are sealed and a lens. And a sealing lens 35 that exhibits its function. The sealing lens 35 has a cylindrical shape that fits with the fitting receiving portions 3H, 4H, and 5H, and its tip side converts the emitted light from the LED chip 31 into divergent light that is as close to parallel light as possible. The lens shape is as follows. The sealing lens 35 is omitted when the light emitted from the LED chip 31 is small or when each prism (3 to 6) has a condensing lens as in an embodiment described later. Power S can be. The support base on which the LED chip 31 is mounted and fixed has the function of grounding the LED chip 31 at the same time as determining the light emitting point position of the LED chip 31 at an appropriate position on the optical axis.
[0054] 気密空間 14や、気密空間 14内に設けられるサブ波長格子(図 8では省略;図 3の 2 2A、 22B参照)については、第 2の実施形態の光源モジュール 1Aも、第 1の実施形 態の光源モジュール 1と同様である。  [0054] Regarding the airtight space 14 and the sub-wavelength grating provided in the airtight space 14 (omitted in FIG. 8; see 22A and 22B in FIG. 3), the light source module 1A of the second embodiment is also the first This is the same as the light source module 1 of the embodiment.
[0055] 第 2の実施形態によっても、第 1の実施形態と同様な効果を奏することができる。こ れに加え、第 2の実施形態の場合、 3原色 LEDを嵌合によって取り付けているので、 3原色 LEDの位置を適切なものとし易いという効果をも奏する。また、 3原色 LEDと X 型ダイクロイツクプリズムとの光学的な結合もし易いものとなっている。 [0056] (C)第 3の実施形態 [0055] The second embodiment can provide the same effects as those of the first embodiment. In addition, in the case of the second embodiment, since the three primary color LEDs are attached by fitting, there is an effect that the positions of the three primary color LEDs can be easily made appropriate. In addition, it is easy to optically connect the three primary color LEDs and the X-type dichroic prism. [0056] (C) Third embodiment
次に、本発明による光源モジュールの第 3の実施形態を、図面を参照しながら詳述 する。  Next, a third embodiment of the light source module according to the present invention will be described in detail with reference to the drawings.
[0057] 図 10は、第 3の実施形態に係る光源モジュールの構造を示す概略断面図であり、 第 1の実施形態に係る図 1に対応する図面であり、図 1との同一、対応部分には同一 符号を付して示している。  FIG. 10 is a schematic cross-sectional view showing the structure of the light source module according to the third embodiment, and is a drawing corresponding to FIG. 1 according to the first embodiment. Are denoted by the same reference numerals.
[0058] 図 10に示す第 3の実施形態の光源モジュール 1Bにおいては、赤色 LED2R力 そ の出射光が上方に進行するように設けられていると共に、第 1サイドプリズム 4に、赤 色 LED2Rからの光の進行方向を上方から右方に変換する第 1補助プリズム 40を一 体的に設けたものである。また、第 3の実施形態の光源モジュール 1Bにおいては、 青色 LED2Bが、その出射光が上方に進行するように設けられていると共に、第 2サ イドプリズム 5に、青色 LED2Bからの光の進行方向を上方から左方に変換する第 2 補助プリズム 41を一体的に設けたものである。  In the light source module 1B of the third embodiment shown in FIG. 10, the red LED 2R force is provided so that the emitted light travels upward, and the red LED 2R is connected to the first side prism 4. The first auxiliary prism 40 for integrally changing the traveling direction of the light from above to the right is integrally provided. In the light source module 1B of the third embodiment, the blue LED 2B is provided so that the emitted light travels upward, and the traveling direction of the light from the blue LED 2B is indicated on the second side prism 5. A second auxiliary prism 41 for converting from the top to the left is integrally provided.
[0059] ここで、第 1補助プリズム 40、第 2補助プリズム 41の折り返しを展開してみた場合、 各 LED2R、 2G、 2Bの発光点から、 X字状の中心までの距離は等しい。  Here, when the folding of the first auxiliary prism 40 and the second auxiliary prism 41 is developed, the distances from the light emitting points of the LEDs 2R, 2G, and 2B to the X-shaped center are equal.
[0060] なお、図 10では、第 1の実施形態に係る図 1とは異なり、赤色 LED2Rを搭載したプ リント配線基板 8、及び、青色 LED2Bを搭載したプリント配線基板 9を、ベースプリズ ム 3の張り出し部分に設けたものを示したが、図 1と同様な相手部材に設けても良いこ とは勿論である。  [0060] In FIG. 10, unlike FIG. 1 according to the first embodiment, the printed wiring board 8 on which the red LED 2R is mounted and the printed wiring board 9 on which the blue LED 2B is mounted are shown in the base prism 3. Although what was provided in the overhang | projection part was shown, of course, you may provide in the other member similar to FIG.
[0061] 気密空間 14や、気密空間 14内に設けられるサブ波長格子(図 8では省略;図 3の 2 2A、 22B参照)については、第 3の実施形態の光源モジュール 1Bも、第 1の実施形 態の光源モジュール 1と同様である。  [0061] Regarding the airtight space 14 and the sub-wavelength grating provided in the airtight space 14 (omitted in FIG. 8; see 22A and 22B in FIG. 3), the light source module 1B of the third embodiment is also the first This is the same as the light source module 1 of the embodiment.
[0062] 第 3の実施形態によっても、第 1の実施形態と同様な効果を奏することができる。第  [0062] According to the third embodiment, the same effects as those of the first embodiment can be obtained. First
3の実施形態によれば、全ての LED2R、 2G、 2Bを同様に、プリント配線基板 7〜9 に搭載できるので、同一構成のプリント配線基板を各色成分用のプリント配線基板 7 〜9に適用できるようにすることが可能である。  According to the third embodiment, since all the LEDs 2R, 2G, and 2B can be similarly mounted on the printed wiring boards 7 to 9, the printed wiring boards having the same configuration can be applied to the printed wiring boards 7 to 9 for the respective color components. It is possible to do so.
[0063] また、サブ波長格子が形成される各プリズム 3〜6をプラスチックで作製することが 可能であるため、補助プリズム 40、 41の一体化、外径形状の自由度の向上ができる ために設計をフレキシブルにすることが可能となる。この点は、後述する第 4〜第 6の 実施形態におけるような集光レンズを、プリズム(3〜6)に一体化する場合も同様であ る。 [0063] Since each of the prisms 3 to 6 on which the sub-wavelength grating is formed can be made of plastic, the auxiliary prisms 40 and 41 can be integrated and the degree of freedom of the outer diameter shape can be improved. Therefore, the design can be made flexible. This also applies to the case where the condenser lens as in the fourth to sixth embodiments described later is integrated with the prism (3-6).
[0064] さらに、第 3の実施形態のような配置によって、各 LED2R、 2G、 2Bの光軸方向の 調整が不要となり、各 LED2R、 2G、 2Bの光軸調整が容易となる。  [0064] Further, the arrangement as in the third embodiment eliminates the need to adjust the optical axis direction of each LED 2R, 2G, 2B, and facilitates the optical axis adjustment of each LED 2R, 2G, 2B.
[0065] (D)第 4の実施形態  [0065] (D) Fourth Embodiment
次に、本発明による光源モジュールの第 4の実施形態を、図面を参照しながら詳述 する。  Next, a fourth embodiment of the light source module according to the present invention will be described in detail with reference to the drawings.
[0066] 図 11は、第 4の実施形態に係る光源モジュールの構造を示す概略断面図であり、 第 3の実施形態に係る図 10に対応する図面であり、図 10との同一、対応部分には同 一符号を付して示している。  FIG. 11 is a schematic cross-sectional view showing the structure of the light source module according to the fourth embodiment, which is a drawing corresponding to FIG. 10 according to the third embodiment, and is the same as or corresponding to FIG. Are indicated by the same reference numerals.
[0067] 図 11に示す第 4の実施形態の光源モジュール 1Cにおいては、緑色 LED2Gから の出射光を集光する集光レンズ (第 3集光レンズ) 50をベースプリズム 3に一体的に 設け、赤色 LED2Rからの出射光を集光する集光レンズ (第 1集光レンズ) 51を第 1サ イドプリズム 4に一体的に設け、青色 LED2Bからの出射光を集光する集光レンズ (第 2集光レンズ) 52を第 2サイドプリズム 5に一体的に設けている。  In the light source module 1C of the fourth embodiment shown in FIG. 11, a condensing lens (third condensing lens) 50 that condenses the light emitted from the green LED 2G is provided integrally with the base prism 3, A condenser lens (first condenser lens) 51 that condenses the light emitted from the red LED 2R is provided integrally with the first side prism 4, and a condenser lens (second condenser) that condenses the light emitted from the blue LED 2B. (Optical lens) 52 is provided integrally with the second side prism 5.
[0068] なお、集光レンズ 50〜52が有効に機能するように、各 LED2G、 2R、 2Bから集光 レンズ 50〜52までに所定の距離を確保するように、各プリズム 3、 4、 5の形状などが 選定されている。  [0068] It should be noted that each prism 3, 4, 5 is secured so as to secure a predetermined distance from each LED 2G, 2R, 2B to the condenser lenses 50-52 so that the condenser lenses 50-52 function effectively. The shape is selected.
[0069] 第 4の実施形態によっても、第 3の実施形態と同様な効果を奏することができる。第 4の実施形態によれば、集光レンズを設けて、各 LEDからの光を平行光(又はそれに 近い発散光)とするようにしたので、加法混色をより適切に実行させることができる。  [0069] According to the fourth embodiment, the same effects as those of the third embodiment can be obtained. According to the fourth embodiment, since the condensing lens is provided so that the light from each LED is parallel light (or divergent light close thereto), additive color mixture can be executed more appropriately.
[0070] また、サブ波長格子(22A、 22B)によるダイクロイツクミラーの特性は、入射角依存 性を少なくすることが可能であるが、第 4の実施形態のような構成とすることによって、 ダイクロイツクミラーの光学特性を略平行入射光のみに対して行うことが可能となり、こ のダイクロイツクミラーの光学特性を向上させることができるようになった。  [0070] The characteristics of the dichroic mirror by the sub-wavelength gratings (22A, 22B) can reduce the incident angle dependency. However, by adopting the configuration as in the fourth embodiment, The optical characteristics of the mirror can be performed only for substantially parallel incident light, and the optical characteristics of the dichroic mirror can be improved.
[0071] 図 12は、第 4の実施形態の一部を変形した他の実施形態(1)に係る光源モジユー ルを示している。図 12に示す光源モジュール 1Dは、第 4の実施形態の光源モジユー ル 1Cにおける集光レンズ 50〜52をフレネルレンズ 60〜62に置き換えたものである FIG. 12 shows a light source module according to another embodiment (1) obtained by modifying a part of the fourth embodiment. The light source module 1D shown in FIG. 12 is a light source module of the fourth embodiment. Condensation lens 50-52 in Le 1C is replaced with Fresnel lens 60-62
[0072] 図 13は、第 4の実施形態の一部を変形した他の実施形態(2)に係る光源モジユー ルを示している。図 13に示す光源モジュール 1Eは、図 12に示す光源モジュール 1D に比較すると、アッパープリズム 6において加法混色光が出ていく面にも、フレネルレ ンズ 63が設けられている点が異なっている。集光機能を、フレネノレレンズ 60〜62と、 フレネルレンズ 63とに分散させて実現させるものとなっている。このとき、フレネルレン ズ 63は必ずしも集光レンズ (又は凸レンズ)である必要はなぐ使用法によっては発 散レンズ (又は凹レンズ)であっても良い。 FIG. 13 shows a light source module according to another embodiment (2) obtained by modifying a part of the fourth embodiment. The light source module 1E shown in FIG. 13 is different from the light source module 1D shown in FIG. 12 in that a Fresnel lens 63 is provided on the surface of the upper prism 6 where additive color mixture light is emitted. The light condensing function is realized by being distributed to the Fresnel lens 60 to 62 and the Fresnel lens 63. At this time, the Fresnel lens 63 is not necessarily a condensing lens (or convex lens), and may be a diverging lens (or concave lens) depending on the usage.
[0073] (E)他の実施形態  [0073] (E) Other embodiments
上記各実施形態では、 3原色が赤色、緑色、青色であるものを示したが、色度座標 上の独立した任意の 3色を 3原色に適用するようにしても良レ、。また、 4原色以上を加 法混色する光源モジュールにも本発明を適用することができる(例えば、後述する図 14に示す方法を拡張して 4原色以上を加法混色することができる)。  In the above embodiments, the three primary colors are red, green, and blue. However, any three independent colors on the chromaticity coordinates may be applied to the three primary colors. The present invention can also be applied to a light source module that additively mixes four or more primary colors (for example, the method shown in FIG. 14 described later can be expanded to add and mix four or more primary colors).
[0074] さらに、上記各実施形態においては、加法混色のために、緑色 LEDからの射出光 を X型ダイクロイツクプリズムが直進させるものを示した力 直進光を、赤色 LED又は 青色 LEDからの射出光とするようにしても良レ、。言い換えると、各 LED2R、 2G、 2B の配置は、上記各実施形態のものに限定されるものではない。  [0074] Further, in each of the above embodiments, for additive color mixing, the straight light from the red LED or the blue LED is emitted from the green LED, indicating that the light emitted from the green LED goes straight by the X-type dichroic prism. Even if it is made to be light, it is good. In other words, the arrangement of the LEDs 2R, 2G, and 2B is not limited to that of each of the above embodiments.
[0075] 上記各実施形態では、 3原色 LEDからの光を加法混色する光学装置が X型ダイク ロイックプリズムであるものを示した力 S、ダイクロイツクミラーを有する他の光学装置で あっても良い。例えば、図 14に示すような、ダイクロイツクミラー面を有する光学素子 を 3個並設したような光学装置であっても良い。但し、ダイクロイツクミラーとして機能 する部分が、平行平面で規定されている気密空間になっており、その平行平面の少 なくとも一方にダイクロイツクミラーとして機能するサブ波長格子が設けられていること を要する(例えば、特開 2006— 13127号公報の図 1 (B)参照)。  In each of the above embodiments, the optical device that additively mixes the light from the three primary color LEDs may be another optical device having a force S and a dichroic mirror indicating that it is an X-type dichroic prism. . For example, as shown in FIG. 14, an optical device in which three optical elements having dichroic mirror surfaces are arranged in parallel may be used. However, the part that functions as a dichroic mirror is an airtight space defined by a parallel plane, and at least one of the parallel planes is provided with a sub-wavelength grating that functions as a dichroic mirror. This is necessary (for example, see FIG. 1 (B) of JP-A-2006-13127).
産業上の利用可能性  Industrial applicability
[0076] 本発明の光源モジュールは、例えば、 自動車ヘッドライト、画像表示用の液晶パネ ルのバックライト、室内照明、計測装置での照明光源などに用いることができる。また 、任意の色度を実現できるので、計測装置での照明光源のような任意の色度を欲す る装置には好適なものである。 [0076] The light source module of the present invention can be used, for example, as an automobile headlight, a backlight of a liquid crystal panel for image display, indoor lighting, an illumination light source in a measuring device, and the like. Also Since an arbitrary chromaticity can be realized, it is suitable for an apparatus that desires an arbitrary chromaticity such as an illumination light source in a measuring apparatus.

Claims

請求の範囲 The scope of the claims
[1] 少なくとも 3原色 LEDと、上記各 LEDからの光を加法混色する、ダイクロイツクミラー を含む光学装置とを有する光源モジュールにおレ、て、  [1] A light source module having at least three primary color LEDs and an optical device including a dichroic mirror that additively mixes light from each of the LEDs.
上記ダイクロイツクミラーとして機能する面部分が、所定の間隙を有する平行平面で 規定される気密空間と、この気密空間の少なくとも一方の平面に設けられたサブ波長 格子とを有することを特徴とする光源モジュール。  The light source characterized in that the surface portion functioning as the dichroic mirror has an airtight space defined by a parallel plane having a predetermined gap, and a sub-wavelength grating provided on at least one plane of the airtight space. module.
[2] 上記光学装置が、 X型ダイクロイツクプリズムであって、上記 3原色 LEDが、赤色 LE D、緑色 LED及び青色 LEDであり、上記 X型ダイクロイツクプリズムの X面における光 反射面が位置する部分には、所定の間隙が環境から気密に形成されており、上記赤 色 LEDからの赤色光を反射し、それ以外の光を透過する第 1面は異なるプリズム面 を含む同一面上に形成され、上記青色 LEDからの青色光を反射し、それ以外の光 を透過する第 2面も異なるプリズム面を含み上記第 1面と直交する同一面上に形成さ れ、上記第 1面には上記赤色光を選択的に反射するサブ波長格子が形成されており 、上記第 2面には上記青色光を選択的に反射するサブ波長格子が形成されており、 上記 3原色 LEDから出射された光が上記 X型ダイクロイツクプリズムで略同一光軸 上で加法混色して出射されることを特徴とする請求項 1に記載の光源モジュール。  [2] The optical device is an X-type dichroic prism, the three primary color LEDs are a red LED, a green LED, and a blue LED, and the light reflecting surface on the X surface of the X-type dichroic prism is positioned. A predetermined gap is formed airtight from the environment in the portion where the red light from the red LED is reflected and the first surface that transmits the other light is on the same surface including different prism surfaces. The second surface that is formed and reflects the blue light from the blue LED and transmits the other light is also formed on the same surface that includes a different prism surface and is orthogonal to the first surface. A sub-wavelength grating that selectively reflects the red light is formed, and a sub-wavelength grating that selectively reflects the blue light is formed on the second surface, and is emitted from the three primary color LEDs. On the same optical axis in the X-type dichroic prism. The light source module according to claim 1, characterized in that is emitted by additive color mixing.
PCT/JP2007/057446 2006-04-07 2007-04-03 Light source module WO2007116880A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006106758A JP4769620B2 (en) 2006-04-07 2006-04-07 Light source module
JP2006-106758 2006-04-07

Publications (1)

Publication Number Publication Date
WO2007116880A1 true WO2007116880A1 (en) 2007-10-18

Family

ID=38581170

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/057446 WO2007116880A1 (en) 2006-04-07 2007-04-03 Light source module

Country Status (2)

Country Link
JP (1) JP4769620B2 (en)
WO (1) WO2007116880A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01321401A (en) * 1988-06-23 1989-12-27 Matsushita Electric Ind Co Ltd Color separating optical unit
JP2005158910A (en) * 2003-11-25 2005-06-16 Stanley Electric Co Ltd Color mixing device for multicolor light emitting device
JP2006003384A (en) * 2004-06-15 2006-01-05 Sony Corp Polarizing beam splitter and liquid crystal projector device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01321401A (en) * 1988-06-23 1989-12-27 Matsushita Electric Ind Co Ltd Color separating optical unit
JP2005158910A (en) * 2003-11-25 2005-06-16 Stanley Electric Co Ltd Color mixing device for multicolor light emitting device
JP2006003384A (en) * 2004-06-15 2006-01-05 Sony Corp Polarizing beam splitter and liquid crystal projector device

Also Published As

Publication number Publication date
JP4769620B2 (en) 2011-09-07
JP2007280815A (en) 2007-10-25

Similar Documents

Publication Publication Date Title
JP5375424B2 (en) LIGHT EMITTING DEVICE AND ITS MANUFACTURING METHOD, LAMP, AND LAMP SYSTEM
JP5792010B2 (en) Lighting module
KR102185235B1 (en) Display device
TWI497744B (en) Tunable white point light source using a wavelength converting element
CN106483746B (en) Wavelength conversion device and projector
US8905554B2 (en) Illumination unit having a plurality of light sources including a light source emitting two or more different wavelengths
US20060267037A1 (en) Light emitting diode package
US20030169385A1 (en) Illumination device for a color liquid crystal display
CN103597270B (en) Lighting device
EP2881783B1 (en) Display device having a light-emitting diode (LED) package as light source
JP2008515140A (en) Lighting system
EP2693268A1 (en) Illuminating device, projection display device, and direct view type display device
TW200824160A (en) A light module package
TW201306325A (en) White light emitting device, and display apparatus and illumination apparatus using the same
CN105842969B (en) Light source device and projector having the same
JP2010514151A (en) Lighting system with dichroic surface
TW200947694A (en) A light emitting device
CN115218161A (en) Light emitting module
WO2011148499A1 (en) Illuminating optical system and projection display device
WO2006087872A1 (en) Planar illumination device
WO2007116880A1 (en) Light source module
JP2009530671A (en) Optical projection device
US20190088186A1 (en) Display device
JP5705231B2 (en) Light emitting device
JP6773156B2 (en) Light emitting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07740882

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07740882

Country of ref document: EP

Kind code of ref document: A1