WO2007114439A1 - Material having superfine granular tissue and method for production thereof - Google Patents

Material having superfine granular tissue and method for production thereof Download PDF

Info

Publication number
WO2007114439A1
WO2007114439A1 PCT/JP2007/057478 JP2007057478W WO2007114439A1 WO 2007114439 A1 WO2007114439 A1 WO 2007114439A1 JP 2007057478 W JP2007057478 W JP 2007057478W WO 2007114439 A1 WO2007114439 A1 WO 2007114439A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy
metal
rolling
twins
temperature
Prior art date
Application number
PCT/JP2007/057478
Other languages
French (fr)
Japanese (ja)
Inventor
Hiromi Miura
Original Assignee
National University Corporation The University Of Electro-Communications
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University Corporation The University Of Electro-Communications filed Critical National University Corporation The University Of Electro-Communications
Priority to JP2008508699A priority Critical patent/JPWO2007114439A1/en
Priority to US12/295,640 priority patent/US20090165903A1/en
Publication of WO2007114439A1 publication Critical patent/WO2007114439A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/04Alloys based on copper with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon

Definitions

  • the present invention relates to a material having an ultrafine grain structure and a method for producing the same.
  • Crystal grain refinement also has another advantage of improved material processability. Therefore, various studies on crystal grain refinement have been conducted.
  • the most common grain refinement method is a so-called thermomechanical treatment method.
  • crystal grains are refined by heat-treating the processed material under various conditions. For example, a method of refining crystal grains by recrystallizing a hot-rolled copper alloy at a temperature of about 300 ° C to 400 ° C has been proposed (Patent Document Do, A method has been proposed in which a ferrous metal after rolling or cold rolling is annealed at a temperature of about 750 ° C. to refine crystal grains (Patent Document 2).
  • the crystal grain size obtained by this method is at least about 1 ⁇ m.
  • Typical examples of ultra-strong processing methods are ECAP (Equal Channel Angular Press) method and ARB (Accumulate Roll Bonding method).
  • the ECAP method is a method in which a metal material called a billet is inserted into an L-shaped mold and extruded from the opening, and the crystal grains are made ultrafine without changing the shape.
  • the ARB method is a method in which the plate material is rolled to about 50%, cut in half, two cut plates are stacked, and this is rolled again several times. Through a series of treatments, the crystal grains of the material can be made ultrafine.
  • Non-Patent Document 2 is a method in which the plate material is rolled to about 50%, cut in half, two cut plates are stacked, and this is rolled again several times. Through a series of treatments, the crystal grains of the material can be made ultrafine.
  • Patent Document 1 International Publication No. 2004Z022805 Pamphlet
  • Patent Document 2 Japanese Patent Laid-Open No. 62-182219
  • Non-patent literature 1 RZ Valiev, Islamic Galiev (RK Islamgaliev), Alexa Ndrov (IV Alexandrov), Material Science (Mat. Sci.), 45 ⁇ , 2000, p.103
  • Non-Patent Document 2 Shin Yabu, Iron and Steel, 2002, 88 ⁇ , p.359-369
  • the ECAP method described above is not suitable for industrial ultrafine grain processing because it requires a large number of processing steps and cannot produce a long material.
  • the ARB method described above in the thickness direction, crystal grains with a grain size of about 0.1 ⁇ m can be obtained. In the force rolling surface, the crystal grains become coarse and uniform in the in-plane direction. It is not possible to obtain an equiaxed ultrafine grained structure. Therefore, there may arise a problem that the strength distribution of the material becomes non-uniform or the material does not have a desired strength.
  • This method is also not suitable for industrial mass production with many processing steps. For this reason, there is a need for a crystal grain refinement technology that can form an equiaxed and uniform ultrafine grain structure more easily and increase the material strength.
  • the present invention has been made in view of such problems, and provides a material having a high-strength ultrafine grain structure and a method capable of easily manufacturing such a material. It is an issue to provide.
  • twin in the present application is a concept including a deformation twin.
  • a material having an ultrafine grain structure made of a metal or an alloy having a stacking fault energy of 50 mjZmm 2 or less and having a crystal grain size of 20 ⁇ A material characterized by having recrystallized grains in the range of ⁇ 600 nm is provided. By setting the material structure to such a characteristic recrystallized structure, a material having high strength and uniform ultrafine crystal grains can be obtained. [0010] Further, in the present invention, there is provided a method for producing a material having an ultrafine grain structure, the step of providing a metal or alloy having a stacking fault energy of 50 mjZmm 2 or less, and processing the metal or alloy. And introducing a deformation twin having a twin spacing of 200 nm or less into the metal or alloy structure.
  • the step of introducing the deformation twin may include a step of subjecting the metal or the alloy to a multiaxial forging process (hereinafter also referred to as “MDF processing”) at a temperature of room temperature or lower.
  • MDF processing multiaxial forging process
  • said step of multi-axis forging process 1 X 10- 4 Z seconds or strain rate, good have a step of forging the metal or alloy! ⁇ .
  • MDF processing at a high strain rate can increase the deformation resistance of the material, making it easier to introduce deformation twins into the material.
  • the temperature below room temperature is preferably an absolute temperature of 223 K or less.
  • the deformation resistance of the work material can be easily increased, so that the same effect as when the strain rate is increased can be obtained more easily. it can. Therefore, a material having an ultrafine grain structure can be provided more easily.
  • the forging process there may be a step of annealing the metal or alloy that has been subjected to the multi-axis forging process. Thereby, the material structure after forging can be made homogeneous.
  • the step of introducing the deformation twin may include a step of rolling the metal or alloy at a temperature of room temperature or lower.
  • this method it is possible to introduce high-density deformation twins into the material structure relatively easily as soon as cutting stress is applied to the material. Therefore, when this method is applied, the crystal grains can be made ultrafine more easily than the MDF processing method described above.
  • a step of annealing the rolled metal or alloy may be added. Thereby, the material structure after rolling can be homogenized.
  • the step of annealing after forging or rolling is performed by annealing the metal or alloy at a temperature of 0.5 X Tm or less, where Tm is the melting point of the metal or alloy. Prefer to have a step ⁇ . By performing the annealing treatment at such a temperature, it becomes possible to make the structure uniform without coarsening the ultrafine grains obtained after forging or rolling.
  • the step of rolling may include the step of rolling the metal or alloy at a rolling speed of 5 X 10-mZ seconds or more. Since the deformation resistance can be increased by increasing the rolling speed, a large number of deformation twins can be introduced into the material structure.
  • the step of rolling may include a step of rolling the metal or alloy so that a final reduction ratio is 20% or more. Since the deformation resistance can be increased by increasing the rolling reduction, a large number of deformation twins can be introduced into the material structure.
  • the rolling step includes a step of rolling the metal or alloy at an absolute temperature of 223K or lower.
  • the deformation resistance of the material can be increased. Therefore, a large number of deformation twins can be introduced without increasing the rolling speed and Z or the rolling reduction during rolling, and a material having an ultrafine grain structure can be provided more easily.
  • the first packet includes a layered twin group substantially oriented in the first direction
  • at least one of the twins in the first packet includes:
  • a second packet comprising a layered twin group substantially oriented in a second direction, wherein the first direction and the second direction include those forming an angle other than 60 degrees.
  • a material having an ultrafine grain structure is provided.
  • packet means a layered twin group oriented in the same crystal orientation as described later.
  • a first yarn and weaving including a first packet including a plurality of layered twin groups oriented substantially in the first direction in one crystal grain.
  • At least one of the twins has a first structure having a second packet comprising a twin group oriented in a second direction substantially different from the first direction; and the first packet And a third structure containing recrystallized grains formed of a plurality of layered twins oriented in substantially the same direction.
  • a material having an ultrafine grain structure is provided.
  • the material having such an ultrafine grain structure may be brass.
  • a high-strength material having an ultrafine grain structure is provided.
  • a material having such an ultrafine grain structure can be obtained relatively easily.
  • FIG. 1 is a diagram schematically showing an example of a structure diagram of a material having an ultrafine grain structure of the present invention.
  • FIG. 2 is a schematic explanatory diagram of an MDF cache processing method.
  • FIG. 3 is a stress strain curve of a copper 30 mass% zinc material manufactured by the ultrafine grain processing method (MDF processing method) of the present invention.
  • FIG. 5 A structure chart (OIM map) of a copper 30 mass% zinc alloy sample after annealing at 503 K for 8 hours after cryogenic rolling treatment using an orientation dispersion analyzer.
  • FIG. 6 is a diagram schematically showing an example of an apparatus configuration for carrying out the ultrafine grain processing method of the present invention.
  • FIG. 8 A graph showing changes in the Vickers hardness of a material when 60% of a copper 30mass% zinc alloy is rolled at 77K and then annealed at temperatures of 503K, 523mm and 543mm.
  • FIG. 9 A structural photograph of a copper 30mass% zinc alloy rolled 60% at 77% and annealed at 523K for 1000 seconds.
  • (B) is an enlarged view of (a).
  • FIG. 10 is a graph showing the relationship between the annealing time and the average grain size in the material structure when 60% of a 30 mass% zinc alloy is rolled at 77K and then annealed at both temperatures of 503K and 523K.
  • FIG. 11 is a diagram showing a stress-strain curve at room temperature of pure copper after performing MDF cache treatment at a cryogenic temperature of 77K and room temperature (300K).
  • a material having an ultrafine grain structure is produced by a method characterized by comprising:
  • the “ultrafine grain structure” means a structure having an “average crystal grain size” force of less than 1 ⁇ m.
  • the average crystal grain size is measured for the deformed structure from the transmission electron microscope (TEM) photograph using the linear crossing method, and for the annealed structure, the orientation dispersion analyzer (Orientation Imaging MicroscopyZOIM) ) In the crystal orientation distribution image obtained by the analysis, the structure having a boundary with an orientation difference of 3 degrees or more is taken as the crystal grain and calculated from the average grain area.
  • twins are considered not to contribute to the mechanical strength of materials, and it is considered important to exclude twins from crystal yarns and weaves in order to improve the mechanical strength of materials. It was done.
  • this twin is actively introduced into the material structure, It is characterized in that the grains are made finer, thereby improving the material strength.
  • a large number of deformation twins are introduced into the material structure by performing processing with large deformation on the workpiece material, and these deformation twins The crystal grains are made ultrafine by cutting. According to the study of the present inventor, by such processing
  • the mechanical strength of the material is remarkably improved when an ultrafine grain structure having a twinning force of deformation twins of not more than 00 is obtained.
  • twin spacing is included in the distance D of the arrow, that is, in one twin 110 in the ultrafine grain structure 100 having a plurality of twins 110 as shown in FIG. The interval between twin lines and the twin lines adjacent to them.
  • twin spacing cannot be measured with a normal optical microscope, in the present application, from a structural photograph obtained by observation at about 8000 to 80000 times with a transmission electron microscope, The twin spacing of twins contained in the ultrafine grain structure is measured.
  • the processing method for introducing a large number of such deformation twins into the material is not particularly limited, and various methods can be used.
  • MDF Multi-direction al forging
  • This method is also called a multi-axis forging method, and is a processing method that repeats compression by changing the forging direction of the work material so that the major axis direction becomes the compression direction for each forging process in one direction.
  • FIG. Figure 2 is a schematic illustration of the MDF processing method.
  • a bulk material with a rectangular aspect ratio as shown in Fig. 2 (1) is prepared.
  • the aspect ratio of the bulk material is determined by the compression ratio by forging from each axial direction shown in (2) to (4) (each forging is called a pass).
  • each forging is called a pass.
  • the aspect ratio of the bulk material can be changed according to the compression rate for each pass to be adopted. In the example in the figure, this corresponds to a case where the processing strain for one pass is 0.4. When one processing strain is increased, deformation resistance increases, and deformation twins are more likely to appear.
  • the strain that can be introduced into the material in one pass is 0.8 (in that case, the aspect ratio is 1.0: 1.49: 2.22), theoretically, the total strain should be 2.4 This means that 3 pass processing is required.
  • MDF cache treatment a large number of deformation twins can be introduced into the material. Further, the crystal grains are refined by the crossing of the introduced deformation twins.
  • MDF caloche processing multi-directional force materials are compressed, so that an equiaxed ultrafine grain structure can be obtained after processing.
  • this processing method can form a superfine grain structure in a material by a simple processing process of changing the compression axis and repeating forging, so mass production of a material with an ultrafine grain structure is easy. There is a feature that can be.
  • deformation resistance the resistance to deformation of the material
  • the MDF processing method when adopted as a processing method for introducing the deformation twins, it is preferable that the MDF processing is performed at a temperature of room temperature (300K) or less. As a result, the deformation resistance during processing can be further increased, and more deformation twins can be introduced at one time. Further, when the MDF mosquitoes ⁇ E processed in under "cryogenic" below 223 K (absolute temperature), the processing speed is selected so the strain rate of about 1 X 10- 4 Z seconds or more, Otherwise, it is preferable to select as the strain rate of about 5 X 10- 4 Z seconds. If a large strain rate is selected, the amount of deformation applied to the material for each pass can be increased, and the deformation resistance can be increased, so that the processing temperature is high (about room temperature). However, more deformation twins can be introduced into the material structure.
  • the major axis direction of the work material becomes the compression direction for each processing.
  • Such an operation can be easily performed by using, for example, an electric or mechanical work material position (or direction) control means such as a manipulator. This eliminates the hassle of changing the orientation of the material to be coated for each pass.
  • a material having an ultrafine grain structure 100 composed of a large number of twins 110 as schematically shown in FIG. 1 can be obtained.
  • the average grain size is at most in the range of about 500 nm to less than 1 ⁇ m, and the twin spacing is about 80 to 10 Onm.
  • Such deformed twins tend to appear parallel to one direction within one grain, but when the sample is changed in the direction of addition and forged again, deformed twins in another direction appear, and both As deformed twins cut into each other, they change into ultrafine crystal grains.
  • the two crystals sandwiching the twin plane have an orientation difference of about 60 degrees, and due to the appearance of the deformation twin, the formation of the deformation twin itself, as well as the crossing and cutting of them.
  • An ultrafine grain structure surrounded by high misorientation grain boundaries is easily generated.
  • the forged material may be annealed! ⁇ .
  • the annealing treatment is preferably performed at the lowest possible temperature. This is because if the processing temperature is increased, the growth of ultrafine crystal grains may be promoted.
  • the annealing temperature is preferably 0.5 Tm or less. For example, in the case of a copper-one 30 mass% zinc alloy, the melting point of this alloy is 1223K, so the processing temperature is 611K or less.
  • FIG. 3 shows an example of a stress strain curve at room temperature of a material having an ultrafine grain structure manufactured by the method of the present invention.
  • These test samples were produced by introducing strains of 0.4 (1 pass), 2.4 (6 passes) and 6.0 (15 passes) into a copper 30 mass% zinc alloy by the MDF processing described above. is there.
  • the upper figure shows the result of the sample manufactured by MDF force treatment at 77K, and the lower figure shows the result of the sample manufactured by MDF processing at room temperature (300K). Show me!
  • the maximum strength of this material, which has not been subjected to normal grain refinement, is about 500 MPa.
  • the maximum strength of the sample processed at MDF at 77K increased from 600MPa to 900MPa, and the introduced strain was 0.4 (1 pass) in the sample processed at MDF at 300K. Except for the sample, the maximum intensity increases from 700 MPa to 800 MPa!
  • FIG. 4 shows a structure photograph of the sample after the MDF processing. This sample was manufactured by introducing strain of 6.0 (15 passes) into a copper-30mass% zinc alloy by the MDF caloe process described above.
  • the photo (a) on the left shows the organization after the MDF cache treatment at 77K.
  • the middle photo (b) is after the MDF cache processing at 300K.
  • the right figure (c) shows an enlarged schematic view of a part of the central tissue photograph.
  • layered twins oriented in the same crystal orientation are formed in the crystal grains of the sample after the MDF cache treatment.
  • a layered twin group will be specifically referred to as “packet” (or packet 120).
  • packet 120 When the twins in the packet 120 are observed in more detail, a second packet having a smaller layered twin group is formed inside one twin. It can be seen that the twins included in the packet are oriented in the same crystal orientation.
  • Such a structure is considered to be caused by repeating the deformation process by MDF processing, so that the twins in the packet 120 are divided into smaller twin groups.
  • twins included in a twin group constituting one packet are divided into finer layered twin groups each time a deformation process is applied, whereby further fine packets are separated. As it is formed, the crystal grains are refined and an ultrafine grain structure is formed.
  • the difference in orientation between the twin groups is 60 degrees.
  • twins introduced by MDF processing by repeating the deformation process, the packet existing before the deformation process is deformed, and the twins constituting the packet are crystal rotated. Occurs. Therefore, the orientation of the twin group forming the first packet generated by the first deformation process and the twin group formed in the twin of the second packet generated by the second deformation process. The difference will be at an angle other than 60 degrees.
  • Another processing method for introducing a large number of deformation twins is a rolling method.
  • shear stress is applied to the material, and a high-density deformation twin can be introduced into the material structure relatively easily. Therefore, when this method is applied, it is possible to make the crystal grains ultra finer more easily than the MDF processing method described above.
  • the rolling method can be applied to a large-scale material such as a large-area plate material that is less restricted by the shape of the material to be processed.
  • the processing conditions for rolling the material include “very low temperature processing”, “low temperature high speed processing”, “low temperature high pressure processing” or “high speed high pressure processing”! I prefer to use one or the other.
  • “cryogenic treatment” is a method of rolling in a state where the material to be rolled is kept at an “extremely low temperature” of 223 K (absolute temperature) or less.
  • cryogenic treatment the material temperature is lowered to a cryogenic temperature of 223K or lower, and the rolling treatment is performed. Therefore, the deformation resistance can be increased regardless of other processing condition parameters. That is, under these conditions, the deformation resistance state sufficient to form a large number of deformation twins can be obtained simply by maintaining the material at a very low temperature. The feature is that detailed control of other parameters is unnecessary.
  • Low-temperature high-speed treatment and “low-temperature high-pressure treatment” are methods in which rolling is performed while the material to be rolled is maintained at a temperature of about 223 to 300K (room temperature). Only by rolling at such a temperature, it is difficult to introduce high-density deformation twins as in the “cryogenic treatment”. Therefore, under these processing conditions, high-density deformation twins are introduced into the material to be rolled, in combination with parameters that increase the amount of deformation that can be applied to the material at one time.
  • a large amount of deformation twins is introduced into the material to be rolled by adding strain to the material to be rolled at a high speed in order to increase the deformation resistance.
  • the rolling speed needs to be higher than that in the “cryogenic treatment”, and is preferably at least 5 ⁇ 10 ⁇ mZ seconds.
  • the reduction rate of the material to be rolled is reduced by treating the material to be rolled under high pressure rolling conditions by taking advantage of the fact that deformation twins are more likely to be generated as the amount of strain increases.
  • the final reduction ratio of the material is preferably 20% or more.
  • it is desirable that the final reduction ratio is 60% or more for the viewpoint power to uniformly disperse the deformation twins.
  • high-speed and high-pressure treatment refers to a rolling treatment on a material to be rolled in a non-low temperature region such as room temperature. This is a method of increasing the deformation resistance of the material to be rolled and introducing high-density deformation twins by combining high-speed processing and high-pressure processing. For example, in the case of general rolling at room temperature, deformed twins appear when the rolling speed is 5 ⁇ 10-mZ seconds or more and the rolling reduction is 70% or more.
  • the above-mentioned rolled material may be annealed.
  • the annealing treatment is preferably performed at the lowest possible temperature. This is because if the processing temperature is increased, the growth of ultrafine grains may be promoted.
  • the annealing temperature is preferably 0.5 Tm or less.
  • the melting point of this alloy is 1223K, so the processing temperature is 611K or less.
  • FIG. 5 is a map using an orientation dispersion analyzer (OIM) of a sample that was subjected to a cryogenic rolling process at 77K (rolling rate: 60%) and annealed for 8 hours at a temperature of 503K. .
  • OIM orientation dispersion analyzer
  • the ultrafine grain structure produced by the method of the present invention does not progress so much even after annealing as will be described later. This is thought to be because a large number of deformation twins with different orientations contained in the structure play a role of restraining the crystal grains and suppress the grain growth. Therefore, the material having the ultrafine grain structure obtained by the method of the present invention has a significant characteristic if it is excellent in thermal stability.
  • the twin spacing as shown in FIG. An ultrafine grain structure containing a large number of deformation twins tends to be obtained more easily with a metal or alloy having a lower stacking fault energy. This is because, for metals or alloys with large stacking fault energy, even if processing such as MDF cache treatment is performed, the dislocation density accumulated in the material is difficult to increase, and the critical stress for generating deformation twins is applied to the material. This is because it is difficult to apply more stress. Therefore, the present invention is preferably applied to a metal or alloy having a stacking fault energy of 50 mj / mm 2 or less.
  • examples of metals or alloys with low stacking fault energy include silver (stacking fault energy of about 22 mjZmm 2 ), copper (78 mjZmm 2 ), cobalt (15 mjZmm 2 ), nickel (128 mj / mm 2 ), brass. (About 20mj / mm 2 ) and stainless steel (211mjZmm 2 ).
  • brass means an alloy of copper and zinc and contains 20 mass% or more of zinc (the aforementioned stacking fault energy is the value of copper 30 mass% zinc alloy). Even when the stacking fault energy of the metal or alloy itself exceeds 50 mj / mm 2 , stacking fault energy is remarkably increased by adding one or more impurity elements to such metal or alloy.
  • the stacking fault energy decreases to 5 mj / mm 2 . Therefore, it should be noted that the above-described stacking fault energy can be included in the scope of the present invention by adding an impurity element even in a metal or alloy or other alloy having 50 mjZmm 2 or more.
  • Fig. 6 schematically shows an example of a rolling apparatus for carrying out the method of the present invention (rolling treatment under cryogenic treatment conditions).
  • the rolling device 10 includes a cryogenic bath 50, a transport device 30, and a rolling roll 20.
  • the conveying device 30 is used to guide the material 40 to be rolled toward the rolling tool 20.
  • the cryogenic bath 50 is used to cool the material to be rolled 40 in advance.
  • the temperature of the cryogenic bath 50 is 223 K or less, but is particularly preferably a liquid nitrogen temperature (77 K) or less.
  • the position of the cryogenic bath 50 may be changed or deleted.
  • the material to be rolled 40 is cooled to the above-mentioned temperature immediately before the material to be rolled 40 passes through the rolling roll 20.
  • a cooling tank is provided in the middle of the conveyance path, the material to be rolled 40 passes through the cooling tank before being conveyed to the rolling roll 20, and the rolling portion of the material to be rolled 40 is cooled to the temperature as described above. It is okay to configure the device as described.
  • the rolling apparatus 10 can introduce deformation twins into the material to be rolled 40 such as a copper 30 mass% zinc alloy by the following operation.
  • the material 40 to be rolled that has been pre-cooled in the cryogenic bath 50 is placed on the conveying device 30.
  • the conveying device 30 is operated, and the material 40 to be rolled moves in the direction of the rolling roll 20.
  • the feed speed (rolling speed) of the material to be rolled 40 is preferably about 1 ⁇ 10 ⁇ mZ seconds or more, but is not particularly limited thereto.
  • the rolling reduction of one pass is preferably about 10 to 20%.
  • the force is not particularly limited to this. This is because, as described above, in the case of the cryogenic treatment condition, the influence of the reduction rate and the feed rate itself on the generation density of deformation twins is not significant.
  • Such an operation is repeated as many times as necessary (pass), and a large number of deformation twins are introduced into the material. It is preferable that the material to be rolled 40 be recooled every time one pass of the rolling process of the material to be rolled 40 is completed. Prevents the temperature of the material to be rolled 40 from being raised by the rolling process, and the temperature of the material to be rolled 40 cannot be maintained in the extremely low temperature range suitable for deformation twinning when the material to be rolled 40 is re-rolled. It is to do.
  • the material 40 to be rolled is maintained in an appropriate cryogenic temperature range after one pass rolling (for example, when the entire rolling processing apparatus 10 is installed in a low temperature environment), the material to be rolled It is also possible to repeatedly perform rolling of 2 to several passes in a range where the temperature of 40 does not exceed a predetermined value.
  • the material to be rolled 40 is kept at a very low temperature and the deformation resistance is sufficiently high, so that a large number of deformation twins can be easily introduced. Further, after the treatment, a material having an ultrafine grain structure can be obtained.
  • Annealing treatment may be performed using the material rolled in this manner! As described above, the annealing treatment is preferably performed at the lowest possible temperature. For example, when the melting point of the material is Tm, an ultrafine grain structure having recrystallized grains having a crystal grain size in the range of 20 nm 600 can be obtained by annealing at a temperature of 0.5 X Tm or less.
  • Experiment 1 MDF processing was performed using the test material, and the strength of the obtained material was evaluated.
  • Figure 7 shows the temperature 77K, the TEM observation tissue copper 30mas s% zinc alloy after the MDF processed in the true strain rate 1 X 10- 3 Zeta seconds.
  • the number of passes of the MDF cache process that covers the material is six, and the cumulative strain introduced into the material is 2.4.
  • many deformation twins are introduced into the material by MDF processing, and an ultrafine grain structure with an average crystal grain size of 1 ⁇ m or less is formed by the cross-cutting of these deformation twins.
  • the halo ring (a phenomenon in which diffraction spots are connected and appear in a ring shape) appears in the 1 / zm region limited field diffraction image circled in the figure.
  • halo ring is caused by the close proximity of diffraction spots corresponding to each particle when there are many crystals with different orientations in the structure. Therefore, it can be seen from this result that the material structure obtained by this method contains a large number of ultrafine crystal grains.
  • Fig. 3 shows the stress-strain curve at room temperature of the specimen obtained by MDF processing at temperatures of 77K and 300K (room temperature).
  • the amount of strain introduced into the material was changed to 0.4 2.4 and 6.0 by changing the number of passes of the MDF Karoe treatment to the material to 1, 6, and 15, respectively.
  • the strain force increased from .4 to 6.0 as shown in the upper part of the figure.
  • the maximum strength changed to 600MPa force 900MPa. Elongation was about 20% in all specimens.
  • the maximum strength of the same material obtained by conventional thermomechanical processing is usually around 500 MPa.
  • Experiment 2 the same material (copper-30ma SS % zinc alloy) as in Experiment 1 was used, and the cryogenic rolling process was performed, and the state of the resulting structure and its stability were evaluated.
  • a cryogenic rolling process was performed using the apparatus shown in FIG.
  • the material temperature during rolling was 77K.
  • the rolling reduction for each pass during rolling was in the range of 10% force and 20%.
  • the structure of the material after 60% rolling was observed with a transmission electron microscope (TEM). As a result, it was found that a very fine grain structure with a grain strength of about 500 nm to less than l ⁇ m was developed, similar to the structure shown in Fig. 1.
  • TEM transmission electron microscope
  • FIG. 8 is a graph showing changes in the Vickers hardness of the material when the material is rolled at 77K by 60% and then annealed at temperatures of 503K, 523%, and 543%. From this figure, it can be seen that although it depends on the annealing temperature, the hardness decreases rapidly after 10 3 10 4 seconds, and static recrystallization occurs after this time.
  • Fig. 9 shows a TEM photograph of a sample that was annealed for 1000 seconds at a temperature of 523K after a 30 mass% copper alloy was cryogenically rolled at 77% (rolling rate 60%).
  • the photo on the right is a high magnification view of the photo on the left. From these photographs, at the stage of annealing at 523K for 1000 seconds, the “packets” generated by the deformation process still remain! However, some “packets” have been recrystallized and static recrystallization has occurred. I found out that has started. Furthermore, it was found that recrystallized grains formed of a plurality of layered twins with uniform orientation were formed in part of the crystal grains. Since the recrystallized grains have a grain size of about 20 nm, the twins contained in the recrystallized grains are considered to have a grain size much smaller than 20.
  • FIG. 10 shows the relationship between the annealing time and the average crystal grain size in the material structure when the material was rolled 60% at 77K and then annealed at both temperatures of 503K and 523K.
  • the average crystal grain size was calculated by the straight line crossing method using a transmission electron microscope as a crystal grain with a boundary structure.
  • the reason why the structure having the boundary is the crystal grain is that the deformation twin contained in the structure has a high orientation difference of 60 degrees or more, and therefore, these structures are surrounded by the high orientation boundary. This is because it is obvious that it is a crystal grain.
  • the fine deformation twins developed inside the crystal grains are not used in the calculation, and the actual crystal grain size is even smaller than the value shown in FIG. It can be seen from Fig. 10 that the crystal grains are not coarsened even by the annealing treatment and are about 0.6 / zm at the maximum.
  • Fig. 5 shows an example of the structure when 60% of a 30mass% copper alloy is rolled at 77K and then annealed at 503K for 8 hours.
  • Figure 11 shows the stress-strain curve of pure copper at room temperature after the MDF cache treatment at 77K cryogenic temperature and room temperature (300K).
  • the horizontal axis is cumulative strain.
  • the cumulative strain exceeds 2%, the maximum stress becomes 380 MPa, and the maximum stress does not change even after ultra-strong stress treatment up to cumulative strain 6 is performed. I got it.
  • almost no deformation twins occurred.
  • the maximum stress was 590 MPa at a cumulative strain of 2.
  • the microstructure of the specimen with strain up to cumulative strain 2 was observed, it was found that some deformation twins were partially formed. However, deformation twins were generated non-uniformly, and it was impossible to obtain a uniform ultra-fine grain structure on the entire surface, such as the aforementioned copper 30 mass% zinc alloy. This result shows that even if the deformation stress is large, it is difficult to obtain a deformation twin when the stacking fault energy of the material is large.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metal Rolling (AREA)

Abstract

Disclosed is a method for production of a material having a superfine granular tissue. The method comprises the steps of: providing a metal or alloy having a stacking fault energy of 50 mJ/mm2 or less; and processing the metal or alloy so as to introduce a deformed bicrystal having an interbicrystalline spacing of 200 nm or shorter into the tissue of the metal or alloy. The method enables to provide a material having a superfine granular tissue, wherein the material is characterized by containing a bicrystal in the crystalline tissue and having an interbicrystalline spacing in the bicrystal of 200 nm or shorter.

Description

超微細粒組織を有する材料およびその製造方法  Material having ultrafine grain structure and method for producing the same
技術分野  Technical field
[0001] 本発明は、超微細粒組織を有する材料およびその製造方法に関する。  [0001] The present invention relates to a material having an ultrafine grain structure and a method for producing the same.
背景技術  Background art
[0002] 金属材料または合金材料の機械的強度を高める方法として、材料組織中の結晶粒 を微細化する方法が知られている。また結晶粒の微細化には、材料の加工性の向上 という別の利点もある。そこで従来より、結晶粒微細化に関する様々な研究が行われ ている。最も一般的な結晶粒微細化法としては、加工熱処理法と呼ばれる方法があ る。この方法は、加工後の材料を各種条件で熱処理することによって、結晶粒を微細 ィ匕するものである。例えば、熱間圧延処理した銅合金を 300°C〜400°C程度の温度で 再結晶化処理することにより、結晶粒を微細化する方法が提案されている(特許文献 D oまた、熱間圧延または冷間圧延後の鉄系金属を 750°C程度の温度で焼鈍処理し 、結晶粒を微細化する方法が提案されている(特許文献 2)。し力しながら、このような 加工熱処理法で得られる結晶粒径は、最小でも 1 μ m程度である。  [0002] As a method for increasing the mechanical strength of a metal material or an alloy material, a method for refining crystal grains in a material structure is known. Crystal grain refinement also has another advantage of improved material processability. Therefore, various studies on crystal grain refinement have been conducted. The most common grain refinement method is a so-called thermomechanical treatment method. In this method, crystal grains are refined by heat-treating the processed material under various conditions. For example, a method of refining crystal grains by recrystallizing a hot-rolled copper alloy at a temperature of about 300 ° C to 400 ° C has been proposed (Patent Document Do, A method has been proposed in which a ferrous metal after rolling or cold rolling is annealed at a temperature of about 750 ° C. to refine crystal grains (Patent Document 2). The crystal grain size obtained by this method is at least about 1 μm.
[0003] また最近では、超強加工法と呼ばれる結晶粒の超微細化技術が着目されて 、る。  [0003] In recent years, attention has been focused on a crystal grain ultra-miniaturization technique called an ultra-strong processing method.
超強加工法の代表的な例は、 ECAP (Equal Channel Angular Press)法および ARB (A ccumulate Roll Bondingノ法で teる。  Typical examples of ultra-strong processing methods are ECAP (Equal Channel Angular Press) method and ARB (Accumulate Roll Bonding method).
[0004] ECAP法は、ビレットと呼ばれる金属素材を L字型の型に挿入して、開口部から押し 出す加工を繰り返し行う方法であり、形状を変えずに、結晶粒を超微細化することが できる(例えば非特許文献 1)。一方、 ARB法は、板材料を 50%程度に圧延後、半分 に切断して、切断した 2枚の板を積層し、これを再度圧延するというプロセスを数回以 上繰り返す方法であり、この一連の処理によって、材料の結晶粒の超微細化を行うこ とができる。(例えば非特許文献 2)。  [0004] The ECAP method is a method in which a metal material called a billet is inserted into an L-shaped mold and extruded from the opening, and the crystal grains are made ultrafine without changing the shape. (For example, Non-Patent Document 1). On the other hand, the ARB method is a method in which the plate material is rolled to about 50%, cut in half, two cut plates are stacked, and this is rolled again several times. Through a series of treatments, the crystal grains of the material can be made ultrafine. (For example, Non-Patent Document 2).
特許文献 1:国際公開第 2004Z022805号パンフレット  Patent Document 1: International Publication No. 2004Z022805 Pamphlet
特許文献 2:特開昭 62— 182219号公報  Patent Document 2: Japanese Patent Laid-Open No. 62-182219
非特許文献 1:バリエフ(R. Z. Valiev)、イスラムガリエフ(R. K. Islamgaliev)、アレクサ ンドロフ(I. V. Alexandrov)、マテリアルサイエンス(Mat. Sci.)、 45卷、 2000年、 p.103 非特許文献 2 :辻伸泰、鉄と鋼、 2002年、 88卷、 p.359-369 Non-patent literature 1: RZ Valiev, Islamic Galiev (RK Islamgaliev), Alexa Ndrov (IV Alexandrov), Material Science (Mat. Sci.), 45 卷, 2000, p.103 Non-Patent Document 2: Shin Yabu, Iron and Steel, 2002, 88 卷, p.359-369
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] し力しながら、前述の ECAP法は、処理工程数が多く、また長大材料の製造はでき ないため、工業的な結晶粒超微細化処理には適していない。また前述の ARB法では 、板厚方向においては、粒径が 0.1 μ m程度の結晶粒を得ることが可能である力 圧 延面内では、結晶粒が粗大になり、面内方向において均一かつ等軸な超微細粒組 織を得ることはできない。従って、材料の強度分布が不均一になったり、材料に所望 の強度が得られな力つたりするという問題が生じ得る。またこの方法も、処理工程数が 多ぐ工業的量産化には適していない。そのため、より簡便に等軸かつ均一な超微 細粒組織を形成して、材料強度を高めることの可能な結晶粒超微細化技術が求めら れている。 [0005] However, the ECAP method described above is not suitable for industrial ultrafine grain processing because it requires a large number of processing steps and cannot produce a long material. In the ARB method described above, in the thickness direction, crystal grains with a grain size of about 0.1 μm can be obtained. In the force rolling surface, the crystal grains become coarse and uniform in the in-plane direction. It is not possible to obtain an equiaxed ultrafine grained structure. Therefore, there may arise a problem that the strength distribution of the material becomes non-uniform or the material does not have a desired strength. This method is also not suitable for industrial mass production with many processing steps. For this reason, there is a need for a crystal grain refinement technology that can form an equiaxed and uniform ultrafine grain structure more easily and increase the material strength.
[0006] 本発明は、このような問題に鑑みなされたものであり、高強度の超微細粒組織を有 する材料を提供すること、およびそのような材料を容易に製作することが可能な方法 を提供することを課題とする。  [0006] The present invention has been made in view of such problems, and provides a material having a high-strength ultrafine grain structure and a method capable of easily manufacturing such a material. It is an issue to provide.
課題を解決するための手段  Means for solving the problem
[0007] 本発明では、積層欠陥エネルギーが 50mjZmm2以下の金属または合金力もなる超 微細粒組織を有する材料であって、結晶組織中に双晶を含み、該双晶中の双晶間 隔が 200應以下であることを特徴とする材料が提供される。材料の組織をこのような 超微細粒組織とすることによって、材料の最大強度を向上させることができる。 [0007] In the present invention, a material having an ultrafine grain structure having a stacking fault energy of 50 mjZmm 2 or less and also having a metal or alloy force, the crystal structure includes twins, and the twin spacing in the twins is A material characterized by being 200 or less is provided. By making the material structure into such an ultrafine grain structure, the maximum strength of the material can be improved.
[0008] ここで、本願において「双晶」という用語は、変形双晶を含む概念であることに留意 する必要がある。  [0008] Here, it should be noted that the term "twin" in the present application is a concept including a deformation twin.
[0009] また、本発明では、積層欠陥エネルギーが 50mjZmm2以下の金属または合金から なる超微細粒組織を有する材料であって、結晶粒径が 20ηπ!〜 600nmの範囲の再結 晶粒を有することを特徴とする材料が提供される。材料の組織をこのような特徴的再 結晶組織とすることによって、高強度で、均一な超微細結晶粒を有する材料を得るこ とがでさる。 [0010] また本発明では、超微細粒組織を有する材料の製造方法であって、積層欠陥エネ ルギ一が 50mjZmm2以下の金属または合金を提供するステップと、前記金属または 合金を加工して、前記金属または合金の組織中に、双晶間隔が 200nm以下の変形 双晶を導入するステップと、を有することを特徴とする方法が提供される。 [0009] Further, in the present invention, a material having an ultrafine grain structure made of a metal or an alloy having a stacking fault energy of 50 mjZmm 2 or less and having a crystal grain size of 20ηπ A material characterized by having recrystallized grains in the range of ~ 600 nm is provided. By setting the material structure to such a characteristic recrystallized structure, a material having high strength and uniform ultrafine crystal grains can be obtained. [0010] Further, in the present invention, there is provided a method for producing a material having an ultrafine grain structure, the step of providing a metal or alloy having a stacking fault energy of 50 mjZmm 2 or less, and processing the metal or alloy. And introducing a deformation twin having a twin spacing of 200 nm or less into the metal or alloy structure.
[0011] 本発明の方法では、材料組織中に多数の変形双晶を導入することが可能であり、 これらの変形双晶同士の交切を利用することにより、結晶粒の超微細化を行うことが できる。  [0011] In the method of the present invention, it is possible to introduce a large number of deformation twins into the material structure. By utilizing the crossing of these deformation twins, the crystal grains are made ultrafine. be able to.
[0012] ここで、前記変形双晶を導入するステップは、室温以下の温度で、前記金属または 合金を多軸鍛造処理 (以下、「MDF加工処理」とも 、う)するステップを有しても良!、。 この方法は、処理プロセスが単純であり、簡単な処理工程によって、超微細粒組織を 有する材料を提供することができると ヽぅ特徴がある。  Here, the step of introducing the deformation twin may include a step of subjecting the metal or the alloy to a multiaxial forging process (hereinafter also referred to as “MDF processing”) at a temperature of room temperature or lower. Good! This method is characterized in that the processing process is simple and a material having an ultrafine grain structure can be provided by a simple processing step.
[0013] 特に、前記多軸鍛造処理するステップは、 1 X 10— 4Z秒以上のひずみ速度で、前記 金属または合金を鍛造処理するステップを有しても良!ヽ。高ひずみ速度での MDF加 ェ処理では、材料の変形抵抗を大きくすることができるため、材料中に変形双晶を導 入することが容易となる。 [0013] In particular, said step of multi-axis forging process, 1 X 10- 4 Z seconds or strain rate, good have a step of forging the metal or alloy!ヽ. MDF processing at a high strain rate can increase the deformation resistance of the material, making it easier to introduce deformation twins into the material.
[0014] あるいは、これとは別にまたはこれにカ卩えて、前記室温以下の温度は、絶対温度 22 3K以下であることが好ましい。このような極低温での MDFカ卩ェ処理では、被加工材 料の変形抵抗を容易に増大させることができるため、ひずみ速度を高めた場合と同 様の効果を、より容易に得ることができる。従って、より簡単に超微細粒組織を有する 材料を提供することができる。  [0014] Alternatively or separately, the temperature below room temperature is preferably an absolute temperature of 223 K or less. In such an MDF cache treatment at a very low temperature, the deformation resistance of the work material can be easily increased, so that the same effect as when the strain rate is increased can be obtained more easily. it can. Therefore, a material having an ultrafine grain structure can be provided more easily.
[0015] さらに、鍛造処理後に、多軸鍛造処理された前記金属または合金を焼鈍処理する ステップを有しても良い。これにより、鍛造後の材料組織を均質ィ匕させることができる  [0015] Further, after the forging process, there may be a step of annealing the metal or alloy that has been subjected to the multi-axis forging process. Thereby, the material structure after forging can be made homogeneous.
[0016] また別の方法として、前記変形双晶を導入するステップは、前記金属または合金を 室温以下の温度で圧延処理するステップを有しても良い。この方法では、材料に剪 断応力を付加しやすぐ材料組織中に比較的容易に高密度の変形双晶を導入する ことができる。従って、この方法を適用した場合、前述の MDF加工処理法よりもさらに 簡単に、結晶粒を超微細化することができる。 [0017] さらに、圧延処理後に、圧延処理された前記金属または合金を焼鈍処理するステツ プを追加しても良い。これにより、圧延後の材料組織を均質化させることができる。 [0016] As another method, the step of introducing the deformation twin may include a step of rolling the metal or alloy at a temperature of room temperature or lower. In this method, it is possible to introduce high-density deformation twins into the material structure relatively easily as soon as cutting stress is applied to the material. Therefore, when this method is applied, the crystal grains can be made ultrafine more easily than the MDF processing method described above. [0017] Further, after the rolling treatment, a step of annealing the rolled metal or alloy may be added. Thereby, the material structure after rolling can be homogenized.
[0018] なお、前記鍛造処理後または圧延処理後に焼鈍処理するステップは、前記金属ま たは合金の融点を Tmとしたとき、 0.5 X Tm以下の温度で、前記金属または合金を焼 鈍処理するステップを有することが好ま ヽ。このような温度で焼鈍処理を行うこと〖こ より、鍛造または圧延後に得られた超微細粒を粗大化させずに、組織を均一化させ ることが可能となる。  [0018] The step of annealing after forging or rolling is performed by annealing the metal or alloy at a temperature of 0.5 X Tm or less, where Tm is the melting point of the metal or alloy. Prefer to have a step ヽ. By performing the annealing treatment at such a temperature, it becomes possible to make the structure uniform without coarsening the ultrafine grains obtained after forging or rolling.
[0019] また、前記圧延処理するステップは、 5 X 10— mZ秒以上の圧延速度で、前記金属 または合金を圧延するステップを有しても良い。圧延速度を高めることで変形抵抗を 高くすることができるため、材料組織内に多数の変形双晶を導入することが可能とな る。  [0019] Further, the step of rolling may include the step of rolling the metal or alloy at a rolling speed of 5 X 10-mZ seconds or more. Since the deformation resistance can be increased by increasing the rolling speed, a large number of deformation twins can be introduced into the material structure.
[0020] また、前記圧延処理するステップは、最終圧下率が 20%以上となるように、前記金 属または合金を圧延するステップを有しても良 、。圧下率を高めることで変形抵抗を 高くすることができるため、材料組織内に多数の変形双晶を導入することが可能とな る。  [0020] Further, the step of rolling may include a step of rolling the metal or alloy so that a final reduction ratio is 20% or more. Since the deformation resistance can be increased by increasing the rolling reduction, a large number of deformation twins can be introduced into the material structure.
[0021] 特に、前記圧延処理するステップは、絶対温度 223K以下の温度で、前記金属また は合金を圧延処理するステップを有することが好まし 、。そのような極低温で圧延処 理を行うことにより、材料の変形抵抗を高めることができる。従って、圧延時の圧延速 度および Zまたは圧下率を大きくしなくても、多数の変形双晶を導入することが可能 となり、より簡単に超微細粒組織を有する材料を提供することができる。  [0021] In particular, it is preferable that the rolling step includes a step of rolling the metal or alloy at an absolute temperature of 223K or lower. By performing the rolling process at such an extremely low temperature, the deformation resistance of the material can be increased. Therefore, a large number of deformation twins can be introduced without increasing the rolling speed and Z or the rolling reduction during rolling, and a material having an ultrafine grain structure can be provided more easily.
[0022] また本発明では、実質的に第 1の方向に配向された層状の双晶群を含む第 1のパ ケットを有し、該第 1のパケット内の双晶の少なくとも一つは、実質的に第 2の方向に 配向された層状の双晶群を含む第 2のパケットを有し、第 1の方向と第 2の方向は、 60 度以外の角度をなすものを含むことを特徴とする超微細粒組織を有する材料が提供 される。ここで、「パケット」とは、後述のように、同一の結晶方位に配向された層状の 双晶群を意味する。  [0022] In the present invention, the first packet includes a layered twin group substantially oriented in the first direction, and at least one of the twins in the first packet includes: A second packet comprising a layered twin group substantially oriented in a second direction, wherein the first direction and the second direction include those forming an angle other than 60 degrees. A material having an ultrafine grain structure is provided. Here, “packet” means a layered twin group oriented in the same crystal orientation as described later.
[0023] さらに本発明では、一つの結晶粒内に、実質的に第 1の方向に配向された複数の 層状の双晶群を含む第 1のパケットを含む第 1の糸且織であって、該第 1のパケット内の 双晶の少なくとも一つは、実質的に、第 1の方向とは異なる第 2の方向に配向された 双晶群を含む第 2のパケットを有する、第 1の組織と、前記第 1のパケットの再結晶粒 を含む第 2の組織と、実質的に同一の方向に配向された複数の層状の双晶で形成さ れた再結晶粒を含む第 3の組織と、を含むことを特徴とする超微細粒組織を有する材 料が提供される。 [0023] Further, according to the present invention, there is provided a first yarn and weaving including a first packet including a plurality of layered twin groups oriented substantially in the first direction in one crystal grain. , In the first packet At least one of the twins has a first structure having a second packet comprising a twin group oriented in a second direction substantially different from the first direction; and the first packet And a third structure containing recrystallized grains formed of a plurality of layered twins oriented in substantially the same direction. A material having an ultrafine grain structure is provided.
[0024] なお、そのような超微細粒組織を有する材料は、黄銅であっても良!、。  [0024] The material having such an ultrafine grain structure may be brass.
発明の効果  The invention's effect
[0025] 本発明では、超微細粒組織を有する高強度の材料が提供される。また、そのような 超微細粒組織を有する材料を比較的容易に得ることが可能となる。  In the present invention, a high-strength material having an ultrafine grain structure is provided. In addition, a material having such an ultrafine grain structure can be obtained relatively easily.
図面の簡単な説明  Brief Description of Drawings
[0026] [図 1]本発明の超微細粒組織を有する材料の組織図の一例を概略的に示した図で ある。  FIG. 1 is a diagram schematically showing an example of a structure diagram of a material having an ultrafine grain structure of the present invention.
[図 2]MDFカ卩ェ処理方法の概略説明図である。  FIG. 2 is a schematic explanatory diagram of an MDF cache processing method.
[図 3]本発明の結晶粒超微細化処理方法 (MDF加工処理法)によって製作された銅 30mass%亜鉛材料の応力ひずみ曲線である。  FIG. 3 is a stress strain curve of a copper 30 mass% zinc material manufactured by the ultrafine grain processing method (MDF processing method) of the present invention.
[図 4]77K (a)および 300K (b)での MDF加工処理後の銅 30mass%亜鉛合金試料の 組織を示す TEM写真、ならびに (b)の写真のパケット部分を拡大して示した模式図(c )である。  [Figure 4] TEM photograph showing the structure of copper 30mass% zinc alloy sample after MDF processing at 77K (a) and 300K (b), and a schematic diagram showing the enlarged packet part of the photograph in (b) (C).
[図 5]極低温圧延処理後に 503Kで 8時間焼鈍した後の銅— 30mass%亜鉛合金試料 の、方位分散分析装置による組織図(OIMマップ図)である。  [FIG. 5] A structure chart (OIM map) of a copper 30 mass% zinc alloy sample after annealing at 503 K for 8 hours after cryogenic rolling treatment using an orientation dispersion analyzer.
[図 6]本発明の結晶粒超微細化処理方法を実施するための装置構成の一例を模式 的に示した図である。  FIG. 6 is a diagram schematically showing an example of an apparatus configuration for carrying out the ultrafine grain processing method of the present invention.
[図 7]温度 77K、真ひずみ速度 1 X 10— 3Z秒での MDFカ卩ェ処理後の銅 30mass%亜 鉛合金の TEM観察組織である。 Is [7] Temperature 77K, MDF mosquito卩E processed copper 30 mass% zinc alloy of TEM observation organization in the true strain rate 1 X 10- 3 Z seconds.
[図 8]77Kで銅 30mass%亜鉛合金を 60%圧延した後、 503K、 523Κおよび 543Κの各 温度で焼鈍処理したときの材料のビッカース硬度変化を示した図である。  [Fig. 8] A graph showing changes in the Vickers hardness of a material when 60% of a copper 30mass% zinc alloy is rolled at 77K and then annealed at temperatures of 503K, 523mm and 543mm.
[図 9]銅 30mass%亜鉛合金を 77Κで 60%圧延した後、 523Kで 1000秒間焼鈍処理し たときの組織写真である。なお、(b)は(a)の拡大図である。 [図 10]77Kで銅 30mass%亜鉛合金を 60%圧延した後、 503Kおよび 523Kの両温度 で焼鈍処理したときの焼鈍時間と材料組織中の平均結晶粒径の関係を示した図で ある。 [Fig. 9] A structural photograph of a copper 30mass% zinc alloy rolled 60% at 77% and annealed at 523K for 1000 seconds. (B) is an enlarged view of (a). FIG. 10 is a graph showing the relationship between the annealing time and the average grain size in the material structure when 60% of a 30 mass% zinc alloy is rolled at 77K and then annealed at both temperatures of 503K and 523K.
[図 11]77Kの極低温および室温(300K)で MDFカ卩ェ処理を実施した後の、純銅の室 温における応力ひずみ曲線を示した図である。  FIG. 11 is a diagram showing a stress-strain curve at room temperature of pure copper after performing MDF cache treatment at a cryogenic temperature of 77K and room temperature (300K).
符号の説明  Explanation of symbols
[0027] 10 装置 [0027] 10 apparatus
20 圧延ローラ  20 Rolling roller
30 搬送台  30 Transfer platform
40 材料  40 materials
50 極低温槽  50 Cryogenic bath
100 超微細粒組織  100 Ultrafine grain structure
110 双晶  110 Twin
120 ノケット  120 knots
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0028] 本発明では、積層欠陥エネルギーが 50mjZmm2以下の金属または合金を提供す るステップと、前記金属または合金の組織中に、双晶間隔が 200nm以下の変形双晶 を導入するステップと、を有することを特徴とする方法によって、超微細粒組織を有す る材料が製作される。 [0028] In the present invention, a step of providing a metal or alloy having a stacking fault energy of 50 mjZmm 2 or less, a step of introducing a deformation twin having a twin spacing of 200 nm or less in the structure of the metal or alloy, A material having an ultrafine grain structure is produced by a method characterized by comprising:
[0029] なお本願にぉ 、て、「超微細粒組織」とは、「平均結晶粒径」力 1 μ m未満である組 織をいう。ここで、平均結晶粒径は、変形後の組織については、透過型電子顕微鏡( TEM)の写真から直線横断法を用いて測定し、焼鈍後の組織については、方位分散 分析装置(Orientation Imaging MicroscopyZOIM)分析で得られた結晶方位分布画 像において、方位差 3度以上の境界を持つ組織を結晶粒として、平均結晶粒面積か ら算出する。  In the present application, the “ultrafine grain structure” means a structure having an “average crystal grain size” force of less than 1 μm. Here, the average crystal grain size is measured for the deformed structure from the transmission electron microscope (TEM) photograph using the linear crossing method, and for the annealed structure, the orientation dispersion analyzer (Orientation Imaging MicroscopyZOIM) ) In the crystal orientation distribution image obtained by the analysis, the structure having a boundary with an orientation difference of 3 degrees or more is taken as the crystal grain and calculated from the average grain area.
[0030] 従来、双晶は、材料の機械的強度には寄与しないと考えられ、材料の機械的強度 向上のためには、双晶を結晶糸且織から除外することが重要であると考えられていた。 しかしながら、本発明では、逆にこの双晶を材料組織中に積極的に導入して、結晶 粒を微細化させ、これにより、材料強度を向上させることを特徴とする。より具体的に は、本発明では、被加工材料に対して、大きな変形を伴う加工処理を実施すること〖こ より、材料組織中に多数の変形双晶を導入し、これらの変形双晶同士の交切により 結晶粒を超微細化させる。本願発明者の研究によれば、このような加工処理によってConventionally, twins are considered not to contribute to the mechanical strength of materials, and it is considered important to exclude twins from crystal yarns and weaves in order to improve the mechanical strength of materials. It was done. However, in the present invention, on the contrary, this twin is actively introduced into the material structure, It is characterized in that the grains are made finer, thereby improving the material strength. More specifically, in the present invention, a large number of deformation twins are introduced into the material structure by performing processing with large deformation on the workpiece material, and these deformation twins The crystal grains are made ultrafine by cutting. According to the study of the present inventor, by such processing
、特に、変形双晶の双晶間隔力 ¾00應以下の超微細粒組織が得られた場合に、材 料の機械的強度が顕著に向上する。 In particular, the mechanical strength of the material is remarkably improved when an ultrafine grain structure having a twinning force of deformation twins of not more than 00 is obtained.
[0031] ここで「双晶間隔」とは、図 1に示すような複数の双晶 110を有する超微細粒組織 100 において、矢印の Dの距離、すなわち、一つの双晶 110内に含まれる双晶線と、それ に隣接する双晶線との間隔をいう。また、このような双晶間隔は、通常の光学顕微鏡 では測定することができないため、本願では、透過型電子顕微鏡により、約 8000倍〜 80000倍で観測して得られた組織写真から、材料の超微細粒組織に含まれる双晶の 双晶間隔を測定している。  Here, the “twin spacing” is included in the distance D of the arrow, that is, in one twin 110 in the ultrafine grain structure 100 having a plurality of twins 110 as shown in FIG. The interval between twin lines and the twin lines adjacent to them. In addition, since such twin spacing cannot be measured with a normal optical microscope, in the present application, from a structural photograph obtained by observation at about 8000 to 80000 times with a transmission electron microscope, The twin spacing of twins contained in the ultrafine grain structure is measured.
[0032] このような変形双晶を材料中に多数導入するための加工処理法は、特に限られず 、様々な方法が利用できる。  [0032] The processing method for introducing a large number of such deformation twins into the material is not particularly limited, and various methods can be used.
[0033] 例えば、変形双晶を多数導入するための加工処理法として、 MDF (Multi-direction al forging)加工処理法がある。この方法は、多軸鍛造法とも呼ばれ、 1方向での鍛造 処理毎に、長軸方向が圧縮方向となるように被加工材料の鍛造方向を変えて圧縮を 繰り返す加工処理方法である。  [0033] For example, as a processing method for introducing a large number of deformation twins, there is an MDF (Multi-direction al forging) processing method. This method is also called a multi-axis forging method, and is a processing method that repeats compression by changing the forging direction of the work material so that the major axis direction becomes the compression direction for each forging process in one direction.
[0034] MDF加工処理法の具体例を以下、図 2を参照して説明する。図 2は、 MDF加工処理 法の概略説明図である。まず最初に、図 2 (1)に示すような矩形状のアスペクト比を持 つバルク材が準備される。バルク材のアスペクト比は、(2)〜 (4)に示す各軸方向から の鍛造 (それぞれの鍛造をパスという)による圧縮率によって決まる。換言すれば、バ ルク材のアスペクト比は、採用するパス毎の圧縮率によって変化させることができる。 図の例では、 1パスの加工ひずみが 0.4の場合に相当する。 1回の加工ひずみを大き くした方が、変形抵抗が大きくなるため、変形双晶がより出現しやすくなる。例えば、 1 回のパスによって、材料中に導入することができるひずみが 0.8であれば (その場合、 アスペクト比は 1.0 : 1.49 : 2.22とする)、理論的には総ひずみを 2.4とするには、 3パス の加工処理が必要と 、うことになる。 [0035] このような MDFカ卩ェ処理によって、材料中に多数の変形双晶を導入することができ る。また導入された変形双晶同士の交切により、結晶粒が微細化する。特に MDFカロ ェ処理では、多方向力 材料の圧縮が行われるため、加工後には、等軸の超微細 粒組織が得られる。さらに本加工処理法は、圧縮軸を変えて鍛造を繰り返すという単 純な処理プロセスによって、材料に超微細粒組織を形成することができるため、超微 細粒組織を有する材料を簡単に量産することができるという特徴がある。 A specific example of the MDF processing method will be described below with reference to FIG. Figure 2 is a schematic illustration of the MDF processing method. First, a bulk material with a rectangular aspect ratio as shown in Fig. 2 (1) is prepared. The aspect ratio of the bulk material is determined by the compression ratio by forging from each axial direction shown in (2) to (4) (each forging is called a pass). In other words, the aspect ratio of the bulk material can be changed according to the compression rate for each pass to be adopted. In the example in the figure, this corresponds to a case where the processing strain for one pass is 0.4. When one processing strain is increased, deformation resistance increases, and deformation twins are more likely to appear. For example, if the strain that can be introduced into the material in one pass is 0.8 (in that case, the aspect ratio is 1.0: 1.49: 2.22), theoretically, the total strain should be 2.4 This means that 3 pass processing is required. [0035] By such an MDF cache treatment, a large number of deformation twins can be introduced into the material. Further, the crystal grains are refined by the crossing of the introduced deformation twins. In particular, in MDF caloche processing, multi-directional force materials are compressed, so that an equiaxed ultrafine grain structure can be obtained after processing. Furthermore, this processing method can form a superfine grain structure in a material by a simple processing process of changing the compression axis and repeating forging, so mass production of a material with an ultrafine grain structure is easy. There is a feature that can be.
[0036] なお一般に、一度に多数の変形双晶を材料組織中に導入するには、材料の変形 に対する抵抗 (以下、変形抵抗という)が大きな状態で、材料に変形を加えることが望 ましい。従って、変形抵抗を大きくするため、加工処理時の材料の温度はできるだけ 低くし、また一度に材料にカ卩えるひずみは、できるだけ大きくすることが好ましい。  [0036] In general, in order to introduce a large number of deformation twins into a material structure at once, it is desirable to apply deformation to the material while the resistance to deformation of the material (hereinafter referred to as deformation resistance) is large. . Therefore, in order to increase the deformation resistance, it is preferable that the temperature of the material during processing is as low as possible, and the strain that can be applied to the material at one time is as large as possible.
[0037] このような観点から、変形双晶を導入するための加工処理法として、 MDF加工処理 法を採用する場合、 MDF加工処理を室温 (300K)以下の温度で行うことが好ま ヽ。 これにより、加工時の変形抵抗をより高め、一度により多くの変形双晶を導入すること ができる。また、 223K (絶対温度)以下の「極低温」下において MDFカ卩ェ処理を行う 場合には、加工処理速度は、ひずみ速度が約 1 X 10— 4Z秒以上となるように選定し、 それ以外の場合には、ひずみ速度が約 5 X 10— 4Z秒以上となるように選定することが 好ましい。大きなひずみ速度を選定すれば、パス毎に材料に加わる変形量を大きく することができ、変形抵抗を高めることができるため、加工処理をする際の温度が高 い場合 (室温程度)であっても、材料組織内により多くの変形双晶を導入することがで きる。 [0037] From such a viewpoint, when the MDF processing method is adopted as a processing method for introducing the deformation twins, it is preferable that the MDF processing is performed at a temperature of room temperature (300K) or less. As a result, the deformation resistance during processing can be further increased, and more deformation twins can be introduced at one time. Further, when the MDF mosquitoes卩E processed in under "cryogenic" below 223 K (absolute temperature), the processing speed is selected so the strain rate of about 1 X 10- 4 Z seconds or more, Otherwise, it is preferable to select as the strain rate of about 5 X 10- 4 Z seconds. If a large strain rate is selected, the amount of deformation applied to the material for each pass can be increased, and the deformation resistance can be increased, so that the processing temperature is high (about room temperature). However, more deformation twins can be introduced into the material structure.
[0038] また、 MDFカ卩ェ処理法によって、超微細粒組織を有する材料を工業的に量産する 場合は、 1回の加工処理毎に、被加工材料の長軸方向が圧縮方向となるように、被 加工材料を自動で回転させることが好ましい。このような操作は、例えばマ-ュピユレ ータ等の電動式または機械式の被加工材料位置 (または方向)制御手段を用いるこ とにより、容易に行うことができる。これにより、 1パス毎に被カ卩工材料の向きを変えると いう煩わしさが解消される。  [0038] In addition, when industrially mass-producing a material having an ultrafine grain structure by the MDF cache processing method, the major axis direction of the work material becomes the compression direction for each processing. In addition, it is preferable to automatically rotate the work material. Such an operation can be easily performed by using, for example, an electric or mechanical work material position (or direction) control means such as a manipulator. This eliminates the hassle of changing the orientation of the material to be coated for each pass.
[0039] このような工程を経て、例えば、図 1に模式的に示すような、多数の双晶 110で構成 された超微細粒組織 100を有する材料を得ることが可能となる。この図の例では、平 均結晶粒径は、最大でも約 500nm〜l μ m未満の範囲にあり、双晶間隔は、約 80〜10 Onm程度である。 Through such a process, for example, a material having an ultrafine grain structure 100 composed of a large number of twins 110 as schematically shown in FIG. 1 can be obtained. In the example of this figure, The average grain size is at most in the range of about 500 nm to less than 1 μm, and the twin spacing is about 80 to 10 Onm.
[0040] このような変形双晶は、一つの粒内では、 1方向に平行に現れやすいが、試料の加 ェ方向を変えて、再度鍛造すると、別の方向の変形双晶が現れ、両変形双晶がお互 いに切断しあうことにより、さらに超微細な結晶粒へと変化していく。変形双晶は、双 晶面を挟む 2つの結晶が約 60度の方位差を有しており、変形双晶の発現により、変 形双晶の形成そのもの、さらにはそれらの交切、切断により、高方位差粒界によって 囲まれた超微細粒組織が容易に生成される。  [0040] Such deformed twins tend to appear parallel to one direction within one grain, but when the sample is changed in the direction of addition and forged again, deformed twins in another direction appear, and both As deformed twins cut into each other, they change into ultrafine crystal grains. In the deformation twin, the two crystals sandwiching the twin plane have an orientation difference of about 60 degrees, and due to the appearance of the deformation twin, the formation of the deformation twin itself, as well as the crossing and cutting of them. An ultrafine grain structure surrounded by high misorientation grain boundaries is easily generated.
[0041] なお、前述の鍛造後の材料には、焼鈍処理を実施しても良!ヽ。焼鈍処理を実施す ることにより、変形によって生じた変形双晶を多数含む超微細粒組織を均質化させる ことができる。焼鈍処理は、できるだけ低い温度で行うことが好ましい。処理温度が高 くなると、超微細結晶粒の粒成長が促進されてしまう可能性があるからである。特に、 鍛造材料の融点を Tm (K)とした場合、焼鈍処理の温度は、 0.5Tm以下とすることが 好ましい。例えば、銅一 30mass%亜鉛合金の場合、この合金の融点は、 1223Kであ るため、処理温度は、 611K以下とする。  [0041] It should be noted that the forged material may be annealed!ヽ. By performing the annealing treatment, it is possible to homogenize the ultrafine grain structure including a large number of deformation twins generated by deformation. The annealing treatment is preferably performed at the lowest possible temperature. This is because if the processing temperature is increased, the growth of ultrafine crystal grains may be promoted. In particular, when the melting point of the forging material is Tm (K), the annealing temperature is preferably 0.5 Tm or less. For example, in the case of a copper-one 30 mass% zinc alloy, the melting point of this alloy is 1223K, so the processing temperature is 611K or less.
[0042] 図 3には、本発明の方法によって製作された超微細粒組織を有する材料の室温に おける応力ひずみ曲線の一例を示す。これらの試験用試料は、前述の MDF加工処 理によって、銅 30mass%亜鉛合金にひずみを 0.4 (1パス)、 2.4 (6パス)および 6.0 (1 5パス)だけ導入して製作されたものである。また上の図は、温度 77Kでの MDF力卩ェ処 理により製作された試料の結果を示しており、下の図は、室温 (300K)での MDF加工 処理によって製作された試料の結果を示して!/、る。通常の結晶粒超微細化処理され ていないこの材料の最大強度は、 500MPa程度である。一方、温度 77Kで MDF加工処 理された試料では、最大強度は 600MPa〜900MPaまで増大しており、温度 300Kで M DFカ卩ェ処理された試料においても、導入ひずみが 0.4 (1パス)の試料を除き、最大 強度は 700MPa〜800MPaまで増大して!/、る。  FIG. 3 shows an example of a stress strain curve at room temperature of a material having an ultrafine grain structure manufactured by the method of the present invention. These test samples were produced by introducing strains of 0.4 (1 pass), 2.4 (6 passes) and 6.0 (15 passes) into a copper 30 mass% zinc alloy by the MDF processing described above. is there. The upper figure shows the result of the sample manufactured by MDF force treatment at 77K, and the lower figure shows the result of the sample manufactured by MDF processing at room temperature (300K). Show me! The maximum strength of this material, which has not been subjected to normal grain refinement, is about 500 MPa. On the other hand, the maximum strength of the sample processed at MDF at 77K increased from 600MPa to 900MPa, and the introduced strain was 0.4 (1 pass) in the sample processed at MDF at 300K. Except for the sample, the maximum intensity increases from 700 MPa to 800 MPa!
[0043] 図 4には、 MDF加工処理後の試料の組織写真を示す。この試料は、前述の MDFカロ ェ処理によって、銅— 30mass%亜鉛合金にひずみを 6.0 (15パス)だけ導入して製作 されたものである。左側の写真(a)は、 77Kでの MDFカ卩ェ処理後の組織を示しており 、中央の写真(b)は、 300Kでの MDFカ卩ェ処理後のものである。また、右の図(c)は、 中央の組織写真の一部を拡大して模式的に示したものである。 FIG. 4 shows a structure photograph of the sample after the MDF processing. This sample was manufactured by introducing strain of 6.0 (15 passes) into a copper-30mass% zinc alloy by the MDF caloe process described above. The photo (a) on the left shows the organization after the MDF cache treatment at 77K. The middle photo (b) is after the MDF cache processing at 300K. The right figure (c) shows an enlarged schematic view of a part of the central tissue photograph.
[0044] 特に図(c)からわ力るように、 MDFカ卩ェ処理後の試料の結晶粒内には、同一の結 晶方位に配向された層状の双晶群が形成されている。本願では、このような層状の 双晶群を、特に「パケット」(またはパケット 120)と称することにする。なお、このパケット 120内の各双晶をさらに詳細に観察すると、一つの双晶の内部には、さらに小さな層 状の双晶群カもなる第 2のパケットが形成されており、この第 2のパケット内に含まれる 各双晶は、同一の結晶方位に配向されていることがわかる。このような組織は、 MDF 加工による変形処理を繰り返すことにより、パケット 120内の双晶がより小さな双晶群 に分断されて生じたと考えられる。この考察によれば、一つのパケットを構成する双晶 群に含まれる双晶は、変形処理を加える度に、さらに微細な層状の双晶群に分断さ れ、これにより更なる微細なパケットが形成されるとともに、結晶粒が微細化され、超 微細粒組織が形成されることになる。  [0044] In particular, as shown in Fig. (C), layered twins oriented in the same crystal orientation are formed in the crystal grains of the sample after the MDF cache treatment. In the present application, such a layered twin group will be specifically referred to as “packet” (or packet 120). When the twins in the packet 120 are observed in more detail, a second packet having a smaller layered twin group is formed inside one twin. It can be seen that the twins included in the packet are oriented in the same crystal orientation. Such a structure is considered to be caused by repeating the deformation process by MDF processing, so that the twins in the packet 120 are divided into smaller twin groups. According to this consideration, twins included in a twin group constituting one packet are divided into finer layered twin groups each time a deformation process is applied, whereby further fine packets are separated. As it is formed, the crystal grains are refined and an ultrafine grain structure is formed.
[0045] なお一般に、加工熱処理等により組織内に複数の双晶群を導入した場合、双晶群 同士がなす方位差は、 60度である。しカゝしながら、 MDF加工処理によって導入された 双晶の場合、変形処理を繰り返すことにより、該変形処理の前から存在するパケット が変形を受け、該パケットを構成する双晶群に結晶回転が生じる。従って、 1回目の 変形処理によって生じた第 1のパケットを構成する双晶群と、 2回目の変形処理によつ て生じた第 2のパケットの双晶内に形成された双晶群の方位差は、 60度以外の角度 をなすようになる。  In general, when a plurality of twin groups are introduced into the structure by a thermomechanical treatment or the like, the difference in orientation between the twin groups is 60 degrees. However, in the case of twins introduced by MDF processing, by repeating the deformation process, the packet existing before the deformation process is deformed, and the twins constituting the packet are crystal rotated. Occurs. Therefore, the orientation of the twin group forming the first packet generated by the first deformation process and the twin group formed in the twin of the second packet generated by the second deformation process. The difference will be at an angle other than 60 degrees.
[0046] 以上のように、本発明の超微細粒組織を有する材料の製造方法を被加工材料に 適用することにより、結晶粒の超微細化を行うことが可能となるとともに、材料の強度 を向上させることが可能となる。  [0046] As described above, by applying the method for producing a material having an ultrafine grain structure of the present invention to a material to be processed, it is possible to make the crystal grain ultrafine and to reduce the strength of the material. It becomes possible to improve.
[0047] また、変形双晶を多数導入するための別の加工処理法として、圧延処理方法があ る。材料中に多数の変形双晶を導入するためには、材料を剪断変形させることが好 ましい。圧延処理方法では、材料に剪断応力が付加されやすぐ材料組織中に比較 的容易に高密度の変形双晶を導入することができる。従って、この方法を適用した場 合、前述の MDF加工処理法よりもさらに簡単に、結晶粒を超微細化することができる 。また、圧延処理方法は、被加工材料の形状による制約が少なぐ例えば大面積の 板材等、大型材料にも適用することができる。 [0047] Another processing method for introducing a large number of deformation twins is a rolling method. In order to introduce a large number of deformation twins in the material, it is preferable to shear the material. In the rolling method, shear stress is applied to the material, and a high-density deformation twin can be introduced into the material structure relatively easily. Therefore, when this method is applied, it is possible to make the crystal grains ultra finer more easily than the MDF processing method described above. . In addition, the rolling method can be applied to a large-scale material such as a large-area plate material that is less restricted by the shape of the material to be processed.
[0048] なお、材料を圧延処理する際の処理条件としては、「極低温処理」、「低温高速処 理」、「低温高圧処理」または「高速高圧処理」の!ヽずれかを使用することが好ま 、 。ここで、「極低温処理」とは、被圧延材料を 223K (絶対温度)以下の「極低温」に維 持した状態で、圧延を行う方法である。前述のように、一度に多数の変形双晶を組織 中に導入するには、変形抵抗を大きくするため、材料の温度はできるだけ低ぐまた 一度に材料に加わるひずみは、できるだけ大きくすることが好ましい。「極低温処理」 では、材料温度を 223K以下の極低温まで下げて圧延処理を行うため、他の処理条 件パラメータとは無関係に、変形抵抗を高めることができる。すなわちこの条件では、 材料を極低温に維持するだけで、変形双晶が多数形成されるのに十分な変形抵抗 状態を得ることができるため、後述の他の処理条件とは異なり、変形速度等の他のパ ラメータについての詳細な制御が不要となるという特徴がある。  [0048] The processing conditions for rolling the material include "very low temperature processing", "low temperature high speed processing", "low temperature high pressure processing" or "high speed high pressure processing"! I prefer to use one or the other. Here, “cryogenic treatment” is a method of rolling in a state where the material to be rolled is kept at an “extremely low temperature” of 223 K (absolute temperature) or less. As described above, in order to introduce a large number of deformation twins into the structure at once, it is preferable to make the temperature of the material as low as possible and to increase the strain applied to the material as much as possible in order to increase the deformation resistance. . In “Cryogenic treatment”, the material temperature is lowered to a cryogenic temperature of 223K or lower, and the rolling treatment is performed. Therefore, the deformation resistance can be increased regardless of other processing condition parameters. That is, under these conditions, the deformation resistance state sufficient to form a large number of deformation twins can be obtained simply by maintaining the material at a very low temperature. The feature is that detailed control of other parameters is unnecessary.
[0049] また「低温高速処理」および「低温高圧処理」は、被圧延材料を 223〜300K (室温) 程度の温度に維持した状態で、圧延を行う方法である。このような温度での圧延処理 のみでは、「極低温処理」のように高密度の変形双晶を導入することが難しい。従つ てこれらの処理条件では、一度に材料に加えることの可能な変形量を多くするパラメ ータとの組み合わせによって、被圧延材料中に高密度の変形双晶を導入する。例え ば、「低温高速処理」の場合は、変形抵抗を高めるため、被圧延材料に高速でひず みを加えることにより、被圧延材料中に多量の変形双晶を導入する。材料に高速で ひずみを付加するため、圧延速度は、「極低温処理」での速度よりも大きくする必要 があり、最小でも 5 X 10— mZ秒以上であることが好ましい。一方、「低温高圧処理」の 場合は、ひずみ量が大きいほど変形双晶が生成されやすいことを利用して、被圧延 材料を高圧圧延条件下で処理することにより、被圧延材料の圧下率を高め、高密度 の変形双晶を導入する。この場合、材料の最終圧下率は、 20%以上であることが好 ましい。また、均一に変形双晶を分散させる観点力もは、最終圧下率は 60%以上で あることが望ましい。  [0049] "Low-temperature high-speed treatment" and "low-temperature high-pressure treatment" are methods in which rolling is performed while the material to be rolled is maintained at a temperature of about 223 to 300K (room temperature). Only by rolling at such a temperature, it is difficult to introduce high-density deformation twins as in the “cryogenic treatment”. Therefore, under these processing conditions, high-density deformation twins are introduced into the material to be rolled, in combination with parameters that increase the amount of deformation that can be applied to the material at one time. For example, in the case of “low temperature high speed processing”, a large amount of deformation twins is introduced into the material to be rolled by adding strain to the material to be rolled at a high speed in order to increase the deformation resistance. In order to apply strain to the material at a high speed, the rolling speed needs to be higher than that in the “cryogenic treatment”, and is preferably at least 5 × 10−mZ seconds. On the other hand, in the case of “low temperature and high pressure treatment”, the reduction rate of the material to be rolled is reduced by treating the material to be rolled under high pressure rolling conditions by taking advantage of the fact that deformation twins are more likely to be generated as the amount of strain increases. Introduce high-density, high-density deformation twins. In this case, the final reduction ratio of the material is preferably 20% or more. In addition, it is desirable that the final reduction ratio is 60% or more for the viewpoint power to uniformly disperse the deformation twins.
[0050] さらに「高速高圧処理」とは、例えば室温等の非低温域で、被圧延材料に圧延処理 を行う方法であり、高速処理と、高圧処理との組み合わせにより、被圧延材料の変形 抵抗を高め、高密度の変形双晶を導入する。例えば、室温での一般的な圧延の場 合、圧延速度は、 5 X 10— mZ秒以上とし、圧下率を 70%以上とすることによって変 形双晶が出現する。 [0050] Further, "high-speed and high-pressure treatment" refers to a rolling treatment on a material to be rolled in a non-low temperature region such as room temperature. This is a method of increasing the deformation resistance of the material to be rolled and introducing high-density deformation twins by combining high-speed processing and high-pressure processing. For example, in the case of general rolling at room temperature, deformed twins appear when the rolling speed is 5 × 10-mZ seconds or more and the rolling reduction is 70% or more.
[0051] なおこれらの圧延処理方法の中では、特に「極低温処理」が好まし!/、。これ以外の 方法では、材料に一度に大きなひずみまたは圧力を加える必要があり、装置が特殊 化および大型化し、標準的な装置での処理ができなくなるという問題が生じるからで ある。また、延性の高い材料の場合など、材料によっては、一度に大きなひずみを加 えることが難しい場合もあり得るからである。し力しながら、装置上の制約あるいは材 料上の制約等がなければ、前記 、ずれの処理条件にぉ 、て変形双晶を導入しても 良いことは明らかであろう。  [0051] Of these rolling treatment methods, "cryogenic treatment" is particularly preferred! In other methods, it is necessary to apply a large strain or pressure to the material at once, which causes problems that the equipment becomes special and large, and cannot be processed with standard equipment. Also, depending on the material, such as a highly ductile material, it may be difficult to apply a large strain at a time. However, if there are no restrictions on equipment or materials, it will be apparent that deformation twins may be introduced under the above processing conditions.
[0052] なお、前述の圧延後の材料には、焼鈍処理を実施しても良!、。焼鈍処理を実施す ることにより、変形によって生じた変形双晶を多数含む超微細粒組織を均質化させる ことができる。焼鈍処理は、できるだけ低い温度で行うことが好ましい。処理温度が高 くなると、超微細粒の粒成長が促進されてしまう可能性があるからである。特に、圧延 材料の融点を Tm (K)とした場合、焼鈍処理の温度は、 0.5Tm以下とすることが好まし い。例えば、銅一 30mass%亜鉛合金の場合、この合金の融点は、 1223Kであるため、 処理温度は、 611K以下とする。  [0052] The above-mentioned rolled material may be annealed. By performing the annealing treatment, it is possible to homogenize the ultrafine grain structure including a large number of deformation twins generated by deformation. The annealing treatment is preferably performed at the lowest possible temperature. This is because if the processing temperature is increased, the growth of ultrafine grains may be promoted. In particular, when the melting point of the rolled material is Tm (K), the annealing temperature is preferably 0.5 Tm or less. For example, in the case of a copper-one 30 mass% zinc alloy, the melting point of this alloy is 1223K, so the processing temperature is 611K or less.
[0053] このような焼鈍処理によって、例えば図 5に示すような、平均結晶粒径が 20ηπ!〜 600 nm程度のほぼ均一な超微細粒組織を得ることができる。ここで図 5は、銅— 30mass% 亜鉛合金を 77Kで極低温圧延処理した後(圧延率 60%) 503Kの温度で 8時間焼鈍 した試料における、方位分散分析装置(OIM)によるマップ図である。この図において 、本発明の方法によって製造された超微細粒組織は、後述のように、焼鈍処理後に も、粒成長があまり進行していないことに留意する必要がある。これは、組織中に含ま れる方位の異なる多数の変形双晶が結晶粒を拘束する役割を果たし、粒成長を抑 制するためであると考えられる。従って、本発明の方法によって得られた超微細粒組 織を有する材料は、熱安定性に優れると!ヽぅ有意な特徴をも有する。  [0053] By such annealing treatment, for example, as shown in FIG. An almost uniform ultrafine grain structure of about 600 nm can be obtained. Here, Fig. 5 is a map using an orientation dispersion analyzer (OIM) of a sample that was subjected to a cryogenic rolling process at 77K (rolling rate: 60%) and annealed for 8 hours at a temperature of 503K. . In this figure, it should be noted that the ultrafine grain structure produced by the method of the present invention does not progress so much even after annealing as will be described later. This is thought to be because a large number of deformation twins with different orientations contained in the structure play a role of restraining the crystal grains and suppress the grain growth. Therefore, the material having the ultrafine grain structure obtained by the method of the present invention has a significant characteristic if it is excellent in thermal stability.
[0054] なお、本願発明者の研究結果によれば、図 1に示すような双晶間隔が 200 以下の 変形双晶を多数含む超微細粒組織は、積層欠陥エネルギーが小さな金属または合 金ほど得られやすい傾向にある。これは、積層欠陥エネルギーが大きい金属または 合金では、 MDFカ卩ェ処理等の加工を行っても、材料に蓄積される転位密度が上昇し にくぐ材料に変形双晶発生のための臨界応力を超える応力を加えることが難しいた めである。従って、本発明は、積層欠陥エネルギーが 50mj/mm2以下の金属または 合金に適用されることが好ましい。ここで、積層欠陥エネルギーの低い金属または合 金としては、例えば銀 (積層欠陥エネルギー約 22mjZmm2)、銅(78 mjZmm2)、コバ ルト(15mjZmm2)、ニッケル(128 mj/mm2)、黄銅(約 20mj/mm2)およびステンレス 鋼(211mjZmm2)等がある。ここで、黄銅とは、銅と亜鉛の合金であって亜鉛を 20mas s%以上含むものを言う(前述の積層欠陥エネルギーは、銅 30mass%亜鉛合金の値 である)。なお、金属または合金自身の積層欠陥エネルギーが 50mj/mm2を超える 場合であっても、そのような金属または合金に、 1または 2以上の不純物元素を添カロ することにより、積層欠陥エネルギーを著しく低下させることができることが知られてい る。例えば、銅に 9%のシリコンを添カロした場合、積層欠陥エネルギーは、 5mj/mm2 に低下する。従って、前述の積層欠陥エネルギーが 50mjZmm2以上の金属もしくは 合金または他の合金においても、不純物元素を添加することにより、本発明の適用 範囲に含まれ得ることに留意する必要がある。 [0054] According to the research results of the present inventors, the twin spacing as shown in FIG. An ultrafine grain structure containing a large number of deformation twins tends to be obtained more easily with a metal or alloy having a lower stacking fault energy. This is because, for metals or alloys with large stacking fault energy, even if processing such as MDF cache treatment is performed, the dislocation density accumulated in the material is difficult to increase, and the critical stress for generating deformation twins is applied to the material. This is because it is difficult to apply more stress. Therefore, the present invention is preferably applied to a metal or alloy having a stacking fault energy of 50 mj / mm 2 or less. Here, examples of metals or alloys with low stacking fault energy include silver (stacking fault energy of about 22 mjZmm 2 ), copper (78 mjZmm 2 ), cobalt (15 mjZmm 2 ), nickel (128 mj / mm 2 ), brass. (About 20mj / mm 2 ) and stainless steel (211mjZmm 2 ). Here, brass means an alloy of copper and zinc and contains 20 mass% or more of zinc (the aforementioned stacking fault energy is the value of copper 30 mass% zinc alloy). Even when the stacking fault energy of the metal or alloy itself exceeds 50 mj / mm 2 , stacking fault energy is remarkably increased by adding one or more impurity elements to such metal or alloy. It is known that it can be reduced. For example, when 9% silicon is added to copper, the stacking fault energy decreases to 5 mj / mm 2 . Therefore, it should be noted that the above-described stacking fault energy can be included in the scope of the present invention by adding an impurity element even in a metal or alloy or other alloy having 50 mjZmm 2 or more.
[0055] 以下、図面を参照して、本発明に係る超微細粒組織を有する材料の製造方法の一 例を説明する。なお、以下の例では、材料組織中に変形双晶を導入する加工処理 法として、「極低温処理」条件の圧延処理を用いる方法につ!ヽて説明する。  [0055] Hereinafter, an example of a method for producing a material having an ultrafine grain structure according to the present invention will be described with reference to the drawings. In the following example, as a processing method for introducing deformation twins into the material structure, a method using a rolling process under the “cryogenic treatment” condition! I will explain in a moment.
[0056] 図 6には、本発明の方法 (極低温処理条件による圧延処理)を実施するための圧延 装置の一例を模式的に示す。本発明の方法では、圧延装置 10は、極低温槽 50と、搬 送装置 30と、圧延ロール 20とで構成される。搬送装置 30は、被圧延材料 40を圧延口 ール 20の方に誘導するために使用される。極低温槽 50は、予め被圧延材料 40を冷 却しておくために使用される。極低温槽 50の温度は、 223K以下であるが、特に液体 窒素温度(77K)以下であることが好ましい。ここで、別の圧延装置 10では、極低温槽 50の位置が変更または削除されても良い。重要なことは、被圧延材料 40が圧延ロー ル 20を通る直前に、被圧延材料 40が前述の温度となるように冷却されていることであ る。例えば、搬送路の途中に冷却槽を設けておき、被圧延材料 40が圧延ロール 20に 搬送される前に冷却槽を通過し、被圧延材料 40の圧延該当箇所が前述のような温度 に冷却されるように装置を構成しても良 ヽ。 [0056] Fig. 6 schematically shows an example of a rolling apparatus for carrying out the method of the present invention (rolling treatment under cryogenic treatment conditions). In the method of the present invention, the rolling device 10 includes a cryogenic bath 50, a transport device 30, and a rolling roll 20. The conveying device 30 is used to guide the material 40 to be rolled toward the rolling tool 20. The cryogenic bath 50 is used to cool the material to be rolled 40 in advance. The temperature of the cryogenic bath 50 is 223 K or less, but is particularly preferably a liquid nitrogen temperature (77 K) or less. Here, in another rolling apparatus 10, the position of the cryogenic bath 50 may be changed or deleted. What is important is that the material to be rolled 40 is cooled to the above-mentioned temperature immediately before the material to be rolled 40 passes through the rolling roll 20. The For example, a cooling tank is provided in the middle of the conveyance path, the material to be rolled 40 passes through the cooling tank before being conveyed to the rolling roll 20, and the rolling portion of the material to be rolled 40 is cooled to the temperature as described above. It is okay to configure the device as described.
[0057] 圧延装置 10は、以下の動作によって、例えば銅 30mass%亜鉛合金のような被圧 延材料 40に変形双晶を導入することが可能である。まず、極低温槽 50内で予め予冷 された被圧延材料 40が、搬送装置 30上に載せられる。次に、搬送装置 30が稼働し、 被圧延材料 40が圧延ロール 20の方向に移動する。被圧延材料 40は、圧延ロール 20 の位置まで搬送されると、ここで圧延ロール 20によって圧延される。被圧延材料 40の 送り速度 (圧延速度)は、約 1 X 10— mZ秒以上であることが好ましいが、特にこれに 限られるものではない。また、 1パスの圧下率は、 10〜20%程度であることが好ましい 力 特にこれに限られるものではない。前述のように、極低温処理条件の場合、圧下 率および送り速度自身が変形双晶の発生密度に及ぼす影響は顕著ではないからで ある。 [0057] The rolling apparatus 10 can introduce deformation twins into the material to be rolled 40 such as a copper 30 mass% zinc alloy by the following operation. First, the material 40 to be rolled that has been pre-cooled in the cryogenic bath 50 is placed on the conveying device 30. Next, the conveying device 30 is operated, and the material 40 to be rolled moves in the direction of the rolling roll 20. When the material to be rolled 40 is conveyed to the position of the rolling roll 20, it is rolled by the rolling roll 20 here. The feed speed (rolling speed) of the material to be rolled 40 is preferably about 1 × 10−mZ seconds or more, but is not particularly limited thereto. In addition, the rolling reduction of one pass is preferably about 10 to 20%. The force is not particularly limited to this. This is because, as described above, in the case of the cryogenic treatment condition, the influence of the reduction rate and the feed rate itself on the generation density of deformation twins is not significant.
[0058] このような操作が必要回数 (パス)だけ繰り返し行われ、材料内に多数の変形双晶 が導入される。なお、被圧延材料 40の 1パスの圧延処理完了毎に、被圧延材料 40を 再冷却することが好ましい。圧延処理によって被圧延材料 40の温度が上昇して、被 圧延材料 40を再圧延する際に、被圧延材料 40の温度が変形双晶発生に適した極低 温範囲に維持できなくなることを防止するためである。ただし 1パス圧延後に、被圧延 材料 40の温度が適正な極低温範囲に維持されるような場合 (例えば、圧延処理装置 10全体を低温環境に設置している場合など)には、被圧延材料 40の温度が所定の値 を超えな ヽ範囲で、 2〜数パスの圧延を繰り返し行うことも可能である。  [0058] Such an operation is repeated as many times as necessary (pass), and a large number of deformation twins are introduced into the material. It is preferable that the material to be rolled 40 be recooled every time one pass of the rolling process of the material to be rolled 40 is completed. Prevents the temperature of the material to be rolled 40 from being raised by the rolling process, and the temperature of the material to be rolled 40 cannot be maintained in the extremely low temperature range suitable for deformation twinning when the material to be rolled 40 is re-rolled. It is to do. However, if the temperature of the material 40 to be rolled is maintained in an appropriate cryogenic temperature range after one pass rolling (for example, when the entire rolling processing apparatus 10 is installed in a low temperature environment), the material to be rolled It is also possible to repeatedly perform rolling of 2 to several passes in a range where the temperature of 40 does not exceed a predetermined value.
[0059] このような装置を用いた圧延処理方法では、被圧延材料 40が極低温に保持されて おり、変形抵抗が十分に大きいため、多数の変形双晶を容易に導入することができる 。また、処理後には、超微細粒組織を有する材料を得ることができる。  [0059] In the rolling method using such an apparatus, the material to be rolled 40 is kept at a very low temperature and the deformation resistance is sufficiently high, so that a large number of deformation twins can be easily introduced. Further, after the treatment, a material having an ultrafine grain structure can be obtained.
[0060] 一方、例えば室温のような非極低温にぉ 、ても、被圧延材料 40に変形双晶を導入 することが可能である(高速高圧処理)。この場合、前述の装置の極低温槽 50が不要 となるという利点が得られる。ただし、被圧延材料 40の送り速度をより高速にしたり、あ るいは圧延時圧下率をより大きくするなど、変形抵抗を高める工夫が必要となる。例 えば、高速高圧処理では、被圧延材料の送り速度は、 5 X 10— mZ秒以上とし、圧延 後の最終圧下率は、 70%以上とする。このような圧延処理によっても、均一かつ高密 度の変形双晶を有する超微細粒組織を得ることができる。 [0060] On the other hand, it is possible to introduce deformation twins into the material 40 to be rolled even at a non-cryogenic temperature such as room temperature (high-speed and high-pressure treatment). In this case, there is an advantage that the cryogenic bath 50 of the above-described apparatus is not necessary. However, it is necessary to improve the deformation resistance by increasing the feed speed of the material 40 to be rolled or by increasing the rolling reduction ratio during rolling. Example For example, in the high-speed and high-pressure treatment, the feed speed of the material to be rolled is 5 × 10−mZ seconds or more, and the final rolling reduction after rolling is 70% or more. Even with such a rolling process, an ultrafine grain structure having uniform and high-density deformation twins can be obtained.
[0061] なお、このようにして圧延された材料を用いて、焼鈍処理が行われても良!、。焼鈍 処理は、前述のように、できるだけ低い温度で行うことが好ましい。例えば、材料の融 点を Tmとしたとき、 0.5 X Tm以下の温度での焼鈍処理によって、結晶粒径が 20nm 600 の範囲の再結晶粒を有する超微細粒組織を得ることができる。  [0061] Annealing treatment may be performed using the material rolled in this manner! As described above, the annealing treatment is preferably performed at the lowest possible temperature. For example, when the melting point of the material is Tm, an ultrafine grain structure having recrystallized grains having a crystal grain size in the range of 20 nm 600 can be obtained by annealing at a temperature of 0.5 X Tm or less.
[0062] 以下、本発明の方法を適用して得られた超微細粒組織を有する材料の各種評価 試験結果にっ 、て説明する。  [0062] Hereinafter, various evaluation test results of materials having an ultrafine grain structure obtained by applying the method of the present invention will be described.
(実験 1)  (Experiment 1)
実験 1では、試験材料を用いて MDF加工処理を行い、得られた材料の強度評価を 行った。実験 1の材料としては、積層欠陥エネルギーが 20mj/mm2の銅 30mass% 亜鉛合金を使用した。 In Experiment 1, MDF processing was performed using the test material, and the strength of the obtained material was evaluated. As the material for Experiment 1, a 30 mass% copper alloy with a stacking fault energy of 20 mj / mm 2 was used.
[0063] 図 7には、温度 77K、真ひずみ速度 1 X 10— 3Ζ秒での MDF加工処理後の銅 30mas s%亜鉛合金の TEM観察組織を示す。この処理では、材料にカ卩える MDFカ卩ェ処理の パス回数を 6回とし、材料に導入される累積ひずみ量を 2.4としている。この図から、 M DF加工処理によって、材料中に変形双晶が多数導入され、これらの変形双晶の相 互交切によって、平均結晶粒径が 1 μ m以下の超微細粒組織が形成されていること がわかる。また、図の丸で囲った 1 /z m領域の制限視野回折像には、ハローリング(回 折スポットが繋がってリング状に見える現象)が現れている。通常、ハローリングは、組 織内に方位の異なる結晶が多数存在する場合に、それぞれの粒子に対応する回折 スポットが極めて接近することによって生じる。従って、本結果から、本方法で得られ た材料組織中には、超微細な結晶粒が多数含まれて ヽることがわかる。 [0063] Figure 7 shows the temperature 77K, the TEM observation tissue copper 30mas s% zinc alloy after the MDF processed in the true strain rate 1 X 10- 3 Zeta seconds. In this process, the number of passes of the MDF cache process that covers the material is six, and the cumulative strain introduced into the material is 2.4. From this figure, many deformation twins are introduced into the material by MDF processing, and an ultrafine grain structure with an average crystal grain size of 1 μm or less is formed by the cross-cutting of these deformation twins. You can see that In addition, the halo ring (a phenomenon in which diffraction spots are connected and appear in a ring shape) appears in the 1 / zm region limited field diffraction image circled in the figure. Usually, halo ring is caused by the close proximity of diffraction spots corresponding to each particle when there are many crystals with different orientations in the structure. Therefore, it can be seen from this result that the material structure obtained by this method contains a large number of ultrafine crystal grains.
[0064] 図 3には、温度 77Kおよび 300K (室温)での MDF加工処理によって得られた試験片 の室温における応力ひずみ曲線を示す。この試験片においては、材料にカ卩える MD Fカロェ処理のパス回数を 1回、 6回、 15回と変えることにより、材料に導入されるひずみ 量を、それぞれ 0.4 2.4および 6.0と変化させている。 77Kの極低温 MDFカ卩ェ処理によ つて得られた試験片の場合、図の上側に示すように、ひずみ量力 .4から 6.0に増加 すると、最大強度は、 600MPa力 900MPaまで変化した。また伸びはいずれの試験片 にお 、ても 20%程度であった。従来の加工熱処理法で得られる同材料の最大強度 は、通常の場合 500MPa程度である。従って、本結果から、 MDF加工処理法を適用す ることにより、材料の強度が著しく向上することがわかる。また ECAP法等の従来の結 晶粒超微細化処理法で得られる同材料の伸びは、通常 10%程度である。従って、本 発明の結晶粒超微細化処理法を適用することにより、伸びが改善されることがわかる 一方、 300K (室温)の MDFカ卩ェ処理によって得られた試験片の場合、図の下側に 示すように、ひずみ量が 0.4から 6.0に増加すると、最大強度は、 500MPaから 800MPa まで変化した。このように、 300Kの室温 MDF加工処理においても、ひずみ量の増加 によって、強度が向上する傾向が認められた。ただし 77Kでの極低温処理に比べて、 その強度向上効果は小さかった。これは、室温での MDF加工処理では、 77Kでの極 低温処理の場合に比べて、材料の変形抵抗を大きくすることがより難しくなり、同じパ ス数で比較した場合、組織中に含まれる変形双晶の数がより少なくなるためであると 考えられる。し力しながら、 TEM観察の結果、累積ひずみ 6.0まで MDFカ卩ェ処理した 試料 (最大強度、約 800MPa)では、室温での処理であっても、均一な超微細結晶粒 が形成されて 、ることが認められた。また本処理条件で製作した 3つの試料にぉ 、て も、伸びは 20%程度となっており、従来の同材料(10%)に比べて向上した。 [0064] Fig. 3 shows the stress-strain curve at room temperature of the specimen obtained by MDF processing at temperatures of 77K and 300K (room temperature). In this test piece, the amount of strain introduced into the material was changed to 0.4 2.4 and 6.0 by changing the number of passes of the MDF Karoe treatment to the material to 1, 6, and 15, respectively. Yes. For specimens obtained by 77K cryogenic MDF cache treatment, the strain force increased from .4 to 6.0 as shown in the upper part of the figure. Then, the maximum strength changed to 600MPa force 900MPa. Elongation was about 20% in all specimens. The maximum strength of the same material obtained by conventional thermomechanical processing is usually around 500 MPa. Therefore, this result shows that the strength of the material is remarkably improved by applying the MDF processing method. In addition, the elongation of the same material obtained by conventional ultrafine grain processing methods such as ECAP is usually about 10%. Therefore, it can be seen that the elongation can be improved by applying the ultrafine grain processing method of the present invention. On the other hand, in the case of a test piece obtained by MDF cache treatment at 300 K (room temperature), As shown, the maximum strength changed from 500 MPa to 800 MPa when the strain increased from 0.4 to 6.0. In this way, even in 300K room temperature MDF processing, there was a tendency for strength to increase with increasing strain. However, the strength improvement effect was small compared to the cryogenic treatment at 77K. This is because the MDF processing at room temperature makes it more difficult to increase the deformation resistance of the material compared to the cryogenic treatment at 77K, and it is included in the structure when compared with the same number of paths. This is probably because the number of deformation twins is smaller. However, as a result of TEM observation, a sample (maximum strength, about 800MPa) treated with MDF cache up to a cumulative strain of 6.0 formed uniform ultrafine crystal grains even at room temperature. It was recognized that In addition, the three specimens manufactured under these treatment conditions had an elongation of about 20%, which is an improvement over the conventional material (10%).
(実験 2) (Experiment 2)
実験 2では、実験 1と同じ材料 (銅— 30maSS%亜鉛合金)を使用して、極低温圧延処 理加工を行い、得られた組織の状態およびその安定性について評価した。まず、こ の材料を用いて、図 6に示した装置により極低温圧延処理を行った。圧延時の材料 温度は、 77Kとした。圧延時の 1パス毎の圧下率は、 10%力も 20%の範囲とした。 60% 圧延後の材料の組織を透過型電子顕微鏡 (TEM)により観察した。その結果、図 1〖こ 示した組織と同様の、約 500nm〜l μ m未満の結晶粒力 なる極めて微細な結晶粒 組織が発達していることがわ力つた。また、結晶粒内には、多数の変形双晶が含まれ ており、これらの変形双晶内の双晶間隔は、約 80〜100nm程度であることがわ力つた [0066] 次に、 77Kで 60%圧延した材料を各温度で焼鈍処理したときの組織変化を調べた。 図 8は、 77Kで材料を 60%圧延した後、 503K 523Κおよび 543Κの各温度で焼鈍処理 したときの材料のビッカース硬度変化を示した図である。この図から、焼鈍温度にも依 存するが、硬度は、 103 104秒後に急激に低下しており、この時間以降に静的再結 晶化が生じて 、ることがわかる。 In Experiment 2, the same material (copper-30ma SS % zinc alloy) as in Experiment 1 was used, and the cryogenic rolling process was performed, and the state of the resulting structure and its stability were evaluated. First, using this material, a cryogenic rolling process was performed using the apparatus shown in FIG. The material temperature during rolling was 77K. The rolling reduction for each pass during rolling was in the range of 10% force and 20%. The structure of the material after 60% rolling was observed with a transmission electron microscope (TEM). As a result, it was found that a very fine grain structure with a grain strength of about 500 nm to less than l μm was developed, similar to the structure shown in Fig. 1. In addition, a large number of deformation twins are included in the crystal grains, and it was found that the twin spacing in these deformation twins is about 80 to 100 nm. [0066] Next, a change in structure was examined when a material rolled 60% at 77K was annealed at various temperatures. FIG. 8 is a graph showing changes in the Vickers hardness of the material when the material is rolled at 77K by 60% and then annealed at temperatures of 503K, 523%, and 543%. From this figure, it can be seen that although it depends on the annealing temperature, the hardness decreases rapidly after 10 3 10 4 seconds, and static recrystallization occurs after this time.
[0067] 図 9には、銅 30mass%亜鉛合金を 77Κで極低温圧延処理した後(圧延率 60%) 523Kの温度で 1000秒間焼鈍した試料の TEM写真を示す。右の写真は、左の写真の 高倍率図である。これらの写真から、 523Kで 1000秒間焼鈍した段階では、未だ変形 処理によって生じた「パケット」が残っては!、るものの、一部の「パケット」は再結晶化 しており、静的再結晶が始まっていることがわかった。さらに、結晶粒内の一部には、 方位の揃った複数の層状の双晶で形成された再結晶粒が形成されていることがわか つた。この再結晶粒の粒径は、 20nm程度であるため、この再結晶粒に含まれる双晶 は、 20 よりも遙かに小さな粒径を有すると考えられる。  [0067] Fig. 9 shows a TEM photograph of a sample that was annealed for 1000 seconds at a temperature of 523K after a 30 mass% copper alloy was cryogenically rolled at 77% (rolling rate 60%). The photo on the right is a high magnification view of the photo on the left. From these photographs, at the stage of annealing at 523K for 1000 seconds, the “packets” generated by the deformation process still remain! However, some “packets” have been recrystallized and static recrystallization has occurred. I found out that has started. Furthermore, it was found that recrystallized grains formed of a plurality of layered twins with uniform orientation were formed in part of the crystal grains. Since the recrystallized grains have a grain size of about 20 nm, the twins contained in the recrystallized grains are considered to have a grain size much smaller than 20.
[0068] このように、銅 30mass%亜鉛合金の極低温圧延処理とその後の焼鈍処理により、 「パケット」と、このパケットの再結晶粒と、方位の揃った複数の層状の双晶で形成さ れた別の再結晶粒とを含む、超微細粒組織が形成された。  [0068] In this way, by the cryogenic rolling treatment of copper 30mass% zinc alloy and the subsequent annealing treatment, "packets", recrystallized grains of this packet, and a plurality of layered twins with the same orientation are formed. An ultrafine grain structure was formed including the other recrystallized grains.
[0069] 図 10には、 77Kで材料を 60%圧延した後、 503Kおよび 523Kの両温度で焼鈍処理し たときの焼鈍時間と材料組織中の平均結晶粒径の関係を示す。ここで図の括弧で示 したデータ (焼鈍時間 = 100秒)の平均結晶粒径は、粒が微細すぎて判別が難しかつ たため、変形双晶の間隔と長さ (それぞれ、図 1の Dおよび L)の単純平均として算出 している。また、その他のデータでは、平均結晶粒径は、透過型電子顕微鏡による写 真を用いて、境界を有する組織を結晶粒として、直線横断法により算出した。このよう に、境界を有する組織を結晶粒としたのは、組織内部に含まれる変形双晶は、 60度 以上の高方位差を有しているため、これらの組織が高方位境界によって囲まれた結 晶粒であることは自明であるからである。なお、結晶粒内部に発達した微細な変形双 晶は、計算に使用しておらず、実際の結晶粒径は、図 10に示した値よりもさらに小さ い。図 10から、結晶粒は、焼鈍処理によってもあまり粗大化せず、最大でも 0.6 /z m程 度であることがわかる。 図 5には、 77Kで銅 30mass%亜鉛合金を 60%圧延した後、 503Kで 8時間焼鈍した ときの組織の一例を示す。この観察は、方位分散分析装置 (OIM)を用いて行った。 図 5から、焼鈍処理によって、平均粒径約 500nmのほぼ均一な超微細結晶粒が得ら れていることがわかる。なお、この平均結晶粒径は、方位差 3度以上の境界を持つ組 織を結晶粒として平均結晶粒面積力 算出したが、ほとんど全ての組織が 15度以上 の高方位差の境界を持つ組織であった。また、同図から、 8時間もの長時間焼鈍によ つても結晶粒が粗大化していないことがわかる。この結果から、変形双晶を大量に導 入して得られた組織を焼鈍処理することによって、均一な超微細粒組織とすることが 可能であること、さらにはこのようにして形成された組織は、熱的に極めて安定で、粗 大化し難いことがわ力つた。これは、本発明では、多数の変形双晶を材料組織中に 導入させることにより、結晶粒の超微細化を行っており、方位の異なる多数の双晶の 存在によって、粒成長が抑制されるためであると考えられる。 [0069] FIG. 10 shows the relationship between the annealing time and the average crystal grain size in the material structure when the material was rolled 60% at 77K and then annealed at both temperatures of 503K and 523K. The average crystal grain size in the data shown in parentheses in the figure (annealing time = 100 seconds) was difficult to distinguish because the grains were too fine, so the distance and length of the deformation twins (D and Calculated as a simple average of L). In other data, the average crystal grain size was calculated by the straight line crossing method using a transmission electron microscope as a crystal grain with a boundary structure. Thus, the reason why the structure having the boundary is the crystal grain is that the deformation twin contained in the structure has a high orientation difference of 60 degrees or more, and therefore, these structures are surrounded by the high orientation boundary. This is because it is obvious that it is a crystal grain. The fine deformation twins developed inside the crystal grains are not used in the calculation, and the actual crystal grain size is even smaller than the value shown in FIG. It can be seen from Fig. 10 that the crystal grains are not coarsened even by the annealing treatment and are about 0.6 / zm at the maximum. Fig. 5 shows an example of the structure when 60% of a 30mass% copper alloy is rolled at 77K and then annealed at 503K for 8 hours. This observation was performed using an orientation variance analyzer (OIM). From Fig. 5, it can be seen that the annealing process yielded almost uniform ultrafine crystal grains with an average grain size of about 500 nm. The average crystal grain size was calculated by taking the structure having a boundary with an orientation difference of 3 degrees or more as a crystal grain, but almost all the structures had a boundary with a high orientation difference of 15 degrees or more. Met. It can also be seen from the figure that the crystal grains are not coarsened even after a long annealing time of 8 hours. From this result, it is possible to obtain a uniform ultrafine grain structure by annealing the structure obtained by introducing a large amount of deformation twins, and further, the structure formed in this way. It was proved that is extremely stable thermally and difficult to coarsen. This is because, in the present invention, a large number of deformation twins are introduced into the material structure to make the crystal grains ultrafine, and the presence of a large number of twins with different orientations suppresses the grain growth. This is probably because of this.
(実験例 3) (Experiment 3)
次に比較のため、純銅 (積層欠陥エネルギー 78mjZmm2)を使用し、同様の実験を 行った。図 11には、 77Kの極低温および室温(300K)で MDFカ卩ェ処理を実施した後 の、純銅の室温における応力ひずみ曲線を示す。横軸は、累積ひずみである。 300K で MDF加工処理を実施した純銅の場合、累積ひずみが 2%を超えると、最大応力は 380MPaとなり、以降累積ひずみ 6までの超強力卩ェ処理を行っても、最大応力は変化 しな力つた。また試験後の試料の組織観察の結果、変形双晶はほとんど生じていな かった。一方、温度 77Kで MDFカ卩ェ処理を実施した試験片では、累積ひずみが 2のと ころで、最大応力は 590MPaとなった。また、累積ひずみ 2までひずみを加えた試験片 の組織観察を行ったところ、一部に僅かの変形双晶が発生していることがわ力つた。 しかし、変形双晶は不均一に発生しており、前述の銅 30mass%亜鉛合金のような 全面均一な超微細粒組織は得られな力つた。この結果から、変形応力が大きくても、 材料の積層欠陥エネルギーが大きい場合、変形双晶は得られ難いことがわかる。こ れは、材料には、変形双晶を高い確率で発生させるための固有の臨界応力が存在 すること、すなわち、材料を加工処理して、材料組織中に多数の変形双晶を発生さ せるためには、材料に加わる応力が臨界応力を超える必要があることを示している( 銅の場合は、臨界応力 =400〜600MPa程度と予想される)。そして、積層欠陥エネル ギ一が高い純銅では、転位密度が上昇しにくいため、 MDF加工処理等の加工を行つ ても、材料に加わる応力がこの臨界応力を容易には超えられず、同加工条件では、 銅 30mass%亜鉛合金のような多数の変形双晶が発生しないものと予想される。 なお、本願は 2006年 4月 3日および 2006年 4月 25日に出願した日本国特許出願 2006 - 102216号および 2006 - 120942号に基づく優先権を主張するものであり 、同日本国出願の全内容を本願に参照により援用する。 Next, for comparison, the same experiment was performed using pure copper (stacking fault energy 78mjZmm 2 ). Figure 11 shows the stress-strain curve of pure copper at room temperature after the MDF cache treatment at 77K cryogenic temperature and room temperature (300K). The horizontal axis is cumulative strain. In the case of pure copper subjected to MDF processing at 300K, if the cumulative strain exceeds 2%, the maximum stress becomes 380 MPa, and the maximum stress does not change even after ultra-strong stress treatment up to cumulative strain 6 is performed. I got it. In addition, as a result of observation of the structure of the sample after the test, almost no deformation twins occurred. On the other hand, in the specimen subjected to MDF cache treatment at a temperature of 77 K, the maximum stress was 590 MPa at a cumulative strain of 2. When the microstructure of the specimen with strain up to cumulative strain 2 was observed, it was found that some deformation twins were partially formed. However, deformation twins were generated non-uniformly, and it was impossible to obtain a uniform ultra-fine grain structure on the entire surface, such as the aforementioned copper 30 mass% zinc alloy. This result shows that even if the deformation stress is large, it is difficult to obtain a deformation twin when the stacking fault energy of the material is large. This is because the material has an inherent critical stress to generate deformation twins with high probability, that is, the material is processed to generate a large number of deformation twins in the material structure. This indicates that the stress applied to the material must exceed the critical stress ( In the case of copper, critical stress is expected to be around 400 to 600 MPa). And with pure copper, which has a high stacking fault energy, the dislocation density is unlikely to increase. Therefore, even when processing such as MDF processing, the stress applied to the material cannot easily exceed this critical stress. Under the conditions, it is expected that a large number of deformation twins such as the copper 30mass% zinc alloy will not occur. This application claims priority based on Japanese patent applications 2006-102216 and 2006-120942 filed on April 3, 2006 and April 25, 2006. The contents are incorporated herein by reference.

Claims

請求の範囲 The scope of the claims
[1] 積層欠陥エネルギーが 50mjZmm2以下の金属または合金力もなる超微細粒組織 を有する材料であって、 [1] A material having an ultrafine grain structure with a stacking fault energy of 50 mjZmm 2 or less and also having a metal or alloy strength,
結晶組織中に双晶を含み、該双晶中の双晶間隔力 ¾00應以下であることを特徴と する材料。  A material characterized by containing twins in the crystal structure and having a twin spacing force in the twins of ¾00 or less.
[2] 積層欠陥エネルギーが 50mjZmm2以下の金属または合金力もなる超微細粒組織 を有する材料であって、 [2] A material having an ultrafine grain structure with a stacking fault energy of 50 mjZmm 2 or less and also having a metal or alloy power,
結晶粒径が 20應〜 600應の範囲の再結晶粒を有することを特徴とする材料。  A material characterized by having recrystallized grains having a crystal grain size ranging from 20 to 600.
[3] 超微細粒組織を有する材料の製造方法であって、 [3] A method for producing a material having an ultrafine grain structure,
積層欠陥エネルギーが 50mjZmm2以下の金属または合金を提供するステップと、 前記金属または合金を加工して、前記金属または合金の組織中に、双晶間隔が 20 0應以下の変形双晶を導入するステップと、 Providing a metal or alloy having a stacking fault energy of 50 mjZmm 2 or less; and processing the metal or alloy to introduce a deformation twin having a twin spacing of 200 or less in the structure of the metal or alloy. Steps,
を有することを特徴とする方法。  A method characterized by comprising:
[4] 前記変形双晶を導入するステップは、室温以下の温度で、前記金属または合金を 多軸鍛造処理するステップを有することを特徴とする請求項 3に記載の方法。 4. The method according to claim 3, wherein the step of introducing the deformation twin includes a step of subjecting the metal or alloy to a multiaxial forging process at a temperature of room temperature or lower.
[5] 前記多軸鍛造処理するステップは、 1 X 10— 4Z秒以上のひずみ速度で、前記金属ま たは合金を鍛造処理するステップを有することを特徴とする請求項 4に記載の方法。 [5] said step of multi-axis forging process, in 1 X 10- 4 Z seconds or strain rate method of claim 4 wherein the metal or is characterized by having a step of forging the alloy .
[6] 前記室温以下の温度は、絶対温度 223K以下であることを特徴とする請求項 4に記 載の方法。 [6] The method according to claim 4, wherein the temperature below room temperature is an absolute temperature of 223K or less.
[7] さらに、多軸鍛造処理された前記金属または合金を焼鈍処理するステップを有する ことを特徴とする請求項 4に記載の方法。  7. The method according to claim 4, further comprising a step of annealing the metal or alloy that has been subjected to multi-axis forging.
[8] 前記変形双晶を導入するステップは、前記金属または合金を室温以下の温度で圧 延処理するステップを有することを特徴とする請求項 3に記載の方法。 [8] The method according to claim 3, wherein the step of introducing the deformation twin includes a step of rolling the metal or alloy at a temperature of room temperature or lower.
[9] さらに、圧延処理された前記金属または合金を焼鈍処理するステップを有すること を特徴とする請求項 8に記載の方法。 9. The method according to claim 8, further comprising a step of annealing the rolled metal or alloy.
[10] 前記焼鈍処理するステップは、前記金属または合金の融点を Tmとしたとき、 0.5 X T m以下の温度で、前記金属または合金を焼鈍処理するステップを有することを特徴と する請求項 7または 9に記載の方法。 [10] The step of annealing, comprising the step of annealing the metal or alloy at a temperature of 0.5 XTm or less, where Tm is the melting point of the metal or alloy. 9. The method according to 9.
[11] 前記圧延処理するステップは、 5 X 10— mZ秒以上の圧延速度で、前記金属また は合金を圧延するステップを有することを特徴とする請求項 8に記載の方法。 [11] The method according to claim 8, wherein the step of rolling includes the step of rolling the metal or alloy at a rolling speed of 5 × 10—mZ seconds or more.
[12] 前記圧延処理するステップは、最終圧下率が 20%以上となるように、前記金属また は合金を圧延するステップを有することを特徴とする請求項 8に記載の方法。 [12] The method according to claim 8, wherein the step of rolling includes the step of rolling the metal or alloy so that the final reduction ratio is 20% or more.
[13] 前記圧延処理するステップは、絶対温度 223K以下の温度で、前記金属または合金 を圧延処理するステップを有することを特徴とする請求項 8に記載の方法。 13. The method according to claim 8, wherein the step of rolling includes the step of rolling the metal or alloy at a temperature of 223 K or less.
[14] 実質的に第 1の方向に配向された層状の双晶群を含む第 1のパケットを有し、 [14] having a first packet comprising a layered twin group substantially oriented in a first direction;
該第 1のパケット内の双晶の少なくとも一つは、実質的に第 2の方向に配向された層 状の双晶群力 なる第 2のパケットを有し、  At least one of the twins in the first packet has a second packet of layered twin group forces substantially oriented in the second direction;
第 1の方向と第 2の方向は、 60度以外の角度をなすものを含むことを特徴とする超 微細粒組織を有する材料。  A material having an ultrafine grain structure characterized in that the first direction and the second direction include those having an angle other than 60 degrees.
[15] 実質的に第 1の方向に配向された複数の層状の双晶群を含む第 1のパケットを含む 第 1の組織であって、該第 1のパケット内の双晶の少なくとも一つは、実質的に、第 1 の方向とは異なる第 2の方向に配向された双晶群を含む第 2のパケットを有する、第 1 の組織と、 [15] a first structure comprising a first packet comprising a plurality of layered twins substantially oriented in a first direction, wherein at least one of the twins in the first packet A first structure having a second packet comprising a twin group oriented in a second direction substantially different from the first direction;
前記第 1のパケットの再結晶粒を含む第 2の組織と、  A second structure comprising recrystallized grains of the first packet;
実質的に同一の方向に配向された複数の層状の双晶で形成された再結晶粒を含 む第 3の組織と、  A third structure comprising recrystallized grains formed of a plurality of layered twins oriented in substantially the same direction;
を含むことを特徴とする超微細粒組織を有する材料。  A material having an ultrafine grain structure characterized by comprising:
[16] 当該材料は、黄銅であることを特徴とする請求項 14または 15に記載の超微細粒組 織を有する材料。 [16] The material having an ultrafine grain structure according to [14] or [15], wherein the material is brass.
PCT/JP2007/057478 2006-04-03 2007-04-03 Material having superfine granular tissue and method for production thereof WO2007114439A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008508699A JPWO2007114439A1 (en) 2006-04-03 2007-04-03 Material having ultrafine grain structure and method for producing the same
US12/295,640 US20090165903A1 (en) 2006-04-03 2007-04-03 Material Having Ultrafine Grained Structure and Method of Fabricating Thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006102216 2006-04-03
JP2006-102216 2006-04-03
JP2006-120942 2006-04-25
JP2006120942 2006-04-25

Publications (1)

Publication Number Publication Date
WO2007114439A1 true WO2007114439A1 (en) 2007-10-11

Family

ID=38563703

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/057478 WO2007114439A1 (en) 2006-04-03 2007-04-03 Material having superfine granular tissue and method for production thereof

Country Status (3)

Country Link
US (1) US20090165903A1 (en)
JP (1) JPWO2007114439A1 (en)
WO (1) WO2007114439A1 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010090448A (en) * 2008-10-09 2010-04-22 Univ Of Electro-Communications Brass and method for producing brass
WO2012063504A1 (en) * 2010-11-11 2012-05-18 国立大学法人 電気通信大学 Method for subjecting difficult-to-process metal material to multiaxial forging, device for carrying out said method, and metal material
US9192981B2 (en) 2013-03-11 2015-11-24 Ati Properties, Inc. Thermomechanical processing of high strength non-magnetic corrosion resistant material
US9206497B2 (en) 2010-09-15 2015-12-08 Ati Properties, Inc. Methods for processing titanium alloys
US9523137B2 (en) 2004-05-21 2016-12-20 Ati Properties Llc Metastable β-titanium alloys and methods of processing the same by direct aging
US9616480B2 (en) 2011-06-01 2017-04-11 Ati Properties Llc Thermo-mechanical processing of nickel-base alloys
US9765420B2 (en) 2010-07-19 2017-09-19 Ati Properties Llc Processing of α/β titanium alloys
US9777361B2 (en) 2013-03-15 2017-10-03 Ati Properties Llc Thermomechanical processing of alpha-beta titanium alloys
US9796005B2 (en) 2003-05-09 2017-10-24 Ati Properties Llc Processing of titanium-aluminum-vanadium alloys and products made thereby
US9869003B2 (en) 2013-02-26 2018-01-16 Ati Properties Llc Methods for processing alloys
US10053758B2 (en) 2010-01-22 2018-08-21 Ati Properties Llc Production of high strength titanium
US10094003B2 (en) 2015-01-12 2018-10-09 Ati Properties Llc Titanium alloy
US10435775B2 (en) 2010-09-15 2019-10-08 Ati Properties Llc Processing routes for titanium and titanium alloys
US10502252B2 (en) 2015-11-23 2019-12-10 Ati Properties Llc Processing of alpha-beta titanium alloys
US10513755B2 (en) 2010-09-23 2019-12-24 Ati Properties Llc High strength alpha/beta titanium alloy fasteners and fastener stock
JP2021038456A (en) * 2019-08-28 2021-03-11 三菱マテリアル株式会社 Ag alloy sputtering target
WO2021112004A1 (en) * 2019-12-02 2021-06-10 三菱マテリアル株式会社 Ag alloy sputtering target
JP2021091950A (en) * 2019-12-02 2021-06-17 三菱マテリアル株式会社 Ag alloy sputtering target
US11111552B2 (en) 2013-11-12 2021-09-07 Ati Properties Llc Methods for processing metal alloys
CN115216675A (en) * 2022-07-28 2022-10-21 吉林大学 Method for preparing superfine layered twin crystal structure on surface of aluminum alloy

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5843176B2 (en) * 2011-06-28 2016-01-13 国立大学法人電気通信大学 Method for producing high-strength magnesium alloy material and magnesium alloy bar
US10023977B2 (en) 2012-09-17 2018-07-17 The Texas A&M University System Method for producing high stacking fault energy (SFE) metal films, foils, and coatings with high-density nanoscale twin boundaries
RU2610998C1 (en) * 2015-10-20 2017-02-17 Федеральное государственное автономное образовательное учреждение высшего образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ") Method of thermomechanical treatment of copper alloys
CN108359921B (en) * 2018-02-06 2020-10-20 常州大学 Dynamic strain aging preparation method of high-strength high-conductivity copper alloy
CN112593114B (en) * 2020-12-22 2022-04-05 中北大学 Preparation method of high-performance Cu-Cr-Zr-Mg-Si alloy plate strip
CN115612955B (en) * 2022-10-24 2023-05-16 四川大学 Recrystallized high-strength and high-toughness superfine crystal pure titanium and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10140279A (en) * 1996-09-13 1998-05-26 Seiko Instr Inc Co-ni-base alloy
JP2006299287A (en) * 2005-04-15 2006-11-02 Nikko Kinzoku Kk Dual phase copper alloy, spring material and foil body, and method for producing dual phase copper alloy

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4327030B2 (en) * 2004-07-07 2009-09-09 新日鐵住金ステンレス株式会社 Low Ni austenitic stainless steel with excellent overhanging and rust resistance

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10140279A (en) * 1996-09-13 1998-05-26 Seiko Instr Inc Co-ni-base alloy
JP2006299287A (en) * 2005-04-15 2006-11-02 Nikko Kinzoku Kk Dual phase copper alloy, spring material and foil body, and method for producing dual phase copper alloy

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9796005B2 (en) 2003-05-09 2017-10-24 Ati Properties Llc Processing of titanium-aluminum-vanadium alloys and products made thereby
US10422027B2 (en) 2004-05-21 2019-09-24 Ati Properties Llc Metastable beta-titanium alloys and methods of processing the same by direct aging
US9523137B2 (en) 2004-05-21 2016-12-20 Ati Properties Llc Metastable β-titanium alloys and methods of processing the same by direct aging
JP2010090448A (en) * 2008-10-09 2010-04-22 Univ Of Electro-Communications Brass and method for producing brass
US10053758B2 (en) 2010-01-22 2018-08-21 Ati Properties Llc Production of high strength titanium
US10144999B2 (en) 2010-07-19 2018-12-04 Ati Properties Llc Processing of alpha/beta titanium alloys
US9765420B2 (en) 2010-07-19 2017-09-19 Ati Properties Llc Processing of α/β titanium alloys
US9206497B2 (en) 2010-09-15 2015-12-08 Ati Properties, Inc. Methods for processing titanium alloys
US9624567B2 (en) 2010-09-15 2017-04-18 Ati Properties Llc Methods for processing titanium alloys
US10435775B2 (en) 2010-09-15 2019-10-08 Ati Properties Llc Processing routes for titanium and titanium alloys
US10513755B2 (en) 2010-09-23 2019-12-24 Ati Properties Llc High strength alpha/beta titanium alloy fasteners and fastener stock
WO2012063504A1 (en) * 2010-11-11 2012-05-18 国立大学法人 電気通信大学 Method for subjecting difficult-to-process metal material to multiaxial forging, device for carrying out said method, and metal material
US9616480B2 (en) 2011-06-01 2017-04-11 Ati Properties Llc Thermo-mechanical processing of nickel-base alloys
US10287655B2 (en) 2011-06-01 2019-05-14 Ati Properties Llc Nickel-base alloy and articles
US9869003B2 (en) 2013-02-26 2018-01-16 Ati Properties Llc Methods for processing alloys
US10570469B2 (en) 2013-02-26 2020-02-25 Ati Properties Llc Methods for processing alloys
US10337093B2 (en) 2013-03-11 2019-07-02 Ati Properties Llc Non-magnetic alloy forgings
US9192981B2 (en) 2013-03-11 2015-11-24 Ati Properties, Inc. Thermomechanical processing of high strength non-magnetic corrosion resistant material
US10370751B2 (en) 2013-03-15 2019-08-06 Ati Properties Llc Thermomechanical processing of alpha-beta titanium alloys
US9777361B2 (en) 2013-03-15 2017-10-03 Ati Properties Llc Thermomechanical processing of alpha-beta titanium alloys
US11111552B2 (en) 2013-11-12 2021-09-07 Ati Properties Llc Methods for processing metal alloys
US10094003B2 (en) 2015-01-12 2018-10-09 Ati Properties Llc Titanium alloy
US10619226B2 (en) 2015-01-12 2020-04-14 Ati Properties Llc Titanium alloy
US10808298B2 (en) 2015-01-12 2020-10-20 Ati Properties Llc Titanium alloy
US11851734B2 (en) 2015-01-12 2023-12-26 Ati Properties Llc Titanium alloy
US11319616B2 (en) 2015-01-12 2022-05-03 Ati Properties Llc Titanium alloy
US10502252B2 (en) 2015-11-23 2019-12-10 Ati Properties Llc Processing of alpha-beta titanium alloys
WO2021240839A1 (en) * 2019-08-28 2021-12-02 三菱マテリアル株式会社 Ag alloy sputtering target
JP2021038456A (en) * 2019-08-28 2021-03-11 三菱マテリアル株式会社 Ag alloy sputtering target
JP2021091950A (en) * 2019-12-02 2021-06-17 三菱マテリアル株式会社 Ag alloy sputtering target
WO2021112004A1 (en) * 2019-12-02 2021-06-10 三菱マテリアル株式会社 Ag alloy sputtering target
CN114761609A (en) * 2019-12-02 2022-07-15 三菱综合材料株式会社 Ag alloy sputtering target
CN115216675A (en) * 2022-07-28 2022-10-21 吉林大学 Method for preparing superfine layered twin crystal structure on surface of aluminum alloy
CN115216675B (en) * 2022-07-28 2023-04-18 吉林大学 Method for preparing superfine layered twin crystal structure on surface of aluminum alloy

Also Published As

Publication number Publication date
US20090165903A1 (en) 2009-07-02
JPWO2007114439A1 (en) 2009-08-20

Similar Documents

Publication Publication Date Title
WO2007114439A1 (en) Material having superfine granular tissue and method for production thereof
JPWO2007114439A6 (en) Material having ultrafine grain structure and method for producing the same
Zhang et al. A high strength and high electrical conductivity Cu-Cr-Zr alloy fabricated by cryorolling and intermediate aging treatment
Peng et al. Plastic deformation and heat treatment of Mg-Li alloys: a review
Wang et al. Effects of minor rare earths on the microstructure and properties of Cu-Cr-Zr alloy
Yang et al. Simultaneously enhanced strength and ductility of titanium via multimodal grain structure
Eskandari et al. Effect of strain-induced martensite on the formation of nanocrystalline 316L stainless steel after cold rolling and annealing
Liu et al. Achieving ultrahigh strength in CoCrNi-based medium-entropy alloys with synergistic strengthening effect
JP6869178B2 (en) High ductile steel alloy with mixed microstructure
Liu et al. Effect of nano-sized precipitates on the fatigue property of a lamellar structured high entropy alloy
Li et al. Microstructure and properties of Cu-Cr-Zr (Mg) alloys subjected to cryorolling and aging treatment
Zhang et al. Mechanical properties and microstructure evolution of a CrCoNi medium entropy alloy subjected to asymmetric cryorolling and subsequent annealing
Lee et al. Effect of microstructural features on the high-cycle fatigue behavior of CoCrFeMnNi high-entropy alloys deformed at room and cryogenic temperatures
Klimova et al. Microstructure and texture evolution of a high manganese TWIP steel during cryo-rolling
Fu et al. High strength-ductility nano-structured high manganese steel produced by cryogenic asymmetry-rolling
Li et al. Synergistic enhancement of strength and ductility of cobalt-free maraging steel via nanometer-scaled microstructures
Esquivel et al. Effect of heat treatment on the microstructure and shape memory behaviour of Fe-Mn-Si-Ni-Cr alloys
Tu et al. The compositional homogenization control of Cu-Ti alloys prepared by accumulative roll bonding-deformation diffusion process
Li et al. Further optimization of strength and ductility in a harmonic structure designed pure copper via thermomechanical processing
Du et al. Superb strengthening behavior in a precipitation strengthened Co-rich CoCrNiAlTi medium entropy alloy with acceptable ductility
Li et al. Investigation of mechanical properties and microstructural evolution in Cu─ Al alloys with gradient structure
Mordyuk et al. Twinning-related enhancement in strength and ductility of Cu-37Zn alloy by the cryogenic ultrasonic impact treatment supplemented with ECAP
Fang et al. Selective laser melting of AlCoCrFeMnNi high entropy alloy: Effect of heat treatment
Boja et al. Procedures for microstructurally conditioning an Fe-22Mn-0.6 C-1.5 Al TWIP steel for optimal mechanical behaviour
Park et al. Effect of carbon content on formation of bimodal microstructure and mechanical properties of low-carbon steels subjected to heavy-reduction single-pass hot/warm deformation

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07740914

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12295640

Country of ref document: US

Ref document number: 2008508699

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07740914

Country of ref document: EP

Kind code of ref document: A1