WO2007114425A1 - Fuel battery system - Google Patents

Fuel battery system Download PDF

Info

Publication number
WO2007114425A1
WO2007114425A1 PCT/JP2007/057393 JP2007057393W WO2007114425A1 WO 2007114425 A1 WO2007114425 A1 WO 2007114425A1 JP 2007057393 W JP2007057393 W JP 2007057393W WO 2007114425 A1 WO2007114425 A1 WO 2007114425A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
fuel cell
cell system
raw fuel
state
Prior art date
Application number
PCT/JP2007/057393
Other languages
French (fr)
Japanese (ja)
Inventor
Masataka Ozeki
Akinari Nakamura
Hideo Ohara
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Publication of WO2007114425A1 publication Critical patent/WO2007114425A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04225Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04228Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during shut-down
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04302Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04303Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during shut-down
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel cell system including a fuel cell that generates power using a fuel containing hydrogen generated using raw fuel and an oxidant.
  • fuel cell system t
  • fuel cell system t a fuel cell cogeneration system having high power generation efficiency and high overall efficiency
  • the fuel cell system includes a fuel cell as a main body of the power generation unit.
  • a fuel cell for example, a phosphoric acid fuel cell, a molten carbonate fuel cell, an alkaline aqueous fuel cell, a solid polymer fuel cell, or a solid electrolyte fuel cell is used.
  • phosphoric acid fuel cells and polymer electrolyte fuel cells constitute fuel cell systems because their operating temperatures during power generation are relatively low compared to the operating temperatures of other fuel cells.
  • solid polymer fuel cells are suitable for applications such as portable electronic devices and electric vehicles because the degradation of the electrode catalyst is relatively small compared to phosphoric acid fuel cells and the electrolyte does not dissipate. I can.
  • the conventional fuel cell system has been inspected by a serviceman, and until the abnormality is reliably resolved by the service person, the display related to the occurrence of the abnormality continues and the operation is stopped. Is forcibly maintained.
  • the conventional fuel cell system is designed so that only the service person can cancel the operation stop caused by the abnormality occurring in the raw fuel supply system. Why are the abnormalities occurring in the raw fuel supply system not being resolved! If the operation is resumed in a state, there is a possibility that the fuel cell system may cause harm to its users, etc. That's it.
  • a raw fuel such as natural gas is usually pressurized by a pressurizer and then supplied to a hydrogen generator.
  • a hydrogen generator When the operation of the fuel cell system is restarted in a state where the abnormality that has occurred in the raw fuel supply system has not been resolved, a large amount of air is sucked in through the location where the abnormality has occurred, The sucked air is mixed with the fuel containing hydrogen.
  • Such a state of the fuel cell system in which a mixture of fuel and air exists is a very dangerous state for users of the fuel cell system.
  • the conventional fuel cell system is always inspected and repaired by a service person when an abnormality occurs in the raw fuel supply system. In this way, it is designed so that only service personnel can cancel the operation stop caused by the abnormality that occurred in the fuel supply system. As a result, the safety of the fuel cell system is reliably and sufficiently secured.
  • the suspension of the operation of the conventional fuel cell system is for supplying raw fuel.
  • a circuit breaker for example, a gas meter with a built-in microcomputer
  • a supply means for example, a natural gas infrastructure
  • Patent Document 1 Japanese Patent Laid-Open No. 2001-68133
  • the fuel cell system itself does not require any inspection and repair by a service person.
  • the operation of the fuel cell system is forcibly stopped.
  • the service person it is necessary to request the service person to check and repair each time. This was a heavy burden for both users of fuel cell systems and service personnel.
  • the operation of the fuel cell system could not be restored until the inspection and repairs by the service personnel were completed. This significantly hindered the convenience of the fuel cell system.
  • the present invention has been made to solve the above-described conventional problems, and does not require repairs or the like by a service person such that the supply system of raw fuel is shut off due to an earthquake, a power failure, etc.
  • the purpose is to provide a fuel cell system that can be restarted automatically or when a fuel supply system malfunctions! Speak.
  • a fuel cell system includes a fuel cell that generates power by supplying a fuel and an oxidizing agent, and the fuel supplied to the fuel cell.
  • a fuel cell system comprising: a hydrogen generator that is supplied with fuel; a raw fuel state detector that detects a supply state of the raw fuel to the hydrogen generator; and an activation permit Z rejector.
  • the start permission Z rejector performs a start-up operation of the fuel cell system, and the raw fuel state detector supplies the raw fuel to the hydrogen generator in a normal state. Permitted when it is detected that it is detected, and not permitted when the raw fuel state detector detects that the supply state of the raw fuel to the hydrogen generator is not normal. .
  • the start-up permit Z-notifier permits the start-up operation of the fuel cell system according to the supply state of the raw fuel to the hydrogen generator detected by the raw fuel state detector Or, since it is not permitted, it becomes possible to start the start-up operation of the fuel cell system safely.
  • the start permission Z rejector permits the start-up operation when the raw fuel state detector detects that the supply state of the raw fuel to the hydrogen generator is normal.
  • the raw fuel state detector detects that the supply state of the raw fuel to the hydrogen generator is not normal, it is not permitted.
  • the start-up permission Z-notifier always permits the start-up operation of the fuel cell system according to the supply state of the raw fuel to the hydrogen generator detected by the raw fuel state detector. Alternatively, since it is always disallowed, the start-up operation of the fuel cell system can be started safely and automatically.
  • the apparatus further includes a return command input device for inputting a return command, and the start permission Z rejector performs the start operation by the raw fuel state detector to the raw fuel to the hydrogen generating device.
  • the raw fuel status detector permits the raw fuel to be supplied to the hydrogen generator. If it is detected that the supply state is not normal, even if the return command is input from the return command input device, it is not permitted.
  • the start-up permission Z-notifier determines the start-up operation of the fuel cell system, the supply state of the raw fuel to the hydrogen generator detected by the raw fuel state detector, and the return command. Accordingly, the start-up operation of the fuel cell system can be started more safely.
  • the operation controller further includes an operation controller, and when the raw fuel state detector detects that the supply state of the raw fuel to the hydrogen generator is not a normal state, Control is performed to forcibly stop the operation of the fuel cell system. [0017] With this configuration, if the operation controller detects that the supply state of the raw fuel to the hydrogen generator is not normal by the raw fuel state detector, the operation of the fuel cell system is forcibly performed. Since the operation is stopped, the safety of the fuel cell system can be sufficiently ensured.
  • the raw fuel state detector detects that the supply state of the raw fuel to the hydrogen generator is normal, an abnormality is not displayed and the hydrogen It further includes an indicator that displays an abnormality when it is detected that the supply state of the raw fuel to the generator is not normal.
  • the raw fuel state detector supplies the raw fuel to the hydrogen generator. It is further equipped with an indicator that displays an abnormality when it is detected that the status is not normal.
  • the raw fuel supply passage for supplying the raw fuel to the hydrogen generator is further provided, and the raw fuel for detecting the pressure of the raw fuel in the raw fuel supply passage is provided.
  • a pressure detector as a fuel state detector, and the start permission Z rejector permits the start operation when the pressure of the raw fuel detected by the pressure detector is equal to or higher than a predetermined threshold, and The start-up operation is not permitted when the pressure of the raw fuel detected by the pressure detector is less than the predetermined threshold value.
  • the raw fuel supply for supplying the raw fuel to the hydrogen generator A flow meter, and a flow meter as the raw fuel state detector for detecting the flow rate of the raw fuel in the raw fuel supply flow channel, wherein the activation permit Z rejector is detected by the flow meter.
  • the starting operation is permitted when the flow rate of the raw fuel is greater than or equal to a predetermined threshold value, and the starting operation is not permitted when the flow rate of the raw fuel detected by the flow meter is less than the predetermined threshold value. ,.
  • the activation permission Z rejector is activated when the raw fuel state detector detects the supply state of the raw fuel to the hydrogen generating device that is not in a normal state a plurality of times. Forced not to allow dynamic driving.
  • the configuration is powerful, the user or the like can detect the occurrence of an abnormality in the fuel cell system itself, so that the safety of the fuel cell system can be ensured.
  • the supply state of the raw fuel that is not in a normal state to the hydrogen generator is detected by the raw fuel state detector more than a predetermined number of times in a predetermined period. Then, it is forcibly maintained that the start-up operation is not permitted.
  • the configuration is powerful, the user or the like can reliably detect the occurrence of an abnormality in the fuel cell system itself, so that the safety of the fuel cell system can be reliably ensured.
  • the present invention is implemented by the means as described above, has the same configuration as that of the conventional force, can be easily and safely returned to operation with low initial cost and low maintenance cost. It is possible to provide a fuel cell system that is possible.
  • the fuel cell system of the present invention even when an abnormality occurs in the raw fuel supply system and the operation is stopped, the cause is an earthquake, a power failure, or the like.
  • Infrastructures such as electricity supply and gas supply that have no abnormality in the fuel cell system itself If the raw fuel supply system is abnormal, such as when the supply of raw fuel to the hydrogen generator returns to normal due to the normal restoration of the engine, it is automatically or used without requesting service personnel to check it. It becomes possible to return the operation of the fuel cell system easily and safely by the operation of the user. This significantly reduces the burden on users of fuel cell systems and service personnel, and greatly improves the convenience of fuel cell systems.
  • FIG. 1 is a block diagram schematically showing a configuration of a fuel cell system according to Embodiment 1 of the present invention.
  • FIG. 2 is a block diagram schematically showing a configuration of a control block in the fuel cell system according to Embodiment 1 of the present invention.
  • FIG. 3 is a block diagram schematically showing a specific configuration of a control block in the fuel cell system according to Embodiment 1 of the present invention.
  • FIG. 4 is a block diagram schematically showing a configuration of a control block in the fuel cell system according to Embodiment 2 of the present invention.
  • FIG. 5 is a block diagram schematically showing a configuration of a control block in the fuel cell system according to Embodiment 3 of the present invention.
  • FIG. 6 is a block diagram schematically showing a specific configuration of a control block in the fuel cell system according to Embodiment 3 of the present invention.
  • Fuel cell system 101 Control block 101a Raw fuel status detector 101b Status detector 101c Gate circuit 101d Operation controller 101e Return command input device 101f Display
  • Control block 102a Raw fuel status detector 102b Status detector 102d Operation controller 102f Display
  • Control block 103a Raw fuel status detector 103b Status detector 103c Gate circuit 103d Operation controller 103e Return command input device 103f Display
  • the operation of the fuel cell system is classified into a start operation, a power generation operation, a stop operation, and a standby operation.
  • the start-up operation refers to the period from when the start command is issued from the control device until the fuel cell power is taken out.
  • the power generation operation refers to the time from when power is taken out from the fuel cell until the fuel cell power is also taken out.
  • the stop operation refers to the period from when the control device power stop command is issued until the operation of the entire fuel cell system stops.
  • the standby operation means that power for driving is supplied to the fuel cell system. However, the operation of the entire fuel cell system is stopped and the operation is stopped.
  • FIG. 1 is a block diagram schematically showing the configuration of the fuel cell system according to Embodiment 1 of the present invention.
  • FIG. 1 shows only components necessary for explaining the present invention.
  • a fuel cell system 100 includes a water supplier 1.
  • This water supply 1 introduces water through the water supply flow path a to supply water such as water during the power generation operation of the fuel cell system 100.
  • the purified water is supplied to the hydrogen generator 4 described later via the water supply channel b.
  • the fuel cell system 100 includes a raw fuel supplier 2.
  • the raw fuel supplier 2 introduces natural gas from the infrastructure capable of supplying natural gas through the raw fuel supply passage c and the raw fuel supply passage d during the power generation operation of the fuel cell system 100. After the unnecessary components such as the introduced natural gas are removed, the natural gas from which the unnecessary components are removed is supplied to the hydrogen generator 4 described later via the raw fuel supply flow path e. To do. As shown in FIG.
  • a three-way valve 3 is provided in the middle of the raw fuel supply channel e.
  • the three-way valve 3 switches the supply destination of the natural gas supplied from the raw fuel supplier 2 via the raw fuel supply flow path e between a hydrogen generator 4 described later and a heater 4a described later.
  • the natural gas whose supply destination is switched to the heater 4a by the three-way valve 3 is supplied to the heater 4a of the hydrogen generator 4 via the raw fuel supply flow path f.
  • the fuel cell system 100 includes a raw fuel state detector 101a described later between the raw fuel supply channel c and the raw fuel supply channel d.
  • a raw fuel state detector 101a described later between the raw fuel supply channel c and the raw fuel supply channel d.
  • Provide control block 101! Regarding the configuration and operation of this control block 101! This will be described in detail later.
  • the fuel cell system 100 includes a hydrogen generator 4.
  • This hydrogen generator 4 is configured to supply water supplied from the water supply device 1 through the water supply flow path b, and from the raw fuel supply device 2 to the raw fuel supply flow path e and during the power generation operation of the fuel cell system 100.
  • a predetermined hydrogen production A hydrogen-containing fuel is produced by the synthesis reaction.
  • the portion of the hydrogen generator 4 where the predetermined hydrogen generation reaction proceeds is heated and kept at a predetermined temperature by the heater 4a.
  • the heater 4a is a fuel for combustion, either natural gas supplied from the raw fuel supplier 2 through the three-way valve 3 and the raw fuel supply flow path f, or fuel discharged from the fuel cell 6 described later.
  • the part where the predetermined hydrogen generation reaction proceeds in the hydrogen generator 4 is heated and kept warm after burning.
  • the hydrogen generator 4 supplies the fuel generated by a predetermined hydrogen generation reaction during the power generation operation of the fuel cell system 100 toward the fuel cell 6 described later via the fuel supply channel g.
  • the fuel cell system 100 includes a blower 5.
  • the blower 5 introduces air as an oxidant during the power generation operation of the fuel cell system 100, purifies the air as the introduced oxidant, and then performs the purification.
  • the performed air as an oxidant is supplied to a fuel cell 6 to be described later via an oxidant supply flow path h.
  • a fuel cell system 100 includes a fuel cell 6 as a main body of the power generation unit.
  • the fuel cell 6 is supplied with the fuel supplied from the hydrogen generator 4 through the fuel supply flow path g and the blower 5 through the oxidant supply flow path h during the power generation operation of the fuel cell system 100.
  • Each of the oxidizers generates electricity.
  • the surplus fuel that is used for power generation in the fuel cell 6 is discharged from the fuel cell 6 and then supplied to the heater 4a of the hydrogen generator 4 as necessary. Further, the surplus oxidant which is used for power generation in the fuel cell 6 is discharged from the fuel cell 6 and then released to the outside of the fuel cell system 100.
  • control block 101 According to Embodiment 1 of the present invention will be described.
  • FIG. 2 is a block diagram schematically showing the configuration of the control block in the fuel cell system according to Embodiment 1 of the present invention. In FIG. 2, only the components necessary for explaining the present invention are shown.
  • FIG. 3 is a block diagram schematically showing a specific configuration of the control block in the fuel cell system according to Embodiment 1 of the present invention.
  • FIG. 3 also illustrates the present invention. Only the necessary components are shown.
  • the control block 101 of the fuel cell system 100 includes a raw fuel state detector 101a, a state determiner 101b, a gate circuit 101c, and an operation controller lOld. , A return command input device lOle and a display device 101f.
  • the control block 111 of the fuel cell system 100 according to the present embodiment specifically includes a pressure sensor 11 la as a raw fuel state detector 101a and a state determiner 101.
  • JK-FF means "JK-flip-flop"!
  • FIG. 2 and FIG. 3 it is provided with a state determination device 101b (comparator 11 1 lb) and a gate circuit 101c (AND circuit 11 lc), so A Z rejector 201 (start-up permit Z rejector 211) is configured.
  • the control device 3 01 control device 311) is configured to include the start permission Z reject device 201 (start permission Z reject device 211) and the operation controller lOld (operation controller 11 Id).
  • the raw fuel state detector 101a is provided between the raw fuel supply flow path c and the raw fuel supply flow path d in the fuel cell system 100, and is supplied from the infrastructure capable of supplying natural gas as shown in FIG.
  • the supply state of the natural gas supplied to the fuel supply device 2 (that is, the hydrogen generator 4) is detected.
  • the raw fuel state detector 101a outputs a state signal corresponding to the supply state of the natural gas to the state determiner 10 lb of the start permission Z rejector 201.
  • the pressure sensor 11 la as the raw fuel state detector 101a detects the supply pressure of the natural gas supplied toward the raw fuel supply device 2 from the infrastructure that can supply natural gas. To do.
  • the pressure sensor 11 la outputs a pressure signal corresponding to the supply pressure of the natural gas to the comparator 111b of the activation permit Z rejector 211.
  • the state determiner 101b compares the state signal input from the raw fuel state detector 101a with predetermined threshold information stored in the storage unit that is not illustrated in FIG. 2 of the control device 301 in advance. . Then, the state determiner 101b sends a determination signal based on the comparison between the input state signal and predetermined threshold information to the gate circuit 101c of the activation permit Z rejector 201, the control device 30. Output to each of the operation controller 101d, return command input device 101e, and display lOlf.
  • the comparator 11 lb serving as the state determination device 101b includes a pressure signal corresponding to the supply pressure of the natural gas input from the pressure sensor 11 la and a memory stored in the control device 311 in advance.
  • the comparator 11 lb compare with predetermined threshold information.
  • the comparator 11 lb outputs an H level or L level determination signal based on a comparison between the input pressure signal and predetermined threshold information, an AND circuit 11 lc of the activation permit Z rejector 211, and a control device. Output to each of 311 operation controller 111d, return command input device ll le JK FFl l lh, and display 11 If.
  • the comparator 11 lb activates the determination signal of H level. Output to the AND circuit 111c etc. of the rejector 211.
  • the comparator 11 lb outputs an L level determination signal when the voltage of the pressure signal corresponding to the supply pressure of the natural gas input from the pressure sensor 11 la is less than a predetermined threshold voltage.
  • the H level determination signal means a relatively high voltage determination signal
  • the L level determination signal means a relatively low voltage determination signal.
  • the state determiner 101b can be realized by any of software, logic circuit, and analog circuit.
  • the gate circuit 101c sends a start permission Z rejection signal to the operation controller 101d of the control device 301 based on the determination signal to which the force of the state determiner 101b is also input and the return command input from the return command input device 101e. Output.
  • the AND circuit 11 lc as the gate circuit 101c is input from the H-level or L-level determination signal input from the comparator 11 lb and the return command input device 11 le (JK-FFl 1 lh).
  • H level or L level return command Based on the H level or L level return command, if an H level judgment signal is input from the comparator 11 lb and an H level return command is input from JK-FF1 1 lh, the controller 311 An H level start permission Z reject signal is output to the operation controller 11 Id, which is a signal that permits start operation of the fuel cell system 100.
  • the comparator 11 When an H level judgment signal is input from lb and an L level return command is input from JK FF11 lh of the return command input device 11 le, or when an L level judgment signal is input from the comparator 11 lb H level return command is input from JK-FF11 lh of command input unit 11 le In this case, the AND circuit 1 lie outputs an L level start permission Z rejection signal to the operation controller 11 Id of the control device 311.
  • This L level start permission Z rejection signal is a signal that prohibits the start operation of the fuel cell system 100.
  • the gate circuit 101c can be realized by any of software, logic circuits, and analog circuits.
  • the return command input device lOle outputs a return command for starting the startup operation of the fuel cell system 100 to the gate circuit 101c of the startup permitting Z rejector 201.
  • the return command input device lOle includes a self-holding circuit (not shown in FIG. 2), and the determination signal of the state determiner 101b is input to this self-holding circuit.
  • a return command is input by the user of the fuel cell system 100 or the like, it is held and output to the gate circuit 101c.
  • an L level determination signal is input from the state determiner 101b, the self-holding circuit is reset and the return command held is deleted. Specifically, in FIG.
  • the return button ll lg as a return command input tool outputs a J input to JK-FFl l lh, which is a self-holding circuit. Outputs an H level signal and outputs an L level signal when not pressed.
  • the judgment signal is inverted from the comparator 11 lb as the K input to JK-FFl l lh. Therefore, if the return button ll lg is pressed in the normal state where the comparator 11 lb outputs an H level determination signal (that is, the raw fuel supply state is normal), JK—FFl l lh Q becomes H level, and this H level signal is output to AND circuit 111c as a return command.
  • Display 101f has a normal supply state of raw fuel to hydrogen generator 4 based on a determination signal input from state determiner 101b and an activation permission Z reject signal input from gate circuit 101c. If it is not in the state, the effect (abnormality) or the start-up operation of the fuel cell system 100 is permitted. Display that it is not (abnormality).
  • the display 11 If as the display lOlf is an H level or L level determination signal input from the comparator 11 lb force, and an H level or L level activation permission input from the AND circuit 111c.
  • the raw fuel to the hydrogen generator 4 is not affected regardless of the activation permission Z rejection signal input from the AND circuit 111c. Displays that the supply status is not normal.
  • the display 11 If indicates that the raw fuel supply state is normal regardless of the start permission Z rejection signal input from the AND circuit 111c. Do not display that there is no.
  • the display 11 If displays that the start-up operation of the fuel cell system 100 is not permitted when the L-level start permission Z rejection signal is input from the AND circuit 11 lc. The display 11 If does not display that the start-up operation of the fuel cell system 100 is permitted !, NA! /, Etc. when the H level start permission Z rejection signal is input from the AND circuit 111c! ,.
  • the operation controller 101d controls the start-up operation of the fuel cell system 100 based on the operation command input to the operation controller 101d and the start permission Z reject signal input from the gate circuit 101c. Operate. Also, the operation controller 101d makes an emergency stop of the operation of the fuel cell system 100 when an L level determination signal is input from the state determiner 101b.
  • the operation controller 11 Id as the operation controller 101 d is input to the operation controller 11 1 d according to the request for the load connected to the fuel cell system 100, etc. Or, based on the L level operation command and the H level or L level activation permission Z rejection signal input from the AND circuit 11 lc, the H level operation command is input and the AND circuit 11 lc activates the H level activation signal.
  • this operation controller 11 Id receives an H level operation command and an AND circuit 11 lc receives an L level start permission Z reject signal, or receives an L level operation command and an AND circuit. 11 When the H level start permission Z rejection signal is input from lc, control is performed so that the start-up operation of the fuel cell system 100 is not started. Further, the operation controller 11 Id makes an emergency stop of the operation of the fuel cell system 100 when an L level determination signal is input from the comparator 11 lb.
  • the pressure sensor 111a In the fuel cell system 100 configured as shown in FIGS. 1 and 3, Regardless of the type of operation (ie, start-up operation, power generation operation, stop operation, standby operation), in the situation where power for driving is supplied to the fuel cell system 100, the pressure sensor 111a The supply pressure of the natural gas supplied from the infrastructure capable of supplying gas toward the raw fuel supplier 2 is sequentially detected. The detection of the supply pressure of natural gas by the pressure sensor 111a is continuously performed at a rate of once every several seconds, for example.
  • control is performed so that the operation of the fuel cell system 100 is forcibly stopped.
  • the display 11 If of the fuel cell system 100 indicates that the supply pressure of the natural gas to the hydrogen generator 4 is not a normal supply pressure, and that the start-up operation of the fuel cell system 100 is permitted. A message to that effect is displayed. Also, JK-FFl l lh is reset and an L level signal is output to the AND circuit 111c.
  • the forced stop of the operation of the fuel cell system 100 occurs when the circuit breaker detects an earthquake or a power failure as described above and interrupts the supply of natural gas, or when the natural gas is supplied to the hydrogen generator 4.
  • the start operation cannot be performed normally. Is done.
  • the user of the fuel cell system 100 eliminates the breaking operation of the circuit breaker described above by performing a predetermined operation. .
  • the circuit breaker restored by this restoration operation is fueled by the natural gas infrastructure.
  • the supply of natural gas to the fuel cell system 100 is resumed at a predetermined supply pressure as before.
  • the pressure sensor 111a of the control block 111 When the supply of natural gas to the fuel cell system 100 is resumed, the pressure sensor 111a of the control block 111 outputs a pressure signal corresponding to the supply pressure of the natural gas to the start permitting Z / N device 211. Output to 11 lb. Then, the comparator 11 lb compares the pressure signal corresponding to the supply pressure of the natural gas input from the pressure sensor 11 la with a predetermined threshold signal stored in the storage device of the control device 311 in advance. Here, the comparator 11 lb has a pressure signal voltage corresponding to the supply pressure of the natural gas input from the pressure sensor 111a based on a comparison between the input pressure signal voltage and a predetermined threshold voltage.
  • an H level determination signal is output to the AND circuit 111 c of the activation permit Z rejector 211.
  • the comparator 11 lb activates the L level determination signal. Output to AND circuit 111c.
  • the display 11 If is driven by the comparator 111b, and the supply pressure of natural gas to the hydrogen generator 4 is not a normal supply pressure. Turns off the display to that effect. By visually confirming that this display is turned off, the user of the fuel cell system 100 recognizes that the natural gas infrastructure power and the natural gas supply state to the hydrogen generator 4 have become normal. . In addition, the users of the natural gas infrastructure power hydrogen generator 4 have no abnormalities (for example, abnormalities such as pipe disconnection or damage) occurring in the natural gas supply system. Recognize that. Then, the user of the fuel cell system 100 presses the return button 11 lg to start the start-up operation of the fuel cell system 100.
  • abnormalities for example, abnormalities such as pipe disconnection or damage
  • JK-FF11 lh is set, and an H level return command is input to the AND circuit 111c.
  • the AND circuit 11 lc of the activation permission Z rejector 211 outputs an H level activation permission Z rejection signal to the operation controller 11 Id of the control device 311.
  • the display 11 If is driven by the AND circuit 11 lc and the start-up operation of the fuel cell system 100 is permitted, and the display indicating that the display 11 If is turned off. By visually confirming that the display is turned off, the user of the fuel cell system 100 recognizes that the start-up operation of the fuel cell system 100 is permitted.
  • Controller 11 Recognizes that H level start permission Z rejection signal is output toward Id. That is, the user of the fuel cell system 100 visually recognizes that pressing the return button 11 le functions effectively.
  • the display 11 If is driven by the comparator 11 lb and the supply pressure of natural gas to the hydrogen generator 4 is normal. Continue to indicate that it is not pressure. Further, the fuel cell system 100 continues to be forcibly stopped. In this case, the user of the fuel cell system 100 has some abnormality (for example, an abnormality such as disconnection or damage of piping) in the natural gas supply system from the natural gas infrastructure to the hydrogen generator 4. Recognize that you are doing. Thus, if any abnormality occurs in the natural gas supply system to the hydrogen generator 4, the users of the fuel cell system 100 check the fuel cell system 100 with a service person without pressing the return button 11 lg. And request repairs.
  • an abnormality for example, an abnormality such as disconnection or damage of piping
  • the AND circuit 11 lc is not limited to the signal input from JK-FF11 lh. Regardless, since the L level start rejection Z rejection signal is output, the fuel cell system 100 is not started and remains stopped.
  • the operation controller 11 Id of the control device 311 causes the load connected to the fuel cell system 100 to If an H-level operation command is input based on the request, etc., control is performed so that the start-up operation of the fuel cell system 100 is started. As a result, the start-up operation is started in the fuel cell system 100. Even if the operation controller 11 Id receives an H-level operation command !, and the L-level start permission Z rejection signal is input from the AND circuit 11 lc, the fuel cell system Control is not performed so that 100 start-up operations are started. Thereby, the stop of the operation of the fuel cell system 100 is continued.
  • the start-up permission Z rejector 211 has a normal supply pressure of natural gas to the hydrogen generator 4 by the pressure sensor 11 la. If the supply pressure is detected, it is determined that no abnormality has occurred in the supply system of the natural gas to the hydrogen generator 4, and the fuel cell system 100 is started up. Allow rollover. At this time, the activation permit Z rejector 211 permits the activation operation of the fuel cell system 100 when a user of the fuel cell system 100 or the like presses the return button 11 lg.
  • the activation permit Z rejector 211 detects the natural gas to the hydrogen generator 4.
  • the fuel cell system 100 is not permitted to start up because it is determined that some abnormality has occurred in the supply system.
  • the activation permit Z rejector 211 does not permit the activation operation of the fuel cell system 100 even when the return button 11 lg is pushed by the user of the fuel cell system 100 or the like.
  • the force illustrating the configuration using the pressure sensor 11la as the raw fuel state detector 101a is not limited to such a configuration.
  • a flow meter may be used as the raw fuel state detector 101a.
  • a predetermined amount of natural gas is supplied to the hydrogen generation device 4 via the flow meter. Supply.
  • the flow volume of natural gas is detected with the flowmeter.
  • the detected natural gas flow rate is equal to or higher than the predetermined flow rate, it is determined that the supply state of the natural gas to the hydrogen generator 4 is normal, and the activation permit Z-notifier 211 indicates that the fuel cell system 100 Start Allow dynamic driving.
  • the natural gas supplied to the hydrogen generator 4 is supplied to the heater 4a by controlling the three-way valve 3 shown in FIG. 1 and connecting the raw material supply flow path e and the raw material supply flow path f. It is desirable to burn it.
  • the start-up operation of the fuel cell system 100 may be permitted or disallowed based on an output signal from a circuit breaker such as a gas meter with a built-in microcomputer connected to a raw fuel supply system.
  • a circuit breaker such as a gas meter with a built-in microcomputer connected to a raw fuel supply system.
  • the breaker outputs an output signal containing that information to the activation permit Z rejector 201.
  • the circuit breaker outputs an output signal including the information to the activation permit Z rejector 201.
  • the activation permit Z rejector 201 starts the operation of the fuel cell system 100 when it is detected that the interruption of the supply of raw fuel is the interruption of supply by the circuit breaker and the supply of the raw fuel is resumed by the circuit breaker. to approve. Even in such a form, it is possible to obtain the same effect as that obtained by the present embodiment.
  • the supply pressure of natural gas to the hydrogen generator 4 is not a normal supply pressure. After the display of! / ⁇ disappears from the display 11 If, the return button 11 lg is pressed. Is illustrated. As a result, the start-up operation is permitted after the human visually confirms that the cause of the abnormality has been eliminated, so that the fuel cell system 100 can be returned more safely.
  • the state determiner 101b or the gate circuit 101c directly illustrates the display 101f.
  • the present invention is not limited to such a form.
  • the raw fuel state detector 101a can directly drive the indicator 101f. Even in such a form, it is possible to obtain the same effect as that obtained by the present embodiment.
  • the configuration of the fuel cell system according to Embodiment 2 of the present invention is the internal configuration of the control block.
  • the configuration is the same as that of the fuel cell system according to Embodiment 1 except that the configuration is slightly different. Therefore, detailed description of the configuration of the fuel cell system according to Embodiment 2 of the present invention is omitted here. In the following description, differences in the internal configuration and operation of the control block will be described.
  • FIG. 4 is a block diagram schematically showing the configuration of the control block in the fuel cell system according to Embodiment 2 of the present invention.
  • FIG. 4 shows only the components necessary for explaining the present invention.
  • the control block 102 of the fuel cell system according to Embodiment 2 of the present invention has a gate circuit 101c and a return instruction compared to the configuration of the control block 101 shown in FIG.
  • Each of the components corresponding to the input device lOle is different from the configuration of the control block 101 according to the first embodiment.
  • the control block 102 is different from the configuration of the control block 101 in that the state determiner 102b drives the display 102f as compared with the configuration of the control block 101 shown in FIG.
  • the configuration of the control block 102 is the same as the configuration of the control block 101 shown in the first embodiment.
  • the state determination unit 102b starts the H level or the L level based on the state signal corresponding to the supply state of the raw fuel input from the raw fuel state detector 102a.
  • a permission Z rejection signal is output to the operation controller 102d of the control device 302.
  • the operation controller 102d receives the H level or L level operation command input to the operation controller 102d, and the H level or L level start permission Z rejection signal input from the state determiner 102b.
  • the indicator 102f displays that the raw fuel supply state to the hydrogen generator 4 is not normal when the state determiner 102b outputs an L level start permission Z rejection signal.
  • the state determiner 102b When the state determiner 102b outputs an H level start permission Z rejection signal, it does not indicate that the supply state of the raw fuel to the hydrogen generator 4 is not normal.
  • the indicator 102f displays that the start operation of the fuel cell system is not permitted when the state determiner 102b outputs an L level start permission Z reject signal, but the state determiner 102b is at the H level.
  • the start permission Z rejection signal When the start permission Z rejection signal is output, the start operation of the fuel cell system is permitted and no indication is given.
  • the start-up operation of the fuel cell system It is not necessary for the user of the fuel cell system to operate such as pressing the return button 11 lg shown in FIG.
  • the control of the start-up operation of the fuel cell system is performed by the state determiner 102b of the start permission Z rejector 202 and the control device 302.
  • a form automatically performed by the controller 102d is shown.
  • the operation of the control block 102 is the same as the operation of the control block 101 shown in the first embodiment.
  • the start-up operation can be automatically started.
  • the configuration of the fuel cell system according to Embodiment 3 of the present invention is the same as the configuration of the fuel cell system according to Embodiment 1 except that the internal configuration of the control block is slightly different. Accordingly, detailed description of the configuration of the fuel cell system according to Embodiment 3 of the present invention is omitted here. In the following description, as in the case of the second embodiment, differences in the internal configuration of the control block and its operation will be described.
  • FIG. 5 is a block diagram schematically showing the configuration of the control block in the fuel cell system according to Embodiment 3 of the present invention.
  • FIG. 5 shows only components necessary for explaining the present invention.
  • FIG. 6 is a block diagram schematically showing a specific configuration of the control block in the fuel cell system according to Embodiment 3 of the present invention.
  • FIG. 6 shows only the components necessary for explaining the present invention.
  • the control block 103 of the fuel cell system according to Embodiment 3 of the present invention is different from the configuration of the control block 101 shown in FIG.
  • the configuration is different from the configuration of the control block 101 according to the first embodiment in that the forced activation rejection circuit 103i is further provided.
  • the control block 113 of the fuel cell system according to Embodiment 3 of the present invention is compared with the configuration of the control block 111 shown in FIG.
  • the configuration is different from the configuration of the control block 111 according to the first embodiment in that the activation permit Z rejector 213 further includes a counter 113i.
  • the control block 103 shown in FIG. 5 is compared with the configuration of the control block 101 shown in FIG.
  • the forced start rejection circuit 103i of the start permission Z rejector 203 is used as a determination signal input from the state determiner 103b.
  • the configuration is different from the configuration of the control block 101 according to the first embodiment in that the compulsory signal can be output to the gate circuit 103c. More specifically, as shown in FIG. 6, in this control block 113, compared with the configuration of the control block 111 shown in FIG. 3, the counter 113i of the activation permit Z rejector 213 is inputted from the comparator 113b.
  • the configuration is different from the configuration of the control block 111 according to the first embodiment in that a forcible signal can be output to the AND circuit 113c based on the determination signal.
  • the configuration of the control block 103 is the same as the configuration of the control block 101 shown in the first embodiment.
  • the configuration of the control block 113 is the same as the configuration of the control block 111 shown in the first embodiment.
  • the state determiner 103b In the control block 103 shown in FIG. 5, the state determiner 103b generates a determination signal based on the state signal corresponding to the raw fuel supply state input from the raw fuel state detector 103a. Output to the gate circuit 103c, etc. At this time, the state determiner 103b also outputs the determination signal toward the forced activation rejection circuit 103i. Then, the forced activation rejection circuit 103i outputs a forced signal to the gate circuit 103c based on the determination signal input to the forced activation rejection circuit 103i. On the other hand, the gate circuit 103c is based on each of the determination signal input from the state determination unit 103b, the forced signal input from the forced start rejection circuit 103, and the return command input from the return command input unit 103e.
  • the start permission Z rejection signal is output to the operation controller 103d of the control device 303. Then, the operation controller 103d of the control device 303 controls the start-up operation of the fuel cell system based on the input start permission Z rejection signal and the operation command.
  • the display 103f is driven by the state determiner 103b or the gate circuit 103c.
  • the indicator 103f is in response to a state signal input from the raw fuel state detector 103a toward the state determiner 103b, a forced signal input from the forced start rejection circuit 103i toward the gate circuit 103c, and the like. Display.
  • the comparator 113b includes the pressure sensor 11 Based on the pressure signal corresponding to the supply pressure of natural gas input from 3a, an H level or L level determination signal is output to the AND circuit 113c and the like. At this time, the comparator 113b outputs a determination signal of H level or L level to the counter 113i. Then, the counter 113i counts the number of input times of the L level determination signal input from the comparator 113b toward the counter 113i. When the number of inputs of the L level determination signal in a predetermined period is equal to or greater than the predetermined number, the counter 113i sets the voltage level of the forcing signal output to the AND circuit 1 13c to the H level force in the normal state. Switch to L level.
  • the “predetermined period” and the “predetermined number of times” can reliably detect that an abnormality that cannot be self-recovered is occurring in the fuel cell system.
  • the fuel cell system is appropriately set in advance according to the configuration of the fuel cell system and its assumed use environment or use conditions.
  • a fuel cell system normally, a fuel cell system requires a process such as cooling the hydrogen generator from the stop of its power generation operation until the entire system is brought into a stopped state. Cost. In other words, once a fuel cell system stops its power generation operation, it takes at least one hour before the next system start-up. Therefore, in view of this, in the present embodiment, the counter 113i, when the L level determination signal is input three times or more as the predetermined number of times within 6 hours as the predetermined period, Switch the voltage level of the compulsory signal output to 113c to H level force L level during normal operation.
  • the AND circuit 113c has an H level or L level determination signal input from the comparator 113b, an H level or L level forcing signal also input to the counter 113, and a return instruction input unit 113e. Based on the H level or L level return command input from JK-FF113h, an H level or L level start permission Z denial signal is output to the operation controller 113d of the control device 313.
  • the AND circuit 113c receives the H level determination signal from the comparator 113b, the forcing signal from the counter 113i is switched to the L level force H level, and the recovery command input device 113e has JK—FF 113h to H.
  • an H level start permission Z rejection signal is output to the operation controller 113d of the controller 313.
  • the AND circuit 113c receives the H level determination signal from the comparator 113b, and even if the H level return command is input from JK-FF113h of the return command input device 113e, When the forcible signal is switched from the H level to the L level, the L level start permission Z rejection signal is continuously output to the operation controller 113d of the control device 313.
  • the display 113f when the display 113f is driven by the comparator 113b and the comparator 113b outputs an L-level determination signal, the supply pressure of the natural gas to the hydrogen generator 4 is normal. Display that there is no.
  • the display 113f is driven by the AND circuit 113c, and when the counter 113i outputs an L level forcible signal, the display indicating that the supply pressure of the natural gas to the hydrogen generator 4 is not normal is continued. To do.
  • the display 113f when both the comparator 113b and the counter 113i output an H level determination signal and a forcing signal, the supply pressure of the natural gas to the hydrogen generator 4 is not a normal supply pressure! / Do not display the effect!
  • the display 113f is driven by the AND circuit 113c, and an H level determination signal is input from the comparator 113b to the AND circuit 113c.
  • the display 113f has an H level signal from the counter 113 113 to the AND circuit 113c. If the JK FF113h power L level return command is input from the return command input unit 113e while the forcible signal is input, it indicates that the start-up operation of the fuel cell system is not permitted.
  • an H level determination signal is input to the comparator 113b and the AND circuit 113c, and an H level forcing signal is input from the counter 113 to the AND circuit 113c. 13e JK—If the FF113h force is also input with an H level return command, the start-up operation of the fuel cell system is permitted and no indication is displayed.
  • the raw fuel state detector 103a detects that the supply state of the raw fuel to the hydrogen generator 4 is not in a normal state, and the raw fuel state is not in the normal state.
  • the gate circuit 103c forcibly maintains that the start operation of the fuel cell system is not permitted.
  • users of the fuel cell system request service personnel to check and repair the fuel cell system. And that service man After the inspection and repair are performed by the above, the start-up operation of the fuel cell system is performed.
  • the user cannot move to a state where the start-up operation of the fuel cell system is permitted by any means until the restoration work is performed by the service person and the restoration work is completed. Furthermore, even if it is detected by the raw fuel state detector 103a that the supply state of the raw fuel to the hydrogen generator 4 has become normal, the user, etc. has completed the restoration work by the service person Until then, it is not possible to shift to a state in which the startup operation of the fuel cell system is permitted.
  • the operations of the control block 103 and the control block 113 are the same as the operations of the control block 101 and the control block 111 shown in the first embodiment.
  • the raw fuel state detector 103a detects that the raw fuel supply state to the hydrogen generator 4 is not normal, and if the raw fuel supply state that is not normal is detected a plurality of times, the gate is detected.
  • the circuit 103c may be configured to forcibly maintain that the fuel cell system is not allowed to start. Even with this configuration, it is possible to obtain the same effect as that obtained by the present embodiment. Other points are the same as those in the first embodiment.
  • the fuel cell system according to the present invention has a configuration similar to that of the conventional power plant, has a low initial cost and a low maintenance cost, and can be restarted easily and safely. As a battery system, it has industrial applicability.

Abstract

This invention provides a fuel battery system (100) comprising a fuel battery (6), to which a fuel and an oxidizing agent are supplied for power generation, a hydrogen generator (4), to which a raw fuel for the fuel supplied to the fuel battery is supplied to generate hydrogen, a raw fuel state detector (101a) for detecting the state of supply of the raw fuel to the hydrogen generator, and a start approval/disapproval device (201). The start approval/disapproval device approves the start operation of the fuel battery system when the raw fuel state detector detects that the state of supply of the raw fuel to the hydrogen generator is normal and disapproves the start operation of the fuel battery system when the raw fuel state detector detects that the state of supply of the raw fuel to the hydrogen generator is not normal. The above constitution can provide a fuel battery system which has the same construction as the prior art fuel battery system, has low initial cost and maintenance cost and can restart the operation in an easy and safe manner.

Description

明 細 書  Specification
燃料電池システム  Fuel cell system
技術分野  Technical field
[0001] 本発明は、原燃料を用いて生成した水素を含有する燃料と酸化剤とを用いて発電 する燃料電池を備えた燃料電池システムに関する。  TECHNICAL FIELD [0001] The present invention relates to a fuel cell system including a fuel cell that generates power using a fuel containing hydrogen generated using raw fuel and an oxidant.
背景技術  Background art
[0002] 従来から、エネルギーを有効に利用することが可能である分散型の発電装置として 、発電効率及び総合効率が高い燃料電池コージェネレーションシステム(以下、単に 「燃料電池システム」 t 、う)が注目されて 、る。  Conventionally, a fuel cell cogeneration system (hereinafter simply referred to as “fuel cell system” t) having high power generation efficiency and high overall efficiency has been used as a distributed power generation apparatus that can effectively use energy. Attracted attention.
[0003] 燃料電池システムは、その発電部の本体として、燃料電池を備えて 、る。この燃料 電池としては、例えば、リン酸型燃料電池、溶融炭酸塩型燃料電池、アルカリ水溶液 型燃料電池、固体高分子型燃料電池、又は、固体電解質型燃料電池等が用いられ る。これらの燃料電池の内、リン酸型燃料電池や固体高分子型燃料電池は、発電運 転の際の動作温度が他の燃料電池の動作温度と比べて比較的低いため、燃料電池 システムを構成する燃料電池として用いられることが多い。特に、固体高分子型燃料 電池は、リン酸型燃料電池と比べて電極触媒の劣化が比較的少なくかつ電解質の 逸散が発生しないため、携帯用電子機器や電気自動車等の用途において好適に用 いられる。  [0003] The fuel cell system includes a fuel cell as a main body of the power generation unit. As this fuel cell, for example, a phosphoric acid fuel cell, a molten carbonate fuel cell, an alkaline aqueous fuel cell, a solid polymer fuel cell, or a solid electrolyte fuel cell is used. Among these fuel cells, phosphoric acid fuel cells and polymer electrolyte fuel cells constitute fuel cell systems because their operating temperatures during power generation are relatively low compared to the operating temperatures of other fuel cells. Often used as a fuel cell. In particular, solid polymer fuel cells are suitable for applications such as portable electronic devices and electric vehicles because the degradation of the electrode catalyst is relatively small compared to phosphoric acid fuel cells and the electrolyte does not dissipate. I can.
[0004] これらの燃料電池は、通常、水素と酸素とを用いて発電する。しかし、この燃料電池 において、発電運転の際に必要となる水素の供給手段は、通常、インフラストラクチャ 一として整備されてはいない。従って、燃料電池システムにより所定の電力を得るた めには、その燃料電池システムの設置場所において水素を生成する必要がある。そ のため、従来の燃料電池システムでは、燃料電池と共に水素生成装置が併設される ことが多い。この水素生成装置では、天然ガス、プロパンガス、ナフサ、ガソリン、灯油 等の炭化水素系の原燃料、又は、メタノール等のアルコール系の原燃料と水とが用 いられて、水素を含む燃料が生成される。この水素を含む燃料と、酸素を含む空気 等の酸化剤とが各々燃料電池に供給されて、燃料電池システムは所定の電力を出 力する。 [0004] These fuel cells typically generate power using hydrogen and oxygen. However, in this fuel cell, the means for supplying hydrogen necessary for power generation operation is not usually provided as a single infrastructure. Therefore, in order to obtain a predetermined power by the fuel cell system, it is necessary to generate hydrogen at the place where the fuel cell system is installed. For this reason, in conventional fuel cell systems, a hydrogen generator is often provided together with the fuel cell. In this hydrogen generator, natural gas, propane gas, naphtha, gasoline, kerosene, or other hydrocarbon-based raw fuel, or alcohol-based raw fuel such as methanol and water are used, and fuel containing hydrogen is used. Generated. The fuel containing hydrogen and the oxidizing agent such as air containing oxygen are respectively supplied to the fuel cell, and the fuel cell system outputs predetermined power. To help.
[0005] ところで、従来の燃料電池システムの構成では、衝撃により原燃料を供給するため の配管が外れた場合や、経年劣化により原燃料を供給するための配管に破れやピン ホール等が発生した場合、水素生成装置への原燃料の供給圧力が低下したことが 検知されて、燃料電池システムの運転が強制的に停止される。この場合、従来の燃 料電池システムでは、その燃料電池システムの使用者等に向けてサービスマンによ る点検及び修繕が必要であることを伝えるために、原燃料の供給系統で異常が発生 した旨がその表示器に表示される。ここで、従来の燃料電池システムは、サービスマ ンによる点検が実施され、そのサービスマンにより異常が確実に解消されるまでは、 異常の発生に係る表示を継続すると共に、運転が停止された状態を強制的に維持 する。つまり、従来の燃料電池システムは、原燃料の供給系統において発生した異 常に起因する運転の停止をサービスマンのみが解除可能に設計されている。なぜな ら、原燃料の供給系統で発生した異常が確実に解消されな!、状態で運転が再開さ れた場合、燃料電池システムがその使用者等に対して危害を及ぼす可能性があるか らである。  [0005] By the way, in the configuration of the conventional fuel cell system, when the piping for supplying the raw fuel is disconnected due to an impact, or the piping for supplying the raw fuel is broken or pinholes are generated due to deterioration over time. In this case, it is detected that the supply pressure of the raw fuel to the hydrogen generator has decreased, and the operation of the fuel cell system is forcibly stopped. In this case, in the conventional fuel cell system, an abnormality occurred in the raw fuel supply system in order to inform the users of the fuel cell system that inspection and repair by a service person is necessary. A message is displayed on the display. Here, the conventional fuel cell system has been inspected by a serviceman, and until the abnormality is reliably resolved by the service person, the display related to the occurrence of the abnormality continues and the operation is stopped. Is forcibly maintained. In other words, the conventional fuel cell system is designed so that only the service person can cancel the operation stop caused by the abnormality occurring in the raw fuel supply system. Why are the abnormalities occurring in the raw fuel supply system not being resolved! If the operation is resumed in a state, there is a possibility that the fuel cell system may cause harm to its users, etc. That's it.
[0006] 具体的に説明すると、従来の燃料電池システムでは、通常、天然ガス等の原燃料 が加圧器により加圧された後、水素生成装置に向けて供給される。かかる構成では、 原燃料の供給系統で発生した異常が確実に解消されない状態で燃料電池システム の運転が再開されると、加圧器によりその異常が発生した箇所を介して大量の空気 が吸引され、その吸引された空気が水素を含む燃料と混合されてしまう。このような、 燃料と空気との混合気が存在する燃料電池システムの状態は、その燃料電池システ ムの使用者等にとって非常に危険な状態である。そこで、このような危険な状態の発 生を確実に防止するために、従来の燃料電池システムは、原燃料の供給系統で異 常が発生した場合にはサービスマンによる点検及び修繕が必ず行われるよう、原燃 料の供給系統において発生した異常に起因する運転の停止をサービスマンのみが 解除可能に設計されている。これにより、燃料電池システムの安全性が確実にかつ 十分に確保されている。  More specifically, in a conventional fuel cell system, a raw fuel such as natural gas is usually pressurized by a pressurizer and then supplied to a hydrogen generator. In such a configuration, when the operation of the fuel cell system is restarted in a state where the abnormality that has occurred in the raw fuel supply system has not been resolved, a large amount of air is sucked in through the location where the abnormality has occurred, The sucked air is mixed with the fuel containing hydrogen. Such a state of the fuel cell system in which a mixture of fuel and air exists is a very dangerous state for users of the fuel cell system. Therefore, in order to reliably prevent the occurrence of such a dangerous state, the conventional fuel cell system is always inspected and repaired by a service person when an abnormality occurs in the raw fuel supply system. In this way, it is designed so that only service personnel can cancel the operation stop caused by the abnormality that occurred in the fuel supply system. As a result, the safety of the fuel cell system is reliably and sufficiently secured.
[0007] し力しながら、従来の燃料電池システムの運転の停止は、原燃料を供給するための 配管が外れた場合や、その配管に損傷等が発生した場合のみではなぐその原燃料 を供給する供給手段 (例えば、天然ガスのインフラストラクチャー)に接続された遮断 器 (例えば、マイコン内蔵型ガスメーター)が地震や停電等を検知して原燃料の供給 を遮断した場合にも行われる (例えば、特許文献 1参照)。 [0007] However, the suspension of the operation of the conventional fuel cell system is for supplying raw fuel. A circuit breaker (for example, a gas meter with a built-in microcomputer) connected to a supply means (for example, a natural gas infrastructure) that supplies the raw fuel not only when the pipe is disconnected or when the pipe is damaged. This is also done when an earthquake or power outage is detected and the supply of raw fuel is cut off (see, for example, Patent Document 1).
特許文献 1 :特開 2001— 68133号公報  Patent Document 1: Japanese Patent Laid-Open No. 2001-68133
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0008] し力しながら、上記従来の提案の燃料電池システムでは、つまり、従来の燃料電池 システムの構成では、その燃料電池システム自体には全く異常がなぐサービスマン による点検及び修繕を必要とはしな 、、燃料電池システムの運転をその使用者等が 容易に復帰可能な場合であっても、燃料電池システムの運転が強制的に停止される 。そして、燃料電池システムの使用者等は、そのようなサービスマンによる点検及び 修繕を必要とはしない場合であっても、その都度、サービスマンに点検及び修繕を要 請する必要があった。これは、燃料電池システムの使用者等及びサービスマンの双 方にとって大きな負担となっていた。又、サービスマンによる点検及び修繕が終了す るまでは、燃料電池システムの運転を復帰させることができな力つた。これは、燃料電 池システムの利便性を著しく阻害して 、た。  However, in the conventional fuel cell system described above, that is, in the configuration of the conventional fuel cell system, the fuel cell system itself does not require any inspection and repair by a service person. However, even if the user can easily recover the operation of the fuel cell system, the operation of the fuel cell system is forcibly stopped. Even if the user of the fuel cell system does not need such inspection and repair by the service person, it is necessary to request the service person to check and repair each time. This was a heavy burden for both users of fuel cell systems and service personnel. Also, the operation of the fuel cell system could not be restored until the inspection and repairs by the service personnel were completed. This significantly hindered the convenience of the fuel cell system.
[0009] 本発明は、上記従来の課題を解決するためになされたものであり、地震、停電等で 原燃料の供給系統が遮断されるような、サービスマンによる修繕等を必要とはしない 原燃料供給系統の異常が発生した場合は、自動的に、若しくはユーザーの操作で 運転再開が可能な燃料電池システムを提供することを目的として!ヽる。  [0009] The present invention has been made to solve the above-described conventional problems, and does not require repairs or the like by a service person such that the supply system of raw fuel is shut off due to an earthquake, a power failure, etc. The purpose is to provide a fuel cell system that can be restarted automatically or when a fuel supply system malfunctions! Speak.
課題を解決するための手段  Means for solving the problem
[0010] 上記従来の課題を解決するために、本発明に係る燃料電池システムは、燃料と酸 ィ匕剤とが供給されて発電する燃料電池と、前記燃料電池に供給される前記燃料を原 燃料が供給されて生成する水素生成装置と、前記水素生成装置への前記原燃料の 供給状態を検知する原燃料状態検知器と、起動許 Z否器と、を備える燃料電池シス テムであって、前記起動許 Z否器は、前記燃料電池システムの起動運転を、前記原 燃料状態検知器により前記水素生成装置への前記原燃料の供給状態が正常状態 であると検知されている場合には許可し、前記原燃料状態検知器により前記水素生 成装置への前記原燃料の供給状態が正常状態ではな 、と検知されて 、る場合には 許可しない。 [0010] In order to solve the above-described conventional problems, a fuel cell system according to the present invention includes a fuel cell that generates power by supplying a fuel and an oxidizing agent, and the fuel supplied to the fuel cell. A fuel cell system comprising: a hydrogen generator that is supplied with fuel; a raw fuel state detector that detects a supply state of the raw fuel to the hydrogen generator; and an activation permit Z rejector. The start permission Z rejector performs a start-up operation of the fuel cell system, and the raw fuel state detector supplies the raw fuel to the hydrogen generator in a normal state. Permitted when it is detected that it is detected, and not permitted when the raw fuel state detector detects that the supply state of the raw fuel to the hydrogen generator is not normal. .
[ooii] カゝかる構成とすると、起動許 Z否器が、燃料電池システムの起動運転を、原燃料状 態検知器により検知されている水素生成装置への原燃料の供給状態に応じて許可 又は不許可するので、燃料電池システムの起動運転を安全に開始させることが可能 になる。  [ooii] In the case of a profitable configuration, the start-up permit Z-notifier permits the start-up operation of the fuel cell system according to the supply state of the raw fuel to the hydrogen generator detected by the raw fuel state detector Or, since it is not permitted, it becomes possible to start the start-up operation of the fuel cell system safely.
[0012] この場合、前記起動許 Z否器は、前記起動運転を、前記原燃料状態検知器により 前記水素生成装置への前記原燃料の供給状態が正常状態であると検知されると許 可し、前記原燃料状態検知器により前記水素生成装置への前記原燃料の供給状態 が正常状態ではな 、と検知されると許可しな 、。  [0012] In this case, the start permission Z rejector permits the start-up operation when the raw fuel state detector detects that the supply state of the raw fuel to the hydrogen generator is normal. When the raw fuel state detector detects that the supply state of the raw fuel to the hydrogen generator is not normal, it is not permitted.
[0013] カゝかる構成とすると、起動許 Z否器が、燃料電池システムの起動運転を、原燃料状 態検知器により検知される水素生成装置への原燃料の供給状態に応じて常に許可 又は常に不許可とするので、燃料電池システムの起動運転を安全にかつ自動的に 開始させることが可能になる。  [0013] In the case of a profitable configuration, the start-up permission Z-notifier always permits the start-up operation of the fuel cell system according to the supply state of the raw fuel to the hydrogen generator detected by the raw fuel state detector. Alternatively, since it is always disallowed, the start-up operation of the fuel cell system can be started safely and automatically.
[0014] 又、この場合、復帰指令を入力する復帰指令入力器を更に備え、前記起動許 Z否 器は、前記起動運転を、前記原燃料状態検知器により前記水素生成装置への前記 原燃料の供給状態が正常状態であると検知されている場合に前記復帰指令入力器 から前記復帰指令が入力されると許可し、前記原燃料状態検知器により前記水素生 成装置への前記原燃料の供給状態が正常状態ではな 、と検知されて 、る場合に前 記復帰指令入力器から前記復帰指令が入力されても許可しない。  [0014] In this case, the apparatus further includes a return command input device for inputting a return command, and the start permission Z rejector performs the start operation by the raw fuel state detector to the raw fuel to the hydrogen generating device. When the return command is input from the return command input device when it is detected that the supply state is normal, the raw fuel status detector permits the raw fuel to be supplied to the hydrogen generator. If it is detected that the supply state is not normal, even if the return command is input from the return command input device, it is not permitted.
[0015] カゝかる構成とすると、起動許 Z否器が、燃料電池システムの起動運転を、原燃料状 態検知器により検知されている水素生成装置への原燃料の供給状態と復帰指令と に応じて許可又は不許可するので、燃料電池システムの起動運転をより一層安全に 開始させることが可能になる。 [0015] With a configuration in which the vehicle is allowed to operate, the start-up permission Z-notifier determines the start-up operation of the fuel cell system, the supply state of the raw fuel to the hydrogen generator detected by the raw fuel state detector, and the return command. Accordingly, the start-up operation of the fuel cell system can be started more safely.
[0016] 上記の場合、運転制御器を更に備え、前記運転制御器は、前記原燃料状態検知 器により前記水素生成装置への前記原燃料の供給状態が正常状態ではないと検知 されると、前記燃料電池システムの運転を強制的に停止させるよう制御する。 [0017] 力かる構成とすると、運転制御器が、原燃料状態検知器により水素生成装置への 原燃料の供給状態が正常状態ではないと検知されると燃料電池システムの運転を強 制的に停止させるので、燃料電池システムの安全性を十分に確保することが可能に なる。 [0016] In the above case, the operation controller further includes an operation controller, and when the raw fuel state detector detects that the supply state of the raw fuel to the hydrogen generator is not a normal state, Control is performed to forcibly stop the operation of the fuel cell system. [0017] With this configuration, if the operation controller detects that the supply state of the raw fuel to the hydrogen generator is not normal by the raw fuel state detector, the operation of the fuel cell system is forcibly performed. Since the operation is stopped, the safety of the fuel cell system can be sufficiently ensured.
[0018] 又、上記の場合、前記原燃料状態検知器により前記水素生成装置への前記原燃 料の供給状態が正常状態であると検知されると異常の旨が表示されず、前記水素生 成装置への前記原燃料の供給状態が正常状態ではないと検知されると異常の旨が 表示される表示器を更に備えて!/、る。  [0018] Further, in the above case, if the raw fuel state detector detects that the supply state of the raw fuel to the hydrogen generator is normal, an abnormality is not displayed and the hydrogen It further includes an indicator that displays an abnormality when it is detected that the supply state of the raw fuel to the generator is not normal.
[0019] 力かる構成とすると、水素生成装置への原燃料の供給状態が正常状態である力否 力を目視により容易に確認することができるので、燃料電池システムの起動運転をよ り一層安全に開始させることが可能になる。  [0019] With a powerful configuration, it is possible to easily confirm visually whether or not the supply state of the raw fuel to the hydrogen generator is normal, so that the start-up operation of the fuel cell system can be performed more safely. Can be started.
[0020] 又、上記の場合、前記起動許 Z否器により前記起動運転が許可されると異常の旨 が表示されず、前記原燃料状態検知器により前記水素生成装置への前記原燃料の 供給状態が正常状態ではないと検知されると異常の旨が表示される表示器を更に備 えている。  [0020] Further, in the above case, if the start-up operation is permitted by the start permission Z rejector, an abnormality is not displayed, and the raw fuel state detector supplies the raw fuel to the hydrogen generator. It is further equipped with an indicator that displays an abnormality when it is detected that the status is not normal.
[0021] 力かる構成とすると、起動許 Z否器により起動運転が許可されたか否かを目視によ り容易に確認することができるので、燃料電池システムの起動運転をより一層安全に 開始させることが可能になる。  [0021] With a powerful configuration, it is possible to easily check visually whether or not the start-up operation has been permitted by the start-up permit Z rejector, so that the start-up operation of the fuel cell system can be started more safely. It becomes possible.
[0022] 又、上記の場合、前記水素生成装置へ前記原燃料を供給するための原燃料供給 流路を更に備え、前記原燃料供給流路における前記原燃料の圧力を検知するため の前記原燃料状態検知器としての圧力検知器を備え、前記起動許 Z否器は、前記 圧力検知器により検知される前記原燃料の圧力が所定の閾値以上であると前記起 動運転を許可し、前記圧力検知器により検知される前記原燃料の圧力が前記所定 の閾値未満であると前記起動運転を許可しな 、。  [0022] In the above case, the raw fuel supply passage for supplying the raw fuel to the hydrogen generator is further provided, and the raw fuel for detecting the pressure of the raw fuel in the raw fuel supply passage is provided. A pressure detector as a fuel state detector, and the start permission Z rejector permits the start operation when the pressure of the raw fuel detected by the pressure detector is equal to or higher than a predetermined threshold, and The start-up operation is not permitted when the pressure of the raw fuel detected by the pressure detector is less than the predetermined threshold value.
[0023] 力かる構成とすると、原燃料状態検知器として圧力検知器が用いられるので、起動 許 Z否器による燃料電池システムの起動運転の許可又は不許可を簡易な構成によ り実現させることが可能になる。  [0023] In the case of a powerful configuration, a pressure detector is used as the raw fuel state detector. Therefore, it is possible to realize the approval or disapproval of the start-up operation of the fuel cell system by the start permission Z rejector with a simple configuration. Is possible.
[0024] 又、上記の場合、前記水素生成装置へ前記原燃料を供給するための原燃料供給 流路を更に備え、前記原燃料供給流路における前記原燃料の流量を検知するため の前記原燃料状態検知器としての流量計を備え、前記起動許 Z否器は、前記流量 計により検知される前記原燃料の流量が所定の閾値以上であると前記起動運転を許 可し、前記流量計により検知される前記原燃料の流量が前記所定の閾値未満である と前記起動運転を許可しな 、。 [0024] In the above case, the raw fuel supply for supplying the raw fuel to the hydrogen generator A flow meter, and a flow meter as the raw fuel state detector for detecting the flow rate of the raw fuel in the raw fuel supply flow channel, wherein the activation permit Z rejector is detected by the flow meter. The starting operation is permitted when the flow rate of the raw fuel is greater than or equal to a predetermined threshold value, and the starting operation is not permitted when the flow rate of the raw fuel detected by the flow meter is less than the predetermined threshold value. ,.
[0025] 力かる構成としても、原燃料状態検知器として流量計が用いられるので、起動許 Z 否器による燃料電池システムの起動運転の許可又は不許可を簡易な構成により実 現させることが可會 になる。  [0025] Even with a powerful configuration, since a flow meter is used as the raw fuel state detector, it is possible to realize permission or disapproval of the start-up operation of the fuel cell system by the start permission Z rejector with a simple configuration. Become 會.
[0026] 又、上記の場合、前記起動許 Z否器は、前記原燃料状態検知器により前記水素生 成装置への前記原燃料の正常状態ではない供給状態が複数回検知されると前記起 動運転を許可しないことを強制的に維持する。 [0026] In addition, in the above case, the activation permission Z rejector is activated when the raw fuel state detector detects the supply state of the raw fuel to the hydrogen generating device that is not in a normal state a plurality of times. Forced not to allow dynamic driving.
[0027] 力かる構成とすると、燃料電池システム自体における異常の発生をその使用者等 が検知することができるので、燃料電池システムの安全性を確保することが可能にな る。 [0027] If the configuration is powerful, the user or the like can detect the occurrence of an abnormality in the fuel cell system itself, so that the safety of the fuel cell system can be ensured.
[0028] この場合、前記起動許 Z否器は、前記原燃料状態検知器により前記水素生成装 置への前記原燃料の正常状態ではない供給状態が所定の期間において所定の回 数以上検知されると前記起動運転を許可しないことを強制的に維持する。  [0028] In this case, in the activation permission Z rejector, the supply state of the raw fuel that is not in a normal state to the hydrogen generator is detected by the raw fuel state detector more than a predetermined number of times in a predetermined period. Then, it is forcibly maintained that the start-up operation is not permitted.
[0029] 力かる構成とすると、燃料電池システム自体における異常の発生をその使用者等 が確実に検知することができるので、燃料電池システムの安全性を確実に確保するこ とが可能になる。  [0029] If the configuration is powerful, the user or the like can reliably detect the occurrence of an abnormality in the fuel cell system itself, so that the safety of the fuel cell system can be reliably ensured.
発明の効果  The invention's effect
[0030] 本発明は、以上に述べたような手段において実施され、従来力 の構成と同様の 構成を備え、初期費用及び維持費用が安価な、容易にかつ安全に運転を復帰させ ることが可能である燃料電池システムを提供することが可能になるという効果を奏する  [0030] The present invention is implemented by the means as described above, has the same configuration as that of the conventional force, can be easily and safely returned to operation with low initial cost and low maintenance cost. It is possible to provide a fuel cell system that is possible.
[0031] 又、本発明に係る燃料電池システムによれば、原燃料の供給系統において異常が 発生してその運転が停止された場合であっても、その原因が、地震、停電等のように 燃料電池システム自体には全く異常がなぐ電気供給、ガス供給等のインフラストラタ チヤ一の正常復旧によって水素生成装置への原燃料の供給状態が正常状態に戻る ような原燃料供給系統の異常である場合には、サービスマンに点検等を要請すること なぐ自動的に若しくは使用者等の操作等により容易にかつ安全に燃料電池システ ムの運転を復帰させることが可能になる。これにより、燃料電池システムの使用者等 及びサービスマンの負担が大幅に軽減されると共に、燃料電池システムの利便性が 大幅に改善される。 [0031] Further, according to the fuel cell system of the present invention, even when an abnormality occurs in the raw fuel supply system and the operation is stopped, the cause is an earthquake, a power failure, or the like. Infrastructures such as electricity supply and gas supply that have no abnormality in the fuel cell system itself If the raw fuel supply system is abnormal, such as when the supply of raw fuel to the hydrogen generator returns to normal due to the normal restoration of the engine, it is automatically or used without requesting service personnel to check it. It becomes possible to return the operation of the fuel cell system easily and safely by the operation of the user. This significantly reduces the burden on users of fuel cell systems and service personnel, and greatly improves the convenience of fuel cell systems.
図面の簡単な説明  Brief Description of Drawings
[0032] [図 1]図 1は、本発明の実施の形態 1に係る燃料電池システムの構成を模式的に示す ブロック図である。  FIG. 1 is a block diagram schematically showing a configuration of a fuel cell system according to Embodiment 1 of the present invention.
[図 2]図 2は、本発明の実施の形態 1に係る燃料電池システムにおける制御ブロック の構成を模式的に示すブロック図である。  FIG. 2 is a block diagram schematically showing a configuration of a control block in the fuel cell system according to Embodiment 1 of the present invention.
[図 3]図 3は、本発明の実施の形態 1に係る燃料電池システムにおける制御ブロック の具体的な構成を模式的に示すブロック図である。  FIG. 3 is a block diagram schematically showing a specific configuration of a control block in the fuel cell system according to Embodiment 1 of the present invention.
[図 4]図 4は、本発明の実施の形態 2に係る燃料電池システムにおける制御ブロック の構成を模式的に示すブロック図である。  FIG. 4 is a block diagram schematically showing a configuration of a control block in the fuel cell system according to Embodiment 2 of the present invention.
[図 5]図 5は、本発明の実施の形態 3に係る燃料電池システムにおける制御ブロック の構成を模式的に示すブロック図である。  FIG. 5 is a block diagram schematically showing a configuration of a control block in the fuel cell system according to Embodiment 3 of the present invention.
[図 6]図 6は、本発明の実施の形態 3に係る燃料電池システムにおける制御ブロック の具体的な構成を模式的に示すブロック図である。  FIG. 6 is a block diagram schematically showing a specific configuration of a control block in the fuel cell system according to Embodiment 3 of the present invention.
符号の説明  Explanation of symbols
[0033] 1 水供給器 [0033] 1 Water supply
2 原燃料供給器  2 Raw fuel supplier
3 三方弁  3 Three-way valve
4 水素生成装置  4 Hydrogen generator
4a 加熱器  4a heater
5 ブロア一  5 Blowers
6 燃料電池  6 Fuel cell
100 燃料電池システム 101 制御ブロック 101a 原燃料状態検知器 101b 状態判定器 101c ゲート回路 101d 運転制御器 101e 復帰指令入力器 101f 表示器 100 Fuel cell system 101 Control block 101a Raw fuel status detector 101b Status detector 101c Gate circuit 101d Operation controller 101e Return command input device 101f Display
102 制御ブロック 102a 原燃料状態検知器 102b 状態判定器 102d 運転制御器 102f 表示器 102 Control block 102a Raw fuel status detector 102b Status detector 102d Operation controller 102f Display
103 制御ブロック 103a 原燃料状態検知器 103b 状態判定器 103c ゲート回路 103d 運転制御器 103e 復帰指令入力器 103f 表示器 103 Control block 103a Raw fuel status detector 103b Status detector 103c Gate circuit 103d Operation controller 103e Return command input device 103f Display
1031 強制起動拒否回路 111 制御ブロック 111a 圧力センサー 111b 比較器 1031 Forced start rejection circuit 111 Control block 111a Pressure sensor 111b Comparator
111c AND回路 111c AND circuit
11 Id 運転制御器 l l le 復帰指令入力器 11 If ディスプレイ l l lg 復帰ボタン l l lh JK-FF 11 Id Operation controller ll le Return command input device 11 If Display ll lg Return button ll lh JK-FF
113 制御ブロック  113 Control block
113a 圧力センサー  113a pressure sensor
113b 比較器  113b comparator
113c AND回路  113c AND circuit
113d 運転制御器  113d Operation controller
113e 復帰指令入力器  113e Return command input device
113f ディスプレイ  113f display
113g 復帰ボタン  113g Return button
113h JK-FF  113h JK-FF
113i カウンタ  113i counter
201〜203 起動許 Z否器  201 ~ 203 Activation permit Z denial
211, 213 起動許 Z否器  211, 213 Start permit Z denial
301〜303 制御装置  301 ~ 303 Control device
311, 313 制御装置  311, 313 Controller
a, b 水供給流路  a, b Water supply channel
c, d, e, f 原燃料供給流路  c, d, e, f Raw fuel supply flow path
g 燃料供給流路  g Fuel supply flow path
h 酸化剤供給流路  h Oxidant supply flow path
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0034] 以下、本発明を実施するための最良の実施形態について、図面を参照しながら詳 細に説明する。 Hereinafter, the best mode for carrying out the present invention will be described in detail with reference to the drawings.
[0035] 本実施の形態では、燃料電池システムの運転を、起動運転、発電運転、停止運転 、待機運転の各々に分類する。ここで、起動運転とは、制御装置から起動指令が出さ れてから燃料電池力 電力が取り出される迄をいう。又、発電運転とは、燃料電池か ら電力が取り出されてから燃料電池力も電力が取り出されなくなる迄をいう。又、停止 運転とは、制御装置力 停止指令が出されてから燃料電池システム全体の動作が停 止する迄をいう。又、待機運転とは、燃料電池システムに駆動用の電力が供給されて は 、るが、燃料電池システム全体の動作が停止して 、る運転を 、う。 In the present embodiment, the operation of the fuel cell system is classified into a start operation, a power generation operation, a stop operation, and a standby operation. Here, the start-up operation refers to the period from when the start command is issued from the control device until the fuel cell power is taken out. The power generation operation refers to the time from when power is taken out from the fuel cell until the fuel cell power is also taken out. The stop operation refers to the period from when the control device power stop command is issued until the operation of the entire fuel cell system stops. The standby operation means that power for driving is supplied to the fuel cell system. However, the operation of the entire fuel cell system is stopped and the operation is stopped.
[0036] (実施の形態 1)  [0036] (Embodiment 1)
図 1は、本発明の実施の形態 1に係る燃料電池システムの構成を模式的に示すブ ロック図である。尚、図 1では、本発明を説明するために必要な構成要素のみを示し ている。  FIG. 1 is a block diagram schematically showing the configuration of the fuel cell system according to Embodiment 1 of the present invention. FIG. 1 shows only components necessary for explaining the present invention.
[0037] 図 1に示すように、本実施の形態に係る燃料電池システム 100は、水供給器 1を備 えている。この水供給器 1は、燃料電池システム 100の発電運転の際、水道等の水を 供給可能なインフラストラクチャー力 水供給流路 aを介して水を導入して、この導入 した水の浄ィ匕等を行った後、この浄ィ匕等を行った水を後述する水素生成装置 4に向 けて水供給流路 bを介して供給する。又、この燃料電池システム 100は、原燃料供給 器 2を備えている。この原燃料供給器 2は、燃料電池システム 100の発電運転の際、 天然ガスを供給可能なインフラストラクチャーから原燃料供給流路 c及び原燃料供給 流路 dを介して天然ガスを導入して、この導入した天然ガスカゝら不要な成分の除去等 を行った後、この不要な成分の除去等を行った天然ガスを後述する水素生成装置 4 に向けて原燃料供給流路 eを介して供給する。尚、図 1に示すように、原燃料供給流 路 eの途中には三方弁 3が設けられている。この三方弁 3は、原燃料供給器 2から原 燃料供給流路 eを介して供給される天然ガスの供給先を、後述する水素生成装置 4と 後述する加熱器 4aとの間で切り替える。尚、この三方弁 3により供給先が加熱器 4aに 切り替えられた天然ガスは、原燃料供給流路 fを介して水素生成装置 4の加熱器 4a に供給される。  As shown in FIG. 1, a fuel cell system 100 according to the present embodiment includes a water supplier 1. This water supply 1 introduces water through the water supply flow path a to supply water such as water during the power generation operation of the fuel cell system 100. Then, the purified water is supplied to the hydrogen generator 4 described later via the water supply channel b. The fuel cell system 100 includes a raw fuel supplier 2. The raw fuel supplier 2 introduces natural gas from the infrastructure capable of supplying natural gas through the raw fuel supply passage c and the raw fuel supply passage d during the power generation operation of the fuel cell system 100. After the unnecessary components such as the introduced natural gas are removed, the natural gas from which the unnecessary components are removed is supplied to the hydrogen generator 4 described later via the raw fuel supply flow path e. To do. As shown in FIG. 1, a three-way valve 3 is provided in the middle of the raw fuel supply channel e. The three-way valve 3 switches the supply destination of the natural gas supplied from the raw fuel supplier 2 via the raw fuel supply flow path e between a hydrogen generator 4 described later and a heater 4a described later. The natural gas whose supply destination is switched to the heater 4a by the three-way valve 3 is supplied to the heater 4a of the hydrogen generator 4 via the raw fuel supply flow path f.
[0038] ここで、図 1に示すように、本実施の形態に係る燃料電池システム 100は、原燃料 供給流路 cと原燃料供給流路 dとの間に後述する原燃料状態検知器 101aを設ける 制御ブロック 101を備えて!/、る。この制御ブロック 101の構成及びその動作につ!、て は、後に詳細に説明する。  Here, as shown in FIG. 1, the fuel cell system 100 according to the present embodiment includes a raw fuel state detector 101a described later between the raw fuel supply channel c and the raw fuel supply channel d. Provide control block 101! Regarding the configuration and operation of this control block 101! This will be described in detail later.
[0039] 又、図 1に示すように、本実施の形態に係る燃料電池システム 100は、水素生成装 置 4を備えている。この水素生成装置 4は、燃料電池システム 100の発電運転の際、 水供給器 1から水供給流路 bを介して供給される水と、原燃料供給器 2から原燃料供 給流路 e及び三方弁 3を介して供給される天然ガスとの各々を用いて、所定の水素生 成反応により水素を含む燃料を生成する。この所定の水素生成反応が進行する際、 水素生成装置 4におけるその所定の水素生成反応が進行する部分は、加熱器 4aに より所定の温度に加熱及び保温される。加熱器 4aは、原燃料供給器 2から三方弁 3 及び原燃料供給流路 fを介して供給される天然ガス、又は、後述する燃料電池 6から 排出された燃料の何れかの燃焼用燃料を燃焼して、水素生成装置 4における所定の 水素生成反応が進行する部分を加熱及び保温する。そして、この水素生成装置 4は 、燃料電池システム 100の発電運転の際、所定の水素生成反応により生成した燃料 を、燃料供給流路 gを介して後述する燃料電池 6に向けて供給する。 In addition, as shown in FIG. 1, the fuel cell system 100 according to the present embodiment includes a hydrogen generator 4. This hydrogen generator 4 is configured to supply water supplied from the water supply device 1 through the water supply flow path b, and from the raw fuel supply device 2 to the raw fuel supply flow path e and during the power generation operation of the fuel cell system 100. Using each of the natural gas supplied through the three-way valve 3, a predetermined hydrogen production A hydrogen-containing fuel is produced by the synthesis reaction. When this predetermined hydrogen generation reaction proceeds, the portion of the hydrogen generator 4 where the predetermined hydrogen generation reaction proceeds is heated and kept at a predetermined temperature by the heater 4a. The heater 4a is a fuel for combustion, either natural gas supplied from the raw fuel supplier 2 through the three-way valve 3 and the raw fuel supply flow path f, or fuel discharged from the fuel cell 6 described later. The part where the predetermined hydrogen generation reaction proceeds in the hydrogen generator 4 is heated and kept warm after burning. The hydrogen generator 4 supplies the fuel generated by a predetermined hydrogen generation reaction during the power generation operation of the fuel cell system 100 toward the fuel cell 6 described later via the fuel supply channel g.
[0040] 一方、図 1に示すように、本実施の形態に係る燃料電池システム 100は、ブロア一 5 を備えている。このブロア一 5は、燃料電池システム 100の発電運転の際、酸化剤と しての空気を導入して、この導入した酸化剤としての空気の浄ィ匕等を行った後、この 浄化等を行った酸化剤としての空気を、後述する燃料電池 6に向けて酸化剤供給流 路 hを介して供給する。 On the other hand, as shown in FIG. 1, the fuel cell system 100 according to the present embodiment includes a blower 5. The blower 5 introduces air as an oxidant during the power generation operation of the fuel cell system 100, purifies the air as the introduced oxidant, and then performs the purification. The performed air as an oxidant is supplied to a fuel cell 6 to be described later via an oxidant supply flow path h.
[0041] そして、図 1に示すように、本実施の形態に係る燃料電池システム 100は、その発 電部の本体としての燃料電池 6を備えている。この燃料電池 6は、燃料電池システム 100の発電運転の際、水素生成装置 4から燃料供給流路 gを介して供給される燃料 と、ブロア一 5から酸化剤供給流路 hを介して供給される酸化剤との各々を用いて発 電する。尚、この燃料電池 6において発電のために用いられな力つた余剰の燃料は、 燃料電池 6から排出された後、必要に応じて水素生成装置 4の加熱器 4aに供給され る。又、この燃料電池 6において発電のために用いられな力つた余剰の酸化剤は、燃 料電池 6から排出された後、燃料電池システム 100の外部へと放出される。  [0041] As shown in FIG. 1, a fuel cell system 100 according to the present embodiment includes a fuel cell 6 as a main body of the power generation unit. The fuel cell 6 is supplied with the fuel supplied from the hydrogen generator 4 through the fuel supply flow path g and the blower 5 through the oxidant supply flow path h during the power generation operation of the fuel cell system 100. Each of the oxidizers generates electricity. The surplus fuel that is used for power generation in the fuel cell 6 is discharged from the fuel cell 6 and then supplied to the heater 4a of the hydrogen generator 4 as necessary. Further, the surplus oxidant which is used for power generation in the fuel cell 6 is discharged from the fuel cell 6 and then released to the outside of the fuel cell system 100.
[0042] ここで、本発明の実施の形態 1に係る制御ブロック 101の構成及びその動作につい て説明する。  Here, the configuration and operation of control block 101 according to Embodiment 1 of the present invention will be described.
[0043] 図 2は、本発明の実施の形態 1に係る燃料電池システムにおける制御ブロックの構 成を模式的に示すブロック図である。尚、図 2では、本発明を説明するために必要な 構成要素のみを示している。  FIG. 2 is a block diagram schematically showing the configuration of the control block in the fuel cell system according to Embodiment 1 of the present invention. In FIG. 2, only the components necessary for explaining the present invention are shown.
[0044] 又、図 3は、本発明の実施の形態 1に係る燃料電池システムにおける制御ブロック の具体的な構成を模式的に示すブロック図である。尚、図 3でも、本発明を説明する ために必要な構成要素のみを示して 、る。 FIG. 3 is a block diagram schematically showing a specific configuration of the control block in the fuel cell system according to Embodiment 1 of the present invention. FIG. 3 also illustrates the present invention. Only the necessary components are shown.
[0045] 図 2に示すように、本実施の形態に係る燃料電池システム 100の制御ブロック 101 は、原燃料状態検知器 101aと、状態判定器 101bと、ゲート回路 101cと、運転制御 器 lOldと、復帰指令入力器 lOleと、表示器 101fとを各々備えている。ここで、図 3 に示すように、本実施の形態に係る燃料電池システム 100の制御ブロック 111は、具 体的には、原燃料状態検知器 101aとしての圧力センサー 11 laと、状態判定器 101 bとしての比較器 11 lbと、ゲート回路 101cとしての AND回路 111cと、運転制御器 1 Oldとしての運転制御器 11 Idと、復帰指令入力器 lOleとしての復帰ボタン 11 lg及 び JK— FFl l lhと、表示器 101fとしてのディスプレイ 11 Ifとを各々備えている。ここ で、 JK— FFとは「JK—フリップフロップ」を意味して!/、る。  As shown in FIG. 2, the control block 101 of the fuel cell system 100 according to the present embodiment includes a raw fuel state detector 101a, a state determiner 101b, a gate circuit 101c, and an operation controller lOld. , A return command input device lOle and a display device 101f. Here, as shown in FIG. 3, the control block 111 of the fuel cell system 100 according to the present embodiment specifically includes a pressure sensor 11 la as a raw fuel state detector 101a and a state determiner 101. Comparator 11 lb as b, AND circuit 111c as gate circuit 101c, operation controller 11 Id as operation controller 1 Old, return button 11 lg as return command input device lOle and JK-FFl l lh and a display 11 If as a display 101f. Here, JK-FF means "JK-flip-flop"!
[0046] 本実施の形態においては、図 2及び図 3に示すように、状態判定器 101b (比較器 1 1 lb)とゲート回路 101c (AND回路 11 lc)とを備えるようにして、起動許 Z否器 201 (起動許 Z否器 211)が構成されている。そして、この起動許 Z否器 201 (起動許 Z 否器 211)と運転制御器 lOld (運転制御器 11 Id)とを備えるようにして、制御装置 3 01 (制御装置 311)が構成されて 、る。  In this embodiment, as shown in FIG. 2 and FIG. 3, it is provided with a state determination device 101b (comparator 11 1 lb) and a gate circuit 101c (AND circuit 11 lc), so A Z rejector 201 (start-up permit Z rejector 211) is configured. Then, the control device 3 01 (control device 311) is configured to include the start permission Z reject device 201 (start permission Z reject device 211) and the operation controller lOld (operation controller 11 Id). The
[0047] 原燃料状態検知器 101aは、燃料電池システム 100における原燃料供給流路 cと原 燃料供給流路 dとの間に設けられ、天然ガスを供給可能なインフラストラクチャーから 図 1に示す原燃料供給器 2 (即ち、水素生成装置 4)に向けて供給される天然ガスの 供給状態を検知する。そして、この原燃料状態検知器 101aは、天然ガスの供給状 態に応じた状態信号を、起動許 Z否器 201の状態判定器 10 lbに向けて出力する。 本実施の形態では、原燃料状態検知器 101aとしての圧力センサー 11 laが、天然ガ スを供給可能なインフラストラクチャー力ゝら原燃料供給器 2に向けて供給される天然 ガスの供給圧力を検知する。そして、この圧力センサー 11 laは、天然ガスの供給圧 力に応じた圧力信号を、起動許 Z否器 211の比較器 111bに向けて出力する。  [0047] The raw fuel state detector 101a is provided between the raw fuel supply flow path c and the raw fuel supply flow path d in the fuel cell system 100, and is supplied from the infrastructure capable of supplying natural gas as shown in FIG. The supply state of the natural gas supplied to the fuel supply device 2 (that is, the hydrogen generator 4) is detected. The raw fuel state detector 101a outputs a state signal corresponding to the supply state of the natural gas to the state determiner 10 lb of the start permission Z rejector 201. In the present embodiment, the pressure sensor 11 la as the raw fuel state detector 101a detects the supply pressure of the natural gas supplied toward the raw fuel supply device 2 from the infrastructure that can supply natural gas. To do. The pressure sensor 11 la outputs a pressure signal corresponding to the supply pressure of the natural gas to the comparator 111b of the activation permit Z rejector 211.
[0048] 状態判定器 101bは、原燃料状態検知器 101aから入力される状態信号と、予め制 御装置 301の図 2では図示されな 、記憶器に記憶された所定の閾値情報とを比較 する。そして、この状態判定器 101bは、その入力される状態信号と所定の閾値情報 との比較に基づく判定信号を、起動許 Z否器 201のゲート回路 101c、制御装置 30 1の運転制御器 101d、復帰指令入力器 101e、表示器 lOlfの各々に向けて出力す る。本実施の形態では、状態判定器 101bとしての比較器 11 lbが、圧力センサー 11 laから入力される天然ガスの供給圧力に応じた圧力信号と、予め制御装置 311の記 憶器に記憶された所定の閾値情報とを比較する。そして、この比較器 11 lbは、その 入力される圧力信号と所定の閾値情報との比較に基づく Hレベル又は Lレベルの判 定信号を、起動許 Z否器 211の AND回路 11 lc、制御装置 311の運転制御器 111 d、復帰指令入力器 l l leの JK FFl l lh、ディスプレイ 11 Ifの各々に向けて出力 する。ここで、比較器 11 lbは、圧力センサー 11 laから入力される天然ガスの供給圧 力に応じた圧力信号の電圧が所定の閾値電圧以上である場合、 Hレベルの判定信 号を起動許 Z否器 211の AND回路 111c等に向けて出力する。又、比較器 11 lbは 、圧力センサー 11 laから入力される天然ガスの供給圧力に応じた圧力信号の電圧 が所定の閾値電圧未満である場合、 Lレベルの判定信号を起動許 Z否器 211の AN D回路 111c等に向けて出力する。ここで、 Hレベルの判定信号とは相対的に高い電 圧の判定信号を意味しており、 Lレベルの判定信号とは相対的に低 、電圧の判定信 号を意味している。尚、状態判定器 101bは、ソフトウェア、論理回路、アナログ回路 の何れによっても実現することが可能である。 [0048] The state determiner 101b compares the state signal input from the raw fuel state detector 101a with predetermined threshold information stored in the storage unit that is not illustrated in FIG. 2 of the control device 301 in advance. . Then, the state determiner 101b sends a determination signal based on the comparison between the input state signal and predetermined threshold information to the gate circuit 101c of the activation permit Z rejector 201, the control device 30. Output to each of the operation controller 101d, return command input device 101e, and display lOlf. In the present embodiment, the comparator 11 lb serving as the state determination device 101b includes a pressure signal corresponding to the supply pressure of the natural gas input from the pressure sensor 11 la and a memory stored in the control device 311 in advance. Compare with predetermined threshold information. The comparator 11 lb outputs an H level or L level determination signal based on a comparison between the input pressure signal and predetermined threshold information, an AND circuit 11 lc of the activation permit Z rejector 211, and a control device. Output to each of 311 operation controller 111d, return command input device ll le JK FFl l lh, and display 11 If. Here, when the voltage of the pressure signal corresponding to the supply pressure of the natural gas input from the pressure sensor 11 la is equal to or higher than the predetermined threshold voltage, the comparator 11 lb activates the determination signal of H level. Output to the AND circuit 111c etc. of the rejector 211. In addition, the comparator 11 lb outputs an L level determination signal when the voltage of the pressure signal corresponding to the supply pressure of the natural gas input from the pressure sensor 11 la is less than a predetermined threshold voltage. Output to the AND circuit 111c etc. Here, the H level determination signal means a relatively high voltage determination signal, and the L level determination signal means a relatively low voltage determination signal. The state determiner 101b can be realized by any of software, logic circuit, and analog circuit.
ゲート回路 101cは、状態判定器 101b力も入力される判定信号と、復帰指令入力 器 101eから入力される復帰指令とに基づいて、制御装置 301の運転制御器 101d に向けて起動許 Z否信号を出力する。本実施の形態では、ゲート回路 101cとしての AND回路 11 lcが、比較器 11 lbから入力される Hレベル又は Lレベルの判定信号と 復帰指令入力器 11 le( JK-FFl 1 lhから入力される Hレベル又は Lレベルの復帰 指令とに基づ 、て、比較器 11 lbから Hレベルの判定信号が入力されかつ JK— FF1 1 lhから Hレベルの復帰指令が入力された場合、制御装置 311の運転制御器 11 Id に向けて Hレベルの起動許 Z否信号を出力する。この Hレベルの起動許 Z否信号 は、燃料電池システム 100の起動運転を許可する信号である。尚、比較器 11 lbから Hレベルの判定信号が入力されかつ復帰指令入力器 11 leの JK FF11 lhから Lレ ベルの復帰指令が入力された場合や、比較器 11 lbから Lレベルの判定信号が入力 されかつ復帰指令入力器 11 leの JK— FF11 lhから Hレベルの復帰指令が入力さ れた場合には、 AND回路 1 l ieは、制御装置 311の運転制御器 11 Idに向けて Lレ ベルの起動許 Z否信号を出力する。この Lレベルの起動許 Z否信号は、燃料電池シ ステム 100の起動運転を不許可とする信号である。尚、ゲート回路 101cは、ソフトゥ エア、論理回路、アナログ回路の何れによっても実現することが可能である。 The gate circuit 101c sends a start permission Z rejection signal to the operation controller 101d of the control device 301 based on the determination signal to which the force of the state determiner 101b is also input and the return command input from the return command input device 101e. Output. In this embodiment, the AND circuit 11 lc as the gate circuit 101c is input from the H-level or L-level determination signal input from the comparator 11 lb and the return command input device 11 le (JK-FFl 1 lh). Based on the H level or L level return command, if an H level judgment signal is input from the comparator 11 lb and an H level return command is input from JK-FF1 1 lh, the controller 311 An H level start permission Z reject signal is output to the operation controller 11 Id, which is a signal that permits start operation of the fuel cell system 100. The comparator 11 When an H level judgment signal is input from lb and an L level return command is input from JK FF11 lh of the return command input device 11 le, or when an L level judgment signal is input from the comparator 11 lb H level return command is input from JK-FF11 lh of command input unit 11 le In this case, the AND circuit 1 lie outputs an L level start permission Z rejection signal to the operation controller 11 Id of the control device 311. This L level start permission Z rejection signal is a signal that prohibits the start operation of the fuel cell system 100. Note that the gate circuit 101c can be realized by any of software, logic circuits, and analog circuits.
[0050] 復帰指令入力器 lOleは、燃料電池システム 100の起動運転を開始させるための 復帰指令を、起動許 Z否器 201のゲート回路 101cに向けて出力する。本実施の形 態では、復帰指令入力器 lOleは、自己保持回路(図 2に示さず)を備えていて、この 自己保持回路に状態判定器 101bの判定信号が入力されている。そして、燃料電池 システム 100の使用者等によって復帰指令が入力されると、これを保持し、この保持 した復帰指令をゲート回路 101cに向けて出力する。そして、状態判定器 101bから L レベルの判定信号が入力されると、自己保持回路がリセットされて保持していた復帰 指令が消去される。具体的には、図 3において、復帰指令入力具としての復帰ボタン l l lgは、自己保持回路である JK— FFl l lhに J入力を出力していて、使用者等に 押されると復帰指令として Hレベルの信号を出力し、押されな 、状態では Lレベルの 信号を出力する。一方、 JK— FFl l lhには K入力として、比較器 11 lbから判定信号 が反転されて入力されている。従って、通常の状態である、比較器 11 lbから Hレべ ルの判定信号が出力されている状態 (つまり、原燃料の供給状態が正常である状態) で復帰ボタン l l lgが押されると、 JK— FFl l lhの Qが Hレベルになり、この Hレベル の信号が復帰指令として AND回路 111cに向けて出力される。この状態は、この後、 復帰ボタン 11 lgが解放されて、復帰ボタン 11 lgから Lレベルの信号力JK— FF111 hに入力されても維持される。即ち、 JK— FFl l lhがセットされる。そして、比較器 11 lbから Lレベルの判定信号が出力されると、 JK— FFl l lhの Qが Lレベルになり、こ の Lレベルの信号が AND回路 111cに向けて出力される。この状態は、この後、比較 器 11 lbからの判定信号が Hレベルに変化しても維持される。即ち、 JK— FF11 lhが リセットされる。 The return command input device lOle outputs a return command for starting the startup operation of the fuel cell system 100 to the gate circuit 101c of the startup permitting Z rejector 201. In the present embodiment, the return command input device lOle includes a self-holding circuit (not shown in FIG. 2), and the determination signal of the state determiner 101b is input to this self-holding circuit. When a return command is input by the user of the fuel cell system 100 or the like, it is held and output to the gate circuit 101c. When an L level determination signal is input from the state determiner 101b, the self-holding circuit is reset and the return command held is deleted. Specifically, in FIG. 3, the return button ll lg as a return command input tool outputs a J input to JK-FFl l lh, which is a self-holding circuit. Outputs an H level signal and outputs an L level signal when not pressed. On the other hand, the judgment signal is inverted from the comparator 11 lb as the K input to JK-FFl l lh. Therefore, if the return button ll lg is pressed in the normal state where the comparator 11 lb outputs an H level determination signal (that is, the raw fuel supply state is normal), JK—FFl l lh Q becomes H level, and this H level signal is output to AND circuit 111c as a return command. This state is maintained even if the return button 11 lg is subsequently released and is input from the return button 11 lg to the L level signal power JK-FF111 h. That is, JK-FFl l lh is set. When the L level determination signal is output from the comparator 11 lb, the Q of JK-FFl l lh becomes the L level, and this L level signal is output toward the AND circuit 111c. This state is maintained even if the judgment signal from the comparator 11 lb subsequently changes to H level. That is, JK-FF11 lh is reset.
[0051] 表示器 101fは、状態判定器 101bから入力される判定信号や、ゲート回路 101cか ら入力される起動許 Z否信号に基づいて、水素生成装置 4への原燃料の供給状態 が正常状態ではな 、旨(異常の旨)や、燃料電池システム 100の起動運転が許可さ れていない旨(異常の旨)の表示を行う。本実施の形態では、表示器 lOlfとしてのデ イスプレイ 11 Ifは、比較器 11 lb力 入力される Hレベル又は Lレベルの判定信号と 、 AND回路 111cから入力される Hレベル又は Lレベルの起動許 Z否信号とに基づ いて、比較器 11 lbから Lレベルの判定信号が入力された場合、 AND回路 111cから 入力される起動許 Z否信号に関わらず、水素生成装置 4への原燃料の供給状態が 正常状態ではない旨を表示する。又、ディスプレイ 11 Ifは、比較器 11 lbから Hレべ ルの判定信号が入力された場合、 AND回路 111cから入力される起動許 Z否信号 に関わらず、原燃料の供給状態が正常状態ではない旨を表示しない。一方、デイス プレイ 11 Ifは、 AND回路 11 lcから Lレベルの起動許 Z否信号が入力された場合、 燃料電池システム 100の起動運転が許可されていない旨を表示する。又、ディスプレ ィ 11 Ifは、 AND回路 111cから Hレベルの起動許 Z否信号が入力された場合、燃 料電池システム 100の起動運転が許可されて!、な!/、旨を表示しな!、。 [0051] Display 101f has a normal supply state of raw fuel to hydrogen generator 4 based on a determination signal input from state determiner 101b and an activation permission Z reject signal input from gate circuit 101c. If it is not in the state, the effect (abnormality) or the start-up operation of the fuel cell system 100 is permitted. Display that it is not (abnormality). In the present embodiment, the display 11 If as the display lOlf is an H level or L level determination signal input from the comparator 11 lb force, and an H level or L level activation permission input from the AND circuit 111c. When an L level judgment signal is input from the comparator 11 lb based on the Z rejection signal, the raw fuel to the hydrogen generator 4 is not affected regardless of the activation permission Z rejection signal input from the AND circuit 111c. Displays that the supply status is not normal. In addition, when the H level determination signal is input from the comparator 11 lb, the display 11 If indicates that the raw fuel supply state is normal regardless of the start permission Z rejection signal input from the AND circuit 111c. Do not display that there is no. On the other hand, the display 11 If displays that the start-up operation of the fuel cell system 100 is not permitted when the L-level start permission Z rejection signal is input from the AND circuit 11 lc. The display 11 If does not display that the start-up operation of the fuel cell system 100 is permitted !, NA! /, Etc. when the H level start permission Z rejection signal is input from the AND circuit 111c! ,.
[0052] 運転制御器 101dは、その運転制御器 101dに入力される運転指令と、ゲート回路 101cから入力される起動許 Z否信号とに基づいて、燃料電池システム 100の起動 運転を制御するよう動作する。又、運転制御器 101dは、状態判定器 101bから Lレべ ルの判定信号が入力されると、燃料電池システム 100の運転を非常停止する。本実 施の形態では、運転制御器 101dとしての運転制御器 11 Idが、その運転制御器 11 1 dに向けて燃料電池システム 100に接続された負荷の要求等に応じて入力される H レベル又は Lレベルの運転指令と、 AND回路 11 lcから入力される Hレベル又は Lレ ベルの起動許 Z否信号とに基づき、 Hレベルの運転指令が入力されかつ AND回路 11 lcから Hレベルの起動許 Z否信号が入力された場合、燃料電池システム 100の 起動運転が開始されるよう制御する。又、この運転制御器 11 Idは、 Hレベルの運転 指令が入力されかつ AND回路 11 lcから Lレベルの起動許 Z否信号が入力された 場合や、 Lレベルの運転指令が入力されかつ AND回路 11 lcから Hレベルの起動許 Z否信号が入力された場合には、燃料電池システム 100の起動運転が開始されな いよう制御する。又、運転制御器 11 Idは、比較器 11 lbから Lレベルの判定信号が 入力されると、燃料電池システム 100の運転を非常停止する。  [0052] The operation controller 101d controls the start-up operation of the fuel cell system 100 based on the operation command input to the operation controller 101d and the start permission Z reject signal input from the gate circuit 101c. Operate. Also, the operation controller 101d makes an emergency stop of the operation of the fuel cell system 100 when an L level determination signal is input from the state determiner 101b. In the present embodiment, the operation controller 11 Id as the operation controller 101 d is input to the operation controller 11 1 d according to the request for the load connected to the fuel cell system 100, etc. Or, based on the L level operation command and the H level or L level activation permission Z rejection signal input from the AND circuit 11 lc, the H level operation command is input and the AND circuit 11 lc activates the H level activation signal. When a permit Z denial signal is input, control is performed so that the start-up operation of the fuel cell system 100 is started. In addition, this operation controller 11 Id receives an H level operation command and an AND circuit 11 lc receives an L level start permission Z reject signal, or receives an L level operation command and an AND circuit. 11 When the H level start permission Z rejection signal is input from lc, control is performed so that the start-up operation of the fuel cell system 100 is not started. Further, the operation controller 11 Id makes an emergency stop of the operation of the fuel cell system 100 when an L level determination signal is input from the comparator 11 lb.
[0053] さて、図 1及び図 3に示すように構成された燃料電池システム 100においては、その 運転の種類 (即ち、起動運転、発電運転、停止運転、待機運転)に関わらず、燃料電 池システム 100に対して駆動用の電力が供給されている状況においては、圧力セン サー 111aにより、天然ガスを供給可能なインフラストラクチャーから原燃料供給器 2 に向けて供給される天然ガスの供給圧力が逐次検知される。この圧力センサー 111 aによる天然ガスの供給圧力の検知は、例えば、数秒毎に 1回の割合で継続して行 われる。 In the fuel cell system 100 configured as shown in FIGS. 1 and 3, Regardless of the type of operation (ie, start-up operation, power generation operation, stop operation, standby operation), in the situation where power for driving is supplied to the fuel cell system 100, the pressure sensor 111a The supply pressure of the natural gas supplied from the infrastructure capable of supplying gas toward the raw fuel supplier 2 is sequentially detected. The detection of the supply pressure of natural gas by the pressure sensor 111a is continuously performed at a rate of once every several seconds, for example.
[0054] この燃料電池システム 100において、天然ガスのインフラストラクチャーに接続され た遮断器 (例えば、マイコン内蔵型ガスメーター)が地震や停電等を検知して天然ガ スの供給を遮断した場合、天然ガスのインフラストラクチャー力 水素生成装置 4への 天然ガスの供給圧力が著しく低下したことが圧力センサー 11 laにより検知される。す ると、制御装置 311における起動許 Z否器 211の比較器 11 lbは、水素生成装置 4 への天然ガスの供給圧力が正常な供給圧力ではな 、と判定して、運転制御器 11 Id に向けて Lレベルの判定信号を出力する。すると、運転制御器 11 Idは、この Lレベル の判定信号に基づいて、燃料電池システム 100に接続された負荷の要求等に基づ V、て Hレベルの運転指令が入力されて!/、る場合であつても、燃料電池システム 100 の運転を強制的に停止させるよう制御する。この場合、燃料電池システム 100のディ スプレイ 11 Ifには、水素生成装置 4への天然ガスの供給圧力が正常な供給圧力で はな 、旨と、燃料電池システム 100の起動運転が許可されて 、な 、旨とが各々表示 される。又、 JK—FFl l lhがリセットされて、 AND回路 111cに Lレベルの信号が出 力される。  [0054] In this fuel cell system 100, when a circuit breaker (for example, a gas meter with a built-in microcomputer) connected to the natural gas infrastructure detects an earthquake or power outage and shuts off the supply of natural gas, The pressure sensor 11 la detects that the supply pressure of natural gas to the hydrogen generator 4 has dropped significantly. Then, the comparator 11 lb of the start permit Z rejector 211 in the controller 311 determines that the supply pressure of natural gas to the hydrogen generator 4 is not a normal supply pressure, and the operation controller 11 Id Output an L level judgment signal toward. Then, the operation controller 11 Id receives a V or H level operation command based on the demand of the load connected to the fuel cell system 100 based on the L level determination signal! Even in this case, control is performed so that the operation of the fuel cell system 100 is forcibly stopped. In this case, the display 11 If of the fuel cell system 100 indicates that the supply pressure of the natural gas to the hydrogen generator 4 is not a normal supply pressure, and that the start-up operation of the fuel cell system 100 is permitted. A message to that effect is displayed. Also, JK-FFl l lh is reset and an L level signal is output to the AND circuit 111c.
[0055] 尚、燃料電池システム 100の運転の強制的な停止は、上述のように遮断器が地震 や停電等を検知して天然ガスの供給を遮断した場合や、水素生成装置 4へ天然ガス を供給するための配管に外れや損傷等が発生した場合の他に、例えば、待機運転 力 起動運転へと移行する際に何らかの原因によって起動運転へ正常に移行できな 力つた場合等においても実行される。  [0055] It should be noted that the forced stop of the operation of the fuel cell system 100 occurs when the circuit breaker detects an earthquake or a power failure as described above and interrupts the supply of natural gas, or when the natural gas is supplied to the hydrogen generator 4. In addition to when disconnection or damage occurs in the piping for supplying the battery, for example, when the standby operation force shifts to the start operation for some reason, the start operation cannot be performed normally. Is done.
[0056] その後、地震が治まる力、又は、停電の原因が解消されると、燃料電池システム 10 0の使用者等は、上述した遮断器の遮断動作を所定の操作を行うことにより解消させ る。この復帰操作により復帰した遮断器は、天然ガスのインフラストラクチャー力ゝら燃 料電池システム 100への天然ガスの供給を従来通り所定の供給圧力で再開する。 [0056] After that, when the power to stop the earthquake or the cause of the power failure is eliminated, the user of the fuel cell system 100 eliminates the breaking operation of the circuit breaker described above by performing a predetermined operation. . The circuit breaker restored by this restoration operation is fueled by the natural gas infrastructure. The supply of natural gas to the fuel cell system 100 is resumed at a predetermined supply pressure as before.
[0057] 燃料電池システム 100への天然ガスの供給が再開されると、制御ブロック 111の圧 力センサー 111aは、その天然ガスの供給圧力に応じた圧力信号を、起動許 Z否器 211の比較器 11 lbに向けて出力する。すると、比較器 11 lbは、圧力センサー 11 la から入力される天然ガスの供給圧力に応じた圧力信号と、予め制御装置 311の記憶 器に記憶された所定の閾値信号とを比較する。ここで、この比較器 11 lbは、その入 力される圧力信号の電圧と所定の閾値電圧との比較に基づき、圧力センサー 111a から入力される天然ガスの供給圧力に応じた圧力信号の電圧が所定の閾値電圧以 上である場合、 Hレベルの判定信号を起動許 Z否器 211の AND回路 111 cに向け て出力する。一方、比較器 11 lbは、圧力センサー 11 laから入力される天然ガスの 供給圧力に応じた圧力信号の電圧が所定の閾値電圧未満である場合、 Lレベルの 判定信号を起動許 Z否器 211の AND回路 111 cに向けて出力する。 [0057] When the supply of natural gas to the fuel cell system 100 is resumed, the pressure sensor 111a of the control block 111 outputs a pressure signal corresponding to the supply pressure of the natural gas to the start permitting Z / N device 211. Output to 11 lb. Then, the comparator 11 lb compares the pressure signal corresponding to the supply pressure of the natural gas input from the pressure sensor 11 la with a predetermined threshold signal stored in the storage device of the control device 311 in advance. Here, the comparator 11 lb has a pressure signal voltage corresponding to the supply pressure of the natural gas input from the pressure sensor 111a based on a comparison between the input pressure signal voltage and a predetermined threshold voltage. When the voltage is equal to or higher than the predetermined threshold voltage, an H level determination signal is output to the AND circuit 111 c of the activation permit Z rejector 211. On the other hand, if the voltage of the pressure signal corresponding to the supply pressure of the natural gas input from the pressure sensor 11 la is less than the predetermined threshold voltage, the comparator 11 lb activates the L level determination signal. Output to AND circuit 111c.
[0058] 比較器 11 lbから Hレベルの判定信号が入力されると、ディスプレイ 11 Ifは、比較 器 111bにより駆動されて、水素生成装置 4への天然ガスの供給圧力が正常な供給 圧力ではない旨の表示を消灯する。この表示の消灯を目視により確認することで、燃 料電池システム 100の使用者等は、天然ガスのインフラストラクチャー力も水素生成 装置 4への天然ガスの供給状態が正常状態になったことを認識する。又、その使用 者等は、天然ガスのインフラストラクチャー力 水素生成装置 4への天然ガスの供給 系統にぉ 、ては何ら異常 (例えば、配管の外れや損傷等の異常)が発生して 、な 、 ことを認識する。そして、燃料電池システム 100の使用者等は、燃料電池システム 10 0の起動運転を開始させるために、復帰ボタン 11 lgを押す。これにより、 JK—FF11 lhがセットされて、 AND回路 111cには Hレベルの復帰指令が入力される。すると、 起動許 Z否器 211の AND回路 11 lcは、制御装置 311の運転制御器 11 Idに向け て Hレベルの起動許 Z否信号を出力する。この際、ディスプレイ 11 Ifは、 AND回路 11 lcにより駆動されて、燃料電池システム 100の起動運転が許可されて 、な 、旨の 表示を消灯する。この表示の消灯を目視により確認することで、燃料電池システム 10 0の使用者等は、燃料電池システム 100の起動運転が許可されたことを認識する。又 、その使用者等は、起動許 Z否器 211の AND回路 111cが制御装置 311の運転制 御器 11 Idに向けて Hレベルの起動許 Z否信号を出力したことを認識する。つまり、 燃料電池システム 100の使用者等は、復帰ボタン 11 leを押したことが有効に機能し て 、ることを目視によって認識する。 [0058] When an H level determination signal is input from the comparator 11 lb, the display 11 If is driven by the comparator 111b, and the supply pressure of natural gas to the hydrogen generator 4 is not a normal supply pressure. Turns off the display to that effect. By visually confirming that this display is turned off, the user of the fuel cell system 100 recognizes that the natural gas infrastructure power and the natural gas supply state to the hydrogen generator 4 have become normal. . In addition, the users of the natural gas infrastructure power hydrogen generator 4 have no abnormalities (for example, abnormalities such as pipe disconnection or damage) occurring in the natural gas supply system. Recognize that. Then, the user of the fuel cell system 100 presses the return button 11 lg to start the start-up operation of the fuel cell system 100. As a result, JK-FF11 lh is set, and an H level return command is input to the AND circuit 111c. Then, the AND circuit 11 lc of the activation permission Z rejector 211 outputs an H level activation permission Z rejection signal to the operation controller 11 Id of the control device 311. At this time, the display 11 If is driven by the AND circuit 11 lc and the start-up operation of the fuel cell system 100 is permitted, and the display indicating that the display 11 If is turned off. By visually confirming that the display is turned off, the user of the fuel cell system 100 recognizes that the start-up operation of the fuel cell system 100 is permitted. In addition, the user or the like can control the operation of the control device 311 by the AND circuit 111c of the start permit Z rejector 211. Controller 11 Recognizes that H level start permission Z rejection signal is output toward Id. That is, the user of the fuel cell system 100 visually recognizes that pressing the return button 11 le functions effectively.
[0059] 一方、比較器 11 lbから Lレベルの判定信号が入力されると、ディスプレイ 11 Ifは、 比較器 11 lbによって駆動されて、水素生成装置 4への天然ガスの供給圧力が正常 な供給圧力ではない旨の表示を継続する。又、燃料電池システム 100は、その強制 的に停止された状態を継続する。この場合、燃料電池システム 100の使用者等は、 天然ガスのインフラストラクチャーから水素生成装置 4への天然ガスの供給系統にお いて、何らかの異常 (例えば、配管の外れや損傷等の異常)が発生していることを認 識する。このように、水素生成装置 4への天然ガスの供給系統において何らかの異常 が発生した場合、燃料電池システム 100の使用者等は、復帰ボタン 11 lgを押すこと なぐサービスマンに燃料電池システム 100の点検及び修繕を要請する。又、使用者 等が復帰ボタン 11 lgを押しても、 AND回路 11 lcに Lレベルの判定信号が入力され て!、るので、 AND回路 11 lcは、 JK-FF11 lhから入力される信号の如何に関わら ず、 Lレベルの起動拒 Z否信号を出力するので、燃料電池システム 100は起動され ず、停止された状態を維持する。  [0059] On the other hand, when an L level determination signal is input from the comparator 11 lb, the display 11 If is driven by the comparator 11 lb and the supply pressure of natural gas to the hydrogen generator 4 is normal. Continue to indicate that it is not pressure. Further, the fuel cell system 100 continues to be forcibly stopped. In this case, the user of the fuel cell system 100 has some abnormality (for example, an abnormality such as disconnection or damage of piping) in the natural gas supply system from the natural gas infrastructure to the hydrogen generator 4. Recognize that you are doing. Thus, if any abnormality occurs in the natural gas supply system to the hydrogen generator 4, the users of the fuel cell system 100 check the fuel cell system 100 with a service person without pressing the return button 11 lg. And request repairs. In addition, even if the user presses the return button 11 lg, the L level judgment signal is input to the AND circuit 11 lc! Therefore, the AND circuit 11 lc is not limited to the signal input from JK-FF11 lh. Regardless, since the L level start rejection Z rejection signal is output, the fuel cell system 100 is not started and remains stopped.
[0060] 起動許 Z否器 211の AND回路 11 lcから Hレベルの起動許 Z否信号が入力され ると、制御装置 311の運転制御器 11 Idは、燃料電池システム 100に接続された負 荷の要求等に基づ 、て Hレベルの運転指令が入力されて 、る場合、燃料電池シス テム 100の起動運転が開始されるよう制御する。これにより、燃料電池システム 100 において、起動運転が開始される。尚、運転制御器 11 Idは、 Hレベルの運転指令が 入力されて!、る場合であっても、 AND回路 11 lcから Lレベルの起動許 Z否信号が 入力された場合は、燃料電池システム 100の起動運転が開始されるようには制御し ない。これにより、燃料電池システム 100の運転の停止が継続される。  [0060] When an H level start permission Z rejection signal is input from the AND circuit 11 lc of the activation permission Z rejector 211, the operation controller 11 Id of the control device 311 causes the load connected to the fuel cell system 100 to If an H-level operation command is input based on the request, etc., control is performed so that the start-up operation of the fuel cell system 100 is started. As a result, the start-up operation is started in the fuel cell system 100. Even if the operation controller 11 Id receives an H-level operation command !, and the L-level start permission Z rejection signal is input from the AND circuit 11 lc, the fuel cell system Control is not performed so that 100 start-up operations are started. Thereby, the stop of the operation of the fuel cell system 100 is continued.
[0061] このように、本発明の実施の形態 1に係る燃料電池システム 100では、起動許 Z否 器 211が、圧力センサー 11 laにより水素生成装置 4への天然ガスの供給圧力が正 常な供給圧力であると検知されて 、る場合には、水素生成装置 4への天然ガスの供 給系統には何ら異常が発生していないと判定して、燃料電池システム 100の起動運 転を許可する。この際、起動許 Z否器 211は、燃料電池システム 100の使用者等に より復帰ボタン 11 lgが押されることによって、燃料電池システム 100の起動運転を許 可する。一方、起動許 Z否器 211は、圧力センサー 11 laにより水素生成装置 4への 天然ガスの供給圧力が正常な供給圧力ではないと検知されている場合には、水素 生成装置 4への天然ガスの供給系統において何らかの異常が発生していると判定し て、燃料電池システム 100の起動運転を許可しない。この際、起動許 Z否器 211は、 燃料電池システム 100の使用者等により復帰ボタン 11 lgが押された場合であっても 、燃料電池システム 100の起動運転を許可しない。 As described above, in the fuel cell system 100 according to Embodiment 1 of the present invention, the start-up permission Z rejector 211 has a normal supply pressure of natural gas to the hydrogen generator 4 by the pressure sensor 11 la. If the supply pressure is detected, it is determined that no abnormality has occurred in the supply system of the natural gas to the hydrogen generator 4, and the fuel cell system 100 is started up. Allow rollover. At this time, the activation permit Z rejector 211 permits the activation operation of the fuel cell system 100 when a user of the fuel cell system 100 or the like presses the return button 11 lg. On the other hand, if the pressure sensor 11 la detects that the supply pressure of the natural gas to the hydrogen generator 4 is not a normal supply pressure, the activation permit Z rejector 211 detects the natural gas to the hydrogen generator 4. The fuel cell system 100 is not permitted to start up because it is determined that some abnormality has occurred in the supply system. At this time, the activation permit Z rejector 211 does not permit the activation operation of the fuel cell system 100 even when the return button 11 lg is pushed by the user of the fuel cell system 100 or the like.
[0062] 力かる構成とすることにより、水素生成装置 4への天然ガスの供給系統において異 常が発生して、燃料電池システム 100の運転が強制的に停止された場合であっても 、その燃料電池システム 100自体には全く異常がなぐよって水素生成装置 4への天 然ガスの供給状態が正常状態である場合には、サービスマンに点検等を要請するこ となぐ燃料電池システム 100の起動運転をその使用者等が容易にかつ安全に開始 させることが可能になる。これにより、サービスマンに点検及び修繕を要請する回数 が大幅に減少するので、燃料電池システム 100の使用者等及びサービスマンの負担 が大幅に軽減される。又、サービスマンによる点検及び修繕が終了するまで待機す る必要がないので、燃料電池システム 100の利便性が大幅に改善される。つまり、本 発明により、従来から備える構成と同様の構成を備え、初期費用及び維持費用が安 価な、容易にかつ安全に運転を再開させることが可能である燃料電池システム 100 を提供することが可能になる。 [0062] By adopting a powerful configuration, even when an abnormality occurs in the natural gas supply system to the hydrogen generator 4 and the operation of the fuel cell system 100 is forcibly stopped, When the supply of natural gas to the hydrogen generator 4 is normal because there is no abnormality in the fuel cell system 100 itself, the fuel cell system 100 is started when a serviceman is requested for inspection. The user can start operation easily and safely. As a result, the number of inspections and repair requests made to service personnel is greatly reduced, greatly reducing the burden on users of the fuel cell system 100 and service personnel. In addition, the convenience of the fuel cell system 100 is greatly improved because there is no need to wait until the inspection and repair by the service person is completed. That is, according to the present invention, it is possible to provide a fuel cell system 100 that has the same configuration as the configuration conventionally provided, and that can be restarted easily and safely with low initial cost and low maintenance cost. It becomes possible.
[0063] 尚、本実施の形態では、原燃料状態検知器 101aとして圧力センサー 11 laを用い る構成を例示している力 このような構成に限定されることはない。例えば、原燃料状 態検知器 101aとして流量計を用いる構成としてもよい。この流量計を備える構成で は、天然ガスのインフラストラクチャー力 水素生成装置 4への天然ガスの供給状態 を検知するために、その水素生成装置 4に向けて流量計を介して天然ガスを所定量 供給する。そして、その流量計により、天然ガスの流量を検知する。この検知した天 然ガスの流量が所定の流量以上である場合、水素生成装置 4への天然ガスの供給 状態が正常状態であると判定して、起動許 Z否器 211が燃料電池システム 100の起 動運転を許可する。尚、この場合、図 1に示す三方弁 3を制御して原料供給流路 eと 原料供給流路 fとを接続することにより、水素生成装置 4に向けて供給した天然ガスを 加熱器 4aにお 、て燃焼させることが望ま 、。 [0063] In the present embodiment, the force illustrating the configuration using the pressure sensor 11la as the raw fuel state detector 101a is not limited to such a configuration. For example, a flow meter may be used as the raw fuel state detector 101a. In the configuration equipped with this flow meter, in order to detect the supply of natural gas to the hydrogen power generation device 4 in the infrastructure of natural gas, a predetermined amount of natural gas is supplied to the hydrogen generation device 4 via the flow meter. Supply. And the flow volume of natural gas is detected with the flowmeter. When the detected natural gas flow rate is equal to or higher than the predetermined flow rate, it is determined that the supply state of the natural gas to the hydrogen generator 4 is normal, and the activation permit Z-notifier 211 indicates that the fuel cell system 100 Start Allow dynamic driving. In this case, the natural gas supplied to the hydrogen generator 4 is supplied to the heater 4a by controlling the three-way valve 3 shown in FIG. 1 and connecting the raw material supply flow path e and the raw material supply flow path f. It is desirable to burn it.
[0064] 又、本実施の形態では、原燃料状態検知器 101aが出力する状態信号に基づいて 燃料電池システム 100の起動運転を許可又は不許可する形態について説明したが[0064] In the present embodiment, the mode of permitting or not permitting the start-up operation of the fuel cell system 100 based on the status signal output from the raw fuel status detector 101a has been described.
、このような形態に限定されることはない。例えば、原燃料の供給系統に接続された マイコン内蔵型ガスメーター等の遮断器からの出力信号に基づき、燃料電池システ ム 100の起動運転が許可又は不許可される形態であってもよい。具体的には、マイコ ン内蔵型ガスメーター等の遮断器が地震や停電等により原燃料の供給を遮断した場 合、遮断器はその情報を含む出力信号を起動許 Z否器 201に向けて出力する。一 方、地震や停電等が解消され、遮断器が原燃料の供給を再開した場合、遮断器は その情報を含む出力信号を起動許 Z否器 201に向けて出力する。そして、起動許 Z 否器 201は、原燃料の供給遮断が遮断器による供給遮断であり、かつ遮断器により 原燃料の供給が再開されたことを検知した場合、燃料電池システム 100の起動運転 を許可する。このような形態としても、本実施の形態により得られる効果と同様の効果 を得ることが可能である。 The present invention is not limited to such a form. For example, the start-up operation of the fuel cell system 100 may be permitted or disallowed based on an output signal from a circuit breaker such as a gas meter with a built-in microcomputer connected to a raw fuel supply system. Specifically, when a breaker such as a gas meter with a built-in microcomputer shuts off the supply of raw fuel due to an earthquake or power failure, the breaker outputs an output signal containing that information to the activation permit Z rejector 201. To do. On the other hand, when an earthquake or power failure is resolved and the circuit breaker resumes supply of raw fuel, the circuit breaker outputs an output signal including the information to the activation permit Z rejector 201. The activation permit Z rejector 201 starts the operation of the fuel cell system 100 when it is detected that the interruption of the supply of raw fuel is the interruption of supply by the circuit breaker and the supply of the raw fuel is resumed by the circuit breaker. to approve. Even in such a form, it is possible to obtain the same effect as that obtained by the present embodiment.
[0065] 又、本実施の形態では、水素生成装置 4への天然ガスの供給圧力が正常な供給 圧力ではな!/ヽ旨の表示がディスプレイ 11 Ifから消えた後に復帰ボタン 11 lgを押す 形態を例示している。これにより、異常原因が解消されたことを人間が目視によって 確認した後に起動運転が許可されるので、燃料電池システム 100をより一層安全に 復帰させることが可能になる。  [0065] In the present embodiment, the supply pressure of natural gas to the hydrogen generator 4 is not a normal supply pressure. After the display of! / ヽ disappears from the display 11 If, the return button 11 lg is pressed. Is illustrated. As a result, the start-up operation is permitted after the human visually confirms that the cause of the abnormality has been eliminated, so that the fuel cell system 100 can be returned more safely.
[0066] 更に、本実施の形態では、状態判定器 101b又はゲート回路 101cが表示器 101f を直接駆動する形態を例示しているが、このような形態に限定されることはない。例え ば、原燃料状態検知器 101aが表示器 101fを直接駆動する形態とすることも可能で ある。このような形態としても、本実施の形態により得られる効果と同様の効果を得る ことが可能である。  [0066] Further, in the present embodiment, the state determiner 101b or the gate circuit 101c directly illustrates the display 101f. However, the present invention is not limited to such a form. For example, the raw fuel state detector 101a can directly drive the indicator 101f. Even in such a form, it is possible to obtain the same effect as that obtained by the present embodiment.
[0067] (実施の形態 2)  [Embodiment 2]
本発明の実施の形態 2に係る燃料電池システムの構成は、制御ブロックの内部構 成が若干異なっている点を除き、実施の形態 1に係る燃料電池システムの構成と同 様である。従って、ここでは、本発明の実施の形態 2に係る燃料電池システムの構成 に関する詳細な説明は省略する。又、以下の説明では、制御ブロックの内部構成及 びその動作に関する相違点について説明する。 The configuration of the fuel cell system according to Embodiment 2 of the present invention is the internal configuration of the control block. The configuration is the same as that of the fuel cell system according to Embodiment 1 except that the configuration is slightly different. Therefore, detailed description of the configuration of the fuel cell system according to Embodiment 2 of the present invention is omitted here. In the following description, differences in the internal configuration and operation of the control block will be described.
[0068] 図 4は、本発明の実施の形態 2に係る燃料電池システムにおける制御ブロックの構 成を模式的に示すブロック図である。尚、図 4では、本発明を説明するために必要な 構成要素のみを示している。  FIG. 4 is a block diagram schematically showing the configuration of the control block in the fuel cell system according to Embodiment 2 of the present invention. FIG. 4 shows only the components necessary for explaining the present invention.
[0069] 図 4に示すように、本発明の実施の形態 2に係る燃料電池システムの制御ブロック 1 02は、図 2に示す制御ブロック 101の構成と比較して、ゲート回路 101c及び復帰指 令入力器 lOleに相当する構成要素を各々備えて 、な 、点で、実施の形態 1に係る 制御ブロック 101の構成とは異なっている。又、この制御ブロック 102は、図 2に示す 制御ブロック 101の構成と比較して、状態判定器 102bが表示器 102fを駆動する点 で、制御ブロック 101の構成とは異なっている。尚、その他の点については、制御ブ ロック 102の構成は、実施の形態 1に示す制御ブロック 101の構成と同様である。  [0069] As shown in FIG. 4, the control block 102 of the fuel cell system according to Embodiment 2 of the present invention has a gate circuit 101c and a return instruction compared to the configuration of the control block 101 shown in FIG. Each of the components corresponding to the input device lOle is different from the configuration of the control block 101 according to the first embodiment. Further, the control block 102 is different from the configuration of the control block 101 in that the state determiner 102b drives the display 102f as compared with the configuration of the control block 101 shown in FIG. In other respects, the configuration of the control block 102 is the same as the configuration of the control block 101 shown in the first embodiment.
[0070] 図 4に示す制御ブロック 102では、状態判定器 102bが、原燃料状態検知器 102a から入力される原燃料の供給状態に応じた状態信号に基づいて、 Hレベル又は Lレ ベルの起動許 Z否信号を制御装置 302の運転制御器 102dに向けて出力する。す ると、運転制御器 102dは、その運転制御器 102dに入力される Hレベル又は Lレべ ルの運転指令と、状態判定器 102bから入力される Hレベル又は Lレベルの起動許 Z否信号とに基づいて、燃料電池システムの起動運転を制御する。ここで、表示器 1 02fは、状態判定器 102bが Lレベルの起動許 Z否信号を出力する場合には水素生 成装置 4への原燃料の供給状態が正常状態ではない旨を表示するが、状態判定器 102bが Hレベルの起動許 Z否信号を出力する場合には水素生成装置 4への原燃 料の供給状態が正常状態ではない旨を表示しない。又、表示器 102fは、状態判定 器 102bが Lレベルの起動許 Z否信号を出力する場合には燃料電池システムの起動 運転が許可されていない旨を表示するが、状態判定器 102bが Hレベルの起動許 Z 否信号を出力する場合には燃料電池システムの起動運転が許可されて 、な ヽ旨を 表示しない。又、本実施の形態では、燃料電池システムの起動運転の制御において 、その燃料電池システムの使用者等による図 3に示す復帰ボタン 11 lgが押される等 の操作を必要とはしない。つまり、本実施の形態では、原燃料状態検知器 102aが出 力する状態信号に基づき、燃料電池システムの起動運転の制御が起動許 Z否器 20 2の状態判定器 102b及び制御装置 302の運転制御器 102dによって自動的に行わ れる形態を示している。尚、その他の点については、制御ブロック 102の動作は、実 施の形態 1に示す制御ブロック 101の動作と同様である。このように、信頼性の高い 燃料電池システムにおいては、その起動運転を自動で開始させることが可能である。 In the control block 102 shown in FIG. 4, the state determination unit 102b starts the H level or the L level based on the state signal corresponding to the supply state of the raw fuel input from the raw fuel state detector 102a. A permission Z rejection signal is output to the operation controller 102d of the control device 302. Then, the operation controller 102d receives the H level or L level operation command input to the operation controller 102d, and the H level or L level start permission Z rejection signal input from the state determiner 102b. Based on the above, the start-up operation of the fuel cell system is controlled. Here, the indicator 102f displays that the raw fuel supply state to the hydrogen generator 4 is not normal when the state determiner 102b outputs an L level start permission Z rejection signal. When the state determiner 102b outputs an H level start permission Z rejection signal, it does not indicate that the supply state of the raw fuel to the hydrogen generator 4 is not normal. The indicator 102f displays that the start operation of the fuel cell system is not permitted when the state determiner 102b outputs an L level start permission Z reject signal, but the state determiner 102b is at the H level. When the start permission Z rejection signal is output, the start operation of the fuel cell system is permitted and no indication is given. In this embodiment, in the control of the start-up operation of the fuel cell system It is not necessary for the user of the fuel cell system to operate such as pressing the return button 11 lg shown in FIG. That is, in the present embodiment, based on the state signal output from the raw fuel state detector 102a, the control of the start-up operation of the fuel cell system is performed by the state determiner 102b of the start permission Z rejector 202 and the control device 302. A form automatically performed by the controller 102d is shown. In other respects, the operation of the control block 102 is the same as the operation of the control block 101 shown in the first embodiment. Thus, in a highly reliable fuel cell system, the start-up operation can be automatically started.
[0071] 力かる構成とすることにより、サービスマンに点検及び修繕を要請する回数が大幅 に減少すると共に、燃料電池システム 100の使用者等の負担が実施の形態 1の場合 と比べて更に軽減される。尚、その他の点については、実施の形態 1の場合と同様で ある。 [0071] By adopting a powerful configuration, the number of requests for inspection and repair from service personnel is greatly reduced, and the burden on the user of the fuel cell system 100 is further reduced compared to the case of the first embodiment. Is done. The other points are the same as in the first embodiment.
[0072] (実施の形態 3)  [Embodiment 3]
本発明の実施の形態 3に係る燃料電池システムの構成も、制御ブロックの内部構成 が若干異なっている点を除き、実施の形態 1に係る燃料電池システムの構成と同様 である。従って、ここでは、本発明の実施の形態 3に係る燃料電池システムの構成に 関する詳細な説明は省略する。又、以下の説明では、実施の形態 2の場合と同様、 制御ブロックの内部構成及びその動作に関する相違点について説明する。  The configuration of the fuel cell system according to Embodiment 3 of the present invention is the same as the configuration of the fuel cell system according to Embodiment 1 except that the internal configuration of the control block is slightly different. Accordingly, detailed description of the configuration of the fuel cell system according to Embodiment 3 of the present invention is omitted here. In the following description, as in the case of the second embodiment, differences in the internal configuration of the control block and its operation will be described.
[0073] 図 5は、本発明の実施の形態 3に係る燃料電池システムにおける制御ブロックの構 成を模式的に示すブロック図である。尚、図 5では、本発明を説明するために必要な 構成要素のみを示している。  FIG. 5 is a block diagram schematically showing the configuration of the control block in the fuel cell system according to Embodiment 3 of the present invention. FIG. 5 shows only components necessary for explaining the present invention.
[0074] 又、図 6は、本発明の実施の形態 3に係る燃料電池システムにおける制御ブロック の具体的な構成を模式的に示すブロック図である。尚、図 6でも、本発明を説明する ために必要な構成要素のみを示して 、る。  FIG. 6 is a block diagram schematically showing a specific configuration of the control block in the fuel cell system according to Embodiment 3 of the present invention. FIG. 6 shows only the components necessary for explaining the present invention.
[0075] 図 5に示すように、本発明の実施の形態 3に係る燃料電池システムの制御ブロック 1 03は、図 2に示す制御ブロック 101の構成と比較して、起動許 Z否器 203が強制起 動拒否回路 103iを更に備えている点で、実施の形態 1に係る制御ブロック 101の構 成とは異なっている。具体的には、図 6に示すように、本発明の実施の形態 3に係る 燃料電池システムの制御ブロック 113は、図 3に示す制御ブロック 111の構成と比較 して、起動許 Z否器 213がカウンタ 113iを更に備えている点で、実施の形態 1に係る 制御ブロック 111の構成とは異なっている。更には、図 5に示す制御ブロック 103は、 図 2に示す制御ブロック 101の構成と比較して、起動許 Z否器 203の強制起動拒否 回路 103iが状態判定器 103bから入力される判定信号に基づきゲート回路 103cに 向けて強制信号を出力可能に構成されて 、る点で、実施の形態 1に係る制御ブロッ ク 101の構成とは異なっている。より具体的には、図 6に示すように、この制御ブロック 113は、図 3に示す制御ブロック 111の構成と比較して、起動許 Z否器 213のカウン タ 113iが比較器 113bから入力される判定信号に基づき AND回路 113cに向けて強 制信号を出力可能に構成されて 、る点で、実施の形態 1に係る制御ブロック 111の 構成とは異なっている。尚、その他の点については、制御ブロック 103の構成は、実 施の形態 1に示す制御ブロック 101の構成と同様である。又、制御ブロック 113の構 成は、実施の形態 1に示す制御ブロック 111の構成と同様である。 As shown in FIG. 5, the control block 103 of the fuel cell system according to Embodiment 3 of the present invention is different from the configuration of the control block 101 shown in FIG. The configuration is different from the configuration of the control block 101 according to the first embodiment in that the forced activation rejection circuit 103i is further provided. Specifically, as shown in FIG. 6, the control block 113 of the fuel cell system according to Embodiment 3 of the present invention is compared with the configuration of the control block 111 shown in FIG. Thus, the configuration is different from the configuration of the control block 111 according to the first embodiment in that the activation permit Z rejector 213 further includes a counter 113i. Furthermore, the control block 103 shown in FIG. 5 is compared with the configuration of the control block 101 shown in FIG. 2, and the forced start rejection circuit 103i of the start permission Z rejector 203 is used as a determination signal input from the state determiner 103b. The configuration is different from the configuration of the control block 101 according to the first embodiment in that the compulsory signal can be output to the gate circuit 103c. More specifically, as shown in FIG. 6, in this control block 113, compared with the configuration of the control block 111 shown in FIG. 3, the counter 113i of the activation permit Z rejector 213 is inputted from the comparator 113b. The configuration is different from the configuration of the control block 111 according to the first embodiment in that a forcible signal can be output to the AND circuit 113c based on the determination signal. In other respects, the configuration of the control block 103 is the same as the configuration of the control block 101 shown in the first embodiment. The configuration of the control block 113 is the same as the configuration of the control block 111 shown in the first embodiment.
[0076] 図 5に示す制御ブロック 103では、状態判定器 103bが、原燃料状態検知器 103a から入力される原燃料の供給状態に応じた状態信号に基づき、判定信号を起動許 Z否器 203のゲート回路 103c等に向けて出力する。この際、状態判定器 103bは、 強制起動拒否回路 103iに向けてもその判定信号を出力する。すると、この強制起動 拒否回路 103iは、その強制起動拒否回路 103iに向けて入力される判定信号に基 づき、ゲート回路 103cに向けて強制信号を出力する。一方、ゲート回路 103cは、状 態判定器 103bから入力される判定信号と、強制起動拒否回路 103 ゝら入力される 強制信号と、復帰指令入力器 103eから入力される復帰指令との各々に基づき、制 御装置 303の運転制御器 103dに向けて起動許 Z否信号を出力する。すると、制御 装置 303の運転制御器 103dは、この入力される起動許 Z否信号と運転指令とに基 づいて、燃料電池システムの起動運転を制御する。ここで、表示器 103fは、状態判 定器 103b又はゲート回路 103cにより駆動される。そして、この表示器 103fは、状態 判定器 103bに向けて原燃料状態検知器 103aから入力される状態信号や、ゲート 回路 103cに向けて強制起動拒否回路 103iから入力される強制信号等に応じて表 示を行う。 In the control block 103 shown in FIG. 5, the state determiner 103b generates a determination signal based on the state signal corresponding to the raw fuel supply state input from the raw fuel state detector 103a. Output to the gate circuit 103c, etc. At this time, the state determiner 103b also outputs the determination signal toward the forced activation rejection circuit 103i. Then, the forced activation rejection circuit 103i outputs a forced signal to the gate circuit 103c based on the determination signal input to the forced activation rejection circuit 103i. On the other hand, the gate circuit 103c is based on each of the determination signal input from the state determination unit 103b, the forced signal input from the forced start rejection circuit 103, and the return command input from the return command input unit 103e. The start permission Z rejection signal is output to the operation controller 103d of the control device 303. Then, the operation controller 103d of the control device 303 controls the start-up operation of the fuel cell system based on the input start permission Z rejection signal and the operation command. Here, the display 103f is driven by the state determiner 103b or the gate circuit 103c. The indicator 103f is in response to a state signal input from the raw fuel state detector 103a toward the state determiner 103b, a forced signal input from the forced start rejection circuit 103i toward the gate circuit 103c, and the like. Display.
[0077] 具体的には、図 6に示す制御ブロック 113では、比較器 113bが、圧力センサー 11 3aから入力される天然ガスの供給圧力に応じた圧力信号に基づき、 Hレベル又は L レベルの判定信号を AND回路 113c等に向けて出力する。この際、この比較器 113 bは、カウンタ 113iに向けても Hレベル又は Lレベルの判定信号を出力する。すると、 このカウンタ 113iは、そのカウンタ 113iに向けて比較器 113bから入力される Lレべ ルの判定信号の入力回数をカウントする。そして、カウンタ 113iは、この Lレベルの判 定信号の所定の期間における入力回数が所定の回数以上である場合、 AND回路 1 13cに向けて出力する強制信号の電圧レベルを通常時における Hレベル力 Lレべ ルに切り替える。 Specifically, in the control block 113 shown in FIG. 6, the comparator 113b includes the pressure sensor 11 Based on the pressure signal corresponding to the supply pressure of natural gas input from 3a, an H level or L level determination signal is output to the AND circuit 113c and the like. At this time, the comparator 113b outputs a determination signal of H level or L level to the counter 113i. Then, the counter 113i counts the number of input times of the L level determination signal input from the comparator 113b toward the counter 113i. When the number of inputs of the L level determination signal in a predetermined period is equal to or greater than the predetermined number, the counter 113i sets the voltage level of the forcing signal output to the AND circuit 1 13c to the H level force in the normal state. Switch to L level.
[0078] ここで、本実施の形態において、「所定の期間」及び「所定の回数」は、燃料電池シ ステムにおいて何らかの自己回復が不能な異常が発生していることを確実に検知で きるように、燃料電池システムの構成やその想定される使用環境又は使用条件等に 応じて、予め適切に設定されている。  Here, in the present embodiment, the “predetermined period” and the “predetermined number of times” can reliably detect that an abnormality that cannot be self-recovered is occurring in the fuel cell system. In addition, the fuel cell system is appropriately set in advance according to the configuration of the fuel cell system and its assumed use environment or use conditions.
[0079] 例えば、通常、燃料電池システムは、その発電運転の停止からシステム全体を停止 状態に導くまでに、水素生成装置を冷却する等の処理が必要となるため、約 1時間 程度の時間を要する。つまり、燃料電池システムは、その発電運転を一度停止すると 、次のシステム起動までに、最低 1時間以上の時間を要する。そこで、これを鑑みて、 本実施の形態においては、カウンタ 113iは、所定の期間としての 6時間以内に Lレべ ルの判定信号が所定の回数としての 3回以上入力されると、 AND回路 113cに向け て出力する強制信号の電圧レベルを、通常時における Hレベル力 Lレベルに切り 替える。  [0079] For example, normally, a fuel cell system requires a process such as cooling the hydrogen generator from the stop of its power generation operation until the entire system is brought into a stopped state. Cost. In other words, once a fuel cell system stops its power generation operation, it takes at least one hour before the next system start-up. Therefore, in view of this, in the present embodiment, the counter 113i, when the L level determination signal is input three times or more as the predetermined number of times within 6 hours as the predetermined period, Switch the voltage level of the compulsory signal output to 113c to H level force L level during normal operation.
[0080] 一方、 AND回路 113cは、比較器 113bから入力される Hレベル又は Lレベルの判 定信号と、カウンタ 113 も入力される Hレベル又は Lレベルの強制信号と、復帰指 令入力器 113eの JK— FF113hから入力される Hレベル又は Lレベル復帰指令とに 基づき、制御装置 313の運転制御器 113dに向けて Hレベル又は Lレベルの起動許 Z否信号を出力する。ここで、 AND回路 113cは、比較器 113bから Hレベルの判定 信号が入力され、カウンタ 113iからの強制信号が Lレベル力 Hレベルに切り替えら れ、かつ復帰指令入力器 113eの JK— FF113hから Hレベルの復帰指令が入力さ れると、制御装置 313の運転制御器 113dに向けて Hレベルの起動許 Z否信号を出 力する。しかし、 AND回路 113cは、比較器 113bから Hレベルの判定信号が入力さ れ、復帰指令入力器 113eの JK—FF113hから Hレベルの復帰指令が入力された場 合であっても、カウンタ 113 の強制信号が Hレベルから Lレベルに切り替えられ て 、る場合は、制御装置 313の運転制御器 113dに向けて Lレベルの起動許 Z否信 号を継続して出力する。 On the other hand, the AND circuit 113c has an H level or L level determination signal input from the comparator 113b, an H level or L level forcing signal also input to the counter 113, and a return instruction input unit 113e. Based on the H level or L level return command input from JK-FF113h, an H level or L level start permission Z denial signal is output to the operation controller 113d of the control device 313. Here, the AND circuit 113c receives the H level determination signal from the comparator 113b, the forcing signal from the counter 113i is switched to the L level force H level, and the recovery command input device 113e has JK—FF 113h to H. When a level return command is input, an H level start permission Z rejection signal is output to the operation controller 113d of the controller 313. To help. However, the AND circuit 113c receives the H level determination signal from the comparator 113b, and even if the H level return command is input from JK-FF113h of the return command input device 113e, When the forcible signal is switched from the H level to the L level, the L level start permission Z rejection signal is continuously output to the operation controller 113d of the control device 313.
[0081] 又、ディスプレイ 113fは、比較器 113bにより駆動され、この比較器 113bが Lレべ ルの判定信号を出力する場合、水素生成装置 4への天然ガスの供給圧力が正常な 供給圧力ではない旨を表示する。又、ディスプレイ 113fは、 AND回路 113cにより駆 動され、カウンタ 113iが Lレベルの強制信号を出力する場合、水素生成装置 4への 天然ガスの供給圧力が正常な供給圧力ではない旨の表示を継続する。一方、デイス プレイ 113fは、比較器 113b及びカウンタ 113iの双方が Hレベルの判定信号及び強 制信号を出力する場合、水素生成装置 4への天然ガスの供給圧力が正常な供給圧 力ではな!/ヽ旨を表示しな!ヽ。  [0081] Further, when the display 113f is driven by the comparator 113b and the comparator 113b outputs an L-level determination signal, the supply pressure of the natural gas to the hydrogen generator 4 is normal. Display that there is no. In addition, the display 113f is driven by the AND circuit 113c, and when the counter 113i outputs an L level forcible signal, the display indicating that the supply pressure of the natural gas to the hydrogen generator 4 is not normal is continued. To do. On the other hand, in the display 113f, when both the comparator 113b and the counter 113i output an H level determination signal and a forcing signal, the supply pressure of the natural gas to the hydrogen generator 4 is not a normal supply pressure! / Do not display the effect!
[0082] 又、ディスプレイ 113fは、 AND回路 113cにより駆動され、比較器 113bから AND 回路 113cに向けて Hレベルの判定信号が入力され、力つカウンタ 113 ら AND回 路 113cに向けて Hレベルの強制信号が入力される一方で、復帰指令入力器 113e の JK FF113h力 Lレベルの復帰指令が入力される場合、燃料電池システムの起 動運転が許可されていない旨を表示する。一方、ディスプレイ 113fは、比較器 113b 力 AND回路 113cに向けて Hレベルの判定信号が入力され、かつカウンタ 113 ら AND回路 113cに向けて Hレベルの強制信号が入力され、更に復帰指令入力器 1 13eの JK— FF113h力も Hレベルの復帰指令が入力される場合、燃料電池システム の起動運転が許可されて 、な 、旨を表示しな 、。  [0082] The display 113f is driven by the AND circuit 113c, and an H level determination signal is input from the comparator 113b to the AND circuit 113c. The display 113f has an H level signal from the counter 113 113 to the AND circuit 113c. If the JK FF113h power L level return command is input from the return command input unit 113e while the forcible signal is input, it indicates that the start-up operation of the fuel cell system is not permitted. On the other hand, in the display 113f, an H level determination signal is input to the comparator 113b and the AND circuit 113c, and an H level forcing signal is input from the counter 113 to the AND circuit 113c. 13e JK—If the FF113h force is also input with an H level return command, the start-up operation of the fuel cell system is permitted and no indication is displayed.
[0083] このように、本実施の形態では、原燃料状態検知器 103aにより水素生成装置 4へ の原燃料の供給状態が正常状態ではな 、ことが検知され、その正常状態ではな 、 原燃料の供給状態が所定の期間において強制起動拒否回路 103iにより所定の回 数以上検知される場合、ゲート回路 103cは燃料電池システムの起動運転を許可し ないことを強制的に維持する。この場合、燃料電池システムの使用者等は、その燃料 電池システムの点検及び修繕をサービスマンに要請する。そして、そのサービスマン により点検及び修繕が行われた後、燃料電池システムの起動運転が行われる。つま り、使用者等は、サービスマンによる復旧作業が行われ、その復旧作業が完了するま では、如何なる手段によっても燃料電池システムの起動運転が許可される状態に移 行させることはできない。更には、原燃料状態検知器 103aにより水素生成装置 4へ の原燃料の供給状態が正常状態となったことが検知された場合であっても、使用者 等は、サービスマンによる復旧作業が完了するまでは、燃料電池システムの起動運 転が許可される状態に移行させることはできない。尚、その他の点については、制御 ブロック 103及び制御ブロック 113の動作は、実施の形態 1に示す制御ブロック 101 及び制御ブロック 111の動作と同様である。 As described above, in this embodiment, the raw fuel state detector 103a detects that the supply state of the raw fuel to the hydrogen generator 4 is not in a normal state, and the raw fuel state is not in the normal state. When the supply state is detected by the forced start rejection circuit 103i for a predetermined number of times or more during a predetermined period, the gate circuit 103c forcibly maintains that the start operation of the fuel cell system is not permitted. In this case, users of the fuel cell system request service personnel to check and repair the fuel cell system. And that service man After the inspection and repair are performed by the above, the start-up operation of the fuel cell system is performed. In other words, the user cannot move to a state where the start-up operation of the fuel cell system is permitted by any means until the restoration work is performed by the service person and the restoration work is completed. Furthermore, even if it is detected by the raw fuel state detector 103a that the supply state of the raw fuel to the hydrogen generator 4 has become normal, the user, etc. has completed the restoration work by the service person Until then, it is not possible to shift to a state in which the startup operation of the fuel cell system is permitted. In other respects, the operations of the control block 103 and the control block 113 are the same as the operations of the control block 101 and the control block 111 shown in the first embodiment.
[0084] 力かる構成とすることにより、水素生成装置 4への原燃料の供給状態が頻繁に異常 状態となる場合に、燃料電池システムにおいて何らかの自己回復不能な異常が発生 して 、ると判定して、燃料電池システムの停止状態をその点検及び修繕が完了する まで強制的に継続させることが可能になる。これにより、燃料電池システムの起動運 転をより一層安全に行うことが可能になる。  [0084] With the configuration that works, it is determined that an abnormality that cannot be self-recovered occurs in the fuel cell system when the supply state of the raw fuel to the hydrogen generator 4 frequently becomes abnormal. Thus, it becomes possible to forcibly continue the stopped state of the fuel cell system until its inspection and repair are completed. As a result, the start-up operation of the fuel cell system can be performed more safely.
[0085] 尚、本実施の形態では、原燃料状態検知器 103aにより水素生成装置 4への原燃 料の供給状態が正常状態ではな 、ことが検知され、その正常状態ではな 、原燃料 の供給状態が所定の期間において所定の回数以上検知されるとゲート回路 103cが 燃料電池システムの起動運転を許可しないことを強制的に維持する形態を示したが 、このような形態に限定されることはない。例えば、原燃料状態検知器 103aにより水 素生成装置 4への原燃料の供給状態が正常状態ではな 、ことが検知され、その正常 状態ではない原燃料の供給状態が複数回検知されるとゲート回路 103cが燃料電池 システムの起動運転を許可しな 、ことを強制的に維持する形態としてもよ 、。かかる 構成としても、本実施の形態により得られる効果と同様の効果を得ることが可能であ る。尚、その他の点については、実施の形態 1の場合と同様である。  In the present embodiment, it is detected by the raw fuel state detector 103a that the supply state of the raw fuel to the hydrogen generator 4 is not in a normal state. Although the configuration in which the gate circuit 103c forcibly maintains that the start-up operation of the fuel cell system is not permitted when the supply state is detected a predetermined number of times or more in a predetermined period is shown, it is limited to such a configuration There is no. For example, the raw fuel state detector 103a detects that the raw fuel supply state to the hydrogen generator 4 is not normal, and if the raw fuel supply state that is not normal is detected a plurality of times, the gate is detected. The circuit 103c may be configured to forcibly maintain that the fuel cell system is not allowed to start. Even with this configuration, it is possible to obtain the same effect as that obtained by the present embodiment. Other points are the same as those in the first embodiment.
産業上の利用可能性  Industrial applicability
[0086] 本発明に係る燃料電池システムは、従来力ゝらの構成と同様の構成を備え、初期費 用及び維持費用が安価な、容易にかつ安全に運転を再開させることが可能である燃 料電池システムとして、産業上の利用可能性を備えて 、る。 [0086] The fuel cell system according to the present invention has a configuration similar to that of the conventional power plant, has a low initial cost and a low maintenance cost, and can be restarted easily and safely. As a battery system, it has industrial applicability.

Claims

請求の範囲 The scope of the claims
[1] 燃料と酸化剤とが供給されて発電する燃料電池と、  [1] a fuel cell that is supplied with fuel and an oxidant to generate electricity;
前記燃料電池に供給される前記燃料を原燃料が供給されて生成する水素生成装 置と、  A hydrogen generating device for generating raw fuel supplied to the fuel supplied to the fuel cell;
前記水素生成装置への前記原燃料の供給状態を検知する原燃料状態検知器と、 起動許 Z否器と、を備える燃料電池システムであって、  A fuel cell system comprising: a raw fuel state detector that detects a supply state of the raw fuel to the hydrogen generator; and an activation permit Z rejector,
前記起動許 Z否器は、前記燃料電池システムの起動運転を、前記原燃料状態検 知器により前記水素生成装置への前記原燃料の供給状態が正常状態であると検知 されて 、る場合には許可し、前記原燃料状態検知器により前記水素生成装置への 前記原燃料の供給状態が正常状態ではな 、と検知されて 、る場合には許可しな ヽ 、燃料電池システム。  The start permitting Z rejector is configured to start the fuel cell system when the raw fuel state detector detects that the supply state of the raw fuel to the hydrogen generator is normal. If the raw fuel state detector detects that the supply state of the raw fuel to the hydrogen generator is not in a normal state, the fuel cell system does not permit it.
[2] 前記起動許 Z否器は、前記起動運転を、前記原燃料状態検知器により前記水素 生成装置への前記原燃料の供給状態が正常状態であると検知されると許可し、前記 原燃料状態検知器により前記水素生成装置への前記原燃料の供給状態が正常状 態ではな!/ヽと検知されると許可しな ヽ、請求項 1記載の燃料電池システム。  [2] The start permission Z rejector permits the start-up operation when the raw fuel state detector detects that the supply state of the raw fuel to the hydrogen generator is normal. 2. The fuel cell system according to claim 1, wherein the fuel cell system is not permitted when the fuel state detector detects that the supply state of the raw fuel to the hydrogen generator is not normal! / ヽ.
[3] 復帰指令を入力する復帰指令入力器を更に備え、  [3] A return command input device for inputting a return command is further provided.
前記起動許 Z否器は、前記起動運転を、前記原燃料状態検知器により前記水素 生成装置への前記原燃料の供給状態が正常状態であると検知されている場合に前 記復帰指令入力器から前記復帰指令が入力されると許可し、前記原燃料状態検知 器により前記水素生成装置への前記原燃料の供給状態が正常状態ではないと検知 されている場合に前記復帰指令入力器力 前記復帰指令が入力されても許可しな い、請求項 1記載の燃料電池システム。  The activation permission Z rejector is configured to perform the activation operation when the raw fuel state detector detects that the supply state of the raw fuel to the hydrogen generator is a normal state. Is permitted when the return command is input from the engine, and when the raw fuel state detector detects that the supply state of the raw fuel to the hydrogen generator is not normal, the return command input device 2. The fuel cell system according to claim 1, wherein even if a return command is input, the fuel cell system is not permitted.
[4] 運転制御器を更に備え、  [4] An operation controller is further provided,
前記運転制御器は、前記原燃料状態検知器により前記水素生成装置への前記原 燃料の供給状態が正常状態ではな!、と検知されると、前記燃料電池システムの運転 を強制的に停止させるよう制御する、請求項 1乃至 3記載の燃料電池システム。  The operation controller forcibly stops the operation of the fuel cell system when the raw fuel state detector detects that the supply state of the raw fuel to the hydrogen generator is not normal! 4. The fuel cell system according to claim 1, wherein the fuel cell system is controlled as follows.
[5] 前記原燃料状態検知器により前記水素生成装置への前記原燃料の供給状態が正 常状態であると検知されると異常の旨が表示されず、前記水素生成装置への前記原 燃料の供給状態が正常状態ではないと検知されると異常の旨が表示される表示器を 更に備えている、請求項 1乃至 3記載の燃料電池システム。 [5] When the raw fuel state detector detects that the supply state of the raw fuel to the hydrogen generator is a normal state, an abnormality is not displayed and the raw fuel to the hydrogen generator is not displayed. The fuel cell system according to any one of claims 1 to 3, further comprising an indicator that displays an abnormality when it is detected that the fuel supply state is not normal.
[6] 前記起動許 Z否器により前記起動運転が許可されると異常の旨が表示されず、前 記原燃料状態検知器により前記水素生成装置への前記原燃料の供給状態が正常 状態ではな 、と検知されると異常の旨が表示される表示器を更に備えて 、る、請求 項 1乃至 3記載の燃料電池システム。 [6] When the start-up operation is permitted by the start permit Z rejector, an abnormality is not displayed, and the raw fuel supply state to the hydrogen generator is not normal by the raw fuel state detector. The fuel cell system according to any one of claims 1 to 3, further comprising an indicator that displays an abnormality when detected.
[7] 前記水素生成装置へ前記原燃料を供給するための原燃料供給流路を更に備え、 前記原燃料供給流路における前記原燃料の圧力を検知するための前記原燃料状 態検知器としての圧力検知器を備え、 [7] The raw fuel state detector for detecting the pressure of the raw fuel in the raw fuel supply passage, further comprising a raw fuel supply passage for supplying the raw fuel to the hydrogen generator Equipped with a pressure detector
前記起動許 Z否器は、前記圧力検知器により検知される前記原燃料の圧力が所 定の閾値以上であると前記起動運転を許可し、前記圧力検知器により検知される前 記原燃料の圧力が前記所定の閾値未満であると前記起動運転を許可しな!ヽ、請求 項 1乃至 3記載の燃料電池システム。  The start permit Z rejector permits the start-up operation when the pressure of the raw fuel detected by the pressure detector is equal to or higher than a predetermined threshold, and detects the raw fuel detected by the pressure detector. 4. The fuel cell system according to claim 1, wherein the start-up operation is not permitted if the pressure is less than the predetermined threshold value.
[8] 前記水素生成装置へ前記原燃料を供給するための原燃料供給流路を更に備え、 前記原燃料供給流路における前記原燃料の流量を検知するための前記原燃料状 態検知器としての流量計を備え、 [8] The raw fuel state detector for detecting a flow rate of the raw fuel in the raw fuel supply passage, further comprising a raw fuel supply passage for supplying the raw fuel to the hydrogen generator. Equipped with a flow meter
前記起動許 Z否器は、前記流量計により検知される前記原燃料の流量が所定の 閾値以上であると前記起動運転を許可し、前記流量計により検知される前記原燃料 の流量が前記所定の閾値未満であると前記起動運転を許可しない、請求項 1乃至 3 記載の燃料電池システム。  The activation permit Z rejector permits the activation operation when the flow rate of the raw fuel detected by the flow meter is equal to or greater than a predetermined threshold, and the flow rate of the raw fuel detected by the flow meter is the predetermined flow rate. The fuel cell system according to any one of claims 1 to 3, wherein the start-up operation is not permitted if it is less than a threshold value.
[9] 前記起動許 Z否器は、前記原燃料状態検知器により前記水素生成装置への前記 原燃料の正常状態ではない供給状態が複数回検知されると前記起動運転を許可し な 、ことを強制的に維持する、請求項 1乃至 3記載の燃料電池システム。 [9] The start permission Z rejector does not permit the start operation when the raw fuel state detector detects the supply state of the raw fuel to the hydrogen generator that is not in a normal state a plurality of times. 4. The fuel cell system according to claim 1, wherein the fuel cell system is forcibly maintained.
[10] 前記起動許 Z否器は、前記原燃料状態検知器により前記水素生成装置への前記 原燃料の正常状態ではない供給状態が所定の期間において所定の回数以上検知 されると前記起動運転を許可しな 、ことを強制的に維持する、請求項 9記載の燃料 電池システム。 [10] The activation permit Z rejector is activated when the raw fuel state detector detects that the supply state of the raw fuel to the hydrogen generator is not normal in a predetermined period more than a predetermined number of times. 10. The fuel cell system according to claim 9, wherein the fuel cell system is compulsorily maintained.
PCT/JP2007/057393 2006-03-31 2007-04-02 Fuel battery system WO2007114425A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-100408 2006-03-31
JP2006100408 2006-03-31

Publications (1)

Publication Number Publication Date
WO2007114425A1 true WO2007114425A1 (en) 2007-10-11

Family

ID=38563689

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/057393 WO2007114425A1 (en) 2006-03-31 2007-04-02 Fuel battery system

Country Status (1)

Country Link
WO (1) WO2007114425A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009193936A (en) * 2008-02-18 2009-08-27 Toshiba Fuel Cell Power Systems Corp Fuel cell power generation system
JP2011023315A (en) * 2009-07-21 2011-02-03 Panasonic Corp Fuel cell system
JP2021068607A (en) * 2019-10-24 2021-04-30 大阪瓦斯株式会社 Gas consumption system
CN114430053A (en) * 2022-01-05 2022-05-03 一汽解放汽车有限公司 Fuel cell cold start control method, device, computer equipment and storage medium

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56160520A (en) * 1980-05-12 1981-12-10 Nippon Gas Giken Kk Gas accident preventing device
JP2001336741A (en) * 2000-05-29 2001-12-07 Matsushita Electric Ind Co Ltd Gas-blast circuit-breaking device
WO2003079478A1 (en) * 2002-03-19 2003-09-25 Matsushita Electric Industrial Co., Ltd. Fuel cell power generation system
JP2004079454A (en) * 2002-08-22 2004-03-11 Matsushita Electric Ind Co Ltd Display device of fuel cell system
JP2004103397A (en) * 2002-09-10 2004-04-02 Matsushita Electric Ind Co Ltd Control device of fuel cell system
JP2005251603A (en) * 2004-03-05 2005-09-15 Honda Motor Co Ltd Method for abnormal stop of fuel gas manufacturing device
JP2006079981A (en) * 2004-09-10 2006-03-23 Toyota Motor Corp Fuel cell system performing malfunction detection processing

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56160520A (en) * 1980-05-12 1981-12-10 Nippon Gas Giken Kk Gas accident preventing device
JP2001336741A (en) * 2000-05-29 2001-12-07 Matsushita Electric Ind Co Ltd Gas-blast circuit-breaking device
WO2003079478A1 (en) * 2002-03-19 2003-09-25 Matsushita Electric Industrial Co., Ltd. Fuel cell power generation system
JP2004079454A (en) * 2002-08-22 2004-03-11 Matsushita Electric Ind Co Ltd Display device of fuel cell system
JP2004103397A (en) * 2002-09-10 2004-04-02 Matsushita Electric Ind Co Ltd Control device of fuel cell system
JP2005251603A (en) * 2004-03-05 2005-09-15 Honda Motor Co Ltd Method for abnormal stop of fuel gas manufacturing device
JP2006079981A (en) * 2004-09-10 2006-03-23 Toyota Motor Corp Fuel cell system performing malfunction detection processing

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009193936A (en) * 2008-02-18 2009-08-27 Toshiba Fuel Cell Power Systems Corp Fuel cell power generation system
JP2011023315A (en) * 2009-07-21 2011-02-03 Panasonic Corp Fuel cell system
JP2021068607A (en) * 2019-10-24 2021-04-30 大阪瓦斯株式会社 Gas consumption system
JP7278192B2 (en) 2019-10-24 2023-05-19 大阪瓦斯株式会社 gas consumption system
CN114430053A (en) * 2022-01-05 2022-05-03 一汽解放汽车有限公司 Fuel cell cold start control method, device, computer equipment and storage medium
CN114430053B (en) * 2022-01-05 2024-02-23 一汽解放汽车有限公司 Fuel cell cold start control method, device, computer equipment and storage medium

Similar Documents

Publication Publication Date Title
JP5349048B2 (en) Hydrogen generator, operation method of hydrogen generator, and fuel cell system
US7839020B2 (en) Electric power supply system
WO2009093456A1 (en) Fuel cell system
WO2010084776A1 (en) Fuel cell system and method of operating same
KR101245766B1 (en) System and method for operating fuel cell of emergency state
JP5180413B2 (en) Fuel cell system and operation method thereof
WO2007114425A1 (en) Fuel battery system
JP5112107B2 (en) Fuel cell power generation system
JP5323981B2 (en) Fuel cell system and operation method thereof
KR101095275B1 (en) Apparatus and method for controlling fuel cell system
JP2010067553A (en) Fuel cell system, and program thereof
JP4353296B2 (en) FUEL CELL SYSTEM AND FUEL CELL START-UP METHOD
JP5169409B2 (en) Fuel cell system and program
JP2009252676A (en) Fuel cell system, and program
JP5795289B2 (en) Fuel supply method and system for fuel cell
JP2008262740A (en) Fuel cell power generation system
KR101424191B1 (en) Control unit and control method for fuel cell system
JP2010238535A (en) Fuel cell system and its operation method
JP2010033767A (en) Fuel cell power generation system and failure cause estimating method for same
JP2008011639A (en) Dc/dc converter control method, electric vehicle system, and hybrid vehicle system
JP5176765B2 (en) Fuel cell power generator
JP2009277585A (en) Fuel cell power generating system
KR101684294B1 (en) Method of Safely Ending Control the Fuel Cell System After Abnormal Shut Down and Successive Reset
WO2023277078A1 (en) Fuel cell system, fuel cell module and auxiliary unit
JP2017216786A (en) Power management device, control method thereof, and power system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07740829

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07740829

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)