WO2007114307A1 - Mucin-type glycopeptide having polylactosamine backbone - Google Patents

Mucin-type glycopeptide having polylactosamine backbone Download PDF

Info

Publication number
WO2007114307A1
WO2007114307A1 PCT/JP2007/057001 JP2007057001W WO2007114307A1 WO 2007114307 A1 WO2007114307 A1 WO 2007114307A1 JP 2007057001 W JP2007057001 W JP 2007057001W WO 2007114307 A1 WO2007114307 A1 WO 2007114307A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
bond
sugar
residue
compound
Prior art date
Application number
PCT/JP2007/057001
Other languages
French (fr)
Japanese (ja)
Inventor
Shinichiro Nishimura
Masataka Fumoto
Original Assignee
National Institute Of Advanced Industrial Science And Technology
Shionogi & Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute Of Advanced Industrial Science And Technology, Shionogi & Co., Ltd. filed Critical National Institute Of Advanced Industrial Science And Technology
Publication of WO2007114307A1 publication Critical patent/WO2007114307A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/4727Mucins, e.g. human intestinal mucin
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K9/00Peptides having up to 20 amino acids, containing saccharide radicals and having a fully defined sequence; Derivatives thereof
    • C07K9/001Peptides having up to 20 amino acids, containing saccharide radicals and having a fully defined sequence; Derivatives thereof the peptide sequence having less than 12 amino acids and not being part of a ring structure
    • C07K9/005Peptides having up to 20 amino acids, containing saccharide radicals and having a fully defined sequence; Derivatives thereof the peptide sequence having less than 12 amino acids and not being part of a ring structure containing within the molecule the substructure with m, n > 0 and m+n > 0, A, B, D, E being heteroatoms; X being a bond or a chain, e.g. muramylpeptides

Definitions

  • the present invention relates to a novel compound useful as a primer for producing a glycopeptide, and a method for producing a glycopeptide using the primer.
  • the present invention also relates to glycopeptides obtained by the production method.
  • a sugar chain is a major component of a living body along with nucleic acids and proteins, and is a well-known power source for living bodies.
  • in vivo information transmission, protein quality control, and structural stabilization It has become clear that it has various higher-order functions such as labels for protein transport.
  • sugar chains compared to nucleic acids and proteins, sugar chains have not been established as a general preparation method, and the functions of sugar chains often function as complex carbohydrates bound to lipids and proteins. For this reason, there are a lot of unexplained studies on functions including structural information.
  • the ability to look at many things that seem to perform their functions together with sugar chains is very difficult to study in detail.
  • the main reason for this is that the preparation of the sugar amino acid as a raw material is complicated and it is difficult to prepare sugar amino acids having various sugar chain structures, and sugar amino acids having a large sugar chain structure have large steric hindrance.
  • the yield and reaction rate are slow, and it is also important to extend the sugar chain by chemical synthesis after glycopeptide construction. Position ⁇
  • the power of 3D control is difficult. In other words, with the current technology, the reaction yield is low and the time required for preparation is long.
  • it is difficult to prepare the synthetic raw material itself for glycopeptide synthesis it is custom-made to rapidly prepare the necessary sugar chain structure. It is extremely difficult to construct a glycopeptide library containing a complex sugar chain structure that is required for production and comprehensive functional analysis of glycopeptides and glycoproteins.
  • glycopeptides are synthesized by Fmoc amino acid (amino acid with amino group protected with 9 fluorenylmethyloxycarboxyl group, hereinafter 9 fluorenylmethyloxycarboxyl group is abbreviated as Fmoc).
  • Fmoc glycosylamino acid the basic peptide part is synthesized on a solid phase carrier by an automatic peptide synthesizer, the peptide part is released from the solid phase carrier, and once purified, it is purified organically or enzymatically.
  • a method of extending sugar chains one by one using a simple synthesis method is used. For this reason, a complicated operation and a long time are required for sugar chain elongation.
  • C. — H. Wong et al. Used a glycopeptide linked to amino-silica as a primer, extended the sugar chain using glycosyltransferase, and then hydrolyzed oc-chymotrypsin.
  • the peptide chain of the resulting glycopeptide is as short as Asn (asparagine) Gly (glycine) Phe (furalanine).
  • the yield of the sugar chain elongation reaction by glycosyltransferase is 55 to 65%, which is very sufficient. Not a thing.
  • the glycopeptide chain obtained by this method has 8 amino acid residues and has a sufficient length as a peptide chain, but the obtained glycopeptide was first introduced into a solid support.
  • the yield based on amino acids is less than 10%, which is not sufficient.
  • impurities such as unreacted substances accumulate through peptide synthesis and sugar chain synthesis, so that isolation and purification of the target product becomes difficult if the peptide chain and sugar chain structure are complex.
  • automatic peptide synthesis is usually carried out in an organic solvent, and glycosylation by glycosyltransferase is usually carried out in an aqueous solution, and the properties of the carrier required for each reaction are different. Even automatic synthesis is difficult.
  • the peptide chain of the glycopeptide obtained by this method is Asn (asparagine) -Gly (glycine), which is too short to be called a glycopeptide.
  • the C-terminal glycine residue is a glycinamide residue, and in some cases, it is necessary to convert the glycinamide residue to a glycine residue.
  • a glycosyltransferase sugar receptor is bound to a solid phase carrier, this is used as an affinity adsorbent, and a tissue extract containing a glycosyltransferase that can bind to this sugar receptor is contacted.
  • the glycosyltransferase is bound to the affinity adsorbent.
  • the affinity adsorbent to which the glycosyltransferase is bound is brought into contact with a solution containing a sugar nucleotide that can be used as a sugar donor by the glycosyltransferase, thereby releasing the glycosyltransferase and the sugar adsorbent.
  • a tissue extract containing a glycosyltransferase capable of binding to a sugar receptor in which one sugar residue is extended is brought into contact, and the same process is repeated to synthesize a desired sugar chain on a solid support. It is.
  • there is no specific data showing the usefulness of this method or its application to the synthesis of non-natural glycopeptides and a method for releasing the resulting sugar chain on the solid phase carrier is also disclosed. It has not been.
  • a useful polymerizable aromatic amino acid derivative is disclosed (see Patent Document 2).
  • this method involves complicated operations such as column purification and polymerization after peptide synthesis, since the peptide having a sugar residue is radically polymerized, and thus is weak in radicals and difficult to prepare glycopeptides containing sulfur atoms. The problem is that it takes time to switch to a sugar chain elongation reaction by an enzyme. The title is left.
  • Mucin is the main glycoprotein of mucus that covers the lumen of the gastrointestinal tract such as the trachea, gastrointestinal tract, and gonads.
  • MUC1 is a membrane-bound glycoprotein of epithelial cells and the first mucin that has been studied in detail.
  • MUC1 is a tandem repeat (HGVTSAPDTRPAPGSTA PPA (SEQ ID NO: 41)), a repetitive amino acid sequence containing serine and threonine that can be attached to an O-linked sugar chain. is there. Since sugar chain attachments do not occur in all serines and threonines, the degree of sugar chain extension varies, so there are many glycoproteins with the same amino acid sequence but different functions. Yes.
  • Non-patent Document 9 Nakamori, S .; Ota, DM; Karen, R .; Shirotani, K .; Irimura , T. Gastroenterology, 1994, 106, 353—361.
  • MU C1 degree of glycosylation of MU C1 (where sugar chains are introduced) and the structure of sugar chains differ between those derived from normal epithelium and those derived from cancer cells
  • Non-patent Document 10 Lloyd, K.
  • Tn which is a cancer-related sugar chain antigen
  • a mother nucleus structure such as ⁇ ⁇ , and sialyl ⁇ , sialyl ⁇ ⁇ , and sialyl Lewis ⁇ antigen and sialyl Lewis X antigen combined with sialic acid
  • Non-patent Document 12 Koganty, RR; Reddish, MR; Longenecker , BM Drug Discov. Today, 1996, 1, 190-198 .;
  • Biomira-Merck is developing a synthetic MUC 1 peptide vaccine that incorporates a 25-amino acid sequence of MUC1 cancer mucin in a liposomal formulation: “L BLP25”. Phasell targets lung cancer and prostate cancer. A clinical trial is ongoing.
  • Bio mira Merck has developed KLH (Keyhole limp et hemocyanin) that stimulates antibody production and T-cell responses to STn (disaccharide) specifically expressed in mucin on cancer cells.
  • KLH Keyhole limp et hemocyanin
  • STn disaccharide
  • Nishimura et al. Developed a water-soluble polymer primer for synthesizing glycopeptides (Patent Document 3).
  • Patent Document 3 a glycopeptide derivative having an aldehyde group or a ketone group at the end and containing a photocleavable linker for peptide solid phase synthesis is converted into a polymer primer, which is used for sugar conversion. The production of peptides is described.
  • Nishimura et al. Also developed a method for synthesizing mucin-type peptides and a glycopeptide related to MUC1 (Patent Document 4).
  • Patent Document 4 describes that a glycopeptide derivative having an aldehyde group or a ketone group at the end and containing an amino acid residue that can be cleaved by a protease is converted into a primer, and a glycopeptide is produced using this.
  • Patent Document 1 Japanese Patent Publication No. 5-500905
  • Patent Document 2 JP 2001-220399 A
  • Patent Document 3 International Publication No. 2005Z108417 Pamphlet
  • Patent Document 4 Pamphlet of International Publication No. 2006Z030840
  • Non-patent literature l Carbohvdr. Res., 124, 23 (1983)
  • Non-Patent Document 2 Carbohydr. Res., 228, 255 (1992)
  • Non-Patent Document 3 React. Polym., 22, 171 (1994)
  • Non-Patent Document 4 Carbohydr. Res., 265, 161 (1994)
  • Non-Patent Document 5 J. Am. Chem. Soc., 116, 1136 (1994)
  • Non-Patent Document 6 J. Am. Chem. Soc., 116, 11315 (1994)
  • Non-Patent Document 7 J. Am. Chem. Soc., 119, 8766 (1997)
  • Non-Patent Document 8 J. Chem. Soc. Chem. Commun., 1849 (1994)
  • Non-Patent Document 9 Gastroenterology, 106, 353-361 (1994)
  • Non-Patent Document 10 Biol. Chem., 271, 33325-33334 (1996)
  • Non-Patent Document ll Glycobiology, 10, 439-449 (2000)
  • Non-Patent Document 12 Drug Discov. Today, 1, 190-198 (1996)
  • An object of the present invention is to provide a novel compound useful as a primer for producing a mucin-type glycopeptide having a borilactosamine skeleton, and a mucin-type glycopeptide having a polyratatosamine skeleton using the primer.
  • the purpose of the present invention is to provide a production method, and to produce mucin-type glycopeptides having a borilactosamine skeleton, which has been difficult to produce so far, which is useful in a wide range of fields such as biochemical research materials, medicines and foods.
  • Another subject of the present invention is a method for producing a glycopeptide having a voralactosamine skeleton by synthesizing a glycopeptide having a desired peptide sequence using a previously synthesized saccharide amino acid having a vorolactosamine skeleton. It is to provide.
  • a novel glycopeptide derivative having an aldehyde group or a ketone group at the end and containing an amino acid residue that can be cleaved by a protease has an aldehyde group or a ketone group.
  • this bond does not degrade under the hydrolysis conditions with proteases, and therefore functions as a primer suitable for the production of mucin-type glycopeptides having a polylactosamine skeleton, And the use of this primer,
  • the present inventors have found that a mucin-type glycopeptide having a ratatosamine skeleton can be easily purified, and that a mucin-type glycopeptide having a borilactosamine skeleton can be produced quickly and in a high yield.
  • the present inventors also protected a sugar amino acid having a pre-synthesized voralactosamine skeleton with a protecting group, and synthesized a sugar peptide having a desired peptide sequence using the protected amino acid.
  • the present inventors have found that a glycopeptide having a borilactosamine skeleton can be produced.
  • the method is independent of proteases or photocleavage. Therefore, this method makes it possible to synthesize glycopeptides containing amino acid residues having properties that are easily cleaved by protease or photocleavage.
  • the present invention also provides a mucin-type glycopeptide that has been useful in a wide range of fields such as biochemical research materials, pharmaceuticals, and foods by the method for producing a glycopeptide using the above-described primer and has been difficult to produce so far.
  • the present invention has been completed.
  • the MUC1 and MUC1 peptide library of the present invention are effective for elucidating the function of MUC1, and the possibility of new drug discovery based on the knowledge obtained therefrom is considered.
  • Studies using glycopeptides include, for example, immobilization of glycopeptide libraries 'chipies', antibody reaction screening, search for specific antibodies, structure-activity relationship investigations in antigen-antibody reactions, specificity's of highly selective monoclonal antibodies Development of antibody drugs and vaccine therapy using glycopeptides is also possible.
  • the present invention provides the following.
  • X is a hydrogen atom, c-c alkyl, c-
  • 6 c represents a reel or chromophore
  • n an integer of 0 to 20;
  • polyacrylamide polymerization degree 1 to: oligo or polypeptide of LO, oxygen atom or NH;
  • A represents an amino acid residue cleavable by a protease
  • A is a sugar amino acid residue substantially free of a site cleavable by a protease, or
  • glycopeptide residue containing any sugar amino acid without a site cleavable by a protease
  • sugar amino acid residue or the glycopeptide residue is represented by the following formula:
  • R 1 and R 6 are each independently hydrogen, N-acetylethylneuraminic acid (Neu5 Ac) group or N-acetylethyldarcosamine (GlcNAc) group;
  • R 2 and R 7 are galactose (Gal) groups
  • R 3 and R 8 are GlcNAc groups
  • R 4 and R 9 are Gal groups
  • R 5 is a GlcNAc group
  • R 10 is an N-acetyl-a-D-galactosamine (GalNAc) group
  • Z 2 and Z 3 are each independently hydrogen or a fucose group
  • n and m are each independently an integer of 0 or more;
  • the bond between R 1 and R 2 is a 2, 3 bond when R 1 is Neu5Ac group, and j81, 3 bond when R 1 is GlcNAc group;
  • R 2 and R 3 are a ⁇ ⁇ , 4 bond
  • R 3 and R 4 are a ⁇ ⁇ , 3 bond
  • R 4 and R 5 are a ⁇ ⁇ , 4 bond
  • R 6 and R 7 are an ⁇ 2,3 bond when R 6 is a Neu5Ac group, and a ⁇ , 3 bond when R 6 is a GlcNA c group;
  • R 7 and R 8 are a ⁇ ⁇ , 4 bond
  • R 8 and R 9 are a ⁇ ⁇ , 3 bond
  • R 9 and R 1G are a ⁇ ⁇ , 3 bond
  • R 5 and R 1G are a ⁇ ⁇ , 6 bond;
  • the bond between Z 1 and R 3 is ⁇ 1, 3 bond;
  • the bond between ⁇ 2 and R 5 is ⁇ 1, 3 bond
  • the bond between ⁇ 3 and R 8 is ⁇ 1, 3 bond
  • the cocoon is a protea derived from Bacillus Licheniformis
  • a compound according to item 1 having an amino acid sequence selected from the group consisting of the amino acid sequences shown.
  • the carrier is:
  • Protected ! which may be a polymer or copolymer of a butyl monomer having an aminooxy group or a hydrazide group, or a polymer having a protected amino acid group or hydrazide group Ethers;
  • Protected ! which may be a silica support having a aminooxy group or a hydrazide group, a resin support, a magnetic bead or a metal support; and
  • R 3 represents a hydroxyl group or an amino group
  • Lys represents a lysine residue
  • Cys represents cysteine
  • n is an integer from 1 to 15 and x: y is 1: 0 to 1: 1000,
  • a N C (— X) — (CH) A -A -A (II)
  • 6 c represents aryl or chromophore
  • n an integer of 0 to 20;
  • polyacrylamide polymerization degree 1 to: oligo or polypeptide of LO, oxygen atom or NH;
  • A is a protease derived from Bacillus Licheniformis.
  • A is a sugar amino acid residue substantially free of a site cleavable by a protease, or
  • glycopeptide residue containing any sugar amino acid without a site cleavable by a protease
  • sugar amino acid residue or the glycopeptide residue is represented by the following formula:
  • R and R are each independently hydrogen, Neu5Ac group or GlcNAc group;
  • R 2 and R 7 are Gal groups
  • R 3 and R 8 are GlcNAc groups
  • R 4 and R 9 are Gal groups
  • R 5 is a GlcNAc group
  • R 10 is a GalNAc group
  • Z 2 and Z 3 are each independently hydrogen or a Fuc group; and n and m are each independently an integer of 0 or more;
  • the bond between R 1 and R 2 is a 2, 3 bond when R 1 is Neu5Ac group, and j81, 3 bond when R 1 is GlcNAc group;
  • R 2 and R 3 are a ⁇ ⁇ , 4 bond
  • R 3 and R 4 are a ⁇ ⁇ , 3 bond
  • R 4 and R 5 are a ⁇ ⁇ , 4 bond
  • R 6 and R 7 are an ⁇ 2,3 bond when R 6 is a Neu5Ac group, and a ⁇ , 3 bond when R 6 is a GlcNA c group;
  • R 7 and R 8 are a ⁇ ⁇ , 4 bond
  • R 8 and R 9 are a ⁇ ⁇ , 3 bond
  • R 9 and R 1G are a ⁇ ⁇ , 3 bond
  • R 5 and R 1G are a ⁇ ⁇ , 6 bond
  • the bond between ⁇ 1 and R 3 is ⁇ 1 , 3 bond;
  • the bond between ⁇ 2 and R 5 is ⁇ 1, 3 bond
  • the bond between ⁇ 3 and R 8 is ⁇ 1, 3 bond
  • A Having a sugar residue represented by: A is the following formula:
  • s is an integer of 1 to 15, and x: y is a group represented by 1: 0 to 1: 1000).
  • (D) A method for producing a glycopeptide, comprising a step of allowing a protease to act on a compound in which a sugar residue is transferred and a sugar chain is extended.
  • (C) A method for producing a glycopeptide, comprising a step of allowing a protease to act on a compound having a sugar residue transferred and a sugar chain extended.
  • Step (B) Step (A) is repeated once or twice or more to extend the sugar chain
  • step (B) The compound obtained in step (A) and an optionally protected aminooxy group, N-alkylaminooxy group, hydrazide capable of reacting specifically with the ketone residue or aldehyde residue of the compound Reacting with a carrier comprising a functional group selected from the group consisting of a group, an azide group, a thiosemicarbazide group, a 1,2-dithiol group and a cysteine residue;
  • Step (B) By reacting the compound obtained in step (B) with a glycosyltransferase in the presence of a sugar nucleotide, a sugar residue is transferred from the sugar nucleotide to the compound, and the sugar chain is elongated.
  • (E) A method for producing a glycopeptide, comprising a step of allowing a protease to act on a compound in which a sugar residue is transferred and a sugar chain is elongated.
  • step (B) The compound obtained in step (A) and an optionally protected aminooxy group, N-alkylaminooxy group, hydrazide group capable of reacting specifically with the ketone residue or aldehyde residue of the compound And a carrier containing a functional group selected from the group consisting of an azide group, a thiosemicarbazide group, a 1,2-dithiol group and a cysteine residue, and at the same time, the step (A) Removing unreacted material in the step;
  • step (C) A sugar transfer enzyme is allowed to act on the compound bound to the carrier obtained in step (B) in the presence of a sugar nucleotide to transfer a sugar residue from the sugar nucleotide to the compound, A step of obtaining a compound in which a sugar chain is extended, the sugar nucleotide having a sugar residue selected from the group consisting of a Gal group, a GlcNAc group, a Fuc group and a Neu5Ac group;
  • Step (D) Step (C) is repeated once or twice or more to extend the sugar chain
  • (F) A method for producing a glycopeptide, comprising the step of causing a protease to act on a compound in which a plurality of sugar residues are transferred and the sugar chain is elongated.
  • X is a hydrogen atom, c1-c alkyl
  • 30 c represents 6 to c aryl or chromophore
  • n an integer of 0 to 20;
  • A represents a linker having a length of 1 to 20 methylene chains
  • Step (B) is repeated one or more times as necessary to extend the sugar chain;
  • a compound in which the sugar residue is transferred and the sugar chain is extended, and the ketone residue of the compound Protected which can react specifically with a group or aldehyde residue, may be an aminooxy group, N-alkylaminooxy group, hydrazide group, azide group, thiosemicarbazide group, 1,2-dithiol group and cysteine. Reacting with a carrier containing a functional group selected from the group consisting of residues ;and
  • a process for producing a glycopeptide comprising
  • Step (B) Step (A) is repeated one or more times as necessary to extend the sugar chain as necessary;
  • (C) a compound in which a sugar residue is transferred and a sugar chain is extended, and a protected compound capable of reacting specifically with a ketone residue or an aldehyde residue of the compound, and may be an aminooxy group, N-alkyl Reacting a carrier containing a functional group selected from the group consisting of an aminooxy group, a hydrazide group, an azide group, a thiosemicarbazide group, a 1,2-dithiol group and a cysteine residue;
  • (E) A method for producing a glycopeptide, comprising a step of allowing a protease to act on a compound in which a sugar residue is transferred and a sugar chain is elongated.
  • Said glycopeptide has the following formula:
  • each X 1 independently represents a hydrogen atom or the following formula:
  • R 1 and R 6 are each independently hydrogen, Neu5Ac group or GlcNAc group;
  • R 2 and R 7 are Gal groups
  • R 3 and R 8 are GlcNAc groups
  • R 4 and R 9 are Gal groups
  • R 5 is a GlcNAc group
  • R 10 is a GalNAc group
  • Z 2 and Z 3 are each independently hydrogen or a Fuc group; and n and m are each independently an integer of 0 or more;
  • the bond between R 1 and R 2 is a 2, 3 bond when R 1 is Neu5Ac group, and j81, 3 bond when R 1 is GlcNAc group;
  • R 2 and R 3 are a ⁇ ⁇ , 4 bond
  • R 3 and R 4 are a ⁇ ⁇ , 3 bond
  • R 4 and R 5 are a ⁇ ⁇ , 4 bond
  • R 6 and R 7 are an ⁇ 2,3 bond when R 6 is a Neu5Ac group, and a ⁇ , 3 bond when R 6 is a GlcNA c group;
  • R 7 and R 8 are a ⁇ ⁇ , 4 bond
  • R 8 and R 9 are a ⁇ ⁇ , 3 bond;
  • the bond between R 9 and R 1G is a ⁇ ,, 3 bond;
  • R 5 and R 1G are a ⁇ ,, 6 bond
  • the bond between ⁇ 1 and R 3 is ⁇ 1 , 3 bond;
  • the bond between ⁇ 2 and R 5 is ⁇ 1, 3 bond
  • the bond between ⁇ 3 and R 8 is ⁇ 1, 3 bond
  • ⁇ 1 represents a hydrogen atom, acetyl, acyl, alkyl or aryl
  • ⁇ 2 represents a hydroxyl group, ⁇ , alkyl or aryl.
  • each X 1 independently represents a hydrogen atom or the following formula:
  • R 1 and R 6 are each independently hydrogen, Neu5 Ac group or GlcNAc group. Yes;
  • R 2 and R 7 are Gal groups
  • R 3 and R 8 are GlcNAc groups
  • R 4 and R 9 are Gal groups
  • R 5 is a GlcNAc group
  • R 10 is a GalNAc group
  • Z 2 and Z 3 are each independently hydrogen or a Fuc group; and n and m are each independently an integer of 0 or more;
  • the bond between R 1 and R 2 is a 2, 3 bond when R 1 is Neu5Ac group, and j81, 3 bond when R 1 is GlcNAc group;
  • R 2 and R 3 are a ⁇ ⁇ , 4 bond
  • R 3 and R 4 are a ⁇ ⁇ , 3 bond
  • R 4 and R 5 are a ⁇ ⁇ , 4 bond
  • R 6 and R 7 are an ⁇ 2,3 bond when R 6 is a Neu5Ac group, and a ⁇ , 3 bond when R 6 is a GlcNA c group;
  • R 7 and R 8 are a ⁇ ⁇ , 4 bond
  • R 8 and R 9 are a ⁇ ⁇ , 3 bond
  • R 9 and R 10 are a ⁇ ⁇ , 3 bond
  • R 5 and R 1G are a ⁇ ⁇ , 6 bond
  • the bond between ⁇ 1 and R 3 is ⁇ 1 , 3 bond;
  • the bond between ⁇ 2 and R 5 is ⁇ 1, 3 bond
  • the bond between ⁇ 3 and R 8 is ⁇ 1, 3 bond
  • ⁇ 1 represents a hydrogen atom, acetyl, acyl, alkyl or aryl
  • ⁇ 2 represents a hydroxyl group, ⁇ , alkyl or aryl.
  • a method for producing a desired glycopeptide comprising the following steps:
  • R 1 and R 6 are each independently hydrogen, Neu5Ac group or GlcNAc group;
  • R 2 and R 7 are Gal groups
  • R 3 and R 8 are GlcNAc groups
  • R 4 and R 9 are Gal groups
  • R 5 is a GlcNAc group
  • R 10 is a GalNAc group
  • R 11 is a hydrogen atom or a methyl group
  • Z 2 and Z 3 are each independently hydrogen or a Fuc group; and n and m are each independently an integer of 0 or more;
  • the bond between R 1 and R 2 is a 2, 3 bond when R 1 is Neu5Ac group, and j8 1, 3 bond when R 1 is GlcNAc group;
  • R 2 and R 3 are a ⁇ ,, 4 bond
  • R 3 and R 4 are a ⁇ ,, 3 bond
  • R 4 and R 5 are a ⁇ ,, 4 bond
  • R 6 and R 7 are an ⁇ 2,3 bond when R 6 is a Neu5Ac group, and a,, 3 bond when R 6 is a GlcNA c group;
  • the bond between R 7 and R 8 is a ⁇ ,, 4 bond;
  • Bond between R 8 and R 9, ⁇ ⁇ , is 3 bonds;
  • R 9 and R 1G are a ⁇ ,, 3 bond
  • R 5 and R 1G are a ⁇ ,, 6 bond
  • the bond between ⁇ 1 and R 3 is ⁇ 1 , 3 bond;
  • the bond between ⁇ 2 and R 5 is ⁇ 1, 3 bond
  • the bond between ⁇ 3 and R 8 is ⁇ 1, 3 bond
  • is a 9-fluormethylcarboxyl group or a tert-butoxycarbol group
  • a sugar amino acid having a sugar chain protected by protecting the sugar chain of the sugar amino acid represented by the following: a acetyl group, a benzoyl group, a methyl group, a methoxymethyl group, A step selected from the group consisting of trimethylsilyl group, t-butyldimethylsilyl group, dimethylphenol group and triisopropylpropyl group, benzyl group, benzylidene group, isopropylidene group, di-tert-butylsilylidene group power;
  • step (B) Using the sugar amino acid in which the sugar chain obtained in step (A) is protected and an amino acid N-protected with a 9-fluorenylmethyloxyl group or a tert-butoxycarbol group, the desired peptide sequence is prepared. Synthesizing a glycopeptide having a protected sugar chain;
  • step (C) a step of deprotecting the glycopeptide protected in sugar chain obtained in step (B) to produce the desired glycopeptide
  • a sugar chain amino acid containing about 1 to 3 sugars which is relatively easy to prepare, is used for synthesizing a mucin-type glycopeptide having a borilactosamine skeleton, and the sugar chain is elongated after the peptide synthesis. It is possible to synthesize a glycopeptide having a chain and to prepare a library of each sugar chain structure that is an intermediate of a sugar chain elongation reaction. Furthermore, since the sugar chain elongation reaction is carried out by carrying a glycopeptide on a water-soluble polymer, the acceleration effect of the reaction and the simplification of the molecular operation become possible, and the sugar chain elongation reaction can be automated.
  • the present invention makes it possible to synthesize mucin-type glycopeptides that are useful in a wide range of fields such as biochemical research materials, pharmaceuticals, and foods, and that have been difficult to produce.
  • the present invention also protects a sugar amino acid having a pre-synthesized voralactosamine skeleton with a protecting group, and synthesizes a glycopeptide having a desired peptide sequence using the protected amino acid, thereby It enables the production of glycopeptides having The method is independent of proteases or photocleavage. As a result, it is possible to synthesize a glycopeptide containing an amino acid residue having the property of being easily cleaved by protease or photocleavage.
  • glycopeptide library can be used as a standard sample for structural analysis and biochemical tests.
  • this glycopeptide library can be placed on a chip for comprehensive detection of glycopeptide recognition proteins, pathological diagnosis, cell adhesion sequence search, sequence analysis related to cell growth and apoptosis, etc. become.
  • FIG. 1 shows the procedure up to the production of the glycopeptide of the present invention.
  • the indicated numbers indicate the compound numbers in the examples.
  • SEQ ID NO: 1 to 20 Partial amino acid sequence of mucin type glycoprotein MUC1 10 residues
  • SEQ ID NO: 21 to 40 Partial amino acid sequence of mucin type glycoprotein MUC1
  • SEQ ID NO: 41 to 60 Mucin type glycoprotein MUC 1
  • a partial amino acid sequence of 20 residues of SEQ ID NOs: 61 to 66 Examples of amino acid sequences contained in a carrier contained in a compound BEST MODE FOR CARRYING OUT THE INVENTION
  • sucgar amino acid means a combination of a sugar residue and an amino acid residue, and is used interchangeably with “sugar amino acid residue”.
  • sugar amino acid residue substantially not including a site cleavable by a protease means that a compound represented by the above item (4) is treated with a protease. Even so, it refers to a sugar amino acid residue in which the sugar amino acid moiety is not cleaved by more than 50% by protease, preferably a sucrose amino acid residue not cleaved by more than 20%.
  • glycopeptide residue means a peptide residue containing at least one sugar amino acid, and is used interchangeably with “glycopeptide”.
  • the sugar residue constituting the sugar amino acid contained in the glycopeptide residue is not particularly limited, but monosaccharide to monosaccharide or monosaccharide to trisaccharide derivatives are preferred. Inductive materials are more preferably used.
  • sugar chain refers to a compound comprising one or more unit sugars (monosaccharide and Z or a derivative thereof). When two or more unit sugars are connected, each unit sugar is linked by dehydration condensation using a glycosidic bond.
  • unit sugars monosaccharide and Z or a derivative thereof.
  • sugar chains include polysaccharides contained in the living body (glucose, galactose, mannose, fucose, etc.
  • sugar chain may include both sugar chains and sugar chain-containing substances.
  • monosaccharide refers to a polyhydroxy aldehyde or polyhydroxy ketone and a hydrolyzate thereof that is not hydrolyzed into a simpler molecule and contains at least one hydroxyl group and at least one aldehyde group or ketone group. Refers to a derivative.
  • monosaccharides are represented by the general formula C H O, but are not limited to them: fucose (deoxyhexose), N n n 2n n
  • cetinoregenorecosamine cetinoregenorecosamine.
  • Otatos nonose and decourse. It is generally equivalent to an aldehyde or ketone of a chain polyhydric alcohol. The former is called aldose and the latter is called ketose.
  • galactose refers to any isomer, but is typically j8-D galactose, and is used to refer to j8-D-galactose unless otherwise specified.
  • acetylyldarcosamine refers to any isomer, but is typically N-acetyleno ⁇ D darcosamine, and unless otherwise specified, ⁇ acetylthio ⁇ -D— Used to refer to darcosamine.
  • fucose refers to any isomer, but is typically a L-fucose, and is used to refer to ⁇ L-fucose unless otherwise specified.
  • sialic acid is a general term for sialic acid and derivatives of neuraminic acid.
  • N-acyl (N-acetyl or N-glycolyl) neuraminic acid and N-acyl-0-acetylethylneuraminic acid are naturally known.
  • sialic acid is rarely present in the free state, it is mostly an acid-labile bond ( ⁇ -ketoside bond) in a monosaccharide, polysaccharide, glycoprotein, glycopeptide, or glycosphingolipid molecule.
  • the sialic acid used herein is preferably acetylethylneuraminic acid.
  • acetylylgalatatosamine refers to any isomer, but is typically ⁇ acetylyl-a-D galactosamine, and unless otherwise specified, N-acetylyl-a-D galactosamine. Used as a pointer.
  • sugar symbols, designations, abbreviations (Glc and the like) and the like are different when representing a monosaccharide and when used in a sugar chain. In the sugar chain, the unit sugar has a dehydration condensation with another unit sugar to which it is bonded, so that the mutual force also exists in a form excluding hydrogen or hydroxyl group.
  • a “sugar residue” for a sugar refers to those with 1 to n hydrogens, usually because sugars are linked to other chemical moieties via hydroxyl groups.
  • a sugar residue is a hydroxyl group of a sugar that has a hydrogen power of ⁇ to n (in this case, n is the number of hydroxyl groups present in the sugar), but is not limited to this. If there is, it can indicate that the hydrogen has been removed.
  • sucgar residue may be a monovalent, divalent, or trivalent to nvalent residue depending on the situation in which it is used.
  • specific names are expressed in the form of “sugar name” + “group”, for example, galactose group, Gal group, and the like.
  • Monosaccharides are generally joined by glycosidic bonds to form disaccharides and polysaccharides.
  • the direction of the bond with respect to the plane of the ring is indicated by ⁇ and j8.
  • Also described are specific carbon atoms that form a bond between two carbons.
  • Branches of sugar chains are represented by parentheses, and are arranged and placed immediately to the right of the unit sugar to be bound. For example,
  • C-6 of N-acetylyldarcosamine is bonded to C-1 of N-acetylyldarcosamine with a j8 glycoside
  • C-3 of N-acetylyldarcosamine is further linked to C-1 and 13 glycosides of galactose.
  • GlcNAc (3-1 ⁇ Gal) 6-1 ⁇ 8 GlcNAc.
  • Monosaccharides are represented on the basis of numbering as small as possible (latent) carbonyl groups. According to the general standard of organic chemical nomenclature, even when an atomic group superior to a (latent) carbon group is introduced into a molecule, it is usually represented by the above numbering.
  • a “monosaccharide derivative” refers to a substance that results from the substitution of one or more hydroxyl groups on an unsubstituted monosaccharide with another substituent. That Examples of such monosaccharide derivatives include saccharides having a carboxyl group (for example, aldonic acids in which the C-1 position is oxidized to form carboxylic acids (for example, D-dalconic acid in which D-glucose is oxidized), terminal C Uronic acid (D-glucose oxidized D-glucuronic acid) with carboxylic acid atom, sugar having amino group or amino group derivative (eg acetylated amino group) (eg N-acetyl- D-darcosamine, N-acetyl-D-galatatosamine, etc., sugars that have both amino and carboxyl groups (eg, Neu5Ac (sialic acid), N-acetylethylmuramic acid, etc.),
  • the “amino acid residue” constituting the glycopeptide residue of the present invention is not particularly limited as long as it has an amino group and a carboxy group in the molecule.
  • the Gly (glycine) residue and the Ala (alanine) residue are not particularly limited.
  • Val (parin) residue Leu (leucine) residue, lie (isoleucine) residue, Tyr (tyrosine) residue, Trp (tributophane) residue, Glu (glutamic acid) residue, Asp (aspartic acid) residue Group, Lys (lysine) residue, Arg (arginine) residue, His (histidine) residue, Cys (cystine) residue, Met (methionine) residue, Ser (serine) residue, Thr (threonine) residue And a-amino acid residues such as Asn (asnolagin) residue, Gin (glutamine) residue or Pro (proline) residue, or
  • 8-amino acid residue such as j8-Ala residue, etc.
  • the amino acid residue may be either D-form or L-form, but the L-form is preferred.
  • the glycopeptide residue the above-mentioned amino acid residues or 2-30 glycopeptide residues are preferred. More preferred are glycopeptide residues having 4 to 20 forces.
  • Gly or the like may be omitted when it is clear that a residue is indicated.
  • amino acid is a peptide bond
  • structure is as follows:
  • R represents a side chain. For example, if both R are H,
  • Gly-Gly or “-Gly” located at the end of the peptide chain represents a monovalent glycine residue.
  • the peptide chain When the constituent amino acid residue includes a proline residue and is expressed as Gly—Pro, the structure is as follows:
  • R A to R e represent side chains.
  • R A is H
  • R B force SCH
  • Re is CH (CH) CH
  • the peptide chain is also represented as Gly—Ala—Val.
  • Gly— represents a monovalent glycine residue
  • —Ala— represents a divalent alanine residue
  • —Val represents a monovalent palin residue
  • the serine residue or threonine residue is "Ser-” or " It is expressed as “Ser”, and the threonine residue is expressed as “Thr-” or “-Thr” and is a monovalent amino acid residue.
  • Sugar chains may be bound to these amino acid residues. When sugar chains are attached, these residues are divalent, and serine and threonine residues are as follows:
  • sugar amino acid of the present invention is not particularly limited as long as the amino acid residues and sugar residues listed above can theoretically be combined, but preferably, the combination is not limited. ,
  • n an integer of 1 to 10
  • Gal represents galactose
  • Glc represents gnoleose
  • Man represents mannose
  • Xyl represents xylose
  • GlcNAc represents N-acetyl D darcosamine
  • GalNAc represents N-acetyl D represents galactosamine.
  • N-terminal means an amino group that may be substituted at the end of the peptide main chain.
  • C-terminus refers to a substitution located at the end of the peptide backbone! And, it means a carboxyl group.
  • the “side chain” means a functional group extending from the peptide main chain in a direction orthogonal to the direction in which the peptide main chain extends or a portion containing the functional group.
  • the “primer” means a substance having an action that triggers the initiation of a reaction in an enzyme reaction.
  • transferase is a general term for enzymes that catalyze a group transfer reaction.
  • transferase may be used interchangeably with “transferase”.
  • the group transfer reaction is represented by the following formula (1): X-Y + ZH XH + ZY (1)
  • the group Y is transferred from one compound (donor) to another compound (acceptor).
  • glycosyltransferase refers to a sugar (corresponding to group Y in formula (1) above; unit sugar or sugar chain) separated from a certain place (corresponding to compound X—Y in formula (1) above).
  • the enzyme has an action of catalyzing the transfer to the site (corresponding to the compound Z—H of the above formula (1)).
  • examples of the glycosyltransferase include galactose transferase, glucose transferase, sialic acid transferase, mannose transferase, fucose transferase, xylose transferase, N-acetylylcosamine transferase, and N-acetyl galatatosamine transferase. However, it is not limited to them.
  • glycosyltransferases are specific for a particular binding mode.
  • j81,3-N-acetylylcosamine transferase is a glycosyltransferase that binds the 3rd position of a sugar such as galactose and the 1st position of N-acetylethyldarcosamine.
  • the glycosyltransferase used in the present invention is only required to be able to use sugar nucleotides as a sugar donor.
  • sugar chain elongation reaction refers to a reaction in which the chain length of a sugar chain is elongated in the presence of a glycosyltransferase as defined above.
  • biomolecule refers to a molecule related to a living body.
  • biomolecules are sometimes referred to herein as biological samples.
  • living body refers to a biological organism, including but not limited to animals, plants, fungi, viruses, and the like. Therefore, a biomolecule includes a molecule extracted from a living body, but is not limited thereto, and any molecule that can affect a living body falls within the definition of a biomolecule.
  • biomolecules include proteins, polypeptides, oligopeptides, peptides, glycopeptides, polynucleotides, oligonucleotides, nucleotides, sugar nucleotides, nucleic acids (eg, DNA such as cDNA, genomic DNA, mRNA Such as RNA), polysaccharides, oligosaccharides, lipids, small molecules (eg, hormones, ligands, signaling substances, small organic molecules, etc.), complex molecules thereof, and the like.
  • the biomolecule may preferably be a sugar chain or a complex molecule containing a sugar chain (eg, glycoprotein, glycolipid, etc.).
  • the source of such biomolecules may be any animal, plant, bacteria, or virus, as long as it is a material to which a biological sugar chain is bound or attached. More preferably, an animal-derived biological sample is used. Preferable examples include whole blood, plasma, serum, sweat, saliva, urine, knee fluid, amniotic fluid, and cerebrospinal fluid, and more preferable examples include plasma, serum, and urine.
  • Biological samples include biological samples that have not been previously separated from individuals. For example, it includes mucosal tissue that can be contacted with a test solution from the outside, or glandular tissue, preferably ductal epithelium attached to breast, prostate, and spleen.
  • the terms "protein”, “polypeptide”, “oligopeptide” and “peptide” are used interchangeably herein and refer to a polymer of amino acids of any length. .
  • the polymer may be linear or branched or cyclic.
  • the amino acid may be a modified amino acid, which may be natural or non-natural.
  • the term also includes assembly into a complex of multiple polypeptide chains. May be included.
  • the term also encompasses natural or artificially modified amino acid polymers. Such modifications include, for example, disulfide bond formation, daricosylation, lipidation, acetylation, phosphorylation, or any other manipulation or modification (eg, conjugation with a labeling component).
  • This definition also includes, for example, polypeptides containing one or more analogs of amino acids (eg, including non-natural amino acids, etc.), peptidomimetic compounds (eg, peptoids), and the art! Other modifications are included
  • sugar nucleotide means a nucleotide to which a sugar residue as defined above is bound, and the sugar nucleotide used in the present invention can be used by the above enzyme. If it is, it will not specifically limit.
  • uridine 5 monodiphosphate galactose, uridine 5, monodiphosphate-N acetyl dalcosamine, uridine 5, mono diphosphate N acetyl galactosamine, uridine-5, monodiphosphate glucuronic acid, uridine 5, 1 Examples include diphosphate xylose, guanosine 5, monodiphosphate fucose, guanosine 5, monodiphosphate mannose, cytidine-5, monomonophosphate 1N acetylneuraminic acid, and sodium salts thereof.
  • substitution refers to replacement of one or more hydrogen atoms in an organic compound or substituent with another atom or atomic group.
  • One hydrogen atom can be removed and substituted with a monovalent substituent, and two hydrogen atoms can be removed and substituted with a divalent substituent.
  • alkyl refers to a monovalent group formed by loss of one hydrogen atom in an aliphatic hydrocarbon (alkane) force such as methane, ethane, or propane.
  • n 2n + l is represented by one (where n is a positive integer).
  • Alkyl can be linear or branched.
  • substituted alkyl refers to an alkyl in which one or more hydrogen atoms are each independently substituted with a substituent as defined below.
  • C1-C2 alkyl C1-C3 alkyl, C1-C4 alkyl, C1-C5 alkyl, C1-C6 alkyl, C1-C7 alkyl, C1-C8 alkyl, C1-C9 alkyl, C1-C10 alkyl, C1-C11 alkyl C1-C12 alkyl, C1-C15 alkyl, Cl-C20 alkyl, C1-C25 alkyl or C1-C30 alkyl.
  • C 1 -C 10 alkyl means a linear or branched alkyl having 1 to 10 carbon atoms, such as methyl (CH—), ethyl (CH 1), n-propyl. (CH CH CH one)
  • aryl refers to a monovalent aromatic of 6 to 30 carbon atoms derived by removing one hydrogen atom from one carbon atom of the parent aromatic ring system. This refers to the hydrocarbon radical. Representative aryl groups include, but are not limited to, benzene, naphthalene, anthracene, biphenyl and the like.
  • chromophore refers to a functional group having an absorption band in the ultraviolet light or visible light region, or emitted light in the visible light region excited by electromagnetic waves in the ultraviolet light or visible light region.
  • a functional group that emits For example, nitro group, benzyl group, thiophenol group, paranitrophenol group, 2,4 di-trifluoro group, dansyl group, 2-aminobenzyl group, fluorescein isothiocyanate (FITC) group, 4-methoxy group Examples thereof include, but are not limited to, ⁇ -naphthylamide group.
  • keto acid is a general term for compounds having a carboxyl group and a carbocycle group of a ketone.
  • aldehyde acid is a general term for compounds having a carboxyl group and a carboxylic group of an aldehyde.
  • 1 30 6 30 N represents an integer of 0 to 20;
  • A represents a linker having a length of 1 to 20 methylene chains).
  • protecting reaction refers to a reaction in which a protective group such as Boc (tert-butoxycarbonyl group) is added to a functional group desired to be protected.
  • a protective group such as Boc (tert-butoxycarbonyl group)
  • Boc tert-butoxycarbonyl group
  • deprotection reaction refers to a reaction for removing a protecting group such as Boc.
  • Examples of deprotection reactions include reactions with trifluoroacetic acid (TFA) and reduction reactions with PdZC.
  • examples of the “protecting group” include, for example, a fluorenylmethoxycarbol (F moc) group, a acetyl group, a benzyl group, a benzoyl group, a tert-butoxycarbol group, t-Butyldimethyl group, silyl group, trimethylsilylethyl group, N-phthalimidyl group, trimethylsilylethyloxycarbonyl group, 2-trow 4,5 dimethoxybenzyl group, 2-trow 4,5-dimethoxybenzyloxy Carbon group, strong rubamate group, methyl group, methoxymethyl group, trimethylsilyl group, t-butyldimethylsilyl group, dimethylphenyl group, triisopropylpropylsilyl group, benzylidene group, isopropylidene group, ditert-butylsilylidene group, etc.
  • F moc fluorenylmethoxycar
  • the protecting group can be used, for example, to protect a reactive functional group such as an amino group or a force lpoxyl group. Depending on the reaction conditions and purpose, various protecting groups can be used properly.
  • a trimethylsilylethyloxycarboxyl group, a 2-trow 4,5 dimethoxybenzyloxycarboxyl group or a derivative thereof is preferable.
  • the target product is a contaminant (unreacted weight loss, by-product, solvent, etc.) from the reaction solution, and a method commonly used in the art (for example, extraction, distillation, After removal by washing, concentration, precipitation, filtration, drying, etc., followed by treatment by a combination of post-treatment methods commonly used in the art (eg adsorption, elution, distillation, precipitation, precipitation, chromatography, etc.) obtain.
  • a method commonly used in the art for example, extraction, distillation, After removal by washing, concentration, precipitation, filtration, drying, etc., followed by treatment by a combination of post-treatment methods commonly used in the art (eg adsorption, elution, distillation, precipitation, precipitation, chromatography, etc.) obtain.
  • the present invention provides the following formula:
  • X represents a hydrogen atom, C-C alkyl, C-C aryl or chromophore
  • A represents a sugar amino acid substantially free of a site cleavable by a protease.
  • glycopeptide residue containing any sugar amino acid without a site cleavable by a protease By using this as a primer, purification of a glycopeptide, which conventionally required multi-step purification, can be simplified, and the glycopeptide can be produced quickly and with high yield. Since the compound of the above formula (I) of the present invention always has an aldehyde group or a ketone group at the terminal, it may be protected with an aminooxy group, an N alkylaminooxy group, a hydrazide group, an azide group, a thiosemicarbazide group.
  • 1,2-dithiol group and a carrier containing a functional group selected from the group consisting of cysteine residues by reacting with a carrier containing a functional group selected from the group consisting of the above-mentioned formula (I) and using it as a polymer primer can do.
  • the bond obtained by this reaction is a strong bond that does not decompose under the subsequent hydrolysis with a protease (pH condition, etc.), so that there is an advantage that the purification of hydrolysis is very simple.
  • the combination with the cleavable amino acid residue (A 2 ) is a bond produced by the reaction of at least the terminal aldehyde or ketone group of the compound of formula (I) with the carrier in a pH range where hydrolysis by a protease can occur. Any combination is acceptable as long as it does not decompose. Amino acid residues force of some or all and A 2 of the polypeptide of A 1 also Narupepu tide recognizing protease may also be used.
  • Such combinations include a combination of a protease (glutamidase) derived from Bacillus Licheniformis and a glutamic acid residue or cysteine residue that can be cleaved by this protease; Combination of peptidase and Asn (recognition site (A 2 )) (cleaves the C-terminus of asparagine (Asn)); Combination of arginyl endopeptidase and Arg (recognition site (A 2 )) (arginine ( Cleaves C-terminal of Arg)); Combination of Achromopacter protease I and lysine (Lys) (recognition site (A 2 )) (cleaves C-terminal of lysine (Lys)); , Arginine (Arg) or lysine (Lys) (recognition site (A 2 )) combination (when Arg is recognized, C-terminal of arginine (Arg) is a
  • Trp When Trp is recognized, the C-terminal end of tributophan (Trp) is cleaved.); V8 protease and Glu (recognition site (A 2 )) (Cleaves the C-terminus of glutamic acid (Glu)); Factor Xa (factor Xa) and —lie—Glu—Gly—Arg— (recognition site, according to the definition in this document, the recognition site ( A 2 ) is arginine (Arg) and —lie—Glu—G1 y— is the end of A 1 ; this cleaves the C terminus of arginine (Arg).) Enterokinase and Asp— Asp— Asp— Asp— Lys— (recognition site, according to the definition of this specification, the recognition site (A 2 ) is lysine (Ly a s), -Asp- Asp- A sp- Asp- is the terminus of A 1;.
  • Bacillus spp. In particular by Bacillus lichen niformis ATCC 14580.
  • This strain can be obtained from the American Type Culture Collection (ATCC).
  • ATCC American Type Culture Collection
  • the genomic DNA of Bacillus liquor-formis ATCC 14580 strain can be prepared from cultured cells of the strain according to known methods (M. Stahl et al., Journal of Bacteriology, 154, 406-412 (1983)).
  • HGVTSAPDTR (SEQ ID NO: 2)
  • VTSAPDTRPA SEQ ID NO: 4
  • TRPAPGSTAP SEQ ID NO: 10
  • PAPGSTAPPA SEQ ID NO: 12
  • APGSTAPPAH (SEQ ID NO: 13),
  • HGVTSAPDTRP (SEQ ID NO: 22),
  • GVTSAPDTRPA SEQ ID NO: 23
  • VTSAPDTRPAP (SEQ ID NO: 24),
  • TSAPDTRPAPG (SEQ ID NO: 25),
  • APDTRPAPGST (SEQ ID NO: 27),
  • TRPAPGSTAPP SEQ ID NO: 30
  • PAPGSTAPPAH (SEQ ID NO: 32),
  • PAHGVTSAPDT (SEQ ID NO: 40),
  • HGVTSAPDTRPAPGSTAPPA (SEQ ID NO: 41), GVTSAPDTRPAPGSTAPPAH (SEQ ID NO: 42), VTSAPDTRPAPGSTAPPAHG (SEQ ID NO: 43), TSAPDTRPAPGSTAPPAHGV (SEQ ID NO: 44), SAPDTRPAPGSTAPPAHGVT (SEQ ID NO: 45), APDTRPAPGSTAPPAHGVTS (SEQ ID NO: 46), PDPA, TRPA No. DTRPAPGSTAPPAHGVTSAP (SEQ ID NO: 48),
  • TRPAPGSTAPPAHGVTSAPD (SEQ ID NO: 49),
  • RPAPGSTAPPAHGVTS APDT (SEQ ID NO: 50)
  • PAPGSTAPPAHGVTSAPDTR SEQ ID NO: 51
  • APGSTAPPAHGVTSAPDTRP (SEQ ID NO: 52),
  • PAHGVTSAPDTRPAPGSTAP (SEQ ID NO: 59)
  • AHGVTSAPDTRPAPGSTAPP (SEQ ID NO: 60),
  • the polymer carrier that can be used in the present invention can bind the group represented by the formula (I), and after the coupling, the compound of formula (I) can act by the action of glycosyltransferase as described below.
  • a vinyl monomer having an aminooxy group or a hydrazide group may be protected.
  • Polymers or copolymers of the above include acrylamides, methacrylate amides, acrylic acids, methacrylic acids, styrenes, fatty acid butyl esters, etc.
  • Polyethers which may have an aminooxy group or hydrazide group; silica carriers, rosin carriers, magnetic beads or amino beads having an aminooxy group or hydrazide group which may be protected
  • Metallic substrate e.g., the following expression:
  • the above-mentioned polymer or copolymer of a bull monomer having an aminooxy group or a hydrazide group which may be protected is at least one of a polymer or copolymer of an unsubstituted vinyl monomer.
  • acrylamides examples include N-alkyl acrylamides such as acrylamide, N-ethyl acrylamide, N-isopropyl acrylamide, etc., which may have protected amino group or hydrazide group. Illustrated.
  • methacrylamides examples include methacrylamide, N-methyl methacrylamide N-ethyl methacrylamide, N-isopropyl methacrylamide, etc., which may have an aminooxy group or a hydrazide group which may be protected.
  • N-alkyl methacrylamide and the like are exemplified.
  • acrylic acid examples include acrylic acid such as acrylic acid, methyl acrylate, ethyl acrylate, hydroxyethyl acrylate, and dimethylaminoethyl acrylate, which may have an aminooxy group or hydrazide group which may be protected.
  • acrylic acid such as acrylic acid, methyl acrylate, ethyl acrylate, hydroxyethyl acrylate, and dimethylaminoethyl acrylate, which may have an aminooxy group or hydrazide group which may be protected.
  • acid esters examples include acid esters.
  • the above methacrylic acids are protected and may have an aminooxy group or a hydrazide group.
  • Examples include methacrylic acid esters.
  • styrenes examples include styrene, p-hydroxystyrene, p-hydroxymethylstyrene and the like, which may be protected but may have an aminooxy group or a hydrazide group.
  • fatty acid vinyl ester examples include vinyl acetate and vinyl butyrate which may be protected and have an aminooxy group or a hydrazide group.
  • the polymer or copolymer of fatty acid bule ester in the present invention includes an alkali after polymerization reaction, etc. In this case, all or part of the ester bond is hydrolyzed.
  • polyethers may be protected! Polyethylene glycol which may have an aminooxy group or a hydrazide group, or may be protected, and may have an aminooxy group or a hydrazide group. Examples thereof include polyethylene and polyethylene glycol substituted with aryl groups.
  • the polymer carrier here may be either water-insoluble or water-soluble, but water-soluble is preferred.
  • the general molecular weight is about 10,000 to about 5000000, preferably 20000 to 2000000, more preferably ⁇ 50,000 to 1000000.
  • the form includes a bead shape, a fiber shape, a film shape, and a film shape, but is not particularly limited.
  • n is an integer of 1 to 15, preferably 1 to 10, and more preferably 1 to 5.
  • the ratio of x: y is 1: 0 to 1: 1000, preferably 1: 0 to 1: 100.
  • the molecular weight of the polymer carrier is about 10,000 to about 5000000, preferably ⁇ is 20000 to 2000000, more preferably ⁇ is 50000 to 1000000.
  • X represents a hydrogen atom, c-c alkyl, c-c aryl or chromophore
  • n an integer of 0 to 20;
  • polyacrylamide polymerization degree 1 to: oligo or polypeptide of LO, oxygen atom or NH;
  • A represents an amino acid residue cleavable by a protease
  • A is a sugar amino acid residue substantially free of a site cleavable by a protease, or
  • glycopeptide residue containing any sugar amino acid without a site cleavable by a protease
  • sugar amino acid residue or the glycopeptide residue is represented by the following formula:
  • R 1 and R 6 are each independently hydrogen, Neu5Ac group or GlcNAc group;
  • R 2 and R 7 are Gal groups
  • R 3 and R 8 are GlcNAc groups
  • R 4 and R 9 are Gal groups
  • R 5 is a GlcNAc group
  • R 10 is a GalNAc group
  • ZZ 2 and Z 3 are each independently hydrogen or a Fuc group; and n and m are each independently an integer greater than or equal to 0;
  • the bond between R 1 and R 2 is a 2, 3 bond when R 1 is Neu5Ac group, and j81, 3 bond when R 1 is GlcNAc group;
  • R 2 and R 3 are a ⁇ ⁇ , 4 bond
  • R 3 and R 4 is a ⁇ ⁇ , 3 bond
  • the bond between R 4 and R 5 is a ⁇ ⁇ , 4 bond
  • R 6 and R 7 are an ⁇ 2,3 bond when R 6 is a Neu5Ac group, and a ⁇ ⁇ , 3 bond when R 6 is a GlcNA c group;
  • R 7 and R 8 are a ⁇ ⁇ , 4 bond
  • R 8 and R 9 are a ⁇ ⁇ , 3 bond
  • R 9 and R 1G are a ⁇ ⁇ , 3 bond
  • R 5 and R 1G are a ⁇ ⁇ , 6 bond
  • the bond between ⁇ 1 and R 3 is ⁇ 1 , 3 bond;
  • the bond between ⁇ 2 and R 5 is ⁇ 1, 3 bond
  • the bond between ⁇ 3 and R 8 is ⁇ 1, 3 bond
  • the invention provides a compound of the following formula:
  • 30 c 6 c represents a reel or chromophore
  • n an integer of 0 to 20;
  • polyacrylamide polymerization degree 1 to: oligo or polypeptide of LO, oxygen atom or NH;
  • A represents an amino acid residue cleavable by a protease
  • A is a sugar amino acid residue substantially free of a site cleavable by a protease, or
  • glycopeptide residue containing any sugar amino acid without a site cleavable by a protease
  • sugar amino acid residue or the glycopeptide residue is represented by the following formula:
  • R 1 is hydrogen, a sialic acid group or a GlcNAc group
  • R 2 is a Gal group
  • R 3 is a GlcNAc group
  • R 4 is a Gal group
  • R 5 is a GlcNAc group
  • R 10 is a GalNAc group
  • R 8 is hydrogen or a sialic acid group
  • R 9 is a Gal group
  • Z 1 and Z 2 are each independently hydrogen or a Fuc group
  • n is an integer greater than or equal to 0;
  • R 1 and R 2 are an a 2, 3 bond when R 1 is a sialic acid group, and a j8 1, 3 bond when R 1 is a GlcNAc group;
  • R 2 and R 3 are a ⁇ ,, 4 bond
  • R 3 and R 4 are a ⁇ ,, 3 bond
  • R 4 and R 5 are a ⁇ ,, 4 bond
  • R 8 and R 9 are ⁇ 2, 3 bond;
  • R 9 and R 10 are a ⁇ ,, 3 bond
  • R 5 and R 1G are a ⁇ ,, 6 bond
  • the bond between ⁇ 1 and R 3 is ⁇ 1 , 3 bond
  • the present invention provides the following formula:
  • ⁇ N C (— X) — (CH) A -A -A (II)
  • 6 c represents a chromophore or chromophore
  • n an integer of 0 to 20;
  • polyacrylamide polymerization degree 1 to: oligo or polypeptide of LO, oxygen atom or NH;
  • A is a protease derived from Bacillus Licheniformis.
  • a cleavable glutamic acid residue or cysteine residue is a sugar amino acid residue substantially free of a site cleavable by a protease, or
  • glycopeptide residue containing any sugar amino acid without a site cleavable by a protease
  • sugar amino acid residue or the glycopeptide residue is represented by the following formula:
  • R 1 and R 6 are each independently hydrogen, Neu5Ac group or GlcNAc group;
  • R 2 and R 7 are Gal groups
  • R 3 and R 8 are GlcNAc groups
  • R 4 and R 9 are Gal groups
  • R 5 is a GlcNAc group
  • R 10 is a GalNAc group
  • Z 2 and Z 3 are each independently hydrogen or a Fuc group; and n and m are each independently an integer of 0 or more;
  • the bond between R 1 and R 2 is a 2, 3 bond when R 1 is Neu5Ac group, and j81, 3 bond when R 1 is GlcNAc group;
  • R 2 and R 3 are a ⁇ ⁇ , 4 bond
  • R 3 and R 4 are a ⁇ ⁇ , 3 bond
  • R 4 and R 5 are a ⁇ ⁇ , 4 bond
  • R 6 and R 7 are an ⁇ 2,3 bond when R 6 is a Neu5Ac group, and a ⁇ , 3 bond when R 6 is a GlcNA c group;
  • R 7 and R 8 are a ⁇ ⁇ , 4 bond
  • R 8 and R 9 are a ⁇ ⁇ , 3 bond
  • R 9 and R 1G are a ⁇ ⁇ , 3 bond
  • R 5 and R 1G are a ⁇ ⁇ , 6 bond
  • the bond between ⁇ 1 and R 3 is ⁇ 1 , 3 bond;
  • the bond between Z 2 and R 5 is ⁇ 1, 3 bond;
  • the bond between ⁇ 3 and R 8 is ⁇ 1, 3 bond
  • is the following formula:
  • the present invention provides the following formula:
  • a N C (— X) — (CH) A -A -A (II)
  • X represents a hydrogen atom, c-c alkyl, c-c aryl or chromophore
  • n an integer of 0 to 20;
  • polyacrylamide polymerization degree 1 to: oligo or polypeptide of LO, oxygen atom or NH;
  • A is a protease derived from Bacillus Licheniformis. A cleavable glutamic acid residue or cysteine residue;
  • A is a sugar amino acid residue substantially free of a site cleavable by a protease, or
  • glycopeptide residue containing any sugar amino acid without a site cleavable by a protease
  • sugar amino acid residue or the glycopeptide residue is represented by the following formula:
  • R 1 is hydrogen, a sialic acid group or a GlcNAc group
  • R 2 is a Gal group
  • R 3 is a GlcNAc group
  • R 4 is a Gal group
  • R 5 is a GlcNAc group
  • R 10 is a GalNAc group
  • R 8 is hydrogen or a sialic acid group
  • R 9 is a Gal group
  • Z 1 and Z 2 are each independently hydrogen or a Fuc group
  • n is an integer greater than or equal to 0;
  • R 1 and R 2 are an a 2, 3 bond when R 1 is a sialic acid group, and a ⁇ ⁇ , 3 bond when R 1 is a GlcNAc group;
  • R 2 and R 3 are a j8 1, 4 bond
  • R 3 and R 4 are 1, 3 bonds
  • R 4 and R 5 are] 3 1, 4 bond;
  • R 8 and R 9 are 2, 3 bonds
  • R 9 and R 1G are a j8 1,3 bond
  • R 5 and R 1G are a j8 1,6 bond
  • the bond between Z 1 and R 3 is an ⁇ ⁇ , 3 bond
  • A is the following formula:
  • the mucin-type glycopeptide having a voralactosamine skeleton provided in the present invention in the formula (I) or ( ⁇ ⁇ ⁇ ), in A, n is an integer of 0 or more, and preferably, n is 0 to Five
  • n is an integer of 4 or less.
  • ⁇ Z 3 may or may not be present, but preferably m is 0 to 5, and when n is 1, Z 1 and Z 2 are sialic acid groups. More preferably, the sugar residue of the glycopeptide is [Chemical 27-2]
  • It can be a sugar residue or a derivative of a sugar residue selected from the group consisting of
  • the present invention provides a composition for a primer for producing a glycoamino acid or glycopeptide comprising the compound described in the above formula (I) or (IV).
  • the glycopeptide containing an amino acid residue that has a ketone residue or an aldehyde residue at the end and can be cleaved by protease is released to the solid phase carrier force, and at the same time, the amino acid side chain protecting group is removed Protect (if the amino acid side chain protecting group is not removed by acid treatment, the protecting group may be separately deprotected by a deprotection reaction);
  • reaction mixture or the mixture obtained by the ether precipitation method is purified by HPLC, and a glycopeptide (sugar chain protector) containing an amino acid residue that has a ketone residue or an aldehyde residue at the end and can be cleaved by a protease is obtained.
  • a glycopeptide sucgar chain protector
  • step 4 is omitted.
  • a polymer carrier is introduced into the reaction solution containing the glycopeptide of 3) and selectively reacted with the glycopeptide;
  • glycopeptide bound to the carrier is purified by gel filtration or dialysis, ultrafiltration, etc .;
  • Synthesis and purification of a polymeric primer from a glycopeptide containing an amino acid residue having a ketone residue or an aldehyde residue at the terminal and thus cleavable by a protease is as follows:
  • the glycopeptide containing an amino acid residue having a ketone residue or an aldehyde residue at the end and cleavable by a protease is released to the solid phase carrier force, and at the same time, the protecting group of the amino acid side chain is removed.
  • Protect if the amino acid side chain protecting group is not removed by acid treatment, the protecting group may be separately deprotected by a deprotection reaction);
  • a polymer carrier is introduced into the reaction solution containing the glycopeptide of 3) to selectively react with the glycopeptide. React;
  • the keto acid or aldehyde acid used in the above step 1) has the following formula:
  • X is a hydrogen atom, c-c alkyl
  • 1 30 c represents 6-c aryl or chromophore
  • n an integer of 0 to 20;
  • (A represents a linker having a length of 1 to 20 methylene chains).
  • the method for producing a glycopeptide of the present invention comprises the following steps:
  • step (B) By reacting the compound obtained in step (A) with a glycosyltransferase in the presence of a sugar nucleotide, the sugar residue is transferred from the sugar nucleotide to the compound, and the sugar chain is elongated.
  • the glycosyltransferase used in the present invention is preferably 13 1, 4-galactose transfer. Enzyme, j8 1,3-Galactosyltransferase, 1,3-Fucose transferase, / 3 1,3-N-Acetyldarcosaminetransferase, 13 1,6-N-Acetyldarcosaminetransferase, ⁇ 2,3-sialyltransferase, ⁇ 2,6-sialyltransferase.
  • the method for producing a glycopeptide of the present invention comprises the following steps:
  • a sugar residue is transferred from the sugar nucleotide to the compound by allowing a glycosyltransferase to act on the compound according to any one of items (4) to (7) in the presence of the sugar nucleotide.
  • (C) a step of allowing a protease to act on a compound in which sugar residues are transferred and sugar chains are elongated. Furthermore, the process of isolating glycopeptide may be included. In this production method, by-products other than the glycopeptide containing the target glycopeptide and the carrier can be easily separated.
  • the method for producing a glycopeptide of the present invention comprises the following steps:
  • a sugar residue is transferred from the sugar nucleotide to the compound by allowing a glycosyltransferase to act on the compound according to any one of items (4) to (7) in the presence of the sugar nucleotide.
  • step (1) Step (ii) Repeating step (1) one or more times to extend the sugar chain;
  • the method for producing a glycopeptide of the present invention comprises the following steps:
  • step (B) The compound obtained in step (A) and an optionally protected aminooxy group, N-alkylaminooxy group, hydrazide group capable of specifically reacting with the ketone residue or aldehyde residue of the compound Reacting with a carrier comprising a functional group selected from the group consisting of: azide group, thiosemicarbazide group, 1,2-dithiol group and cysteine residue;
  • step (C) By allowing a glycosyltransferase to act on the compound obtained in step (B) in the presence of a sugar nucleotide, the sugar residue is transferred from the sugar nucleotide to the compound, and the sugar chain is elongated.
  • (E) a step of allowing a protease to act on a compound in which sugar residues are transferred and sugar chains are elongated.
  • the method for producing a glycopeptide of the present invention comprises the following steps:
  • step (B) The compound obtained in step (A) and an optionally protected aminooxy group, N-alkylaminooxy group, hydrazide group capable of reacting specifically with the ketone residue or aldehyde residue of the compound Reacting with a carrier comprising a functional group selected from the group consisting of: azide group, thiosemicarbazide group, 1,2-dithiol group and cysteine residue;
  • step (C) By allowing a glycosyltransferase to act on the compound obtained in step (B) in the presence of a sugar nucleotide, the sugar residue is transferred from the sugar nucleotide to the compound, and the sugar chain is elongated.
  • Step (D) Step (C) is repeated once or twice or more to extend the sugar chain
  • (F) a step of allowing a protease to act on a compound in which a plurality of sugar residues are transferred and sugar chains are elongated.
  • the method for producing a glycopeptide of the present invention comprises the following steps:
  • step (B) The compound obtained in step (A) and an optionally protected aminooxy group, N-alkylaminooxy group, hydrazide group capable of reacting specifically with the ketone residue or aldehyde residue of the compound , A reaction with a carrier containing a functional group selected from the group consisting of an azide group, a thiosemicarbazide group, a 1,2-dithiol group and a cysteine residue, and simultaneously removing unreacted substances in step (A);
  • the sugar residue is transferred from the sugar nucleotide to the compound by allowing a sugar transferase to act on the compound bound to the carrier obtained in step (B) in the presence of the sugar nucleotide.
  • step (D) A step of allowing protease to act on the compound obtained by extending the sugar chain obtained in step (C) is included.
  • the method for producing a glycopeptide of the present invention comprises the following steps:
  • a peptide solid-phase synthesis is carried out using amino acids, sugar amino acids, and keto acids or aldehyde acids that can be cleaved by a protease, as described in any one of items (1) to (3) Obtaining a compound;
  • step (B) The compound obtained in step (A) and an optionally protected aminooxy group, N-alkylaminooxy group, hydrazide group capable of reacting specifically with the ketone residue or aldehyde residue of the compound , A reaction with a carrier containing a functional group selected from the group consisting of azide group, thiosemicarbazide group, 1,2-dithiol group and cysteine residue, and at the same time, removing unreacted substances in step (A) ;
  • the sugar residue is transferred from the sugar nucleotide to the compound by allowing a sugar transferase to act on the compound bound to the carrier obtained in step (B) in the presence of the sugar nucleotide.
  • Step (D) Step (C) is repeated once or twice or more to extend the sugar chain
  • (F) a step of allowing a protease to act on a compound in which a plurality of sugar residues are transferred and sugar chains are elongated.
  • the method for producing the glycopeptide of the present invention comprises the following steps:
  • a sugar residue is transferred from the sugar nucleotide to the compound by allowing a glycosyltransferase to act on the compound according to any one of items (1) to (3) in the presence of the sugar nucleotide.
  • Step (B) Step (A) is repeated one or more times as necessary to extend the sugar chain as necessary;
  • the method for producing a glycopeptide of the present invention comprises the following steps:
  • a sugar residue is transferred from the sugar nucleotide to the compound by allowing a glycosyltransferase to act on the compound according to any one of items (1) to (3) in the presence of the sugar nucleotide.
  • Step (B) Step (A) is repeated one or more times as necessary to extend the sugar chain as necessary;
  • (C) a compound in which a sugar residue is transferred and a sugar chain is extended, and a protected compound capable of reacting specifically with a ketone residue or an aldehyde residue of the compound, and may be an aminooxy group, N-alkyl Reacting a carrier containing a functional group selected from the group consisting of an aminooxy group, a hydrazide group, an azide group, a thiosemicarbazide group, a 1,2-dithiol group and a cysteine residue;
  • (E) a step of causing a protease to act on a compound in which a sugar residue is transferred and a sugar chain is elongated.
  • the method for producing a glycopeptide of the present invention comprises the following steps:
  • step (B) The compound obtained in step (A) and an optionally protected aminooxy group, N-alkylaminooxy group, hydrazide group capable of reacting specifically with the ketone residue or aldehyde residue of the compound , Azide group, thiosemicarbazide group, 1,2-dithiol group and cysteine Reacting with a soluble carrier containing a functional group selected from the group consisting of residues and removing unreacted substances in step (A) by reprecipitation, gel filtration, or ultrafiltration;
  • step (C) By allowing a glycosyltransferase to act on the compound solublely bound to the carrier obtained in step (B) in the presence of a sugar nucleotide, the sugar residue is transferred from the sugar nucleotide to the compound, A step of obtaining a compound in which a sugar chain is elongated, wherein the sugar nucleotide has a sugar residue selected from the group consisting of a Gal group, a GlcNAc group, a Fuc group and a sialic acid group
  • Step (D) Step (C) is repeated once or twice or more to extend the sugar chain

Abstract

The object is to provide: a novel compound which is useful as a primer for use in the production of a mucin-type glycopeptide having a polylactosamine backbone which is useful in a wide variety of applications including a material for a biochemical study, a pharmaceutical and a food and has a difficulty in production before this time; and a method for production of a glycopeptide using the primer. Disclosed are: a mucin-type glycopeptide derivative which has a novel polylactosamine backbone having an aldehyde group or a ketone group at the terminus and also having an amino acid residue which is cleavable with a protease (i.e., a compound represented by the formula (I)); a simple production method for a mucin-type glycopeptide having a polylactosamine backbone by using the derivative as a primer; and a method for production of a mucin-type peptide having a polylactosamine backbone by synthesizing a glycopeptide having a specific peptide sequence using a mucin-type glycoamino acid having a polylactosamine backbone which has been synthesized previously.

Description

明 細 書  Specification
ボリラクトサミン骨格を有するムチン型糖ペプチド  Mucin-type glycopeptides having a borilactosamine skeleton
技術分野  Technical field
[0001] 本発明は、糖ペプチドを製造する際のプライマーとして有用な新規ィ匕合物、および そのプライマーを使用して糖ペプチドを製造する方法に関する。本発明はまた、その 製造方法によって得られる糖ペプチド類に関する。  The present invention relates to a novel compound useful as a primer for producing a glycopeptide, and a method for producing a glycopeptide using the primer. The present invention also relates to glycopeptides obtained by the production method.
背景技術  Background art
[0002] 糖鎖は核酸やタンパク質と並んで生体を構成する主要成分であり、生体のェネル ギ一源としてよく知られている力 近年、生体内の情報伝達、タンパク質の品質管理 、構造安定化、タンパク質輸送のための標識など、様々な高次機能を担っていること が明らかとなってきた。し力しながら、糖鎖は核酸やタンパク質に比べ、一般的な調 製法が確立されておらず、さらに糖鎖の機能は脂質やタンパク質などと結合した複合 糖質として機能していることが多いため、その構造情報を含めた機能の研究は未解 明部分が極めて多い。また、タンパク質の研究分野でも糖鎖と共にその機能を果たし ていると思われるものが多数見つ力つている力 その詳細な機構の研究は現状では きわめて困難である。  [0002] A sugar chain is a major component of a living body along with nucleic acids and proteins, and is a well-known power source for living bodies. In recent years, in vivo information transmission, protein quality control, and structural stabilization. It has become clear that it has various higher-order functions such as labels for protein transport. However, compared to nucleic acids and proteins, sugar chains have not been established as a general preparation method, and the functions of sugar chains often function as complex carbohydrates bound to lipids and proteins. For this reason, there are a lot of unexplained studies on functions including structural information. In addition, in the field of protein research, the ability to look at many things that seem to perform their functions together with sugar chains is very difficult to study in detail.
[0003] これらの研究を推し進め、さらに医薬などへと活用するためには糖鎖単独ではなく 複合糖質の状態で均一な試料を調製する必要がある。特に糖ペプチドに関しては糖 鎖とペプチド双方が極めて多様性に富んでいるため、必要となった構造をそのつど 天然物から調達することは事実上不可能であり、その迅速な製造法の開発が期待さ れて 、る。共通の手順で多様な構造を作成すると 、う作業は近年発達したコンビナト リアルケミストリーに代表されるように、化学合成法が得意とする技術である。このよう な背景に基づき、これまで様々な糖ペプチド製造法が検討されてきたが、いまだに実 用的な製造法は報告されていない。その主な理由、原料となる糖アミノ酸の調製が煩 雑であり多彩な糖鎖構造を有する糖アミノ酸を揃えることが困難であること、大きい糖 鎖構造を有する糖アミノ酸は立体障害が大き 、ためその収率および反応速度が遅 、 こと、さらに糖ペプチド構築後に化学合成法で糖鎖を伸張することは反応性および位 置 ·立体制御の点力 難しいこと、が挙げられる。すなわち、現在の技術では反応収 率が低い上に調製に要する時間が長ぐさらに、糖ペプチド合成はその合成原料の 調製自体が難 、ため、必要な糖鎖構造を迅速に調製するオーダーメードな製造や 、糖ペプチドおよび糖タンパク質の網羅的機能解析に必要とされて ヽる複雑な糖鎖 構造を含む糖ペプチドライブラリーの構築は極めて困難である。 [0003] In order to advance these studies and further utilize them in medicines, it is necessary to prepare a uniform sample in the state of complex carbohydrates rather than sugar chains alone. For glycopeptides in particular, both sugar chains and peptides are extremely diverse, so it is virtually impossible to procure the required structure from natural products each time, and the development of a rapid production method is impossible. Expected. When various structures are created using a common procedure, the work is a technology that is good at chemical synthesis, as represented by combinatorial chemistry developed in recent years. Based on this background, various glycopeptide production methods have been studied so far, but no practical production method has yet been reported. The main reason for this is that the preparation of the sugar amino acid as a raw material is complicated and it is difficult to prepare sugar amino acids having various sugar chain structures, and sugar amino acids having a large sugar chain structure have large steric hindrance. The yield and reaction rate are slow, and it is also important to extend the sugar chain by chemical synthesis after glycopeptide construction. Position · The power of 3D control is difficult. In other words, with the current technology, the reaction yield is low and the time required for preparation is long. Furthermore, since it is difficult to prepare the synthetic raw material itself for glycopeptide synthesis, it is custom-made to rapidly prepare the necessary sugar chain structure. It is extremely difficult to construct a glycopeptide library containing a complex sugar chain structure that is required for production and comprehensive functional analysis of glycopeptides and glycoproteins.
[0004] 一般に糖ペプチドの合成は、 Fmoc アミノ酸(アミノ基を 9 フルォレニルメチルォ キシカルボ-ル基で保護したアミノ酸、以下 9 フルォレニルメチルォキシカルボ- ル基を Fmocと略する)とともに Fmocグリコシルアミノ酸を用い、ペプチド自動合成装 置で基本となるペプチド部分を固相担体上に合成し、固相担体よりペプチド部分を 遊離させ、一旦精製した後、有機化学的なまたは酵素的な合成手法によりひとつず つ糖鎖を伸長させていくという方法が用いられる。このため、糖鎖の伸長には煩雑な 操作と長い時間が必要である。そこで、ペプチド部分のみならず、オリゴ糖鎖部分も 自動合成になれば糖ペプチド合成の迅速ィ匕およびライブラリー作成にぉ ヽて非常に 有用である。核酸やタンパク質については自動合成技術が確立されており、このこと によりこれらの分野の研究が著しく進歩したことは誰もが認めるところであり、糖鎖に つ!、てもその自動合成技術の確立は切望されて 、る。  [0004] In general, glycopeptides are synthesized by Fmoc amino acid (amino acid with amino group protected with 9 fluorenylmethyloxycarboxyl group, hereinafter 9 fluorenylmethyloxycarboxyl group is abbreviated as Fmoc). ) And Fmoc glycosylamino acid, the basic peptide part is synthesized on a solid phase carrier by an automatic peptide synthesizer, the peptide part is released from the solid phase carrier, and once purified, it is purified organically or enzymatically. A method of extending sugar chains one by one using a simple synthesis method is used. For this reason, a complicated operation and a long time are required for sugar chain elongation. Therefore, automatic synthesis of not only the peptide portion but also the oligosaccharide chain portion is very useful for rapid synthesis of glycopeptides and library creation. For nucleic acids and proteins, automated synthesis technology has been established, and this is where everyone acknowledges that research in these fields has made significant progress, and for sugar chains! Longed for.
[0005] これまでに糖ペプチドのライブラリー合成を志向した研究に関しいくつかの報告が あり、いずれもペプチド部分の合成は R. B. Merrifieldの方法に基づいた固相化学 合成法で行われている。一方、オリゴ糖鎖側の合成手法は大きく分けて 2つある。ひ とつは化学合成法によるものであるが、糖残基と糖残基を立体選択的に結合させる 方法が十分確立されておらず、さらに保護基を結合させたりあるいは脱離させたりと 工程が煩雑であるという問題がある。もうひとつは酵素合成によるものであり、保護基 を必要とせず、また糖残基と糖残基を立体選択的に結合させることができるのでィ匕学 合成に比べ、非常に有利であり、近年いくつかの高分子担体と組み合わせる自動合 成可能な方法が提案されるようになって来た。これには、最近各種糖転移酵素の遺 伝子が単離され、遺伝子組換え技術による糖転移酵素の大量生産が可能になって きたという背景がある。  [0005] There have been several reports on studies aimed at synthesizing a library of glycopeptides, and all of them have been synthesized by solid phase chemical synthesis based on the method of R. B. Merrifield. On the other hand, there are two main methods for synthesizing oligosaccharide chains. One is by chemical synthesis, but a method for stereoselectively binding sugar residues to sugar residues has not been well established, and a process for attaching or removing protecting groups. There is a problem that is complicated. The other is based on enzymatic synthesis, which does not require a protecting group and can be linked stereoselectively between sugar residues and sugar residues, which is very advantageous compared to chemical synthesis. A method capable of automatic synthesis in combination with several polymer carriers has been proposed. This is due to the fact that genes for various glycosyltransferases have recently been isolated, and mass production of glycosyltransferases has become possible by gene recombination technology.
[0006] そのような例としては、 U. Zehaviらは、アミノエチル基またはァミノへキシル基を結 合させたポリアクリルアミドゲルを固相担体とした糖転移酵素による固相合成を報告し ている(非特許文献 1〜4参照)。この方法は適当な単糖を 4 カルボキシ 2 -ト 口ベンジルグリコシドとした後、上記担体のァミノ基と直接またはスぺーサーを介して 結合させたものをプライマーとして、糖転移酵素により糖鎖伸長反応を行い、その後 、光分解により伸長させた糖鎖を遊離させるというものである。しかしながら、糖転移 収率は 50%程度であり十分なものとはいえない。また、この方法で得られるのはオリ ゴ糖であって糖ペプチドではな 、。 [0006] As such an example, U. Zehavi et al. Linked an aminoethyl group or an aminohexyl group. Solid phase synthesis by glycosyltransferase using a combined polyacrylamide gel as a solid support has been reported (see Non-Patent Documents 1 to 4). In this method, a suitable monosaccharide is converted to a 4-carboxy 2-to-benzylglycoside, and then linked to the above-mentioned carrier amino group directly or via a spacer, as a primer, a sugar chain elongation reaction using a glycosyltransferase. Then, the sugar chain extended by photolysis is released. However, the sugar transfer yield is about 50%, which is not sufficient. Also, this method can obtain oligosaccharides, not glycopeptides.
[0007] その他の例として、 C. — H. Wongらは、アミノィ匕シリカに糖ペプチドを結合させた ものをプライマーとし、糖転移酵素を用いて糖鎖を伸長させた後、 ocーキモトリブシン の加水分解作用を利用し、伸長させた糖鎖を糖ペプチドの形で切り出す方法を報告 している。(非特許文献 5参照)。得られる糖ペプチドのペプチド鎖は Asn (ァスパラギ ン) Gly (グリシン) Phe (フ -ルァラニン)と短ぐさらに、糖転移酵素による糖鎖 伸長反応の収率は 55〜65%であり、とても十分なものとはいえない。  [0007] As another example, C. — H. Wong et al. Used a glycopeptide linked to amino-silica as a primer, extended the sugar chain using glycosyltransferase, and then hydrolyzed oc-chymotrypsin. We have reported a method to cut out elongated sugar chains in the form of glycopeptides using the degradation action. (See Non-Patent Document 5). The peptide chain of the resulting glycopeptide is as short as Asn (asparagine) Gly (glycine) Phe (furalanine). Furthermore, the yield of the sugar chain elongation reaction by glycosyltransferase is 55 to 65%, which is very sufficient. Not a thing.
[0008] また、 C. —H. Wongらは、固相担体であるアミノ化シリカに結合させる基を改良し 、糖転移酵素により糖鎖を伸長した後、ヒドラジン分解により糖鎖を遊離させる方法を 報告しており、酵素による糖転移反応をほぼ定量的に行うことができたとも報告して いる (非特許文献 6参照)。しかしながら、この方法で得られる糖鎖化合物は糖べプチ ドではない。  [0008] In addition, C. —H. Wong et al. Improved a group bonded to aminated silica as a solid phase carrier, extended a sugar chain by glycosyltransferase, and then released the sugar chain by hydrazine decomposition. It has also been reported that the glycosyltransferase reaction by the enzyme has been performed almost quantitatively (see Non-Patent Document 6). However, the sugar chain compound obtained by this method is not a sugar peptide.
[0009] さらに、 C. — H. Wongらは、アミノ化シリカを固相担体とした非特許文献 7のプライ マーに Fmocアミノ酸および Fmoc—Thr ( j8 GlcNAc)—OHを用いてペプチド鎖を 伸長させ、次いでペプチド鎖上の保護基を脱離させ、その後上述の GlcNAc残基に 糖転移酵素を用いて糖鎖を伸長させ、テトラキストリフエ-ルホスフィンパラジウムで 処理することにより固相担体上で合成した糖ペプチドを遊離させる方法を報告して ヽ る (非特許文献 7参照)。この方法で得られる糖ペプチド鎖はアミノ酸残基 8つ力ゝらな つており、ペプチド鎖としては十分な長さを有しているが、得られた糖ペプチドは最初 に固相担体に導入したアミノ酸に対する収率が 10%以下であり、十分なものとはい えない。また、ペプチド合成と糖鎖合成を通じて未反応物などの不純物が蓄積する ため、ペプチド鎖と糖鎖構造がそれぞれ複雑になると目的物の単離精製が困難にな る。さらに、ペプチドの自動合成は通常有機溶媒中で、糖転移酵素による糖鎖合成 は通常水溶液中で行われ、それぞれの反応で求められる担体の性質は異なるため、 ひとつの担体上でペプチドも糖鎖も自動合成することは困難である。 [0009] In addition, C. — H. Wong et al. Extended the peptide chain using Fmoc amino acid and Fmoc-Thr (j8 GlcNAc) —OH to the primer of Non-Patent Document 7 using aminated silica as a solid phase support. Next, the protecting group on the peptide chain is removed, and then the sugar chain is extended to the above-mentioned GlcNAc residue using a glycosyltransferase and treated with tetrakistriphenylphosphine palladium on the solid support. A method for releasing a synthesized glycopeptide will be reported (see Non-Patent Document 7). The glycopeptide chain obtained by this method has 8 amino acid residues and has a sufficient length as a peptide chain, but the obtained glycopeptide was first introduced into a solid support. The yield based on amino acids is less than 10%, which is not sufficient. In addition, impurities such as unreacted substances accumulate through peptide synthesis and sugar chain synthesis, so that isolation and purification of the target product becomes difficult if the peptide chain and sugar chain structure are complex. The In addition, automatic peptide synthesis is usually carried out in an organic solvent, and glycosylation by glycosyltransferase is usually carried out in an aqueous solution, and the properties of the carrier required for each reaction are different. Even automatic synthesis is difficult.
[0010] また、 M. Meldalらは、ジァミノ化ポリエチレングリコールのモノおよびジァクリロイル 化体の重合体に、糖ペプチド誘導体を結合させたものをプライマーとし、糖転移酵素 を用いて糖鎖を伸長させた後、トリフルォロ酢酸により糖鎖を遊離させる方法を報告 している(非特許文献 8参照)。しかし、この方法で得られる糖ペプチドのペプチド鎖 は Asn (ァスパラギン)—Gly (グリシン)であり、糖ペプチドと呼ぶにはあまりに短い。 また、 C末端のグリシン残基はグリシンアミド残基となっており、場合によってはグリシ ンアミド残基をグリシン残基に変換する必要がある。  [0010] In addition, M. Meldal et al. Used a glycopeptide derivative bound to a polymer of mono- and di-acryloylated diamethylene polyethylene glycol as a primer, and extended the sugar chain using glycosyltransferase. Subsequently, a method for releasing sugar chains with trifluoroacetic acid has been reported (see Non-Patent Document 8). However, the peptide chain of the glycopeptide obtained by this method is Asn (asparagine) -Gly (glycine), which is too short to be called a glycopeptide. In addition, the C-terminal glycine residue is a glycinamide residue, and in some cases, it is necessary to convert the glycinamide residue to a glycine residue.
[0011] S. Rothらは、特許文献 1に以下のような方法を開示している。まず、糖転移酵素の 糖受容体を固相担体に結合させ、これをァフィ二ティ吸着体とし、この糖受容体と結 合することのできる糖転移酵素を含む組織抽出液を接触させることにより、糖転移酵 素をァフィ二ティ吸着体に結合させる。次いで、この糖転移酵素が結合したァフィ二 ティ吸着体をこの糖転移酵素が糖供与体として利用できる糖ヌクレオチドを含む溶液 と接触させることにより、糖転移酵素をァフィ-ティ吸着体力 遊離させるとともに糖受 容体に糖残基をひとつ伸長させる。さらにこの糖残基がひとつ伸長した糖受容体と結 合することのできる糖転移酵素を含む組織抽出液を接触させ、同様のことを繰り返し 所望の糖鎖を固相担体上に合成するというものである。し力しながら、この方法の有 用性あるいは非天然型の糖ペプチド合成への適用を示す具体的なデータは示され ておらず、得られた糖鎖を固相担体力 遊離させる方法も開示されていない。  S. Roth et al. Disclose the following method in Patent Document 1. First, a glycosyltransferase sugar receptor is bound to a solid phase carrier, this is used as an affinity adsorbent, and a tissue extract containing a glycosyltransferase that can bind to this sugar receptor is contacted. The glycosyltransferase is bound to the affinity adsorbent. Subsequently, the affinity adsorbent to which the glycosyltransferase is bound is brought into contact with a solution containing a sugar nucleotide that can be used as a sugar donor by the glycosyltransferase, thereby releasing the glycosyltransferase and the sugar adsorbent. Extends one sugar residue to the receptor. Furthermore, a tissue extract containing a glycosyltransferase capable of binding to a sugar receptor in which one sugar residue is extended is brought into contact, and the same process is repeated to synthesize a desired sugar chain on a solid support. It is. However, there is no specific data showing the usefulness of this method or its application to the synthesis of non-natural glycopeptides, and a method for releasing the resulting sugar chain on the solid phase carrier is also disclosed. It has not been.
[0012] 西村らは、糖ペプチドあるいはネオ糖ペプチド (非天然型の糖ペプチド)の合成に 利用できるプロテアーゼ切断型プライマーおよびそのプライマーを利用した糖ぺプチ ドの製造方法、ならびにそのプライマーの合成に有用な重合性芳香族アミノ酸誘導 体を開示している(特許文献 2参照)。しかし、この方法は糖残基を有するペプチドを ラジカル重合して 、るためラジカルに弱 、硫黄原子を含む糖ペプチドの調製が難し ぐペプチド合成後にカラム精製、重合操作など煩雑な操作が含まれており、固相べ プチドィ匕学合成力 酵素による糖鎖伸長反応への切り替えに時間が力かるという問 題を残している。 [0012] Nishimura et al. Used a protease-cleavable primer that can be used for the synthesis of glycopeptides or neoglycopeptides (non-natural glycopeptides), a method for producing a glycopeptide using the primer, and synthesis of the primer. A useful polymerizable aromatic amino acid derivative is disclosed (see Patent Document 2). However, this method involves complicated operations such as column purification and polymerization after peptide synthesis, since the peptide having a sugar residue is radically polymerized, and thus is weak in radicals and difficult to prepare glycopeptides containing sulfur atoms. The problem is that it takes time to switch to a sugar chain elongation reaction by an enzyme. The title is left.
[0013] このように、装置化および精製が簡易で糖ペプチドを迅速かつ収率よく製造するた めのプライマーはいまだに存在せず、化学法によるペプチド自動合成と酵素法によ る糖鎖自動合成を効率的に結びつけることのできる新しい技術は、ポストゲノム、ボス トプロテオミクスを担うグライコミクス、グライコプロテオミタスの時代において非常に重 要であり、その開発は渴望されている。実際にここに例示した装置化を志向した糖べ プチド合成法では糖ペプチドライブラリーと呼べる多品種合成や複雑な天然型糖鎖 または複数の糖鎖を含む糖ペプチド合成例はない。  [0013] In this way, there are no primers for producing glycopeptides quickly and in a high yield with simple equipment and purification, and automatic peptide synthesis by chemical methods and automatic sugar chain synthesis by enzymatic methods. New technologies that can efficiently link these are very important in the era of post-genomics, glycomics responsible for postproteomics, and glycoproteomics, and their development is envied. In fact, there are no examples of synthesizing glycopeptides intended for instrumentation, such as multi-product synthesis that can be called glycopeptide libraries, and synthesis of glycopeptides containing complex natural sugar chains or multiple sugar chains.
[0014] ムチンは、気管、胃腸などの消化管、生殖腺などの内腔を覆う粘液の主要な糖タン ノ ク質である。 MUC1は、上皮細胞の膜結合糖タンパク質であり、詳細に検討された 最初のムチンである。 MUC1は O—結合型糖鎖の付カ卩しうるセリンおよびスレオニン を含むアミノ酸配列の繰り返しであるタンデムリピート(HGVTSAPDTRPAPGSTA PPA (配列番号 41) ) 、う特徴的な構造をもつ巨大な細胞表面分子である。糖鎖の 付カ卩はすべてのセリンおよびスレオニンに起こるのではなぐ糖鎖の伸張度も多様で あることから、同じアミノ酸配列を有して 、たとしても機能の異なる数多くの糖タンパク 質が存在しうる。 [0014] Mucin is the main glycoprotein of mucus that covers the lumen of the gastrointestinal tract such as the trachea, gastrointestinal tract, and gonads. MUC1 is a membrane-bound glycoprotein of epithelial cells and the first mucin that has been studied in detail. MUC1 is a tandem repeat (HGVTSAPDTRPAPGSTA PPA (SEQ ID NO: 41)), a repetitive amino acid sequence containing serine and threonine that can be attached to an O-linked sugar chain. is there. Since sugar chain attachments do not occur in all serines and threonines, the degree of sugar chain extension varies, so there are many glycoproteins with the same amino acid sequence but different functions. Yes.
[0015] MUC1は、癌化の進行と共にその発現レベルが変化することが報告されて 、る(非 特許文献 9 :Nakamori, S. ;Ota, D. M. ; Karen, R. ; Shirotani, K. ;Irimura , T. Gastroenterology, 1994, 106, 353— 361. ) 0例えば結腸直腸癌では進 行段階の原発腫瘍や転移病巣で MUC 1の発現上昇が認められて 、る。さらに MU C1のグリコシレーシヨンの度合い (糖鎖の導入個所)および糖鎖構造が、正常上皮由 来のものと癌細胞由来のものとで異なるという報告例(非特許文献 10 : Lloyd, K. O . ; Burcneli, J. ; Kudryashov, V. ; Yin, B. W. T. ; Taylor— Papadimitnou, J . J. Biol. Chem. , 1996, 271, 33325— 33334. ;特許文献 11 :Hanisch, F. — G. ; Mueller, S. Glycobiology, 2000, 10, 439—449.; Hま数多!/、。 ί列え ίま、、 正常細胞ではグリコシルイ匕されて 、るペプチドであっても、癌細胞ではグリコシルイ匕さ れずに細胞表面に露出する場合がある。そのような場合は露出したペプチド部分が ェピトープとなる。これらの露出したェピトープが、肺癌、乳癌、結腸癌、膝癌由来の 上皮細胞株の細胞膜に見いだされている。具体的には、乳癌の患者から単離された 細胞傷害性 Tリンパ球は MUC1タンパク質のグリコシル化を受けて!/、な!/、ペプチドを 認識する。一方、癌関連糖鎖抗原である Tn、 Τのような母核構造及びそれらにシァ ル酸が結合したシァリル Τη、シァリル Τ、さらにシァリルルイス Α抗原、シァリルルイス X抗原が癌細胞膜のムチンや癌患者血清中のムチンに見いだされている。 [0015] It has been reported that the expression level of MUC1 changes with the progression of canceration (Non-patent Document 9: Nakamori, S .; Ota, DM; Karen, R .; Shirotani, K .; Irimura , T. Gastroenterology, 1994, 106, 353—361.) 0 For example, in colorectal cancer, increased expression of MUC 1 has been observed in primary tumors and metastatic lesions in the advanced stage. Furthermore, there is a report that the degree of glycosylation of MU C1 (where sugar chains are introduced) and the structure of sugar chains differ between those derived from normal epithelium and those derived from cancer cells (Non-patent Document 10: Lloyd, K. Burcneli, J .; Kudryashov, V .; Yin, BWT; Taylor- Papadimitnou, J. J. Biol. Chem., 1996, 271, 33325- 33334 .; Patent Document 11: Hanisch, F. — G. Mueller, S. Glycobiology, 2000, 10, 439—449 .; H Hundreds! /, Ί え ί, even in normal cells, glycosylated peptides, even in cancer cells, In some cases, the exposed peptide moieties become epitopes, which are derived from lung cancer, breast cancer, colon cancer, and knee cancer. It is found in the cell membrane of epithelial cell lines. Specifically, cytotoxic T lymphocytes isolated from breast cancer patients undergo glycosylation of the MUC1 protein and recognize peptides! On the other hand, Tn, which is a cancer-related sugar chain antigen, and a mother nucleus structure such as 及 び, and sialyl Τη, sialyl し た, and sialyl Lewis Α antigen and sialyl Lewis X antigen combined with sialic acid, are mucin of cancer cell membrane and cancer patient serum. It is found in the mucin inside.
[0016] 近年、このような癌化に伴う MUC1の特異的な変化をターゲットとした創薬'診断薬 への応用が注目されている(非特許文献 12 :Koganty, R. R. ; Reddish, M. R. ; Longenecker, B. M. Drug Discov. Today, 1996, 1, 190—198.;)。例えば 、 Biomira- Merck 社は、リポソ一マル製剤において、 MUC1癌ムチンの 25ァミノ 酸のシーケンスを取り入れた合成 MUC 1ペプチドワクチン:「L BLP25」を開発中 であり、肺癌、前立腺癌をターゲットに Phasell臨床試験を実施中である。さらに Bio mira— Merck社は、癌細胞上のムチンに特異的に発現した STn (二糖体)をターゲ ットとした合成 STnに抗体の産生や T 細胞反応を刺激する KLH (Keyhole limp et hemocyanin)をキャリアタンパクとして結合させた合成ワクチン:「Theratope」 を乳癌、直腸癌を対象に Phaselll臨床開発中である。  [0016] In recent years, application to drug discovery and diagnostics targeting specific changes in MUC1 accompanying such canceration has attracted attention (Non-patent Document 12: Koganty, RR; Reddish, MR; Longenecker , BM Drug Discov. Today, 1996, 1, 190-198 .;). For example, Biomira-Merck is developing a synthetic MUC 1 peptide vaccine that incorporates a 25-amino acid sequence of MUC1 cancer mucin in a liposomal formulation: “L BLP25”. Phasell targets lung cancer and prostate cancer. A clinical trial is ongoing. In addition, Bio mira—Merck has developed KLH (Keyhole limp et hemocyanin) that stimulates antibody production and T-cell responses to STn (disaccharide) specifically expressed in mucin on cancer cells. ) As a carrier protein: “Theratope” is currently under clinical development for breast cancer and rectal cancer.
[0017] 西村らは、糖ペプチド合成するための水溶性高分子プライマーを開発した (特許文 献 3)。特許文献 3には、末端にアルデヒド基またはケトン基を有し、ペプチド固相合 成用の光切断型リンカ一を含む糖ペプチド誘導体を高分子プライマーへと変換し、こ れを利用して糖ペプチドを製造することが記載されている。西村らはまた、ムチン型 ペプチドを合成する方法と、 MUC1に関連する糖ペプチドを開発した (特許文献 4) 。特許文献 4は、末端にアルデヒド基またはケトン基を有し、プロテアーゼにより切断 可能なアミノ酸残基を含む糖ペプチド誘導体をプライマーへと変換し、これを用いて 糖ペプチドを製造することが記載されて 、る。  [0017] Nishimura et al. Developed a water-soluble polymer primer for synthesizing glycopeptides (Patent Document 3). In Patent Document 3, a glycopeptide derivative having an aldehyde group or a ketone group at the end and containing a photocleavable linker for peptide solid phase synthesis is converted into a polymer primer, which is used for sugar conversion. The production of peptides is described. Nishimura et al. Also developed a method for synthesizing mucin-type peptides and a glycopeptide related to MUC1 (Patent Document 4). Patent Document 4 describes that a glycopeptide derivative having an aldehyde group or a ketone group at the end and containing an amino acid residue that can be cleaved by a protease is converted into a primer, and a glycopeptide is produced using this. RU
特許文献 1:特表平 5 - 500905号公報  Patent Document 1: Japanese Patent Publication No. 5-500905
特許文献 2:特開 2001— 220399号公報  Patent Document 2: JP 2001-220399 A
特許文献 3:国際公開第 2005Z108417号パンフレット  Patent Document 3: International Publication No. 2005Z108417 Pamphlet
特許文献 4:国際公開第 2006Z030840号パンフレット  Patent Document 4: Pamphlet of International Publication No. 2006Z030840
非特許文献 l : Carbohvdr. Res. , 124, 23 (1983) 非特許文献 2:Carbohydr. Res. , 228, 255(1992) Non-patent literature l: Carbohvdr. Res., 124, 23 (1983) Non-Patent Document 2: Carbohydr. Res., 228, 255 (1992)
非特許文献 3:React. Polym. , 22, 171(1994)  Non-Patent Document 3: React. Polym., 22, 171 (1994)
非特許文献 4:Carbohydr. Res. , 265, 161(1994)  Non-Patent Document 4: Carbohydr. Res., 265, 161 (1994)
非特許文献 5 :J. Am. Chem. Soc. , 116、 1136(1994)  Non-Patent Document 5: J. Am. Chem. Soc., 116, 1136 (1994)
非特許文献 6 :J. Am. Chem. Soc. , 116、 11315(1994)  Non-Patent Document 6: J. Am. Chem. Soc., 116, 11315 (1994)
非特許文献 7 :J. Am. Chem. Soc. , 119、 8766(1997)  Non-Patent Document 7: J. Am. Chem. Soc., 119, 8766 (1997)
非特許文献 8 :J. Chem. Soc. Chem. Commun. , 1849(1994)  Non-Patent Document 8: J. Chem. Soc. Chem. Commun., 1849 (1994)
非特許文献 9 Gastroenterology, 106, 353-361(1994)  Non-Patent Document 9 Gastroenterology, 106, 353-361 (1994)
非特許文献 10: Biol. Chem. , 271, 33325-33334(1996)  Non-Patent Document 10: Biol. Chem., 271, 33325-33334 (1996)
非特許文献 ll:Glycobiology, 10, 439-449(2000)  Non-Patent Document ll: Glycobiology, 10, 439-449 (2000)
非特許文献 12:Drug Discov. Today, 1, 190—198(1996)  Non-Patent Document 12: Drug Discov. Today, 1, 190-198 (1996)
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0018] 本発明の課題は、ボリラクトサミン骨格を有するムチン型糖ペプチドを製造する際の プライマーとして有用な新規ィ匕合物、およびそのプライマーを使用して、ポリラタトサミ ン骨格を有するムチン型糖ペプチドを製造する方法を提供し、生化学研究材料、医 薬、食品など幅広い分野で有用な、これまでその製造が困難であったボリラクトサミン 骨格を有するムチン型糖ペプチド類を製造することにある。 [0018] An object of the present invention is to provide a novel compound useful as a primer for producing a mucin-type glycopeptide having a borilactosamine skeleton, and a mucin-type glycopeptide having a polyratatosamine skeleton using the primer. The purpose of the present invention is to provide a production method, and to produce mucin-type glycopeptides having a borilactosamine skeleton, which has been difficult to produce so far, which is useful in a wide range of fields such as biochemical research materials, medicines and foods.
[0019] 本発明の別の課題は、予め合成されたボリラクトサミン骨格を有する糖アミノ酸を用 いて、所望のペプチド配列を有する糖ペプチドを合成することにより、ボリラクトサミン 骨格を有する糖ペプチドを製造する方法を提供することにある。 [0019] Another subject of the present invention is a method for producing a glycopeptide having a voralactosamine skeleton by synthesizing a glycopeptide having a desired peptide sequence using a previously synthesized saccharide amino acid having a vorolactosamine skeleton. It is to provide.
課題を解決するための手段  Means for solving the problem
[0020] 本発明者らは鋭意検討した結果、末端にアルデヒド基またはケトン基を有し、プロテ ァーゼにより切断可能なアミノ酸残基を含む新規な糖ペプチド誘導体は、そのアル デヒド基またはケトン基を介して所定の担体に強固に結合させることができ、しかもこ の結合はプロテアーゼによる加水分解条件下において分解しないため、ボリラクトサ ミン骨格を有するムチン型糖ペプチドの製造に適したプライマーとして機能すること、 ならびにこのプライマーを使用することにより、従来は多段階の精製を要していたポリ ラタトサミン骨格を有するムチン型糖ペプチドの精製を簡易にし、ボリラクトサミン骨格 を有するムチン型糖ペプチドを迅速かつ収率よく製造できることを見出し、上記課題 を解決した。 As a result of intensive studies, the present inventors have found that a novel glycopeptide derivative having an aldehyde group or a ketone group at the end and containing an amino acid residue that can be cleaved by a protease has an aldehyde group or a ketone group. And this bond does not degrade under the hydrolysis conditions with proteases, and therefore functions as a primer suitable for the production of mucin-type glycopeptides having a polylactosamine skeleton, And the use of this primer, The present inventors have found that a mucin-type glycopeptide having a ratatosamine skeleton can be easily purified, and that a mucin-type glycopeptide having a borilactosamine skeleton can be produced quickly and in a high yield.
[0021] 本発明者らはまた、予め合成されたボリラクトサミン骨格を有する糖アミノ酸を保護 基により保護し、保護されたアミノ酸を用いて、所望のペプチド配列を有する糖ぺプ チドを合成することにより、ボリラクトサミン骨格を有する糖ペプチドを製造できることを 見出した。本方法は、プロテアーゼにも光切断にも依存しない。従って、本方法により 、プロテアーゼまたは光切断により切断されやす 、性質を有するアミノ酸残基を含む 糖ペプチドを合成することが可能となった。  [0021] The present inventors also protected a sugar amino acid having a pre-synthesized voralactosamine skeleton with a protecting group, and synthesized a sugar peptide having a desired peptide sequence using the protected amino acid. The present inventors have found that a glycopeptide having a borilactosamine skeleton can be produced. The method is independent of proteases or photocleavage. Therefore, this method makes it possible to synthesize glycopeptides containing amino acid residues having properties that are easily cleaved by protease or photocleavage.
[0022] 本発明はまた、上記プライマーを用いた糖ペプチドの製造方法により、生化学研究 材料、医薬、食品など幅広い分野で有用であり、これまでその製造が困難であったム チン型糖ペプチド類が合成できることを見出し、本発明を完成した。  The present invention also provides a mucin-type glycopeptide that has been useful in a wide range of fields such as biochemical research materials, pharmaceuticals, and foods by the method for producing a glycopeptide using the above-described primer and has been difficult to produce so far. The present invention has been completed.
[0023] 本発明の MUC1および MUC1ペプチドライブラリ一は、 MUC1の機能解明に有 効であり、またそこから得られる知見を基にした新たな創薬の可能性が考えられる。 糖ペプチドを用いた研究として、例えば、糖ペプチドライブラリーの固定化'チップィ匕 、抗体反応スクリーニング、特異抗体の探索、抗原 抗体反応における構造活性相 関調査、特異性'選択性の高いモノクローナル抗体の作成、さらに抗体医薬、糖ぺプ チドを用いたワクチン療法等への展開が考えられる。  [0023] The MUC1 and MUC1 peptide library of the present invention are effective for elucidating the function of MUC1, and the possibility of new drug discovery based on the knowledge obtained therefrom is considered. Studies using glycopeptides include, for example, immobilization of glycopeptide libraries 'chipies', antibody reaction screening, search for specific antibodies, structure-activity relationship investigations in antigen-antibody reactions, specificity's of highly selective monoclonal antibodies Development of antibody drugs and vaccine therapy using glycopeptides is also possible.
[0024] このように、本発明では以下を提供する。  [0024] Thus, the present invention provides the following.
(項目 1)  (Item 1)
以下の式:  The following formula:
X— C ( = 0)—(CH ) — A— A— A (I)  X— C (= 0) — (CH) — A— A— A (I)
2 n 1 2 3  2 n 1 2 3
式中、 Xは、水素原子、 c〜c アルキル、 c〜  Wherein X is a hydrogen atom, c-c alkyl, c-
6 c ァリールまたは発色団を表し; 6 c represents a reel or chromophore;
1 30 30 1 30 30
nは 0〜20の整数を表し;  n represents an integer of 0 to 20;
Aは、—(CH ) — C ( = 0)—、—(CH CH O) —、重合度 1〜10のオリゴ A is — (CH 2) — C (= 0) —, — (CH 2 CH 2 O) —, an oligo with a degree of polymerization of 1-10.
1 2 0〜20 2 2 1〜10 1 2 0 ~ 20 2 2 1 ~ 10
もしくはポリアクリルアミド、重合度 1〜: LOのオリゴもしくはポリペプチド、酸素原子また は NHを表し;  Or polyacrylamide, polymerization degree 1 to: oligo or polypeptide of LO, oxygen atom or NH;
Aは、プロテアーゼにより切断可能なアミノ酸残基を表し; Aは、実質的にプロテアーゼにより切断可能な部位を含まない糖アミノ酸残基、まA represents an amino acid residue cleavable by a protease; A is a sugar amino acid residue substantially free of a site cleavable by a protease, or
3 Three
たはプロテアーゼにより切断可能な部位を含まず任意の糖アミノ酸を含む糖ペプチド 残基を表し、該糖アミノ酸残基または該糖ペプチド残基が、以下の式: Alternatively, it represents a glycopeptide residue containing any sugar amino acid without a site cleavable by a protease, and the sugar amino acid residue or the glycopeptide residue is represented by the following formula:
[化 14-1] [Chemical 14-1]
Figure imgf000010_0001
Figure imgf000010_0001
式中、 R1および R6は、それぞれ独立して、水素、 N—ァセチルノイラミン酸 (Neu5 Ac)基または N—ァセチルダルコサミン(GlcNAc)基であり; In which R 1 and R 6 are each independently hydrogen, N-acetylethylneuraminic acid (Neu5 Ac) group or N-acetylethyldarcosamine (GlcNAc) group;
R2および R7は、ガラクトース(Gal)基であり; R 2 and R 7 are galactose (Gal) groups;
R3および R8は、 GlcNAc基であり; R 3 and R 8 are GlcNAc groups;
R4および R9は、 Gal基であり; R 4 and R 9 are Gal groups;
R5は、 GlcNAc基であり; R 5 is a GlcNAc group;
R10は、 N—ァセチル— a— D—ガラクトサミン(GalNAc)基であり; R 10 is an N-acetyl-a-D-galactosamine (GalNAc) group;
Z2および Z3は、それぞれ独立して、水素またはフコース (Fuc)基であり;ならび に Z 2 and Z 3 are each independently hydrogen or a fucose group; and
nおよび mは、それぞれ独立して、 0以上の整数であり;  n and m are each independently an integer of 0 or more;
ここで、 R1と R2との間の結合は、 R1が Neu5Ac基の場合、 a 2, 3結合であり、 R1が GlcNAc基の場合、 j81, 3結合であり; Here, the bond between R 1 and R 2 is a 2, 3 bond when R 1 is Neu5Ac group, and j81, 3 bond when R 1 is GlcNAc group;
R2と R3との間の結合は、 β ΐ, 4結合であり; The bond between R 2 and R 3 is a β ΐ, 4 bond;
R3と R4との間の結合は、 β ΐ, 3結合であり; The bond between R 3 and R 4 is a β ΐ, 3 bond;
R4と R5との間の結合は、 β ΐ, 4結合であり; The bond between R 4 and R 5 is a β ΐ, 4 bond;
R6と R7との間の結合は、 R6が Neu5Ac基の場合、 α 2, 3結合であり、 R6が GlcNA c基の場合、 ΐ, 3結合であり; The bond between R 6 and R 7 is an α 2,3 bond when R 6 is a Neu5Ac group, and a ΐ, 3 bond when R 6 is a GlcNA c group;
R7と R8との間の結合は、 β ΐ, 4結合であり; The bond between R 7 and R 8 is a β ΐ, 4 bond;
R8と R9との間の結合は、 β ΐ, 3結合であり; The bond between R 8 and R 9 is a β ΐ, 3 bond;
R9と R1Gとの間の結合は、 β ΐ, 3結合であり; The bond between R 9 and R 1G is a β ΐ, 3 bond;
R5と R1Gとの間の結合は、 β ΐ, 6結合であり; Z1と R3との間の結合は、 《1, 3結合であり; The bond between R 5 and R 1G is a β ΐ, 6 bond; The bond between Z 1 and R 3 is << 1, 3 bond;
Ζ2と R5との間の結合は、 《1, 3結合であり;ならびに The bond between Ζ 2 and R 5 is << 1, 3 bond; and
Ζ3と R8との間の結合は、 《1, 3結合である、 The bond between Ζ 3 and R 8 is << 1, 3 bond,
で表される糖残基を有する、化合物。 A compound having a sugar residue represented by:
(項目 2) (Item 2)
前記 Αは、バシラス リケ-ホルミス(Bacillus Licheniformis)由来のプロテアThe cocoon is a protea derived from Bacillus Licheniformis
2 一 ゼで切断可能なグルタミン酸残基またはシスティン残基である、項目 1に記載の化合 物。 2. The compound according to item 1, wherein the compound is a glutamic acid residue or a cysteine residue that can be cleaved together.
(項目 3)  (Item 3)
前記 Aの少なくとも一部力 ムチン型糖タンパク質 MUC1由来の配列番号 1〜60にAt least a partial force of A in mucin-type glycoprotein MUC1-derived SEQ ID NOs: 1 to 60
3 Three
示されるアミノ酸配列からなる群から選択されるアミノ酸配列を有する、項目 1に記載 の化合物。 2. A compound according to item 1, having an amino acid sequence selected from the group consisting of the amino acid sequences shown.
(項目 4)  (Item 4)
項目 1に記載の化合物と、保護されていてもよいアミノォキシ基、 N アルキルアミノ ォキシ基、ヒドラジド基、アジド基、チォセミカルバジド基、 1, 2—ジチオール基およ びシスティン残基からなる群から選択される官能基を含む担体と、が反応して得られ る、化合物。 Selected from the group consisting of the compound described in Item 1 and an optionally protected aminooxy group, N alkylaminooxy group, hydrazide group, azide group, thiosemicarbazide group, 1,2-dithiol group, and cysteine residue A compound obtained by reacting with a carrier containing a functional group.
(項目 5) (Item 5)
前記担体は、以下: The carrier is:
a)保護されて!、てもよ 、アミノォキシ基またはヒドラジド基を有する、ビュル系単量 体の重合体もしくは共重合体、または保護されて 、てもよ 、アミノォキシ基またはヒド ラジド基を有するポリエーテル類;  a) Protected !, which may be a polymer or copolymer of a butyl monomer having an aminooxy group or a hydrazide group, or a polymer having a protected amino acid group or hydrazide group Ethers;
b)保護されて!、てもよ 、アミノォキシ基またはヒドラジド基を有するシリカ担体、榭脂 担体、磁性ビーズまたは金属担体;ならびに  b) Protected !, which may be a silica support having a aminooxy group or a hydrazide group, a resin support, a magnetic bead or a metal support; and
c)以下の式:  c) the following formula:
[ (NH OCH C ( = 0) ) -Lys] Lys— NHCH CH C ( = 0)— R3 [(NH OCH C (= 0)) -Lys] Lys— NHCH CH C (= 0) — R 3
2 2 2 2 2 2 、  2 2 2 2 2 2,
[ (NH OCH C ( = 0) ) -Lys] Lys— NHCH (CH SH) C ( = 0)— R3 [(NH OCH C (= 0)) -Lys] Lys— NHCH (CH SH) C (= 0) — R 3
2 2 2 2 2 、 2 2 2 2 2,
[ (NH OCH C ( = 0) ) -Lys] — Lys— Cys— NHCH CH C ( = 0)— R3 (配列 番号 61)、 [(NH OCH C (= 0)) -Lys] — Lys— Cys— NHCH CH C (= 0) — R 3 (sequence Number 61),
{[(NH OCH C( = 0)) -Lys] - Lys - NHCH [C ( = O) - R3] CH S} 、{[(NH OCH C (= 0)) -Lys]-Lys-NHCH [C (= O)-R 3 ] CH S},
2 2 2 2 2 22 2 2 2 2 2
{[(NH OCH C( = 0)) -Lys] - Lys - NHCH [C ( = 0) NHCH CH C( = 0{[(NH OCH C (= 0)) -Lys]-Lys-NHCH [C (= 0) NHCH CH C (= 0
2 2 2 2 2 22 2 2 2 2 2
)-R3]CH -S} 、 ) -R 3 ] CH -S},
2 2  twenty two
{[(NH OCH C( = 0)) -Lys] -Lys} Lys— NHCH CH C( = 0)— R3({[(NH OCH C (= 0)) -Lys] -Lys} Lys— NHCH CH C (= 0) — R 3 (
2 2 2 2 2 2 2 2 2 2 2 2 2 2
配列番号 62)、 SEQ ID NO: 62),
{[(NH OCH C( = 0)) -Lys] -Lys} Lys— NHCH (CH SH) C ( = 0)— {[(NH OCH C (= 0)) -Lys] -Lys} Lys— NHCH (CH SH) C (= 0) —
2 2 2 2 2 2 2 2 2 2 2 2
R3 (配列番号 63)、 R 3 (SEQ ID NO: 63),
{[(NH OCH C( = 0)) -Lys] -Lys} Lys— Cys— NHCH CH C( = 0) {[(NH OCH C (= 0)) -Lys] -Lys} Lys— Cys— NHCH CH C (= 0)
2 2 2 2 2 2 22 2 2 2 2 2 2
—R3 (配列番号 64)、 —R 3 (SEQ ID NO: 64),
[[[(NH OCH C( = 0)) -Lys] -Lys] Lys— NHCH[C ( = 0)— R3]CH[[[(NH OCH C (= 0)) -Lys] -Lys] Lys— NHCH [C (= 0) — R 3 ] CH
2 2 2 2 2 2 S] (配列番号 65)、 2 2 2 2 2 2 S] (SEQ ID NO: 65),
2  2
[[[(NH OCH C( = 0)) -Lys] -Lys] - Lys - NHCH [C( = 0) NHCH C [[[(NH OCH C (= 0)) -Lys] -Lys]-Lys-NHCH [C (= 0) NHCH C
2 2 2 2 2 22 2 2 2 2 2
H C( = 0)-R3]CH -S] (配列番号 66)、 HC (= 0) -R 3 ] CH -S] (SEQ ID NO: 66),
2 2 2  2 2 2
[化 14-2]  [Chemical 14-2]
[ (NH2 OCH2 C (=0) ) 2 Ly s] NHCHC (=0) — R 3 [(NH 2 OCH 2 C (= 0)) 2 Ly s] NHCHC (= 0) — R 3
I  I
[ (NH2 OCH 2 C (=0) ) 2 -Ly s] -NH (CH2 ) 4 [(NH 2 OCH 2 C (= 0)) 2 -Ly s] -NH (CH 2 ) 4
または Or
{ [ (NH 2 OCH 2 C ( = 0) ) 2 - L y s ] 2 -L y s } -NHCHC ( = 0) -R3 {[(NH 2 OCH 2 C (= 0)) 2-L ys] 2 -L ys} -NHCHC (= 0) -R 3
I  I
{ [ (NH2 OCH2 C (-O) ) a -L y s] 2 ~ L y s } 匪 (CH2 ) 4 {[(NH 2 OCH 2 C (-O)) a -L ys] 2 ~ L ys} 匪 (CH 2 ) 4
式中、 R3はヒドロキシル基またはアミノ基を表し、 Lysはリジン残基を表し、 Cysは システィンを表す、 In the formula, R 3 represents a hydroxyl group or an amino group, Lys represents a lysine residue, Cys represents cysteine,
[化 14-3]
Figure imgf000013_0001
[Chemical 14-3]
Figure imgf000013_0001
式中、 nは 1〜15の整数であり、 x:yは 1 : 0〜1 : 1000である、  Where n is an integer from 1 to 15 and x: y is 1: 0 to 1: 1000,
で表される化合物、からなる群から選択される、項目 4に記載の化合物。 5. The compound according to item 4, selected from the group consisting of:
(項目 6) (Item 6)
以下の式: The following formula:
A N = C (— X)— (CH ) A -A -A (II)  A N = C (— X) — (CH) A -A -A (II)
4 2 n 1 2 3  4 2 n 1 2 3
式中、 Xは水素原子、 c〜  Where X is a hydrogen atom, c to
1 c アルキル、  1 c alkyl,
30 c〜  30 c ~
6 c ァリールまたは発色団を表し; 30  6 c represents aryl or chromophore; 30
nは 0〜20の整数を表し;  n represents an integer of 0 to 20;
Aは、—(CH ) — C ( = 0)—、—(CH CH O) —、重合度 1〜10のオリゴ A is — (CH 2) — C (= 0) —, — (CH 2 CH 2 O) —
1 2 0〜20 2 2 1〜10 1 2 0 ~ 20 2 2 1 ~ 10
もしくはポリアクリルアミド、重合度 1〜: LOのオリゴもしくはポリペプチド、酸素原子また は NHを表し; Or polyacrylamide, polymerization degree 1 to: oligo or polypeptide of LO, oxygen atom or NH;
Aは、バシラス リケ-ホルミス(Bacillus Licheniformis)由来のプロテアーゼで A is a protease derived from Bacillus Licheniformis.
2 2
切断可能なグルタミン酸残基またはシスティン残基であり; A cleavable glutamic acid residue or cysteine residue;
Aは、実質的にプロテアーゼにより切断可能な部位を含まない糖アミノ酸残基、ま A is a sugar amino acid residue substantially free of a site cleavable by a protease, or
3 Three
たはプロテアーゼにより切断可能な部位を含まず任意の糖アミノ酸を含む糖ペプチド 残基を表し、該糖アミノ酸残基または該糖ペプチド残基が、以下の式:
Figure imgf000014_0001
Alternatively, it represents a glycopeptide residue containing any sugar amino acid without a site cleavable by a protease, and the sugar amino acid residue or the glycopeptide residue is represented by the following formula:
Figure imgf000014_0001
式中、 Rおよび Rは、それぞれ独立して、水素、 Neu5Ac基または GlcNAc基で あり;  Wherein R and R are each independently hydrogen, Neu5Ac group or GlcNAc group;
R2および R7は、 Gal基であり; R 2 and R 7 are Gal groups;
R3および R8は、 GlcNAc基であり; R 3 and R 8 are GlcNAc groups;
R4および R9は、 Gal基であり; R 4 and R 9 are Gal groups;
R5は、 GlcNAc基であり; R 5 is a GlcNAc group;
R10は、 GalNAc基であり; R 10 is a GalNAc group;
Z2および Z3は、それぞれ独立して、水素または Fuc基であり;ならびに nおよび mは、それぞれ独立して、 0以上の整数であり; Z 2 and Z 3 are each independently hydrogen or a Fuc group; and n and m are each independently an integer of 0 or more;
ここで、 R1と R2との間の結合は、 R1が Neu5Ac基の場合、 a 2, 3結合であり、 R1が GlcNAc基の場合、 j81, 3結合であり; Here, the bond between R 1 and R 2 is a 2, 3 bond when R 1 is Neu5Ac group, and j81, 3 bond when R 1 is GlcNAc group;
R2と R3との間の結合は、 β ΐ, 4結合であり; The bond between R 2 and R 3 is a β ΐ, 4 bond;
R3と R4との間の結合は、 β ΐ, 3結合であり; The bond between R 3 and R 4 is a β ΐ, 3 bond;
R4と R5との間の結合は、 β ΐ, 4結合であり; The bond between R 4 and R 5 is a β ΐ, 4 bond;
R6と R7との間の結合は、 R6が Neu5Ac基の場合、 α 2, 3結合であり、 R6が GlcNA c基の場合、 ΐ, 3結合であり; The bond between R 6 and R 7 is an α 2,3 bond when R 6 is a Neu5Ac group, and a ΐ, 3 bond when R 6 is a GlcNA c group;
R7と R8との間の結合は、 β ΐ, 4結合であり; The bond between R 7 and R 8 is a β ΐ, 4 bond;
R8と R9との間の結合は、 β ΐ, 3結合であり; The bond between R 8 and R 9 is a β ΐ, 3 bond;
R9と R1Gとの間の結合は、 β ΐ, 3結合であり; The bond between R 9 and R 1G is a β ΐ, 3 bond;
R5と R1Gとの間の結合は、 β ΐ, 6結合であり; The bond between R 5 and R 1G is a β ΐ, 6 bond;
Ζ1と R3との間の結合は、《1, 3結合であり; The bond between Ζ 1 and R 3 is << 1 , 3 bond;
Ζ2と R5との間の結合は、《1, 3結合であり;ならびに The bond between Ζ 2 and R 5 is << 1, 3 bond; and
Ζ3と R8との間の結合は、《1, 3結合である、 The bond between Ζ 3 and R 8 is << 1, 3 bond,
で表される糖残基を有する; Aは、以下の式: Having a sugar residue represented by: A is the following formula:
4  Four
[化 14-5]  [Chemical 14-5]
Figure imgf000015_0001
Figure imgf000015_0001
式中、 sは 1〜15の整数であり、 x:yは 1 : 0〜1 : 1000である)で表される基である で表される化合物。  In the formula, s is an integer of 1 to 15, and x: y is a group represented by 1: 0 to 1: 1000).
(項目 7) (Item 7)
前記 Aの少なくとも一部力 ムチン型糖タンパク質 MUC1由来の配列番号 1〜60にAt least a partial force of A in mucin-type glycoprotein MUC1-derived SEQ ID NOs: 1-60
3 Three
示されるアミノ酸配列からなる群から選択されるアミノ酸配列を有する、項目 6に記載 の化合物。 7. A compound according to item 6, having an amino acid sequence selected from the group consisting of the amino acid sequences shown.
(項目 8) (Item 8)
以下の工程: The following steps:
(A)項目 1〜3のいずれか 1項に記載の化合物と、該化合物のケトン残基またはアル デヒド残基と特異的に反応しうる、保護されていてもよいアミノォキシ基、 N—アルキ ルァミノォキシ基、ヒドラジド基、アジド基、チォセミカルバジド基、 1, 2—ジチオール 基およびシスティン残基からなる群から選択される官能基を含む担体と、を反応させ る工程; (A) The compound according to any one of items 1 to 3, and an optionally protected aminooxy group, N-alkylaminooxy, which can specifically react with a ketone residue or an aldehyde residue of the compound And a carrier containing a functional group selected from the group consisting of a group, a hydrazide group, an azide group, a thiosemicarbazide group, a 1,2-dithiol group, and a cysteine residue. Process;
(B)工程 (A)で得た化合物に、糖ヌクレオチドの存在下で糖転移酵素を作用させる ことにより、該糖ヌクレオチドより糖残基を該化合物に転移させ、糖鎖を伸長させたィ匕 合物を得る工程であって、該糖ヌクレオチド力 Gal基、 GlcNAc基、 Fuc基および N eu5Ac基力もなる群より選択される糖残基を有する、工程;  (B) Step (G): A glycosyltransferase is allowed to act on the compound obtained in step (A) in the presence of a sugar nucleotide, thereby transferring a sugar residue from the sugar nucleotide to the compound and extending the sugar chain. A step of obtaining a compound comprising a sugar residue selected from the group consisting of the sugar nucleotide force Gal group, GlcNAc group, Fuc group and Neu5Ac group force;
(C)必要に応じて未反応の糖ヌクレオチド類および副生したヌクレオチド類を除去す る工程;および  (C) removing unreacted sugar nucleotides and by-product nucleotides as necessary; and
(D)糖残基が転移して糖鎖が伸長したィ匕合物にプロテアーゼを作用させる工程、 を包含する、糖ペプチドを製造する方法。  (D) A method for producing a glycopeptide, comprising a step of allowing a protease to act on a compound in which a sugar residue is transferred and a sugar chain is extended.
(項目 9)  (Item 9)
以下の工程: The following steps:
(A)項目 4〜7のいずれか 1項に記載の化合物に、糖ヌクレオチドの存在下で糖転移 酵素を作用させることにより、該糖ヌクレオチドより糖残基を該化合物に転移させ、糖 鎖を伸長させたィ匕合物を得る工程であって、該糖ヌクレオチド力 Gal基、 GlcNAc 基、 Fuc基および Neu5Ac基カゝらなる群より選択される糖残基を有する、工程; (A) By allowing a sugar transferase to act on the compound according to any one of items 4 to 7 in the presence of a sugar nucleotide, the sugar residue is transferred from the sugar nucleotide to the compound, and the sugar chain is Obtaining an elongated compound, the sugar nucleotide force having a sugar residue selected from the group consisting of a Gal group, a GlcNAc group, a Fuc group and a Neu5Ac group;
(B)必要に応じて未反応の糖ヌクレオチド類および副生したヌクレオチド類を除去す る工程;および (B) removing unreacted sugar nucleotides and by-product nucleotides as necessary; and
(C)糖残基が転移して糖鎖が伸長した化合物にプロテアーゼを作用させる工程 を包含する、糖ペプチドを製造する方法。  (C) A method for producing a glycopeptide, comprising a step of allowing a protease to act on a compound having a sugar residue transferred and a sugar chain extended.
(項目 10)  (Item 10)
以下の工程: The following steps:
(A)項目 4〜7のいずれか 1項に記載の化合物に、糖ヌクレオチドの存在下で糖転移 酵素を作用させることにより、該糖ヌクレオチドより糖残基を該化合物に転移させ、糖 鎖を伸長させたィ匕合物を得る工程であって、該糖ヌクレオチド力 Gal基、 GlcNAc 基、 Fuc基および Neu5Ac基カゝらなる群より選択される糖残基を有する、工程; (A) By allowing a sugar transferase to act on the compound according to any one of items 4 to 7 in the presence of a sugar nucleotide, the sugar residue is transferred from the sugar nucleotide to the compound, and the sugar chain is Obtaining an elongated compound, the sugar nucleotide force having a sugar residue selected from the group consisting of a Gal group, a GlcNAc group, a Fuc group and a Neu5Ac group;
(B)工程 (A)を 1回または 2回以上繰り返して糖鎖を伸長させる工程; (B) Step (A) is repeated once or twice or more to extend the sugar chain;
(C)必要に応じて未反応の糖ヌクレオチド類および副生したヌクレオチド類を除去す る工程;および (D)複数の糖残基が転移して糖鎖が伸長した化合物にプロテアーゼを作用させるェ 程、を包含する、糖ペプチドを製造する方法。 (C) removing unreacted sugar nucleotides and by-product nucleotides as necessary; and (D) A method for producing a glycopeptide, comprising the step of allowing a protease to act on a compound in which a plurality of sugar residues are transferred and the sugar chain is elongated.
(項目 11) (Item 11)
以下の工程: The following steps:
(A)プロテアーゼにより切断可能なアミノ酸、糖アミノ酸、およびケト酸またはアルデヒ ド酸を原料にペプチド固相合成を行い、項目 1〜3のいずれか 1項に記載の化合物 を得る工程;  (A) A step of obtaining a compound according to any one of items 1 to 3 by performing peptide solid-phase synthesis using amino acids, sugar amino acids, and keto acids or aldehyde acids that can be cleaved by a protease as raw materials;
(B)工程 (A)で得た化合物と、該化合物のケトン残基またはアルデヒド残基と特異的 に反応しうる、保護されていてもよいアミノォキシ基、 N—アルキルアミノォキシ基、ヒド ラジド基、アジド基、チォセミカルバジド基、 1, 2—ジチオール基およびシスティン残 基からなる群から選択される官能基を含む担体とを反応させる工程;  (B) The compound obtained in step (A) and an optionally protected aminooxy group, N-alkylaminooxy group, hydrazide capable of reacting specifically with the ketone residue or aldehyde residue of the compound Reacting with a carrier comprising a functional group selected from the group consisting of a group, an azide group, a thiosemicarbazide group, a 1,2-dithiol group and a cysteine residue;
(C)工程 (B)で得た化合物に、糖ヌクレオチドの存在下で糖転移酵素を作用させる ことにより、該糖ヌクレオチドより糖残基を該化合物に転移させ、糖鎖を伸長させたィ匕 合物を得る工程であって、該糖ヌクレオチド力 Gal基、 GlcNAc基、 Fuc基および N eu5Ac基力もなる群より選択される糖残基を有する、工程;  (C) Step (B) By reacting the compound obtained in step (B) with a glycosyltransferase in the presence of a sugar nucleotide, a sugar residue is transferred from the sugar nucleotide to the compound, and the sugar chain is elongated. A step of obtaining a compound comprising a sugar residue selected from the group consisting of the sugar nucleotide force Gal group, GlcNAc group, Fuc group and Neu5Ac group force;
(D)必要に応じて未反応の糖ヌクレオチド類および副生したヌクレオチド類を除去す る工程;および  (D) removing unreacted sugar nucleotides and by-product nucleotides as necessary; and
(E)糖残基が転移して糖鎖が伸長したィ匕合物にプロテアーゼを作用させる工程、 を包含する、糖ペプチドを製造する方法。  (E) A method for producing a glycopeptide, comprising a step of allowing a protease to act on a compound in which a sugar residue is transferred and a sugar chain is elongated.
(項目 12)  (Item 12)
以下の工程: The following steps:
(A)プロテアーゼにより切断可能なアミノ酸、糖アミノ酸、およびケト酸またはアルデヒ ド酸を原料にペプチド固相合成を行い、項目 1〜3のいずれか 1項に記載の化合物 を得る工程;  (A) A step of obtaining a compound according to any one of items 1 to 3 by performing peptide solid-phase synthesis using amino acids, sugar amino acids, and keto acids or aldehyde acids that can be cleaved by a protease as raw materials;
(B)工程 (A)で得た化合物と、該化合物のケトン残基またはアルデヒド残基と特異的 に反応しうる保護されていてもよいアミノォキシ基、 N—アルキルアミノォキシ基、ヒド ラジド基、アジド基、チォセミカルバジド基、 1, 2—ジチオール基およびシスティン残 基からなる群から選択される官能基を含む担体とを反応させ、これと同時に工程 (A) における未反応物を除去する工程; (B) The compound obtained in step (A) and an optionally protected aminooxy group, N-alkylaminooxy group, hydrazide group capable of reacting specifically with the ketone residue or aldehyde residue of the compound And a carrier containing a functional group selected from the group consisting of an azide group, a thiosemicarbazide group, a 1,2-dithiol group and a cysteine residue, and at the same time, the step (A) Removing unreacted material in the step;
(C)工程 (B)で得た担体に結合したィ匕合物に、糖ヌクレオチドの存在下で糖転移酵 素を作用させることにより、該糖ヌクレオチドより糖残基を該化合物に転移させ、糖鎖 が伸長されたィ匕合物を得る工程であって、該糖ヌクレオチド力 Gal基、 GlcNAc基、 Fuc基および Neu5Ac基力もなる群より選択される糖残基を有する、工程;  (C) A sugar transfer enzyme is allowed to act on the compound bound to the carrier obtained in step (B) in the presence of a sugar nucleotide to transfer a sugar residue from the sugar nucleotide to the compound, A step of obtaining a compound in which a sugar chain is extended, the sugar nucleotide having a sugar residue selected from the group consisting of a Gal group, a GlcNAc group, a Fuc group and a Neu5Ac group;
(D)工程 (C)を 1回または 2回以上繰り返して糖鎖を伸長させる工程;  (D) Step (C) is repeated once or twice or more to extend the sugar chain;
(E)必要に応じて未反応の糖ヌクレオチド類および副生したヌクレオチド類を除去す る工程;および  (E) removing unreacted sugar nucleotides and by-product nucleotides as necessary; and
(F)複数の糖残基が転移して糖鎖が伸長したィ匕合物にプロテアーゼを作用させるェ 程、を包含する、糖ペプチドを製造する方法。  (F) A method for producing a glycopeptide, comprising the step of causing a protease to act on a compound in which a plurality of sugar residues are transferred and the sugar chain is elongated.
(項目 13)  (Item 13)
前記工程 (A)のケト酸またはアルデヒド酸力 以下の式: Keto acid or aldehyde acid power in the step (A)
X-C ( = 0) - (CH ) -A -COOH (III)  X-C (= 0)-(CH) -A -COOH (III)
2 n 1  2 n 1
式中、 Xは水素原子、 c 1〜c アルキル、  In which X is a hydrogen atom, c1-c alkyl,
30 c 6〜c ァリールまたは発色団を表し;  30 c represents 6 to c aryl or chromophore;
30  30
nは 0〜20の整数を表し;  n represents an integer of 0 to 20;
Aは、メチレン鎖 1〜20個分の長さを有するリンカ一を表す、  A represents a linker having a length of 1 to 20 methylene chains,
で表される化合物である、項目 11または 12に記載の方法。 13. The method according to item 11 or 12, which is a compound represented by:
(項目 14) (Item 14)
以下の工程: The following steps:
(A)項目 1〜3のいずれか 1項に記載の化合物に、糖ヌクレオチドの存在下で糖転移 酵素を作用させることにより、該糖ヌクレオチドより糖残基を該化合物に転移させ、糖 鎖を伸長させたィ匕合物を得る工程であって、該糖ヌクレオチド力 Gal基、 GlcNAc 基、 Fuc基および Neu5Ac基カゝらなる群より選択される糖残基を有する、工程; (A) By allowing a sugar transferase to act on the compound according to any one of items 1 to 3 in the presence of a sugar nucleotide, the sugar residue is transferred from the sugar nucleotide to the compound, and the sugar chain is Obtaining an elongated compound, the sugar nucleotide force having a sugar residue selected from the group consisting of a Gal group, a GlcNAc group, a Fuc group and a Neu5Ac group;
(B)必要に応じて工程 (A)を 1回または 2回以上繰り返して糖鎖を伸長させる工程;( C)糖残基が転移して糖鎖が伸長した化合物と、該化合物のケトン残基またはアルデ ヒド残基と特異的に反応しうる保護されて 、てもよ 、ァミノォキシ基、 N—アルキルアミ ノォキシ基、ヒドラジド基、アジド基、チォセミカルバジド基、 1, 2—ジチオール基およ びシスティン残基からなる群から選択される官能基を含む担体と、を反応させる工程 ;および (B) Step (A) is repeated one or more times as necessary to extend the sugar chain; (C) a compound in which the sugar residue is transferred and the sugar chain is extended, and the ketone residue of the compound Protected, which can react specifically with a group or aldehyde residue, may be an aminooxy group, N-alkylaminooxy group, hydrazide group, azide group, thiosemicarbazide group, 1,2-dithiol group and cysteine. Reacting with a carrier containing a functional group selected from the group consisting of residues ;and
(D)必要に応じて未反応の糖ヌクレオチド類および副生したヌクレオチド類を除去す る工程;  (D) removing unreacted sugar nucleotides and by-product nucleotides as necessary;
を包含する、糖ペプチドを製造する方法。 A process for producing a glycopeptide comprising
(項目 15) (Item 15)
以下の工程: The following steps:
(A)項目 1〜3のいずれか 1項に記載の化合物に、糖ヌクレオチドの存在下で糖転移 酵素を作用させることにより、該糖ヌクレオチドより糖残基を該化合物に転移させ、糖 鎖を伸長させたィ匕合物を得る工程であって、該糖ヌクレオチド力 Gal基、 GlcNAc 基、 Fuc基および Neu5Ac基カゝらなる群より選択される糖残基を有する、工程; (A) By allowing a sugar transferase to act on the compound according to any one of items 1 to 3 in the presence of a sugar nucleotide, the sugar residue is transferred from the sugar nucleotide to the compound, and the sugar chain is Obtaining an elongated compound, the sugar nucleotide force having a sugar residue selected from the group consisting of a Gal group, a GlcNAc group, a Fuc group and a Neu5Ac group;
(B)必要に応じて工程 (A)を 1回または 2回以上繰り返して糖鎖を伸長させる工程;(B) Step (A) is repeated one or more times as necessary to extend the sugar chain as necessary;
(C)糖残基が転移して糖鎖が伸長した化合物と、該化合物のケトン残基またはアル デヒド残基と特異的に反応しうる保護されて 、てもよ 、ァミノォキシ基、 N—アルキル アミノォキシ基、ヒドラジド基、アジド基、チォセミカルバジド基、 1, 2—ジチオール基 およびシスティン残基からなる群から選択される官能基を含む担体と、を反応させる 工程; (C) a compound in which a sugar residue is transferred and a sugar chain is extended, and a protected compound capable of reacting specifically with a ketone residue or an aldehyde residue of the compound, and may be an aminooxy group, N-alkyl Reacting a carrier containing a functional group selected from the group consisting of an aminooxy group, a hydrazide group, an azide group, a thiosemicarbazide group, a 1,2-dithiol group and a cysteine residue;
(D)必要に応じて未反応の糖ヌクレオチド類および副生したヌクレオチド類を除去す る工程;および  (D) removing unreacted sugar nucleotides and by-product nucleotides as necessary; and
(E)糖残基が転移して糖鎖が伸長したィ匕合物にプロテアーゼを作用させる工程、 を包含する、糖ペプチドを製造する方法。  (E) A method for producing a glycopeptide, comprising a step of allowing a protease to act on a compound in which a sugar residue is transferred and a sugar chain is elongated.
(項目 16)  (Item 16)
前記糖ペプチドが、以下の式: Said glycopeptide has the following formula:
[化 14-6] [Chemical 14-6]
X1 X1 X1 X 1 X 1 X 1
Y' -His- Gly-Va卜 Thr-Ser- Ala-Pro- Asp- Thr-Arg-Y2 Y '-His- Gly-Va 卜 Thr-Ser- Ala-Pro- Asp- Thr-Arg-Y 2
(配列番号 2)  (SEQ ID NO: 2)
[化 14-7] [Chemical 14-7]
X1 X1 X1 X 1 X 1 X 1
Y1 -Ala-Hi s- Gly- Va卜 Thr-Se「AI a- Pro-Asp-Thr-Arg- Y2 (配列番号 21) Y 1 -Ala-His- Gly- Va 卜 Thr-Se `` AI a- Pro-Asp-Thr-Arg- Y 2 (SEQ ID NO: 21)
または Or
[化 14-8]  [Chemical 14-8]
X1 X1 X1 X1 X1 X 1 X 1 X 1 X 1 X 1
Y'-His-Gly-Val-Thr-Ser-Ala-Pro-Asp-Thr-Arg-Pro-Ala-Pro-Gly-Ser-Thr-Ala-Pro-Pro-Ala-Y2 Y'-His-Gly-Val-Thr-Ser-Ala-Pro-Asp-Thr-Arg-Pro-Ala-Pro-Gly-Ser-Thr-Ala-Pro-Pro-Ala-Y 2
(配列番号 41) (SEQ ID NO: 41)
式中、 X1は、それぞれ独立して、水素原子または以下の式: In the formula, each X 1 independently represents a hydrogen atom or the following formula:
[化 14-9] [Chemical 14-9]
Figure imgf000020_0001
Figure imgf000020_0001
式中、 R1および R6は、それぞれ独立して、水素、 Neu5Ac基または GlcNAc基で あり; In which R 1 and R 6 are each independently hydrogen, Neu5Ac group or GlcNAc group;
R2および R7は、 Gal基であり; R 2 and R 7 are Gal groups;
R3および R8は、 GlcNAc基であり; R 3 and R 8 are GlcNAc groups;
R4および R9は、 Gal基であり; R 4 and R 9 are Gal groups;
R5は、 GlcNAc基であり; R 5 is a GlcNAc group;
R10は、 GalNAc基であり; R 10 is a GalNAc group;
Z2および Z3は、それぞれ独立して、水素または Fuc基であり;ならびに nおよび mは、それぞれ独立して、 0以上の整数であり; Z 2 and Z 3 are each independently hydrogen or a Fuc group; and n and m are each independently an integer of 0 or more;
ここで、 R1と R2との間の結合は、 R1が Neu5Ac基の場合、 a 2, 3結合であり、 R1が GlcNAc基の場合、 j81, 3結合であり; Here, the bond between R 1 and R 2 is a 2, 3 bond when R 1 is Neu5Ac group, and j81, 3 bond when R 1 is GlcNAc group;
R2と R3との間の結合は、 β ΐ, 4結合であり; The bond between R 2 and R 3 is a β ΐ, 4 bond;
R3と R4との間の結合は、 β ΐ, 3結合であり; The bond between R 3 and R 4 is a β ΐ, 3 bond;
R4と R5との間の結合は、 β ΐ, 4結合であり; The bond between R 4 and R 5 is a β ΐ, 4 bond;
R6と R7との間の結合は、 R6が Neu5Ac基の場合、 α 2, 3結合であり、 R6が GlcNA c基の場合、 ΐ, 3結合であり; The bond between R 6 and R 7 is an α 2,3 bond when R 6 is a Neu5Ac group, and a ΐ, 3 bond when R 6 is a GlcNA c group;
R7と R8との間の結合は、 β ΐ, 4結合であり; The bond between R 7 and R 8 is a β ΐ, 4 bond;
R8と R9との間の結合は、 β ΐ, 3結合であり; R9と R1Gとの間の結合は、 β ΐ , 3結合であり; The bond between R 8 and R 9 is a β ΐ, 3 bond; The bond between R 9 and R 1G is a β,, 3 bond;
R5と R1Gとの間の結合は、 β ΐ , 6結合であり; The bond between R 5 and R 1G is a β,, 6 bond;
Ζ1と R3との間の結合は、 《1, 3結合であり; The bond between Ζ 1 and R 3 is << 1 , 3 bond;
Ζ2と R5との間の結合は、 《1, 3結合であり;ならびに The bond between Ζ 2 and R 5 is << 1, 3 bond; and
Ζ3と R8との間の結合は、 《1, 3結合である、 The bond between Ζ 3 and R 8 is << 1, 3 bond,
で表される基を表し、ただし、 X1のすべてが水素原子である場合を除く; Represents a group represented by the formula, except when all of X 1 are hydrogen atoms;
Υ1は、水素原子、ァセチル、ァシル、アルキルまたはァリールを表し; Υ 1 represents a hydrogen atom, acetyl, acyl, alkyl or aryl;
Υ2は、水酸基、 ΝΗ、アルキルまたはァリールを表す、 Υ 2 represents a hydroxyl group, ΝΗ, alkyl or aryl.
2  2
で表される糖ペプチドである、項目 8〜15のいずれか 1項に記載の方法。 16. The method according to any one of items 8 to 15, which is a glycopeptide represented by:
(項目 17) (Item 17)
以下の式: The following formula:
[化 14- 10] [Chemical 14-10]
X1 X1 X1 X 1 X 1 X 1
Y1 -His- Gly-Va卜 Thr-Ser- Ala-Pro- Asp- Thr-Arg-Y2 Y 1 -His- Gly-Va 卜 Thr-Ser- Ala-Pro- Asp- Thr-Arg-Y 2
(配列番号 2)  (SEQ ID NO: 2)
[化 14-11]  [Chem. 14-11]
X1 X1 X1 X 1 X 1 X 1
Y' -Ala-His- Gly- Va卜 Thr-Se「AI a- Pro-Asp- Thr-Arg- Y2 Y '-Ala-His- Gly- Va 卜 Thr-Se `` AI a- Pro-Asp- Thr-Arg- Y 2
(配列番号 21)  (SEQ ID NO: 21)
または Or
[化 14- 12]  [Chemical 14-14]
X1 X1 X1 X1 X1 X 1 X 1 X 1 X 1 X 1
Y' -His-Gly-Val-Thr-Ser-Ala-Pro-Asp-Thr-Arg-Pro-Ala-Pro-Gly-Ser-Thr-Ala-Pro -Pro-Ala-Y2 Y '-His-Gly-Val-Thr-Ser-Ala-Pro-Asp-Thr-Arg-Pro-Ala-Pro-Gly-Ser-Thr-Ala-Pro -Pro-Ala-Y 2
(配列番号 41) (SEQ ID NO: 41)
式中、 X1は、それぞれ独立して、水素原子または以下の式: In the formula, each X 1 independently represents a hydrogen atom or the following formula:
[化 14- 13] [Chemical 14-14]
Figure imgf000021_0001
Figure imgf000021_0001
式中、 R1および R6は、それぞれ独立して、水素、 Neu5 Ac基または GlcNAc基で あり; Wherein R 1 and R 6 are each independently hydrogen, Neu5 Ac group or GlcNAc group. Yes;
R2および R7は、 Gal基であり; R 2 and R 7 are Gal groups;
R3および R8は、 GlcNAc基であり; R 3 and R 8 are GlcNAc groups;
R4および R9は、 Gal基であり; R 4 and R 9 are Gal groups;
R5は、 GlcNAc基であり; R 5 is a GlcNAc group;
R10は、 GalNAc基であり; R 10 is a GalNAc group;
Z2および Z3は、それぞれ独立して、水素または Fuc基であり;ならびに nおよび mは、それぞれ独立して、 0以上の整数であり; Z 2 and Z 3 are each independently hydrogen or a Fuc group; and n and m are each independently an integer of 0 or more;
ここで、 R1と R2との間の結合は、 R1が Neu5Ac基の場合、 a 2, 3結合であり、 R1が GlcNAc基の場合、 j81, 3結合であり; Here, the bond between R 1 and R 2 is a 2, 3 bond when R 1 is Neu5Ac group, and j81, 3 bond when R 1 is GlcNAc group;
R2と R3との間の結合は、 β ΐ, 4結合であり; The bond between R 2 and R 3 is a β ΐ, 4 bond;
R3と R4との間の結合は、 β ΐ, 3結合であり; The bond between R 3 and R 4 is a β ΐ, 3 bond;
R4と R5との間の結合は、 β ΐ, 4結合であり; The bond between R 4 and R 5 is a β ΐ, 4 bond;
R6と R7との間の結合は、 R6が Neu5Ac基の場合、 α 2, 3結合であり、 R6が GlcNA c基の場合、 ΐ, 3結合であり; The bond between R 6 and R 7 is an α 2,3 bond when R 6 is a Neu5Ac group, and a ΐ, 3 bond when R 6 is a GlcNA c group;
R7と R8との間の結合は、 β ΐ, 4結合であり; The bond between R 7 and R 8 is a β ΐ, 4 bond;
R8と R9との間の結合は、 β ΐ, 3結合であり; The bond between R 8 and R 9 is a β ΐ, 3 bond;
R9と R10との間の結合は、 β ΐ, 3結合であり; The bond between R 9 and R 10 is a β ΐ, 3 bond;
R5と R1Gとの間の結合は、 β ΐ, 6結合であり; The bond between R 5 and R 1G is a β ΐ, 6 bond;
Ζ1と R3との間の結合は、 《1, 3結合であり; The bond between Ζ 1 and R 3 is << 1 , 3 bond;
Ζ2と R5との間の結合は、 《1, 3結合であり;ならびに The bond between Ζ 2 and R 5 is << 1, 3 bond; and
Ζ3と R8との間の結合は、 《1, 3結合である、 The bond between Ζ 3 and R 8 is << 1, 3 bond,
で表される基を表し、ただし、 X1のすべてが水素原子である場合を除く; Represents a group represented by the formula, except when all of X 1 are hydrogen atoms;
Υ1は、水素原子、ァセチル、ァシル、アルキルまたはァリールを表し; Υ 1 represents a hydrogen atom, acetyl, acyl, alkyl or aryl;
Υ2は、水酸基、 ΝΗ、アルキルまたはァリールを表す、 Υ 2 represents a hydroxyl group, ΝΗ, alkyl or aryl.
2  2
で表される糖ペプチド。 A glycopeptide represented by
(項目 18)  (Item 18)
所望の糖ペプチドを製造する方法であって、該方法は、以下の工程: A method for producing a desired glycopeptide comprising the following steps:
Figure imgf000023_0001
式中、 R1および R6は、それぞれ独立して、水素、 Neu5Ac基または GlcNAc基で あり;
Figure imgf000023_0001
In which R 1 and R 6 are each independently hydrogen, Neu5Ac group or GlcNAc group;
R2および R7は、 Gal基であり; R 2 and R 7 are Gal groups;
R3および R8は、 GlcNAc基であり; R 3 and R 8 are GlcNAc groups;
R4および R9は、 Gal基であり; R 4 and R 9 are Gal groups;
R5は、 GlcNAc基であり; R 5 is a GlcNAc group;
R10は、 GalNAc基であり; R 10 is a GalNAc group;
R11は、水素原子またはメチル基であり; R 11 is a hydrogen atom or a methyl group;
Z2および Z3は、それぞれ独立して、水素または Fuc基であり;ならびに nおよび mは、それぞれ独立して、 0以上の整数であり; Z 2 and Z 3 are each independently hydrogen or a Fuc group; and n and m are each independently an integer of 0 or more;
ここで、 R1と R2との間の結合は、 R1が Neu5Ac基の場合、 a 2, 3結合であり、 R1が GlcNAc基の場合、 j8 1 , 3結合であり; Here, the bond between R 1 and R 2 is a 2, 3 bond when R 1 is Neu5Ac group, and j8 1, 3 bond when R 1 is GlcNAc group;
R2と R3との間の結合は、 β ΐ , 4結合であり; The bond between R 2 and R 3 is a β,, 4 bond;
R3と R4との間の結合は、 β ΐ , 3結合であり; The bond between R 3 and R 4 is a β,, 3 bond;
R4と R5との間の結合は、 β ΐ , 4結合であり; The bond between R 4 and R 5 is a β,, 4 bond;
R6と R7との間の結合は、 R6が Neu5Ac基の場合、 α 2, 3結合であり、 R6が GlcNA c基の場合、 ΐ , 3結合であり; R7と R8との間の結合は、 β ΐ , 4結合であり; The bond between R 6 and R 7 is an α 2,3 bond when R 6 is a Neu5Ac group, and a,, 3 bond when R 6 is a GlcNA c group; The bond between R 7 and R 8 is a β,, 4 bond;
R8と R9との間の結合は、 β ΐ , 3結合であり; Bond between R 8 and R 9, β ΐ, is 3 bonds;
R9と R1Gとの間の結合は、 β ΐ , 3結合であり; The bond between R 9 and R 1G is a β,, 3 bond;
R5と R1Gとの間の結合は、 β ΐ , 6結合であり; The bond between R 5 and R 1G is a β,, 6 bond;
Ζ1と R3との間の結合は、 《1, 3結合であり; The bond between Ζ 1 and R 3 is << 1 , 3 bond;
Ζ2と R5との間の結合は、 《1, 3結合であり; The bond between Ζ 2 and R 5 is << 1, 3 bond;
Ζ3と R8との間の結合は、 《1, 3結合であり;ならびに The bond between Ζ 3 and R 8 is << 1, 3 bond; and
Ρは、 9 フルォレ -ルメチルォキシカルボ-ル基または tert ブトキシカルボ-ル 基である、  Ρ is a 9-fluormethylcarboxyl group or a tert-butoxycarbol group,
で表される糖アミノ酸の糖鎖を保護基により保護して糖鎖が保護された糖アミノ酸を 生成する工程であって、該保護基は、ァセチル基、ベンゾィル基、メチル基、メトキシ メチル基、トリメチルシリル基、 tーブチルジメチルシリル基、ジメチルフヱ-ル基およ びトリイソプロビルシリル基、ベンジル基、ベンジリデン基、イソプロピリデン基、ジ tert- プチルシリリデン基力もなる群より選択される、工程; A sugar amino acid having a sugar chain protected by protecting the sugar chain of the sugar amino acid represented by the following: a acetyl group, a benzoyl group, a methyl group, a methoxymethyl group, A step selected from the group consisting of trimethylsilyl group, t-butyldimethylsilyl group, dimethylphenol group and triisopropylpropyl group, benzyl group, benzylidene group, isopropylidene group, di-tert-butylsilylidene group power;
(B)工程 (A)で得られた該糖鎖が保護された糖アミノ酸および 9 -フルォレニルメチ ルォキシカルボ-ル基または tert ブトキシカルボ-ル基で N 保護されたアミノ酸 を用いて、所望のペプチド配列を有する糖鎖が保護された糖ペプチドを合成するェ 程;ならびに  (B) Using the sugar amino acid in which the sugar chain obtained in step (A) is protected and an amino acid N-protected with a 9-fluorenylmethyloxyl group or a tert-butoxycarbol group, the desired peptide sequence is prepared. Synthesizing a glycopeptide having a protected sugar chain; and
(C)工程 (B)で得られた該糖鎖が保護された糖ペプチドを脱保護して該所望の糖べ プチドを生成させる工程、  (C) a step of deprotecting the glycopeptide protected in sugar chain obtained in step (B) to produce the desired glycopeptide;
を包含する、方法。 Including the method.
発明の効果 The invention's effect
本発明ではボリラクトサミン骨格を有するムチン型糖ペプチド合成にぉ 、て比較的 調製が簡単な 1から 3糖程度を含む糖アミノ酸を使用し、ペプチド合成後に糖鎖伸長 を行うことにより、複雑な糖鎖を有する糖ペプチド合成を可能とすると共に、糖鎖伸長 反応の中間体となる各糖鎖構造のライブラリー調製までを可能とする。また、糖鎖伸 長反応は水溶性高分子上に糖ペプチドを担持して行うため、反応の加速効果および 分子操作の簡素化が可能となり、糖鎖伸長反応の自動化が可能となる。これにより、 従来の技術では極めて困難であった簡単な糖鎖構造力 複雑な糖鎖構造までを網 羅的に有する糖ペプチドのライブラリー調製が可能となる。例えば、本発明により、生 化学研究材料、医薬、食品など幅広い分野で有用であり、これまでその製造が困難 であったムチン型糖ペプチド類を合成することができる。 In the present invention, a sugar chain amino acid containing about 1 to 3 sugars, which is relatively easy to prepare, is used for synthesizing a mucin-type glycopeptide having a borilactosamine skeleton, and the sugar chain is elongated after the peptide synthesis. It is possible to synthesize a glycopeptide having a chain and to prepare a library of each sugar chain structure that is an intermediate of a sugar chain elongation reaction. Furthermore, since the sugar chain elongation reaction is carried out by carrying a glycopeptide on a water-soluble polymer, the acceleration effect of the reaction and the simplification of the molecular operation become possible, and the sugar chain elongation reaction can be automated. This It is possible to prepare a library of glycopeptides having a simple structure of a sugar chain, which is extremely difficult with conventional techniques, and having a complex sugar chain structure. For example, the present invention makes it possible to synthesize mucin-type glycopeptides that are useful in a wide range of fields such as biochemical research materials, pharmaceuticals, and foods, and that have been difficult to produce.
[0026] 本発明はまた、予め合成されたボリラクトサミン骨格を有する糖アミノ酸を保護基に より保護し、保護されたアミノ酸を用いて、所望のペプチド配列を有する糖ペプチドを 合成することにより、ボリラクトサミン骨格を有する糖ペプチドの製造を可能とする。本 方法は、プロテアーゼにも光切断にも依存しない。これにより、プロテアーゼまたは光 切断により切断されやすい性質を有するアミノ酸残基を含む糖ペプチドを合成するこ とがでさる。  [0026] The present invention also protects a sugar amino acid having a pre-synthesized voralactosamine skeleton with a protecting group, and synthesizes a glycopeptide having a desired peptide sequence using the protected amino acid, thereby It enables the production of glycopeptides having The method is independent of proteases or photocleavage. As a result, it is possible to synthesize a glycopeptide containing an amino acid residue having the property of being easily cleaved by protease or photocleavage.
[0027] 得られた糖ペプチドライブラリ一は構造解析、生化学試験の標準サンプルとして使 用可能である。また、この糖ペプチドライブラリーをチップ上に配置し、糖ペプチド認 識タンパク質の検出、病理診断、細胞接着配列の検索、細胞増殖'アポトーシスなど に関連する配列解析などを網羅的に行うことが可能になる。  [0027] The obtained glycopeptide library can be used as a standard sample for structural analysis and biochemical tests. In addition, this glycopeptide library can be placed on a chip for comprehensive detection of glycopeptide recognition proteins, pathological diagnosis, cell adhesion sequence search, sequence analysis related to cell growth and apoptosis, etc. become.
[0028] 本発明のこれらおよび他の利点は、添付の図面を参照して、以下の詳細な説明を 読みかつ理解すれば、当業者には明白〖こなることが理解される。  [0028] These and other advantages of the present invention will be apparent to those of ordinary skill in the art upon reading and understanding the following detailed description with reference to the accompanying drawings.
図面の簡単な説明  Brief Description of Drawings
[0029] [図 1]図 1は、本発明の糖ペプチドの製造までの手順を示す。示された番号は、実施 例における化合物番号を示す。  [0029] FIG. 1 shows the procedure up to the production of the glycopeptide of the present invention. The indicated numbers indicate the compound numbers in the examples.
配列表フリーテキスト  Sequence listing free text
[0030] (配列の説明) [0030] (Description of array)
配列番号 1〜20:ムチン型糖タンパク質 MUC1の 10残基の部分アミノ酸配列 配列番号 21〜40:ムチン型糖タンパク質 MUC1の 11残基の部分アミノ酸配列 配列番号 41〜60:ムチン型糖タンパク質 MUC 1の 20残基の部分アミノ酸配列 配列番号 61〜66:化合物に含まれる担体に含まれるアミノ酸配列の例 発明を実施するための最良の形態  SEQ ID NO: 1 to 20: Partial amino acid sequence of mucin type glycoprotein MUC1 10 residues SEQ ID NO: 21 to 40: Partial amino acid sequence of mucin type glycoprotein MUC1 SEQ ID NO: 41 to 60: Mucin type glycoprotein MUC 1 A partial amino acid sequence of 20 residues of SEQ ID NOs: 61 to 66: Examples of amino acid sequences contained in a carrier contained in a compound BEST MODE FOR CARRYING OUT THE INVENTION
[0031] 以下、本発明を最良の形態を示しながら説明する。本明細書の全体にわたり、単数 形の表現は、特に言及しない限り、その複数形の概念をも含むことが理解されるべき である。従って、単数形の冠詞 (例えば、英語の場合は「a」、「an」、「the」など)は、 特に言及しない限り、その複数形の概念をも含むことが理解されるべきである。また、 本明細書において使用される用語は、特に言及しない限り、当上記分野で通常用い られる意味で用いられることが理解されるべきである。したがって、他に定義されない 限り、本明細書中で使用される全ての専門用語および科学技術用語は、本発明の 属する分野の当業者によって一般的に理解されるのと同じ意味を有する。矛盾する 場合、本明細書 (定義を含めて)が優先する。 [0031] The present invention will be described below with reference to the best mode. Throughout this specification, it should be understood that the singular forms also include the plural concept unless otherwise stated. It is. Thus, it should be understood that singular articles (eg, “a”, “an”, “the”, etc. in English) also include the plural concept unless otherwise stated. In addition, it should be understood that the terms used in the present specification are used in the meaning normally used in the above field unless otherwise specified. Thus, unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. In case of conflict, the present specification, including definitions, will control.
[0032] 以下に提供される実施形態は、本発明のよりよい理解のために提供されるものであ り、本発明の範囲は以下の記載に限定されるべきでないことが理解される。従って、 当業者は、本明細書中の記載を参酌して、本発明の範囲内で適宜改変を行うことが できることは明らかである。  [0032] It is understood that the embodiments provided below are provided for a better understanding of the present invention, and the scope of the present invention should not be limited to the following description. Therefore, it is obvious that those skilled in the art can make appropriate modifications within the scope of the present invention in consideration of the description in the present specification.
[0033] (用語)  [0033] (Terminology)
以下に本明細書において特に使用される用語の定義を列挙する。  Listed below are definitions of terms particularly used in the present specification.
[0034] 本明細書にぉ 、て「糖アミノ酸」とは、糖残基とアミノ酸残基とが結合したものを意味 し、「糖アミノ酸残基」と互換可能に用いられる。  In the present specification, the term “sugar amino acid” means a combination of a sugar residue and an amino acid residue, and is used interchangeably with “sugar amino acid residue”.
[0035] 本明細書にぉ 、て「実質的にプロテアーゼにより切断可能な部位を含まな 、糖アミ ノ酸残基」とは、上記項目(4)で表されるような化合物をプロテアーゼで処理しても糖 アミノ酸部分がプロテアーゼにより 50%以上切断されない糖アミノ酸残基、好ましくは 20%以上切断されな 1ゝ糖アミノ酸残基を指す。  In the present specification, the term “sugar amino acid residue substantially not including a site cleavable by a protease” means that a compound represented by the above item (4) is treated with a protease. Even so, it refers to a sugar amino acid residue in which the sugar amino acid moiety is not cleaved by more than 50% by protease, preferably a sucrose amino acid residue not cleaved by more than 20%.
[0036] 本明細書において「糖ペプチド残基」とは、少なくとも 1個の糖アミノ酸を含むぺプチ ド残基を意味し、「糖ペプチド」と互換可能に用いられる。  In the present specification, “glycopeptide residue” means a peptide residue containing at least one sugar amino acid, and is used interchangeably with “glycopeptide”.
[0037] 上記糖ペプチド残基に含まれる糖アミノ酸を構成する糖残基としては、特に制限は ないが、単糖から 3糖または単糖から 3糖の誘導体が好ましぐ単糖または単糖の誘 導体がさらに好ましく用 、られる。  [0037] The sugar residue constituting the sugar amino acid contained in the glycopeptide residue is not particularly limited, but monosaccharide to monosaccharide or monosaccharide to trisaccharide derivatives are preferred. Inductive materials are more preferably used.
[0038] 本明細書において「糖鎖」とは、単位糖 (単糖および Zまたはその誘導体)が 1っ以 上連なってできたィ匕合物をいう。単位糖が 2つ以上連なる場合は、各々の単位糖同 士の間は、グリコシド結合による脱水縮合によって結合する。このような糖鎖としては 、例えば、生体中に含有される多糖類 (グルコース、ガラクトース、マンノース、フコー ス、キシロース、 N ァセチルダルコサミン、 N ァセチルガラタトサミン、シアル酸な らびにそれらの複合体および誘導体)の他、分解された多糖、糖タンパク質、プロテ ォグリカン、グリコサミノダリカン、糖脂質などの複合生体分子から分解または誘導さ れた糖鎖など広範囲なものが挙げられるがそれらに限定されない。したがって、本明 細書では、糖鎖は、「多糖 (ポリサッカリド)」、「糖質」、「炭水化物」と互換可能に使用 され得る。また、特に言及しない場合、本明細書において「糖鎖」は、糖鎖および糖 鎖含有物質の両方を包含することがある。 [0038] As used herein, the term "sugar chain" refers to a compound comprising one or more unit sugars (monosaccharide and Z or a derivative thereof). When two or more unit sugars are connected, each unit sugar is linked by dehydration condensation using a glycosidic bond. Examples of such sugar chains include polysaccharides contained in the living body (glucose, galactose, mannose, fucose, etc. , Xylose, N-acetyl dalcosamine, N-acetyl galatatosamine, sialic acid and their complexes and derivatives), as well as degraded polysaccharides, glycoproteins, proteoglycans, glycosaminodarlicans, glycolipids Examples include, but are not limited to, sugar chains that are decomposed or derived from complex biomolecules. Therefore, in the present specification, the sugar chain can be used interchangeably with “polysaccharide”, “sugar”, and “carbohydrate”. Further, unless otherwise specified, in this specification, “sugar chain” may include both sugar chains and sugar chain-containing substances.
[0039] 本明細書において「単糖」とは、これより簡単な分子に加水分解されず、少なくとも 1 つの水酸基および少なくとも 1つのアルデヒド基またはケトン基を含む、ポリヒドロキシ アルデヒドまたはポリヒドロキシケトンならびにその誘導体をいう。通常単糖は、一般式 C H Oで表されるがそれらに限定されず、フコース(デォキシへキソース)、 N ァ n 2n n [0039] As used herein, "monosaccharide" refers to a polyhydroxy aldehyde or polyhydroxy ketone and a hydrolyzate thereof that is not hydrolyzed into a simpler molecule and contains at least one hydroxyl group and at least one aldehyde group or ketone group. Refers to a derivative. Usually, monosaccharides are represented by the general formula C H O, but are not limited to them: fucose (deoxyhexose), N n n 2n n
セチノレグノレコサミンなども含まれる。ここで、上の式【こお!ヽて、 n= 2、 3、 4、 5、 6、 7、 8、 9および 10であるものを、それぞれジオース、トリオース、テトロース、ペントース、 へキソース、ヘプトース、オタトース、ノノースおよびデコースという。一般に鎖式多価 アルコールのアルデヒドまたはケトンに相当するもので、前者をアルドース、後者をケ トースという。  Also included are cetinoregenorecosamine. Here, the above formula [koo !, n = 2, 3, 4, 5, 6, 7, 8, 9 and 10 is converted into diose, triose, tetrose, pentose, hexose, heptose, respectively. , Otatos, nonose and decourse. It is generally equivalent to an aldehyde or ketone of a chain polyhydric alcohol. The former is called aldose and the latter is called ketose.
[0040] 本発明において糖を記載するために使用する命名法および略称は、通常の命名 法に従う。例えば、 β D ガラクトース  [0040] The nomenclature and abbreviations used to describe sugars in the present invention follow conventional nomenclature. For example, β D galactose
[0041] [化 15] [0041] [Chemical 15]
f}- -Galac ose  f}--Galac ose
Figure imgf000027_0001
は、 Gal;
Figure imgf000027_0001
Is Gal;
N ァセチノレー β D ダルコサミン  N acetyleno β D darcosamine
[0042] [化 16] M-Acetyl-p-D-glucosam ine [0042] [Chemical 16] M-Acetyl-pD-glucosam ine
Figure imgf000028_0001
は、 GlcNAc ;
Figure imgf000028_0001
GlcNAc;
: Lーフコース  : L course
[0043] [化 17] α-L-Fucose [0043] [Chemical 17] α-L-Fucose
Figure imgf000028_0002
は、 Fuc ;
Figure imgf000028_0002
Fuc;
a—N ァセチルノイラミン酸  a—N acetylneuraminic acid
[化 18]  [Chemical 18]
α-Ν-Acetyl neuraminic acid  α-Ν-Acetyl neuraminic acid
Figure imgf000028_0003
Figure imgf000028_0003
は、 Neu5Ac;  Is Neu5Ac;
N ァセチノレー a D ガラクトサミン [0045] [化 18- 1] N-Acety[-cr-D-galactosamine N Acetinore a D Galactosamine [0045] [Chem. 18-1] N-Acety [-cr-D-galactosamine
Figure imgf000029_0001
は、 GalNAcにより表す。環状の 2つのァノマーは、 αおよび j8により表す。表示上の 理由により、 aまたは bと表すことがある。従って、本明細書において、 αと a、 と bは 、ァノマー表記については交換可能に使用される。
Figure imgf000029_0001
Is represented by GalNAc. The two cyclic anomers are represented by α and j8. It may be expressed as a or b for display reasons. Therefore, in the present specification, α, a, and b are used interchangeably with respect to the anomeric notation.
[0046] 本明細書において、ガラクトースとは、任意の異性体を指すが、代表的には j8— D ガラクトースであり、特に言及しないときには、 j8— D—ガラクトースを指すものとし て使用される。 [0046] In the present specification, galactose refers to any isomer, but is typically j8-D galactose, and is used to refer to j8-D-galactose unless otherwise specified.
[0047] 本明細書にぉ 、て、ァセチルダルコサミンとは、任意の異性体を指すが、代表的に は N ァセチノレー β D ダルコサミンであり、特に言及しないときには、 Ν ァセチ ルー β—D—ダルコサミンを指すものとして使用される。  As used herein, acetylyldarcosamine refers to any isomer, but is typically N-acetyleno β D darcosamine, and unless otherwise specified, ァ acetylthio β-D— Used to refer to darcosamine.
[0048] 本明細書において、フコースとは、任意の異性体を指すが、代表的には a Lーフ コースであり、特に言及しないときには、 α Lーフコースを指すものとして使用され る。 [0048] In the present specification, fucose refers to any isomer, but is typically a L-fucose, and is used to refer to α L-fucose unless otherwise specified.
[0049] 本明細書にぉ 、て、シアル酸は、シアリン酸とも 、、ノィラミン酸(neuraminic a cid)の誘導体の総称である。シアル酸としては、 N ァシル (N ァセチルまたは N グリコリル)ノィラミン酸および N ァシル -0-ァセチルノイラミン酸が天然に知ら れている。シアル酸は、まれに遊離状態でも存在するが、大部分は単糖、多糖、糖タ ンパク質、糖ペプチド、あるいはスフインゴ糖脂質の分子中に酸に不安定な結合(α —ケトシド結合)で存在する。本明細書において使用されるシアル酸は、好ましくは、 Ν ァセチルノイラミン酸である。  In the present specification, sialic acid is a general term for sialic acid and derivatives of neuraminic acid. As sialic acid, N-acyl (N-acetyl or N-glycolyl) neuraminic acid and N-acyl-0-acetylethylneuraminic acid are naturally known. Although sialic acid is rarely present in the free state, it is mostly an acid-labile bond (α-ketoside bond) in a monosaccharide, polysaccharide, glycoprotein, glycopeptide, or glycosphingolipid molecule. Exists. The sialic acid used herein is preferably acetylethylneuraminic acid.
[0050] 本明細書において、ァセチルガラタトサミンとは、任意の異性体を指すが、代表的 には Ν ァセチルー a—D ガラクトサミンであり、特に言及しないときには、 N ァ セチルー a—D ガラクトサミンを指すものとして使用される。 [0051] 本明細書において、糖の表示記号、呼称、略称 (Glcなど)などは、単糖を表すとき と、糖鎖中で使用されるときとは、異なることに留意する。糖鎖中、単位糖は、結合先 の別の単位糖との間に脱水縮合があるので、相方力も水素または水酸基を除いた形 で存在することになる。従って、これらの糖の略号は、単糖を表すときに使用されると きは、すべての水酸基が存在するが、糖鎖中で使用されるときは、水酸基が結合先 の糖の水酸基とが脱水縮合されて酸素のみが残存した状態を示していることが理解 される。従って、本明細書において使用される場合、糖について「糖残基」とは、水素 が l〜n個とれたものをいい、通常、糖は、他の化学部分と水酸基を介して結合する ので、糖残基は糖の水酸基力 水素力^〜 n個(この場合、 nは、その糖に存在する 水酸基の数)とれたものをいうが、これに限定されず、他に結合可能な基があれば、 その基カゝら水素がとれたものを示し得る。従って、糖残基という場合は、使用される状 況に応じて、一価、二価、三価〜 n価の残基であり得る。本明細書で具体的名称を指 すときは、「糖の名称」 +「基」という形式で表し、例えば、ガラクトース基、 Gal基などと 表す。 [0050] In the present specification, acetylylgalatatosamine refers to any isomer, but is typically Νacetylyl-a-D galactosamine, and unless otherwise specified, N-acetylyl-a-D galactosamine. Used as a pointer. [0051] In the present specification, it should be noted that sugar symbols, designations, abbreviations (Glc and the like) and the like are different when representing a monosaccharide and when used in a sugar chain. In the sugar chain, the unit sugar has a dehydration condensation with another unit sugar to which it is bonded, so that the mutual force also exists in a form excluding hydrogen or hydroxyl group. Therefore, when these abbreviations for sugars are used to represent monosaccharides, all hydroxyl groups are present, but when used in a sugar chain, the hydroxyl groups are bound to the hydroxyl groups of the sugars to which they are attached. It is understood that only oxygen remains after dehydration condensation. Thus, as used herein, a “sugar residue” for a sugar refers to those with 1 to n hydrogens, usually because sugars are linked to other chemical moieties via hydroxyl groups. A sugar residue is a hydroxyl group of a sugar that has a hydrogen power of ^ to n (in this case, n is the number of hydroxyl groups present in the sugar), but is not limited to this. If there is, it can indicate that the hydrogen has been removed. Therefore, the term “sugar residue” may be a monovalent, divalent, or trivalent to nvalent residue depending on the situation in which it is used. In the present specification, specific names are expressed in the form of “sugar name” + “group”, for example, galactose group, Gal group, and the like.
[0052] 単糖は一般に、グリコシド結合により結合されて二糖および多糖を形成する。環の 平面に関する結合の向きは、 αおよび j8により示す。 2つの炭素の間の結合を形成 する特定の炭素原子も記載する。  [0052] Monosaccharides are generally joined by glycosidic bonds to form disaccharides and polysaccharides. The direction of the bond with respect to the plane of the ring is indicated by α and j8. Also described are specific carbon atoms that form a bond between two carbons.
[0053] 本明細書において糖鎖は、  [0053] In the present specification, the sugar chain is
[0054] [化 19]
Figure imgf000030_0002
[0054] [Chemical 19]
Figure imgf000030_0002
により表される。従って、例えば、 N ァセチルダルコサミンの C 6と N ァセチルダ ルコサミンの C— 1とが 13グリコシド結合で結合している糖鎖は、 GlcNAc6— 1 β Glc NAcにより表される。  Is represented by Thus, for example, a sugar chain in which C 6 of N-acetyldylcosamine and C-1 of N-acetyldylcosamine are linked by a 13 glycoside bond is represented by GlcNAc6-1 βGlcNAc.
[0055] 糖鎖の分岐は、括弧により表し、結合する単位糖のすぐ右に配置して表記する。例 えば、  [0055] Branches of sugar chains are represented by parentheses, and are arranged and placed immediately to the right of the unit sugar to be bound. For example,
[0056] [化 20]
Figure imgf000030_0001
と表され、括弧の中は、
[0056] [Chemical 20]
Figure imgf000030_0001
And in parentheses are
[0057] [化 21] 単糖 [0057] [Chemical 21] Monosaccharide
Figure imgf000031_0001
Figure imgf000031_0001
と表記される。従って、例えば、 N—ァセチルダルコサミンの C— 6が N—ァセチルダ ルコサミンの C— 1と j8グリコシド結合し、さらにこの N -ァセチルダルコサミンの C - 3 がガラクトースの C— 1と 13グリコシド結合している場合、 GlcNAc (3— 1 β Gal) 6— 1 ι8 GlcNAcと表される。単糖は、(潜在)カルボニル原子団になるだけ小さい番号を 付けることを基本にして表される。有機化学命名法の一般基準では (潜在)カルボ- ル原子団より優位な原子団が分子中に導入されたときでも、通常上記の番号付けで 表される。  It is written. Thus, for example, C-6 of N-acetylyldarcosamine is bonded to C-1 of N-acetylyldarcosamine with a j8 glycoside, and C-3 of N-acetylyldarcosamine is further linked to C-1 and 13 glycosides of galactose. When bound, it is expressed as GlcNAc (3-1 β Gal) 6-1 ι8 GlcNAc. Monosaccharides are represented on the basis of numbering as small as possible (latent) carbonyl groups. According to the general standard of organic chemical nomenclature, even when an atomic group superior to a (latent) carbon group is introduced into a molecule, it is usually represented by the above numbering.
[0058] [化 22]  [0058] [Chemical 22]
Figure imgf000031_0002
Figure imgf000031_0002
[0059] [化 23]  [0059] [Chemical 23]
Figure imgf000031_0003
Figure imgf000031_0003
本明細書において特に言及するときは、「単糖の誘導体」は、置換されていない単 糖上の一つ以上の水酸基が別の置換基に置換され、結果生じる物質をいう。そのよ うな単糖の誘導体としては、カルボキシル基を有する糖 (例えば、 C—1位が酸化され てカルボン酸となったアルドン酸(例えば、 D—グルコースが酸化された D—ダルコン 酸)、末端の C原子がカルボン酸となったゥロン酸(D—グルコースが酸化された D— グルクロン酸)、アミノ基またはァミノ基の誘導体 (例えば、ァセチルイ匕されたァミノ基) を有する糖 (例えば、 N—ァセチル— D—ダルコサミン、 N—ァセチル— D—ガラタト サミンなど)、アミノ基およびカルボキシル基を両方とも有する糖 (例えば、 Neu5Ac ( シアル酸)、 N—ァセチルムラミン酸など)、デォキシ化された糖 (例えば、 2—デォキ シー D—リボース)、硫酸基を含む硫酸ィ匕糖、リン酸基を含むリン酸ィ匕糖などがあるが それらに限定されない。本明細書では、単糖という場合は、上記誘導体も包含する。 あるいは、へミアセタール構造を形成した糖において、アルコールと反応してァセタ ール構造のグリコシドもまた、単糖の範囲内にある。 As specifically referred to herein, a “monosaccharide derivative” refers to a substance that results from the substitution of one or more hydroxyl groups on an unsubstituted monosaccharide with another substituent. That Examples of such monosaccharide derivatives include saccharides having a carboxyl group (for example, aldonic acids in which the C-1 position is oxidized to form carboxylic acids (for example, D-dalconic acid in which D-glucose is oxidized), terminal C Uronic acid (D-glucose oxidized D-glucuronic acid) with carboxylic acid atom, sugar having amino group or amino group derivative (eg acetylated amino group) (eg N-acetyl- D-darcosamine, N-acetyl-D-galatatosamine, etc., sugars that have both amino and carboxyl groups (eg, Neu5Ac (sialic acid), N-acetylethylmuramic acid, etc.), deoxylated sugars (eg, 2 -Deoxycy D-ribose), sulfate-containing sucrose containing sulfate groups, phosphate-containing sucrose containing phosphate groups, etc., but not limited to them. If say, also encompasses the derivatives. Alternatively, in the forming the Miasetaru structure sugars, glycosides also of Aseta Lumpur structure by reacting with alcohol, are within the scope of monosaccharide.
[0060] 本発明の糖ペプチド残基を構成する「アミノ酸残基」は分子内にアミノ基とカルボキ シル基を有するものであれば特に制限はなぐ Gly (グリシン)残基、 Ala (ァラニン)残 基、 Val (パリン)残基、 Leu (ロイシン)残基、 lie (イソロイシン)残基、 Tyr (チロシン) 残基、 Trp (トリブトファン)残基、 Glu (グルタミン酸)残基、 Asp (ァスパラギン酸)残基 、 Lys (リジン)残基、 Arg (アルギニン)残基、 His (ヒスチジン)残基、 Cys (システィン) 残基、 Met (メチォニン)残基、 Ser (セリン)残基、 Thr (トレオニン)残基、 Asn (ァス ノ ラギン)残基、 Gin (グルタミン)残基または Pro (プロリン)残基などの a—アミノ酸残 基あるいは j8— Ala残基のような |8—アミノ酸残基などが例示される。また、アミノ酸 残基は D体、 L体いずれでもよいが、 L体の方が好ましい。糖ペプチド残基としては、 上述したアミノ酸残基または 2〜30個からなる糖ペプチド残基が好ま U、。 4〜20個 力もなる糖ペプチド残基がさらに好ましい。本明細書において、構造式中で、 Glyな どと表記するときは、残基を示すことが明らかな場合、「残基」という表記は省略するこ とがある。例えば、  [0060] The “amino acid residue” constituting the glycopeptide residue of the present invention is not particularly limited as long as it has an amino group and a carboxy group in the molecule. The Gly (glycine) residue and the Ala (alanine) residue are not particularly limited. Group, Val (parin) residue, Leu (leucine) residue, lie (isoleucine) residue, Tyr (tyrosine) residue, Trp (tributophane) residue, Glu (glutamic acid) residue, Asp (aspartic acid) residue Group, Lys (lysine) residue, Arg (arginine) residue, His (histidine) residue, Cys (cystine) residue, Met (methionine) residue, Ser (serine) residue, Thr (threonine) residue And a-amino acid residues such as Asn (asnolagin) residue, Gin (glutamine) residue or Pro (proline) residue, or | 8-amino acid residue such as j8-Ala residue, etc. The The amino acid residue may be either D-form or L-form, but the L-form is preferred. As the glycopeptide residue, the above-mentioned amino acid residues or 2-30 glycopeptide residues are preferred. More preferred are glycopeptide residues having 4 to 20 forces. In this specification, in the structural formulas, Gly or the like may be omitted when it is clear that a residue is indicated. For example,
[0061] [化 23- 1] 工
Figure imgf000033_0001
[0061] [Chemical 23-1] Craft
Figure imgf000033_0001
2 ZH
Figure imgf000033_0002
2 ZH
Figure imgf000033_0002
2 2
Q H- 一 H Q H- One H
2_iCH 0NHNHaHcCHc C-II-GHCNI CH CN-II-II-I一 H H H-一  2_iCH 0NHNHaHcCHc C-II-GHCNI CH CN-II-II-I H H H H
一〇 o〇 o o O o  100 oo o o O o
Figure imgf000033_0003
Figure imgf000033_0003
〇一 o— o ○ 1 o— o
ェ II ί  II II
o
Figure imgf000033_0004
Figure imgf000033_0005
o
Figure imgf000033_0004
Figure imgf000033_0005
T00 .S0/Z,00Zdf/X3d 38 LO£ni/LOOZ OAV は、 T00 .S0 / Z, 00Zdf / X3d 38 LO £ ni / LOOZ OAV Is
[0062] [化 23- 2]  [0062] [Chemical 23-2]
His— Gly—Va卜 Thr—Ser— Ala-Pro— Asp— Thr—Arg—NH2 His— Gly—Va 卜 Thr—Ser— Ala-Pro— Asp— Thr—Arg—NH 2
(配列番号 2)と表すことができる。 (SEQ ID NO: 2).
[0063] [化 23- 3] [0063] [Chemical 23-23]
Figure imgf000034_0001
Figure imgf000034_0001
は、  Is
[0064] [化 23-4]  [0064] [Chemical 23-4]
Ala-His-Gly-Val -Thr-Ser-AI a- Pro-Asp-Thr-Arg- NH2 Ala-His-Gly-Val -Thr-Ser-AI a- Pro-Asp-Thr-Arg- NH 2
(配列番号 21)と表すことができる。 (SEQ ID NO: 21).
[0065] [化 23- 6] [0065] [Chemical 23-23]
\„ \ „
Jp一。S c?¾c4一*、.. Jp. S c? ¾c4 one *, ..
Figure imgf000035_0001
Figure imgf000035_0001
lOOLSO/LOOZdi/lDd L0£m/L00Z OAV は、 lOOLSO / LOOZdi / lDd L0 £ m / L00Z OAV Is
[0066] [化 23- 7]  [0066] [Chemical 23-23]
His-Gly-Val-Thr-Ser-Ala-Pro-Asp-Thr-Arg-Pro-Ala-Pro-Gly-Ser-Thr- Ala-Pro -Pro-Ala-NH2  His-Gly-Val-Thr-Ser-Ala-Pro-Asp-Thr-Arg-Pro-Ala-Pro-Gly-Ser-Thr- Ala-Pro -Pro-Ala-NH2
(配列番号 41)と表すことができる。  (SEQ ID NO: 41).
[0067] アミノ酸は、一般式: [0067] Amino acids have the general formula:
[0068] [化 23- 8] [0068] [Chemical 23-23]
H H
H2 N-C-C00H H 2 NC-C00H
R  R
(式中、 Rは側鎖を示す。)と表すことができる。 (Wherein R represents a side chain).
[0069] プロリンは、以下: [0069] Proline is:
[0070] [化 23- 9] [0070] [Chemical 23-23]
Figure imgf000036_0001
Figure imgf000036_0001
と表される。  It is expressed.
[0071] アミノ酸がペプチド結合して 、る場合、その構造は、以下:  [0071] When the amino acid is a peptide bond, the structure is as follows:
[0072] [化 23- 10] [0072] [Chemical 23-23]
H 0 R H 0 R
H2 N-C-C- N-C-C00H H 2 NCC- NC-C00H
R H H  R H H
(式中、 Rは側鎖を示す。)と表すことができる。例えば、 Rがともに Hであれば、  (Wherein R represents a side chain). For example, if both R are H,
[0073] [化 23— 11] [0073] [Chemical 23-23]
H 0 H H 0 H
H2 N-C-C- N-C-C00H H 2 NCC- NC-C00H
H H H と表される。上記の構造は、 Gly— Glyとも表記される。ここで、ペプチド鎖の端に位 置する「Gly―」または「― Gly」は、 1価のグリシン残基を示す。例えば、ペプチド鎖を 構成するアミノ酸残基にプロリン残基が含まれ、 Gly— Proと表される場合、構造は、 以下: Expressed as HHH. The above structure is also expressed as Gly—Gly. Here, “Gly-” or “-Gly” located at the end of the peptide chain represents a monovalent glycine residue. For example, the peptide chain When the constituent amino acid residue includes a proline residue and is expressed as Gly—Pro, the structure is as follows:
[0074] [化 23- 12] [0074] [Chemical 23-23]
H 0 H  H 0 H
H2 N-C-C-N-C-COOH H 2 NCCNC-COOH
I / \  I / \
H CH2 CH2 H CH 2 CH 2
ゝ ノ  ノ
CH2 とち表される。 Expressed as CH 2 .
[0075] アミノ酸が 3つ結合したペプチドを示す場合、以下:  [0075] When referring to a peptide in which three amino acids are bound, the following:
[0076] [化 23- 13] [0076] [Chemical 23-23]
Figure imgf000037_0001
Figure imgf000037_0001
(式中 RA〜Reは、側鎖を示す。)と表される。例えば、 RAが Hであり、 RB力 SCHであり (Wherein R A to R e represent side chains). For example, R A is H, R B force SCH
3 Three
、 Reが CH (CH ) CHである場合、ペプチド鎖は、 Gly— Ala— Valとも表される。ここ , Re is CH (CH) CH, the peptide chain is also represented as Gly—Ala—Val. here
3 3  3 3
で、「Gly—」は、 1価のグリシン残基を示し、「― Ala―」は 2価のァラニン残基を示し、 「― Val」は、 1価のパリン残基を示す。  “Gly—” represents a monovalent glycine residue, “—Ala—” represents a divalent alanine residue, and “—Val” represents a monovalent palin residue.
[0077] ペプチド鎖にアミノ酸残基としてセリン残基またはトレオニン残基が含まれる場合、 セリン残基またはトレオニン残基がペプチド鎖の末端に位置する場合、セリン残基は 、「Ser―」または「― Ser」と表され、トレオニン残基は、「Thr―」または「― Thr」と表 され、 1価のアミノ酸残基である。これらのアミノ酸残基には糖鎖が結合することがある 。糖鎖が結合した場合、これらの残基は 2価であり、セリン残基、トレオニン残基は、そ れぞれ、以下:  [0077] When the peptide chain includes a serine residue or threonine residue as an amino acid residue, when the serine residue or threonine residue is located at the end of the peptide chain, the serine residue is "Ser-" or " It is expressed as “Ser”, and the threonine residue is expressed as “Thr-” or “-Thr” and is a monovalent amino acid residue. Sugar chains may be bound to these amino acid residues. When sugar chains are attached, these residues are divalent, and serine and threonine residues are as follows:
[0078] [化 23- 14]  [0078] [Chemical 23-23]
¾er— また ― Ser ; Thr- または 一 Thr と表される。 ¾er— Also expressed as Ser; Thr- or One Thr.
[0079] セリン残基またはトレオニン残基がペプチド鎖の末端以外の位置に存在する場合、 これらの残基は 2価であり、それぞれ、「― Ser―」、「― Thr―」と表される。これらの アミノ酸残基には糖鎖が結合することがある。糖鎖が結合した場合、これらの残基は 3 価であり、セリン残基、トレオニン残基は、それぞれ、以下: [0079] When a serine residue or a threonine residue is present at a position other than the end of the peptide chain, These residues are divalent and are represented by “-Ser-” and “-Thr-”, respectively. Sugar chains may be bound to these amino acid residues. When sugar chains are attached, these residues are trivalent, and serine and threonine residues are as follows:
[0080] [化 23- 15] [0080] [Chemical 23-23]
— Ser— ; 一 Thr— — Ser— ; One Thr—
と表される。  It is expressed.
[0081] 上で定義した本発明の糖アミノ酸は、上に列挙したアミノ酸残基と糖残基とが理論 上結合することができればその組み合わせに特に制限はな 、が、好まし 、組み合わ せとして、  [0081] The sugar amino acid of the present invention defined above is not particularly limited as long as the amino acid residues and sugar residues listed above can theoretically be combined, but preferably, the combination is not limited. ,
•Ser- 1 a GalNAc (3~1 β Gal) 6— 1 β GlcNAc4— 1 β Gal[3— 1 β GlcNAc4 -1β Gal]n  Ser-1 a GalNAc (3 ~ 1 β Gal) 6— 1 β GlcNAc4— 1 β Gal [3— 1 β GlcNAc4 -1β Gal] n
•Ser- 1 a GalNAc (3— 1 j8 Gal) 6— 1 β GlcNAc4— 1 β Gal[3— 1 β GlcNAc4 —113 Gal]n3 ~1β GlcNAc  • Ser- 1 a GalNAc (3 — 1 j8 Gal) 6— 1 β GlcNAc4— 1 β Gal [3— 1 β GlcNAc4 —113 Gal] n3 ~ 1β GlcNAc
•Ser- 1 a GalNAc (3~1β Gal) 6— 1 β GlcNAc4— 1 β Gal[3— 1 β GlcNAc4
Figure imgf000038_0001
Ser-1 a GalNAc (3 ~ 1β Gal) 6— 1 β GlcNAc4— 1 β Gal [3— 1 β GlcNAc4
Figure imgf000038_0001
•Ser- la GalNAc (3— 1 j8 Gal[3 ~1β GlcNAc4 ~1β Gal]m) 6~1β GlcNAc 4-1 β Gal[3 -1β GlcNAc4 ~1β Gal]n  Ser-la GalNAc (3—1 j8 Gal [3 ~ 1β GlcNAc4 ~ 1β Gal] m) 6 ~ 1β GlcNAc 4-1 β Gal [3 -1β GlcNAc4 ~ 1β Gal] n
•Ser- la GalNAc (3— 1 j8 Gal[3 ~1β GlcNAc4 ~1β Gal]m3 ~1β GlcNAc) Ser-la GalNAc (3—1 j8 Gal [3 ~ 1β GlcNAc4 ~ 1β Gal] m3 ~ 1β GlcNAc)
6-1 β GlcNAc4 ~1β Gal[3 ~1β GlcNAc4 ~1β Gal]n 6-1 β GlcNAc4 ~ 1β Gal [3 ~ 1β GlcNAc4 ~ 1β Gal] n
•Ser- la GalNAc (3— 1 j8 Gal[3 ~1β GlcNAc4 ~1β Gal]m3 -2a Neu5Ac Ser-la GalNAc (3—1 j8 Gal [3 ~ 1β GlcNAc4 ~ 1β Gal] m3 -2a Neu5Ac
)6-1 β GlcNAc4 ~1β Gal[3 ~1β GlcNAc4 ~1β Gal]n ) 6-1 β GlcNAc4 ~ 1β Gal [3 ~ 1β GlcNAc4 ~ 1β Gal] n
•Ser- la GalNAc (3— 1 j8 Gal[3 ~1β GlcNAc4 ~1β Gal]m) 6~1β GlcNAc Ser-la GalNAc (3 — 1 j8 Gal [3 ~ 1β GlcNAc4 ~ 1β Gal] m) 6 ~ 1β GlcNAc
4-1 β Gal[3 -1β GlcNAc4 ~1β Gal]n3 ~1β GlcNAc 4-1 β Gal [3 -1β GlcNAc4 ~ 1β Gal] n3 ~ 1β GlcNAc
•Ser- la GalNAc (3— 1 j8 Gal[3 ~1β GlcNAc4 ~1β Gal]m3 ~1β GlcNAc) Ser-la GalNAc (3—1 j8 Gal [3 ~ 1β GlcNAc4 ~ 1β Gal] m3 ~ 1β GlcNAc)
6-1 β GlcNAc4 ~1β Gal[3 ~1β GlcNAc4 ~1β Gal]n3 ~1β GlcNAc6-1 β GlcNAc4 ~ 1β Gal [3 ~ 1β GlcNAc4 ~ 1β Gal] n3 ~ 1β GlcNAc
•Ser- la GalNAc (3— 1 β Gal[3—1β GlcNAc4—1β Gal]m3 -2α Neu5Ac β β β ()u a Ser 1 GalNAc31 Gal3 GlcNAc Galm 61 GlcNAc• 111 Ser-la GalNAc (3—1β Gal [3-1—GlcNAc4—1β Gal] m3-2α Neu5Ac β β β () ua Ser 1 GalNAc31 Gal3 GlcNAc Galm 61 GlcNAc • 111
GlcNAc  GlcNAc
β β β β ) ()ua 61 GlcNAc31 Fuc 41 Gal3 GlcNAc Galn3111  β β β β) () ua 61 GlcNAc31 Fuc 41 Gal3 GlcNAc Galn3111
β β (u aα Ser 1 GalNAc31 Gal3 GlcNAc Galm32 Neu5Ac • 111  β β (u aα Ser 1 GalNAc31 Gal3 GlcNAc Galm32 Neu5Ac • 111
GlcNAc  GlcNAc
β β β β β ()uα 61 GlcNAc31 Fuc 41 Gal3 GlcNAc Galn3111  β β β β β () uα 61 GlcNAc31 Fuc 41 Gal3 GlcNAc Galn3111
β β β ()u a Ser 1 GalNAc31 Gal3 GlcNAc Galm3 GlcNAc • 11  β β β () u a Ser 1 GalNAc31 Gal3 GlcNAc Galm3 GlcNAc • 11
β β β β ()ua31 Fuc 41 Gal3 GlcNAc Galn3 GlcNAc11  β β β β () ua31 Fuc 41 Gal3 GlcNAc Galn3 GlcNAc11
β β ()u a Ser 1 GalNAc31 Gal3 GlcNAc Galm 61 GlcNAc • 111  β β () u a Ser 1 GalNAc31 Gal3 GlcNAc Galm 61 GlcNAc • 111
β β β ) ()Ua 61 GlcNAc31 Fuc 41 Gal3 GlcNAc Gan 111  β β β) () Ua 61 GlcNAc31 Fuc 41 Gal3 GlcNAc Gan 111
β β (u aα Ser 1 GalNAc31 Gal3 GlcNAc Galm32 Neu5Ac • 111  β β (u aα Ser 1 GalNAc31 Gal3 GlcNAc Galm32 Neu5Ac • 111
β β β β ()Uα 61 GlcNAc31 Fuc 41 Gal3 GlcNAc Gan111  β β β β () Uα 61 GlcNAc31 Fuc 41 Gal3 GlcNAc Gan111
β β β ()u a Ser 1 GalNAc31 Gal3 GlcNAc Galm3 GlcNAc • 11  β β β () u a Ser 1 GalNAc31 Gal3 GlcNAc Galm3 GlcNAc • 11
β β β ()Ua31 Fuc 41 Gal3 GlcNAc Gan11  β β β () Ua31 Fuc 41 Gal3 GlcNAc Gan11
β β ()u a Ser 1 GalNAc31 Gal3 GlcNAc Galm 61 GlcNAc • 111  β β () u a Ser 1 GalNAc31 Gal3 GlcNAc Galm 61 GlcNAc • 111
β βuα 1 GlcNAc Galn32 Neu5Ac 1  β βuα 1 GlcNAc Galn32 Neu5Ac 1
β () ()s aa Ser 1 GalNAc31 Gal 61 GlcNAc31 Fuc 41 Ga • 11111 I  β () () s aa Ser 1 GalNAc31 Gal 61 GlcNAc31 Fuc 41 Ga • 11111 I
β β βu 1 GlcNAc 1 Galn31 GlcNAc 1l  β β βu 1 GlcNAc 1 Galn31 GlcNAc 1l
β () ()s aa Ser 1 GalNAc31 Gal 61 GlcNAc31 Fuc 41 Ga • 11111 I β () () s aa Ser 1 GalNAc31 Gal 61 GlcNAc31 Fuc 41 Ga • 11111 I
!lUss l GlcNAcl Gan I  ! lUss l GlcNAcl Gan I
β () ()s aa Ser 1 GalNAc31 Gal 61 GlcNAc31 Fuc 41 Ga • 11111 I  β () () s aa Ser 1 GalNAc31 Gal 61 GlcNAc31 Fuc 41 Ga • 11111 I
β β β )uα 61 GlcNAc Gal3 GlcNAc Galn32 Neu5Ac 11  β β β) uα 61 GlcNAc Gal3 GlcNAc Galn32 Neu5Ac 11
β β (u αα Ser 1 GalNAc31 Gal3 GlcNAc Galm32 Neu5Ac • 111  β β (u αα Ser 1 GalNAc31 Gal3 GlcNAc Galm32 Neu5Ac • 111
β β β βuα 61 GlcNAc Gal3 GlcNAc Galn32 Neu5Ac11  β β β βuα 61 GlcNAc Gal3 GlcNAc Galn32 Neu5Ac11
β β β ()u a Ser 1 GalNAc31 Gal3 GlcNAc Galm3 GlcNAc • 11  β β β () u a Ser 1 GalNAc31 Gal3 GlcNAc Galm3 GlcNAc • 11
β βuα 1 Gal3 GlcNAc Galn32 Neu5Ac 11  β βuα 1 Gal3 GlcNAc Galn32 Neu5Ac 11
β β ()u a Ser 1 GalNAc31 Gal3 GlcNAc Galm 61 GlcNAc • 111 β β β β )u 61 GlcNAc Gal3 GlcNAc Galn3 GlcNAc 1 ()u a a cNAc31 Fuc 1 Galn31 GlcNAc31 Fuc 1111 β β () ua Ser 1 GalNAc31 Gal3 GlcNAc Galm 61 GlcNAc • 111 β β β β) u 61 GlcNAc Gal3 GlcNAc Galn3 GlcNAc 1 () uaa cNAc31 Fuc 1 Galn31 GlcNAc31 Fuc 1111
β β β β) (M aa G1CNAC31 Fuc 61 GlcNAc31 FUC 1 Gal31 Gl111Il  β β β β) (M aa G1CNAC31 Fuc 61 GlcNAc31 FUC 1 Gal31 Gl111Il
β β ( ()u aa Ser 1 GalNAc31 Gal3 GlcNAc31 Fuc 41 Galm3 • 1111  β β (() u aa Ser 1 GalNAc31 Gal3 GlcNAc31 Fuc 41 Galm3 • 1111
βU a an3 GlcNAc 31 Fuc 1  βU a an3 GlcNAc 31 Fuc 1
β β β β (M (Maa GlcNAc31 FUC 1 Gal31 GlcNAc31 FUC 1 G1Il1I  β β β β (M (Maa GlcNAc31 FUC 1 Gal31 GlcNAc31 FUC 1 G1Il1I
β β ( ())u aa Ser 1 GalNAc31 Gal3 GlcNAc31 Fuc 41 Galm 6 • 1111 ! β β) () (asa2 Neu5 Ac 61 GlcNAc31 Fuc 41 Gal3 GlcNAc3 11111  β β (()) u aa Ser 1 GalNAc31 Gal3 GlcNAc31 Fuc 41 Galm 6 • 1111! β β) () (asa2 Neu5 Ac 61 GlcNAc31 Fuc 41 Gal3 GlcNAc3 11111
β β ( ()u aa Ser 1 GalNAc31 Gal3 GlcNAc31 Fuc 41 Galm3 • 1111  β β (() u aa Ser 1 GalNAc31 Gal3 GlcNAc31 Fuc 41 Galm3 • 1111
Figure imgf000040_0001
Figure imgf000040_0001
β β ()Ua 1 GlcNAc31 Fuc 41 Gan11  β β () Ua 1 GlcNAc31 Fuc 41 Gan11
β () ()s aa Ser 1 GalNAc31 Gal 61 GlcNAc31 Fuc 41 Ga • 11111 I β β β ) ()uaα 61 GlcNAc31 Fuc 41 Gal3 GlcNAc Galn321111  β () () s aa Ser 1 GalNAc31 Gal 61 GlcNAc31 Fuc 41 Ga • 11111 I β β β) () uaα 61 GlcNAc31 Fuc 41 Gal3 GlcNAc Galn321111
β β (u aα Ser 1 GalNAc31 Gal3 GlcNAc Galm32 Neu5Ac • 111 β β β β ()uαα 61 GlcNAc31 Fuc 41 Gal3 GlcNAc Galn321111  β β (u aα Ser 1 GalNAc31 Gal3 GlcNAc Galm32 Neu5Ac • 111 β β β β () uαα 61 GlcNAc31 Fuc 41 Gal3 GlcNAc Galn321111
β β β ()u a Ser 1 GalNAc31 Gal3 GlcNAc Galm3 G1CNAC • 11 β β β ()uαα31 Fuc 41 Gal3 GlcNAc Galn32 Neu5 Ac111 β β β β )〔u 61 GlcNAcI Gal3 GlcNAc Galn3 GlcNAc 1 I β β β () ua Ser 1 GalNAc31 Gal3 GlcNAc Galm3 G1CNAC • 11 β β β () uαα31 Fuc 41 Gal3 GlcNAc Galn32 Neu5 Ac111 β β β β) (u 61 GlcNAcI Gal3 GlcNAc Galn3 GlcNAc 1 I
β β β (〔u aThr 1 GalNAc31 Gal31 GlcNAc 1 Galm31 GlcNAc •l1l 1l  β β β ((u aThr 1 GalNAc31 Gal31 GlcNAc 1 Galm31 GlcNAc l1l 1l
β β β〔u c 1 Gal3 GlcNAc Galn3 GlcNAc 1  β β β [u c 1 Gal3 GlcNAc Galn3 GlcNAc 1
β β β ()〔u aThr 1 GalNAc31 Gal31 GlcNAc 1 Galm 61 G1CNA •l1l 11  β β β () (u aThr 1 GalNAc31 Gal31 GlcNAc 1 Galm 61 G1CNA
β β β )〔U 61 GlcNAc Gal3 GlcNAc Gan 1  β β β) (U 61 GlcNAc Gal3 GlcNAc Gan 1
! β β (〔u ssaThr 1 GalNAc31 Gal3 GlcNAc 1 Galm32 Neu Ac •l 111  β β ([u ssaThr 1 GalNAc31 Gal3 GlcNAc 1 Galm32 Neu Ac • l 111
β β β )〔U 61 GlcNAc Gal3 GlcNAc Gan 1  β β β) (U 61 GlcNAc Gal3 GlcNAc Gan 1
β β β (〔u aThr 1 GalNAc31 Gal31 GlcNAc 1 Galm31 GlcNAc •l1l 1l
Figure imgf000041_0001
β β β ((u aThr 1 GalNAc31 Gal31 GlcNAc 1 Galm31 GlcNAc l1l 1l
Figure imgf000041_0001
β β〔U c 1 Gal31 GlcNAc 1 Gan 1l 1  β β [U c 1 Gal31 GlcNAc 1 Gan 1l 1
β β β ()〔u aThr 1 GalNAc31 Gal31 GlcNAc 1 Galm 61 G1CNA •l1l 11 β β β ()〔 aThr 1 GalNAc31 Gal 61 GlcNAc 1 Gal31 GlcNAc •l111l  β β β () (u aThr 1 GalNAc31 Gal31 GlcNAc 1 Galm 61 G1CNA • l1l 11 β β β () (aThr 1 GalNAc31 Gal 61 GlcNAc 1 Gal31 GlcNAc
β βu Galn3 GlcNAc  β βu Galn3 GlcNAc
β β β ()〔 aThr 1 GalNAc31 Gal 61 GlcNAc 1 Gal31 GlcNAc •l111l β β β ()〔 aThr 1 GalNAc31 Gal 61 GlcNAc 1 Gal31 GlcNAc •l111l  β β β () (aThr 1 GalNAc31 Gal 61 GlcNAc 1 Gal31 GlcNAc • l111l β β β () (aThr 1 GalNAc31 Gal 61 GlcNAc 1 Gal31 GlcNAc • l111l
β)u aa 1 Fuc 41 Galn32 Neu5Ac11  β) u aa 1 Fuc 41 Galn32 Neu5Ac11
! β β) () (〔asa2 Neu5 Ac 61 GlcNAc31 Fuc 41 Gal3 GlcNAc3 11111  β β) () ((asa2 Neu5 Ac 61 GlcNAc31 Fuc 41 Gal3 GlcNAc3 11111
β β ( ()〔u aa Ser 1 GalNAc31 Gal3 GlcNAc31 Fuc 41 Galm3 • 1111  β β (() (u aa Ser 1 GalNAc31 Gal3 GlcNAc31 Fuc 41 Galm3 • 1111
I ()u aS a cNAc31 FucIGaln32 Neu Ac1 Il  I () u aS a cNAc31 FucIGaln32 Neu Ac1 Il
β β β β) (M〔 aa G1CNAC31 Fuc 61 GlcNAc31 FUC 1 Gal31 Gl111Il  β β β β) (M (aa G1CNAC31 Fuc 61 GlcNAc31 FUC 1 Gal31 Gl111Il
β β ( ()〔u aa Ser 1 GalNAc31 Gal3 GlcNAc31 Fuc 41 Galm3 • 1111 β β (() (u aa Ser 1 GalNAc31 Gal3 GlcNAc31 Fuc 41 Galm3 • 1111
ua aln32 Neu Ac 1  ua aln32 Neu Ac 1
β β β β (M (M〔aa GlcNAc31 FUC 1 Gal31 GlcNAc31 FUC 1 G1Il1I  β β β β (M (M (aa GlcNAc31 FUC 1 Gal31 GlcNAc31 FUC 1 G1Il1I
β β ( ())〔u aa Ser 1 GalNAc31 Gal3 GlcNAc31 Fuc 41 Galm 6 • 1111 β β (()) (u aa Ser 1 GalNAc31 Gal3 GlcNAc31 Fuc 41 Galm 6 • 1111
)u a a 1 Fuc 1 Galn31 GlcNAc31 Fuc 111  ) u a a 1 Fuc 1 Galn31 GlcNAc31 Fuc 111
! β β) () (〔asa2 Neu5 Ac 61 GlcNAc31 Fuc 41 Gal3 GlcNAc3 11111 β β ( ()〔u aa Ser 1 GalNAc31 Gal3 GlcNAc31 Fuc 41 Galm3 • 1111 GlcNAc β β) () ((asa2 Neu5 Ac 61 GlcNAc31 Fuc 41 Gal3 GlcNAc3 11111 β β (() (u aa Ser 1 GalNAc31 Gal3 GlcNAc31 Fuc 41 Galm3 • 1111 GlcNAc
β β β β ) ()〔ua 61 GlcNAc31 Fuc 41 Gal3 GlcNAc Galn3111  β β β β) () (ua 61 GlcNAc31 Fuc 41 Gal3 GlcNAc Galn3111
! β β (〔u ssaThr 1 GalNAc31 Gal3 GlcNAc 1 Galm32 Neu Ac •l 111  β β ([u ssaThr 1 GalNAc31 Gal3 GlcNAc 1 Galm32 Neu Ac • l 111
GlcNAc  GlcNAc
β β β β ) ()〔ua 61 GlcNAc31 Fuc 41 Gal3 GlcNAc Galn3111  β β β β) () (ua 61 GlcNAc31 Fuc 41 Gal3 GlcNAc Galn3111
β β β (〔u aThr 1 GalNAc31 Gal31 GlcNAc 1 Galm31 GlcNAc •l1l 1l  β β β ((u aThr 1 GalNAc31 Gal31 GlcNAc 1 Galm31 GlcNAc l1l 1l
β β β β ()〔u a c31 Fuc 41 Gal3 GlcNAc Galn3 GlcNAc 11  β β β β () (u a c31 Fuc 41 Gal3 GlcNAc Galn3 GlcNAc 11
β β β ()〔u aThr 1 GalNAc31 Gal31 GlcNAc 1 Galm 61 G1CNA •l1l 11  β β β () (u aThr 1 GalNAc31 Gal31 GlcNAc 1 Galm 61 G1CNA
β β β ) ()〔Ua 61 GlcNAc31 Fuc 41 Gal3 GlcNAc Gan 111  β β β) () (Ua 61 GlcNAc31 Fuc 41 Gal3 GlcNAc Gan 111
! β β (〔u ssaThr 1 GalNAc31 Gal3 GlcNAc 1 Galm32 Neu Ac •l 111  β β ([u ssaThr 1 GalNAc31 Gal3 GlcNAc 1 Galm32 Neu Ac • l 111
β β β ) ()〔Ua 61 GlcNAc31 Fuc 41 Gal3 GlcNAc Gan 111  β β β) () (Ua 61 GlcNAc31 Fuc 41 Gal3 GlcNAc Gan 111
β β β (〔u aThr 1 GalNAc31 Gal31 GlcNAc 1 Galm31 GlcNAc •l1l 1l  β β β ((u aThr 1 GalNAc31 Gal31 GlcNAc 1 Galm31 GlcNAc l1l 1l
β β β ()〔U a c31 Fuc 41 Gal3 GlcNAc Gan 11  β β β () (U a c31 Fuc 41 Gal3 GlcNAc Gan 11
β β β ()〔u aThr 1 GalNAc31 Gal31 GlcNAc 1 Galm 61 G1CNA •l1l 11  β β β () (u aThr 1 GalNAc31 Gal31 GlcNAc 1 Galm 61 G1CNA
β βuα 1 GlcNAc Galn32 Neu5Ac 1  β βuα 1 GlcNAc Galn32 Neu5Ac 1
β () (M〔 aaThr 1 GalNAc31 Gal 61 GlcNAc31 FUC 1 Gal3 • 1111I 1  β () (M [aThr 1 GalNAc31 Gal 61 GlcNAc31 FUC 1 Gal3 • 1111I 1
β β βu 1 GlcNAc 1 Galn31 GlcNAc 1l  β β βu 1 GlcNAc 1 Galn31 GlcNAc 1l
β () (M〔 aaThr 1 GalNAc31 Gal 61 GlcNAc31 FUC 1 Gal3 • 1111I 1 β () (M [aThr 1 GalNAc31 Gal 61 GlcNAc31 FUC 1 Gal3 • 1111I 1
!lUss l GlcNAcl Gan I  ! lUss l GlcNAcl Gan I
β () (M〔 aaThr 1 GalNAc31 Gal 61 GlcNAc31 FUC 1 Gal3 • 1111I 1  β () (M [aThr 1 GalNAc31 Gal 61 GlcNAc31 FUC 1 Gal3 • 1111I 1
β β β )〔uα 61 GlcNAc Gal3 GlcNAc Galn32 Neu5Ac 11  β β β) (uα 61 GlcNAc Gal3 GlcNAc Galn32 Neu5Ac 11
! β β (〔u ssaThr 1 GalNAc31 Gal3 GlcNAc 1 Galm32 Neu Ac •l 111  β β ([u ssaThr 1 GalNAc31 Gal3 GlcNAc 1 Galm32 Neu Ac • l 111
β β β )〔uα 61 GlcNAc Gal3 GlcNAc Galn32 Neu5Ac 11  β β β) (uα 61 GlcNAc Gal3 GlcNAc Galn32 Neu5Ac 11
β β β (〔u aThr 1 GalNAc31 Gal31 GlcNAc 1 Galm31 GlcNAc •l1l 1l  β β β ((u aThr 1 GalNAc31 Gal31 GlcNAc 1 Galm31 GlcNAc l1l 1l
β β〔uα c 1 Gal3 GlcNAc Galn32 Neu5Ac 11  β β [uα c 1 Gal3 GlcNAc Galn32 Neu5Ac 11
β β β ()〔u aThr 1 GalNAc31 Gal31 GlcNAc 1 Galm 61 G1CNA •l1l 11  β β β () (u aThr 1 GalNAc31 Gal31 GlcNAc 1 Galm 61 G1CNA
β β β β )〔u 61 GlcNAc Gal3 GlcNAc Galn3 GlcNAc 1 ! β β (〔u ssaThr 1 GalNAc31 Gal3 GlcNAc 1 Galm32 Neu Ac • 1111 β β β β) (M sa G1CNAC31 Fuc 61 GlcNAc31 FUC 1 Gal31 Gl111Il β β β β) (u 61 GlcNAc Gal3 GlcNAc Galn3 GlcNAc 1! β β ((u ssaThr 1 GalNAc31 Gal3 GlcNAc 1 Galm32 Neu Ac • 1111 β β β β) (M sa G1CNAC31 Fuc 61 GlcNAc31 FUC 1 Gal31 Gl111Il
β β ( (Mu aaThr 1 GalNAc31 Gal3 GlcNAc31 FUC 1 Galm3 •l 11I  β β ((Mu aThr 1 GalNAc31 Gal3 GlcNAc31 FUC 1 Galm3 • l 11I
βU a an3 GlcNAc 31 Fuc 1  βU a an3 GlcNAc 31 Fuc 1
β β β β (M (Maa GlcNAc31 FUC 1 Gal31 GlcNAc31 FUC 1 G1Il1I  β β β β (M (Maa GlcNAc31 FUC 1 Gal31 GlcNAc31 FUC 1 G1Il1I
β β ( (M)u aaThr 1 GalNAc31 Gal3 GlcNAc31 FUC 1 Galm 6 •l 11I ! β β) () (asa2 Neu5 Ac 61 GlcNAc31 Fuc 41 Gal3 GlcNAc3 11111  β β ((M) u aThr 1 GalNAc31 Gal3 GlcNAc31 FUC 1 Galm 6 • l 11I! β β) () (asa2 Neu5 Ac 61 GlcNAc31 Fuc 41 Gal3 GlcNAc3 11111
β β ( (Mu aaThr 1 GalNAc31 Gal3 GlcNAc31 FUC 1 Galm3 •l 11I  β β ((Mu aThr 1 GalNAc31 Gal3 GlcNAc31 FUC 1 Galm3 • l 11I
Figure imgf000043_0001
Figure imgf000043_0001
β () (M aaThr 1 GalNAc31 Gal 61 GlcNAc31 FUC 1 Gal3 •l 111I 1 β β β ) ()uaα 61 GlcNAc31 Fuc 41 Gal3 GlcNAc Galn321111  β () (MaThr 1 GalNAc31 Gal 61 GlcNAc31 FUC 1 Gal3 • l 111I 1 β β β) () uaα 61 GlcNAc31 Fuc 41 Gal3 GlcNAc Galn321111
! β β (u ssaThr 1 GalNAc31 Gal3 GlcNAc 1 Galm32 Neu Ac •l 111 β β β ) ()uaα 61 GlcNAc31 Fuc 41 Gal3 GlcNAc Galn321111  β β (u ssaThr 1 GalNAc31 Gal3 GlcNAc 1 Galm32 Neu Ac • l 111 β β β) () uaα 61 GlcNAc31 Fuc 41 Gal3 GlcNAc Galn321111
β β β (u aThr 1 GalNAc31 Gal31 GlcNAc 1 Galm31 GlcNAc •l1l 1l  β β β (u aThr 1 GalNAc31 Gal31 GlcNAc 1 Galm31 GlcNAc l1l 1l
β β β ()u aα c31 Fuc 41 Gal3 GlcNAc Galn32 Neu5 Ac 111 β β β ()u aThr 1 GalNAc31 Gal31 GlcNAc 1 Galm 61 G1CNA •l1l 11 cNAc (3— 1 a Fuc) 4— 1 j8 Gal]n3— 1 j8 GlcNAc3— 1 a Fuc β β β () u aα c31 Fuc 41 Gal3 GlcNAc Galn32 Neu5 Ac 111 β β β () u aThr 1 GalNAc31 Gal31 GlcNAc 1 Galm 61 G1CNA • l1l 11 cNAc (3— 1 a Fuc) 4— 1 j8 Gal] n3— 1 j8 GlcNAc3— 1 a Fuc
•Thr-ΐα GalNAc (3— 1 j8 Gal[3 ~1β GlcNAc (3— 1 a Fuc) 4— 1 β Gal]m3 -2a Neu5Ac) 6— 1 j8 GlcNAc (3— 1 a Fuc) 4— 1 j8 Gal[3 ~1β GlcNAc (3— 1 a Fuc) 4— 1 j8 Gal]n3— 1 j8 GlcNAc3— 1 a Fuc  Thr-ΐα GalNAc (3— 1 j8 Gal [3 ~ 1β GlcNAc (3— 1 a Fuc) 4— 1 β Gal] m3 -2a Neu5Ac) 6— 1 j8 GlcNAc (3— 1 a Fuc) 4— 1 j8 Gal [3 ~ 1β GlcNAc (3 — 1 a Fuc) 4— 1 j8 Gal] n3 — 1 j8 GlcNAc3— 1 a Fuc
•Thr-la GalNAc (3— 1 j8 Gal[3 ~1β GlcNAc (3— 1 a Fuc) 4— 1 β Gal]m) 6 —113 GlcNAc (3-la Fuc) 4-1 β Gal[3— 1 β GlcNAc (3— 1 a Fuc) 4-1 β G al]n3— 2a Neu5Ac  Thr-la GalNAc (3— 1 j8 Gal [3 ~ 1β GlcNAc (3 — 1 a Fuc) 4— 1 β Gal] m) 6 —113 GlcNAc (3-la Fuc) 4-1 β Gal [3— 1 β GlcNAc (3-1 a Fuc) 4-1 β G al] n3— 2a Neu5Ac
•Thr-la GalNAc (3— 1 j8 Gal[3 ~1β GlcNAc (3-la Fuc) 4— 1 β Gal]m3 —113 GlcNAc3— 1 a Fuc) 6— 1 β GlcNAc (3-la Fuc) 4-1 β Gal[3— 1 β Gl cNAc (3— 1 a Fuc) 4— 1 j8 Gal]n3— 2 a Neu5Ac  Thr-la GalNAc (3— 1 j8 Gal [3 ~ 1β GlcNAc (3-la Fuc) 4— 1 β Gal] m3 —113 GlcNAc3— 1 a Fuc) 6— 1 β GlcNAc (3-la Fuc) 4- 1 β Gal [3— 1 β Gl cNAc (3— 1 a Fuc) 4— 1 j8 Gal] n3— 2 a Neu5Ac
•Thr-la GalNAc (3— 1 j8 Gal[3 ~1β GlcNAc (3-la Fuc) 4— 1 β Gal]m3 -2a Neu5Ac) 6— 1 j8 GlcNAc (3— 1 a Fuc) 4~1β Gal[3 ~1β GlcNAc (3— 1 a Fuc) 4-1 β Gal]n3 -2a Neu5Ac  Thr-la GalNAc (3— 1 j8 Gal [3 to 1β GlcNAc (3-la Fuc) 4— 1 β Gal] m3 -2a Neu5Ac) 6— 1 j8 GlcNAc (3 — 1 a Fuc) 4 to 1β Gal [ 3 ~ 1β GlcNAc (3 — 1 a Fuc) 4-1 β Gal] n3 -2a Neu5Ac
が挙げられる。ここで、 nは 1〜10の整数を表し、 Galはガラクトースを表し、 Glcはグ ノレコースを表し、 Manはマンノースを表し、 Xylはキシロースを表し、 GlcNAcは N— ァセチル D ダルコサミンを表し、 GalNAcは N ァセチル D ガラクトサミンを 表す。  Is mentioned. Here, n represents an integer of 1 to 10, Gal represents galactose, Glc represents gnoleose, Man represents mannose, Xyl represents xylose, GlcNAc represents N-acetyl D darcosamine, GalNAc represents N-acetyl D represents galactosamine.
[0082] 本明細書にぉ 、て「N末端」とは、ペプチド主鎖の末端に位置する置換されて!、て もよいアミノ基を意味する。  In the present specification, the term “N-terminal” means an amino group that may be substituted at the end of the peptide main chain.
[0083] 本明細書にぉ 、て「C末端」とは、ペプチド主鎖の末端に位置する置換されて!、て もよ 、カルボキシル基を意味する。 [0083] As used herein, the term "C-terminus" refers to a substitution located at the end of the peptide backbone! And, it means a carboxyl group.
[0084] 本明細書において「側鎖」とは、ペプチド主鎖の延びる方向と直交する方向にぺプ チド主鎖から延びた官能基またはその官能基を含む部分を意味する。 In the present specification, the “side chain” means a functional group extending from the peptide main chain in a direction orthogonal to the direction in which the peptide main chain extends or a portion containing the functional group.
[0085] 本明細書において「プライマー」とは、酵素反応において反応開始のきっかけをつ くる作用を有する物質を意味する。 In the present specification, the “primer” means a substance having an action that triggers the initiation of a reaction in an enzyme reaction.
[0086] 本明細書にぉ 、て「転移酵素」とは、基転移反応を触媒する酵素の総称を 、う。本 明細書において、「転移酵素」は「トランスフェラーゼ」と互換可能に使用され得る。基 転移反応は、以下の式(1) : X-Y+Z-H X-H + Z-Y (1) In the present specification, the term “transferase” is a general term for enzymes that catalyze a group transfer reaction. In the present specification, “transferase” may be used interchangeably with “transferase”. The group transfer reaction is represented by the following formula (1): X-Y + ZH XH + ZY (1)
に示すように、一つの化合物 (供与体)から基 Yが他の化合物 (受容体)に転移する 形で行われる。 As shown, the group Y is transferred from one compound (donor) to another compound (acceptor).
本明細書において「糖転移酵素」とは、糖 (上記式(1)の基 Yに相当;単位糖または 糖鎖)をある場所 (上記式(1)の化合物 X— Yに相当)から別の場所 (上記式( 1)の化 合物 Z— Hに相当)へと転移させるよう触媒する作用を有する酵素をいう。糖転移酵 素としては、例えば、ガラクトース転移酵素、グルコース転移酵素、シアル酸転移酵 素、マンノース転移酵素、フコース転移酵素、キシロース転移酵素、 N ァセチルダ ルコサミン転移酵素、および N ァセチルガラタトサミン転移酵素などが挙げられるが それらに限定されない。糖転移酵素には、特定の結合様式に特異的なものも存在す る。例えば、 j81, 3— N ァセチルダルコサミン転移酵素は、例えば、ガラクトースな どの糖の 3位と N -ァセチルダルコサミンの 1位とを結合させる糖転移酵素である。本 発明で用いる糖転移酵素は、糖ヌクレオチド類を糖供与体として利用できるものであ ればよぐ例えば、 β ΐ, 4 ガラクトース転移酵素、 α— 1, 3 ガラクトース転移酵素 、 β 1, 4 ガラクトース転移酵素、 β 1, 3 ガラクトース転移酵素、 β 1, 6—ガラタト ース転移酵素、 α2, 6 シアル酸転移酵素、 《1, 4 ガラクトース転移酵素、セラミ ドガラタトース転移酵素、 αΐ, 2 フコース転移酵素、 ひ1, 3 フコース転移酵素、 αΐ, 4ーフコース転移酵素、 αΐ, 6 フコース転移酵素、 α 1, 3— Ν ァセチルガ ラタトサミン転移酵素、 αΐ, 6— Ν ァセチルガラタトサミン転移酵素、 β ΐ, 4-Ν- ァセチルガラタトサミン転移酵素、ポリペプチド Ν ァセチルガラタトサミン転移酵素、 β 1, 4—Ν ァセチルダルコサミン転移酵素、 131, 2—Ν ァセチルダルコサミン転 移酵素、 β ΐ, 3—Ν ァセチルダルコサミン転移酵素、 β ΐ, 6—Ν—ァセチルダル コサミン転移酵素、 α1, 4—Ν ァセチルダルコサミン転移酵素、 β ΐ, 4 マンノー ス転移酵素、 αΐ, 2 マンノース転移酵素、 《1, 3 マンノース転移酵素、 《1, 4 マンノース転移酵素、 《1, 6 マンノース転移酵素、 《1, 2 グルコース転移酵 素、 αΐ, 3 グルコース転移酵素、 α2, 3 シアル酸転移酵素、 α 2, 8 シアル酸 転移酵素、 αΐ, 6—ダルコサミン転移酵素、 《1, 6 キシロース転移酵素、 βキシロ ース転移酵素(プロテオダリカンコア構造合成酵素)、 j81, 3—グルクロン酸転移酵 素、ヒアルロン酸合成酵素、他の糖ヌクレオチドを糖ドナーとして用いる糖転移酵素 およびドルコールリン酸型糖ドナーを用いる糖転移酵素が挙げられる。 As used herein, “glycosyltransferase” refers to a sugar (corresponding to group Y in formula (1) above; unit sugar or sugar chain) separated from a certain place (corresponding to compound X—Y in formula (1) above). The enzyme has an action of catalyzing the transfer to the site (corresponding to the compound Z—H of the above formula (1)). Examples of the glycosyltransferase include galactose transferase, glucose transferase, sialic acid transferase, mannose transferase, fucose transferase, xylose transferase, N-acetylylcosamine transferase, and N-acetyl galatatosamine transferase. However, it is not limited to them. Some glycosyltransferases are specific for a particular binding mode. For example, j81,3-N-acetylylcosamine transferase is a glycosyltransferase that binds the 3rd position of a sugar such as galactose and the 1st position of N-acetylethyldarcosamine. The glycosyltransferase used in the present invention is only required to be able to use sugar nucleotides as a sugar donor. For example, β ΐ, 4 galactose transferase, α-1,3 galactose transferase, β 1,4 galactose Transferase, β 1,3 galactose transferase, β 1,6-galatose transferase, α 2,6 sialyltransferase, << 1, 4 galactose transferase, ceramid galatose transferase, αΐ, 2 fucose transferase, 1,3 fucose transferase, αΐ, 4-fucose transferase, αΐ, 6 fucose transferase, α 1, 3—Ν acetylceta ratatosamine transferase, αΐ, 6—Ν acetyl galatatosamine transferase, β ΐ, 4 -Ν- Acetylgalatatosamine transferase, polypeptide ァ Acetylgalatatosamine transferase, β 1, 4—Ν Acetyl darcosamine transferase, 131, 2—Ν Acetyl darcosamine transferase Containing, β ΐ, 3 -Ν § cetyl Darco Sa Min transferase, β ΐ, 6-Ν- Asechirudaru Kosamin transferase, α 1, 4-Ν § Cetyl Darco Sa Min transferase, β ΐ, 4 mannose transferase, Ai , 2 Mannose transferase, << 1, 3 Mannose transferase, << 1, 4 Mannose transferase, << 1, 6 Mannose transferase, << 1, 2 Glucosetransferase, αΐ, 3 Glucosetransferase, α2, 3 Sial Acid transferase, α 2,8 sialyl transferase, αΐ, 6-darcosamine transferase, << 1, 6 xylose transferase, β xylose transferase (proteodalycan core structure synthase), j81, 3-glucuron Acid transfer fermentation Saccharide, hyaluronic acid synthase, glycosyltransferase using other sugar nucleotides as sugar donors, and glycosyltransferase using dolcor phosphate type sugar donors.
[0088] 本発明にお ヽて「糖鎖伸長反応」とは、上で定義した糖転移酵素の存在下で糖鎖 の鎖長が伸長する反応をいう。  In the present invention, “sugar chain elongation reaction” refers to a reaction in which the chain length of a sugar chain is elongated in the presence of a glycosyltransferase as defined above.
[0089] 本明細書において使用される用語「生体分子」とは、生体に関連する分子をいう。  [0089] As used herein, the term "biomolecule" refers to a molecule related to a living body.
そのような生体分子を含む試料を、本明細書にぉ 、て特に生体試料と 、うことがある 。本明細書において「生体」とは、生物学的な有機体をいい、動物、植物、菌類、ウイ ルスなどを含むがそれらに限定されない。従って、生体分子は、生体から抽出される 分子を包含するが、それに限定されず、生体に影響を与え得る分子であれば生体分 子の定義に入る。そのような生体分子には、タンパク質、ポリペプチド、オリゴぺプチ ド、ペプチド、糖ペプチド、ポリヌクレオチド、オリゴヌクレオチド、ヌクレオチド、糖ヌク レオチド、核酸(例えば、 cDNA、ゲノム DNAのような DNA、 mRNAのような RNAを 含む)、多糖、オリゴ糖、脂質、低分子 (例えば、ホルモン、リガンド、情報伝達物質、 有機低分子など)、これらの複合分子などが包含されるがそれらに限定されない。本 明細書では、生体分子は、好ましくは、糖鎖または糖鎖を含む複合分子 (例えば、糖 タンパク質、糖脂質など)であり得る。  Samples containing such biomolecules are sometimes referred to herein as biological samples. As used herein, “living body” refers to a biological organism, including but not limited to animals, plants, fungi, viruses, and the like. Therefore, a biomolecule includes a molecule extracted from a living body, but is not limited thereto, and any molecule that can affect a living body falls within the definition of a biomolecule. Such biomolecules include proteins, polypeptides, oligopeptides, peptides, glycopeptides, polynucleotides, oligonucleotides, nucleotides, sugar nucleotides, nucleic acids (eg, DNA such as cDNA, genomic DNA, mRNA Such as RNA), polysaccharides, oligosaccharides, lipids, small molecules (eg, hormones, ligands, signaling substances, small organic molecules, etc.), complex molecules thereof, and the like. In the present specification, the biomolecule may preferably be a sugar chain or a complex molecule containing a sugar chain (eg, glycoprotein, glycolipid, etc.).
[0090] そのような生体分子の供給源としては、生物由来の糖鎖が結合または付属する材 料であれば特にその由来に限定はなぐ動物、植物、細菌、ウィルスを問わない。より 好ましくは動物由来生体試料が挙げられる。好ましくは、例えば、全血、血漿、血清、 汗、唾液、尿、膝液、羊水、髄液等が挙げられ、より好ましくは血漿、血清、尿が挙げ られる。生体試料には個体から予め分離されていない生体試料も含まれる。例えば 外部から試液が接触可能な粘膜組織、あるいは腺組織、好ましくは乳腺、前立腺、 脾臓に付属する管組織の上皮が含まれる。  [0090] The source of such biomolecules may be any animal, plant, bacteria, or virus, as long as it is a material to which a biological sugar chain is bound or attached. More preferably, an animal-derived biological sample is used. Preferable examples include whole blood, plasma, serum, sweat, saliva, urine, knee fluid, amniotic fluid, and cerebrospinal fluid, and more preferable examples include plasma, serum, and urine. Biological samples include biological samples that have not been previously separated from individuals. For example, it includes mucosal tissue that can be contacted with a test solution from the outside, or glandular tissue, preferably ductal epithelium attached to breast, prostate, and spleen.
[0091] 本明細書において使用される用語「タンパク質」、「ポリペプチド」、「オリゴペプチド」 および「ペプチド」は、本明細書において同じ意味で使用され、任意の長さのアミノ酸 のポリマーをいう。このポリマーは、直鎖であっても分岐していてもよぐ環状であって もよい。アミノ酸は、天然のものであっても非天然のものであってもよぐ改変されたァ ミノ酸であってもよい。この用語はまた、複数のポリペプチド鎖の複合体へとァセンブ ルされたものを包含し得る。この用語はまた、天然または人工的に改変されたァミノ 酸ポリマーも包含する。そのような改変としては、例えば、ジスルフイド結合形成、ダリ コシル化、脂質化、ァセチル化、リン酸ィ匕または任意の他の操作もしくは改変(例え ば、標識成分との結合体化)。この定義にはまた、例えば、アミノ酸の 1または 2以上 のアナログを含むポリペプチド (例えば、非天然のアミノ酸などを含む)、ペプチド様 化合物(例えば、ぺプトイド)および当該分野にお!、て公知の他の改変が包含される [0091] As used herein, the terms "protein", "polypeptide", "oligopeptide" and "peptide" are used interchangeably herein and refer to a polymer of amino acids of any length. . The polymer may be linear or branched or cyclic. The amino acid may be a modified amino acid, which may be natural or non-natural. The term also includes assembly into a complex of multiple polypeptide chains. May be included. The term also encompasses natural or artificially modified amino acid polymers. Such modifications include, for example, disulfide bond formation, daricosylation, lipidation, acetylation, phosphorylation, or any other manipulation or modification (eg, conjugation with a labeling component). This definition also includes, for example, polypeptides containing one or more analogs of amino acids (eg, including non-natural amino acids, etc.), peptidomimetic compounds (eg, peptoids), and the art! Other modifications are included
[0092] 本明細書にぉ 、て、「糖ヌクレオチド」とは、上で定義した糖残基が結合したヌクレ ォチドを意味し、本発明で用いる糖ヌクレオチドは、上記酵素が利用できるものであ れば特に限定されない。例えば、ゥリジン 5,一二リン酸ガラクトース、ゥリジン 5, 一二リン酸—N ァセチルダルコサミン、ゥリジンー5,一二リン酸 N ァセチルガラ クトサミン、ゥリジンー5,一二リン酸グルクロン酸、ゥリジンー5,一二リン酸キシロース、 グアノシン 5,一二リン酸フコース、グアノシン 5,一二リン酸マンノース、シチジン — 5,一モノリン酸一 N ァセチルノイラミン酸およびこれらのナトリウム塩などが挙げ られる。 In the present specification, the term “sugar nucleotide” means a nucleotide to which a sugar residue as defined above is bound, and the sugar nucleotide used in the present invention can be used by the above enzyme. If it is, it will not specifically limit. For example, uridine 5, monodiphosphate galactose, uridine 5, monodiphosphate-N acetyl dalcosamine, uridine 5, mono diphosphate N acetyl galactosamine, uridine-5, monodiphosphate glucuronic acid, uridine 5, 1 Examples include diphosphate xylose, guanosine 5, monodiphosphate fucose, guanosine 5, monodiphosphate mannose, cytidine-5, monomonophosphate 1N acetylneuraminic acid, and sodium salts thereof.
[0093] (有機化学)  [0093] (Organic Chemistry)
有機化学については、例えば、 Organic Chemistry, R. T. Morrison, R. N. Boyd 5th ed. (1987年)などに記載されており、これらは本明細書において関連 する部分が参考として援用される。  The organic chemistry is described in, for example, Organic Chemistry, R. T. Morrison, R. N. Boyd 5th ed. (1987), and these are incorporated by reference in the relevant part in this specification.
[0094] 本明細書においては、特に言及がない限り、「置換」は、ある有機化合物または置 換基中の 1または 2以上の水素原子を他の原子または原子団で置き換えることをいう 。水素原子を 1つ除去して 1価の置換基に置換することも可能であり、そして水素原 子を 2つ除去して 2価の置換基に置換することも可能である。  In this specification, unless otherwise specified, “substitution” refers to replacement of one or more hydrogen atoms in an organic compound or substituent with another atom or atomic group. One hydrogen atom can be removed and substituted with a monovalent substituent, and two hydrogen atoms can be removed and substituted with a divalent substituent.
[0095] 本明細書にぉ 、て「アルキル」とは、メタン、ェタン、プロパンのような脂肪族炭化水 素(アルカン)力も水素原子が一つ失われて生ずる 1価の基をいい、一般に C H  As used herein, “alkyl” refers to a monovalent group formed by loss of one hydrogen atom in an aliphatic hydrocarbon (alkane) force such as methane, ethane, or propane. CH
n 2n+ l 一で表される(ここで、 nは正の整数である)。アルキルは、直鎖または分枝鎖であり得 る。本明細書において「置換されたアルキル」とは、 1つ以上の水素原子が各々独立 して以下に規定する置換基によって置換されたアルキルをいう。これらの具体例は、 C1〜C2アルキル、 C1〜C3アルキル、 C1〜C4アルキル、 C1〜C5アルキル、 C1 〜C6アルキル、 C1〜C7アルキル、 C1〜C8アルキル、 C1〜C9アルキル、 C1〜C 10アルキル、 C1〜C11アルキル、 C1〜C12アルキル、 C1〜C15アルキル、 Cl〜 C20アルキル、 C1〜C25アルキルまたは C1〜C30アルキルであり得る。ここで、例 えば C 1〜C 10アルキルとは、炭素原子を 1〜 10個有する直鎖または分枝状のアル キルを意味し、メチル(CH—)、ェチル(C H一)、 n—プロピル(CH CH CH一) n 2n + l is represented by one (where n is a positive integer). Alkyl can be linear or branched. As used herein, “substituted alkyl” refers to an alkyl in which one or more hydrogen atoms are each independently substituted with a substituent as defined below. Examples of these are: C1-C2 alkyl, C1-C3 alkyl, C1-C4 alkyl, C1-C5 alkyl, C1-C6 alkyl, C1-C7 alkyl, C1-C8 alkyl, C1-C9 alkyl, C1-C10 alkyl, C1-C11 alkyl C1-C12 alkyl, C1-C15 alkyl, Cl-C20 alkyl, C1-C25 alkyl or C1-C30 alkyl. Here, for example, C 1 -C 10 alkyl means a linear or branched alkyl having 1 to 10 carbon atoms, such as methyl (CH—), ethyl (CH 1), n-propyl. (CH CH CH one)
3 2 5 3 2 2 3 2 5 3 2 2
、イソプロピル((CH ) CH―)、 n—ブチル(CH CH CH CH ―)、 n—ペンチル( , Isopropyl ((CH) CH—), n-butyl (CH CH CH CH —), n-pentyl (
3 2 3 2 2 2  3 2 3 2 2 2
CH CH CH CH CH 一)、 n—へキシル(CH CH CH CH CH CH 一)、 n—へ CH CH CH CH CH 1), n-hexyl (CH CH CH CH CH CH 1), n-
3 2 2 2 2 3 2 2 2 2 2 プチル(CH CH CH CH CH CH CH― )、 n—ォクチル(CH CH CH CH CH 3 2 2 2 2 3 2 2 2 2 2 butyl (CH CH CH CH CH CH CH CH—), n-octyl (CH CH CH CH CH
3 2 2 2 2 2 2 3 2 2 2 3 2 2 2 2 2 2 3 2 2 2
CH CH CH ―)、 n—ノニル(CH CH CH CH CH CH CH CH CH ―)、 n—CH CH CH ―), n-nonyl (CH CH CH CH CH CH CH CH CH ―), n-
2 2 2 2 3 2 2 2 2 2 2 2 2 デシル(CH CH CH CH CH CH CH CH CH CH —)、 一 C (CH ) CH CH 2 2 2 2 3 2 2 2 2 2 2 2 2 Decyl (CH CH CH CH CH CH CH CH CH CH —), C (CH) CH CH
3 2 2 2 2 2 2 2 2 2 3 2 2 2 3 2 2 2 2 2 2 2 2 2 3 2 2 2
CH (CH ) 、 一 CH CH (CH ) などが例示される。 CH (CH), one CH CH (CH), etc. are exemplified.
3 2 2 3 2  3 2 2 3 2
[0096] 本明細書において「ァリール」とは、親である芳香環系の 1つの炭素原子から 1つの 水素原子を除去することによって誘導される、 6〜30個の炭素原子の一価芳香族炭 化水素ラジカルをいう。代表的なァリール基としては、ベンゼン、ナフタレン、アントラ セン、ビフヱ-ルなどが挙げられる力 これらに限定されない。  [0096] As used herein, "aryl" refers to a monovalent aromatic of 6 to 30 carbon atoms derived by removing one hydrogen atom from one carbon atom of the parent aromatic ring system. This refers to the hydrocarbon radical. Representative aryl groups include, but are not limited to, benzene, naphthalene, anthracene, biphenyl and the like.
[0097] 本明細書にぉ 、て「発色団」とは、紫外光または可視光領域に吸収帯を有する官 能基、または紫外光または可視光領域の電磁波で励起され可視光領域の放射光を 発する官能基をいう。例えば、ニトロ基、ベンジル基、チオフヱ-ル基、パラニトロフエ -ル基、 2, 4 ジ-トロフエ-ル基、ダンシル基、 2 ァミノべンジル基、フルォロセィ ンイソチォシァネート (FITC)基、 4ーメトキシー β ナフチルアミド基などが挙げられ るが、これに限定されない。  As used herein, the term “chromophore” refers to a functional group having an absorption band in the ultraviolet light or visible light region, or emitted light in the visible light region excited by electromagnetic waves in the ultraviolet light or visible light region. A functional group that emits. For example, nitro group, benzyl group, thiophenol group, paranitrophenol group, 2,4 di-trifluoro group, dansyl group, 2-aminobenzyl group, fluorescein isothiocyanate (FITC) group, 4-methoxy group Examples thereof include, but are not limited to, β-naphthylamide group.
[0098] 本明細書にぉ 、て「ケト酸」とは、カルボキシル基とケトンのカルボ-ル基とをもつ化 合物の総称をいう。  In the present specification, “keto acid” is a general term for compounds having a carboxyl group and a carbocycle group of a ketone.
[0099] 本明細書にぉ 、て「アルデヒド酸」とは、カルボキシル基とアルデヒドのカルボ-ル 基とをもつ化合物の総称を!、う。  In the present specification, “aldehyde acid” is a general term for compounds having a carboxyl group and a carboxylic group of an aldehyde.
[0100] このようなケト酸またはアルデヒド酸は、例えば、 X— C ( = 0) - (CH ) ― A -CO [0100] Such keto acids or aldehyde acids are, for example, X—C (= 0)-(CH) —A—CO
2 n 1 2 n 1
OH (III) (式中、 Xは水素原子、 C 〜C アルキル、 C 〜C ァリールまたは発色団を OH (III) (wherein X represents a hydrogen atom, C to C alkyl, C to C aryl or chromophore)
1 30 6 30 表し; nは 0〜20の整数を表し; Aは、メチレン鎖 1〜20個分の長さを有するリンカ一 を表す)で表される化合物である。 1 30 6 30 N represents an integer of 0 to 20; A represents a linker having a length of 1 to 20 methylene chains).
[0101] 本明細書において「保護反応」とは、 Boc (tert ブトキシカルボ-ル基)のような保 護基を、保護が所望される官能基に付加する反応をいう。保護基により官能基を保 護することによって、より反応性の高い官能基の反応を抑制し、より反応性の低い官 能基のみを反応させることができる。 [0101] As used herein, the term "protection reaction" refers to a reaction in which a protective group such as Boc (tert-butoxycarbonyl group) is added to a functional group desired to be protected. By protecting the functional group with a protecting group, the reaction of the functional group with higher reactivity can be suppressed, and only the functional group with lower reactivity can be reacted.
[0102] 本明細書にぉ ヽて「脱保護反応」とは、 Bocのような保護基を脱離させる反応を ヽぅ 。脱保護反応としては、トリフルォロ酢酸 (TFA)による反応および PdZCを用いる還 元反応のような反応が挙げられる。  [0102] As used herein, "deprotection reaction" refers to a reaction for removing a protecting group such as Boc. Examples of deprotection reactions include reactions with trifluoroacetic acid (TFA) and reduction reactions with PdZC.
[0103] 本明細書にぉ 、て「保護基」としては、例えば、フルォレニルメトキシカルボ-ル(F moc)基、ァセチル基、ベンジル基、ベンゾィル基、 tert—ブトキシカルボ-ル基、 t ーブチルジメチル基、シリル基、トリメチルシリルェチル基、 N—フタルイミジル基、トリ メチルシリルェチルォキシカルボ-ル基、 2 -トロー 4, 5 ジメトキシベンジル基、 2 -トロー 4, 5—ジメトキシベンジルォキシカルボ-ル基、力ルバメート基、メチル基 、メトキシメチル基、トリメチルシリル基、 t ブチルジメチルシリル基、ジメチルフエ- ル基、トリイソプロビルシリル基、ベンジリデン基、イソプロピリデン基、ジ tert-ブチルシ リリデン基などが代表的な保護基として挙げられる。保護基は、例えば、アミノ基、力 ルポキシル基などの反応性の官能基を保護するために用いることができる。反応の 条件や目的に応じ、種々の保護基を使い分けることができる。アミノォキシ基および N -アルキルアミノォキシ基の保護基として、トリメチルシリルェチルォキシカルボ- ル基、 2 -トロー 4, 5 ジメトキシベンジルォキシカルボ-ル基またはそれらの誘導 体が好ましい。  In the present specification, examples of the “protecting group” include, for example, a fluorenylmethoxycarbol (F moc) group, a acetyl group, a benzyl group, a benzoyl group, a tert-butoxycarbol group, t-Butyldimethyl group, silyl group, trimethylsilylethyl group, N-phthalimidyl group, trimethylsilylethyloxycarbonyl group, 2-trow 4,5 dimethoxybenzyl group, 2-trow 4,5-dimethoxybenzyloxy Carbon group, strong rubamate group, methyl group, methoxymethyl group, trimethylsilyl group, t-butyldimethylsilyl group, dimethylphenyl group, triisopropylpropylsilyl group, benzylidene group, isopropylidene group, ditert-butylsilylidene group, etc. Are listed as representative protecting groups. The protecting group can be used, for example, to protect a reactive functional group such as an amino group or a force lpoxyl group. Depending on the reaction conditions and purpose, various protecting groups can be used properly. As the protecting group for the aminooxy group and the N-alkylaminooxy group, a trimethylsilylethyloxycarboxyl group, a 2-trow 4,5 dimethoxybenzyloxycarboxyl group or a derivative thereof is preferable.
[0104] 本発明の各方法において、 目的とする生成物は、反応液から夾雑物 (未反応減量 、副生成物、溶媒など)を、当該分野で慣用される方法 (例えば、抽出、蒸留、洗浄、 濃縮、沈澱、濾過、乾燥など)によって除去した後に、当該分野で慣用される後処理 方法 (例えば、吸着、溶離、蒸留、沈澱、析出、クロマトグラフィーなど)を組み合わせ て処理して単離し得る。  [0104] In each method of the present invention, the target product is a contaminant (unreacted weight loss, by-product, solvent, etc.) from the reaction solution, and a method commonly used in the art (for example, extraction, distillation, After removal by washing, concentration, precipitation, filtration, drying, etc., followed by treatment by a combination of post-treatment methods commonly used in the art (eg adsorption, elution, distillation, precipitation, precipitation, chromatography, etc.) obtain.
[0105] (本明細書にぉ 、て用いられる一般技術) 本明細書において使用される技術は、そうではないと具体的に指示しない限り、当 該分野の技術範囲内にある、有機化学、生化学、遺伝子工学、分子生物学、微生物 学、遺伝学および関連する分野における周知慣用技術を使用する。そのような技術 は、例えば、以下に列挙した文献および本明細書において他の場所おいて引用した 文献にお!ヽても十分に説明されて!ヽる。 [0105] (General technique used in this specification) The techniques used herein are organic chemistry, biochemistry, genetic engineering, molecular biology, microbiology, genetics and within the skill of the art, unless specifically indicated otherwise. Well-known and conventional techniques in the relevant fields are used. Such techniques can be found, for example, in the documents listed below and in references cited elsewhere in this specification! Explained enough! Speak.
[0106] 本明細書において用いられる有機化学的手法は、当該分野において周知であり慣 用されるものであり、例えば、 Organic Chemistry, R. T. Morrison, R. N. Boy d 5th ed. (1987年)などに記載されており、これらは本明細書において関連する 部分 (全部であり得る)が参考として援用される。  [0106] The organic chemical methods used in this specification are well known and commonly used in the art, and are described in, for example, Organic Chemistry, RT Morrison, RN Boyd 5th ed. (1987). Which are incorporated herein by reference in their entirety (which may be all).
[0107] 本明細書において用いられる分子生物学的手法、生化学的手法、微生物学的手 法は、当該分野において周知であり慣用されるものであり、例えば、 Maniatis, T. e t al. (,1989) . Molecular Cloning: A Laboratory Manual, Cold Spring Harborおよびその 3rd Ed. (2001); Ausubel, F. M. , et al. eds, Current Protocols in Molecular Biology, John Wiley & Sons Inc. , NY, 1015 8 (2000) ;Innis, M. A. (1990) . PCR Protocols : A Guide to Methods a nd Applications, Academic Press ;Innis, M. A. et al. (1995) . PCR Str ategies, Academic Press ; Sninsky, J. J. et al. (1999) . PCR Application s : Protocols for Functional Genomics, Academic Press ; Gait, M. J. ( 1985) . Oligonucleotide Synthesis : A Practical Approach, IRL Press ; G ait, M. J. (1990) . Oligonucleotide Synthesis : A Practical Approach, IR L Press ; Eckstein, F. (1991) . Oligonucleotides and Analogues : A Prac tical Approac , IRL Press ; Adams, R. L. et al. (1992) . The Biochemis try of the Nucleic Acids, Chapman & Hall; Shabarova, Z. et al. (19 94) . Advanced Organic Chemistry of Nucleic Acids, Weinheim ; Blac kburn, G. M. et al. (1996) . Nucleic Acids in Chemistry and Biology , Oxford University Press; Hermanson, G. T. (1996) . Bioconjugate Te chniques, Academic Press ; Method in Enzymology 230、 242、 247、 Ac ademic Press, 1994 ;別冊実験医学「遺伝子導入 &発現解析実験法」羊土社、 1 997 ;畑中、西村ら、糖質の科学と工学、講談社サイェンティフイク、 1997 ;糖鎖分子 の設計と生理機能 日本化学会編、学会出版センター、 2001などに記載されており 、これらは本明細書において関連する部分 (全部であり得る)が参考として援用される [0107] Molecular biological techniques, biochemical techniques, and microbiological techniques used in this specification are well known and commonly used in the art. For example, Maniatis, T. et al. Molecular Cloning: A Laboratory Manual, Cold Spring Harbor and its 3rd Ed. (2001); Ausubel, FM, et al. Eds, Current Protocols in Molecular Biology, John Wiley & Sons Inc., NY, 1015 8 ( 2000); Innis, MA (1990) .PCR Protocols: A Guide to Methods and Applications, Academic Press; Innis, MA et al. (1995) .PCR Str ategies, Academic Press; Sninsky, JJ et al. (1999) PCR Applications s: Protocols for Functional Genomics, Academic Press; Gait, MJ (1985). Oligonucleotide Synthesis: A Practical Approach, IRL Press; G ait, MJ (1990). Oligonucleotide Synthesis: A Practical Approach, IR L Press; Eckstein , F. (1991). Oligonucleotides and Analogues: A Prac tical Approac, IRL Press; Adams, RL et al. (1992). The Biochemis try of the Nuclei c Acids, Chapman &Hall; Shabarova, Z. et al. (19 94). Advanced Organic Chemistry of Nucleic Acids, Weinheim; Blac kburn, GM et al. (1996). Nucleic Acids in Chemistry and Biology, Oxford University Press; Hermanson, GT (1996). Bioconjugate Technics, Academic Press; Method in Enzymology 230, 242, 247, Ac ademic Press, 1994; 997; Hatanaka, Nishimura et al., Glycoscience and Engineering, Kodansha Scientific, 1997; Design and Physiology of Glycomolecules, The Chemical Society of Japan, Society Publishing Center, 2001, etc. Relevant parts in the description (may be all) are incorporated by reference
[0108] (好ましい実施形態の説明) (Description of Preferred Embodiment)
以下に本発明の好ましい実施形態を説明する。以下に提供される実施形態は本発 明のよりよい理解のために提供されるものであり、本発明の範囲は以下の記載に限 定されるべきでないことが理解される。従って、当業者は本明細書の記載を参酌して 、本発明の範囲内で改変を行うことができるのは明らかである。  Hereinafter, preferred embodiments of the present invention will be described. The embodiments provided below are provided for a better understanding of the present invention, and it is understood that the scope of the present invention should not be limited to the following description. Therefore, it is obvious that those skilled in the art can make modifications within the scope of the present invention with reference to the description of the present specification.
[0109] 1つの局面において、本発明は、以下の式: [0109] In one aspect, the present invention provides the following formula:
X— C ( = 0)—(CH ) — A— A— A (I)  X— C (= 0) — (CH) — A— A— A (I)
2 n 1 2 3  2 n 1 2 3
(式中、 Xは、水素原子、 C〜C アルキル、 C〜C ァリールまたは発色団を表し; n  (Wherein X represents a hydrogen atom, C-C alkyl, C-C aryl or chromophore; n
1 30 6 30  1 30 6 30
は 0〜20の整数を表し; Aは、―(CH ) — C ( = 0)―、 - (CH CH O) ―、  Represents an integer from 0 to 20; A is — (CH) — C (= 0) —,-(CH CH O) —,
1 2 0〜20 2 2 1〜10 重合度 1〜: LOのオリゴもしくはポリアクリルアミド、重合度 1〜: LOのオリゴもしくはポリべ プチド、酸素原子または NHを表し; Aは、プロテアーゼにより切断可能なアミノ酸残  1 2 0 ~ 20 2 2 1 ~ 10 Degree of polymerization 1 ~: LO oligo or polyacrylamide, degree of polymerization 1 ~: LO oligo or polypeptide, oxygen atom or NH; A is cleavable by protease Amino acid residue
2  2
基を表し; Aは、実質的にプロテアーゼにより切断可能な部位を含まない糖アミノ酸  A represents a sugar amino acid substantially free of a site cleavable by a protease.
3  Three
残基、またはプロテアーゼにより切断可能な部位を含まず任意の糖アミノ酸を含む糖 ペプチド残基を表す)で表される、化合物を提供する。これをプライマーとして使用す ることにより、従来は多段階の精製を要していた糖ペプチドの精製が簡易となり、糖 ペプチドを迅速かつ収率よく製造できる。本発明の上記式 (I)の化合物は、末端にァ ルデヒド基またはケトン基を必ず有するため、保護されていてもよいアミノォキシ基、 N アルキルアミノォキシ基、ヒドラジド基、アジド基、チォセミカルバジド基、 1, 2—ジ チオール基およびシスティン残基からなる群から選択される官能基を含む担体と反 応させることにより、上記式 (I)の化合物を担体上に担持し、高分子プライマーとして 使用することができる。この反応によって得られる結合は、後のプロテアーゼによる加 水分解条件下 (pH条件など)で分解しな 、強固な結合であるため、加水分解の精製 が非常に簡易で済むという利点がある。  And a glycopeptide residue containing any sugar amino acid without a site cleavable by a protease). By using this as a primer, purification of a glycopeptide, which conventionally required multi-step purification, can be simplified, and the glycopeptide can be produced quickly and with high yield. Since the compound of the above formula (I) of the present invention always has an aldehyde group or a ketone group at the terminal, it may be protected with an aminooxy group, an N alkylaminooxy group, a hydrazide group, an azide group, a thiosemicarbazide group. , 1,2-dithiol group and a carrier containing a functional group selected from the group consisting of cysteine residues, by reacting with a carrier containing a functional group selected from the group consisting of the above-mentioned formula (I) and using it as a polymer primer can do. The bond obtained by this reaction is a strong bond that does not decompose under the subsequent hydrolysis with a protease (pH condition, etc.), so that there is an advantage that the purification of hydrolysis is very simple.
[0110] 本発明における加水分解で用いられるプロテアーゼと、このプロテアーゼにより切 断可能なアミノ酸残基 (A2)との組み合わせは、プロテアーゼによる加水分解が起こり 得る pH領域で、上記式 (I)の化合物の少なくとも上記末端アルデヒドまたはケトン基 と上記担体との反応によって生じる結合が分解しないような組み合わせであれば何 でも良 、。 A1のポリペプチドの一部または全部および A2のアミノ酸残基力もなるぺプ チドを認識するプロテアーゼも使用し得る。このような組み合わせとしては、例えば、 バシラス リケ-ホルミス(Bacillus Licheniformis)由来のプロテアーゼ(グルタミ- ダーゼ)と、このプロテアーゼで切断可能なグルタミン酸残基またはシスティン残基と の組み合わせ;ァスパラギニルエンドべプチターゼと Asn (認識部位 (A2) )との組み 合わせ (ァスパラギン (Asn)の C末端を切断する。 );アルギニルエンドべプチターゼ と Arg (認識部位 (A2) )との組み合わせ (アルギニン (Arg)の C末端を切断する。 ); ァクロモパクタープロテアーゼ Iとリジン (Lys) (認識部位 (A2) )との組み合わせ (リジ ン (Lys)の C末端を切断する。 );トリプシンと、アルギニン (Arg)またはリジン (Lys) ( 認識部位 (A2) )との組み合わせ (Argを認識した場合アルギニン (Arg)の C末端を 切断し、リジン (Lys)を認識した場合リジン (Lys)の C末端を切断する。 );キモトリブ シンと、 Phe、 Tyrまたは Trp (認識部位 (A2) )との組み合わせ (Pheを認識した場合 フエ-ルァラニン(Phe)の C末端を切断し、 Tyrを認識した場合チロシン (Tyr)の C末 端を切断し、 Trpを認識した場合トリブトファン (Trp)の C末端を切断する。 ); V8プロ テアーゼと Glu (認識部位 (A2) )との組み合わせ (グルタミン酸 (Glu)の C末端を切断 する。 );第 Xa因子 (ファクター Xa)と、—lie— Glu— Gly— Arg— (認識部位、本明 細書の定義に従えば、認識部位 (A2)は、アルギニン (Arg)であり、—lie— Glu— G1 y—は A1の末端である;これは、アルギニン (Arg)の C末端を切断する。)との組み合 わせ;ならびにェンテロキナーゼとー Asp— Asp— Asp— Asp— Lys—(認識部位、 本明細書の定義に従えば、認識部位 (A2)は、リジン (Lys)であり、—Asp— Asp— A sp— Asp—は A1の末端である;これは、リジン (Lys)の C末端を切断する。 ) 0このよう な組み合わせとして、バシラス リケ-ホルミス(Bacillus Licheniformis)由来のプ 口テアーゼ(グルタミ-ダーゼ(例えば、バシラス リケ-ホルミス(Bacillus Lichenif ormis)由来のグルタミン酸残基特異的なプロテアーゼ (BLase:塩野義製薬社製) ) )と、このプロテアーゼで切断可能なグルタミン酸残基またはシスティン残基との組み 合わせが好ましい。 BLaseは、特開平 4— 166085 (特許第 3046344号)に記載さ れる方法によって、生産することができる。 BLaseは、バシラス属菌、特にバシラスリケ 二ホルミス ATCC 14580株により生産される。本菌株はアメリカンタイプカルチャー コレクション (ATCC)から入手できる。必要に応じて、バシラスリケ-ホルミス ATCC 14580株のゲノム DNAは,該菌株の培養細胞から既知の方法(M. Stahlら, Jou rnal of Bacteriology, 154, 406— 412 (1983) )に従って調製すること力できる 本発明の好ましい実施形態において、上記式 (I)の化合物に含まれる Aの少なくと [0110] The protease used in the hydrolysis in the present invention and the protease The combination with the cleavable amino acid residue (A 2 ) is a bond produced by the reaction of at least the terminal aldehyde or ketone group of the compound of formula (I) with the carrier in a pH range where hydrolysis by a protease can occur. Any combination is acceptable as long as it does not decompose. Amino acid residues force of some or all and A 2 of the polypeptide of A 1 also Narupepu tide recognizing protease may also be used. Examples of such combinations include a combination of a protease (glutamidase) derived from Bacillus Licheniformis and a glutamic acid residue or cysteine residue that can be cleaved by this protease; Combination of peptidase and Asn (recognition site (A 2 )) (cleaves the C-terminus of asparagine (Asn)); Combination of arginyl endopeptidase and Arg (recognition site (A 2 )) (arginine ( Cleaves C-terminal of Arg)); Combination of Achromopacter protease I and lysine (Lys) (recognition site (A 2 )) (cleaves C-terminal of lysine (Lys)); , Arginine (Arg) or lysine (Lys) (recognition site (A 2 )) combination (when Arg is recognized, C-terminal of arginine (Arg) is cleaved and lysine (Lys) is recognized) Cleave the C-terminus of (Lys)); a combination of chymotrypsin and Phe, Tyr or Trp (recognition site (A 2 )) (if Phe is recognized, cleave the C-terminus of ferulanine (Phe) When Tyr is recognized, the C-terminal end of tyrosine (Tyr) is cleaved. When Trp is recognized, the C-terminal end of tributophan (Trp) is cleaved.); V8 protease and Glu (recognition site (A 2 )) (Cleaves the C-terminus of glutamic acid (Glu)); Factor Xa (factor Xa) and —lie—Glu—Gly—Arg— (recognition site, according to the definition in this document, the recognition site ( A 2 ) is arginine (Arg) and —lie—Glu—G1 y— is the end of A 1 ; this cleaves the C terminus of arginine (Arg).) Enterokinase and Asp— Asp— Asp— Asp— Lys— (recognition site, according to the definition of this specification, the recognition site (A 2 ) is lysine (Ly a s), -Asp- Asp- A sp- Asp- is the terminus of A 1;. This cleaves the C-terminal lysine (Lys)) 0 as such a combination, Bacillus RIQUET - Horumisu ( Cleaved by this protease with a protease derived from Bacillus Licheniformis (glutamidase (eg, protease specific to glutamic acid residues derived from Bacillus Lichenif ormis) (BLase: manufactured by Shionogi & Co., Ltd.)) Possible combinations with glutamic acid residues or cysteine residues Combination is preferred. BLase can be produced by the method described in JP-A-4-166085 (Patent No. 3046344). BLase is produced by Bacillus spp., In particular by Bacillus lichen niformis ATCC 14580. This strain can be obtained from the American Type Culture Collection (ATCC). If necessary, the genomic DNA of Bacillus liquor-formis ATCC 14580 strain can be prepared from cultured cells of the strain according to known methods (M. Stahl et al., Journal of Bacteriology, 154, 406-412 (1983)). In a preferred embodiment of the present invention, at least A contained in the compound of the above formula (I)
3 も一部は、以下の配列番号 1〜60:  3 is also partly the following SEQ ID NO: 1-60:
AHGVTSAPDT (配列番号 1)、  AHGVTSAPDT (SEQ ID NO: 1),
HGVTSAPDTR (配列番号 2)、  HGVTSAPDTR (SEQ ID NO: 2),
GVTSAPDTRP (配列番号 3)、  GVTSAPDTRP (SEQ ID NO: 3),
VTSAPDTRPA (配列番号 4)、  VTSAPDTRPA (SEQ ID NO: 4),
TSAPDTRPAP (配列番号 5)、  TSAPDTRPAP (SEQ ID NO: 5),
SAPDTRPAPG (配列番号 6)、  SAPDTRPAPG (sequence number 6),
APDTRPAPGS (配列番号 7)、  APDTRPAPGS (SEQ ID NO: 7),
PDTRPAPGST (配列番号 8)、  PDTRPAPGST (SEQ ID NO: 8),
DTRPAPGSTA (配列番号 9)、  DTRPAPGSTA (SEQ ID NO: 9),
TRPAPGSTAP (配列番号 10)、  TRPAPGSTAP (SEQ ID NO: 10),
RPAPGSTAPP (配列番号 11)、  RPAPGSTAPP (SEQ ID NO: 11),
PAPGSTAPPA (配列番号 12)、  PAPGSTAPPA (SEQ ID NO: 12),
APGSTAPPAH (配列番号 13)、  APGSTAPPAH (SEQ ID NO: 13),
PGSTAPPAHG (配列番号 14)、  PGSTAPPAHG (SEQ ID NO: 14),
GSTAPPAHGV (配列番号 15)、  GSTAPPAHGV (SEQ ID NO: 15),
STAPPAHGVT (配列番号 16)、  STAPPAHGVT (SEQ ID NO: 16),
TAPPAHGVTS (配列番号 17)、  TAPPAHGVTS (SEQ ID NO: 17),
APPAHGVTSA (配列番号 18)、  APPAHGVTSA (SEQ ID NO: 18),
PPAHGVTSAP (配列番号 19)、 PAHGVTSAPD (配列番号 20)、 PPAHGVTSAP (SEQ ID NO: 19), PAHGVTSAPD (SEQ ID NO: 20),
AHGVTSAPDTR (配列番号 21)、 AHGVTSAPDTR (SEQ ID NO: 21),
HGVTSAPDTRP (配列番号 22)、 HGVTSAPDTRP (SEQ ID NO: 22),
GVTSAPDTRPA (配列番号 23)、 GVTSAPDTRPA (SEQ ID NO: 23),
VTSAPDTRPAP (配列番号 24)、 VTSAPDTRPAP (SEQ ID NO: 24),
TSAPDTRPAPG (配列番号 25)、 TSAPDTRPAPG (SEQ ID NO: 25),
SAPDTRPAPGS (配列番号 26)、 SAPDTRPAPGS (sequence number 26),
APDTRPAPGST (配列番号 27)、 APDTRPAPGST (SEQ ID NO: 27),
PDTRPAPGSTA (配列番号 28)、 PDTRPAPGSTA (SEQ ID NO: 28),
DTRPAPGSTAP (配列番号 29)、 DTRPAPGSTAP (SEQ ID NO: 29),
TRPAPGSTAPP (配列番号 30)、 TRPAPGSTAPP (SEQ ID NO: 30),
RPAPGSTAPPA (配列番号 31)、 RPAPGSTAPPA (SEQ ID NO: 31),
PAPGSTAPPAH (配列番号 32)、 PAPGSTAPPAH (SEQ ID NO: 32),
APGSTAPPAHG (配列番号 33)、 APGSTAPPAHG (SEQ ID NO: 33),
PGSTAPPAHGV (配列番号 34)、 PGSTAPPAHGV (SEQ ID NO: 34),
03丁八??八110¥丁(配列番号35)、 03? ? Eight 110 yen (sequence number 35),
STAPPAHGVTS (配列番号 36)、 STAPPAHGVTS (SEQ ID NO: 36),
丁八??八110¥丁3八(配列番号37)、 Dingpachi? ? 8110 ¥ 3-8 (sequence number 37),
APPAHGVTSAP (配列番号 38)、 APPAHGVTSAP (SEQ ID NO: 38),
PPAHGVTSAPD (配列番号 39)、 PPAHGVTSAPD (SEQ ID NO: 39),
PAHGVTSAPDT (配列番号 40)、 PAHGVTSAPDT (SEQ ID NO: 40),
HGVTSAPDTRPAPGSTAPPA (配列番号 41)、 GVTSAPDTRPAPGSTAPPAH (配列番号 42)、 VTSAPDTRPAPGSTAPPAHG (配列番号 43)、 TSAPDTRPAPGSTAPPAHGV (配列番号 44)、 SAPDTRPAPGSTAPPAHGVT (配列番号 45)、 APDTRPAPGSTAPPAHGVTS (配列番号 46)、 PDTRPAPGSTAPPAHGVTSA (配列番号 47)、 DTRPAPGSTAPPAHGVTSAP (配列番号 48)、 HGVTSAPDTRPAPGSTAPPA (SEQ ID NO: 41), GVTSAPDTRPAPGSTAPPAH (SEQ ID NO: 42), VTSAPDTRPAPGSTAPPAHG (SEQ ID NO: 43), TSAPDTRPAPGSTAPPAHGV (SEQ ID NO: 44), SAPDTRPAPGSTAPPAHGVT (SEQ ID NO: 45), APDTRPAPGSTAPPAHGVTS (SEQ ID NO: 46), PDPA, TRPA No. DTRPAPGSTAPPAHGVTSAP (SEQ ID NO: 48),
TRPAPGSTAPPAHGVTSAPD (配列番号 49)、  TRPAPGSTAPPAHGVTSAPD (SEQ ID NO: 49),
RPAPGSTAPPAHGVTS APDT (配列番号 50)、  RPAPGSTAPPAHGVTS APDT (SEQ ID NO: 50),
PAPGSTAPPAHGVTSAPDTR (配列番号 51)、  PAPGSTAPPAHGVTSAPDTR (SEQ ID NO: 51),
APGSTAPPAHGVTSAPDTRP (配列番号 52)、  APGSTAPPAHGVTSAPDTRP (SEQ ID NO: 52),
PGSTAPPAHGVTSAPDTRPA (配列番号 53)、  PGSTAPPAHGVTSAPDTRPA (SEQ ID NO: 53),
GSTAPPAHGVTSAPDTRPAP (配列番号 54)、  GSTAPPAHGVTSAPDTRPAP (SEQ ID NO: 54),
STAPPAHGVTSAPDTRPAPG (配列番号 55)、  STAPPAHGVTSAPDTRPAPG (SEQ ID NO: 55),
TAPPAHGVTSAPDTRPAPGS (配列番号 56)、  TAPPAHGVTSAPDTRPAPGS (SEQ ID NO: 56),
APPAHGVTSAPDTRPAPGST (配列番号 57)、  APPAHGVTSAPDTRPAPGST (SEQ ID NO: 57),
PPAHGVTSAPDTRPAPGSTA (配列番号 58)、  PPAHGVTSAPDTRPAPGSTA (SEQ ID NO: 58),
PAHGVTSAPDTRPAPGSTAP (配列番号 59)および  PAHGVTSAPDTRPAPGSTAP (SEQ ID NO: 59) and
AHGVTSAPDTRPAPGSTAPP (配列番号 60)、  AHGVTSAPDTRPAPGSTAPP (SEQ ID NO: 60),
に示されるアミノ酸配列からなる群力 選択される、ムチン型糖タンパク質 MUC1由 来のアミノ酸配列を有する。さらに、配列番号 41〜60のいずれかのアミノ酸配列が 2 回または 3回繰り返した配列を含むムチン型タンパク質由来のアミノ酸配列であって ちょい。  The amino acid sequence derived from the mucin-type glycoprotein MUC1 selected from the group power consisting of the amino acid sequence shown in FIG. Furthermore, it is an amino acid sequence derived from a mucin type protein including a sequence in which any one of SEQ ID NOs: 41 to 60 is repeated twice or three times.
[0112] 本発明で用いることのできる高分子担体は、式 (I)で表される基を結合させることが でき、かつ結合後以下で述べるような糖転移酵素の作用により式 (I)で表される基の 糖残基にさらなる糖残基を転移させることのできるものであれば特に制限はなぐ例 えば、保護されて ヽてもよ ヽァミノォキシ基またはヒドラジド基を有するビニル系単量 体の重合体または共重合体 (上記ビュル系単量体としては、アクリルアミド類、メタタリ ルアミド類、アクリル酸類、メタクリル酸類、スチレン類、脂肪酸ビュルエステル類など が挙げられる)あるいは保護されて 、てもよ 、アミノォキシ基またはヒドラジド基を有し 得るポリエーテル類;保護されていてもよいアミノォキシ基またはヒドラジド基を有する シリカ担体、榭脂担体、磁性ビーズまたは金属担体 (例えば、以下の式:  [0112] The polymer carrier that can be used in the present invention can bind the group represented by the formula (I), and after the coupling, the compound of formula (I) can act by the action of glycosyltransferase as described below. There is no particular limitation as long as it can transfer a further sugar residue to the sugar residue of the represented group.For example, a vinyl monomer having an aminooxy group or a hydrazide group may be protected. Polymers or copolymers of the above (the above-mentioned butyl monomers include acrylamides, methacrylate amides, acrylic acids, methacrylic acids, styrenes, fatty acid butyl esters, etc.) or may be protected. , Polyethers which may have an aminooxy group or hydrazide group; silica carriers, rosin carriers, magnetic beads or amino beads having an aminooxy group or hydrazide group which may be protected Metallic substrate (e.g., the following expression:
[0113] [化 24]
Figure imgf000056_0001
[0113] [Chemical 24]
Figure imgf000056_0001
で表されるシリカ担体、榭脂担体および磁性ビーズ、金属担体 [式中、〇は、シリカ、 榭脂、磁性ビーズ、金属担体を表す]が挙げられる);ならびにペプチド合成で使用 する Maps (Multiple antigen peptide systems)法と類似した担体;例えば、以 下の式: Silica carrier, rosin carrier and magnetic beads, metal carrier [wherein, ◯ represents silica, rosin, magnetic beads, metal carrier]; and Maps used for peptide synthesis (Multiple carrier similar to the antigen peptide systems method; for example:
[(NH OCH C( = 0)) -Lys] Lys— NHCH CH C ( = 0)— R3[(NH OCH C (= 0)) -Lys] Lys— NHCH CH C (= 0) — R 3 ,
2 2 2 2 2 2  2 2 2 2 2 2
[(NH OCH C( = 0)) -Lys] Lys— NHCH (CH SH) C ( = 0)— R3[(NH OCH C (= 0)) -Lys] Lys— NHCH (CH SH) C (= 0) — R 3 ,
2 2 2 2 2 2 2 2 2 2
[(NH OCH C( = 0)) -Lys] — Lys— Cys— NHCH CH C( = 0)— R3 (配列 [(NH OCH C (= 0)) -Lys] — Lys— Cys— NHCH CH C (= 0) — R 3 (sequence
2 2  twenty two
番号 61)、 Number 61),
{[(NH OCH C(: :0)) -Lys] - Lys - NHCH [C ( = O) - R ] CH S} 、 {[(NH OCH C (:: 0)) -Lys]-Lys-NHCH [C (= O)-R] CH S},
2 2 2 2 22 2 2 2 2
{[(NH OCH C(: :0)) -Lys] - Lys - NHCH [C ( = O) NHCH CH C( = 0{[(NH OCH C (:: 0)) -Lys]-Lys-NHCH [C (= O) NHCH CH C (= 0
2 2 twenty two
)-R3]CH -S} 、 ) -R 3 ] CH -S},
2 2  twenty two
{[(NH OCH C(: :0)) -Lys] -Lys} -Lys -NHCH CH C( = 0)— R ( {[(NH OCH C (:: 0)) -Lys] -Lys} -Lys -NHCH CH C (= 0) — R (
2 2 twenty two
配列番号 62)、 SEQ ID NO: 62),
{[(NH OCH C( = 0)) -Lys} -Lys- NHCH (CH SH)C( = 0) {[(NH OCH C (= 0)) -Lys} -Lys- NHCH (CH SH) C (= 0)
2 2 2 2 2 2
R3 (配列番号 63)、 R 3 (SEQ ID NO: 63),
{[(NH OCH C( = 0)) -Lys} —Lys— Cys— NHCH CH C( = 0) {[(NH OCH C (= 0)) -Lys} —Lys— Cys— NHCH CH C (= 0)
2 2 2 2 2 2
—R3 (配列番号 64)、 —R 3 (SEQ ID NO: 64),
[[[(NH OCH C( = 0)) -Lys] - Lys - NHCH [C( = 0) -R ]CH [[[(NH OCH C (= 0)) -Lys]-Lys-NHCH [C (= 0) -R] CH
2 2 twenty two
S] (配列番号 65)、  S] (SEQ ID NO: 65),
[[[(NH OCH C( = 0)) -Lys] -Lys] - Lys - NHCH [C( = 0) NHCH C [[[(NH OCH C (= 0)) -Lys] -Lys]-Lys-NHCH [C (= 0) NHCH C
2 2 2 2 2 22 2 2 2 2 2
H C( = 0) R3]CH— S] (配列番号 66)、 HC (= 0) R 3 ] CH—S] (SEQ ID NO: 66),
2 2 2  2 2 2
[化 25] [Chemical 25]
[ (NH 2 OCH2 C (=0) ) 2 -Ly s] -NHCHC (=0) R 3 [(NH 2 OCH 2 C (= 0)) 2 -Ly s] -NHCHC (= 0) R 3
[ (NH2 OCH 2 C (=0) ) 2 -L y s] -NH (CH2 ) 4 [(NH 2 OCH 2 C (= 0)) 2 -L ys] -NH (CH 2 ) 4
または Or
{ [ (NH2 OCH 2 C ( = 0) ) 2 - L y s] 2 — L y s } -NHCHC ( = 0) R3 { [ (NH2 OCH2 C ( = 0) ) 2 -L y s] 2 — Ly s } — NH (CH2 ) 4 (式中、 R3はヒドロキシル基またはアミノ基を表し、 Lysはリジン残基を表し、 Cysはシ スティン残基を表す) {[(NH 2 OCH 2 C (= 0)) 2-L ys] 2 — L ys} -NHCHC (= 0) R 3 {[(NH 2 OCH 2 C (= 0)) 2 -L ys] 2 — Ly s} — NH (CH 2 ) 4 (Wherein R 3 represents a hydroxyl group or an amino group, Lys represents a lysine residue, and Cys represents a cysteine residue)
で表される化合物などが挙げられる。  The compound etc. which are represented by these are mentioned.
[0115] 上記の保護されていてもよいアミノォキシ基またはヒドラジド基を有するビュル系単 量体の重合体または共重合体は、無置換のビニル系単量体の重合体または共重合 体の少なくとも一部を保護されて 、てもよ 、アミノォキシ基またはヒドラジド基で置換 する方法、あるいは保護されて 、てもよ 、アミノォキシ基またはヒドラジド基を有するビ 二ル系単量体を重合または共重合する方法によって、調製される。  [0115] The above-mentioned polymer or copolymer of a bull monomer having an aminooxy group or a hydrazide group which may be protected is at least one of a polymer or copolymer of an unsubstituted vinyl monomer. A method in which a part is protected with an aminooxy group or a hydrazide group, or a method in which a vinyl monomer having an aminooxy group or a hydrazide group is protected or polymerized or copolymerized It is prepared by.
[0116] 上記のアクリルアミド類としては、保護されて ヽてもよ ヽァミノォキシ基またはヒドラジ ド基を有し得る、アクリルアミド、 N—ェチルアクリルアミドゃ N—イソプロピルアクリル アミドなどの N—アルキルアクリルアミドなどが例示される。  [0116] Examples of the acrylamides include N-alkyl acrylamides such as acrylamide, N-ethyl acrylamide, N-isopropyl acrylamide, etc., which may have protected amino group or hydrazide group. Illustrated.
[0117] 上記のメタクリルアミド類としては、保護されていてもよいアミノォキシ基またはヒドラ ジド基を有し得る、メタクリルアミド、 N—メチルメタクリルアミドゃ N—ェチルメタクリル アミド、 N—イソプロピルメタクリルアミドなどの N -アルキルメタクリルアミドなどが例示 される。  [0117] Examples of the methacrylamides include methacrylamide, N-methyl methacrylamide N-ethyl methacrylamide, N-isopropyl methacrylamide, etc., which may have an aminooxy group or a hydrazide group which may be protected. N-alkyl methacrylamide and the like are exemplified.
[0118] 上記のアクリル酸類としては、保護されていてもよいアミノォキシ基またはヒドラジド 基を有し得る、アクリル酸やアクリル酸メチル、アクリル酸ェチル、アクリル酸ヒドロキシ ェチル、アクリル酸ジメチルアミノエチルなどのアクリル酸エステルなどが例示される。  [0118] Examples of the acrylic acid include acrylic acid such as acrylic acid, methyl acrylate, ethyl acrylate, hydroxyethyl acrylate, and dimethylaminoethyl acrylate, which may have an aminooxy group or hydrazide group which may be protected. Examples include acid esters.
[0119] 上記のメタクリル酸類としては、保護されて 、てもよ 、アミノォキシ基またはヒドラジド 基を有し得る、メタクリル酸ゃメタクリル酸メチル、メタクリル酸ェチル、メタクリル酸ヒド 口キシェチル、メタクリル酸ジメチルアミノエチルなどのメタクリル酸エステルなどが例 示される。  [0119] The above methacrylic acids are protected and may have an aminooxy group or a hydrazide group. Examples include methacrylic acid esters.
[0120] 上記のスチレン類としては、保護されて 、てもよ 、アミノォキシ基またはヒドラジド基 を有し得る、スチレン、 p—ヒドロキシスチレン、 p—ヒドロキシメチルスチレンなどが例 示される。  [0120] Examples of the styrenes include styrene, p-hydroxystyrene, p-hydroxymethylstyrene and the like, which may be protected but may have an aminooxy group or a hydrazide group.
[0121] 上記の脂肪酸ビニルエステルとしては、保護されて ヽてもよ ヽァミノォキシ基または ヒドラジド基を有し得る、酢酸ビニル、酪酸ビニルなどが例示される。また、本発明中 の脂肪酸ビュルエステルの重合体あるいは共重合体には、重合反応後アルカリなど によりエステル結合を全部あるいは一部加水分解したものも含まれる。 [0121] Examples of the fatty acid vinyl ester include vinyl acetate and vinyl butyrate which may be protected and have an aminooxy group or a hydrazide group. In addition, the polymer or copolymer of fatty acid bule ester in the present invention includes an alkali after polymerization reaction, etc. In this case, all or part of the ester bond is hydrolyzed.
[0122] 上記のポリエーテル類としては、保護されて!ヽてもよ ヽァミノォキシ基またはヒドラジ ド基を有し得るポリエチレングリコール、あるいは保護されて 、てもよ 、アミノォキシ基 またはヒドラジド基を有し得るアルキル、ァリール基で置換されたポリエチレングリコー ル等が例示される。  [0122] The above polyethers may be protected! Polyethylene glycol which may have an aminooxy group or a hydrazide group, or may be protected, and may have an aminooxy group or a hydrazide group. Examples thereof include polyethylene and polyethylene glycol substituted with aryl groups.
[0123] ここでいう高分子担体は水不溶性、水溶性いずれであってもよいが、水溶性の方が 好ましい。一般的な分子量は約 10000〜約 5000000であり、好ましくは 20000〜2 000000、より好まし <は 50000〜 1000000である。その形態は、水不溶性担体の 場合、ビーズ状、繊維状、膜状、フィルム状などが挙げられるが、特に制限されない。  [0123] The polymer carrier here may be either water-insoluble or water-soluble, but water-soluble is preferred. The general molecular weight is about 10,000 to about 5000000, preferably 20000 to 2000000, more preferably <50,000 to 1000000. In the case of a water-insoluble carrier, the form includes a bead shape, a fiber shape, a film shape, and a film shape, but is not particularly limited.
[0124] さらに好ましい担体としては、以下の式:  [0124] As a more preferred carrier, the following formula:
[0125] [0125]
Figure imgf000058_0001
Figure imgf000058_0001
で表される高分子担体が挙げられる。ここで、 nは 1〜15の整数であり、好ましくは 1 〜10であり、より好ましくは 1〜5である。 x:yの比率は 1 : 0〜1 : 1000であり、好ましく は 1 : 0〜1 : 100である。高分子担体の分子量は、約 10000〜約 5000000であり、 好まし <は 20000〜2000000、より好まし <は 50000〜 1000000である。 [0126] 好ましい実施形態おいて、本発明は、以下の式: The polymeric carrier represented by these is mentioned. Here, n is an integer of 1 to 15, preferably 1 to 10, and more preferably 1 to 5. The ratio of x: y is 1: 0 to 1: 1000, preferably 1: 0 to 1: 100. The molecular weight of the polymer carrier is about 10,000 to about 5000000, preferably <is 20000 to 2000000, more preferably <is 50000 to 1000000. [0126] In a preferred embodiment, the invention provides a compound of the following formula:
X— C( = 0)—(CH ) — A — A — A (I)  X— C (= 0) — (CH) — A — A — A (I)
2 n 1 2 3  2 n 1 2 3
式中、 Xは、水素原子、 c〜c アルキル、 c〜c ァリールまたは発色団を表し;  In which X represents a hydrogen atom, c-c alkyl, c-c aryl or chromophore;
1 30 6 30  1 30 6 30
nは 0〜20の整数を表し;  n represents an integer of 0 to 20;
Aは、—(CH ) — C( = 0)—、—(CH CH O) —、重合度 1〜10のオリゴ A is — (CH 2) — C (= 0) —, — (CH 2 CH 2 O) —
1 2 0〜20 2 2 1〜10 1 2 0 ~ 20 2 2 1 ~ 10
もしくはポリアクリルアミド、重合度 1〜: LOのオリゴもしくはポリペプチド、酸素原子また は NHを表し;  Or polyacrylamide, polymerization degree 1 to: oligo or polypeptide of LO, oxygen atom or NH;
Aは、プロテアーゼにより切断可能なアミノ酸残基を表し;  A represents an amino acid residue cleavable by a protease;
2  2
Aは、実質的にプロテアーゼにより切断可能な部位を含まない糖アミノ酸残基、ま A is a sugar amino acid residue substantially free of a site cleavable by a protease, or
3 Three
たはプロテアーゼにより切断可能な部位を含まず任意の糖アミノ酸を含む糖ペプチド 残基を表し、該糖アミノ酸残基または該糖ペプチド残基が、以下の式:  Alternatively, it represents a glycopeptide residue containing any sugar amino acid without a site cleavable by a protease, and the sugar amino acid residue or the glycopeptide residue is represented by the following formula:
[0127] [化 26— 1] [0127] [Chemical 26— 1]
Z1 Z2 Z2  Z1 Z2 Z2
R1ィ R2_R3 R4 _R5 R5 R1 ー R2_ R 3 R 4 _ R 5 R5
R6 -(R7-R8 " 9-R10 たは R9—R10 R 6- (R 7 -R 8 " 9 -R 10 or R9—R 10
Z3  Z3
式中、 R1および R6は、それぞれ独立して、水素、 Neu5Ac基または GlcNAc基で あり; In which R 1 and R 6 are each independently hydrogen, Neu5Ac group or GlcNAc group;
R2および R7は、 Gal基であり; R 2 and R 7 are Gal groups;
R3および R8は、 GlcNAc基であり; R 3 and R 8 are GlcNAc groups;
R4および R9は、 Gal基であり; R 4 and R 9 are Gal groups;
R5は、 GlcNAc基であり; R 5 is a GlcNAc group;
R10は、 GalNAc基であり; R 10 is a GalNAc group;
Z Z2および Z3は、それぞれ独立して、水素または Fuc基であり;ならびに nおよび mは、それぞれ独立して、 0以上の整数であり; ZZ 2 and Z 3 are each independently hydrogen or a Fuc group; and n and m are each independently an integer greater than or equal to 0;
ここで、 R1と R2との間の結合は、 R1が Neu5Ac基の場合、 a 2, 3結合であり、 R1が GlcNAc基の場合、 j81, 3結合であり; Here, the bond between R 1 and R 2 is a 2, 3 bond when R 1 is Neu5Ac group, and j81, 3 bond when R 1 is GlcNAc group;
R2と R3との間の結合は、 β ΐ, 4結合であり; The bond between R 2 and R 3 is a β ΐ, 4 bond;
R3と R4との間の結合は、 β ΐ, 3結合であり; R4と R5との間の結合は、 β ΐ, 4結合であり; The bond between R 3 and R 4 is a β ΐ, 3 bond; The bond between R 4 and R 5 is a β ΐ, 4 bond;
R6と R7との間の結合は、 R6が Neu5Ac基の場合、 α 2, 3結合であり、 R6が GlcNA c基の場合、 β ΐ, 3結合であり; The bond between R 6 and R 7 is an α 2,3 bond when R 6 is a Neu5Ac group, and a β ΐ, 3 bond when R 6 is a GlcNA c group;
R7と R8との間の結合は、 β ΐ, 4結合であり; The bond between R 7 and R 8 is a β ΐ, 4 bond;
R8と R9との間の結合は、 β ΐ, 3結合であり; The bond between R 8 and R 9 is a β ΐ, 3 bond;
R9と R1Gとの間の結合は、 β ΐ, 3結合であり; The bond between R 9 and R 1G is a β ΐ, 3 bond;
R5と R1Gとの間の結合は、 β ΐ, 6結合であり; The bond between R 5 and R 1G is a β ΐ, 6 bond;
Ζ1と R3との間の結合は、 《1, 3結合であり; The bond between Ζ 1 and R 3 is << 1 , 3 bond;
Ζ2と R5との間の結合は、 《1, 3結合であり;ならびに The bond between Ζ 2 and R 5 is << 1, 3 bond; and
Ζ3と R8との間の結合は、 《1, 3結合である、 The bond between Ζ 3 and R 8 is << 1, 3 bond,
で表される糖残基を有する化合物を提供する。  The compound which has the sugar residue represented by this is provided.
[0128] 別の好ましい実施形態において、本発明は、以下の式: [0128] In another preferred embodiment, the invention provides a compound of the following formula:
X— C( = 0)—(CH ) — Α— Α— A (I)  X— C (= 0) — (CH) — Α— Α— A (I)
2 n 1 2 3  2 n 1 2 3
式中、 Xは、水素原子、 c〜  Wherein X is a hydrogen atom, c to
1 c アルキル、 〜  1 c alkyl, ~
30 c 6 c ァリールまたは発色団を表し;  30 c 6 c represents a reel or chromophore;
30  30
nは 0〜20の整数を表し;  n represents an integer of 0 to 20;
Aは、—(CH ) — C( = 0)—、—(CH CH O) —、重合度 1〜10のオリゴ A is — (CH 2) — C (= 0) —, — (CH 2 CH 2 O) —
1 2 0〜20 2 2 1〜10 1 2 0 ~ 20 2 2 1 ~ 10
もしくはポリアクリルアミド、重合度 1〜: LOのオリゴもしくはポリペプチド、酸素原子また は NHを表し;  Or polyacrylamide, polymerization degree 1 to: oligo or polypeptide of LO, oxygen atom or NH;
Aは、プロテアーゼにより切断可能なアミノ酸残基を表し;  A represents an amino acid residue cleavable by a protease;
2  2
Aは、実質的にプロテアーゼにより切断可能な部位を含まない糖アミノ酸残基、ま A is a sugar amino acid residue substantially free of a site cleavable by a protease, or
3 Three
たはプロテアーゼにより切断可能な部位を含まず任意の糖アミノ酸を含む糖ペプチド 残基を表し、該糖アミノ酸残基または該糖ペプチド残基が、以下の式:  Alternatively, it represents a glycopeptide residue containing any sugar amino acid without a site cleavable by a protease, and the sugar amino acid residue or the glycopeptide residue is represented by the following formula:
[0129] [化 26- 2] R —[0129] [Chemical 26-2] R —
Figure imgf000060_0001
式中、 R1は、水素、シアル酸基または GlcNAc基であり;
Figure imgf000060_0001
In which R 1 is hydrogen, a sialic acid group or a GlcNAc group;
R2は、 Gal基であり; R3は、 GlcNAc基であり; R 2 is a Gal group; R 3 is a GlcNAc group;
R4は、 Gal基であり; R 4 is a Gal group;
R5は、 GlcNAc基であり; R 5 is a GlcNAc group;
R10は、 GalNAc基であり; R 10 is a GalNAc group;
R8は、水素またはシアル酸基であり; R 8 is hydrogen or a sialic acid group;
R9は、 Gal基であり; R 9 is a Gal group;
Z1および Z2は、それぞれ独立して、水素または Fuc基であり;ならびに Z 1 and Z 2 are each independently hydrogen or a Fuc group; and
nは、 0以上の整数であり;  n is an integer greater than or equal to 0;
ここで、 R1と R2との間の結合は、 R1がシアル酸基の場合、 a 2, 3結合であり、 R1が GlcNAc基の場合、 j8 1 , 3結合であり; Where the bond between R 1 and R 2 is an a 2, 3 bond when R 1 is a sialic acid group, and a j8 1, 3 bond when R 1 is a GlcNAc group;
R2と R3との間の結合は、 β ΐ , 4結合であり; The bond between R 2 and R 3 is a β,, 4 bond;
R3と R4との間の結合は、 β ΐ , 3結合であり; The bond between R 3 and R 4 is a β,, 3 bond;
R4と R5との間の結合は、 β ΐ , 4結合であり; The bond between R 4 and R 5 is a β,, 4 bond;
R8と R9との間の結合は、 《2, 3結合であり; The bond between R 8 and R 9 is << 2, 3 bond;
R9と R10との間の結合は、 β ΐ , 3結合であり; The bond between R 9 and R 10 is a β,, 3 bond;
R5と R1Gとの間の結合は、 β ΐ , 6結合であり; The bond between R 5 and R 1G is a β,, 6 bond;
Ζ1と R3との間の結合は、 《1 , 3結合であり;ならびに The bond between Ζ 1 and R 3 is << 1 , 3 bond; and
Ζ2と R5との間の結合は、 《1 , 3結合である、 The bond between Ζ 2 and R 5 is << 1, 3 bond,
で表される糖残基を有する化合物を提供する。 The compound which has the sugar residue represented by this is provided.
別の好ましい実施形態において、本発明は、以下の式:  In another preferred embodiment, the present invention provides the following formula:
Α N = C (— X)— (CH ) A -A -A (II)  Α N = C (— X) — (CH) A -A -A (II)
4 2 n 1 2 3  4 2 n 1 2 3
[式中、 Xは水素原子、 c〜 ァリー  [Where X is a hydrogen atom, c to ally
1 c アルキル、  1 c alkyl,
30 c〜  30 c ~
6 c ルまたは発色団を表し; 30  6 c represents a chromophore or chromophore; 30
nは 0〜20の整数を表し;  n represents an integer of 0 to 20;
Aは、—(CH ) — C ( = 0)—、—(CH CH O) —、重合度 1〜10のオリゴ A is — (CH 2) — C (= 0) —, — (CH 2 CH 2 O) —
1 2 0〜20 2 2 1〜10 1 2 0 ~ 20 2 2 1 ~ 10
もしくはポリアクリルアミド、重合度 1〜: LOのオリゴもしくはポリペプチド、酸素原子また は NHを表し; Or polyacrylamide, polymerization degree 1 to: oligo or polypeptide of LO, oxygen atom or NH;
Aは、バシラス リケ-ホルミス(Bacillus Licheniformis)由来のプロテアーゼで A is a protease derived from Bacillus Licheniformis.
2 2
切断可能なグルタミン酸残基またはシスティン残基であり; Aは、実質的にプロテアーゼにより切断可能な部位を含まない糖アミノ酸残基、まA cleavable glutamic acid residue or cysteine residue; A is a sugar amino acid residue substantially free of a site cleavable by a protease, or
3 Three
たはプロテアーゼにより切断可能な部位を含まず任意の糖アミノ酸を含む糖ペプチド 残基を表し、該糖アミノ酸残基または該糖ペプチド残基が、以下の式: Alternatively, it represents a glycopeptide residue containing any sugar amino acid without a site cleavable by a protease, and the sugar amino acid residue or the glycopeptide residue is represented by the following formula:
[化 26— 3][Chem 26-3]
Figure imgf000062_0001
Figure imgf000062_0001
式中、 R1および R6は、それぞれ独立して、水素、 Neu5Ac基または GlcNAc基で あり; In which R 1 and R 6 are each independently hydrogen, Neu5Ac group or GlcNAc group;
R2および R7は、 Gal基であり; R 2 and R 7 are Gal groups;
R3および R8は、 GlcNAc基であり; R 3 and R 8 are GlcNAc groups;
R4および R9は、 Gal基であり; R 4 and R 9 are Gal groups;
R5は、 GlcNAc基であり; R 5 is a GlcNAc group;
R10は、 GalNAc基であり; R 10 is a GalNAc group;
Z2および Z3は、それぞれ独立して、水素または Fuc基であり;ならびに nおよび mは、それぞれ独立して、 0以上の整数であり; Z 2 and Z 3 are each independently hydrogen or a Fuc group; and n and m are each independently an integer of 0 or more;
ここで、 R1と R2との間の結合は、 R1が Neu5Ac基の場合、 a 2, 3結合であり、 R1が GlcNAc基の場合、 j81, 3結合であり; Here, the bond between R 1 and R 2 is a 2, 3 bond when R 1 is Neu5Ac group, and j81, 3 bond when R 1 is GlcNAc group;
R2と R3との間の結合は、 β ΐ, 4結合であり; The bond between R 2 and R 3 is a β ΐ, 4 bond;
R3と R4との間の結合は、 β ΐ, 3結合であり; The bond between R 3 and R 4 is a β ΐ, 3 bond;
R4と R5との間の結合は、 β ΐ, 4結合であり; The bond between R 4 and R 5 is a β ΐ, 4 bond;
R6と R7との間の結合は、 R6が Neu5Ac基の場合、 α 2, 3結合であり、 R6が GlcNA c基の場合、 ΐ, 3結合であり; The bond between R 6 and R 7 is an α 2,3 bond when R 6 is a Neu5Ac group, and a ΐ, 3 bond when R 6 is a GlcNA c group;
R7と R8との間の結合は、 β ΐ, 4結合であり; The bond between R 7 and R 8 is a β ΐ, 4 bond;
R8と R9との間の結合は、 β ΐ, 3結合であり; The bond between R 8 and R 9 is a β ΐ, 3 bond;
R9と R1Gとの間の結合は、 β ΐ, 3結合であり; The bond between R 9 and R 1G is a β ΐ, 3 bond;
R5と R1Gとの間の結合は、 β ΐ, 6結合であり; The bond between R 5 and R 1G is a β ΐ, 6 bond;
Ζ1と R3との間の結合は、《1, 3結合であり; Z2と R5との間の結合は、 《1, 3結合であり;ならびに The bond between Ζ 1 and R 3 is << 1 , 3 bond; The bond between Z 2 and R 5 is << 1, 3 bond; and
Ζ3と R8との間の結合は、 《1, 3結合である、 The bond between Ζ 3 and R 8 is << 1, 3 bond,
で表される糖残基を有し; Having a sugar residue represented by:
Αは、以下の式:  Α is the following formula:
4  Four
[化 26- 4] [Chemical 26-4]
Figure imgf000063_0001
Figure imgf000063_0001
(式中、 sは 1〜15の整数であり、 : は1 : 0〜1 : 1000でぁる)で表される基でぁる] で表される化合物を提供する。  (Wherein, s is an integer of 1 to 15, and: is 1: 0 to 1: 1000)] is provided.
別の好ましい実施形態において、本発明は、以下の式:  In another preferred embodiment, the present invention provides the following formula:
A N = C (— X)— (CH ) A -A -A (II)  A N = C (— X) — (CH) A -A -A (II)
4 2 n 1 2 3  4 2 n 1 2 3
[式中、 Xは水素原子、 c〜c アルキル、 c〜c ァリールまたは発色団を表し;  [Wherein X represents a hydrogen atom, c-c alkyl, c-c aryl or chromophore;
1 30 6 30  1 30 6 30
nは 0〜20の整数を表し;  n represents an integer of 0 to 20;
Aは、—(CH ) — C ( = 0)—、—(CH CH O) —、重合度 1〜10のオリゴ A is — (CH 2) — C (= 0) —, — (CH 2 CH 2 O) —
1 2 0〜20 2 2 1〜10 1 2 0 ~ 20 2 2 1 ~ 10
もしくはポリアクリルアミド、重合度 1〜: LOのオリゴもしくはポリペプチド、酸素原子また は NHを表し; Or polyacrylamide, polymerization degree 1 to: oligo or polypeptide of LO, oxygen atom or NH;
Aは、バシラス リケ-ホルミス(Bacillus Licheniformis)由来のプロテアーゼで 切断可能なグルタミン酸残基またはシスティン残基であり; A is a protease derived from Bacillus Licheniformis. A cleavable glutamic acid residue or cysteine residue;
Aは、実質的にプロテアーゼにより切断可能な部位を含まない糖アミノ酸残基、ま A is a sugar amino acid residue substantially free of a site cleavable by a protease, or
3 Three
たはプロテアーゼにより切断可能な部位を含まず任意の糖アミノ酸を含む糖ペプチド 残基を表し、該糖アミノ酸残基または該糖ペプチド残基が、以下の式: Alternatively, it represents a glycopeptide residue containing any sugar amino acid without a site cleavable by a protease, and the sugar amino acid residue or the glycopeptide residue is represented by the following formula:
[化 27] R1ィ —
Figure imgf000064_0001
式中、 R1は、水素、シアル酸基または GlcNAc基であり;
[Chemical 27] R 1
Figure imgf000064_0001
In which R 1 is hydrogen, a sialic acid group or a GlcNAc group;
R2は、 Gal基であり; R 2 is a Gal group;
R3は、 GlcNAc基であり; R 3 is a GlcNAc group;
R4は、 Gal基であり; R 4 is a Gal group;
R5は、 GlcNAc基であり; R 5 is a GlcNAc group;
R10は、 GalNAc基であり; R 10 is a GalNAc group;
R8は、水素またはシアル酸基であり; R 8 is hydrogen or a sialic acid group;
R9は、 Gal基であり; R 9 is a Gal group;
Z1および Z2は、それぞれ独立して、水素または Fuc基であり;ならびに Z 1 and Z 2 are each independently hydrogen or a Fuc group; and
nは、 0以上の整数であり;  n is an integer greater than or equal to 0;
ここで、 R1と R2との間の結合は、 R1がシアル酸基の場合、 a 2, 3結合であり、 R1が GlcNAc基の場合、 β ΐ, 3結合であり; Where the bond between R 1 and R 2 is an a 2, 3 bond when R 1 is a sialic acid group, and a β ΐ, 3 bond when R 1 is a GlcNAc group;
R2と R3との間の結合は、 j8 1, 4結合であり; The bond between R 2 and R 3 is a j8 1, 4 bond;
R3と R4との間の結合は、 1, 3結合であり; The bond between R 3 and R 4 is a 1, 3 bond;
R4と R5との間の結合は、 ]3 1 , 4結合であり; The bond between R 4 and R 5 is] 3 1, 4 bond;
R8と R9との間の結合は、 ひ 2, 3結合であり; The bond between R 8 and R 9 is a 2, 3 bond;
R9と R1Gとの間の結合は、 j8 1, 3結合であり; The bond between R 9 and R 1G is a j8 1,3 bond;
R5と R1Gとの間の結合は、 j8 1, 6結合であり; The bond between R 5 and R 1G is a j8 1,6 bond;
Z1と R3との間の結合は、 α ΐ, 3結合であり;ならびに The bond between Z 1 and R 3 is an α ΐ, 3 bond; and
Ζ2と R5との間の結合は、 a l, 3結合である、 で表される糖残基を有し; The bond between Ζ 2 and R 5 is al, 3 bond, Having a sugar residue represented by:
Aは、以下の式:  A is the following formula:
4  Four
[化 27- 1]  [Chemical 27-1]
Figure imgf000065_0001
Figure imgf000065_0001
(式中、 sは 1〜15の整数であり、 : は1 : 0〜1 : 1000でぁる)で表される基でぁる] で表される化合物を提供する。  (Wherein, s is an integer of 1 to 15, and: is 1: 0 to 1: 1000)] is provided.
本発明にお 、て提供されるボリラクトサミン骨格を有するムチン型糖ペプチドは、上 記式 (I)または(Π)中、 Aにおいて、 nは 0以上の整数であり、好ましくは、 nは 0〜5  In the present invention, the mucin-type glycopeptide having a voralactosamine skeleton provided in the present invention, in the formula (I) or (ま た は), in A, n is an integer of 0 or more, and preferably, n is 0 to Five
3  Three
であり、より好ましくは、 nは 4以下の整数である。さらに、上記式中、 Aにおいて、 Z1 More preferably, n is an integer of 4 or less. Further, in the above formula, in A, Z 1
3  Three
〜Z3は、あってもなくてもよいが、好ましくは、 mは 0〜5であり、好ましくは、 nが 1の場 合、 Z1および Z2はシアル酸基である。さらに好ましくは、糖ペプチドの糖残基は、 [化 27- 2]
Figure imgf000066_0001
˜Z 3 may or may not be present, but preferably m is 0 to 5, and when n is 1, Z 1 and Z 2 are sialic acid groups. More preferably, the sugar residue of the glycopeptide is [Chemical 27-2]
Figure imgf000066_0001
Figure imgf000067_0001
Figure imgf000068_0001
Figure imgf000067_0001
Figure imgf000068_0001
Figure imgf000069_0001
Figure imgf000069_0001
Figure imgf000069_0002
Figure imgf000069_0002
Figure imgf000070_0001
Figure imgf000070_0001
からなる群より選択される糖残基または糖残基の誘導体であり得る。  It can be a sugar residue or a derivative of a sugar residue selected from the group consisting of
[0137] 別の局面において、本発明は、上記式 (I)または (Π)に記載の化合物を含む、糖ァ ミノ酸または糖ペプチドを製造するためのプライマー用組成物を提供する。 [0137] In another aspect, the present invention provides a composition for a primer for producing a glycoamino acid or glycopeptide comprising the compound described in the above formula (I) or (IV).
[0138] 糖ペプチドを製造するためのプライマーとして有用な本発明の化合物の合成およ び精製は、以下の手順: [0138] The synthesis and purification of the compounds of the present invention useful as primers for producing glycopeptides involves the following procedures:
1)保護アミノ酸 (プロテアーゼにより切断可能なアミノ酸残基を含む)、予め合成し た保護基を有する糖アミノ酸、およびケト酸またはアルデヒド酸を原料にペプチド固 相合成を行 ヽ、末端にケトン残基またはアルデヒド残基を有しプロテアーゼにより切 断可能なアミノ酸残基を含む糖ペプチド (糖鎖 ·アミノ酸保護体)を合成する (必要に 応じて、アミノ酸カップリング反応の各工程の後にキヤッビング反応、すなわちアミノ酸 カップリング未反応物を不活化する反応を行う); 1) Protected amino acids (including amino acid residues cleavable by proteases), sugar amino acids with pre-synthesized protecting groups, and keto acids or aldehyde acids as raw materials for peptide solid-phase synthesis, with ketone residues at the ends Or has an aldehyde residue and is cleaved by a protease Synthesize glycopeptides (glycans / amino acid protectors) containing cleavable amino acid residues (if necessary, inactivate the cabbing reaction after each step of the amino acid coupling reaction, that is, unreacted amino acid coupling product) Reaction);
2)酸処理によって、末端にケトン残基またはアルデヒド残基を有しプロテアーゼに より切断可能なアミノ酸残基を含む糖ペプチドを固相担体力 遊離させると同時にァ ミノ酸側鎖の保護基を脱保護する (酸処理によってアミノ酸側鎖の保護基が脱離しな い場合は、別途脱保護反応により該保護基を脱保護すればよい);  2) By acid treatment, the glycopeptide containing an amino acid residue that has a ketone residue or an aldehyde residue at the end and can be cleaved by protease is released to the solid phase carrier force, and at the same time, the amino acid side chain protecting group is removed Protect (if the amino acid side chain protecting group is not removed by acid treatment, the protecting group may be separately deprotected by a deprotection reaction);
3)反応液、もしくはエーテル沈殿法によって得た混合物を HPLCによって精製し、 末端にケトン残基またはアルデヒド残基を有しプロテアーゼにより切断可能なアミノ酸 残基を含む糖ペプチド (糖鎖保護体)を単離する;  3) The reaction mixture or the mixture obtained by the ether precipitation method is purified by HPLC, and a glycopeptide (sugar chain protector) containing an amino acid residue that has a ketone residue or an aldehyde residue at the end and can be cleaved by a protease is obtained. Isolate;
4)糖鎖の保護基の脱保護をする;  4) Deprotect the sugar chain protecting group;
5) HPLCで精製し、末端にケトン残基またはアルデヒド残基を有しプロテアーゼに より切断可能なアミノ酸残基を含む糖ペプチドを単離する  5) Purification by HPLC to isolate a glycopeptide containing a ketone residue or an aldehyde residue at the end and containing an amino acid residue that can be cleaved by a protease
との手順で行われる。この方法は、糖アミノ酸を含まないペプチドの合成においても、 適用可能であり、その場合、 4)の工程は省かれる。  It is done in the procedure. This method can also be applied to the synthesis of peptides that do not contain sugar amino acids, in which case step 4) is omitted.
[0139] このようにして得られた末端にケトン残基またはアルデヒド残基を有しプロテアーゼ により切断可能なアミノ酸残基を含む糖ペプチドから高分子プライマーの合成および 精製は、以下: [0139] Synthesis and purification of a polymeric primer from a glycopeptide containing an amino acid residue having a ketone residue or an aldehyde residue at the terminal and thus cleavable by a protease are as follows:
6)上記で得られた糖ペプチドと高分子担体とを反応させる;  6) reacting the glycopeptide obtained above with a polymer carrier;
7)ゲル濾過カラムクロマトグラフィーによって精製し、高分子プライマーを得る、 との手順で行われる。  7) Purify by gel filtration column chromatography to obtain a polymer primer.
[0140] 本発明の化合物の別の一般的な合成および精製は、以下:  [0140] Another general synthesis and purification of the compounds of the invention is as follows:
1)保護アミノ酸 (プロテアーゼにより切断可能なアミノ酸残基を含む)、予め合成し た保護基を有する糖アミノ酸、およびケト酸またはアルデヒド酸を原料にペプチド固 相合成を行 ヽ、末端にケトン残基またはアルデヒド残基を有しプロテアーゼにより切 断可能なアミノ酸残基を含む糖ペプチド (糖鎖 ·アミノ酸保護体)を合成する (必要に 応じて、アミノ酸カップリング反応の各工程の後にキヤッビング反応、すなわちアミノ酸 カップリング未反応物を不活化する反応を行う); 2)酸処理によって、末端にケトン残基またはアルデヒド残基を有しプロテアーゼに より切断可能なアミノ酸残基を含む糖ペプチドを固相担体力 遊離させると同時にァ ミノ酸側鎖の保護基を脱保護する (酸処理によってアミノ酸側鎖の保護基が脱離しな い場合は、別途脱保護反応により該保護基を脱保護すればよい); 1) Protected amino acids (including amino acid residues cleavable by proteases), sugar amino acids with pre-synthesized protecting groups, and keto acids or aldehyde acids as raw materials for peptide solid-phase synthesis, with ketone residues at the ends Alternatively, synthesize a glycopeptide (sugar chain / amino acid protected form) containing an aldehyde residue and an amino acid residue that can be cleaved by a protease (if necessary, a cubbing reaction after each step of the amino acid coupling reaction, that is, Performing a reaction to inactivate unreacted amino acid coupling); 2) By acid treatment, the glycopeptide containing an amino acid residue that has a ketone residue or an aldehyde residue at the end and is cleavable by protease is released to the solid phase carrier force, and at the same time, the protecting group of the amino acid side chain is removed. Protect (if the amino acid side chain protecting group is not removed by acid treatment, the protecting group may be separately deprotected by a deprotection reaction);
3)糖鎖の保護基の脱保護をする;  3) Deprotect the sugar chain protecting group;
4) 3)の糖ペプチドを含む反応液に高分子担体を導入して選択的に糖ペプチドと 反応させる;  4) A polymer carrier is introduced into the reaction solution containing the glycopeptide of 3) and selectively reacted with the glycopeptide;
5)担体に結合した糖ペプチドをゲル濾過もしくは透析、限外濾過等によって精製 する;  5) The glycopeptide bound to the carrier is purified by gel filtration or dialysis, ultrafiltration, etc .;
6)担体に結合した糖ペプチドをプロテアーゼにより加水分解し、糖ペプチドを遊離 させ、担体を除き、 目的の糖ペプチドを単離する、  6) Hydrolyze the glycopeptide bound to the carrier with a protease to release the glycopeptide, remove the carrier, and isolate the desired glycopeptide.
との手順で行われる。 It is done in the procedure.
この手順によれば、各工程を単離せず、ワンポットで高分子プライマーまで導くこど ができる。このようにして得られた末端にケトン残基またはアルデヒド残基を有しプロ テアーゼにより切断可能なアミノ酸残基を含む糖ペプチドから高分子プライマーの合 成および精製は、以下:  According to this procedure, it is possible to guide the polymer primer in one pot without isolating each step. Synthesis and purification of a polymeric primer from a glycopeptide containing an amino acid residue having a ketone residue or an aldehyde residue at the terminal and thus cleavable by a protease is as follows:
1)保護アミノ酸 (プロテアーゼにより切断可能なアミノ酸残基を含む)、予め合成し た保護基を有する糖アミノ酸、およびケト酸またはアルデヒド酸を原料にペプチド固 相合成を行 ヽ、末端にケトン残基またはアルデヒド残基を有しプロテアーゼにより切 断可能なアミノ酸残基を含む糖ペプチド (糖鎖 ·アミノ酸保護体)を合成する (必要に 応じて、アミノ酸カップリング反応の各工程の後にキヤッビング反応、すなわちアミノ酸 カップリング未反応物を不活化する反応を行う);  1) Protected amino acids (including amino acid residues that can be cleaved by proteases), sugar amino acids with pre-synthesized protecting groups, and keto acids or aldehyde acids as raw materials for peptide solid-phase synthesis, and ketone residues at the ends Alternatively, a glycopeptide (sugar chain / amino acid protected form) having an aldehyde residue and containing an amino acid residue that can be cleaved by a protease is synthesized (if necessary, a cubbing reaction after each step of the amino acid coupling reaction, that is, Performing a reaction to inactivate unreacted amino acid coupling);
2)酸処理によって、末端にケトン残基またはアルデヒド残基を有しプロテアーゼに より切断可能なアミノ酸残基を含む糖ペプチドを固相担体力 遊離させると同時にァ ミノ酸側鎖の保護基を脱保護する (酸処理によってアミノ酸側鎖の保護基が脱離しな い場合は、別途脱保護反応により該保護基を脱保護すればよい);  2) By acid treatment, the glycopeptide containing an amino acid residue having a ketone residue or an aldehyde residue at the end and cleavable by a protease is released to the solid phase carrier force, and at the same time, the protecting group of the amino acid side chain is removed. Protect (if the amino acid side chain protecting group is not removed by acid treatment, the protecting group may be separately deprotected by a deprotection reaction);
3)糖鎖の保護基の脱保護をする;  3) Deprotect the sugar chain protecting group;
4) 3)の糖ペプチドを含む反応液に高分子担体を導入して選択的に糖ペプチドと 反応させる; 4) A polymer carrier is introduced into the reaction solution containing the glycopeptide of 3) to selectively react with the glycopeptide. React;
5)担体に結合した糖ペプチドをゲル濾過もしくは透析、限外濾過等によって精製し プライマーを得る、  5) Purify the glycopeptide bound to the carrier by gel filtration or dialysis, ultrafiltration, etc. to obtain a primer.
との手順で行われる。  It is done in the procedure.
[0142] 好ま 、実施形態にぉ ヽて、上記手順 1)で使用されるケト酸またはアルデヒド酸は 、以下の式:  [0142] Preferably, according to the embodiment, the keto acid or aldehyde acid used in the above step 1) has the following formula:
X-C ( = 0) - (CH ) -A -COOH (III)  X-C (= 0)-(CH) -A -COOH (III)
2 n 1  2 n 1
(式中、 Xは水素原子、 c〜c アルキル、  Wherein X is a hydrogen atom, c-c alkyl,
1 30 c 6〜c ァリールまたは発色団を表し;  1 30 c represents 6-c aryl or chromophore;
30  30
nは 0〜20の整数を表し;  n represents an integer of 0 to 20;
Aは、メチレン鎖 1〜20個分の長さを有するリンカ一を表す)で表される化合物で ある。  (A represents a linker having a length of 1 to 20 methylene chains).
[0143] 1つの好ましい実施形態において、本発明の糖ペプチドを製造する方法は、以下 の工程:  [0143] In one preferred embodiment, the method for producing a glycopeptide of the present invention comprises the following steps:
(A)上記項目(1)〜(3)のいずれか 1項に記載の化合物と、該化合物のケトン残基 またはアルデヒド残基と特異的に反応しうる、保護されていてもよいアミノォキシ基、 N アルキルアミノォキシ基、ヒドラジド基、アジド基、チォセミカルバジド基、 1, 2—ジ チオール基およびシスティン残基からなる群から選択される官能基を含む担体と、を 反応させる工程;  (A) the compound according to any one of the above items (1) to (3), an aminooxy group which may be specifically protected and which can specifically react with a ketone residue or an aldehyde residue of the compound; Reacting a carrier containing a functional group selected from the group consisting of N alkylaminoxy group, hydrazide group, azide group, thiosemicarbazide group, 1,2-dithiol group and cysteine residue;
(B)工程 (A)で得たィ匕合物に、糖ヌクレオチドの存在下で糖転移酵素を作用させる ことにより、該糖ヌクレオチドより糖残基を該化合物に転移させ、糖鎖を伸長させたィ匕 合物を得る工程であって、該糖ヌクレオチド力 Gal基、 GlcNAc基、 Fuc基およびシ アル酸基からなる群より選択される糖残基を有する、工程;  (B) By reacting the compound obtained in step (A) with a glycosyltransferase in the presence of a sugar nucleotide, the sugar residue is transferred from the sugar nucleotide to the compound, and the sugar chain is elongated. A step of obtaining a compound comprising a sugar residue selected from the group consisting of the sugar nucleotide force Gal group, GlcNAc group, Fuc group and sialic acid group;
(C)必要に応じて未反応の糖ヌクレオチド類および副生したヌクレオチド類を除去 する工程;および  (C) removing unreacted sugar nucleotides and by-product nucleotides as necessary; and
(D)糖残基が転移して糖鎖が伸長したィ匕合物にプロテアーゼを作用させる工程、 を包む。  (D) a step of causing a protease to act on a compound in which sugar residues are transferred and sugar chains are elongated.
[0144] 本発明において使用される糖転移酵素は、好ましくは、 13 1, 4—ガラクトース転移 酵素、 j8 1, 3—ガラクトース転移酵素、 ひ1, 3—フコース転移酵素、 /3 1, 3—N—ァ セチルダルコサミン転移酵素、 13 1, 6— N—ァセチルダルコサミン転移酵素、 α 2, 3 ーシアル酸転移酵素、 《2, 6—シアル酸転移酵素である。 [0144] The glycosyltransferase used in the present invention is preferably 13 1, 4-galactose transfer. Enzyme, j8 1,3-Galactosyltransferase, 1,3-Fucose transferase, / 3 1,3-N-Acetyldarcosaminetransferase, 13 1,6-N-Acetyldarcosaminetransferase, α 2,3-sialyltransferase, << 2,6-sialyltransferase.
[0145] 別の好ましい実施形態において、本発明の糖ペプチドを製造する方法は、以下の 工程: [0145] In another preferred embodiment, the method for producing a glycopeptide of the present invention comprises the following steps:
(Α)項目(4)〜(7)のいずれか 1項に記載の化合物に、糖ヌクレオチドの存在下で 糖転移酵素を作用させることにより、上記糖ヌクレオチドより糖残基を上記化合物に 転移させ、糖鎖を伸長させたィ匕合物を得る工程であって、該糖ヌクレオチドが、 Gal 基、 GlcNAc基、 Fuc基およびシアル酸基からなる群より選択される糖残基を有する ゝ η-,  (Ii) A sugar residue is transferred from the sugar nucleotide to the compound by allowing a glycosyltransferase to act on the compound according to any one of items (4) to (7) in the presence of the sugar nucleotide. , A step of obtaining a compound in which a sugar chain is elongated, wherein the sugar nucleotide has a sugar residue selected from the group consisting of a Gal group, a GlcNAc group, a Fuc group and a sialic acid group. ,
(Β)必要に応じて未反応の糖ヌクレオチド類および副生したヌクレオチド類を除去 する工程;および  (Ii) removing unreacted sugar nucleotides and by-product nucleotides as necessary; and
(C)糖残基が転移して糖鎖が伸長した化合物にプロテアーゼを作用させる工程、 を包む。さらに、糖ペプチドを単離する工程を含んでいてもよい。本製造法において は、 目的の糖ペプチドと担体を含む糖ペプチド以外の副生成物を容易に分離し得る  (C) a step of allowing a protease to act on a compound in which sugar residues are transferred and sugar chains are elongated. Furthermore, the process of isolating glycopeptide may be included. In this production method, by-products other than the glycopeptide containing the target glycopeptide and the carrier can be easily separated.
[0146] さらに別の好ましい実施形態において、本発明の糖ペプチドを製造する方法は、以 下の工程: [0146] In still another preferred embodiment, the method for producing a glycopeptide of the present invention comprises the following steps:
(Α)項目(4)〜(7)のいずれか 1項に記載の化合物に、糖ヌクレオチドの存在下で 糖転移酵素を作用させることにより、上記糖ヌクレオチドより糖残基を上記化合物に 転移させ、糖鎖を伸長させたィ匕合物を得る工程であって、該糖ヌクレオチドが、 Gal 基、 GlcNAc基、 Fuc基およびシアル酸基からなる群より選択される糖残基を有する ゝ η-,  (Ii) A sugar residue is transferred from the sugar nucleotide to the compound by allowing a glycosyltransferase to act on the compound according to any one of items (4) to (7) in the presence of the sugar nucleotide. , A step of obtaining a compound in which a sugar chain is elongated, wherein the sugar nucleotide has a sugar residue selected from the group consisting of a Gal group, a GlcNAc group, a Fuc group and a sialic acid group. ,
(Β)工程 (Α)を 1回または 2回以上繰り返して糖鎖を伸長させる工程; (Ii) Step (ii) Repeating step (1) one or more times to extend the sugar chain;
(C)必要に応じて未反応の糖ヌクレオチド類および副生したヌクレオチド類を除去 する工程;および (C) removing unreacted sugar nucleotides and by-product nucleotides as necessary; and
(D)複数の糖残基が転移して糖鎖が伸長した化合物にプロテアーゼを作用させる 工程、を包む。 [0147] なおさらに別の好ましい実施形態において、本発明の糖ペプチドを製造する方法 は、以下の工程: (D) including a step of allowing a protease to act on a compound in which a plurality of sugar residues are transferred and sugar chains are elongated. [0147] In still another preferred embodiment, the method for producing a glycopeptide of the present invention comprises the following steps:
(A)プロテアーゼにより切断可能なアミノ酸、糖アミノ酸、およびケト酸またはアルデ ヒド酸を原料にペプチド固相合成を行い、項目(1)〜(3)のいずれか 1項に記載の化 合物を得る工程;  (A) Peptide solid phase synthesis is performed using amino acids, sugar amino acids, and keto acids or aldehyde acids that can be cleaved by proteases, and the compound according to any one of items (1) to (3) is obtained. Obtaining step;
(B)工程 (A)で得た化合物と、該化合物のケトン残基またはアルデヒド残基と特異 的に反応しうる、保護されていてもよいアミノォキシ基、 N—アルキルアミノォキシ基、 ヒドラジド基、アジド基、チォセミカルバジド基、 1, 2—ジチオール基およびシスティン 残基からなる群から選択される官能基を含む担体とを反応させる工程;  (B) The compound obtained in step (A) and an optionally protected aminooxy group, N-alkylaminooxy group, hydrazide group capable of specifically reacting with the ketone residue or aldehyde residue of the compound Reacting with a carrier comprising a functional group selected from the group consisting of: azide group, thiosemicarbazide group, 1,2-dithiol group and cysteine residue;
(C)工程 (B)で得たィ匕合物に、糖ヌクレオチドの存在下で糖転移酵素を作用させる ことにより、上記糖ヌクレオチドより糖残基を上記化合物に転移させ、糖鎖を伸長させ た化合物を得る工程であって、該糖ヌクレオチド力 Gal基、 GlcNAc基、 Fuc基およ びシアル酸基からなる群より選択される糖残基を有する、工程;  (C) By allowing a glycosyltransferase to act on the compound obtained in step (B) in the presence of a sugar nucleotide, the sugar residue is transferred from the sugar nucleotide to the compound, and the sugar chain is elongated. A step of obtaining a compound comprising a sugar residue selected from the group consisting of the sugar nucleotide force Gal group, GlcNAc group, Fuc group and sialic acid group;
(D)必要に応じて未反応の糖ヌクレオチド類および副生したヌクレオチド類を除去 する工程;および  (D) removing unreacted sugar nucleotides and by-product nucleotides as necessary; and
(E)糖残基が転移して糖鎖が伸長した化合物にプロテアーゼを作用させる工程、 を包む。  (E) a step of allowing a protease to act on a compound in which sugar residues are transferred and sugar chains are elongated.
[0148] 他の好ましい実施形態において、本発明の糖ペプチドを製造する方法は、以下の 工程:  [0148] In another preferred embodiment, the method for producing a glycopeptide of the present invention comprises the following steps:
(A)プロテアーゼにより切断可能なアミノ酸、糖アミノ酸、およびケト酸またはアルデ ヒド酸を原料にペプチド固相合成を行い、項目(1)〜(3)のいずれか 1項に記載の化 合物を得る工程;  (A) Peptide solid phase synthesis is performed using amino acids, sugar amino acids, and keto acids or aldehyde acids that can be cleaved by proteases, and the compound according to any one of items (1) to (3) is obtained. Obtaining step;
(B)工程 (A)で得た化合物と、該化合物のケトン残基またはアルデヒド残基と特異 的に反応しうる保護されていてもよいアミノォキシ基、 N—アルキルアミノォキシ基、ヒ ドラジド基、アジド基、チォセミカルバジド基、 1, 2—ジチオール基およびシスティン 残基からなる群から選択される官能基を含む担体とを反応させる工程;  (B) The compound obtained in step (A) and an optionally protected aminooxy group, N-alkylaminooxy group, hydrazide group capable of reacting specifically with the ketone residue or aldehyde residue of the compound Reacting with a carrier comprising a functional group selected from the group consisting of: azide group, thiosemicarbazide group, 1,2-dithiol group and cysteine residue;
(C)工程 (B)で得たィ匕合物に、糖ヌクレオチドの存在下で糖転移酵素を作用させる ことにより、上記糖ヌクレオチドより糖残基を上記化合物に転移させ、糖鎖を伸長させ た化合物を得る工程であって、該糖ヌクレオチド力 Gal基、 GlcNAc基、 Fuc基およ びシアル酸基からなる群より選択される糖残基を有する、工程; (C) By allowing a glycosyltransferase to act on the compound obtained in step (B) in the presence of a sugar nucleotide, the sugar residue is transferred from the sugar nucleotide to the compound, and the sugar chain is elongated. A step of obtaining a compound comprising a sugar residue selected from the group consisting of the sugar nucleotide force Gal group, GlcNAc group, Fuc group and sialic acid group;
(D)工程 (C)を 1回または 2回以上繰り返して糖鎖を伸長させる工程;  (D) Step (C) is repeated once or twice or more to extend the sugar chain;
(E)必要に応じて未反応の糖ヌクレオチド類および副生したヌクレオチド類を除去 する工程;および  (E) removing unreacted sugar nucleotides and by-product nucleotides as necessary; and
(F)複数の糖残基が転移して糖鎖が伸長した化合物にプロテアーゼを作用させる 工程、を包む。  (F) a step of allowing a protease to act on a compound in which a plurality of sugar residues are transferred and sugar chains are elongated.
[0149] さらに他の好ましい実施形態において、本発明の糖ペプチドを製造する方法は、以 下の工程:  [0149] In still another preferred embodiment, the method for producing a glycopeptide of the present invention comprises the following steps:
(A)プロテアーゼにより切断可能なアミノ酸、糖アミノ酸、およびケト酸またはアルデ ヒド酸を原料にペプチド固相合成を行い、項目(1)〜(3)のいずれか 1項に記載の化 合物を得る工程;  (A) Peptide solid phase synthesis is performed using amino acids, sugar amino acids, and keto acids or aldehyde acids that can be cleaved by proteases, and the compound according to any one of items (1) to (3) is obtained. Obtaining step;
(B)工程 (A)で得た化合物と、該化合物のケトン残基またはアルデヒド残基と特異 的に反応しうる保護されていてもよいアミノォキシ基、 N—アルキルアミノォキシ基、ヒ ドラジド基、アジド基、チォセミカルバジド基、 1, 2—ジチオール基およびシスティン 残基からなる群から選択される官能基を含む担体と反応させ、これと同時に工程 (A) における未反応物を除去する工程;  (B) The compound obtained in step (A) and an optionally protected aminooxy group, N-alkylaminooxy group, hydrazide group capable of reacting specifically with the ketone residue or aldehyde residue of the compound , A reaction with a carrier containing a functional group selected from the group consisting of an azide group, a thiosemicarbazide group, a 1,2-dithiol group and a cysteine residue, and simultaneously removing unreacted substances in step (A);
(C)工程 (B)で得た担体に結合したィ匕合物に、糖ヌクレオチドの存在下で糖転移 酵素を作用させることにより、上記糖ヌクレオチドより糖残基を上記化合物に転移させ 、糖鎖を伸長させたィ匕合物を得る工程であって、該糖ヌクレオチドが、 Gal基、 GlcN Ac基、 Fuc基およびシアル酸基力もなる群より選択される糖残基を有する、工程;お よび  (C) The sugar residue is transferred from the sugar nucleotide to the compound by allowing a sugar transferase to act on the compound bound to the carrier obtained in step (B) in the presence of the sugar nucleotide. Obtaining a compound having an extended chain, wherein the sugar nucleotide has a sugar residue selected from the group consisting of a Gal group, a GlcN Ac group, a Fuc group and a sialic acid group; and And
(D)工程 (C)で得た糖鎖が伸長したィ匕合物にプロテアーゼを作用させる工程、 を包む。  (D) A step of allowing protease to act on the compound obtained by extending the sugar chain obtained in step (C) is included.
[0150] なおさらに他の好ましい実施形態において、本発明の糖ペプチドを製造する方法 は、以下の工程:  [0150] In still another preferred embodiment, the method for producing a glycopeptide of the present invention comprises the following steps:
(A)プロテアーゼにより切断可能なアミノ酸、糖アミノ酸、およびケト酸またはアルデ ヒド酸を原料にペプチド固相合成を行い、項目(1)〜(3)のいずれか 1項に記載の化 合物を得る工程; (A) A peptide solid-phase synthesis is carried out using amino acids, sugar amino acids, and keto acids or aldehyde acids that can be cleaved by a protease, as described in any one of items (1) to (3) Obtaining a compound;
(B)工程 (A)で得た化合物と、該化合物のケトン残基またはアルデヒド残基と特異 的に反応しうる保護されていてもよいアミノォキシ基、 N—アルキルアミノォキシ基、ヒ ドラジド基、アジド基、チォセミカルバジド基、 1, 2—ジチオール基およびシスティン 残基からなる群から選択される官能基を含む担体とを反応させ、これと同時に工程( A)における未反応物を除去する工程;  (B) The compound obtained in step (A) and an optionally protected aminooxy group, N-alkylaminooxy group, hydrazide group capable of reacting specifically with the ketone residue or aldehyde residue of the compound , A reaction with a carrier containing a functional group selected from the group consisting of azide group, thiosemicarbazide group, 1,2-dithiol group and cysteine residue, and at the same time, removing unreacted substances in step (A) ;
(C)工程 (B)で得た担体に結合したィ匕合物に、糖ヌクレオチドの存在下で糖転移 酵素を作用させることにより、上記糖ヌクレオチドより糖残基を上記化合物に転移させ 、糖鎖が伸長されたィ匕合物を得る工程であって、該糖ヌクレオチドが、 Gal基、 GlcN Ac基、 Fuc基およびシアル酸基力もなる群より選択される糖残基を有する、工程; (C) The sugar residue is transferred from the sugar nucleotide to the compound by allowing a sugar transferase to act on the compound bound to the carrier obtained in step (B) in the presence of the sugar nucleotide. Obtaining a compound having an extended chain, wherein the sugar nucleotide has a sugar residue selected from the group consisting of a Gal group, a GlcN Ac group, a Fuc group and a sialic acid group;
(D)工程 (C)を 1回または 2回以上繰り返して糖鎖を伸長させる工程; (D) Step (C) is repeated once or twice or more to extend the sugar chain;
(E)必要に応じて未反応の糖ヌクレオチド類および副生したヌクレオチド類を除去 する工程;および  (E) removing unreacted sugar nucleotides and by-product nucleotides as necessary; and
(F)複数の糖残基が転移して糖鎖が伸長した化合物にプロテアーゼを作用させる 工程、を包む。  (F) a step of allowing a protease to act on a compound in which a plurality of sugar residues are transferred and sugar chains are elongated.
別の好ましい実施形態において、本発明の糖ペプチドを製造する方法は、以下の 工程:  In another preferred embodiment, the method for producing the glycopeptide of the present invention comprises the following steps:
(A)項目(1)〜(3)のいずれか 1項に記載の化合物に、糖ヌクレオチドの存在下で 糖転移酵素を作用させることにより、上記糖ヌクレオチドより糖残基を上記化合物に 転移させ、糖鎖を伸長させたィ匕合物を得る工程であって、該糖ヌクレオチドが、 Gal 基、 GlcNAc基、 Fuc基およびシアル酸基からなる群より選択される糖残基を有する ゝ工程  (A) A sugar residue is transferred from the sugar nucleotide to the compound by allowing a glycosyltransferase to act on the compound according to any one of items (1) to (3) in the presence of the sugar nucleotide. A step of obtaining a compound in which a sugar chain is elongated, wherein the sugar nucleotide has a sugar residue selected from the group consisting of a Gal group, a GlcNAc group, a Fuc group and a sialic acid group
(B)必要に応じて工程 (A)を 1回または 2回以上繰り返して糖鎖を伸長させる工程; (B) Step (A) is repeated one or more times as necessary to extend the sugar chain as necessary;
(C)糖残基が転移して糖鎖が伸長した化合物と、該化合物のケトン残基またはアル デヒド残基と特異的に反応しうる保護されて 、てもよ 、ァミノォキシ基、 N—アルキル アミノォキシ基、ヒドラジド基、アジド基、チォセミカルバジド基、 1, 2—ジチオール基 およびシスティン残基からなる群から選択される官能基を含む担体と、を反応させる 工程;および (D)必要に応じて未反応の糖ヌクレオチド類および副生したヌクレオチド類を除去 する工程、 (C) a compound in which a sugar residue is transferred and a sugar chain is extended, and a protected compound capable of reacting specifically with a ketone residue or an aldehyde residue of the compound, and may be an aminooxy group, N-alkyl Reacting with a carrier comprising a functional group selected from the group consisting of an aminooxy group, a hydrazide group, an azide group, a thiosemicarbazide group, a 1,2-dithiol group and a cysteine residue; and (D) removing unreacted sugar nucleotides and by-product nucleotides as necessary,
を含む。  including.
[0152] さらに別の好ましい実施形態において、本発明の糖ペプチドを製造する方法は、以 下の工程:  [0152] In still another preferred embodiment, the method for producing a glycopeptide of the present invention comprises the following steps:
(A)項目(1)〜(3)のいずれか 1項に記載の化合物に、糖ヌクレオチドの存在下で 糖転移酵素を作用させることにより、上記糖ヌクレオチドより糖残基を上記化合物に 転移させ、糖鎖を伸長させたィ匕合物を得る工程であって、該糖ヌクレオチドが、 Gal 基、 GlcNAc基、 Fuc基およびシアル酸基からなる群より選択される糖残基を有する ゝ工程  (A) A sugar residue is transferred from the sugar nucleotide to the compound by allowing a glycosyltransferase to act on the compound according to any one of items (1) to (3) in the presence of the sugar nucleotide. A step of obtaining a compound in which a sugar chain is elongated, wherein the sugar nucleotide has a sugar residue selected from the group consisting of a Gal group, a GlcNAc group, a Fuc group and a sialic acid group
(B)必要に応じて工程 (A)を 1回または 2回以上繰り返して糖鎖を伸長させる工程; (B) Step (A) is repeated one or more times as necessary to extend the sugar chain as necessary;
(C)糖残基が転移して糖鎖が伸長した化合物と、該化合物のケトン残基またはアル デヒド残基と特異的に反応しうる保護されて 、てもよ 、ァミノォキシ基、 N—アルキル アミノォキシ基、ヒドラジド基、アジド基、チォセミカルバジド基、 1, 2—ジチオール基 およびシスティン残基からなる群から選択される官能基を含む担体と、を反応させる 工程; (C) a compound in which a sugar residue is transferred and a sugar chain is extended, and a protected compound capable of reacting specifically with a ketone residue or an aldehyde residue of the compound, and may be an aminooxy group, N-alkyl Reacting a carrier containing a functional group selected from the group consisting of an aminooxy group, a hydrazide group, an azide group, a thiosemicarbazide group, a 1,2-dithiol group and a cysteine residue;
(D)必要に応じて未反応の糖ヌクレオチド類および副生したヌクレオチド類を除去 する工程;および  (D) removing unreacted sugar nucleotides and by-product nucleotides as necessary; and
(E)糖残基が転移して糖鎖が伸長した化合物にプロテアーゼを作用させる工程、 を含む。  (E) a step of causing a protease to act on a compound in which a sugar residue is transferred and a sugar chain is elongated.
[0153] なおさらに別の好ましい実施形態において、本発明の糖ペプチドを製造する方法 は、以下の工程:  [0153] In still another preferred embodiment, the method for producing a glycopeptide of the present invention comprises the following steps:
(A)プロテアーゼにより切断可能なアミノ酸、糖アミノ酸、およびケト酸またはアルデ ヒド酸を原料にペプチド固相合成を行い、項目(1)〜(3)のいずれか 1項に記載の化 合物を得る工程;  (A) Peptide solid phase synthesis is performed using amino acids, sugar amino acids, and keto acids or aldehyde acids that can be cleaved by proteases, and the compound according to any one of items (1) to (3) is obtained. Obtaining step;
(B)工程 (A)で得た化合物と、該化合物のケトン残基またはアルデヒド残基と特異 的に反応しうる保護されていてもよいアミノォキシ基、 N—アルキルアミノォキシ基、ヒ ドラジド基、アジド基、チォセミカルバジド基、 1, 2—ジチオール基およびシスティン 残基からなる群から選択される官能基を含む可溶性担体とを反応させ、再沈澱、ゲ ルろ過、または限外ろ過などにより工程 (A)における未反応物を除去する工程;(B) The compound obtained in step (A) and an optionally protected aminooxy group, N-alkylaminooxy group, hydrazide group capable of reacting specifically with the ketone residue or aldehyde residue of the compound , Azide group, thiosemicarbazide group, 1,2-dithiol group and cysteine Reacting with a soluble carrier containing a functional group selected from the group consisting of residues and removing unreacted substances in step (A) by reprecipitation, gel filtration, or ultrafiltration;
(C)工程 (B)で得た担体に可溶性結合したィ匕合物に、糖ヌクレオチドの存在下で 糖転移酵素を作用させることにより、上記糖ヌクレオチドより糖残基を上記化合物に 転移させ、糖鎖が伸長されたィ匕合物を得る工程であって、該糖ヌクレオチドが、 Gal 基、 GlcNAc基、 Fuc基およびシアル酸基からなる群より選択される糖残基を有する ゝ工程 (C) By allowing a glycosyltransferase to act on the compound solublely bound to the carrier obtained in step (B) in the presence of a sugar nucleotide, the sugar residue is transferred from the sugar nucleotide to the compound, A step of obtaining a compound in which a sugar chain is elongated, wherein the sugar nucleotide has a sugar residue selected from the group consisting of a Gal group, a GlcNAc group, a Fuc group and a sialic acid group
(D)工程 (C)を 1回または 2回以上繰り返して糖鎖を伸長させる工程;  (D) Step (C) is repeated once or twice or more to extend the sugar chain;
(E)必要に応じて未反応の糖ヌクレオチド類および副生したヌクレオチド類を除去 する工程;  (E) removing unreacted sugar nucleotides and by-product nucleotides as necessary;
(F)糖残基が転移して糖鎖が伸長したィ匕合物を、ケト酸またはアルデヒド酸を表面 に結合した非可溶性担体と反応させ、その表面に固定する工程;および  (F) reacting the compound in which the sugar residue is transferred and the sugar chain is extended with an insoluble carrier having keto acid or aldehyde acid bound to the surface, and immobilizing on the surface; and
(G)必要に応じ糖鎖の伸長反応に使用した試薬および酵素を除去する工程、 を含む。  (G) a step of removing the reagents and enzymes used in the sugar chain elongation reaction as necessary.
さらにまた別の好ましい実施形態において、本発明の糖ペプチドを製造する方法 は、以下の工程:  In still another preferred embodiment, the method for producing a glycopeptide of the present invention comprises the following steps:
(A)プロテアーゼにより切断可能なアミノ酸、糖アミノ酸、およびケト酸またはアルデ ヒド酸を原料にペプチド固相合成を行い、項目(1)〜(3)のいずれか 1項に記載の化 合物を得る工程;  (A) Peptide solid phase synthesis is performed using amino acids, sugar amino acids, and keto acids or aldehyde acids that can be cleaved by proteases, and the compound according to any one of items (1) to (3) is obtained. Obtaining step;
(B)工程 (A)で得た化合物と、該化合物のケトン残基またはアルデヒド残基と特異 的に反応しうる保護されていてもよいアミノォキシ基、 N—アルキルアミノォキシ基、ヒ ドラジド基、アジド基、チォセミカルバジド基、 1, 2—ジチオール基およびシスティン 残基からなる群から選択される官能基を含む可溶性担体とを反応させ、再沈澱、ゲ ルろ過、または限外ろ過などにより工程 (A)における未反応物を除去する工程; (B) The compound obtained in step (A) and an optionally protected aminooxy group, N-alkylaminooxy group, hydrazide group capable of reacting specifically with the ketone residue or aldehyde residue of the compound , An azide group, a thiosemicarbazide group, a 1,2-dithiol group, and a soluble carrier containing a functional group selected from the group consisting of cysteine residues, and then reacting with a soluble carrier, followed by reprecipitation, gel filtration, or ultrafiltration. Removing unreacted substances in (A);
(C)工程 (B)で得た担体に可溶性結合したィ匕合物に、糖ヌクレオチドの存在下で 糖転移酵素を作用させることにより、上記糖ヌクレオチドより糖残基を上記化合物に 転移させ、糖鎖が伸長されたィ匕合物を得る工程であって、該糖ヌクレオチドが、 Gal 基、 GlcNAc基、 Fuc基およびシアル酸基からなる群より選択される糖残基を有する @; (C) By allowing a glycosyltransferase to act on the compound solublely bound to the carrier obtained in step (B) in the presence of a sugar nucleotide, the sugar residue is transferred from the sugar nucleotide to the compound, A step of obtaining a compound having an extended sugar chain, wherein the sugar nucleotide has a sugar residue selected from the group consisting of a Gal group, a GlcNAc group, a Fuc group and a sialic acid group @;
(D)工程 (C)を 1回または 2回以上繰り返して糖鎖を伸長させる工程; (D) Step (C) is repeated once or twice or more to extend the sugar chain;
(E)必要に応じて未反応の糖ヌクレオチド類および副生したヌクレオチド類を除去 する工程; (E) removing unreacted sugar nucleotides and by-product nucleotides as necessary;
(F)糖残基が転移して糖鎖が伸長したィ匕合物を、ケト酸またはアルデヒド酸を表面 に結合した非可溶性担体と反応させ、その表面に固定する工程;  (F) reacting the compound in which the sugar residue is transferred and the sugar chain is extended with an insoluble carrier having keto acid or aldehyde acid bound to the surface, and immobilizing it on the surface;
(G)必要に応じ糖鎖の伸長反応に使用した試薬および酵素を除去する工程;およ び  (G) removing the reagents and enzymes used in the sugar chain elongation reaction as necessary; and
(H)工程 (F)で固定ィ匕した糖鎖が伸長したィ匕合物にプロテアーゼを作用させるェ 程、を含む。  (H) a step of allowing a protease to act on the compound in which the sugar chain immobilized in step (F) is elongated.
[0155] 本発明の糖ペプチドを製造する方法において使用される糖ペプチドは、好ましくは [0155] The glycopeptide used in the method for producing a glycopeptide of the present invention is preferably
、以下の式: And the following formula:
[0156] [化 28- 1]
Figure imgf000080_0001
[0156] [Chemical 28-1]
Figure imgf000080_0001
(配列番号 2)  (SEQ ID NO: 2)
[0157] [化 28- 2]
Figure imgf000080_0002
[0157] [Chemical 28-2]
Figure imgf000080_0002
(配列番号 21)  (SEQ ID NO: 21)
または  Or
[0158] [化 28- 3]  [0158] [Chemical 28-3]
X1 X1 X1 X1 X1 X 1 X 1 X 1 X 1 X 1
Y' -His-Gly-Val-Thr-Ser-Ala-Pro-Asp-Thr-Arg-Pro-Ala-Pro-Gly-Ser-Thr-Ala-Pro -Pro-Ala-Y2 Y '-His-Gly-Val-Thr-Ser-Ala-Pro-Asp-Thr-Arg-Pro-Ala-Pro-Gly-Ser-Thr-Ala-Pro -Pro-Ala-Y 2
(配列番号 41) (SEQ ID NO: 41)
式中、 X1は、それぞれ独立して、水素原子または以下の式: In the formula, each X 1 independently represents a hydrogen atom or the following formula:
[0159] [化 28- 4]  [0159] [Chemical 28- 4]
Figure imgf000080_0003
式中、 R1および R6は、それぞれ独立して、水素、 Neu5Ac基または GlcNAc基で あり;
Figure imgf000080_0003
In which R 1 and R 6 are each independently hydrogen, Neu5Ac group or GlcNAc group;
R2および R7は、 Gal基であり; R 2 and R 7 are Gal groups;
R3および R8は、 GlcNAc基であり; R 3 and R 8 are GlcNAc groups;
R4および R9は、 Gal基であり; R 4 and R 9 are Gal groups;
R5は、 GlcNAc基であり; R 5 is a GlcNAc group;
R10は、 GalNAc基であり; R 10 is a GalNAc group;
Z2および Z3は、それぞれ独立して、水素または Fuc基であり;ならびに nおよび mは、それぞれ独立して、 0以上の整数であり; Z 2 and Z 3 are each independently hydrogen or a Fuc group; and n and m are each independently an integer of 0 or more;
ここで、 R1と R2との間の結合は、 R1が Neu5Ac基の場合、 a 2, 3結合であり、 R1が GlcNAc基の場合、 j81, 3結合であり; Here, the bond between R 1 and R 2 is a 2, 3 bond when R 1 is Neu5Ac group, and j81, 3 bond when R 1 is GlcNAc group;
R2と R3との間の結合は、 β ΐ, 4結合であり; The bond between R 2 and R 3 is a β ΐ, 4 bond;
R3と R4との間の結合は、 β ΐ, 3結合であり; The bond between R 3 and R 4 is a β ΐ, 3 bond;
R4と R5との間の結合は、 β ΐ, 4結合であり; The bond between R 4 and R 5 is a β ΐ, 4 bond;
R6と R7との間の結合は、 R6が Neu5Ac基の場合、 α 2, 3結合であり、 R6が GlcNA c基の場合、 ΐ, 3結合であり; The bond between R 6 and R 7 is an α 2,3 bond when R 6 is a Neu5Ac group, and a ΐ, 3 bond when R 6 is a GlcNA c group;
R7と R8との間の結合は、 β ΐ, 4結合であり; The bond between R 7 and R 8 is a β ΐ, 4 bond;
R8と R9との間の結合は、 β ΐ, 3結合であり; The bond between R 8 and R 9 is a β ΐ, 3 bond;
R9と R10との間の結合は、 β ΐ, 3結合であり; The bond between R 9 and R 10 is a β ΐ, 3 bond;
R5と R1Gとの間の結合は、 β ΐ, 6結合であり; The bond between R 5 and R 1G is a β ΐ, 6 bond;
Ζ1と R3との間の結合は、《1, 3結合であり; The bond between Ζ 1 and R 3 is << 1 , 3 bond;
Ζ2と R5との間の結合は、《1, 3結合であり;ならびに The bond between Ζ 2 and R 5 is << 1, 3 bond; and
Ζ3と R8との間の結合は、《1, 3結合である、 The bond between Ζ 3 and R 8 is << 1, 3 bond,
で表される基を表し、ただし、 X1のすべてが水素原子である場合を除く; Represents a group represented by the formula, except when all of X 1 are hydrogen atoms;
Υ1は、水素原子、ァセチル、ァシル、アルキルまたはァリールを表し; Υ 1 represents a hydrogen atom, acetyl, acyl, alkyl or aryl;
Υ2は、水酸基、 ΝΗ、アルキルまたはァリールを表す、 Υ 2 represents a hydroxyl group, ΝΗ, alkyl or aryl.
2  2
で表される糖ペプチドである。 It is a glycopeptide represented by these.
さらに、好ましくは、上記式中、 X1は、それぞれ独立して、水素原子または以下の式 [化 28— 5]
Figure imgf000082_0001
式中、 R1は、水素、シアル酸基または GlcNAc基であり;
Further preferably, in the above formula, each X 1 independently represents a hydrogen atom or the following formula: [Chemical 28— 5]
Figure imgf000082_0001
In which R 1 is hydrogen, a sialic acid group or a GlcNAc group;
R2は、 Gal基であり; R 2 is a Gal group;
R3は、 GlcNAc基であり; R 3 is a GlcNAc group;
R4は、 Gal基であり; R 4 is a Gal group;
R5は、 GlcNAc基であり; R 5 is a GlcNAc group;
R10は、 GalNAc基であり; R 10 is a GalNAc group;
R8は、水素またはシアル酸基であり; R 8 is hydrogen or a sialic acid group;
R9は、 Gal基であり; R 9 is a Gal group;
Z1および Z2は、それぞれ独立して、水素または Fuc基であり;ならびに Z 1 and Z 2 are each independently hydrogen or a Fuc group; and
nは、 0以上の整数であり;  n is an integer greater than or equal to 0;
ここで、 R1と R2との間の結合は、 R1がシアル酸基の場合、 a 2, 3結合であり、 R1が GlcNAc基の場合、 j8 1 , 3結合であり; Where the bond between R 1 and R 2 is an a 2, 3 bond when R 1 is a sialic acid group, and a j8 1, 3 bond when R 1 is a GlcNAc group;
R2と R3との間の結合は、 β ΐ , 4結合であり; The bond between R 2 and R 3 is a β,, 4 bond;
R3と R4との間の結合は、 β ΐ , 3結合であり; The bond between R 3 and R 4 is a β,, 3 bond;
R4と R5との間の結合は、 β ΐ , 4結合であり; The bond between R 4 and R 5 is a β,, 4 bond;
R8と R9との間の結合は、《2, 3結合であり; The bond between R 8 and R 9 is a << 2, 3 bond;
R9と R1Gとの間の結合は、 β ΐ , 3結合であり; The bond between R 9 and R 1G is a β,, 3 bond;
R5と R1Gとの間の結合は、 β ΐ , 6結合であり; The bond between R 5 and R 1G is a β,, 6 bond;
Ζ1と R3との間の結合は、《1 , 3結合であり;ならびに The bond between Ζ 1 and R 3 is << 1 , 3 bond; and
Ζ2と R5との間の結合は、《1 , 3結合である、 The bond between Ζ 2 and R 5 is << 1, 3 bond,
で表される糖ペプチドである。 It is a glycopeptide represented by these.
本発明にお 、て提供されるボリラクトサミン骨格を有するムチン型糖ペプチドは、上 記 Αにおいて、 nは 0以上の整数であり、好ましくは、 nは 0〜5であり、より好ましくは 、 nは 4以下の整数である。さらに、上記 Aにおいて、 13は、あってもなくてもよい In the mucin-type glycopeptide having a voralactosamine skeleton provided in the present invention, n is an integer of 0 or more, preferably n is 0 to 5, more preferably , N is an integer of 4 or less. Further, in A above, 1 to 3 may or may not be present.
2  2
力 好ましくは、 mは 0〜5であり、好ましくは、 nが 1の場合、 Z1および Z2はシアル酸基 である。さらに好ましくは、糖ペプチドの糖残基は、 Force Preferably, m is 0-5, preferably when n is 1, Z 1 and Z 2 are sialic acid groups. More preferably, the sugar residue of the glycopeptide is
[化 28- 6] [Chemical 28-6]
Figure imgf000084_0001
Figure imgf000084_0001
Figure imgf000085_0001
Figure imgf000085_0001
Figure imgf000086_0001
Figure imgf000086_0001
Figure imgf000087_0001
Figure imgf000087_0001
Figure imgf000087_0002
Figure imgf000087_0002
Figure imgf000088_0001
からなる群より選択される糖残基または糖残基の誘導体であり得る。
Figure imgf000088_0001
It can be a sugar residue or a derivative of a sugar residue selected from the group consisting of
[0163] なおさらに好ましい実施形態において、本発明の糖ペプチドを製造する方法は、以 下の工程:  [0163] In an even more preferred embodiment, the method for producing a glycopeptide of the present invention comprises the following steps:
(A)  (A)
以下の式:  The following formula:
[0164] [化 28— 8] [0164] [Chemical 28—8]
Figure imgf000089_0001
式中、 R1および R。は、それぞれ独立して、水素、 Neu5Ac基または GlcNAc基で あり;
Figure imgf000089_0001
Where R 1 and R. Each independently is hydrogen, Neu5Ac group or GlcNAc group;
R2および R7は、 Gal基であり; R 2 and R 7 are Gal groups;
R3および R8は、 GlcNAc基であり; R 3 and R 8 are GlcNAc groups;
R4および R9は、 Gal基であり; R 4 and R 9 are Gal groups;
R5は、 GlcNAc基であり; R 5 is a GlcNAc group;
R10は、 GalNAc基であり; R 10 is a GalNAc group;
R11は、水素原子またはメチル基であり; R 11 is a hydrogen atom or a methyl group;
Z2および Z3は、それぞれ独立して、水素または Fuc基であり;ならびに nおよび mは、それぞれ独立して、 0以上の整数であり; Z 2 and Z 3 are each independently hydrogen or a Fuc group; and n and m are each independently an integer of 0 or more;
ここで、 R1と R2との間の結合は、 R1が Neu5Ac基の場合、 a 2, 3結合であり、 R1が GlcNAc基の場合、 j8 1 , 3結合であり; Here, the bond between R 1 and R 2 is a 2, 3 bond when R 1 is Neu5Ac group, and j8 1, 3 bond when R 1 is GlcNAc group;
R2と R3との間の結合は、 β ΐ , 4結合であり; The bond between R 2 and R 3 is a β,, 4 bond;
R3と R4との間の結合は、 β ΐ , 3結合であり; R4と R5との間の結合は、 β ΐ , 4結合であり; The bond between R 3 and R 4 is a β,, 3 bond; The bond between R 4 and R 5 is a β,, 4 bond;
R6と R7との間の結合は、 R6が Neu5Ac基の場合、 α 2, 3結合であり、 R6が GlcNA c基の場合、 β ΐ , 3結合であり; The bond between R 6 and R 7 is an α 2,3 bond when R 6 is a Neu5Ac group, and a β,, 3 bond when R 6 is a GlcNA c group;
R7と R8との間の結合は、 β ΐ , 4結合であり; The bond between R 7 and R 8 is a β,, 4 bond;
R8と R9との間の結合は、 β ΐ , 3結合であり; Bond between R 8 and R 9, β ΐ, is 3 bonds;
R9と R1Gとの間の結合は、 β ΐ , 3結合であり; The bond between R 9 and R 1G is a β,, 3 bond;
R5と R1Gとの間の結合は、 β ΐ , 6結合であり; The bond between R 5 and R 1G is a β,, 6 bond;
Ζ1と R3との間の結合は、 《1, 3結合であり; The bond between Ζ 1 and R 3 is << 1 , 3 bond;
Ζ2と R5との間の結合は、 《1, 3結合であり; The bond between Ζ 2 and R 5 is << 1, 3 bond;
Ζ3と R8との間の結合は、 《1, 3結合であり;ならびに The bond between Ζ 3 and R 8 is << 1, 3 bond; and
Ρは、アミノ酸基の保護基(例えば、 9 フルォレニルメチルォキシカルボ-ル基、 te rt ブトキシカルボ-ル基など)である、  Ρ is an amino acid protecting group (for example, 9 fluorenylmethyloxycarbonyl group, ter rtbutoxycarbol group, etc.),
で表される糖アミノ酸の糖鎖を保護基により保護して糖鎖が保護された糖アミノ酸を 生成する工程であって、該保護基は、糖アルコール基の保護基 (例えば、ァセチル 基、ベンゾィル基、メチル基、メトキシメチル基、トリメチルシリル基、 t ブチルジメチ ルシリル基、ジメチルフエ-ル基、トリイソプロビルシリル基、ベンジル基、ベンジリデン 基、イソプロピリデン基、ジ tert -プチルシリリデン基など力もなる群より選択される、ェ 程; Wherein the sugar chain of the sugar amino acid is protected with a protecting group to produce a sugar amino acid in which the sugar chain is protected, wherein the protecting group is a protecting group of a sugar alcohol group (for example, acetyl group, benzoyl group). Group, methyl group, methoxymethyl group, trimethylsilyl group, t-butyldimethylsilyl group, dimethylphenol group, triisopropylpropylsilyl group, benzyl group, benzylidene group, isopropylidene group, ditert-butylsilylidene group, etc. Yeah
(B)工程 (A)で得られた該糖鎖が保護された糖アミノ酸および 9 -フルォレニルメチ ルォキシカルボ-ル基または tert ブトキシカルボ-ル基で N 保護されたアミノ酸 を用いて、所望のペプチド配列を有する糖鎖が保護された糖ペプチドを合成するェ 程;ならびに  (B) Using the sugar amino acid in which the sugar chain obtained in step (A) is protected and an amino acid N-protected with a 9-fluorenylmethyloxyl group or a tert-butoxycarbol group, the desired peptide sequence is prepared. Synthesizing a glycopeptide having a protected sugar chain; and
(C)工程 (B)で得られた該糖鎖が保護された糖ペプチドを脱保護して該所望の糖べ プチドを生成させる工程、  (C) a step of deprotecting the glycopeptide protected in sugar chain obtained in step (B) to produce the desired glycopeptide;
を包含する、方法。 Including the method.
なおさらに好ましい実施形態において、本発明の糖ペプチドを製造する方法は、以 下の工程:  In a still further preferred embodiment, the method for producing a glycopeptide of the present invention comprises the following steps:
(A) 以下の式: (A) The following formula:
[化 29]  [Chemical 29]
Figure imgf000091_0001
Figure imgf000091_0001
R"  R "
P、人0 H P, person 0 H
H & 式中、 R1は、水素、シアル酸基または GlcNAc基であり; H & wherein R 1 is hydrogen, a sialic acid group or a GlcNAc group;
R2は、 Gal基であり; R 2 is a Gal group;
R3は、 GlcNAc基であり; R 3 is a GlcNAc group;
R4は、 Gal基であり; R 4 is a Gal group;
R5は、 GlcNAc基であり; R 5 is a GlcNAc group;
R10は、 GalNAc基であり; R 10 is a GalNAc group;
R8は、水素またはシアル酸基であり; R 8 is hydrogen or a sialic acid group;
R9は、 Gal基であり; R 9 is a Gal group;
R11は、水素原子またはメチル基であり; R 11 is a hydrogen atom or a methyl group;
Z1および Z2は、それぞれ独立して、水素または Fuc基であり;ならびに Z 1 and Z 2 are each independently hydrogen or a Fuc group; and
nは、 0以上の整数であり;  n is an integer greater than or equal to 0;
ここで、 R1と R2との間の結合は、 R1がシアル酸基の場合、 a 2, 3結合であり、 R1が GlcNAc基の場合、 j8 1 , 3結合であり; Where the bond between R 1 and R 2 is an a 2, 3 bond when R 1 is a sialic acid group, and a j8 1, 3 bond when R 1 is a GlcNAc group;
R2と R3との間の結合は、 β ΐ , 4結合であり; The bond between R 2 and R 3 is a β,, 4 bond;
R3と R4との間の結合は、 β ΐ , 3結合であり; The bond between R 3 and R 4 is a β,, 3 bond;
R4と R5との間の結合は、 β ΐ , 4結合であり; The bond between R 4 and R 5 is a β,, 4 bond;
R8と R9との間の結合は、 《2, 3結合であり; The bond between R 8 and R 9 is << 2, 3 bond;
R9と R1Gとの間の結合は、 β ΐ , 3結合であり; R5と R1Gとの間の結合は、 /3 1, 6結合であり; The bond between R 9 and R 1G is a β,, 3 bond; The bond between R 5 and R 1G is a / 3 1,6 bond;
Z1と R3との間の結合は、 《1, 3結合であり; The bond between Z 1 and R 3 is << 1, 3 bond;
Z2と R5との間の結合は、 《1, 3結合であり;ならびに The bond between Z 2 and R 5 is << 1, 3 bond; and
Pは、アミノ酸基の保護基(例えば、 9 フルォレニルメチルォキシカルボ-ル基、 te rt ブトキシカルボ-ル基など)である、  P is a protecting group for an amino acid group (for example, a 9-fluorenylmethyloxycarbonyl group, a tert-butoxycarboxyl group, etc.),
で表される糖アミノ酸の糖鎖を保護基により保護して糖鎖が保護された糖アミノ酸を 生成する工程であって、該保護基は、糖アルコール基の保護基 (例えば、ァセチル 基、ベンゾィル基、メチル基、メトキシメチル基、トリメチルシリル基、 t ブチルジメチ ルシリル基、ジメチルフエ-ル基、トリイソプロビルシリル基、ベンジル基、ベンジリデン 基、イソプロピリデン基、ジ tert -プチルシリリデン基など力もなる群より選択される、ェ 程;  Wherein the sugar chain of the sugar amino acid is protected with a protecting group to produce a sugar amino acid in which the sugar chain is protected, wherein the protecting group is a protecting group of a sugar alcohol group (for example, acetyl group, benzoyl group). Group, methyl group, methoxymethyl group, trimethylsilyl group, t-butyldimethylsilyl group, dimethylphenol group, triisopropylpropylsilyl group, benzyl group, benzylidene group, isopropylidene group, ditert-butylsilylidene group, etc. Yeah
(B)工程 (A)で得られた該糖鎖が保護された糖アミノ酸および 9 -フルォレニルメチ ルォキシカルボ-ル基または tert ブトキシカルボ-ル基で N 保護されたアミノ酸 を用いて、所望のペプチド配列を有する糖鎖が保護された糖ペプチドを合成するェ 程;ならびに  (B) Using the sugar amino acid in which the sugar chain obtained in step (A) is protected and an amino acid N-protected with a 9-fluorenylmethyloxyl group or a tert-butoxycarbol group, the desired peptide sequence is prepared. Synthesizing a glycopeptide having a protected sugar chain; and
(C)工程 (B)で得られた該糖鎖が保護された糖ペプチドを脱保護して該所望の糖べ プチドを生成させる工程、  (C) a step of deprotecting the glycopeptide protected in sugar chain obtained in step (B) to produce the desired glycopeptide;
を包含する、方法。  Including the method.
[0167] 本発明の糖ペプチドの製造方法において、前述の糖転移酵素を用いた一連の反 応は、必要に応じて、反応部の温度制御が可能な分注装置 (分注器)等を用いて自 動化して行うことができる。  [0167] In the method for producing a glycopeptide of the present invention, the series of reactions using the glycosyltransferase described above is carried out by using a dispensing device (dispensing device) or the like that can control the temperature of the reaction part as necessary. It can be done automatically by using.
[0168] (ムチン型糖ペプチド)  [0168] (Mucin-type glycopeptide)
本発明は、上で説明した新規プライマーおよびこれを使用した糖ペプチドの製造 方法により、生化学研究材料、医薬、食品など幅広い分野で有用であり、これまでそ の製造が困難であったムチン型糖ペプチド類を合成することができる。ムチン型糖べ プチド類の例としては、以下の式:  The present invention is useful in a wide range of fields such as biochemical research materials, pharmaceuticals, and foods by the novel primer described above and the method for producing glycopeptides using the same, and mucin type, which has been difficult to produce so far. Glycopeptides can be synthesized. Examples of mucin-type glycopeptides include the following formula:
[0169] [化 29- 1]  [0169] [Chemical 29-1]
X1 X1 X1 X 1 X 1 X 1
Y' -His- Gly-Va卜 Thr-Ser- Ala-Pro- Asp- Thr-Arg-Y2 (配列番号 2) Y '-His- Gly-Va 卜 Thr-Ser- Ala-Pro- Asp- Thr-Arg-Y 2 (SEQ ID NO: 2)
[0170] [化 29- 2] [0170] [Chemical 29-2]
X1 X1 X1 X 1 X 1 X 1
Y1 -Ala-His- Gly-Val-Thr-Ser-AI a- Pro-Asp- Thr-Arg- γ2 Y 1 -Ala-His- Gly-Val-Thr-Ser-AI a- Pro-Asp- Thr-Arg- γ2
(配列番号 21)  (SEQ ID NO: 21)
または  Or
[0171] [化 29- 3] [0171] [Chemical 29- 3]
X1 X1 X1 X1 X1 X 1 X 1 X 1 X 1 X 1
Y' -His-Gly-Val-Thr-Ser-Ala-Pro-Asp-Thr-Arg-Pro-Ala-Pro-Gly-Ser-Thr-Ala-Pro -Pro-Ala-Y2 Y '-His-Gly-Val-Thr-Ser-Ala-Pro-Asp-Thr-Arg-Pro-Ala-Pro-Gly-Ser-Thr-Ala-Pro -Pro-Ala-Y 2
(配列番号 41) (SEQ ID NO: 41)
式中、 X1は、それぞれ独立して、水素原子または以下の式: In the formula, each X 1 independently represents a hydrogen atom or the following formula:
[0172] [化 29- 4]
Figure imgf000093_0001
[0172] [Chemical 29-4]
Figure imgf000093_0001
式中、 R1および R6は、それぞれ独立して、水素、 Neu5 Ac基または GlcNAc基で あり; Wherein R 1 and R 6 are each independently hydrogen, Neu5 Ac group or GlcNAc group;
R2および R7は、 Gal基であり; R 2 and R 7 are Gal groups;
R3および R8は、 GlcNAc基であり; R 3 and R 8 are GlcNAc groups;
R4および R9は、 Gal基であり; R 4 and R 9 are Gal groups;
R5は、 GlcNAc基であり; R 5 is a GlcNAc group;
R10は、 GalNAc基であり; R 10 is a GalNAc group;
Z2および Z3は、それぞれ独立して、水素または Fuc基であり;ならびに nおよび mは、それぞれ独立して、 0以上の整数であり; Z 2 and Z 3 are each independently hydrogen or a Fuc group; and n and m are each independently an integer of 0 or more;
ここで、 R1と R2との間の結合は、 R1が Neu5Ac基の場合、 a 2, 3結合であり、 R1が GlcNAc基の場合、 j8 1 , 3結合であり; Here, the bond between R 1 and R 2 is a 2, 3 bond when R 1 is Neu5Ac group, and j8 1, 3 bond when R 1 is GlcNAc group;
R2と R3との間の結合は、 β ΐ , 4結合であり; The bond between R 2 and R 3 is a β,, 4 bond;
R3と R4との間の結合は、 β ΐ , 3結合であり; The bond between R 3 and R 4 is a β,, 3 bond;
R4と R5との間の結合は、 β ΐ , 4結合であり; R6と R7との間の結合は、 R6が Neu5Ac基の場合、 α 2, 3結合であり、 R6が GlcNA c基の場合、 j8 1, 3結合であり; The bond between R 4 and R 5 is a β,, 4 bond; The bond between R 6 and R 7 is an α 2,3 bond when R 6 is a Neu5Ac group, and a j8 1,3 bond when R 6 is a GlcNA c group;
R7と R8との間の結合は、 β ΐ , 4結合であり; The bond between R 7 and R 8 is a β,, 4 bond;
R8と R9との間の結合は、 β ΐ , 3結合であり; Bond between R 8 and R 9, β ΐ, is 3 bonds;
R9と R1Gとの間の結合は、 β ΐ , 3結合であり; The bond between R 9 and R 1G is a β,, 3 bond;
R5と R1Gとの間の結合は、 β ΐ , 6結合であり; The bond between R 5 and R 1G is a β,, 6 bond;
Ζ1と R3との間の結合は、 《1, 3結合であり; The bond between Ζ 1 and R 3 is << 1 , 3 bond;
Ζ2と R5との間の結合は、 《1, 3結合であり;ならびに The bond between Ζ 2 and R 5 is << 1, 3 bond; and
Ζ3と R8との間の結合は、 《1, 3結合である、 The bond between Ζ 3 and R 8 is << 1, 3 bond,
で表される基を表し、ただし、 X1のすべてが水素原子である場合を除く; Represents a group represented by the formula, except when all of X 1 are hydrogen atoms;
Υ1は、水素原子、ァセチル、ァシル、アルキルまたはァリールを表し; Υ 1 represents a hydrogen atom, acetyl, acyl, alkyl or aryl;
Υ2は、水酸基、 ΝΗ、アルキルまたはァリールを表す、 Υ 2 represents a hydroxyl group, ΝΗ, alkyl or aryl.
2  2
で表される糖ペプチドが挙げられる。  The glycopeptide represented by these is mentioned.
[0173] 本発明のムチン型糖ペプチドは、好ましくは、以下の式:  [0173] The mucin-type glycopeptide of the present invention preferably has the following formula:
[0174] [化 30]
Figure imgf000094_0001
[0174] [Chemical 30]
Figure imgf000094_0001
(配列番号 2)  (SEQ ID NO: 2)
[0175] [化 31]
Figure imgf000094_0002
[0175] [Chemical 31]
Figure imgf000094_0002
(配列番号 21)  (SEQ ID NO: 21)
または  Or
[0176] [化 32]  [0176] [Chemical 32]
X1 X1 X1 X1 X1 X 1 X 1 X 1 X 1 X 1
Y' -His-Gly-Val-Thr-Ser-Ala-Pro-Asp-Thr-Arg-Pro-Ala-Pro-Gly-Ser-Thr-Ala-Pro -Pro-Ala-Y2 Y '-His-Gly-Val-Thr-Ser-Ala-Pro-Asp-Thr-Arg-Pro-Ala-Pro-Gly-Ser-Thr-Ala-Pro -Pro-Ala-Y 2
(配列番号 41) (SEQ ID NO: 41)
式中、 X1は、それぞれ独立して、水素原子または以下の式: In the formula, each X 1 independently represents a hydrogen atom or the following formula:
[0177] [化 33]
Figure imgf000095_0001
式中、 R1は、水素、シアル酸基または GlcNAc基であり;
[0177] [Chemical 33]
Figure imgf000095_0001
In which R 1 is hydrogen, a sialic acid group or a GlcNAc group;
R2は、 Gal基であり; R 2 is a Gal group;
R3は、 GlcNAc基であり; R 3 is a GlcNAc group;
R4は、 Gal基であり; R 4 is a Gal group;
R5は、 GlcNAc基であり; R 5 is a GlcNAc group;
R10は、 GalNAc基であり; R 10 is a GalNAc group;
R8は、水素またはシアル酸基であり; R 8 is hydrogen or a sialic acid group;
R9は、 Gal基であり; R 9 is a Gal group;
Z1および Z2は、それぞれ独立して、水素または Fuc基であり;ならびに Z 1 and Z 2 are each independently hydrogen or a Fuc group; and
nは、 0以上の整数であり;  n is an integer greater than or equal to 0;
ここで、 R1と R2との間の結合は、 R1がシアル酸基の場合、 a 2, 3結合であり、 R1が GlcNAc基の場合、 j8 1 , 3結合であり; Where the bond between R 1 and R 2 is an a 2, 3 bond when R 1 is a sialic acid group, and a j8 1, 3 bond when R 1 is a GlcNAc group;
R2と R3との間の結合は、 β ΐ , 4結合であり; The bond between R 2 and R 3 is a β,, 4 bond;
R3と R4との間の結合は、 β ΐ , 3結合であり; The bond between R 3 and R 4 is a β,, 3 bond;
R4と R5との間の結合は、 β ΐ , 4結合であり; The bond between R 4 and R 5 is a β,, 4 bond;
R8と R9との間の結合は、 《2, 3結合であり; The bond between R 8 and R 9 is << 2, 3 bond;
R9と R10との間の結合は、 β ΐ , 3結合であり; The bond between R 9 and R 10 is a β,, 3 bond;
R5と R1Gとの間の結合は、 β ΐ , 6結合であり; The bond between R 5 and R 1G is a β,, 6 bond;
Ζ1と R3との間の結合は、 《1 , 3結合であり;ならびに The bond between Ζ 1 and R 3 is << 1 , 3 bond; and
Ζ2と R5との間の結合は、 《1 , 3結合である、 The bond between Ζ 2 and R 5 is << 1, 3 bond,
で表される基を表し、ただし、 X1のすべてが水素原子である場合を除く; Represents a group represented by the formula, except when all of X 1 are hydrogen atoms;
Υ1は、水素原子、ァセチル、ァシル、アルキルまたはァリールを表し; Υ 1 represents a hydrogen atom, acetyl, acyl, alkyl or aryl;
Υ2は、水酸基、 ΝΗ、アルキルまたはァリールを表す、 Υ 2 represents a hydroxyl group, ΝΗ, alkyl or aryl.
2  2
で表される糖ペプチドが挙げられる。 The glycopeptide represented by these is mentioned.
本発明において提供されるボリラクトサミン骨格を有するムチン型糖ペプチドは、上 記 X1において、 nは 0以上の整数であり、好ましくは、 nは 0〜5であり、より好ましくは 、 nは 4以下の整数である。さらに、上記 X1において、 13は、あってもなくてもよい 力 好ましくは、 mは 0〜5であり、好ましくは、 nが 1の場合、 Z1および Z2はシアル酸基 である。さらに好ましくは、糖ペプチドの糖残基は、 The mucin-type glycopeptide having a borilactosamine skeleton provided in the present invention is In serial X 1, n is an integer of 0 or more, preferably, n is 0-5, more preferably, n is an integer of 4 or less. Further, in X 1 , 1 to 3 may or may not be present. Preferably, m is 0 to 5, and preferably, when n is 1, Z 1 and Z 2 are sialic acid groups. is there. More preferably, the sugar residue of the glycopeptide is
[化 33- 1] [Chemical 33-1]
Figure imgf000097_0001
Figure imgf000097_0001
Figure imgf000098_0001
Figure imgf000098_0001
Figure imgf000099_0001
Figure imgf000100_0001
Figure imgf000099_0001
Figure imgf000100_0001
Figure imgf000100_0002
Figure imgf000100_0002
Figure imgf000101_0001
Figure imgf000101_0001
からなる群より選択される糖残基または糖残基の誘導体であり得る。 It can be a sugar residue or a derivative of a sugar residue selected from the group consisting of
[0179] (ムチン型糖アミノ酸)  [0179] (Mucin-type sugar amino acid)
本発明により、ムチン型糖アミノ酸を提供することができる。ムチン型糖アミノ酸の例 としては、以下の式 (M1) : According to the present invention, a mucin-type sugar amino acid can be provided. Examples of mucin-type sugar amino acids include the following formula (M 1 ):
[0180] [化 34]  [0180] [Chemical 34]
Figure imgf000102_0001
式中、 R1および R6は、それぞれ独立して、水素、 Neu5Ac基または GlcNAc基で あり;
Figure imgf000102_0001
In which R 1 and R 6 are each independently hydrogen, Neu5Ac group or GlcNAc group;
R2および R7は、 Gal基であり; R 2 and R 7 are Gal groups;
R3および R8は、 GlcNAc基であり; R 3 and R 8 are GlcNAc groups;
R4および R9は、 Gal基であり; R 4 and R 9 are Gal groups;
R5は、 GlcNAc基であり; R 5 is a GlcNAc group;
R10は、 GalNAc基であり; R 10 is a GalNAc group;
R11は、水素原子またはメチル基であり; R 11 is a hydrogen atom or a methyl group;
Z2および Z3は、それぞれ独立して、水素または Fuc基であり;ならびに nおよび mは、それぞれ独立して、 0以上の整数であり; Z 2 and Z 3 are each independently hydrogen or a Fuc group; and n and m are each independently an integer of 0 or more;
ここで、 R1と R2との間の結合は、 R1が Neu5Ac基の場合、 a 2, 3結合であり、 R1が GlcNAc基の場合、 j8 1 , 3結合であり; Here, the bond between R 1 and R 2 is a 2, 3 bond when R 1 is Neu5Ac group, and j8 1, 3 bond when R 1 is GlcNAc group;
R2と R3との間の結合は、 β ΐ , 4結合であり; The bond between R 2 and R 3 is a β,, 4 bond;
R3と R4との間の結合は、 β ΐ , 3結合であり; The bond between R 3 and R 4 is a β,, 3 bond;
R4と R5との間の結合は、 β ΐ , 4結合であり; R6と R7との間の結合は、 R6が Neu5Ac基の場合、 ひ 2, 3結合であり、 R6が GlcNA c基の場合、 j81, 3結合であり; The bond between R 4 and R 5 is a β,, 4 bond; The bond between R 6 and R 7 is a 1,3 bond when R 6 is a Neu5Ac group, and a j81, 3 bond when R 6 is a GlcNA c group;
R7と R8との間の結合は、 j81, 4結合であり; The bond between R 7 and R 8 is a j81, 4 bond;
R8と R9との間の結合は、 /31, 3結合であり; The bond between R 8 and R 9 is a / 31,3 bond;
R9と R1Gとの間の結合は、 1, 3結合であり; The bond between R 9 and R 1G is a 1, 3 bond;
R5と R1Gとの間の結合は、 βΐ, 6結合であり; The bond between R 5 and R 1G is a βΐ, 6 bond;
Ζ1と R3との間の結合は、 αΐ, 3結合であり; The bond between Ζ 1 and R 3 is αΐ, 3 bond;
Ζ2と R5との間の結合は、 αΐ, 3結合であり; The bond between Ζ 2 and R 5 is αΐ, 3 bond;
Ζ3と R8との間の結合は、 αΐ, 3結合であり;ならびに The bond between Ζ 3 and R 8 is an αΐ, 3 bond; and
Ρは、アミノ酸基の保護基(例えば、 9 フルォレニルメチルォキシカルボ-ル基、 te rt ブトキシカルボニル基など)である、  Ρ is an amino acid protecting group (for example, 9 fluorenylmethyloxycarboxyl group, ter rt butoxycarbonyl group, etc.)
で表される糖アミノ酸が挙げられる。  The sugar amino acid represented by these is mentioned.
[0181] 本発明のムチン型糖アミノ酸は、好ましくは、以下の式 (M2): [0181] The mucin-type sugar amino acid of the present invention preferably has the following formula (M 2 ):
[0182] [化 35] [0182] [Chemical 35]
Z1 Z2Z1 Z2
2— R3 R4—R52— R3 R 4— R 5
Figure imgf000103_0001
Figure imgf000103_0001
R8_R9_R10 R 8_ R 9_ R 10
Figure imgf000103_0002
式中、 R1は、水素、シアル酸基または GlcNAc基であり;
Figure imgf000103_0002
In which R 1 is hydrogen, a sialic acid group or a GlcNAc group;
R2は、 Gal基であり; R 2 is a Gal group;
R3は、 GlcNAc基であり; R 3 is a GlcNAc group;
R4は、 Gal基であり; R 4 is a Gal group;
R5は、 GlcNAc基であり; R 5 is a GlcNAc group;
R10は、 GalNAc基であり; R8は、水素またはシアル酸基であり; R 10 is a GalNAc group; R 8 is hydrogen or a sialic acid group;
R9は、 Gal基であり; R 9 is a Gal group;
R11は、水素原子またはメチル基であり; R 11 is a hydrogen atom or a methyl group;
Z1および Z2は、それぞれ独立して、水素または Fuc基であり;ならびに Z 1 and Z 2 are each independently hydrogen or a Fuc group; and
nは、 0以上の整数であり;  n is an integer greater than or equal to 0;
ここで、 R1と R2との間の結合は、 R1がシアル酸基の場合、 a 2, 3結合であり、 R1が GlcNAc基の場合、 j8 1 , 3結合であり; Where the bond between R 1 and R 2 is an a 2, 3 bond when R 1 is a sialic acid group, and a j8 1, 3 bond when R 1 is a GlcNAc group;
R2と R3との間の結合は、 β ΐ , 4結合であり; The bond between R 2 and R 3 is a β,, 4 bond;
R3と R4との間の結合は、 β ΐ , 3結合であり; The bond between R 3 and R 4 is a β,, 3 bond;
R4と R5との間の結合は、 β ΐ , 4結合であり; The bond between R 4 and R 5 is a β,, 4 bond;
R8と R9との間の結合は、 《2, 3結合であり; The bond between R 8 and R 9 is << 2, 3 bond;
R9と R10との間の結合は、 β ΐ , 3結合であり; The bond between R 9 and R 10 is a β,, 3 bond;
R5と R1Gとの間の結合は、 β ΐ , 6結合であり; The bond between R 5 and R 1G is a β,, 6 bond;
Ζ1と R3との間の結合は、 《1 , 3結合であり; The bond between Ζ 1 and R 3 is << 1 , 3 bond;
Ζ2と R5との間の結合は、 《1 , 3結合であり;ならびに The bond between Ζ 2 and R 5 is << 1, 3 bond; and
Ρは、アミノ酸基の保護基(例えば、 9 フルォレニルメチルォキシカルボ-ル基、 te rt ブトキシカルボ-ル基など)である、  Ρ is an amino acid protecting group (for example, 9 fluorenylmethyloxycarbonyl group, ter rtbutoxycarbol group, etc.),
で表される糖アミノ酸が挙げられる。 The sugar amino acid represented by these is mentioned.
本発明にお 、て提供されるボリラクトサミン骨格を有するムチン型糖アミノ酸は、上 記式(M1) (M2)において、 nは 0以上の整数であり、好ましくは、 nは 0〜5であり、よ り好ましくは、 nは 4以下の整数である。さらに、上記式 (M1) (M2)において、 Τ〜τ 3は、あってもなくてもよいが、好ましくは、 mは 0〜5であり、好ましくは、 nが 1の場合、 Z1および Z2はシアル酸基である。さらにより好ましくは、上記式(M1)および(M2)は、 [化 35- 1]
Figure imgf000105_0001
In the present invention, the mucin-type sugar amino acid having a voralactosamine skeleton provided in the present invention is the above formula (M 1 ) (M 2 ), wherein n is an integer of 0 or more, preferably n is 0-5. Yes, and more preferably, n is an integer of 4 or less. Furthermore, in the above formula (M 1 ) (M 2 ), Τ˜τ 3 may or may not be present, but preferably m is 0-5, and preferably, when n is 1, Z 1 and Z 2 are sialic acid groups. Even more preferably, the above formulas (M 1 ) and (M 2 ) are
Figure imgf000105_0001
Figure imgf000106_0001
Figure imgf000106_0001
Figure imgf000107_0001
Figure imgf000108_0001
Figure imgf000107_0001
Figure imgf000108_0001
Figure imgf000108_0002
Figure imgf000108_0002
Figure imgf000109_0001
Figure imgf000109_0001
からなる群より選択される糖または糖誘導体を有し得る。 It may have a sugar or sugar derivative selected from the group consisting of
(医薬およびそれを用いる治療、予防など)  (Medicine and its treatment, prevention, etc.)
別の局面において、本発明は、本発明の製造方法によって得られた糖ペプチド (例 えば、ボリラクトサミン骨格を有するムチン型糖ペプチド)を含む医薬 (例えば、ヮクチ ン等の医薬品、健康食品、残さタンパク質又は脂質は抗原性を低減した医薬品)に 関する。この医薬は、薬学的に受容可能なキャリアなどをさらに含み得る。本発明の 医薬に含まれる薬学的に受容可能なキャリアとしては、当該分野において公知の任 意の物質が挙げられる。 In another aspect, the present invention relates to a medicament (for example, a pharmaceutical product such as salmon cutin, a health food, a residual protein) containing a glycopeptide obtained by the production method of the present invention (for example, a mucin-type glycopeptide having a borilactosamine skeleton). Or lipids that have reduced antigenicity) Related. The medicament may further comprise a pharmaceutically acceptable carrier and the like. Examples of the pharmaceutically acceptable carrier contained in the medicament of the present invention include any substance known in the art.
[0185] 本明細書において、「ボリラクトサミン」とは、オリゴ糖成分としてラタトサミン (例えば、 — 3Gal |8 1— 4GlcNAC j8 1—)単位の繰返し構造を含有する糖鎖をいう。ポリラクト サミンは、先天性赤血球生成不全性貧血 (HEMPAS)、神経細胞の分化、胎児赤 血球における免疫不適合な糖鎖抗原への自己免疫反応の低減などに関与している と考えられている。また、ボリラクトサミンは、ラミニン、リソゾーム膜タンパク質 (LAMP )のような特定の糖タンパク質の一部を構成しており、これらの分子とレクチンとの相 互作用を通して細胞間接着および情報伝達を制御しているという可能性も考えられ ている。 [0185] In the present specification, "borilactosamine" refers to a sugar chain containing a repeating structure of ratatosamine (eg, — 3Gal | 8 1-4GlcNA C j 8 1-) unit as an oligosaccharide component. Polylactosamine is thought to be involved in congenital erythropoietic anemia (HEMPAS), neuronal differentiation, and reduction of autoimmune responses to immunocompromised carbohydrate antigens in fetal erythrocytes. In addition, borilactosamine forms part of specific glycoproteins such as laminin and lysosomal membrane protein (LAMP), and regulates cell-cell adhesion and signal transduction through the interaction of these molecules with lectins. There is a possibility that it is.
[0186] 本明細書にお!、て、「ボリラクトサミン骨格を有するムチン型糖ペプチド」とは、ボリラ クトサミンを骨格として含む糖ペプチドを 、う。「ボリラクトサミン骨格を有するムチン型 糖ペプチド」は、先天性赤血球生成不全性貧血 (HEMPAS)、神経細胞の分化、胎 児赤血球における免疫不適合な糖鎖抗原への自己免疫反応の低減などに関連する  [0186] In this description! The “mucin-type glycopeptide having a borilactosamine skeleton” refers to a glycopeptide containing voractactamine as a skeleton. `` Mucin-type glycopeptides with a borilactosamine skeleton '' are related to congenital erythropoiesis anemia (HEMPAS), neuronal differentiation, reduction of autoimmune responses to immunocompromised carbohydrate antigens in fetal erythrocytes, etc.
[0187] 従って、「ボリラクトサミン骨格を有するムチン型糖ペプチド」は、先天性赤血球生成 不全性貧血 (HEMPAS)、癌、神経細胞の分ィ匕などの制御に関連する医薬として有 用である。 [0187] Therefore, "mucin-type glycopeptide having a polylactosamine skeleton" is useful as a pharmaceutical related to the control of congenital erythropoiesis anemia (HEMPAS), cancer, neuronal differentiation, and the like.
[0188] 本発明の医薬に適切な処方材料または薬学的に受容可能なキャリアとしては、抗 酸化剤、保存剤、着色料、風味料、および希釈剤、乳化剤、懸濁化剤、溶媒、フイラ 一、増量剤、緩衝剤、送達ビヒクル、希釈剤、賦形剤および/または薬学的アジュバ ント挙げられるがそれらに限定されない。代表的には、本発明の医薬は、単離された 多能性幹細胞、またはその改変体もしくは誘導体を、 1つ以上の生理的に受容可能 なキャリア、賦形剤または希釈剤とともに含む組成物の形態で投与される。例えば、 適切なビヒクルは、注射用水、生理的溶液、または人工脳脊髄液であり得、これら〖こ は、非経口送達のための組成物に一般的な他の物質を補充することが可能である。  [0188] Suitable formulation materials or pharmaceutically acceptable carriers for the medicament of the present invention include antioxidants, preservatives, colorants, flavors, and diluents, emulsifiers, suspending agents, solvents, fillers. Including, but not limited to, bulking agents, buffering agents, delivery vehicles, diluents, excipients and / or pharmaceutical adjuvants. Typically, the medicament of the present invention comprises a composition comprising an isolated pluripotent stem cell, or a variant or derivative thereof, together with one or more physiologically acceptable carriers, excipients or diluents. It is administered in the form of For example, a suitable vehicle can be water for injection, physiological solution, or artificial cerebrospinal fluid, which can be supplemented with other common substances in compositions for parenteral delivery. is there.
[0189] 本明細書で使用される受容可能なキャリア、賦形剤または安定化剤は、レシピエン トに対して非毒性であり、そして好ましくは、使用される投薬量および濃度において不 活性であり、そして以下が挙げられる:リン酸塩、クェン酸塩、または他の有機酸;ァス コルビン酸、 a トコフエロール;低分子量ポリペプチド;タンパク質(例えば、血清ァ ルブミン、ゼラチンまたは免疫グロブリン);親水性ポリマー(例えば、ポリビュルピロリ ドン);アミノ酸 (例えば、グリシン、グルタミン、ァスパラギン、アルギニンまたはリジン) ;モノサッカリド、ジサッカリドおよび他の炭水化物(グルコース、マンノース、またはデ キストリンを含む);キレート剤(例えば、 EDTA);糖アルコール (例えば、マン-トー ルまたはソルビトール);塩形成対イオン (例えば、ナトリウム);ならびに Zあるいは非 イオン性表面活性化剤(例えば、 Tween、プル口ニック (pluronic)またはポリエチレ ングリコール(PEG) )。 [0189] Acceptable carriers, excipients or stabilizers as used herein are Non-toxic and preferably inert at the dosages and concentrations used, and include: phosphates, citrates, or other organic acids; ascorbic acid A tocopherol; low molecular weight polypeptide; protein (eg, serum albumin, gelatin or immunoglobulin); hydrophilic polymer (eg, polybulurpyrrolidone); amino acid (eg, glycine, glutamine, asparagine, arginine or lysine); Monosaccharides, disaccharides and other carbohydrates (including glucose, mannose, or dextrin); chelating agents (eg, EDTA); sugar alcohols (eg, mantol or sorbitol); salt-forming counterions (eg, sodium) As well as Z or non-ionic surfactants ( For example, Tween, pulluric or polyethylene glycol (PEG)).
[0190] 例示の適切なキャリアとしては、中性緩衝化生理食塩水、または血清アルブミンと 混合された生理食塩水が挙げられる。好ましくは、その生成物は、適切な賦形剤 (例 えば、スクロース)を用いて凍結乾燥剤として処方される。他の標準的なキャリア、希 釈剤および賦形剤は所望に応じて含まれ得る。他の例示的な組成物は、 pH7. 0— 8. 5の Tris緩衝剤または pH4. 0— 5. 5の酢酸緩衝剤を含み、これらは、さら〖こ、ソ ルビトールまたはその適切な代替物を含み得る。  [0190] Exemplary suitable carriers include neutral buffered saline or saline mixed with serum albumin. Preferably, the product is formulated as a lyophilizer using a suitable excipient (eg, sucrose). Other standard carriers, diluents and excipients may be included as desired. Other exemplary compositions include Tris buffer at pH 7.0—8.5 or acetate buffer at pH 4.0—5.5, which are sardine, sorbitol or suitable substitutes thereof. Can be included.
[0191] 本発明の医薬は、経口的または非経口的に投与され得る。あるいは、本発明の医 薬は、静脈内または皮下で投与され得る。全身投与されるとき、本発明において使用 される医薬は、発熱物質を含まない、薬学的に受容可能な水溶液の形態であり得る 。そのような薬学的に受容可能な組成物の調製は、 pH、等張性、安定性などを考慮 することにより、当業者は、容易に行うことができる。本明細書において、投与方法は 、経口投与、非経口投与 (例えば、静脈内投与、筋肉内投与、皮下投与、皮内投与 、粘膜投与、直腸内投与、膣内投与、患部への局所投与、皮膚投与など)であり得る 。そのような投与のための処方物は、任意の製剤形態で提供され得る。そのような製 剤形態としては、例えば、液剤、注射剤、徐放剤が挙げられる。  [0191] The medicament of the present invention may be administered orally or parenterally. Alternatively, the medicament of the present invention can be administered intravenously or subcutaneously. When administered systemically, the medicament used in the present invention may be in the form of a pharmaceutically acceptable aqueous solution free of pyrogens. Such a pharmaceutically acceptable composition can be easily prepared by those skilled in the art by considering pH, isotonicity, stability, and the like. In this specification, the administration method includes oral administration, parenteral administration (e.g., intravenous administration, intramuscular administration, subcutaneous administration, intradermal administration, mucosal administration, rectal administration, intravaginal administration, local administration to the affected area, Skin administration, etc.). Formulations for such administration can be provided in any dosage form. Examples of such a preparation form include liquids, injections, and sustained release agents.
[0192] 本発明の医薬は、必要に応じて生理学的に受容可能なキャリア、賦型剤または安 定化剤 (日本薬局方第 14版またはその最新版、 Remington' s Pharmaceutical sciences, 18th Edition, A. R. Gennaro, ed. , MacK Publishing Compan y, 1990などを参照)と、本発明の製造方法によって得られた、所望の程度の純度を 有する糖ペプチド (例えば、ムチン型糖ペプチド)を含む組成物とを混合することによ つて、凍結乾燥されたケーキまたは水溶液の形態で調製され保存され得る。 [0192] The medicament of the present invention may be a physiologically acceptable carrier, excipient, or stabilizer as necessary (Japanese Pharmacopoeia 14th edition or its latest edition, Remington's Pharmaceutical sciences, 18th Edition, AR Gennaro, ed., MacK Publishing Compan y, 1990, etc.) and a composition obtained by the production method of the present invention and containing a glycopeptide having a desired degree of purity (for example, a mucin-type glycopeptide) is frozen. It can be prepared and stored in the form of a dried cake or an aqueous solution.
[0193] 本発明の処置方法において使用される糖ペプチド (例えば、ボリラクトサミン骨格を 有するムチン型糖ペプチド)を含む組成物の量は、使用目的、対象疾患 (種類、重篤 度など)、患者の年齢、体重、性別、既往歴、細胞の形態または種類などを考慮して 、当業者が容易に決定することができる。本発明の処置方法を被検体 (または患者) に対して施す頻度もまた、使用目的、対象疾患 (種類、重篤度など)、患者の年齢、 体重、性別、既往歴、および治療経過などを考慮して、当業者が容易に決定すること ができる。頻度としては、例えば、毎日 数ケ月に 1回(例えば、 1週間に 1回ー1ヶ月 に 1回)の投与が挙げられる。 1週間— 1ヶ月に 1回の投与を、経過を見ながら施すこ とが好ましい。 [0193] The amount of the composition containing a glycopeptide (for example, a mucin-type glycopeptide having a borilactosamine skeleton) used in the treatment method of the present invention depends on the purpose of use, target disease (type, severity, etc.), patient's A person skilled in the art can easily determine the age, weight, sex, medical history, cell morphology or type, and the like. The frequency with which the treatment method of the present invention is applied to a subject (or patient) also depends on the purpose of use, target disease (type, severity, etc.), patient age, weight, gender, medical history, treatment course, etc. In view of this, it can be easily determined by those skilled in the art. Examples of the frequency include administration once a few months every day (for example, once a week-once a month). It is preferable to administer once a week – once a month, while monitoring the course.
[0194] 以上のように本発明の好ましい実施形態を用いて本発明を例示してきた力 本発 明はこの実施形態に限定して理解されるべきものではない。本発明は、特許請求な お範囲によってのみその範囲が解釈されるべきであることが理解される。当業者は、 本発明の具体的な好ましい実施形態の記載力 本発明の記載および技術常識に基 づいて等価な範囲を実施できることが理解される。本明細書において引用した特許、 特許出願および文献は、その内容自体が具体的に本明細書に記載されているのと 同様にその内容が本明細書に対する参考として援用されるべきである。  [0194] As described above, the power of the present invention exemplified by using the preferred embodiment of the present invention. The present invention should not be understood to be limited to this embodiment. It is understood that the scope of the present invention should be construed only by the claims. Those skilled in the art will understand that the description of specific preferred embodiments of the present invention can be implemented within the equivalent scope based on the description of the present invention and common general technical knowledge. The patents, patent applications, and documents cited herein are to be incorporated by reference in their entirety, as if the contents themselves were specifically described herein.
実施例  Example
[0195] 本明細書で用いられる略語は、以下のような意味を有する。  [0195] Abbreviations used herein have the following meanings.
[0196] 以下の実施例より本研究をさらに詳細に説明するが、本研究はこれらに限定される ものではない。以下に記載する実施例の概略を、図 1に示す。  [0196] This study will be described in more detail with reference to the following examples, but this study is not limited thereto. An outline of the example described below is shown in FIG.
[0197] 本実施例で用いられる略語は、以下の様な意味を有する。 [0197] Abbreviations used in this example have the following meanings.
[0198] DMF = N, N ジメチルホルムアミド、 [0198] DMF = N, N dimethylformamide,
DCM = ジクロロメタン、  DCM = dichloromethane,
HOBT = N ヒドロキシベンゾトリァゾーノレ、  HOBT = N hydroxybenzotriazolone,
HBTU= 1 - (ビス(ジメチルァミノ)メチレン)一ベンゾトリアゾリゥム 3 ォキシド へキサフルォロリン酸塩、 HBTU = 1-(Bis (dimethylamino) methylene) monobenzotriazolium 3 oxide Hexafluorophosphate,
DIEA = ジイソプロピルェチルァミン、  DIEA = diisopropylethylamine,
Boc基 = tert ブトキシカルボ-ル基、  Boc group = tert butoxycarbol group,
Fmoc基 = 9 フルォレニルメトキシカルボ  Fmoc group = 9 Fluorenylmethoxycarbo
Pbf基 =2, 2, 4, 6, 7- -5—スルホ -ル基 TFA=トリフルォロ酢酸、  Pbf group = 2, 2, 4, 6, 7- -5-sulfol group TFA = trifluoroacetic acid,
Fmoc— Ala— OH = N— a Fmoc— Lーァフニン、  Fmoc— Ala— OH = N— a Fmoc— L-Afnin,
Fmoc-Gly-OH = N— — Fmoc— L グリシン、  Fmoc-Gly-OH = N— — Fmoc— L glycine,
Fmoc— Pro— OH = N— a— Fmoc— L プロリン、  Fmoc— Pro— OH = N— a— Fmoc— L Proline,
Fmoc— Arg (Pbf)— OH = Ν- α -Fmoc-Νγ (2, 2, 4, 6, 7 ペンタ —スノレホニノレ) L ァノレギニン、  Fmoc— Arg (Pbf) — OH = Ν- α -Fmoc-Νγ (2, 2, 4, 6, 7 penta-snorehoninole) L anoreginine,
Fmoc -Asp (OtBu)— OH = Ν— a—Fmoc— L ァスノ ラギン酸 β—t— ブチルエステル、  Fmoc -Asp (OtBu) — OH = Ν— a—Fmoc— L Asanolagic acid β—t— butyl ester,
Fmoc -Gin (OtBu) OH = N— α— Fmoc— : Lーグノレタミン酸 β—t—ブチ ノレエステノレ、  Fmoc-Gin (OtBu) OH = N— α— Fmoc—: L-gnoretamic acid β-t-butenoestestole,
Fmoc— Phe— OH = N - a Fmoc— L フエニノレアラニン、  Fmoc— Phe— OH = N-a Fmoc— L
Fmoc— Val— OH = N— a Fmoc— L—バリン、  Fmoc— Val— OH = N— a Fmoc— L—valine,
Fmoc— His (Trt)— OH = N— a— Fmoc— N— im トリチル一 L ヒスチジ ン、  Fmoc— His (Trt) — OH = N— a— Fmoc— N— im Trityl mono L histidine,
Fmoc— Thr— OH = N— — Fmoc— L トレ才ニン、  Fmoc— Thr— OH = N— — Fmoc— L
Fmoc— Ser— OH = N— a Fmoc— Lーセリン、  Fmoc— Ser— OH = N— a Fmoc— L-serine,
Fmoc -Thr (Ac7core2) - OH = N— α— Fmoc— O— {O— (2,, 3, ,4, ,6 ,一テトラ一 O ァセチノレ一 β—D—ガラタトピラノシル) - (1,→3) -0- [2"—ァセ トアミド一 3", 4", 6,,一トリ一 O ァセチル一 2,,一デォキシ一 13—D—ダルコビラノシ ルー(1"→6)]— 2 ァセトアミドー 2 デォキシ a— D ガラクトピラノシル }— L スレ才ニン、  Fmoc -Thr (Ac7core2)-OH = N— α— Fmoc— O— {O— (2, 3, 3, 4, 6, 6, tetra-tetra-O acetyleno β-D-galatatopyranosyl)-(1 , → 3) -0- [2 "—acetamide 1” 3 ”, 4”, 6, 1 tri 1 O acetyl 1 2, 1 doxy 1 13—D—Darkovyran (1 ”→ 6)] — 2 Acetamido 2 Deoxy a— D Galactopyranosyl} — L
Fmoc- Ser (Ac7core2) - OH = N— α— Fmoc— O— {O— (2,, 3, ,4, ,6 ,一テトラ一 O ァセチノレ一 β—D—ガラタトピラノシル) - (1,→3) -0- [2"—ァセ トアミド一 3", 4", 6,,一トリ一 O ァセチル一 2,,一デォキシ一 β—D—ダルコビラノシ ルー(1"→6) ]— 2 ァセトアミドー 2 デォキシ a— D ガラクトピラノシル }— L ーセリン、 Fmoc- Ser (Ac7core2)-OH = N— α— Fmoc— O— {O— (2, 3, 3, 4, 6, 6, tetra-tetra-O acetyleno β-D-galatatopyranosyl)-(1 , → 3) -0- [2 "—case Toamide 1 3 ", 4", 6, 1 Tri 1 O Acetyl 1 2, 1 Deoxy 1 β-D-Darcobyranosyl (1 "→ 6)] — 2 Acetamido 2 Deoxy a- D Galactopyranosyl} — L-serine,
(実施例 1 :Ν末端にケトン誘導体を有する MUC1関連糖ペプチド誘導体(1)〜(8 )の合成)  (Example 1: Synthesis of MUC1-related glycopeptide derivatives (1) to (8) having a ketone derivative at the heel end)
(1. 1 化合物(1)〜(2)の合成)  (1.1 Synthesis of compounds (1) to (2))
[化 36] [Chemical 36]
Figure imgf000115_0001
2y_g heGIUHisGlvalThrserAlaproAS>ThrArNH-----------
Figure imgf000115_0001
2y_g heGIUHisGlvalThrserAlaproAS> ThrArNH -----------
Figure imgf000116_0001
Figure imgf000116_0001
ho ho
Figure imgf000116_0002
Figure imgf000116_0002
T00.S0/.00Zdf/X3d s LOZnilLOOZ OAV Tentagel S RAM (登録商標)(Hipep Laboratories, 0. 25mmol/g) 0. 24 g (0. 06mmol)を担体として以下に示す N—保護アミノ酸とケト酸を FmocZHBTU ZHOBt法で順次縮合し、 目的の糖ペプチド誘導体を合成した。 Fmoc— Arg (Pbf )— OH、 Fmoc -Thr (Ac7core2)— OH、 Fmoc— Asp (OtBu)— OH、 Fmoc— Pro -OH, Fmoc— Ala— OH、 Fmoc— Ser (tBu)— OH、 Fmoc— Thr (tBu) - OH、 Fmoc-Val-OH, Fmoc— Gly—OH、 Fmoc -His (Trt)—OH、 Fmoc— Glu (OtBu)—OH、 Fmoc-Phe-OH, 5—ケトへキサン酸。ペプチド伸長反応後 、 95%TFA水溶液中、室温で 2時間反応させることによってペプチド残基上の保護 基を脱離させるとともに、固相担体上から化合物(1)を遊離させた。榭脂を濾別し、 T FAを揮発留去した後、 t ブチルメチルエーテルをカ卩えて生成物を沈殿させた。得 られたスラリーを遠心分離後、上澄みを除き、再度 t ブチルメチルエーテルを添カロ して沈殿を洗浄した。再び遠心分離を行って上澄みを除き、得られた沈殿をメタノー ル 3. 0mlに溶解した。この溶液へ 1N水酸化ナトリウム水溶液を添カ卩して pHを 12〜 12. 5へ調節し、 1. 5時間室温で攪拌して脱 Ac保護反応を行った。反応後、 1N酢 酸をカ卩えて中和した後、溶媒を留去して残渣を逆相 HPLC (Inertsil (登録商標) OD S— 3 20 X 250mmカラム(ジーエルサイエンス株式会社、東京)、移動相 A: 0. 1 %TFA水溶液に対する B: 0. 1%TFA含有ァセトニトリルの 2%から 50%のグラジェ ント)により精製して化合物(2)を 27mg得た (収率 23%)。 MALDI-TOF/MS : [ M (average) +H] + = 1997. 0、(理論値: [M (average) +H] + = 1996. 0)。 T00.S0 / .00Zdf / X3d s LOZnilLOOZ OAV Tentagel S RAM (registered trademark) (Hipep Laboratories, 0.25 mmol / g) Using 0.24 g (0.06 mmol) as a carrier, the following N-protected amino acids and keto acids are sequentially condensed by the FmocZHBTU ZHOBt method. A glycopeptide derivative was synthesized. Fmoc— Arg (Pbf) — OH, Fmoc -Thr (Ac7core2) — OH, Fmoc— Asp (OtBu) — OH, Fmoc— Pro -OH, Fmoc— Ala— OH, Fmoc— Ser (tBu) — OH, Fmoc— Thr (tBu) -OH, Fmoc-Val-OH, Fmoc—Gly—OH, Fmoc—His (Trt) —OH, Fmoc—Glu (OtBu) —OH, Fmoc-Phe-OH, 5-ketohexanoic acid. After the peptide extension reaction, the protecting group on the peptide residue was removed by reacting in 95% TFA aqueous solution at room temperature for 2 hours, and the compound (1) was released from the solid phase carrier. The resin was filtered off and TFA was distilled off, and t-butyl methyl ether was added to precipitate the product. The resulting slurry was centrifuged, the supernatant was removed, and t-butyl methyl ether was added again to wash the precipitate. Centrifugation was performed again to remove the supernatant, and the resulting precipitate was dissolved in 3.0 ml of methanol. A 1N sodium hydroxide aqueous solution was added to this solution to adjust the pH to 12 to 12.5, and the mixture was stirred at room temperature for 1.5 hours to carry out a DeAc protection reaction. After the reaction, neutralize by adding 1N acetic acid, and then remove the solvent to remove the residue. Reverse phase HPLC (Inertsil (registered trademark) OD S-3 20 X 250 mm column (GL Sciences Inc., Tokyo), transfer Phase A: Purified with 0.1% TFA aqueous solution B: 0.1% TFA-containing acetonitrile with 2% to 50% gradient to give 27 mg of compound (2) (23% yield). MALDI-TOF / MS: [M (average) + H] + = 1997.0 (theoretical value: [M (average) + H] + = 1996.0).
[0200] (1. 2 化合物(3)〜(4)の合成)  [0200] (1.2 Synthesis of Compounds (3) to (4))
[0201] [化 37] [0201] [Chemical 37]
yP2gG PheGluHis slValTh「erAlaproASThrArNH----------l- yP2gG PheGluHis slValTh "erAlaproASThrArNH ---------- l-
Figure imgf000118_0001
Figure imgf000118_0001
l00Z.S0/Z.00Zdf/X3d III Z.0CMI/Z.00Z OAV //D/ O looz-soz-ooidTId /-οεΗΪζ-οοίAV 8_ l00Z.S0 / Z.00Zdf / X3d III Z.0CMI / Z.00Z OAV // D / O looz-soz-ooidTId / -οεΗΪζ-οοίAV 8_
V V
SHN-6」V-J 丄 -dsv-0Jd-eiV- S-JLU-|BA-A|£)-s!H-n|〇-9Ljd S HN-6 ”VJ 丄 -dsv-0Jd-eiV- S-JLU- | BA-A | £) -s! Hn | 〇-9Ljd
ΗΟΘΙΛΙ I HO^N ΗΟΘΙΛΙ I HO ^ N
Figure imgf000119_0001
Figure imgf000119_0001
Tentagel S RAM (登録商標)(Hipep Laboratories, 0. 25mmol/g) 0. 67 g (0. 045mmol)を担体として以下に示す N—保護アミノ酸とケト酸を Fmoc/HBT UZHOBt法で順次縮合し、目的の糖ペプチド誘導体を合成した。 Fmoc— Arg (P bf)— OH、 Fmoc— Thr (tBu)— OH、 Fmoc— Asp (OtBu)— OH、 Fmoc -Pro -OH, Fmoc— Ala— OH、 Fmoc— Ser (tBu)— OH、 Fmoc— Thr (Ac7core2) — OH、 Fmoc-Val-OH, Fmoc— Gly—OH、 Fmoc -His (Trt)—OH、 Fmoc -Glu (OtBu) -OH, Fmoc— Phe— OH、 5—ケトへキサン酸。ペプチド伸長反応 後、 90%TFA水溶液中、室温で 2時間反応させることによってペプチド残基上の保 護基を脱離させるとともに、固相担体上から化合物(3)を遊離させた。榭脂を濾別し 、 TFAを揮発留去した後、 t—ブチルメチルエーテルをカ卩えて生成物を沈殿させた。 得られたスラリーを遠心分離後、上澄みを除き、再度 t ブチルメチルエーテルを添 加して沈殿を洗浄した。再び遠心分離を行って上澄みを除き、得られた沈殿をメタノ ール 3. Omlに溶解した。この溶液へ 1N水酸化ナトリウム水溶液を添カ卩して pHを 12 〜12. 5へ調節し、 1. 5時間室温で攪拌して脱 Ac保護反応を行った。反応後、 1N 酢酸を加えて中和した後、溶媒を留去して残渣を逆相 HPLC (Inertsil (登録商標) ODS 3 20 X 250mmカラム(ジーエルサイエンス株式会社、東京)、移動相 A: 0 . 1%TFA水溶液に対する B : 0. 1%TF A含有ァセトニトリルの 2%から 50%のダラ ジェント)により精製して化合物 (4)を 32mg得た (収率 36%)。 MALDI-TOF/M S: [M (average) +H] + = 1997. 2、(理論値: [M (average) +H] + = 1996. 0)。 Tentagel S RAM (registered trademark) (Hipep Laboratories, 0.25 mmol / g) 0.67 g (0.045 mmol) as a carrier N-protected amino acid and keto acid shown below were sequentially condensed by Fmoc / HBT UZHOBt method, The desired glycopeptide derivative was synthesized. Fmoc— Arg (P bf) — OH, Fmoc— Thr (tBu) — OH, Fmoc— Asp (OtBu) — OH, Fmoc -Pro -OH, Fmoc— Ala— OH, Fmoc— Ser (tBu) — OH, Fmoc — Thr (Ac7core2) — OH, Fmoc-Val-OH, Fmoc— Gly—OH, Fmoc -His (Trt) —OH, Fmoc -Glu (OtBu) -OH, Fmoc— Phe— OH, 5-ketohexanoic acid . After the peptide elongation reaction, the protecting group on the peptide residue was removed by reacting in a 90% TFA aqueous solution at room temperature for 2 hours, and the compound (3) was released from the solid support. The resin was filtered off and TFA was removed by evaporation, and t-butyl methyl ether was added to precipitate the product. The resulting slurry was centrifuged, the supernatant was removed, and t-butyl methyl ether was added again to wash the precipitate. Centrifugation was performed again to remove the supernatant, and the resulting precipitate was dissolved in 3.Oml of methanol. A 1N aqueous sodium hydroxide solution was added to this solution to adjust the pH to 12 to 12.5, and the mixture was stirred at room temperature for 1.5 hours to carry out a DeAc protection reaction. After the reaction, 1N acetic acid was added for neutralization, the solvent was distilled off, and the residue was subjected to reverse phase HPLC (Inertsil (registered trademark) ODS 3 20 X 250 mm column (GL Science Inc., Tokyo), mobile phase A: 0. Purified by B: 1% TFA aqueous solution: 0.1% TFA-containing acetonitrile (2% to 50% dargent) to obtain 32 mg of Compound (4) (yield 36%). MALDI-TOF / MS: [M (average) + H] + = 1997.2, (theoretical value: [M (average) + H] + = 1996.0).
[0202] (1. 3 化合物(5)〜(6)の合成)  [0202] (1.3 Synthesis of Compounds (5) to (6))
[0203] [化 38] [0203] [Chemical 38]
Figure imgf000121_0001
Figure imgf000121_0001
Figure imgf000122_0001
Figure imgf000122_0001
T00.S0/.00Zdf/X3d 1-31. .OCMT/.OOZ OAV Tentagel S RAM (登録商標)(Hipep Laboratories, 0. 25mmol/g) 0. 10 g (0. 025mmol)を担体として以下に示す N—保護アミノ酸とケト酸を Fmoc/HBT UZHOBt法で順次縮合し、 目的の糖ペプチド誘導体を合成した。 Fmoc -Ala-O H、 Fmoc— Pro— OH、 Fmoc— Pro— OH、 Fmoc— Ala— OH、 Fmoc— Thr {Ac 7core2)— OH、 Fmoc— Ser (tBu)— OH、 Fmoc— Gly— OH、 Fmoc— Pro— O H、 Fmoc— Ala— OH、 Fmoc— Pro— OH、 Fmoc— Arg (Pbf)— OH、 Fmoc— T hr (tBu)— OH、 Fmoc - Asp (OtBu)— OH、 Fmoc— Pro— OH、 Fmoc -Ala - OH、 Fmoc - Ser (tBu)— OH、 Fmoc -Thr (tBu)— OH、 Fmoc— Val— OH、 F moc— Gly— OH、 Fmoc -His (Trt)— OH、 Fmoc— Glu (OtBu)— OH、 Fmoc -Phe-OH, 5 ケトへキサン酸。ペプチド伸長反応後、 90%TFA水溶液中、室 温で 2時間反応させることによってペプチド残基上の保護基を脱離させるとともに、固 相担体上から化合物(5)を遊離させた。榭脂を濾別し、 TFAを揮発留去した後、 t ブチルメチルエーテルを加えて生成物を沈殿させた。得られたスラリーを遠心分離後 、上澄みを除き、再度 t—ブチルメチルエーテルを添加して沈殿を洗浄した。再び遠 心分離を行って上澄みを除き、得られた沈殿をメタノール 1. 5mlに溶解した。この溶 液へ 1N水酸ィ匕ナトリウム水溶液を添カ卩して pHを 12〜12. 5へ調節し、 1. 5時間室 温で攪拌して脱 Ac保護反応を行った。反応後、 1N酢酸を加えて中和した後、溶媒 を留去して残渣を逆相 HPLC (Inertsil (登録商標) ODS 3 20 X 250mmカラム( ジーエルサイエンス株式会社、東京)、移動相 A: 0. 1%TFA水溶液に対する B : 0. 1%TF A含有ァセトニトリルの 2%から 50%のグラジェント)により精製して化合物(6) を 0. 5mg得た(収率 7%)。 MALDI-TOF/MS: [M (average) +H] + = 2844. 3、(理論値: [M (average) +H] + = 2843. 0)。 T00.S0 / .00Zdf / X3d 1-31.OCMT / .OOZ OAV Tentagel S RAM (registered trademark) (Hipep Laboratories, 0.25 mmol / g) 0.1 g (0.025 mmol) as a carrier, the following N-protected amino acid and keto acid are sequentially condensed by the Fmoc / HBT UZHOBt method, The desired glycopeptide derivative was synthesized. Fmoc-Ala-O H, Fmoc— Pro— OH, Fmoc— Pro— OH, Fmoc— Ala— OH, Fmoc— Thr (Ac 7core2) — OH, Fmoc— Ser (tBu) — OH, Fmoc— Gly— OH, Fmoc— Pro— OH, Fmoc— Ala— OH, Fmoc— Pro— OH, Fmoc— Arg (Pbf) — OH, Fmoc— T hr (tBu) — OH, Fmoc-Asp (OtBu) — OH, Fmoc— Pro— OH, Fmoc -Ala-OH, Fmoc-Ser (tBu) — OH, Fmoc -Thr (tBu) — OH, Fmoc— Val— OH, F moc— Gly— OH, Fmoc -His (Trt) — OH, Fmoc— Glu (OtBu) —OH, Fmoc-Phe-OH, 5 Ketohexanoic acid. After the peptide elongation reaction, the protecting group on the peptide residue was removed by reacting in 90% TFA aqueous solution at room temperature for 2 hours, and the compound (5) was released from the solid phase carrier. The coconut resin was filtered off and TFA was evaporated off, and t-butyl methyl ether was added to precipitate the product. The obtained slurry was centrifuged, the supernatant was removed, and t-butyl methyl ether was added again to wash the precipitate. Centrifugation was performed again to remove the supernatant, and the resulting precipitate was dissolved in 1.5 ml of methanol. A 1N sodium hydroxide aqueous solution was added to this solution to adjust the pH to 12 to 12.5, and the mixture was stirred at room temperature for 1.5 hours to carry out a DeAc protection reaction. After the reaction, the reaction mixture was neutralized by adding 1N acetic acid, the solvent was distilled off, and the residue was purified by reversed-phase HPLC (Inertsil (registered trademark) ODS 3 20 X 250 mm column (GL Science Inc., Tokyo), mobile phase A: 0 Purification with B to 1% TFA aqueous solution (2% to 50% gradient of 0.1% TFA-containing acetonitrile) yielded 0.5 mg of compound (6) (yield 7%). MALDI-TOF / MS: [M (average) + H] + = 2844.3 (theoretical value: [M (average) + H] + = 2843.0).
[0204] (1. 4 化合物(7)〜(8)の合成)  [0204] (1.4 Synthesis of Compounds (7) to (8))
[0205] [化 39]
Figure imgf000124_0001
[0205] [Chemical 39]
Figure imgf000124_0001
//u/ O soz-soz-osdrld /-οεΗΪζ-οοίAV // u / O soz-soz-osdrld / -οεΗΪζ-οοίAV
Figure imgf000125_0001
Figure imgf000125_0001
Tentagel S RAM (登録商標)(Hipep Laboratories, 0. 25mmol/g) 0. 10 g (0. 0025mmol)を担体として以下に示す N—保護アミノ酸とケト酸を FmocZHB TUZHOBt法で順次縮合し、 目的の糖ペプチド誘導体を合成した。 Fmoc-Ala- OH、 Fmoc— Pro— OH、 Fmoc— Pro— uH、 Fmoc— Ala uH、 Fmoc— Thr ( Ac7core2)— OH、 Fmoc— Ser (tBu)— OH、 Fmoc— Gly— OH、 Fmoc -Pro - OH、 Fmoc— Ala— OH、 Fmoc— Pro— OH、 Fmoc— Arg (Pbf)— OH、 Fmoc— Thr (Ac7core2)— OH、 Fmoc— Asp (OtBu)— OH、 Fmoc— Pro— OH、 Fmoc —Ala— OHゝ Fmoc -Ser (tBu)— OH、 Fmoc— Thr (tBu)— OH、 Fmoc— Val — OH、 Fmoc— Gly— OH、 Fmoc -His (Trt)— OH、 Fmoc— Glu (OtBu)—OH 、 Fmoc-Phe-OH, 5 ケトへキサン酸。ペプチド伸長反応後、 90%TFA水溶液 中、室温で 2時間反応させることによってペプチド残基上の保護基を脱離させるととも に、固相担体上から化合物(7)を遊離させた。榭脂を濾別し、 TFAを揮発留去した 後、 t—ブチルメチルエーテルを加えて生成物を沈殿させた。得られたスラリーを遠心 分離後、上澄みを除き、再度 t—ブチルメチルエーテルを添加して沈殿を洗浄した。 再び遠心分離を行って上澄みを除き、得られた沈殿をメタノール 1. 5mlに溶解した。 この溶液へ 1N水酸ィ匕ナトリウム水溶液を添カ卩して pHを 12〜12. 5へ調節し、 1. 5時 間室温で攪拌して脱 Ac保護反応を行った。反応後、 1N酢酸を加えて中和した後、 溶媒を留去して残渣を逆相 HPLC (Inertsil (登録商標) ODS 3 20 X 250mm力 ラム (ジーエルサイエンス株式会社、東京)、移動相 A : 0. 1%TFA水溶液に対する B : 0. 1%TF A含有ァセトニトリルの 2%から 50%のグラジェント)により精製して化合 物(8)を 0. 6mg得た(収率 6%)。 MALDI—TOFZMS: [M (average) +H] + = 3 412. 0、(理論値: [M (average) +H] + = 3411. 5)。 Tentagel S RAM (registered trademark) (Hipep Laboratories, 0.25 mmol / g) 0.10 g (0. 0025 mmol) as a carrier, the following N-protected amino acids and keto acids are sequentially condensed by the FmocZHB TUZHOBt method, A glycopeptide derivative was synthesized. Fmoc-Ala-OH, Fmoc— Pro— OH, Fmoc— Pro— uH, Fmoc— Ala uH, Fmoc— Thr (Ac7core2) — OH, Fmoc— Ser (tBu) — OH, Fmoc— Gly— OH, Fmoc -Pro -OH, Fmoc— Ala— OH, Fmoc— Pro— OH, Fmoc— Arg (Pbf) — OH, Fmoc— Thr (Ac7core2) — OH, Fmoc— Asp (OtBu) — OH, Fmoc— Pro— OH, Fmoc — Ala— OH ゝ Fmoc -Ser (tBu) — OH, Fmoc— Thr (tBu) — OH, Fmoc— Val — OH, Fmoc— Gly— OH, Fmoc -His (Trt) — OH, Fmoc— Glu (OtBu) — OH, Fmoc-Phe-OH, 5 ketohexanoic acid. After the peptide elongation reaction, the protecting group on the peptide residue was removed by reacting in a 90% TFA aqueous solution at room temperature for 2 hours, and the compound (7) was released from the solid phase carrier. The coconut resin was filtered off and TFA was evaporated off, and t-butyl methyl ether was added to precipitate the product. After the resulting slurry was centrifuged, the supernatant was removed, and t-butyl methyl ether was added again to wash the precipitate. Centrifugation was performed again to remove the supernatant, and the resulting precipitate was dissolved in 1.5 ml of methanol. A 1N sodium hydroxide aqueous solution was added to this solution to adjust the pH to 12 to 12.5, and the mixture was stirred for 1.5 hours at room temperature to carry out a DeAc protection reaction. After the reaction, 1N acetic acid was added to neutralize, the solvent was distilled off, and the residue was subjected to reverse phase HPLC (Inertsil (registered trademark) ODS 3 20 X 250 mm force ram (GL Sciences Inc., Tokyo), mobile phase A: Purification by B: 0.1% TFA aqueous solution (2% to 50% gradient of 0.1% TFA-containing acetonitrile) gave 0.6 mg of compound (8) (yield 6%). MALDI—TOFZMS: [M (average) + H] + = 3 412.0 (theoretical value: [M (average) + H] + = 3411.5).
[0206] (実施例 2 :糖ペプチド合成用高分子プライマーの合成)  (Example 2: Synthesis of polymer primer for glycopeptide synthesis)
(2. 1 化合物(10)〜(11)の合成)  (2.1 Synthesis of compounds (10) to (11))
[0207] [化 40] yP2GGsheIUHislvalThre「AlaproASThrAr?NH----------- [0207] [Chemical 40] yP2GGsheIUHislvalThre "AlaproASThrAr? NH -----------
Figure imgf000127_0001
Figure imgf000127_0001
 Ye
Figure imgf000127_0002
Yes
Figure imgf000127_0002
WOLSO/LOOZdT/lJd 931- ■OC I/ OOZ OAV WOLSO / LOOZdT / lJd 931-OC I / OOZ OAV
" "
Figure imgf000128_0001
Figure imgf000128_0001
10mM 糖ペプチド誘導体(2)、 15mM (ォキシァミン残基換算)水溶性高分子(9 )、 50mM 酢酸ナトリウム緩衝液 (pH5. 5)の反応液 1.5mlを室温で 24時間攪拌し た。反応終了後、反応液を限外濾過フィルター 10K Apollo (登録商標) 20ml(Orb ital Biosciences, LLC (MA, USA))によって遠心濃縮し、そこへ 25mM HEP ES緩衝液 (pH7. 0)を加えて再度濃縮することによって洗浄し、最終的に容量が 1. 5mlになるように水を加えることによって 10mM (糖ペプチド理論含量)高分子(10)と した。高分子(10)の同定は、高分子(10)の一部を BLaseで処理し、生成物(11)が 得られることによって行った。 A reaction solution of 1.5 ml of 10 mM glycopeptide derivative (2), 15 mM (converted to oxiamine residue) water-soluble polymer (9) and 50 mM sodium acetate buffer (pH 5.5) was stirred at room temperature for 24 hours. After completion of the reaction, the reaction solution was centrifuged and concentrated with an ultrafiltration filter 10K Apollo (registered trademark) 20 ml (Orbital Biosciences, LLC (MA, USA)), and 25 mM HEP ES buffer (pH 7.0) was added thereto. Washing was carried out by concentrating again, and 10 mM (theoretical content of glycopeptide) polymer (10) was obtained by adding water to a final volume of 1.5 ml. To identify the polymer (10), a part of the polymer (10) is treated with BLase, and the product (11) Done by getting.
化合物(11)の MALDI - TOF/MS: [M (average) +H] + = 1608. 5 (理論値: [ MALDI-TOF / MS of compound (11): [M (average) + H] + = 1608.5 (theoretical value: [
M (average) +H] + = 1607. 6)。 M (average) + H] + = 1607. 6).
[0208] (2. 2 化合物(12)〜(13)の合成) [0208] (2.2 Synthesis of Compounds (12) to (13))
[0209] [化 41] [0209] [Chemical 41]
//u soz-soz-osdrld /-οεΗΪ-οοί // u soz-soz-osdrld / -οεΗΪ-οοί
N-6JV-JLU-dsv-o」d-e|V- S- 上- A-人 l〇-s!H-n|〇-ei]d
Figure imgf000130_0001
N-6JV-JLU-dsv-o "de | V- S- Up- A-person l〇-s! Hn | 〇-ei] d
Figure imgf000130_0001
9HNV!Ldlvul>I!Hv6JJdsOJeJ①Jles_A------ ---- 9HNV! Ldlvul> I! Hv6JJdsOJeJ①Jles_A ------ ----
Figure imgf000131_0001
Figure imgf000131_0001
10mM 糖ペプチド誘導体 (4)、 20mM (ォキシァミン残基換算)水溶性高分子(9 )、 50mM 酢酸ナトリウム緩衝液 (pH5. 5)の反応液 1.0mlを室温で 8 10 ml of a reaction solution of 10 mM glycopeptide derivative (4), 20 mM (converted to oxiamine residue) water-soluble polymer (9), 50 mM sodium acetate buffer (pH 5.5) at room temperature
時間攪拌した。反応終了後、反応液を限外濾過フィルター 10K Apollo (登録商標 ) 20ml(Orbital Biosciences, LLC (MA, USA))によって遠心濃縮し、そこへ 25 mM HEPES緩衝液 (pH7. 0)を加えて再度濃縮することによって洗浄し、最終的 に容量が 1. Omlになるように水をカ卩えることによって 10mM (糖ペプチド理論含量) 高分子(12)とした。高分子(12)の同定は、高分子(12)の一部を BLaseで処理し、 生成物(13)が得られることによって行った。 Stir for hours. After completion of the reaction, the reaction solution was centrifuged and concentrated with an ultrafiltration filter 10K Apollo (registered trademark) 20 ml (Orbital Biosciences, LLC (MA, USA)), and 25 mM HEPES buffer (pH 7.0) was added thereto, and again. Washing was carried out by concentrating, and finally 10 ml (theoretical content of glycopeptide) of polymer (12) was obtained by adding water so that the volume became 1. Oml. To identify the polymer (12), a part of the polymer (12) is treated with BLase, This was done by obtaining the product (13).
化合物(13)の MALDI—TOFZMS : [M (average) +H] + = 1609. 6 (理論値: [ M (average) +H] + = 1608. 6)。 MALDI—TOFZMS of compound (13): [M (average) + H] + = 1609.6 (theoretical value: [M (average) + H] + = 1608. 6).
[0210] (実施例 3 :糖ペプチドおよび糖ペプチド合成用高分子プライマーの糖鎖伸長反応 ) [0210] (Example 3: Glycoelongation reaction of glycopeptide and polymer primer for glycopeptide synthesis)
(3. 1 化合物(14)〜(15)の合成)  (3.1 Synthesis of Compounds (14) to (15))
[0211] [化 42] [0211] [Chemical 42]
UDP-ガラク [ ス UDP-galax
β1 ,4-ガラクト一ス転移酵素
Figure imgf000133_0001
β1,4-galactosyltransferase
Figure imgf000133_0001
Figure imgf000133_0002
Phe-Glu-His-Gly-Val-Thr-Ser-Ala-Pro-Asp-Thr-Ara-NH2
Figure imgf000133_0002
Phe-Glu-His-Gly-Val-Thr-Ser-Ala-Pro-Asp-Thr-Ara-NH 2
Figure imgf000133_0003
Figure imgf000133_0003
Figure imgf000134_0001
Yes
Figure imgf000134_0001
s 9 ¾Νν MlvdlvMll>!ェβ」」sOJeJeJesi- ------- s 9 ¾Νν MlvdlvMll>! ß '' sOJeJeJesi- -------
50mM HEPES緩衝液(pH7. 6)、0. 2U/ml ヒト由来 j8 1, 4—ガラクトース転 移酵素 (東洋紡社製)、 10mM 塩ィ匕マンガン、 9mM ゥリジン一 5,一二リン酸ガラ クトース(UDP— Gal)、 3. 3mM 糖ペプチド誘導体(10)を含む lmlの反応液を 25 °Cで 90分間攪拌した。反応終了後、反応液を限外濾過フィルター ULTRAFRE— MC 10, OOONMWL Filter Unit (Millipore社製)によって遠心濃縮し、そこへ 50mM HEPES緩衝液 (pH7. 0)を加えて再度濃縮することによって洗浄し、最終 的に容量が 0. 33mlになるように水をカ卩えることによって 10mM (糖ペプチド理論含 量)高分子(14)とした。高分子(14)の同定は糖転移反応液を一部分取し、これに B Lase (塩野義製薬社製)を加え、反応液を逆相 HPLC (Inertsil (登録商標) ODS - 3 4. 6 X 250mmカラム、移動相A: 25mM酢酸ァンモ-ゥム緩衝液(pH6. 5)に 対する B:ァセトニトリルの 2%から 20%のグラジェント)により精製して化合物(15)を 得ることにより行った。化合物(15)の MALDI—TOFZMS : [M (average) +H]50 mM HEPES buffer (pH 7.6), 0.2 U / ml human-derived j8 1,4-galactose transferase (manufactured by Toyobo Co., Ltd.), 10 mM salty manganese, 9 mM uridine-1,5, monophosphate galactose ( UDP-Gal) and lml reaction solution containing 3.3 mM glycopeptide derivative (10) were stirred at 25 ° C for 90 minutes. After completion of the reaction, the reaction solution is centrifuged and concentrated by ultrafiltration filter ULTRAFRE- MC 10, OOONMWL Filter Unit (Millipore), and then 50mM HEPES buffer (pH 7.0) is added thereto and concentrated again. Finally, water was added so that the volume became 0.33 ml to obtain 10 mM (glycopeptide theoretical content) polymer (14). To identify the polymer (14), a part of the transglycosylation reaction solution is taken, B Lase (manufactured by Shionogi & Co., Ltd.) is added thereto, and the reaction solution is subjected to reverse phase HPLC (Inertsil (registered trademark) ODS-3 4.6 X Compound (15) was purified by purification using a 250 mm column, mobile phase A: B: 2% to 20% gradient of acetonitrile, to 25 mM ammonium acetate buffer (pH 6.5). Done by getting. MALDI—TOFZMS of compound (15): [M (average) + H]
= 1770. 3 [M (average) +H] + = 1769. 8)。 = 1770. 3 [M (average) + H] + = 1769. 8).
[0212] (3. 2 化合物(16)〜(17)の合成)  [0212] (3.2 Synthesis of Compounds (16) to (17))
[0213] [化 43] [0213] [Chemical 43]
ェ,ェYe
v J「- -つ -, i v J "--one-, i
VHNく HN O 。 VHN KU HN O.
Figure imgf000135_0001
ェ oH〇、
Figure imgf000135_0001
Ee oH〇,
HNV-lsvdlvl〇ll!__lld6JJlds0」e」3Jl_esllnl "---------- HNV-lsvdlvl〇ll! __ lld6JJ l ds0 "e" 3J l _esl l nl "----------
Figure imgf000135_0002
Figure imgf000135_0002
Figure imgf000136_0001
Figure imgf000136_0001
25mM HEPES緩衝 ¾¾ (pH7. 5)、0. 02mU/ml プタ由来 j8 1, 3— N—ァセ チルダルコサミン転移酵素(東洋紛社製)、 20mM 塩ィ匕マンガン、 40mM ゥリジン — 5,—二リン酸 N—ァセチルダルコサミン(UDP— GlcNAc)、 2. 5mM 糖ぺプチ ド誘導体(14)を含む lmlの反応液を 37°Cで 24時間攪拌した。反応終了後、反応液 を限外濾過フィルター ULTRAFRE— MC 10, OOONMWL Filter Unit (Milli pore社製)によって遠心濃縮し、そこへ 50mM HEPES緩衝液(pH7. 0)をカ卩えて 再度濃縮することによって洗浄し、最終的に容量が 0. 25mlになるように水をカ卩える ことによって 10mM (糖ペプチド理論含量)高分子(16)とした。高分子(16)の同定 は一部を BLase (塩野義製薬社製)で処理し、反応液を逆相 HPLC (Inertsil (登録 商標) ODS— 3 4. 6 X 250mmカラム、移動相 A: 25mM酢酸アンモ-ゥム緩衝 液 (pH6. 5)に対する B:ァセトニトリルの 2%から 20%のグラジェント)により精製して 化合物(17)を得ることにより行った。化合物(17)の MALDI— TOFZMS : [M (av
Figure imgf000137_0001
25 mM HEPES buffer ¾¾ (pH 7.5), 0.02 mU / ml derived from j8 1, 3— N-acetyl dalcosamine transferase (manufactured by Toyo Denshi Co., Ltd.), 20 mM sodium chloride, 40 mM uridine — 5, 2-dilin 1 ml of the reaction solution containing acid N-acetylyldarcosamine (UDP-GlcNAc) and 2.5 mM glycopeptide derivative (14) was stirred at 37 ° C for 24 hours. After completion of the reaction, the reaction solution is centrifuged and concentrated with an ultrafiltration filter ULTRAFRE- MC 10, OOONMWL Filter Unit (Millipore), and 50 mM HEPES buffer (pH 7.0) is added to the solution and concentrated again. The polymer was washed and water was added so that the final volume was 0.25 ml. Thus, a 10 mM (glycopeptide theoretical content) polymer (16) was obtained. Part of the polymer (16) was identified by treating with BLase (manufactured by Shionogi & Co., Ltd.), and the reaction mixture was reversed-phase HPLC (Inertsil (registered trademark) ODS— 3 4.6 X 250 mm column, mobile phase A: 25 mM Purification by B: acetonitrile gradient 2% to 20% of ammonium acetate buffer (pH 6.5) was carried out to obtain compound (17). Compound (17) MALDI— TOFZMS: [M (av
Figure imgf000137_0001
Figure imgf000137_0002
Figure imgf000137_0002
18  18
〔〕0214[] 0214
TOg禽。)U(〔 ())瞄 erae+H 1974.0:Maverae +Η 1973.0 = = + S
Figure imgf000138_0001
TOg poultry. ) U ([()) 瞄 erae + H 1974.0: Maverae + Η 1973.0 = = + S
Figure imgf000138_0001
50mM HEPES緩衝液(pH7. 6)、 0. 4U/ml ヒ卜由来 j8 1, 4—ガラク卜ース転 移酵素 (東洋紡社製)、 10mM 塩ィ匕マンガン、 10mM ゥリジン— 5,—二リン酸ガラ クトース(UDP— Gal)、 2mM 糖ペプチド誘導体(16)を含む lmlの反応液を 25°C で 60分間攪拌した。反応終了後、反応液を限外濾過フィルター ULTRAFRE— M C 10, OOONMWL Filter Unit (Millipore社製)によって遠心濃縮し、そこへ 50 mM HEPES緩衝液 (pH7. 0)を加えて再度濃縮することによって洗浄し、最終的 に容量が 0. 2mlになるように水をカ卩えることによって 10mM (糖ペプチド理論含量) 高分子(18)とした。高分子(18)の同定は一部を BLase (塩野義製薬社製)で処理し 、反応液を逆相 HPLC (Inertsil (登録商標) ODS— 3 4. 6 X 250mmカラム、移 動相 A: 25mM酢酸アンモ-ゥム緩衝液 (pH6. 5)に対する B :ァセトニトリルの 2% 力も 20%のグラジェント)により精製して化合物(19)を得ることにより行った。化合物 (19)の MALDI—TOFZMS : [M (average) +H] + = 2136. 1 (理論値: [M (ave rage) +H] + = 2135. 1)。 50 mM HEPES buffer (pH 7.6), 0.4 U / ml baboon-derived j8 1,4-galactose transferase (manufactured by Toyobo Co., Ltd.), 10 mM salt-manganese, 10 mM uridine-5, dilin An lml reaction solution containing acid galactose (UDP-Gal) and 2 mM glycopeptide derivative (16) was stirred at 25 ° C for 60 minutes. After completion of the reaction, the reaction solution is centrifuged and concentrated by ultrafiltration filter ULTRAFRE- MC 10, OOONMWL Filter Unit (Millipore), and then 50 mM HEPES buffer (pH 7.0) is added and concentrated again. Finally, water was added so that the volume became 0.2 ml to obtain 10 mM (theoretical content of glycopeptide) polymer (18). Part of the polymer (18) was identified by treating with BLase (manufactured by Shionogi & Co., Ltd.), and the reaction mixture was reversed-phase HPLC (Inertsil (registered trademark) ODS— 3 4.6 X 250 mm column, mobile phase A: B: 2% of acetonitrile for 25 mM ammonium acetate buffer (pH 6.5) It was carried out by obtaining the compound (19) by purifying with a force of 20% gradient. MALDI—TOFZMS of compound (19): [M (average) + H] + = 21136. 1 (theoretical value: [M (ave)) + H] + = 21135. 1).
[0216] (3. 4 化合物(20)〜(21)の合成)  [0216] (3.4 Synthesis of Compounds (20) to (21))
[0217] [化 45] [0217] [Chemical 45]
18 18
U DP- N-ァセチルグルコサミン U DP- N-Acetylglucosamine
β1,3- Ν-ァセチルグルコサミン転移酵素
Figure imgf000140_0001
β1,3-Ν-acetylglucosamine transferase
Figure imgf000140_0001
Figure imgf000140_0002
-NH2
Figure imgf000140_0002
-NH 2
20 20
Figure imgf000141_0001
Figure imgf000141_0001
25mM HEPES緩衝 ¾¾ (pH7. 5)、0. 2mU/ml プタ由来 j8 1, 3— N—ァセチ ルダルコサミン転移酵素(東洋紛社製)、 20mM 塩ィ匕マンガン、 40mM ゥリジン— 5,—二リン酸 N—ァセチルダルコサミン(UDP— GlcNAc)、 2. 5mM 糖ペプチド 誘導体(18)を含む lmlの反応液を 37°Cで 24間攪拌した。反応終了後、反応液を 限外濾過フィルター ULTRAFRE— MC 10, OOONMWL Filter Unit (Millipo re社製)によって遠心濃縮し、そこへ 50mM HEPES緩衝液(pH7. 0)を加えて再 度濃縮することによって洗浄し、最終的に容量が 0. 25mlになるように水をカ卩えること によって 10mM (糖ペプチド理論含量)高分子(20)とした。高分子(20)の同定は一 部を BLase (塩野義製薬社製)で処理し、反応液を逆相 HPLC (Inertsil (登録商標) ODS- 3 4. 6 X 250mmカラム、移動相 A : 25mM酢酸アンモ-ゥム緩衝液(pH 6. 5)に対する B :ァセトニトリルの 2%から 20%のグラジェント)により精製して化合物 (21)を得ることにより行った。化合物(21)の MALDI—TOFZMS : [M (average) + H] + = 2339. 0 (理論値: [M (average) +H] + = 2338. 3)。 25 mM HEPES buffer ¾¾ (pH 7.5), 0.2 mU / ml derived from J8 1, 3— N-acetyldarcosamine transferase (manufactured by Toyo Denshi Co., Ltd.), 20 mM manganese salt, 40 mM uridine-5, diphosphoric acid A 1 ml reaction solution containing N-acetylyldarcosamine (UDP-GlcNAc) and 2.5 mM glycopeptide derivative (18) was stirred at 37 ° C. for 24 hours. After completion of the reaction, the reaction solution was filtered with an ultrafiltration filter ULTRAFRE— MC 10, OOONMWL Filter Unit (Millipo Reconcentrate by centrifugation, add 50 mM HEPES buffer (pH 7.0) to it, wash again by concentrating, and finally add water to a volume of 0.25 ml. To 10 mM (glycopeptide theoretical content) polymer (20). Part of the polymer (20) was identified by treating with BLase (manufactured by Shionogi & Co., Ltd.), and the reaction mixture was reversed-phase HPLC (Inertsil (registered trademark) ODS- 3 4.6 X 250 mm column, mobile phase A: 25 mM Purification by B: acetonitrile gradient from ammonium acetate buffer (pH 6.5) to give compound (21). MALDI-TOFZMS of compound (21): [M (average) + H] + = 23339. 0 (theoretical value: [M (average) + H] + = 23338.3).
[0218] (3. 5 化合物(22)〜(23)の合成)  [0218] (3.5 Synthesis of Compounds (22) to (23))
[0219] [化 46] [0219] [Chem 46]
U DP-ガラクト一ス U DP-galactose
β1, 4-ガラクト一ス転移酵素
Figure imgf000143_0001
β1, 4-galactosyltransferase
Figure imgf000143_0001
Figure imgf000143_0002
Figure imgf000143_0002
3 Three
Figure imgf000144_0001
Figure imgf000144_0001
50mM HEPES緩衝液(pH7. 0)、 0. 4U/ml ヒ卜由来 j8 1, 4—ガラク卜ース転 移酵素 (東洋紡社製)、 lOmM 塩ィ匕マンガン、 lOmM ゥリジン— 5,—二リン酸ガラ クトース(UDP— Gal)、 2. 3mM 糖ペプチド誘導体(20)を含む lmlの反応液を 25 °Cで 45分間攪拌した。反応終了後、反応液を限外濾過フィルター ULTRAFRE— MC 10, 000NMWL Filter Unit (Millipore社製)によって遠心濃縮し、そこへ 50mM HEPES緩衝液 (pH7. 0)を加えて再度濃縮することによって洗浄し、最終 的に容量が 0. 23mlになるように水をカ卩えることによって 10mM (糖ペプチド理論含 量)高分子 (22)とした。高分子 (22)の同定は一部を BLase (塩野義製薬社製)で処 理し、反応液を逆相 HPLC (Inertsil (登録商標) ODS— 3 4. 6 X 250mmカラム 、移動相 A: 25mM酢酸アンモ-ゥム緩衝液 (pH6. 5)に対する B :ァセトニトリルの 2 %から 20%のグラジェント)により精製して化合物(23)を得ることにより行った。化合 物(23)の MALDI—TOFZMS: [M (average) +H] + = 2501. 6 (理論値: [M (a verage) +H] + = 2500. 4)。 50mM HEPES buffer (pH 7.0), 0.4U / ml baboon-derived j8 1, 4-galactose transferase (manufactured by Toyobo), lOmM salt 匕 manganese, lOmM uridine-5, 2-dilin Acid gala An lml reaction solution containing kutose (UDP-Gal) and 2.3 mM glycopeptide derivative (20) was stirred at 25 ° C for 45 minutes. After completion of the reaction, the reaction solution is concentrated by centrifugation using an ultrafiltration filter ULTRAFRE—MC 10,000 NMWL Filter Unit (Millipore), and then added with 50 mM HEPES buffer (pH 7.0) and concentrated again. Finally, 10 mM (theoretical content of glycopeptide) polymer (22) was obtained by adding water to a volume of 0.23 ml. A part of the polymer (22) was identified by BLase (manufactured by Shionogi & Co., Ltd.), and the reaction mixture was reversed-phase HPLC (Inertsil (registered trademark) ODS— 3 4.6 X 250 mm column, mobile phase A: Purification by B: acetonitrile gradient 2% to 20% of 25 mM ammonium acetate buffer (pH 6.5) gave compound (23). MALDI—TOFZMS of compound (23): [M (average) + H] + = 2501.6 (theoretical value: [M (a verage) + H] + = 2500.4).
[0220] (3. 6 化合物(24)〜(25)の合成)  [0220] (3.6 Synthesis of compounds (24) to (25))
[0221] [化 47] [0221] [Chemical 47]
Figure imgf000146_0001
Figure imgf000146_0001
UDP-N-ァセチルグルコサミン  UDP-N-acetyl glucosamine
β1,3- Ν-ァセチルグルコサミン転移酵素  β1,3-Ν-acetylglucosamine transferase
H'
Figure imgf000146_0002
H '
Figure imgf000146_0002
s 3 ¾Νν lvdlv41l>!ェβ」dsOJeJ①Jes--------- s 3 ¾Νν lvdlv41l>! e β ”dsOJeJ①Jes ---------
Figure imgf000147_0001
Figure imgf000147_0001
50mM HEPES緩衝液(pH7. 5)、0. 2U/ml ブタ由来 j8 1, 3— N—ァセチル ダルコサミン転移酵素(東洋紡社製)、 20mM 塩ィ匕マンガン、 40mM ゥリジン— 5, —二リン酸 N—ァセチルダルコサミン(UDP— GlcNAc)、 2. OmM 糖ペプチド誘 導体 (22)を含む lmlの反応液を 37°Cで 18時間攪拌した。反応終了後、反応液を 限外濾過フィルター ULTRAFRE— MC 10, OOONMWL Filter Unit (Millipo re社製)によって遠心濃縮し、そこへ 50mM HEPES緩衝液(pH7. 0)を加えて再 度濃縮することによって洗浄し、最終的に容量が 0. 2mlになるように水をカ卩えること によって 10mM (糖ペプチド理論含量)高分子(24)とした。高分子(24)の同定は一 部を BLase (塩野義製薬社製)で処理し、反応液を逆相 HPLC (Inertsil (登録商標) ODS- 3 4. 6 X 250mmカラム、移動相 A : 25mM酢酸アンモ-ゥム緩衝液(pH 6. 5)に対する B :ァセトニトリルの 2%から 20%のグラジェント)により精製して化合物 (25)を得ることにより行った。化合物(25)の MALDI—TOFZMS : [M (average) + H] + = 2704. 0 (理論値: [M (average) +H] + = 2703. 6)。 50 mM HEPES buffer (pH 7.5), 0.2 U / ml porcine j8 1, 3-— N-acetyl darcosamine transferase (manufactured by Toyobo Co., Ltd.), 20 mM manganese salt, 40 mM uridine— -A 1 ml reaction solution containing N-acetyldarcosamine diphosphate (UDP-GlcNAc) and 2. OmM glycopeptide derivative (22) was stirred at 37 ° C for 18 hours. After completion of the reaction, the reaction solution is concentrated by centrifugation using an ultrafiltration filter ULTRAFRE— MC 10, OOONMWL Filter Unit (Millipore), and then concentrated again by adding 50 mM HEPES buffer (pH 7.0). The polymer was washed and water was added so that the final volume was 0.2 ml to obtain 10 mM (glycopeptide theoretical content) polymer (24). Part of the polymer (24) was identified with BLase (manufactured by Shionogi & Co., Ltd.), and the reaction mixture was reversed-phase HPLC (Inertsil (registered trademark) ODS- 3 4.6 X 250 mm column, mobile phase A: 25 mM) Purification by B: acetonitrile gradient from 2% to 20% of ammonium acetate buffer (pH 6.5) gave compound (25). MALDI-TOFZMS of compound (25): [M (average) + H] + = 2704.0 (theoretical value: [M (average) + H] + = 2703. 6).
[0222] (3. 7 化合物(26)〜(27)の合成)  [0222] (3.7 Synthesis of Compounds (26) to (27))
[0223] [化 48] [0223] [Chemical 48]
U DP-ガラク卜一ス U DP-Garac
β1 ガラクトース転移酵素
Figure imgf000149_0001
β1 galactose transferase
Figure imgf000149_0001
Figure imgf000149_0002
Figure imgf000149_0002
26 26
Figure imgf000150_0001
Figure imgf000150_0001
¾NVMlvdlvsill>lo!H6JJdsOJe」9e>s--------- ¾NVMlvdlvsill> lo! H6JJdsOJe ”9e> s ---------
Figure imgf000150_0002
Figure imgf000150_0002
クトース(UDP— Gal)、 1. 8mM 糖ペプチド誘導体(24)を含む lmlの反応液を 25 °Cで 45分間攪拌した。反応終了後、反応液を限外濾過フィルター ULTRAFRE— MC 10, OOONMWL Filter Unit (Millipore社製)によって遠心濃縮し、そこへ 50mM HEPES緩衝液 (pH7. 0)を加えて再度濃縮することによって洗浄し、最終 的に容量が 0. 18mlになるように水をカ卩えることによって 10mM (糖ペプチド理論含 量)高分子 (26)とした。高分子 (26)の同定は一部を BLase (塩野義製薬社製)で処 理し、反応液を逆相 HPLC (Inertsil (登録商標) ODS— 3 4. 6 X 250mmカラム 、移動相 A: 25mM酢酸アンモ-ゥム緩衝液 (pH6. 5)に対する B :ァセトニトリルの 2 %から 20%のグラジェント)により精製して化合物(27)を得ることにより行った。化合 物(27)の MALDI— TOFZMS: [M (average) +H] + = 2867. 0 (理論値: [M (a verage) +H] + = 2865. 8)。 1 ml of a reaction solution containing kutose (UDP-Gal) and 1.8 mM glycopeptide derivative (24) was stirred at 25 ° C. for 45 minutes. After completion of the reaction, the reaction solution is centrifuged and concentrated by ultrafiltration filter ULTRAFRE- MC 10, OOONMWL Filter Unit (Millipore), and then 50mM HEPES buffer (pH 7.0) is added thereto and concentrated again. Finally, 10 mM (theoretical content of glycopeptide) polymer (26) was prepared by adding water so that the volume was 0.18 ml. Part of the polymer (26) was identified by BLase (manufactured by Shionogi & Co., Ltd.), and the reaction mixture was reversed-phase HPLC (Inertsil (registered trademark) ODS— 3 4.6 X 250 mm column, mobile phase A: This was carried out by purifying with B: acetonitrile 2% to 20% gradient against 25 mM ammonium acetate buffer (pH 6.5) to obtain compound (27). MALDI—TOFZMS of the compound (27): [M (average) + H] + = 28867.0 (theoretical value: [M (a verage) + H] + = 28865.8).
[0224] (3. 8 化合物(28)〜(29)の合成)  [0224] (3.8 Synthesis of Compounds (28) to (29))
[0225] [化 49] [0225] [Chemical 49]
26 26
UDP-N-ァセチルグルコサミン UDP-N-acetyl glucosamine
β1,3- Ν-ァセチルグルコサミン転移酵素  β1,3-Ν-acetylglucosamine transferase
Figure imgf000152_0001
Figure imgf000152_0001
Figure imgf000152_0002
Figure imgf000152_0002
OAV OAV
Figure imgf000153_0001
Figure imgf000153_0001
50mM HEPES緩衝液(pH7. 5)、0. 2U/ml ブタ由来 j8 1, 3— N—ァセチル ダルコサミン転移酵素(東洋紡社製)、 20mM 塩ィ匕マンガン、 40mM ゥリジン— 5, —二リン酸 N—ァセチルダルコサミン(UDP— GlcNAc)、 1. 5mM 糖ペプチド誘 導体 (26)を含む lmlの反応液を 25°Cで 45分間攪拌した。反応終了後、反応液を 限外濾過フィルター ULTRAFRE— MC 10, OOONMWL Filter Unit (Millipo re社製)によって遠心濃縮し、そこへ 50mM HEPES緩衝液(pH7. 0)を加えて再 度濃縮することによって洗浄し、最終的に容量が 0. 15mlになるように水をカ卩えること によって 10mM (糖ペプチド理論含量)高分子(28)とした。高分子(28)の同定は一 部を BLase (塩野義製薬社製)で処理し、反応液を逆相 HPLC (Inertsil (登録商標) ODS- 3 4. 6 X 250mmカラム、移動相 A : 25mM酢酸アンモ-ゥム緩衝液(pH 6. 5)に対する B :ァセトニトリルの 2%から 20%のグラジェント)により精製して化合物 (29)を得ることにより行った。化合物(29)の MALDI—TOFZMS : [M (average) + H] + = 3070. 0 (理論値: [M (average) +H] + = 3069. 0)。 50 mM HEPES buffer (pH 7.5), 0.2 U / ml pig-derived j8 1,3— N-acetyl darcosamine transferase (manufactured by Toyobo), 20 mM manganese salt, 40 mM uridine-5, —diphosphate N -Acetyldarcosamine (UDP- GlcNAc), 1.5 ml of a reaction solution containing 1.5 mM glycopeptide derivative (26) was stirred at 25 ° C for 45 minutes. After completion of the reaction, the reaction solution is concentrated by centrifugation using an ultrafiltration filter ULTRAFRE— MC 10, OOONMWL Filter Unit (Millipore), and then concentrated again by adding 50 mM HEPES buffer (pH 7.0). The polymer was washed and water was added so that the final volume was 0.15 ml to obtain a 10 mM (glycopeptide theoretical content) polymer (28). Part of the polymer (28) was identified with BLase (manufactured by Shionogi & Co., Ltd.), and the reaction mixture was reversed-phase HPLC (Inertsil (registered trademark) ODS- 3 4.6 X 250 mm column, mobile phase A: 25 mM. Purification by B: acetonitrile gradient from ammonium acetate buffer (pH 6.5) to give compound (29). MALDI-TOFZMS of compound (29): [M (average) + H] + = 3070.0 (theoretical value: [M (average) + H] + = 3069. 0).
[0226] (3. 9 化合物(30)〜(31)の合成)  [0226] (3.9 Synthesis of Compounds (30) to (31))
[0227] [化 50] [0227] [Chemical 50]
28 28
Figure imgf000155_0001
Figure imgf000155_0001
30 30
/DId /-οεΗΪ-οοί / DId / -οεΗΪ-οοί
Figure imgf000156_0001
Figure imgf000156_0001
50mM HEPES緩衝液(pH7. 0)、0. 2U/ml ヒト由来 j8 1, 4—ガラクトース転 移酵素 (東洋紡社製)、 10mM 塩ィ匕マンガン、 10mM ゥリジン— 5,—二リン酸ガラ クトース(UDP— Gal)、 ImM 糖ペプチド誘導体(28)を含む lmlの反応液を 25°C で 90分間攪拌した。反応終了後、反応液を限外濾過フィルター ULTRAFRE— M C 10, OOONMWL Filter Unit (Millipore社製)によって遠心濃縮し、そこへ 50 mM HEPES緩衝液 (pH7. 0)を加えて再度濃縮することによって洗浄し、最終的 に容量が 0. lmlになるように水をカ卩えることによって 10mM (糖ペプチド理論含量) 高分子 (30)とした。高分子 (30)の同定は一部を BLase (塩野義製薬社製)で処理し 、反応液を逆相 HPLC (Inertsil (登録商標) ODS— 3 4. 6 X 250mmカラム、移 動相 A: 25mM酢酸アンモ-ゥム緩衝液 (pH6. 5)に対する B :ァセトニトリルの 2% 力も 20%のグラジェント)により精製して化合物(31)を得ることにより行った。化合物 (31)の MALDI—TOF/MS : [M (average) +H] + = 23232. 4 (理論値: [M (av erage) +H] + = 3231. 1)。 50 mM HEPES buffer (pH 7.0), 0.2 U / ml human-derived j8 1,4-galactose transferase (manufactured by Toyobo Co., Ltd.), 10 mM salty manganese, 10 mM uridine-5, galactose diphosphate ( UDP-Gal) and lM reaction solution containing ImM glycopeptide derivative (28) were stirred at 25 ° C for 90 minutes. After completion of the reaction, the reaction solution is centrifuged and concentrated by ultrafiltration filter ULTRAFRE- MC 10, OOONMWL Filter Unit (Millipore), and then 50 mM HEPES buffer (pH 7.0) is added and concentrated again. Finally, water was added so that the volume became 0.1 ml, so that a 10 mM (theoretical content of glycopeptide) polymer (30) was obtained. Part of the polymer (30) was identified by treating with BLase (manufactured by Shionogi & Co., Ltd.), and the reaction solution was reversed-phase HPLC (Inertsil (registered trademark) ODS— 3 4.6 X 250 mm column, mobile phase A: This was carried out by purifying with 25 mM ammonium acetate buffer (pH 6.5) using B: acetonitrile at 2% strength and 20% gradient to obtain compound (31). MALDI—TOF / MS of compound (31): [M (average) + H] + = 23232.4 (theoretical value: [M (av erage) + H] + = 3231.1).
[0228] (3. 10 化合物(32)〜(33)の合成)  [0228] (3.10 Synthesis of Compounds (32) to (33))
[0229] [化 51] [0229] [Chemical 51]
12 12
UDP-ガラクトース UDP-galactose
β1 , 4-ガラクト一ス転移酵素
Figure imgf000158_0001
β1,4-galactose transferase
Figure imgf000158_0001
-Ser-Ala-Pro-Asp-Thr-Arg-NH2
Figure imgf000158_0002
-Ser-Ala-Pro-Asp-Thr-Arg-NH 2
Figure imgf000158_0002
Figure imgf000159_0001
Figure imgf000159_0001
50mM HEPES緩衝 ¾¾ (pH7. 0)、 0. 05U/ml ヒト由来 j8 1, 4—ガラクトース 転移酵素 (東洋紡社製)、 lOmM 塩ィ匕マンガン、 ImM ゥリジン— 5,—二リン酸ガ ラタトース(UDP— Gal)、 0. l%BSA、 5mM 糖ペプチド誘導体(12)を含む 1. 2 mlの反応液を 25°Cで 60分間攪拌した。反応終了後、反応液を限外濾過フィルター ULTRAFRE-MC 10, OOONMWL Filter Unit (Millipore社製)によって遠 心濃縮し、そこへ 50mM HEPES緩衝液 (pH7. 0)を加えて再度濃縮することによ つて洗浄し、最終的に容量が 0. 6mlになるように水をカ卩えることによって lOmM (糖 ペプチド理論含量)高分子(32)とした。高分子(32)の同定は一部を BLase (塩野義 製薬社製)で処理し、反応液を逆相 HPLC (Inertsil (登録商標) ODS— 3 4. 6 X 250mmカラム、移動相 A: 10mM酢酸アンモ-ゥム緩衝液(pH6. 5)に対する B : 1 0%10mM酢酸アンモ-ゥム緩衝液(pH6. 5)含有ァセトニトリルの 2%力も 40%の グラジェント)により精製して化合物(33)を得ることにより行った。化合物(33)の MA LDI-TOF/MS: [M (average) +H] + = 1770. 8 (理論値: [M (average) +H] + = 1770. 8)。 50 mM HEPES buffer ¾¾ (pH 7.0), 0.05 U / ml Human-derived j8 1,4-galactose transferase (manufactured by Toyobo Co., Ltd.), lOmM salt 匕 manganese, ImM uridine-5, diphosphate galactose (UDP) — Gal), 0.1% BSA, containing 5 mM glycopeptide derivative (12) 1.2 ml of the reaction solution was stirred at 25 ° C for 60 minutes. After completion of the reaction, the reaction solution was concentrated by centrifugation using an ultrafiltration filter ULTRAFRE-MC 10, OOONMWL Filter Unit (Millipore), and 50 mM HEPES buffer (pH 7.0) was added to it and concentrated again. LOmM (sugar) by washing and adding water to a final volume of 0.6 ml. Theoretical peptide content) polymer (32). Part of the polymer (32) was identified by treatment with BLase (Yoshio Shiono Pharmaceutical), and the reaction mixture was reversed-phase HPLC (Inertsil (registered trademark) ODS— 3 4.6 X 250 mm column, mobile phase A: 10 mM B: 10% ammonium acetate buffer (pH 6.5) B: 10% 10 mM ammonium acetate buffer (pH 6.5) containing acetonitrile containing 2% strength and 40% gradient) ). MA LDI-TOF / MS of compound (33): [M (average) + H] + = 1770.8 (theoretical value: [M (average) + H] + = 1770.8).
[0230] (3. 11 化合物(34)〜(35)の合成)  [0230] (3.1 Synthesis of Compounds (34) to (35))
[0231] [化 52] [0231] [Chemical 52]
UDP-N-ァセチルダルコサミン UDP-N-Acetyldarcosamine
β1,3- Ν-ァセチルグルコサミン転移酵素
Figure imgf000161_0001
β1,3-Ν-acetylglucosamine transferase
Figure imgf000161_0001
Figure imgf000161_0002
Figure imgf000161_0002
¾NvsMlvdlovUp>l!H6」Jdso」eJL>s---------- ¾NvsMlvdlovUp> l! H6 ”Jdso” eJL> s ----------
Figure imgf000162_0001
Figure imgf000162_0001
50mM HEPES緩衝液(pH7. 5)、0. 019mU/ml プタ由来 j8 1, 3— N—ァ セチルダルコサミン転移酵素(東洋紡社製)、 20mM 塩ィ匕マンガン、 40mM ゥリジ ン— 5,—二リン酸 N—ァセチルダルコサミン(UDP— GlcNAc)、 0. 5%BSA、 2. 5 mM 糖ペプチド誘導体(32)を含む 2. Omlの反応液を 37°Cで 24時間攪拌した。反 応終了後、反応液を限外濾過フィルター ULTRAFRE— MC 10, OOONMWL F ilter Unit (Millipore社製)によって遠心濃縮し、そこへ 50mM HEPES緩衝液( PH7. 0)をカ卩えて再度濃縮することによって洗浄し、最終的に容量が 0. 5mlになる ように水を加えることによって 10mM (糖ペプチド理論含量)高分子(34)とした。高分 子(34)の同定は一部を BLase (塩野義製薬社製)で処理し、反応液を逆相 HPLC ( Inertsil (登録商標) ODS— 3 4. 6 X 250mmカラム、移動相 A: 10mM酢酸アン モ -ゥム緩衝液 (ρΗ6. 5)に対する B : 10%10mM酢酸アンモ-ゥム緩衝液 (pH6. 5)含有ァセトニトリルの 2%から 40%のグラジェント)により精製して化合物(35)を得 ることにより行った。化合物(35)の MALDI—TOFZMS : [M (average) +H] " = 1974. 3 (理論値: [M (avemge) +H] + = 1973. 0)。 50 mM HEPES buffer (pH 7.5), 0.019 mU / ml derived from j8 1, 3—N-acetyl laccosamine transferase (manufactured by Toyobo Co., Ltd.), 20 mM salty manganese, 40 mM uridine— 2. Oml reaction solution containing N-acetylethylcolcamine phosphate (UDP-GlcNAc), 0.5% BSA, and 2.5 mM glycopeptide derivative (32) was stirred at 37 ° C for 24 hours. Anti After completion of the reaction, the reaction solution is centrifuged and concentrated with an ultrafiltration filter ULTRAFRE- MC 10, OOONMWL Filter Unit (Millipore), and 50 mM HEPES buffer solution (PH7.0) is added to it and concentrated again. After washing, water was added to a final volume of 0.5 ml to obtain a 10 mM (glycopeptide theoretical content) polymer (34). For identification of the polymer (34), a part of it was treated with BLase (manufactured by Shionogi & Co., Ltd.), and the reaction solution was reversed-phase HPLC (Inertsil (registered trademark) ODS— 3 4.6 X 250 mm column, mobile phase A: 10mM acetate Ann mode - © beam buffer (ρΗ 6 5.) for B: 10% 10mM acetate ammonium - © beam buffer (. pH 6 5) to give gradient) from 2% to 40% of the content Asetonitoriru This was carried out by obtaining compound (35). MALDI-TOFZMS of compound (35): [M (average) + H] "= 1974.3 (theoretical value: [M (avemge) + H] + = 1973. 0).
[0232] (3. 12 化合物(36)〜(37)の合成)  [0232] (3.12 Synthesis of Compounds (36) to (37))
[0233] [化 53] [0233] [Chemical 53]
U DP-ガラクト一ス U DP-galactose
β1,4-ガラクト一ス転移酵素
Figure imgf000164_0001
β1,4-galactosyltransferase
Figure imgf000164_0001
Figure imgf000164_0002
Figure imgf000164_0002
Figure imgf000164_0003
Figure imgf000164_0003
のS ¾Nv_lvdlvlll>I!ェ」LdsOJeJe JleAs---------- S ¾Nv_lvdlvlll> I! ”LdsOJeJe JleAs ----------
Figure imgf000165_0001
Figure imgf000165_0001
50mM HEPES緩衝液(pH7. 0)、 0. 05U/ml ヒト由来 j8 1, 4—ガラクトース 転移酵素 (東洋紡社製)、 10mM 塩ィ匕マンガン、 20mM ゥリジン— 5,—二リン酸 ガラクトース(UDP— Gal)、 0. 1%BSA、 5mM 糖ペプチド誘導体(34)を含む 1. Omlの反応液を 25°Cで 45分間攪拌した。反応終了後、反応液を限外濾過フィルタ 一 ULTRAFRE— MC 10, 000NMWL Filter Unit (Millipore社製)によって 遠心濃縮し、そこへ 50mM HEPES緩衝液 (pH7. 0)を加えて再度濃縮することに よって洗浄し、最終的に容量が 0. 5mlになるように水をカ卩えることによって 10mM ( 糖ペプチド理論含量)高分子(36)とした。高分子(36)の同定は一部を BLase (塩野 義製薬社製)で処理し、反応液を逆相 HPLC (Inertsil (登録商標) ODS— 3 4. 6 X 250mmカラム、移動相 A: 10mM酢酸アンモ-ゥム緩衝液(pH6. 5)に対する B : 10%10mM酢酸アンモ-ゥム緩衝液(pH6. 5)含有ァセトニトリルの 2%力も 40%の グラジェント)により精製して化合物(37)を得ることにより行った。化合物(37)の MA LDI-TOF/MS: [M (average) +H] + = 2136. 1 (理論値: [M (average) +H] + = 2135. 1)。 50 mM HEPES buffer (pH 7.0), 0.05 U / ml Human-derived j8 1, 4-galactose transferase (manufactured by Toyobo Co., Ltd.), 10 mM sodium chloride, 20 mM uridine-5, diphosphate Contains galactose (UDP-Gal), 0.1% BSA, 5 mM glycopeptide derivative (34) 1. The Oml reaction was stirred at 25 ° C for 45 minutes. After completion of the reaction, the reaction solution is centrifuged and concentrated with an ultrafiltration filter, ULTRAFRE-MC 10,000 NMWL Filter Unit (Millipore), and 50 mM HEPES buffer (pH 7.0) is added thereto and concentrated again. After washing, water was added so that the final volume became 0.5 ml to obtain a 10 mM (glycopeptide theoretical content) polymer (36). Part of the polymer (36) was identified by treating with BLase (Yoshio Shiono Pharmaceutical), and the reaction mixture was reversed-phase HPLC (Inertsil (registered trademark) ODS— 3 4.6 X 250 mm column, mobile phase A: 10 mM Compound (37) purified by B: 10% 10 mM ammonium acetate buffer (pH 6.5) containing 2% strength of 40% gradient of ammonium acetate buffer (pH 6.5) against ammonium acetate buffer (pH 6.5) Was done by MA LDI-TOF / MS of compound (37): [M (average) + H] + = 213.61 (theoretical value: [M (average) + H] + = 21135. 1).
[0234] (3. 13 化合物(38)〜(39)の合成)  [0234] (3.13 Synthesis of Compounds (38) to (39))
[0235] [化 54] [0235] [Chemical 54]
UDP-N-ァセチルクルコサミン UDP-N-acetyl crucosamine
β1,3- Ν-ァセチルグルコサミン転移酵素
Figure imgf000167_0001
β1,3-Ν-acetylglucosamine transferase
Figure imgf000167_0001
Figure imgf000167_0002
Figure imgf000167_0002
Figure imgf000168_0001
Figure imgf000168_0001
50mM HEPES緩衝液(pH7. 5)、0. 019mU/ml ブタ由来 j8 1, 3— N—ァ セチルダルコサミン転移酵素(東洋紡社製)、 20mM 塩ィ匕マンガン、 40mM ゥリジ ン— 5,—二リン酸 N—ァセチルダルコサミン(UDP— GlcNAc)、 0. 5%BSA、 2. 5 mM 糖ペプチド誘導体(36)を含む 2. Omlの反応液を 37°Cで 24時間攪拌した。反 応終了後、反応液を限外濾過フィルター ULTRAFRE— MC 10, 000NMWL F ilter Unit (Millipore社製)によって遠心濃縮し、そこへ 50mM HEPES緩衝液( pH7. 0)をカ卩えて再度濃縮することによって洗浄し、最終的に容量が 0. 5mlになる ように水を加えることによって 10mM (糖ペプチド理論含量)高分子(38)とした。高分 子(38)の同定は一部を BLase (塩野義製薬社製)で処理し、反応液を逆相 HPLC ( Inertsil (登録商標) ODS— 3 4. 6 X 250mmカラム、移動相 A: 10mM酢酸アン モ -ゥム緩衝液 (ρΗ6. 5)に対する B : 10%10mM酢酸アンモ-ゥム緩衝液 (pH6. 5)含有ァセトニトリルの 2%から 40%のグラジェント)により精製して化合物(39)を得 ることにより行った。化合物(39)の MALDI—TOFZMS : [M (average) +Na] + = 2360. 0 (理論値: [M (average) +H] + = 2361. 3)。 50 mM HEPES buffer (pH 7.5), 0.019 mU / ml Pig-derived j8 1, 3— N-Acetyldarcosamine transferase (manufactured by Toyobo Co., Ltd.), 20 mM salted manganese salt, 40 mM uridine — 5, 2 2. Oml reaction solution containing N-acetylyldarcosamine phosphate (UDP-GlcNAc), 0.5% BSA, 2.5 mM glycopeptide derivative (36) was stirred at 37 ° C for 24 hours. After completion of the reaction, the reaction mixture is centrifuged and concentrated with an ultrafiltration filter ULTRAFRE—MC 10,000 NMWL Filter Unit (Millipore), and 50 mM HEPES buffer (pH 7.0) is added to it and concentrated again. After washing with water, 10 mM (theoretical content of glycopeptide) polymer (38) was obtained by adding water to a final volume of 0.5 ml. For identification of the polymer (38), a part was treated with BLase (manufactured by Shionogi Pharmaceutical Co., Ltd.), and the reaction solution was reversed-phase HPLC (Inertsil (registered trademark) ODS— 3 4.6 X 250 mm column, mobile phase A: 10mM acetate Ann mode - © beam buffer (ρΗ 6 5.) for B: 10% 10mM acetate ammonium - © beam buffer (. pH 6 5) to give gradient) from 2% to 40% of the content Asetonitoriru This was carried out by obtaining compound (39). MALDI—TOFZMS of compound (39): [M (average) + Na] + = 236.0.0 (theoretical value: [M (average) + H] + = 23361.3).
[0236] (3. 14 化合物(40)〜(41)の合成)  [0236] (3.14 Synthesis of Compounds (40) to (41))
[0237] [化 55] [0237] [Chemical 55]
U DP-ガラクトース U DP-galactose
β1,4-ガラ外一ス転移酵素
Figure imgf000170_0001
β1,4-Gala exogenous monotransferase
Figure imgf000170_0001
Figure imgf000170_0002
Figure imgf000170_0002
BLase BLase
Figure imgf000171_0001
Figure imgf000171_0001
T00.S0/.00Zdf/X3d Oil ■OC I/ OOZ OAV 50mM HEPES緩衝液(pH7. 0)、 0. 05U/ml ヒト由来 j8 1, 4—ガラクトース 転移酵素 (東洋紡社製)、 10mM 塩ィ匕マンガン、 20mM ゥリジン— 5,—二リン酸 ガラクトース(UDP— Gal)、 0. 1%BSA、 5mM 糖ペプチド誘導体(38)を含む 0. 8mlの反応液を 25°Cで 105分間攪拌した。反応終了後、反応液を限外濾過フィルタ 一 ULTRAFRE— MC 10, OOONMWL Filter Unit (Millipore社製)によって 遠心濃縮し、そこへ 50mM HEPES緩衝液 (pH7. 0)を加えて再度濃縮することに よって洗浄し、最終的に容量が 0. 4mlになるように水をカ卩えることによって 10mM ( 糖ペプチド理論含量)高分子 (40)とした。高分子 (40)の同定は一部を BLase (塩野 義製薬社製)で処理し、反応液を逆相 HPLC (Inertsil (登録商標) ODS— 3 4. 6 X 250mmカラム、移動相 A: 10mM酢酸アンモ-ゥム緩衝液(pH6. 5)に対する B : 10%10mM酢酸アンモ-ゥム緩衝液(pH6. 5)含有ァセトニトリルの 2%力も 40%の グラジェント)により精製して化合物 (41)を得ることにより行った。化合物 (41)の MA LDI-TOF/MS: [M (average) +H] + = 2499. 5 (理論値: [M (average) +H] + = 2500. 4)。 T00.S0 / .00Zdf / X3d OilOC I / OOZ OAV 50 mM HEPES buffer (pH 7.0), 0.05 U / ml Human-derived j8 1, 4-galactose transferase (manufactured by Toyobo Co., Ltd.), 10 mM sodium chloride, 20 mM uridine-5, diphosphate galactose (UDP) Gal), 0.1% BSA, 5 mM glycopeptide derivative (38) containing 0.8 ml of the reaction solution was stirred at 25 ° C. for 105 minutes. After completion of the reaction, the reaction solution is concentrated by centrifugation using an ultrafiltration filter, ULTRAFRE- MC 10, OOONMWL Filter Unit (Millipore), and 50 mM HEPES buffer (pH 7.0) is added thereto and concentrated again. After washing, water was added so that the final volume became 0.4 ml to obtain a 10 mM (glycopeptide theoretical content) polymer (40). Part of the polymer (40) was identified using BLase (manufactured by Shionogi & Co., Ltd.), and the reaction mixture was reversed-phase HPLC (Inertsil (registered trademark) ODS— 3 4.6 X 250 mm column, mobile phase A: 10 mM B against Ammonium acetate buffer (pH 6.5): Compound purified by purification with B: 10% 10 mM ammonium acetate buffer (pH 6.5) 2% strength of acetonitrile containing 40% gradient (41) Was done by MA LDI-TOF / MS of the compound (41): [M (average) + H] + = 24999.5 (theoretical value: [M (average) + H] + = 2500.4).
[0238] (3. 15 化合物(42)〜(43)の合成)  [0238] (3. 15 Synthesis of Compounds (42) to (43))
[0239] [化 56] [0239] [Chem 56]
UDP-N-ァセチルグルコサミン UDP-N-acetyl glucosamine
β1,3- Ν-ァセチルグルコサミン転移酵素
Figure imgf000173_0001
β1,3-Ν-acetylglucosamine transferase
Figure imgf000173_0001
Figure imgf000173_0002
Figure imgf000173_0002
42 42
Figure imgf000174_0001
50mM HEPES緩衝液(pH7. 5)、0. 019mU/ml ブタ由来 j8 1, 3— N—ァ セチルダルコサミン転移酵素(東洋紡社製)、 20mM 塩ィ匕マンガン、 40mM ゥリジ ン— 5,—二リン酸 N—ァセチルダルコサミン(UDP— GlcNAc)、 0. 5%BSA、 2. 5 mM 糖ペプチド誘導体 (40)を含む 1. 6mlの反応液を 37°Cで 24時間攪拌した。反 応終了後、反応液を限外濾過フィルター ULTRAFRE— MC 10, 000NMWL F ilter Unit (Millipore社製)によって遠心濃縮し、そこへ 50mM HEPES緩衝液( pH7. 0)をカ卩えて再度濃縮することによって洗浄し、最終的に容量が 0. 4mlになる ように水を加えることによって 10mM (糖ペプチド理論含量)高分子 (42)とした。高分 子 (42)の同定は一部を BLase (塩野義製薬社製)で処理し、反応液を逆相 HPLC ( Inertsil (登録商標) ODS— 3 4. 6 X 250mmカラム、移動相 A: 10mM酢酸アン モ -ゥム緩衝液 (ρΗ6. 5)に対する B : 10%10mM酢酸アンモ-ゥム緩衝液 (pH6. 5)含有ァセトニトリルの 2%から 40%のグラジェント)により精製して化合物 (43)を得 ることにより行った。化合物(43)の MALDI—TOFZMS : [M (average) +H] " = 2703. 2 (¾|^fg: [M (average) +H] + = 2703. 6)。
Figure imgf000174_0001
50 mM HEPES buffer (pH 7.5), 0.019 mU / ml Pig-derived j8 1, 3— N-Acetyldarcosamine transferase (manufactured by Toyobo Co., Ltd.), 20 mM salted manganese salt, 40 mM uridine — 5, 2 1.6 ml of a reaction solution containing N-acetyldarcosamine phosphate (UDP-GlcNAc), 0.5% BSA, and 2.5 mM glycopeptide derivative (40) was stirred at 37 ° C. for 24 hours. After completion of the reaction, the reaction mixture is centrifuged and concentrated with an ultrafiltration filter ULTRAFRE—MC 10,000 NMWL Filter Unit (Millipore), and 50 mM HEPES buffer (pH 7.0) is added to it and concentrated again. After washing with water, 10 mM (theoretical content of glycopeptide) polymer (42) was obtained by adding water to a final volume of 0.4 ml. For identification of the polymer (42), a part of it was treated with BLase (manufactured by Shionogi & Co., Ltd.), and the reaction solution was reversed-phase HPLC (Inertsil (registered trademark) ODS— 3 4.6 X 250 mm column, mobile phase A: 10mM acetate Ann mode - © beam buffer (ρΗ 6 5.) for B: 10% 10mM acetate ammonium - © beam buffer (. pH 6 5) to give gradient) from 2% to 40% of the content Asetonitoriru This was done by obtaining compound (43). MALDI-TOFZMS of the compound (43): [M (average) + H] "= 27033.2 (¾ | ^ fg: [M (average) + H] + = 2703. 6).
[0240] (3. 16 化合物(44)〜(45)の合成)  [0240] (3. Synthesis of compounds (44) to (45))
[0241] [化 57] [0241] [Chemical 57]
42 42
UDP-ガラクトース UDP-galactose
β1 ,4-ガラ外一ス転移酵素
Figure imgf000176_0001
β1,4-Gala exogenous monotransferase
Figure imgf000176_0001
Figure imgf000176_0002
Figure imgf000176_0002
Figure imgf000177_0001
Figure imgf000177_0001
His-Gly-Va^r-Ser-Ala-Pro-Asf Thr-Arg-NH2
Figure imgf000177_0002
His-Gly-Va ^ r-Ser-Ala-Pro-Asf Thr-Arg-NH 2
Figure imgf000177_0002
50mM HEPES緩衝液(pH7. 0)、 0. 05U/ml ヒト由来 j8 1, 4—ガラクトース 転移酵素 (東洋紡社製)、 10mM 塩ィ匕マンガン、 20mM ゥリジン— 5,—二リン酸 ガラクトース(UDP— Gal)、 0. 1%BSA、 5mM 糖ペプチド誘導体(42)を含む 0. 6mlの反応液を 25°Cで 60分間攪拌した。反応終了後、反応液を限外濾過フィルタ 一 ULTRAFRE— MC 10, OOONMWL Filter Unit (Millipore社製)によって 遠心濃縮し、そこへ 50mM HEPES緩衝液 (pH7. 0)を加えて再度濃縮することに よって洗浄し、最終的に容量が 0. 3mlになるように水をカ卩えることによって 10mM ( 糖ペプチド理論含量)高分子 (44)とした。高分子 (44)の同定は一部を BLase (塩野 義製薬社製)で処理し、反応液を逆相 HPLC (Inertsil (登録商標) ODS— 3 4. 6 X 250mmカラム、移動相 A: 10mM酢酸アンモ-ゥム緩衝液(pH6. 5)に対する B : 10%10mM酢酸アンモ-ゥム緩衝液(pH6. 5)含有ァセトニトリルの 2%力も 40%の グラジェント)により精製して化合物 (45)を得ることにより行った。化合物 (45)の MA LDI-TOF/MS: [M (average) +H] + = 2865. 5 (理論値: [M (average) +H] + = 2865. 8)。 50 mM HEPES buffer (pH 7.0), 0.05 U / ml Human-derived j8 1, 4-galactose transferase (manufactured by Toyobo Co., Ltd.), 10 mM sodium chloride, 20 mM uridine-5, diphosphate galactose (UDP) (Gal), 0.1% BSA, 5 mM glycopeptide derivative (42) containing 0.6 ml of the reaction solution was stirred at 25 ° C. for 60 minutes. After completion of the reaction, the reaction solution is concentrated by centrifugation using an ultrafiltration filter, ULTRAFRE- MC 10, OOONMWL Filter Unit (Millipore), and 50 mM HEPES buffer (pH 7.0) is added thereto and concentrated again. After washing, water was added so that the final volume was 0.3 ml to obtain 10 mM (theoretical content of glycopeptide) polymer (44). Part of the polymer (44) was identified using BLase (manufactured by Shionogi & Co., Ltd.), and the reaction mixture was reversed-phase HPLC (Inertsil (registered trademark) ODS— 3 4.6 X 250 mm column, mobile phase A: 10 mM Compound B (45) against ammonium acetate buffer (pH 6.5): purified by B: 10% 10 mM ammonium acetate buffer (pH 6.5) with 2% strength of acetonitrile containing 40% gradient Was done by MA LDI-TOF / MS of compound (45): [M (average) + H] + = 28655.5 (theoretical value: [M (average) + H] + = 2865. 8).
[0242] (3. 17 化合物(46)〜(47)の合成)  [0242] (3. 17 Synthesis of compounds (46) to (47))
[0243] [化 58] [0243] [Chemical 58]
Figure imgf000179_0001
Figure imgf000179_0001
UDP善ァセチルグルコサミン UDP good acetyl glucosamine
β1, 3- N-ァセチルグルコサミン転移酵素  β1,3-N-acetyl glucosamine transferase
Figure imgf000179_0002
Figure imgf000179_0002
//D/ O looz-soz-ooidTId /-οεΗΪζ-οοίAV 6Ζ_· // D / O looz-soz-ooidTId / -οεΗΪζ-οοίAV 6Ζ_ ·
Figure imgf000180_0001
Figure imgf000180_0001
50mM HEPES緩衝液(pH7. 5)、0. 019mU/ml ブタ由来 j8 1, 3— N—ァ セチルダルコサミン転移酵素(東洋紡社製)、 20mM 塩ィ匕マンガン、 40mM ゥリジ ン— 5,—二リン酸 N—ァセチルダルコサミン(UDP— GlcNAc)、 0. 5%BSA、 2. 5 mM 糖ペプチド誘導体 (44)を含む 0. 8mlの反応液を 37°Cで 24時間攪拌した。反 応終了後、反応液を限外濾過フィルター ULTRAFRE— MC 10, 000NMWL F ilter Unit (Millipore社製)によって遠心濃縮し、そこへ 50mM HEPES緩衝液( pH7. 0)をカ卩えて再度濃縮することによって洗浄し、最終的に容量が 0. 2mlになる ように水を加えることによって 10mM (糖ペプチド理論含量)高分子 (46)とした。高分 子 (46)の同定は一部を BLase (塩野義製薬社製)で処理し、反応液を逆相 HPLC ( Inertsil (登録商標) ODS— 3 4. 6 X 250mmカラム、移動相 A: 10mM酢酸アン モ -ゥム緩衝液 (ρΗ6. 5)に対する B : 10%10mM酢酸アンモ-ゥム緩衝液 (pH6. 5)含有ァセトニトリルの 2%から 40%のグラジェント)により精製して化合物 (47)を得 ることにより行った。化合物(47)の MALDI—TOFZMS : [M (average) +H] " = 3067. 1 (理論値: [M (average) +H] + = 3069. 0)。 50 mM HEPES buffer (pH 7.5), 0.019 mU / ml Pig-derived j8 1, 3— N-Acetyldarcosamine transferase (manufactured by Toyobo Co., Ltd.), 20 mM salted manganese salt, 40 mM uridine — 5, 2 0.8 ml of a reaction solution containing N-acetyldarcosamine phosphate (UDP-GlcNAc), 0.5% BSA, and 2.5 mM glycopeptide derivative (44) was stirred at 37 ° C for 24 hours. After completion of the reaction, the reaction mixture is centrifuged and concentrated with an ultrafiltration filter ULTRAFRE—MC 10,000 NMWL Filter Unit (Millipore), and 50 mM HEPES buffer (pH 7.0) is added to it and concentrated again. After washing with water, 10 mM (theoretical content of glycopeptide) polymer (46) was obtained by adding water to a final volume of 0.2 ml. For identification of the polymer (46), a part of it was treated with BLase (manufactured by Shionogi & Co., Ltd.), and the reaction solution was reversed-phase HPLC (Inertsil (registered trademark) ODS— 3 4.6 X 250 mm column, mobile phase A: 10mM acetate Ann mode - © beam buffer (ρΗ 6 5.) for B: 10% 10mM acetate ammonium - © beam buffer (. pH 6 5) to give gradient) from 2% to 40% of the content Asetonitoriru This was done by obtaining compound (47). MALDI—TOFZMS of the compound (47): [M (average) + H] ”= 3067.1 (theoretical value: [M (average) + H] + = 3069.0).
[0244] (3. 18 化合物(48)〜(49)の合成)  [0244] (3. 18 Synthesis of Compounds (48) to (49))
[0245] [化 59] [0245] [Chemical 59]
UDP-ガラ外—ス UDP-outside—
β1 ,4-ガラクトース転移酵素
Figure imgf000182_0001
β1,4-galactosyltransferase
Figure imgf000182_0001
Figure imgf000182_0002
Figure imgf000182_0002
48 48
Figure imgf000183_0001
Figure imgf000183_0001
T00.S0/.00Zdf/X3d 381 50mM HEPES緩衝液(pH7. 0)、 0. 05U/ml ヒト由来 j8 1, 4—ガラクトース 転移酵素 (東洋紡社製)、 10mM 塩ィ匕マンガン、 20mM ゥリジン— 5,—二リン酸 ガラクトース(UDP— Gal)、 0. 1%BSA、 5mM 糖ペプチド誘導体(46)を含む 0. 2mlの反応液を 25°Cで 60分間攪拌した。反応終了後、反応液を限外濾過フィルタ 一 ULTRAFRE— MC 10, OOONMWL Filter Unit (Millipore社製)によって 遠心濃縮し、そこへ 50mM HEPES緩衝液 (pH7. 0)を加えて再度濃縮することに よって洗浄し、最終的に容量が 0. 1mlになるように水をカ卩えることによって 10mM ( 糖ペプチド理論含量)高分子 (48)とした。高分子 (48)の同定は一部を BLase (塩野 義製薬社製)で処理し、反応液を逆相 HPLC (Inertsil (登録商標) ODS— 3 4. 6 X 250mmカラム、移動相 A: 10mM酢酸アンモ-ゥム緩衝液(pH6. 5)に対する B : 10%10mM酢酸アンモ-ゥム緩衝液(pH6. 5)含有ァセトニトリルの 2%力も 40%の グラジェント)により精製して化合物 (49)を得ることにより行った。化合物 (49)の MA LDI-TOF/MS: [M (average) +H] + = 3233. 4 (理論値: [M (average) +H] + = 3231. 1)。 T00.S0 / .00Zdf / X3d 381 50 mM HEPES buffer (pH 7.0), 0.05 U / ml Human-derived j8 1, 4-galactose transferase (manufactured by Toyobo Co., Ltd.), 10 mM sodium chloride, 20 mM uridine-5, diphosphate galactose (UDP) Gal), 0.1% BSA, 5 mM glycopeptide derivative (46) containing 0.2 ml reaction solution was stirred at 25 ° C. for 60 minutes. After completion of the reaction, the reaction solution is concentrated by centrifugation using an ultrafiltration filter, ULTRAFRE- MC 10, OOONMWL Filter Unit (Millipore), and 50 mM HEPES buffer (pH 7.0) is added thereto and concentrated again. After washing, water was added so that the final volume was 0.1 ml to obtain a 10 mM (glycopeptide theoretical content) polymer (48). Part of the polymer (48) was identified with BLase (manufactured by Shionogi & Co., Ltd.), and the reaction mixture was reversed-phase HPLC (Inertsil (registered trademark) ODS— 3 4.6 X 250 mm column, mobile phase A: 10 mM B against Ammonium acetate buffer (pH 6.5): Compound purified by purification with B: 10% ammonium acetate buffer (pH 6.5) containing 2% strength of 40% gradient (49) Was done by MA LDI-TOF / MS of the compound (49): [M (average) + H] + = 32333.4 (theoretical value: [M (average) + H] + = 3231.1).
[0246] (3. 19 化合物(50)の合成)  [0246] (3. 19 Synthesis of Compound (50))
[0247] [化 60] [0247] [Chemical 60]
Figure imgf000185_0001
Figure imgf000185_0001
25mM HEPES緩衝液(pH7. 6) , 0. 05U/ml ヒト由来 j8 1, 4—ガラクトース 転移酵素 (東洋紡社製)、 lOmM 塩ィ匕マンガン、 2. 4mM ゥリジン— 5,—二リン酸 ガラクトース(UDP— Gal)、 0. 5%BSA、 0. 088mM 糖ペプチド誘導体(6)を含 む 2. Omlの反応液を 25°Cで 180分間攪拌した。反応終了後、反応液を逆相 HPLC により精製して化合物(50)を得た。化合物(50)の MALDI— TOFZMS: [M (ave rage) +H] + = 3006. 0 (¾|^fg: [M (average) +H] + = 3005. 1)。 25 mM HEPES buffer (pH 7. 6), 0.05 U / ml Human-derived j8 1, 4-galactose transferase (manufactured by Toyobo), lOmM salt 匕 manganese, 2.4 mM uridine-5, diphosphate galactose ( UDP-Gal) containing 0.5% BSA and 0.088 mM glycopeptide derivative (6) 2. The Oml reaction solution was stirred at 25 ° C for 180 minutes. After completion of the reaction, the reaction solution was purified by reverse phase HPLC to obtain compound (50). MALDI—TOFZMS of compound (50): [M (ave rage) + H] + = 3006.0 (¾ | ^ fg: [M (average) + H] + = 3005.1).
[0248] (3. 20 化合物(51)の合成)  [0248] (3. 20 Synthesis of Compound (51))
[0249] [化 61] [0249] [Chemical 61]
Figure imgf000187_0001
Figure imgf000187_0001
50mM HEPES緩衝液(pH7. 5)、 4. 55mU/l ブタ由来 j8 1, 3— N—ァセチ ルダルコサミン転移酵素(東洋紛社製)、 20mM 塩ィ匕マンガン、 40mM ゥリジン— 5,—二リン酸 N—ァセチルダルコサミン(UDP— GlcNAc)、 0. ImM 糖ペプチド 誘導体 (50) (化合物(6)から化合物(50)までの理論収率より見積もった)を含む 20 0 /z 1の反応液を 37°Cで 24時間攪拌した。反応終了後、反応液を逆相 HPLCにより 精製して化合物(51)を得た。化合物(51)の MALDI— TOFZMS: [M (average) +H] + = 3209. 9 (M m : [M (average) +H] + = 3208. 3)。 50 mM HEPES buffer (pH 7.5), 4. 55 mU / l Pig-derived j8 1,3— N-acetyldarcosamine transferase (manufactured by Toyo Denshi Co., Ltd.), 20 mM manganese salt, 40 mM uridine-5, diphosphate Reaction solution of 20 0 / z 1 containing N-acetylcylcosamine (UDP—GlcNAc), 0. ImM glycopeptide derivative (50) (estimated from theoretical yield from compound (6) to compound (50)) The mixture was stirred at 37 ° C for 24 hours. After completion of the reaction, the reaction solution was purified by reverse phase HPLC to obtain compound (51). MALDI—TOFZMS of the compound (51): [M (average) + H] + = 3209.9 (M m: [M (average) + H] + = 32088.3).
[0250] (3. 21 化合物(53)の合成)  [0250] (3.2 Synthesis of Compound (53))
[0251] [化 62] [0251] [Chemical 62]
Figure imgf000189_0001
Figure imgf000189_0001
50mM HEPES緩衝液(pH7. 0)、 0. lU/ml ヒト由来 j8 1, 4—ガラクトース転 移酵素 (東洋紡社製)、 0. 0185mUZmlラット組換え a 2, 3— (N)—シアル酸転移 酵素(Calbiochem社製)、 0. 0175mU/ml ラット組換え α 2, 3— (Ο)—シアル 酸転移酵素(Calbiochem社製) 10mM 塩化マンガン、 5mM ゥリジン 5,一二リ ン酸ガラタトース(UDP— Gal)、 5mM シチジン— 5,—リン酸シアル酸(CMP— N ANA)、0. 1%BSA、0. 02mM 糖ペプチド誘導体(51) (ィ匕合物(6)から化合物( 51)までの理論収率より見積もった)を含む 1. Omlの反応液を 25°Cで 24時間攪拌し た。反応終了後、反応液を逆相 HPLCにより精製して化合物(53)を得た。化合物(5 3)の MALDI—TOF/MS : [M (average) +ΗΓ = 3954. 1 (理論値: [M (avera ge) +H] + = 3953. 0)。 50 mM HEPES buffer (pH 7.0), 0.1 uU / ml human-derived j8 1,4-galactose transferase (manufactured by Toyobo), 0.0185 mUZml rat recombinant a 2, 3- (N) -sialic acid transfer Enzyme (Calbiochem), 0.0175mU / ml rat recombinant α 2, 3— (Ο) —sialyltransferase (Calbiochem) 10mM manganese chloride, 5mM uridine 5, galactose monophosphate (UDP—) Gal), 5 mM cytidine-5, -phosphosialic acid (CMP—N ANA), 0.1% BSA, 0.02 mM glycopeptide derivative (51) (from compound (6) to compound (51) 1. The Oml reaction solution was stirred at 25 ° C for 24 hours. After completion of the reaction, the reaction solution was purified by reverse phase HPLC to obtain Compound (53). MALDI—TOF / MS of compound (53): [M (average) + ΗΓ = 3954.1 (theoretical value: [M (average) + H] + = 3953. 0).
[0252] (3. 22 化合物(54)の合成)  [0252] (3.2 Synthesis of Compound (54))
[0253] [化 63] [0253] [Chemical 63]
Figure imgf000191_0001
mM HEPES緩衝液(pH7. 0)、 lOmM 塩ィ匕マンガン、 0. 1%BSA、 0. 1U Zmlヒト組換え α ΐ, 3—フコース酸転移酵素 V (Calbiochem社製)、 2mM グアノ シンー5,一二リン酸フコース(GDP—Fuc)、 0. 08mM 糖ペプチド誘導体(53) ( 化合物(6)から化合物(53)までの理論収率より見積もった)を含む 200 μ 1の反応液 を 25°Cで 24時間攪拌した。反応終了後、反応液を逆相 HPLCにより精製して化合 物(54)を得た。化合物(54)の MALDI—TOFZMS : [M (average) +H] + = 424 5. 4 (¾|^fg: [M (average) +H] + =4245. 2)。
Figure imgf000191_0001
mM HEPES buffer (pH 7.0), lOmM salt and manganese, 0.1% BSA, 0.1 U Zml human recombinant α ΐ, 3-Fucose transferase V (Calbiochem), 2 mM guanosine-5, monodiphosphate fucose (GDP-Fuc), 0.08 mM glycopeptide derivative (53) (compound (6) To the compound (53) (estimated from the theoretical yield) to 200 μl of the reaction solution was stirred at 25 ° C. for 24 hours. After completion of the reaction, the reaction solution was purified by reverse phase HPLC to obtain a compound (54). MALDI—TOFZMS of the compound (54): [M (average) + H] + = 424 5.4 (¾ | ^ fg: [M (average) + H] + = 42245.2).
[0254] (3. 23 化合物(55)の合成)  [0254] (3.2 Synthesis of Compound (55))
[0255] [化 64] [0255] [Chemical 64]
Figure imgf000193_0001
Figure imgf000193_0001
25mM HEPES緩衝液(pH7. 6) , 0. 05U/ml ヒト由来 j8 1, 4—ガラクトース 転移酵素 (東洋紡社製)、 lOmM 塩ィ匕マンガン、 2. 4mM ゥリジン— 5,—二リン酸 ガラクトース(UDP— Gal)、 0. 08mM 糖ペプチド誘導体(8)を含む 2. Omlの反応 液を 25°Cで 180分間攪拌した。反応終了後、反応液を逆相 HPLCにより精製して化 合物(55)を得た。化合物(55)の MALDI— TOFZMS : [M (average) +H] + = 3 736. 5 (¾|^fg: [M (average) +H] + = 3735. 8)。 25 mM HEPES buffer (pH 7. 6), 0.05 U / ml Human-derived j8 1, 4--galactose transferase (manufactured by Toyobo Co., Ltd.), lOmM salt and manganese, 2.4 mM uridine-5, diphosphate Contains galactose (UDP-Gal) and 0.08 mM glycopeptide derivative (8) 2. The Oml reaction was stirred at 25 ° C for 180 min. After completion of the reaction, the reaction solution was purified by reverse phase HPLC to obtain a compound (55). MALDI of compound (55) —TOFZMS: [M (average) + H] + = 3 736.5 (¾ | ^ fg: [M (average) + H] + = 3735. 8).
[0256] (3. 24 化合物(56)の合成)  [0256] (Synthesis of 3.24 Compound (56))
[0257] [化 65] [0257] [Chemical 65]
Figure imgf000195_0001
Figure imgf000195_0001
50mM HEPES緩衝液(pH7. 5)、 3. 85mU/l ブタ由来 j8 1, 3— N—ァセチ ルダルコサミン転移酵素(東洋紛社製)、 20mM 塩ィ匕マンガン、 40mM ゥリジン— 5,—二リン酸 N—ァセチルダルコサミン(UDP— GlcNAc)、 0. 5%BSA、 0. ImM 糖ペプチド誘導体(55)を含む 500 μ 1の反応液を 37°Cで 60時間攪拌した。反応 終了後、反応液を逆相 HPLCにより精製して化合物(50)を得た。化合物(56)の M50 mM HEPES buffer (pH 7.5), 3. 85 mU / l pig-derived j8 1, 3— N-acetyldarcosamine transferase (manufactured by Toyo Corporation), 20 mM manganese salt, 40 mM uridine— 500-μl reaction solution containing 5, -diphosphate N-acetyldarcosamine (UDP-GlcNAc), 0.5% BSA, 0. ImM glycopeptide derivative (55) was stirred at 37 ° C for 60 hours . After completion of the reaction, the reaction solution was purified by reverse phase HPLC to obtain compound (50). M of compound (56)
ALDI-TOF/MS: [M (average) +H] + = 4143. 2 (理論値: [M (average) +ALDI-TOF / MS: [M (average) + H] + = 414.3 (Theoretical value: [M (average) +
H] + =4142. 2)。 H] + = 4142. 2).
[0258] (3. 25 化合物(58)の合成) [0258] (3. 25 Synthesis of Compound (58))
[0259] [化 66] [0259] [Chemical 66]
idan!—- 翻Nio¾ ΛΞヽ 1ii:f --- idan! —- 翻 Nio¾ ΛΞ ヽ 1ii: f ---
Figure imgf000197_0001
Figure imgf000197_0001
50mM HEPES緩衝液(pH7. 0)、 0. lU/ml ヒト由来 j8 1, 4—ガラクトース転 移酵素 (東洋紡社製)、 0. 0185mUZmlラット組換え a 2, 3— (N)—シアル酸転移 酵素(Calbiochem社製)、 0. 0169mU/ml ラット組換え α 2, 3— (Ο)—シアル 酸転移酵素(Calbiochem社製) 10mM 塩化マンガン、 5mM ゥリジン 5,一二リ ン酸ガラタトース(UDP— Gal) , 5mM シチジン— 5,—リン酸シアル酸(CMP— N ANA)、0. 1%BSA、0. 05mM 糖ペプチド誘導体(56) (ィ匕合物(8)から化合物( 56)までの理論収率より見積もった)を含む 1. Omlの反応液を 25°Cで 24時間攪拌し た。反応終了後、反応液を逆相 HPLCにより精製して化合物(58)を得た。化合物(5 8)の MALDI—TOFZMS : [M (average) +ΗΓ = 5631. 5 (理論値: [M (avera ge) +H] + = 5631. 9)。 50 mM HEPES buffer (pH 7.0), 0.1 uU / ml human-derived j8 1,4-galactose transferase (manufactured by Toyobo), 0.0185 mUZml rat recombinant a 2, 3- (N) -sialic acid transfer Enzyme (Calbiochem), 0.0169mU / ml Rat recombinant α 2, 3— (Ο) —Sialyltransferase (Calbiochem) 10mM manganese chloride, 5mM uridine 5, monophosphate galatose (UDP—) Gal), 5 mM cytidine-5, -phosphosialic acid (CMP— N ANA), 0.1% BSA, 0.05 mM glycopeptide derivative (56) (from compound (8) to compound (56) 1. The Oml reaction solution was stirred at 25 ° C for 24 hours. After completion of the reaction, the reaction solution was purified by reverse phase HPLC to obtain compound (58). MALDI—TOFZMS of compound (5 8): [M (average) + ΗΓ = 5631.5 (theoretical value: [M (average) + H] + = 5631.9).
[0260] (3. 26 化合物(59)の合成)  [0260] (3. 26 Synthesis of Compound (59))
[0261] [化 67] [0261] [Chemical 67]
Figure imgf000199_0001
Figure imgf000199_0001
0mM HEPES緩衝 ¾¾ (pH7. 0)、 lOmM 塩ィ匕マンガン、 0. 1%BSA、 0. 1U mlヒト組換え a 1, 3—フコース酸転移酵素 V (Calbiochem社製)、 2mM グアノ シンー5,一二リン酸フコース(GDP—Fuc)、 0. 08mM 糖ペプチド誘導体(58)を 含む 625 1の反応液を 25°Cで 24時間攪拌した。反応終了後、反応液を逆相 HPL Cにより精製して化合物(59)を得た。化合物(59)の MALDI— TOFZMS : [M (av erage) +H] + = 6216. 8 (理論値: [M (average) +H] + = 6216. 0)。 0 mM HEPES buffer ¾¾ (pH 7.0), lOmM salt-manganese, 0.1% BSA, 0.1 U ml human recombinant a 1,3-fucose transferase V (Calbiochem), 2 mM guano A reaction solution of 625 1 containing Shin-5, monodiphosphate fucose (GDP-Fuc) and 0.08 mM glycopeptide derivative (58) was stirred at 25 ° C for 24 hours. After completion of the reaction, the reaction solution was purified by reverse phase HPL C to obtain compound (59). MALDI of compound (59) —TOFZMS: [M (av erage) + H] + = 62216.8 (theoretical value: [M (average) + H] + = 6216. 0).
[0262] (3. 27 化合物(60)〜(61)の合成)  [0262] (3. 27 Synthesis of Compounds (60) to (61))
[0263] [化 68] [0263] [Chemical 68]
Figure imgf000201_0001
Figure imgf000201_0001
T00.S0/.00Zdf/X3d 003 .0CMT/.00Z OAV T00.S0 / .00Zdf / X3d 003 .0CMT / .00Z OAV
Figure imgf000202_0001
Figure imgf000202_0001
10mM 糖ペプチド誘導体 (6)0. lml、 lOmM (ォキシァミン残基換算)水溶性高 分子(9) 0. 2ml、 50mM 酢酸ナトリウム緩衝液(pH5. 5) 0. 1mlの合計 0. 4mlを 室温で 21時間攪拌した。反応終了後、反応液を限外濾過フィルター 10K Apollo ( 登録商標) 20ml(Orbital Biosciences, LLC (MA, USA))によって遠心濃縮し、 そこへ 25mM HEPES緩衝液 (pH7. 0)を加えて再度濃縮することによって洗浄し 、最終的に容量が 96 1になるように水をカ卩えることによって 10mM (糖ペプチド理論 含量)高分子(60)とした。高分子(60)の同定は、高分子(60)の一部を BLaseで処 理し、生成物(61)が得られることによって行った。 10mM Glycopeptide Derivatives (6) 0. lml, lOmM (converted to oxiamine residue) High water solubility A total of 0.4 ml of molecule (9) 0.2 ml, 50 mM sodium acetate buffer (pH 5.5) 0.1 ml was stirred at room temperature for 21 hours. After completion of the reaction, the reaction solution is concentrated by centrifugation using an ultrafiltration filter 10K Apollo (registered trademark) 20 ml (Orbital Biosciences, LLC (MA, USA)), and 25 mM HEPES buffer (pH 7.0) is added thereto and concentrated again. After washing, water was added so that the volume finally reached 961 to obtain a 10 mM (glycopeptide theoretical content) polymer (60). The polymer (60) was identified by treating a part of the polymer (60) with BLase to obtain the product (61).
化合物(61)の MALDI—TOFZMS : [M (average) +H] + = 2456. 1 (理論値: [ MALDI—TOFZMS of compound (61): [M (average) + H] + = 2456. 1 (theoretical value: [
M (average) +H] + = 2454. 6)。 M (average) + H] + = 2454. 6).
[0264] (3. 28 化合物(62)〜(63)の合成) [0264] (3. 28 Synthesis of Compounds (62) to (63))
[0265] [化 69] [0265] [Chemical 69]
//D O soz-soz-ooidTId /-οεΗΪ-οοίAV εοδ// D O soz-soz-ooidTId / -οεΗΪ-οοίAV εοδ
Figure imgf000204_0001
Figure imgf000204_0001
eH N-e|V-oJd-oJd-e|V-JLjl-」3S-A|〇-oJd-e|V-o」d-6JV-JLU-dsv-o」d-e|V-J3S-」LU-|eA-A|CrS!H-n|〇-3Ljd  eH Ne | V-oJd-oJd-e | V-JLjl- "3S-A | 〇-oJd-e | Vo" d-6JV-JLU-dsv-o "de | V-J3S-" LU- | eA- A | CrS! Hn | 〇-3Ljd
峯 ^峯 ^
Figure imgf000204_0002
Figure imgf000204_0002
//u O soz-soz-ooidrld /-οεΗΪ-οοίAV // u O soz-soz-ooidrld / -οεΗΪ-οοίAV
N-eiV-o」d—oJd-e|V-JN-eiV-o ”d—oJd-e | V-J
Figure imgf000205_0001
Figure imgf000205_0001
移酵素 (東洋紡社製)、 10mM 塩ィ匕マンガン、 ImM ゥリジン一 5, 一二リン酸ガラ クトース(UDP— Gal)、 0. 1% BSA、 0. ImM 糖ペプチド誘導体(60)を含む 50 μ 1の反応液を 25°Cで 45分間攪拌した。反応終了後、反応液を限外濾過フィルター ULTRAFRE-MC 10, OOONMWL Filter Unit (Millipore社製)によって遠 心濃縮し、そこへ 50mM HEPES緩衝液 (pH7. 0)を加えて再度濃縮することによ つて洗浄し、最終的に容量が 7 1になるように水をカ卩えることによって 0. 71mM (糖 ペプチド理論含量)高分子 (62)とした。高分子 (62)の同定は一部を BLase (塩野義 製薬社製)で処理し、反応液を逆相 HPLC (Inertsil (登録商標) ODS— 3 4. 6 X 250mmカラム、移動相 A: 0. 1%TFA水溶液に対する B : 0. 1%TFA含有ァセトニ トリルの 2%から 50%のグラジェント)により精製して化合物(63)を得ることにより行つ た。化合物(63)の MALDI—TOFZMS : [M (average) +H] + = 2617. 6 (理論 値: [M (average) +H] + = 2616. 7)。 Transfer enzyme (manufactured by Toyobo Co., Ltd.), 10 mM salt-manganese, ImM uridine-1,5 monodiphosphate galactose (UDP—Gal), 0.1% BSA, 0. ImM glycopeptide derivative (60) 50 μ The reaction solution of 1 was stirred at 25 ° C for 45 minutes. After completion of the reaction, the reaction solution was concentrated by centrifugation using an ultrafiltration filter ULTRAFRE-MC 10, OOONMWL Filter Unit (Millipore), and 50 mM HEPES buffer (pH 7.0) was added to it and concentrated again. Then, it was washed and water was added so that the volume finally reached 71. Thus, a polymer of 0.71 mM (theoretical content of glycopeptide) was obtained (62). A part of the polymer (62) was identified by treating with BLase (Yoshio Shiono Pharmaceutical Co., Ltd.), and the reaction mixture was reversed-phase HPLC (Inertsil (registered trademark) ODS— 3 4.6 X 250 mm column, mobile phase A: 0 Purified by B: 1% TFA aqueous solution B: 0.1% TFA-containing acetonitrile, 2% to 50% gradient) to obtain compound (63). MALDI—TOFZMS of compound (63): [M (average) + H] + = 2617.6 (theoretical value: [M (average) + H] + = 2616.7).
[0266] (3. 29 化合物(64)〜(65)の合成)  [0266] (3. 29 Synthesis of Compounds (64) to (65))
[0267] [化 70] [0267] [Chemical 70]
//D/ O soz-soz-ooidTId /-οεΗΪζ-οοίAV 90S // D / O soz-soz-ooidTId / -οεΗΪζ-οοίAV 90S
I HN-e|V-oJd-o」d-e|V- 上-」 ss-A|3-0J d-e|V-0」d-6JV-JLU-dsv-0Jd-e|V-JSS -」 LU-|EA-A|G-s!H-n|S)- d
Figure imgf000207_0001
I HN-e | V-oJd-o "de | V- top-" ss-A | 3-0J de | V-0 "d-6JV-JLU-dsv-0Jd-e | V-JSS-" LU- | EA-A | Gs! Hn | S)-d
Figure imgf000207_0001
Figure imgf000207_0002
Figure imgf000207_0002
39 39
BLaseBLase
Figure imgf000208_0001
Figure imgf000208_0002
Figure imgf000208_0001
Figure imgf000208_0002
His-Gly-Va卜 Thr-Ser-Ala-Pro-Asp-Thr-Arg-Pro-Ala-P「o-Gly-Ser-Thr-Ala-Pro-Pro-Ala-NH2
Figure imgf000208_0003
His-Gly-Va 卜 Thr-Ser-Ala-Pro-Asp-Thr-Arg-Pro-Ala-P `` o-Gly-Ser-Thr-Ala-Pro-Pro-Ala-NH2
Figure imgf000208_0003
50mM HEPES緩衝液(pH7. 5)、 3. 85mU/l ブタ由来 j8 1, 3— N—ァセチル ダルコサミン転移酵素(東洋紡社製)、 20mM 塩ィ匕マンガン、 10mM ゥリジン— 5, —二リン酸 N—ァセチルダルコサミン(UDP— GlcNAc)、 0. 5%BSA、 0. 13mM 糖ペプチド誘導体 (62)を含む 40 μ 1の反応液を 37°Cで 43時間攪拌した。反応終了 後、反応液を限外濾過フィルター ULTRAFRE— MC 10, OOONMWL Filter Unit (Millipore社製)によって遠心濃縮し、そこへ 50mM HEPES緩衝液(pH7. 0)をカ卩えて再度濃縮することによって洗浄し、最終的に容量が 18 1になるように水 を加えることによって 0. 28mM (糖ペプチド理論含量)高分子(64)とした。高分子(6 4)の同定は一部を BLase (塩野義製薬社製)で処理し、反応液を逆相 HPLC (Inert sil (登録商標) ODS— 3 4. 6 X 250mmカラム、移動相 A : 0. 1%TF A水溶液に 対する B : 0. 1%TFA含有ァセトニトリルの 2%から 50%のグラジェント)により精製す ることにより行った。化合物(65)の MALDI—TOFZMS : [M (average) +H] " = 2820. 7 (M m : [M (average) +H] + = 2819. 9)。 50 mM HEPES buffer (pH 7.5), 3. 85 mU / l Pig-derived j8 1,3-—N-acetyl darcosamine transferase (Toyobo), 20 mM Manganese chloride, 10 mM uridine-5, —diphosphate N —40 μl of a reaction solution containing acetylyldarcosamine (UDP—GlcNAc), 0.5% BSA, and 0.13 mM glycopeptide derivative (62) was stirred at 37 ° C. for 43 hours. After completion of the reaction, the reaction solution is concentrated by centrifugation using an ultrafiltration filter ULTRAFRE— MC 10, OOONMWL Filter Unit (Millipore), and then concentrated by adding 50 mM HEPES buffer (pH 7.0) and concentrating it again. Then, water was added so that the volume finally reached 18 1 to obtain 0.28 mM (glycopeptide theoretical content) polymer (64). Part of the polymer (6 4) was identified by treating with BLase (manufactured by Shionogi & Co., Ltd.), and the reaction mixture was reversed-phase HPLC (Inert sil (registered trademark) ODS— 3 4.6 X 250 mm column, mobile phase A : 0.1% TFA aqueous solution B: 0.1% TFA-containing acetonitrile: 2% to 50% gradient). MALDI-TOFZMS of the compound (65): [M (average) + H] "= 2820.7 (Mm: [M (average) + H] + = 2819.9).
[0268] (3. 30 化合物(66)〜(67)の合成)  [0268] (3. 30 Synthesis of Compounds (66) to (67))
[0269] [化 71] [0269] [Chemical 71]
//D/ O soz-soz-ooidTId /-οεΗΪζ-οοίAV 60S// D / O soz-soz-ooidTId / -οεΗΪζ-οοίAV 60S
Figure imgf000210_0001
Figure imgf000210_0002
Figure imgf000210_0003
Figure imgf000210_0001
Figure imgf000210_0002
Figure imgf000210_0003
OAV 9 OAV 9
Figure imgf000211_0001
Figure imgf000211_0001
50mM HEPES緩衝液(pH7. 0) , 0. 05U/ml ヒト由来 j8 1, 4—ガラクトース転 移酵素 (東洋紡社製)、 10mM 塩ィ匕マンガン、 1. OmM ゥリジン— 5,—二リン酸ガ ラタトース(UDP— Gal)、 0. 06mM 糖ペプチド誘導体(64)を含む 90 1の反応液 を 25°Cで 90分間攪拌した。反応終了後、反応液を限外濾過フィルター ULTRAFR E-MC 10, OOONMWL Filter Unit (Millipore社製)によって遠心濃縮し、そ こへ 50mM HEPES緩衝液 (pH7. 0)をカ卩えて再度濃縮することによって洗浄し、 最終的に容量が 22 1になるように水をカ卩えることによって 0. 23mM (糖ペプチド理 論含量)高分子 (66)とした。高分子 (66)の同定は一部を BLase (塩野義製薬社製) で処理し、反応液を逆相 HPLC (Inertsil (登録商標) ODS— 3 4. 6 X 250mm力 ラム、移動相 A: 0. 1%TFA水溶液に対する B : 0. 1%TF A含有ァセトニトリルの 2% 力も 50%のグラジェント)により精製することにより行った。化合物(67)の MALDI— TOF/MS: [M (average) +H] + = 2982. 0 (理論値: [M (average) +H] + = 29 82. 0)。 50 mM HEPES buffer (pH 7.0), 0.05 U / ml Human-derived j8 1, 4--galactose transferase (manufactured by Toyobo Co., Ltd.), 10 mM sodium chloride manganese, 1. OmM uridine-5, diphosphate gallium A 90 1 reaction solution containing ratatoose (UDP-Gal) and 0.06 mM glycopeptide derivative (64) was stirred at 25 ° C. for 90 minutes. After completion of the reaction, the reaction solution is centrifuged and concentrated with an ultrafiltration filter ULTRAFR E-MC 10, OOONMWL Filter Unit (Millipore), and 50 mM HEPES buffer (pH 7.0) is added to the solution and concentrated again. After washing with water, water was added so that the final volume was 22 1 to obtain 0.23 mM (glycopeptide theoretical content) polymer (66). Part of the polymer (66) was identified with BLase (manufactured by Shionogi & Co., Ltd.), and the reaction mixture was reversed-phase HPLC (Inertsil (registered trademark) ODS— 3 4.6 X 250 mm force ram, mobile phase A: 0.1% TFA aqueous solution B: 0.1% TFA-containing acetonitrile was purified by 2% strength (50% gradient). MALDI—TOF / MS of compound (67): [M (average) + H] + = 2982.0 (theoretical value: [M (average) + H] + = 29820.0).
[0270] (3. 31 化合物(68)〜(69)の合成)  [0270] (3. 31 Synthesis of Compounds (68) to (69))
[0271] [化 72] [0271] [Chemical 72]
//D/ O looz-soz-ooidTId /-οεΗΪζ-οοίAV// D / O looz-soz-ooidTId / -οεΗΪζ-οοίAV
Figure imgf000213_0001
Figure imgf000213_0001
|_|
Figure imgf000213_0002
| _ |
Figure imgf000213_0002
Figure imgf000213_0003
Figure imgf000213_0003
//u O soz-soz-oozdrld /-οεΗΪ-οοίAV ε // u O soz-soz-oozdrld / -οεΗΪ-οοίAV ε
Figure imgf000214_0001
Figure imgf000214_0001
50mM HEPES緩衝液(pH7. 5)、 7. 7mU/l ブタ由来 j8 1, 3— N—ァセチル ダルコサミン転移酵素(東洋紡社製)、 20mM 塩ィ匕マンガン、 10mM ゥリジン— 5, —二リン酸 N—ァセチルダルコサミン(UDP— GlcNAc)、 0. 5%BSA、 0. 06mM 糖ペプチド誘導体 (66)を含む 80 μ 1の反応液を 37°Cで 24時間攪拌した。反応終了 後、反応液を限外濾過フィルター ULTRAFRE— MC 10, OOONMWL Filter Unit (Millipore社製)によって遠心濃縮し、そこへ 50mM HEPES緩衝液(pH7. 0)をカ卩えて再度濃縮することによって洗浄し、最終的に容量が 16 1になるように水 を加えることによって 0. 3 ImM (糖ペプチド理論含量)高分子(68)とした。高分子(6 8)の同定は一部を BLase (塩野義製薬社製)で処理し、反応液を逆相 HPLC (Inert sil (登録商標) ODS— 3 4. 6 X 250mmカラム、移動相 A : 0. 1%TF A水溶液に 対する B : 0. 1%TFA含有ァセトニトリルの 2%から 50%のグラジェント)により精製す ることにより行った。化合物(69)の MALDI—TOFZMS : [M (average) +H] " = 3184. 8 (¾|^fg: [M (average) +H] + = 3185. 2)。 50 mM HEPES buffer (pH 7.5), 7.7 mU / l Pig-derived j8 1, 3-— N-acetyl darcosamine transferase (manufactured by Toyobo Co., Ltd.), 20 mM manganese salt, 10 mM uridine-5, —diphosphate N —Acetyldarcosamine (UDP—GlcNAc), 0.5% BSA, 0.06 mM glycopeptide derivative (66) containing 80 μ 1 reaction solution was stirred at 37 ° C. for 24 hours. After completion of the reaction, the reaction solution is concentrated by centrifugation using an ultrafiltration filter ULTRAFRE— MC 10, OOONMWL Filter Unit (Millipore), and then concentrated by adding 50 mM HEPES buffer (pH 7.0) and concentrating it again. Then, water was added so that the final volume was 161 to obtain 0.3 ImM (glycopeptide theoretical content) polymer (68). Part of the polymer (6 8) was identified with BLase (manufactured by Shionogi & Co., Ltd.), and the reaction mixture was reversed-phase HPLC (Inert sil (registered trademark) ODS— 3 4. 6 X 250 mm column, mobile phase A : 0.1% TFA aqueous solution B: 0.1% TFA-containing acetonitrile: 2% to 50% gradient). MALDI—TOFZMS of the compound (69): [M (average) + H] ”= 3184.8 (¾ | ^ fg: [M (average) + H] + = 318.5.2).
[0272] (3. 32 化合物(70)〜(71)の合成)  [0272] (3.3 Synthesis of Compounds (70) to (71))
[0273] [化 73] [0273] [Chemical 73]
yPy2 heGIUHisGlvalThrserAlaproASTh ArapoAlaproGlserThAlaproproNH---------------------
Figure imgf000216_0001
yPy2 heGIUHisGlvalThrserAlaproASTh ArapoAlaproGlserThAlaproproNH ---------------------
Figure imgf000216_0001
Figure imgf000216_0002
Figure imgf000216_0002
TOO.SO/.OOZdf/X3d 91-3 LOZnilLOOZ OAV TOO.SO/.OOZdf/X3d 91-3 LOZnilLOOZ OAV
Figure imgf000217_0001
Figure imgf000217_0001
mM HEPES緩衝液(pH7. 0) , 0. 05U/ml ヒト由来 j8 1, 4—ガラタト 移酵素 (東洋紡社製)、 10mM 塩ィ匕マンガン、 1. OmM ゥリジン— 5,—二リン酸ガ ラタトース(UDP— Gal)、 0. 06mM 糖ペプチド誘導体(68)を含む 80 1の反応液 を 25°Cで 60分間攪拌した。反応終了後、反応液を限外濾過フィルター ULTRAFR E-MC 10, OOONMWL Filter Unit (Millipore社製)によって遠心濃縮し、そ こへ 50mM HEPES緩衝液 (pH7. 0)をカ卩えて再度濃縮することによって洗浄し、 最終的に容量が 19. 3 1になるように水をカ卩えることによって 0. 26mM (糖ペプチド 理論含量)高分子 (70)とした。高分子 (70)の同定は一部を BLase (塩野義製薬社 製)で処理し、反応液を逆相 HPLC (Inertsil (登録商標) ODS— 3 4. 6 X 250m mカラム、移動相 A: 0. 1%TFA水溶液に対する B : 0. 1%TFA含有ァセトニトリル の 2%から 50%のグラジェント)により精製することにより行った。化合物(71)の MA LDI-TOF/MS: [M (average) +H] + = 3348. 8 (理論値: [M (average) +H] + = 3347. 4)。 mM HEPES buffer (pH 7.0), 0.05 U / ml Human-derived j8 1, 4-galatato Transfer enzyme (manufactured by Toyobo Co., Ltd.), 10 mM salt and manganese, 1. OmM uridine-5, -diphosphate galactose (UDP-Gal), 0.0 1 mM solution containing 80 1 reaction solution (68) The mixture was stirred at 25 ° C for 60 minutes. After completion of the reaction, the reaction solution is centrifuged and concentrated with an ultrafiltration filter ULTRAFR E-MC 10, OOONMWL Filter Unit (Millipore), and 50 mM HEPES buffer (pH 7.0) is added to the solution and concentrated again. After washing with water, water was added so that the final volume was 19.3 1 to obtain 0.26 mM (theoretical content of glycopeptide) polymer (70). Part of the polymer (70) was identified by treatment with BLase (manufactured by Shionogi & Co., Ltd.), and the reaction mixture was reversed-phase HPLC (Inertsil (registered trademark) ODS— 3 4.6 X 250 mm column, mobile phase A: 0.1% TFA aqueous solution B: 2% to 50% gradient of 0.1% TFA-containing acetonitrile. MA LDI-TOF / MS of compound (71): [M (average) + H] + = 3348.8 (theoretical value: [M (average) + H] + = 3347.4).
[0274] (3. 33 化合物(72)〜(73)の合成)  [0274] (3.3 Synthesis of Compounds (72) to (73))
[0275] [化 74] [0275] [Chemical 74]
70 70
UDP-N-ァセ于ルダルコサミン P N-ァセチルゲル]サミン ¾移酵素  UDP-N-ase-rudarcosamine P N-acetylmethyl] samine ¾transfer enzyme
Figure imgf000219_0001
Figure imgf000219_0001
Figure imgf000220_0001
Figure imgf000220_0001
50mM HEPES緩衝液(pH7. 5)、 3. 85mU/l ブタ由来 j8 1, 3— N—ァセチル ダルコサミン転移酵素(東洋紡社製)、 20mM 塩ィ匕マンガン、 lOmM ゥリジン— 5, —二リン酸 N—ァセチルダルコサミン(UDP— GlcNAc)、 0. 5%BSA、 0. 07mM 糖ペプチド誘導体(70)を含む 70 μ 1の反応液を 37°Cで 24時間攪拌した。反応終了 後、反応液を限外濾過フィルター ULTRAFRE— MC 10, 000NMWL Filter Unit (Millipore社製)によって遠心濃縮し、そこへ 50mM HEPES緩衝液(pH7. 0)をカ卩えて再度濃縮することによって洗浄し、最終的に容量が 42. 2 1になるように 水を加えることによって 0. 12mM (糖ペプチド理論含量)高分子(72)とした。高分子 (72)の同定は一部を BLase (塩野義製薬社製)で処理し、反応液を逆相 HPLC (In ertsil (登録商標) ODS— 3 4. 6 X 250mmカラム、移動相 A : 0. 1%TF A水溶液 に対する B: 0. 1%TFA含有ァセトニトリルの 2%から 50%のグラジェント)により精製 することにより行った。化合物(73)の MALDI—TOFZMS : [M (average) +H] + = 3552. 0 (理論値: [M (average) +H] + = 3550. 6)。 50 mM HEPES buffer (pH 7.5), 3. 85 mU / l pig-derived j8 1,3— N-acetyl darcosamine transferase (manufactured by Toyobo Co., Ltd.), 20 mM sodium chloride manganese, lOmM uridine-5, —70 μl of a reaction solution containing N-acetyldarcosamine diphosphate (UDP—GlcNAc), 0.5% BSA, 0.07 mM glycopeptide derivative (70) was stirred at 37 ° C. for 24 hours. After completion of the reaction, the reaction solution is concentrated by centrifugation using an ultrafiltration filter ULTRAFRE- MC 10,000 NMWL Filter Unit (Millipore), and then concentrated by adding 50 mM HEPES buffer (pH 7.0) and concentrating it again. Then, water was added so that the final volume was 42.2 1 to obtain 0.12 mM (theoretical content of glycopeptide) polymer (72). Part of the polymer (72) was identified by treatment with BLase (manufactured by Shionogi & Co., Ltd.), and the reaction mixture was reversed-phase HPLC (Inertsil (registered trademark) ODS— 3 4.6 X 250 mm column, mobile phase A: 0.1% TFA aqueous solution B: 0.1% TFA-containing acetonitrile: 2% to 50% gradient). MALDI—TOFZMS of compound (73): [M (average) + H] + = 3552.0 (theoretical value: [M (average) + H] + = 3550. 6).
[0276] (3. 34 化合物(74)〜(75)の合成)  [0276] (3. Synthesis of Compounds (74) to (75))
[0277] [化 75] [0277] [Chemical 75]
Figure imgf000222_0001
Figure imgf000222_0001
T00.S0/.00Zdf/X3d YZZ T00.S0 / .00Zdf / X3d YZZ
Figure imgf000223_0001
Figure imgf000223_0001
50mM HEPES緩衝液(pH7. 0) , 0. 05U/ml ヒト由来 j8 1, 4—ガラクトース転 移酵素 (東洋紡社製)、 lOmM 塩ィ匕マンガン、 1. OmM ゥリジン— 5,—二リン酸ガ ラタトース(UDP— Gal)、 0. 09mM 糖ペプチド誘導体(72)を含む 55 1の反応液 を 25°Cで 60分間攪拌した。反応終了後、反応液を限外濾過フィルター ULTRAFR E-MC 10, 000NMWL Filter Unit (Millipore社製)によって遠心濃縮し、そ こへ 50mM HEPES緩衝液 (pH7. 0)をカ卩えて再度濃縮することによって洗浄し、 最終的に容量が 12. 4 1になるように水をカ卩えることによって 0. 4mM (糖ペプチド 理論含量)高分子 (74)とした。高分子 (74)の同定は一部を BLase (塩野義製薬社 製)で処理し、反応液を逆相 HPLC (Inertsil (登録商標) ODS— 3 4. 6 X 250m mカラム、移動相 A: 0. 1%TFA水溶液に対する B : 0. 1%TFA含有ァセトニトリル の 2%から 50%のグラジェント)により精製することにより行った。化合物(75)の MA LDI-TOF/MS: [M (average) +H] + = 3714. 6 (理論値: [M (average) +H] + = 3712. 7)。 50 mM HEPES buffer (pH 7.0), 0.05 U / ml Human-derived j8 1, 4--galactose transferase (manufactured by Toyobo), lOmM salt 匕 manganese, 1. OmM uridine-5, diphosphate gallium The 55 1 reaction solution containing ratatoose (UDP-Gal) and 0.09 mM glycopeptide derivative (72) was stirred at 25 ° C for 60 minutes. After completion of the reaction, the reaction solution is centrifuged and concentrated with an ultrafiltration filter ULTRAFR E-MC 10,000 NMWL Filter Unit (Millipore), and 50 mM HEPES buffer (pH 7.0) is added to the solution and concentrated again. After washing with water, water was added so that the final volume was 12.41. Thus, a 0.4 mM (theoretical content of glycopeptide) polymer (74) was obtained. Part of the polymer (74) was identified by treatment with BLase (manufactured by Shionogi & Co., Ltd.), and the reaction mixture was reversed-phase HPLC (Inertsil (registered trademark) ODS— 3 4.6 X 250 mm column, mobile phase A: 0.1% TFA aqueous solution B: 2% to 50% gradient of 0.1% TFA-containing acetonitrile. MA LDI-TOF / MS of compound (75): [M (average) + H] + = 3714.6 (theoretical value: [M (average) + H] + = 3712.7).
[0278] (3. 35 化合物(76)〜(77)の合成)  [0278] (3. 35 Synthesis of Compounds (76) to (77))
[0279] [化 76] [0279] [Chem 76]
Figure imgf000225_0001
Figure imgf000225_0001
Figure imgf000226_0001
Figure imgf000226_0001
50mM HEPES緩衝液(pH7. 5)、 3. 85mU/l ブタ由来 j8 1, 3— N—ァセチル ダルコサミン転移酵素(東洋紡社製)、 20mM 塩ィ匕マンガン、 lOmM ゥリジン— 5, —二リン酸 N—ァセチルダルコサミン(UDP— GlcNAc)、 0. 5%BSA、 0. l lmM 糖ペプチド誘導体(74)を含む 45 μ 1の反応液を 37°Cで 24時間攪拌した。反応終了 後、反応液を限外濾過フィルター ULTRAFRE— MC 10, 000NMWL Filter Unit (Millipore社製)によって遠心濃縮し、そこへ 50mM HEPES緩衝液(pH7. 0)をカ卩えて再度濃縮することによって洗浄し、最終的に容量が 33. 7 1になるように 水を加えることによって 0. 15mM (糖ペプチド理論含量)高分子(76)とした。高分子 (76)の同定は一部を BLase (塩野義製薬社製)で処理し、反応液を逆相 HPLC (In ertsil (登録商標) ODS— 3 4. 6 X 250mmカラム、移動相 A : 0. 1%TF A水溶液 に対する B: 0. 1%TFA含有ァセトニトリルの 2%から 50%のグラジェント)により精製 することにより行った。化合物(77)の MALDI—TOFZMS : [M (average) +H] + = 3917. KM mi^: [M (average) +H] + = 3915. 9)。 50 mM HEPES buffer (pH 7.5), 3. 85 mU / l pig-derived j8 1,3— N-acetyl darcosamine transferase (manufactured by Toyobo Co., Ltd.), 20 mM sodium chloride manganese, lOmM uridine-5, —45 μl of a reaction solution containing N-acetyldarcosamine diphosphate (UDP—GlcNAc), 0.5% BSA and 0.1 lmM glycopeptide derivative (74) was stirred at 37 ° C. for 24 hours. After completion of the reaction, the reaction solution is concentrated by centrifugation using an ultrafiltration filter ULTRAFRE- MC 10,000 NMWL Filter Unit (Millipore), and then concentrated by adding 50 mM HEPES buffer (pH 7.0) and concentrating it again. Then, water was added so that the final volume was 33.7 1 to obtain 0.15 mM (glycopeptide theoretical content) polymer (76). Part of the polymer (76) was identified by treating with BLase (manufactured by Shionogi & Co., Ltd.), and the reaction mixture was reversed-phase HPLC (Inertsil (registered trademark) ODS— 3 4.6 X 250 mm column, mobile phase A: 0.1% TFA aqueous solution B: 0.1% TFA-containing acetonitrile: 2% to 50% gradient). MALDI—TOFZMS of the compound (77): [M (average) + H] + = 3917. KM mi ^: [M (average) + H] + = 3915. 9).
[0280] (実施例 4:糖アミノ酸(79)〜(83)の合成)  [0280] (Example 4: Synthesis of sugar amino acids (79) to (83))
(4. 1 化合物(79)の合成)  (4.1 Synthesis of Compound (79))
[0281] [化 77]  [0281] [Chemical 77]
Figure imgf000227_0001
化合物(78) 67. 6mgを 10mM水酸化ナトリウムのメタノール溶液 14mlに溶解し、室 温で 1. 5時間攪拌した。反応終了後、反応液を酢酸で中和し、溶媒を減圧留去した 。得られた混合物を、炭酸水素ナトリウム 11. 8mgを含む 60%アセトン水溶液 2. 8m 1に溶解し、さらにアセトン 4. 2mlに溶解した炭酸 9—フルォレニルメチルスクシンイミ ジル 35. 4mgを加え、室温で 2時間攪拌した。反応終了後、溶媒を減圧留去し、得ら れた混合物を逆相 HPLCにより精製して化合物(79)を 45. lmg得た (収率 67%)。 ESI-HRMS : [M+Na] + = 988. 3890、(理論値: [M+Na] + = 988. 3903)。 [0282] (4. 2 化合物(80)の合成)
Figure imgf000227_0001
67.6 mg of compound (78) was dissolved in 14 ml of 10 mM sodium hydroxide in methanol and stirred at room temperature for 1.5 hours. After completion of the reaction, the reaction solution was neutralized with acetic acid, and the solvent was distilled off under reduced pressure. The obtained mixture was dissolved in 2.8 ml of 60% aqueous acetone solution containing 11.8 mg of sodium bicarbonate, and 35.4 mg of 9-fluorenylmethylsuccinimidyl carbonate dissolved in 4.2 ml of acetone was further dissolved. The mixture was further stirred at room temperature for 2 hours. After completion of the reaction, the solvent was distilled off under reduced pressure, and the resulting mixture was purified by reverse phase HPLC to obtain 45. lmg of compound (79) (yield 67%). ESI-HRMS: [M + Na] + = 988. 3890, (theoretical: [M + Na] + = 988. 3903). [0282] (4.2 Synthesis of Compound (80))
[0283] [化 78] [0283] [Chemical 78]
Figure imgf000228_0001
Figure imgf000228_0001
50mM HEPES緩衝液 (pH7. 0)、 β 1, 4 ガラクトース転移酵素(東洋紡社製) 4 . 7U、ゥリジン一 5, 一二リン酸ガラクトース(UDP— Gal) 57mg、 10mM 塩化マン ガン、 0. 1% アジ化ナトリウム、 0. 1% 牛血清アルブミン、 10mM 2, 6 ジ— O —メチル— β—シクロデキストリン、化合物(79) 45. Imgを含む 23. 4mlの反応液 を 25°Cで 15時間攪拌した。反応終了後、反応液を逆相 HPLCにより精製して化合 物(80)を 45. 6mg得た(収率 87%)。 ESI— HRMS : [M+Na] + = 1150. 4440、 (理論値: [M+Na] + = 1150. 4431)。  50 mM HEPES buffer (pH 7.0), β 1,4 galactose transferase (Toyobo) 4.7 U, uridine mono-1, monodiphosphate galactose (UDP—Gal) 57 mg, 10 mM mangan chloride, 0.1 % Sodium azide, 0.1% Bovine serum albumin, 10 mM 2, 6 Di-O-methyl-β-cyclodextrin, compound (79) 45. Img containing 23.4 ml reaction solution at 25 ° C for 15 hours Stir. After completion of the reaction, the reaction solution was purified by reverse phase HPLC to obtain 45.6 mg of Compound (80) (yield 87%). ESI— HRMS: [M + Na] + = 1150. 4440, (theoretical: [M + Na] + = 1150. 4431).
[0284] (4. 3 化合物(81)の合成)  [0284] (4.3 Synthesis of Compound (81))
[0285] [化 79]  [0285] [Chemical 79]
Figure imgf000228_0002
Figure imgf000228_0002
50mM Tris— HC1緩衝液(pH8. 0)、 β 1, 3— Ν ァセチルダルコサミン転移酵 素 606mU、ゥリジン— 5,—二リン酸— N—ァセチルダルコサミン(UDP— GlcNAc) 65. 8mg、 10mM 塩化マンガン、 10mM 塩化マグネシウム、 0. 1% アジ化ナトリ ゥム、 0. 1% 牛血清アルブミン、 0. 2%Triton X— 100、 lOOmUZmlアルカリホ スファターゼ、化合物(80) 45. 6mgを含む 20. 2mlの反応液を 25°Cで 48時間攪拌 した。反応終了後、反応液を逆相 HPLCにより精製して化合物(81)を 38. 7mg得た (収率 72%)。 ESI— HRMS : [M + Na] + = 1353. 5199、(理論値: [M + Na] + = 1353. 5223)。 50 mM Tris— HC1 buffer (pH 8.0), β 1, 3— Ν Acetyldarcosamine transferase Elemental 606mU, Uridine-5, -Diphosphate-N-Acetyldarcosamine (UDP-GlcNAc) 65.8mg, 10mM manganese chloride, 10mM magnesium chloride, 0.1% sodium azide, 0.1% cattle A 20.2 ml reaction solution containing serum albumin, 0.2% Triton X-100, lOOmUZml alkaline phosphatase, 45.6 mg of compound (80) was stirred at 25 ° C for 48 hours. After completion of the reaction, the reaction solution was purified by reverse phase HPLC to obtain 38.7 mg of Compound (81) (yield 72%). ESI— HRMS: [M + Na] + = 1353. 5199, (theoretical: [M + Na] + = 1353. 5223).
[0286] (4. 4 化合物(82)の合成)  [0286] (4.4 Synthesis of Compound (82))
[0287] [化 80]  [0287] [Chemical 80]
Figure imgf000229_0001
化合物(81) 38. 7mgを無水酢酸 Zピリジン Z酢酸(5Z3Z2、 vZvZv)溶液 29. 1 mlに溶解し、室温で 19時間攪拌した。反応終了後、溶媒を減圧留去し、得られた混 合物を逆相 HPLCにより精製して化合物(82)を 51. 6mg得た (収率 94%)。 ESI— HRMS : [M+Na] + = 1899. 6631、(理論値: [M+Na] + = 1899. 6598)。
Figure imgf000229_0001
38.7 mg of compound (81) was dissolved in 29.1 ml of acetic anhydride Zpyridine Z acetic acid (5Z3Z2, vZvZv) solution and stirred at room temperature for 19 hours. After completion of the reaction, the solvent was distilled off under reduced pressure, and the resulting mixture was purified by reverse phase HPLC to obtain 51.6 mg of Compound (82) (yield 94%). ESI— HRMS: [M + Na] + = 1899. 6631, (theoretical: [M + Na] + = 1899. 6598).
[0288] (4. 5 化合物(83)の合成)  [0288] (4.5 Synthesis of Compound (83))
[0289] [化 81]
Figure imgf000230_0001
[0289] [Chemical 81]
Figure imgf000230_0001
化合物(82) 51. 6mgを 95%TFA水溶液 10mlに溶解し、室温で 1時間攪拌した。 反応終了後、溶媒を揮発留去し、得られた混合物を逆相 HPLCにより精製して化合 物(83)を 39. 2mg得た(収率 78%)。 ESI— HRMS : [M+Na] + = 1843. 5978、 (理論値: [M+Na] + = 1843. 5972)。  51.6 mg of Compound (82) was dissolved in 10 ml of 95% TFA aqueous solution and stirred at room temperature for 1 hour. After completion of the reaction, the solvent was evaporated and the resulting mixture was purified by reverse phase HPLC to obtain 39.2 mg of Compound (83) (yield 78%). ESI— HRMS: [M + Na] + = 1843. 5978, (Theoretical: [M + Na] + = 1843. 5972).
[0290] (実施例 5:糖ペプチド(84)〜(85)の合成)  [0290] (Example 5: Synthesis of glycopeptides (84) to (85))
(5. 1 化合物(84)〜(85)の合成)  (5.1 Synthesis of Compounds (84) to (85))
[0291] [化 82] [0291] [Chemical 82]
糖ペプチド固相合成 Glycopeptide solid phase synthesis
Figure imgf000231_0001
Figure imgf000231_0001
Rink Amide PEGA resin (0. O55mmol/g) 250. 9mg (13. 8 mol)を担 体として以下に示す N—保護アミノ酸を FmocZHBTUZHOBt法で順次縮合し、 目的の糖ペプチドを合成した。 Fmoc— Arg (Pbf)— OH、 Fmoc-Thr (Ac7core2 )— OH、 Fmoc - Asp (OtBu)— OH、 Fmoc— Pro— OH、 Fmoc— Ala— OH、 F moc— Ser (tBu)— OH、化合物(83)、 Fmoc— Val— OH、 Fmoc— Gly— OH、 F moc-His (Trt)—OH、 Fmoc—Ala— OH。ペプチド伸長反応後、 TFAZトリイソ プロビルシラン Z水(95Z2. 5/2. 5、 vZvZv)溶液中、室温で 2時間反応させるこ とによってペプチド残基上の保護基を脱離させるとともに、固相担体上から化合物(8 4)を遊離させた。榭脂を濾別し、 TFAを揮発留去した後、 t—ブチルメチルエーテル を加えて生成物を沈殿させた。得られたスラリーを遠心分離後、沈殿を逆相 HPLC により精製して化合物(84)の粗精製物を 1. 28mg得た。得られた粗精製物を 10m M水酸ィ匕ナトリウムのメタノール溶液 10mlに溶解し、室温で 3時間攪拌した。反応終 了後、反応液を酢酸で中和し、溶媒を揮発留去した。得られた混合物を逆相 HPLC により精製して化合物(85)を 1. Omg得た (収率 2. 8%) 0 ESI-HRMS : [M-H] " = 2610. 1057、(理論値: [M— H] _ = 2610. 1053)。 Rink Amide PEGA resin (0.O55mmol / g) 25.9mg (13.8mol) as a carrier, the following N-protected amino acids were condensed sequentially by FmocZHBTUZHOBt method, The desired glycopeptide was synthesized. Fmoc— Arg (Pbf) — OH, Fmoc-Thr (Ac7core2) — OH, Fmoc-Asp (OtBu) — OH, Fmoc— Pro— OH, Fmoc— Ala— OH, F moc— Ser (tBu) — OH, compound (83), Fmoc—Val—OH, Fmoc—Gly—OH, F moc-His (Trt) —OH, Fmoc—Ala—OH. After the peptide elongation reaction, the protecting group on the peptide residue is removed by reacting in TFAZ triisopropyl silane Z water (95Z2.5 / 5 / 2.5, vZvZv) at room temperature for 2 hours. Compound (84) was released from the carrier. The coconut resin was filtered off and TFA was evaporated off, and t-butyl methyl ether was added to precipitate the product. The obtained slurry was centrifuged, and the precipitate was purified by reverse phase HPLC to obtain 1.28 mg of a crude product of compound (84). The obtained crude product was dissolved in 10 ml of a methanol solution of 10 mM sodium hydroxide and stirred at room temperature for 3 hours. After completion of the reaction, the reaction solution was neutralized with acetic acid, and the solvent was evaporated. The obtained mixture was purified by reverse phase HPLC to obtain 1. Omg of compound (85) (yield 2.8%). 0 ESI-HRMS: [MH] "= 2610. 1057 (theoretical value: [M — H] _ = 2610. 1053).
産業上の利用可能性  Industrial applicability
[0292] 本発明によれば、従来の技術では極めて困難であった簡単な糖鎖構造力 複雑な 糖鎖構造までを網羅的に有する糖ペプチドのライブラリー調製が可能となる。例えば 、本発明により、生化学研究材料、医薬、食品など幅広い分野で有用であり、これま でその製造が困難であったボリラクトサミン骨格を有するムチン型糖ペプチド類を合 成することができる。 [0292] According to the present invention, it is possible to prepare a library of glycopeptides having a comprehensive sugar chain structure and a complex sugar chain structure, which has been extremely difficult with the prior art. For example, the present invention makes it possible to synthesize mucin-type glycopeptides having a borilactosamine skeleton that have been useful in a wide range of fields such as biochemical research materials, pharmaceuticals, and foods, and have been difficult to produce.
[0293] 得られたボリラクトサミン骨格を有するムチン型糖ペプチドライブラリ一は構造解析、 生化学試験の標準サンプルとして使用可能である。また、このボリラクトサミン骨格を 有するムチン型糖ペプチドライブラリーをチップ上に配置し、糖ペプチド認識タンパク 質の検出、病理診断、細胞接着配列の検索、細胞増殖'アポトーシスなどに関連す る配列解析などを網羅的に行うことが可能になる。  [0293] The obtained mucin-type glycopeptide library having a borilactosamine skeleton can be used as a standard sample for structural analysis and biochemical tests. In addition, a mucin-type glycopeptide library having this voralactosamine skeleton is placed on the chip for detection of glycopeptide recognition proteins, pathological diagnosis, search for cell adhesion sequences, sequence analysis related to cell growth and apoptosis, etc. It becomes possible to do it comprehensively.

Claims

請求の範囲  The scope of the claims
以下の式: The following formula:
X— C ( = 0)—(CH ) — A— A — A (I)  X— C (= 0) — (CH) — A— A — A (I)
2 n 1 2 3  2 n 1 2 3
式中、 Xは、水素原子、 c 〜c アルキル、 c 〜c ァリールまたは発色団を表し;  Wherein X represents a hydrogen atom, c-c alkyl, c-c aryl or chromophore;
1 30 6 30  1 30 6 30
nは 0〜20の整数を表し;  n represents an integer of 0 to 20;
Aは、—(CH ) — C ( = 0)—、—(CH CH O) —、重合度 1〜10のオリゴ A is — (CH 2) — C (= 0) —, — (CH 2 CH 2 O) —
1 2 0〜20 2 2 1〜10 1 2 0 ~ 20 2 2 1 ~ 10
もしくはポリアクリルアミド、重合度 1〜: LOのオリゴもしくはポリペプチド、酸素原子また は NHを表し; Or polyacrylamide, polymerization degree 1 to: oligo or polypeptide of LO, oxygen atom or NH;
Aは、プロテアーゼにより切断可能なアミノ酸残基を表し;  A represents an amino acid residue cleavable by a protease;
2  2
Aは、実質的にプロテアーゼにより切断可能な部位を含まない糖アミノ酸残基、ま A is a sugar amino acid residue substantially free of a site cleavable by a protease, or
3 Three
たはプロテアーゼにより切断可能な部位を含まず任意の糖アミノ酸を含む糖ペプチド 残基を表し、該糖アミノ酸残基または該糖ペプチド残基が、以下の式: Alternatively, it represents a glycopeptide residue containing any sugar amino acid without a site cleavable by a protease, and the sugar amino acid residue or the glycopeptide residue is represented by the following formula:
[化 1]
Figure imgf000233_0001
[Chemical 1]
Figure imgf000233_0001
式中、 R1および R6は、それぞれ独立して、水素、 N—ァセチルノイラミン酸 (Neu5 Ac)基または N—ァセチルダルコサミン(GlcNAc)基であり; In which R 1 and R 6 are each independently hydrogen, N-acetylethylneuraminic acid (Neu5 Ac) group or N-acetylethyldarcosamine (GlcNAc) group;
R2および R7は、ガラクトース(Gal)基であり; R 2 and R 7 are galactose (Gal) groups;
R3および R8は、 GlcNAc基であり; R 3 and R 8 are GlcNAc groups;
R4および R9は、 Gal基であり; R 4 and R 9 are Gal groups;
R5は、 GlcNAc基であり; R 5 is a GlcNAc group;
R10は、 N—ァセチル— a— D—ガラクトサミン(GalNAc)基であり; R 10 is an N-acetyl-a-D-galactosamine (GalNAc) group;
Z2および Z3は、それぞれ独立して、水素またはフコース (Fuc)基であり;ならび に Z 2 and Z 3 are each independently hydrogen or a fucose group; and
nおよび mは、それぞれ独立して、 0以上の整数であり;  n and m are each independently an integer of 0 or more;
ここで、 R1と R2との間の結合は、 R1が Neu5Ac基の場合、 a 2, 3結合であり、 R1が GlcNAc基の場合、 β ΐ, 3結合であり; R2と R3との間の結合は、 β ΐ , 4結合であり; Here, the bond between R 1 and R 2 is a 2, 3 bond when R 1 is Neu5Ac group, and β ΐ, 3 bond when R 1 is GlcNAc group; The bond between R 2 and R 3 is a β,, 4 bond;
R3と R4との間の結合は、 β ΐ , 3結合であり; The bond between R 3 and R 4 is a β,, 3 bond;
R4と R5との間の結合は、 β ΐ , 4結合であり; The bond between R 4 and R 5 is a β,, 4 bond;
R6と R7との間の結合は、 R6が Neu5Ac基の場合、 α 2, 3結合であり、 R6が GlcNA c基の場合、 ΐ , 3結合であり; The bond between R 6 and R 7 is an α 2,3 bond when R 6 is a Neu5Ac group, and a,, 3 bond when R 6 is a GlcNA c group;
R7と R8との間の結合は、 β ΐ , 4結合であり; The bond between R 7 and R 8 is a β,, 4 bond;
R8と R9との間の結合は、 β ΐ , 3結合であり; Bond between R 8 and R 9, β ΐ, is 3 bonds;
R9と R10との間の結合は、 β ΐ , 3結合であり; The bond between R 9 and R 10 is a β,, 3 bond;
R5と R1Gとの間の結合は、 β ΐ , 6結合であり; The bond between R 5 and R 1G is a β,, 6 bond;
Ζ1と R3との間の結合は、 《1, 3結合であり; The bond between Ζ 1 and R 3 is << 1 , 3 bond;
Ζ2と R5との間の結合は、 《1, 3結合であり;ならびに The bond between Ζ 2 and R 5 is << 1, 3 bond; and
Ζ3と R8との間の結合は、 《1, 3結合である、 The bond between Ζ 3 and R 8 is << 1, 3 bond,
で表される糖残基を有する、化合物。  A compound having a sugar residue represented by:
[2] 前記 Αは、バシラス リケ-ホルミス(Bacillus Licheniformis)由来のプロテア [2] The cocoon is a protea derived from Bacillus Licheniformis.
2 一 ゼで切断可能なグルタミン酸残基またはシスティン残基である、請求項 1に記載の化 合物。  2. The compound according to claim 1, which is a glutamic acid residue or a cysteine residue cleavable with one enzyme.
[3] 前記 Aの少なくとも一部力 ムチン型糖タンパク質 MUC1由来の配列番号 1〜60に  [3] At least a partial force of the above A to Mucin-type glycoprotein MUC1 derived SEQ ID NOs: 1 to 60
3  Three
示されるアミノ酸配列からなる群から選択されるアミノ酸配列を有する、請求項 1に記 載の化合物。  2. The compound of claim 1 having an amino acid sequence selected from the group consisting of the amino acid sequences shown.
[4] 請求項 1に記載の化合物と、保護されていてもよいアミノォキシ基、 N—アルキルアミ ノォキシ基、ヒドラジド基、アジド基、チォセミカルバジド基、 1, 2—ジチオール基およ びシスティン残基からなる群から選択される官能基を含む担体と、が反応して得られ る、化合物。  [4] From the compound according to claim 1 and an optionally protected aminooxy group, N-alkylaminooxy group, hydrazide group, azide group, thiosemicarbazide group, 1,2-dithiol group, and cysteine residue A compound obtained by reacting with a carrier containing a functional group selected from the group consisting of:
[5] 前記担体は、以下:  [5] The carrier includes the following:
a)保護されて!、てもよ 、アミノォキシ基またはヒドラジド基を有する、ビュル系単量 体の重合体もしくは共重合体、または保護されて 、てもよ 、アミノォキシ基またはヒド ラジド基を有するポリエーテル類;  a) Protected !, which may be a polymer or copolymer of a butyl monomer having an aminooxy group or a hydrazide group, or a polymer having a protected amino acid group or hydrazide group Ethers;
b)保護されて!、てもよ 、アミノォキシ基またはヒドラジド基を有するシリカ担体、榭脂 担体、磁性ビーズまたは金属担体;ならびに b) Protected !, but silica carriers having aminooxy groups or hydrazide groups, resin A carrier, magnetic beads or metal carrier; and
C)以下の式:  C) The following formula:
[(NH OCH C( = 0)) -Lys] Lys— NHCH CH C ( = 0)— R3[(NH OCH C (= 0)) -Lys] Lys— NHCH CH C (= 0) — R 3 ,
2 2 2 2 2 2  2 2 2 2 2 2
[(NH OCH C( = 0)) -Lys] Lys— NHCH (CH SH) C ( = 0)— R3[(NH OCH C (= 0)) -Lys] Lys— NHCH (CH SH) C (= 0) — R 3 ,
2 2 2 2 2  2 2 2 2 2
[(NH OCH C( = 0)) -Lys] — Lys— Cys— NHCH CH C( = 0)— R3 (配列[(NH OCH C (= 0)) -Lys] — Lys— Cys— NHCH CH C (= 0) — R 3 (sequence
2 2 2 " " 2 2 2 ""
番号 61)、 Number 61),
{[(NH OCH C( = 0)) -Lys] Lys— NHCH[C( = 0)— R3]CH— S} 、{[(NH OCH C (= 0)) -Lys] Lys— NHCH [C (= 0) — R 3 ] CH— S},
2 2 2 2 2 22 2 2 2 2 2
{[(NH OCH C( = 0)) -Lys] - Lvs - NHCH [C( = 0) NHCH CH C( = 0{[(NH OCH C (= 0)) -Lys]-Lvs-NHCH (C (= 0) NHCH CH C (= 0
2 2 2 2 2 22 2 2 2 2 2
)-R3]CH -S} 、 ) -R 3 ] CH -S},
2 2  twenty two
{[(NH OCH C( = 0)) -Lys] -Lys} Lys— NHCH CH C( = 0)— R3({[(NH OCH C (= 0)) -Lys] -Lys} Lys— NHCH CH C (= 0) — R 3 (
2 2 2 2 2 2 2 2 2 2 2 2 2 2
配列番号 62)、 SEQ ID NO: 62),
{[(NH OCH C( = 0)) -Lys] -Lys} -Lys- NHCH (CH SH)C( = 0)— {[(NH OCH C (= 0)) -Lys] -Lys} -Lys- NHCH (CH SH) C (= 0) —
2 2 2 2 2 2 2 2 2 2 2 2
R3 (配列番号 63)、 R 3 (SEQ ID NO: 63),
{[(NH OCH C( = 0)) -Lys] -Lys} Lys— Cys— NHCH CH C( = 0) {[(NH OCH C (= 0)) -Lys] -Lys} Lys— Cys— NHCH CH C (= 0)
2 2 2 2 2 2 22 2 2 2 2 2 2
—R3 (配列番号 64)、 —R 3 (SEQ ID NO: 64),
[[[(NH OCH C( = 0)) -Lys] -Lys] Lys— NHCH[C ( = 0)— R3]CH[[[(NH OCH C (= 0)) -Lys] -Lys] Lys— NHCH [C (= 0) — R 3 ] CH
2 2 twenty two
S] (配列番号 65)、  S] (SEQ ID NO: 65),
2  2
[[[(NH OCH C( = 0)) -Lys] -Lys] - Lys - NHCH [C( = 0) NHCH C [[[(NH OCH C (= 0)) -Lys] -Lys]-Lys-NHCH [C (= 0) NHCH C
2 2 2 2 2 22 2 2 2 2 2
H C( = 0)-R3]CH -S] (配列番号 66)、 HC (= 0) -R 3 ] CH -S] (SEQ ID NO: 66),
2 2 2  2 2 2
[化 2]  [Chemical 2]
[ (NH2 OCH2 C (=0) ) 2 Ly s] NHCHC (=0) — R3 [(NH 2 OCH 2 C (= 0)) 2 Ly s] NHCHC (= 0) — R 3
I  I
[ (題 2 OCH2 C (=0) ) 2 -Ly s] -NH (CH2 ) 4 [(Title 2 OCH 2 C (= 0)) 2 -Ly s] -NH (CH 2 ) 4
または Or
{ [ (NH2 OCH2 C ( = 0) ) 2 Ly s] 2 L y s } NHCHC ( = 0) — R3 {[(NH 2 OCH2 C (= 0)) 2 Ly s] 2 Lys} NHCHC (= 0) — R 3
I  I
{ [ (NH2 OCH2 C ( = 0) ) ≥ -L y s] 2 Ly s} NH (CH2 ) {[(NH 2 OCH 2 C (= 0)) ≥ -L ys] 2 Ly s} NH (CH 2 )
式中、 R3はヒドロキシル基またはアミノ基を表し、 Lysはリジン残基を表し、 Cysは システィンを表す、 In the formula, R 3 represents a hydroxyl group or an amino group, Lys represents a lysine residue, Cys represents cysteine,
[化 3]
Figure imgf000236_0001
[Chemical 3]
Figure imgf000236_0001
式中、 nは 1〜15の整数であり、 x:yは 1 : 0〜1 : 1000である、  Where n is an integer from 1 to 15 and x: y is 1: 0 to 1: 1000,
で表される化合物、力 なる群力 選択される、請求項 4に記載の化合物。  The compound according to claim 4, wherein the compound represented by
[6] 以下の式: [6] The following formula:
A N = C (— X)— (CH ) A -A -A (II)  A N = C (— X) — (CH) A -A -A (II)
4 2 n 1 2 3  4 2 n 1 2 3
式中、 Xは水素原子、 c〜c アルキル、  Wherein X is a hydrogen atom, c-c alkyl,
30 c〜  30 c ~
6 c ァリールまたは発色団を表し; 6 c represents a reel or chromophore;
1 30 1 30
nは 0〜20の整数を表し;  n represents an integer of 0 to 20;
Aは、—(CH ) — C ( = 0)—、—(CH CH O) —、重合度 1〜10のオリゴ A is — (CH 2) — C (= 0) —, — (CH 2 CH 2 O) —
1 2 0〜20 2 2 1〜10 1 2 0 ~ 20 2 2 1 ~ 10
もしくはポリアクリルアミド、重合度 1〜: LOのオリゴもしくはポリペプチド、酸素原子また は NHを表し;  Or polyacrylamide, polymerization degree 1 to: oligo or polypeptide of LO, oxygen atom or NH;
Aは、バシラス リケ-ホルミス(Bacillus Licheniformis)由来のプロテアーゼで A is a protease derived from Bacillus Licheniformis.
2 2
切断可能なグルタミン酸残基またはシスティン残基であり;  A cleavable glutamic acid residue or cysteine residue;
Aは、実質的にプロテアーゼにより切断可能な部位を含まない糖アミノ酸残基、ま A is a sugar amino acid residue substantially free of a site cleavable by a protease, or
3 Three
たはプロテアーゼにより切断可能な部位を含まず任意の糖アミノ酸を含む糖ペプチド 残基を表し、該糖アミノ酸残基または該糖ペプチド残基が、以下の式:  Alternatively, it represents a glycopeptide residue containing any sugar amino acid without a site cleavable by a protease, and the sugar amino acid residue or the glycopeptide residue is represented by the following formula:
[化 4]
Figure imgf000237_0001
[Chemical 4]
Figure imgf000237_0001
式中、 R1および Rは、それぞれ独立して、水素、 Neu5Ac基または GlcNAc基で あり; In which R 1 and R are each independently hydrogen, Neu5Ac group or GlcNAc group;
R2および R7は、 Gal基であり; R 2 and R 7 are Gal groups;
R3および R8は、 GlcNAc基であり; R 3 and R 8 are GlcNAc groups;
R4および R9は、 Gal基であり; R 4 and R 9 are Gal groups;
R5は、 GlcNAc基であり; R 5 is a GlcNAc group;
R10は、 GalNAc基であり; R 10 is a GalNAc group;
Z2および Z3は、それぞれ独立して、水素または Fuc基であり;ならびに nおよび mは、それぞれ独立して、 0以上の整数であり; Z 2 and Z 3 are each independently hydrogen or a Fuc group; and n and m are each independently an integer of 0 or more;
ここで、 R1と R2との間の結合は、 R1が Neu5Ac基の場合、 a 2, 3結合であり、 R1が GlcNAc基の場合、 j81, 3結合であり; Here, the bond between R 1 and R 2 is a 2, 3 bond when R 1 is Neu5Ac group, and j81, 3 bond when R 1 is GlcNAc group;
R2と R3との間の結合は、 β ΐ, 4結合であり; The bond between R 2 and R 3 is a β ΐ, 4 bond;
R3と R4との間の結合は、 β ΐ, 3結合であり; The bond between R 3 and R 4 is a β ΐ, 3 bond;
R4と R5との間の結合は、 β ΐ, 4結合であり; The bond between R 4 and R 5 is a β ΐ, 4 bond;
R6と R7との間の結合は、 R6が Neu5Ac基の場合、 α 2, 3結合であり、 R6が GlcNA c基の場合、 ΐ, 3結合であり; The bond between R 6 and R 7 is an α 2,3 bond when R 6 is a Neu5Ac group, and a ΐ, 3 bond when R 6 is a GlcNA c group;
R7と R8との間の結合は、 β ΐ, 4結合であり; The bond between R 7 and R 8 is a β ΐ, 4 bond;
R8と R9との間の結合は、 β ΐ, 3結合であり; The bond between R 8 and R 9 is a β ΐ, 3 bond;
R9と R1Gとの間の結合は、 β ΐ, 3結合であり; The bond between R 9 and R 1G is a β ΐ, 3 bond;
R5と R1Gとの間の結合は、 β ΐ, 6結合であり; The bond between R 5 and R 1G is a β ΐ, 6 bond;
Ζ1と R3との間の結合は、《1, 3結合であり; The bond between Ζ 1 and R 3 is << 1 , 3 bond;
Ζ2と R5との間の結合は、《1, 3結合であり;ならびに The bond between Ζ 2 and R 5 is << 1, 3 bond; and
Ζ3と R8との間の結合は、《1, 3結合である、 The bond between Ζ 3 and R 8 is << 1, 3 bond,
で表される糖残基を有する; Having a sugar residue represented by:
Αは、以下の式: [化 5] Α is the following formula: [Chemical 5]
Figure imgf000238_0001
Figure imgf000238_0001
式中、 sは 1〜15の整数であり、 x:yは 1 : 0〜1 : 1000である)で表される基である で表される化合物。  In the formula, s is an integer of 1 to 15, and x: y is a group represented by 1: 0 to 1: 1000).
[7] 前記 Aの少なくとも一部力 ムチン型糖タンパク質 MUC1由来の配列番号 1〜60に  [7] At least a partial force of the above A to Mucin-type glycoprotein MUC1
3  Three
示されるアミノ酸配列からなる群から選択されるアミノ酸配列を有する、請求項 6に記 載の化合物。  7. A compound according to claim 6 having an amino acid sequence selected from the group consisting of the amino acid sequences shown.
[8] 以下の工程: [8] The following steps:
(A)請求項 1〜3のいずれか 1項に記載の化合物と、該化合物のケトン残基またはァ ルデヒド残基と特異的に反応しうる、保護されていてもよいアミノォキシ基、 N—アル キルアミノォキシ基、ヒドラジド基、アジド基、チォセミカルバジド基、 1, 2—ジチォ一 ル基およびシスティン残基からなる群から選択される官能基を含む担体と、を反応さ せる工程;  (A) The compound according to any one of claims 1 to 3, and an optionally protected aminooxy group, N-al which can specifically react with the ketone residue or aldehyde residue of the compound Reacting with a carrier containing a functional group selected from the group consisting of a kilaminoxy group, a hydrazide group, an azide group, a thiosemicarbazide group, a 1,2-dithiol group and a cysteine residue;
(B)工程 (A)で得た化合物に、糖ヌクレオチドの存在下で糖転移酵素を作用させる ことにより、該糖ヌクレオチドより糖残基を該化合物に転移させ、糖鎖を伸長させたィ匕 合物を得る工程であって、該糖ヌクレオチド力 Gal基、 GlcNAc基、 Fuc基および N eu5Ac基力もなる群より選択される糖残基を有する、工程; (B) By reacting the compound obtained in step (A) with a glycosyltransferase in the presence of a sugar nucleotide, the sugar residue is transferred from the sugar nucleotide to the compound, and the sugar chain is elongated. A step of obtaining a compound comprising a sugar residue selected from the group consisting of the sugar nucleotide force Gal group, GlcNAc group, Fuc group and Neu5Ac group force;
(C)必要に応じて未反応の糖ヌクレオチド類および副生したヌクレオチド類を除去す る工程;および  (C) removing unreacted sugar nucleotides and by-product nucleotides as necessary; and
(D)糖残基が転移して糖鎖が伸長したィ匕合物にプロテアーゼを作用させる工程、 を包含する、糖ペプチドを製造する方法。  (D) A method for producing a glycopeptide, comprising a step of allowing a protease to act on a compound in which a sugar residue is transferred and a sugar chain is extended.
[9] 以下の工程:  [9] The following steps:
(A)請求項 4〜7のいずれか 1項に記載の化合物に、糖ヌクレオチドの存在下で糖転 移酵素を作用させることにより、該糖ヌクレオチドより糖残基を該化合物に転移させ、 糖鎖を伸長させたィ匕合物を得る工程であって、該糖ヌクレオチド力 Gal基、 GlcNA c基、 Fuc基および Neu5Ac基カゝらなる群より選択される糖残基を有する、工程; (A) A sugar residue is transferred from the sugar nucleotide to the compound by allowing a sugar transferase to act on the compound according to any one of claims 4 to 7 in the presence of the sugar nucleotide. A step of obtaining a chain-extended compound having a sugar residue selected from the group consisting of the sugar nucleotide force Gal group, GlcNA c group, Fuc group and Neu5Ac group;
(B)必要に応じて未反応の糖ヌクレオチド類および副生したヌクレオチド類を除去す る工程;および (B) removing unreacted sugar nucleotides and by-product nucleotides as necessary; and
(C)糖残基が転移して糖鎖が伸長した化合物にプロテアーゼを作用させる工程 を包含する、糖ペプチドを製造する方法。  (C) A method for producing a glycopeptide, comprising a step of allowing a protease to act on a compound having a sugar residue transferred and a sugar chain extended.
[10] 以下の工程:  [10] The following steps:
(A)請求項 4〜7のいずれか 1項に記載の化合物に、糖ヌクレオチドの存在下で糖転 移酵素を作用させることにより、該糖ヌクレオチドより糖残基を該化合物に転移させ、 糖鎖を伸長させたィ匕合物を得る工程であって、該糖ヌクレオチド力 Gal基、 GlcNA c基、 Fuc基および Neu5Ac基カゝらなる群より選択される糖残基を有する、工程; (A) A sugar residue is transferred from the sugar nucleotide to the compound by allowing a sugar transferase to act on the compound according to any one of claims 4 to 7 in the presence of the sugar nucleotide. A step of obtaining a chain-extended compound having a sugar residue selected from the group consisting of the sugar nucleotide force Gal group, GlcNA c group, Fuc group and Neu5Ac group;
(B)工程 (A)を 1回または 2回以上繰り返して糖鎖を伸長させる工程; (B) Step (A) is repeated once or twice or more to extend the sugar chain;
(C)必要に応じて未反応の糖ヌクレオチド類および副生したヌクレオチド類を除去す る工程;および  (C) removing unreacted sugar nucleotides and by-product nucleotides as necessary; and
(D)複数の糖残基が転移して糖鎖が伸長した化合物にプロテアーゼを作用させるェ 程、を包含する、糖ペプチドを製造する方法。  (D) A method for producing a glycopeptide, comprising the step of allowing a protease to act on a compound in which a plurality of sugar residues are transferred and the sugar chain is elongated.
[11] 以下の工程:  [11] The following steps:
(A)プロテアーゼにより切断可能なアミノ酸、糖アミノ酸、およびケト酸またはアルデヒ ド酸を原料にペプチド固相合成を行い、請求項 1〜3のいずれか 1項に記載の化合 物を得る工程; The compound according to any one of claims 1 to 3, wherein (A) peptide solid phase synthesis is performed using amino acids, sugar amino acids, and keto acid or aldehyde acid that can be cleaved by a protease as raw materials. Obtaining a product;
(B)工程 (A)で得た化合物と、該化合物のケトン残基またはアルデヒド残基と特異的 に反応しうる、保護されていてもよいアミノォキシ基、 N—アルキルアミノォキシ基、ヒド ラジド基、アジド基、チォセミカルバジド基、 1, 2—ジチオール基およびシスティン残 基からなる群から選択される官能基を含む担体とを反応させる工程;  (B) The compound obtained in step (A) and an optionally protected aminooxy group, N-alkylaminooxy group, hydrazide capable of reacting specifically with the ketone residue or aldehyde residue of the compound Reacting with a carrier comprising a functional group selected from the group consisting of a group, an azide group, a thiosemicarbazide group, a 1,2-dithiol group and a cysteine residue;
(C)工程 (B)で得た化合物に、糖ヌクレオチドの存在下で糖転移酵素を作用させる ことにより、該糖ヌクレオチドより糖残基を該化合物に転移させ、糖鎖を伸長させたィ匕 合物を得る工程であって、該糖ヌクレオチド力 Gal基、 GlcNAc基、 Fuc基および N eu5Ac基力もなる群より選択される糖残基を有する、工程;  (C) Step (B) By reacting the compound obtained in step (B) with a glycosyltransferase in the presence of a sugar nucleotide, a sugar residue is transferred from the sugar nucleotide to the compound, and the sugar chain is elongated. A step of obtaining a compound comprising a sugar residue selected from the group consisting of the sugar nucleotide force Gal group, GlcNAc group, Fuc group and Neu5Ac group force;
(D)必要に応じて未反応の糖ヌクレオチド類および副生したヌクレオチド類を除去す る工程;および  (D) removing unreacted sugar nucleotides and by-product nucleotides as necessary; and
(E)糖残基が転移して糖鎖が伸長したィ匕合物にプロテアーゼを作用させる工程、 を包含する、糖ペプチドを製造する方法。  (E) A method for producing a glycopeptide, comprising a step of allowing a protease to act on a compound in which a sugar residue is transferred and a sugar chain is elongated.
以下の工程: The following steps:
(A)プロテアーゼにより切断可能なアミノ酸、糖アミノ酸、およびケト酸またはアルデヒ ド酸を原料にペプチド固相合成を行い、請求項 1〜3のいずれか 1項に記載の化合 物を得る工程;  (A) a step of obtaining a compound according to any one of claims 1 to 3 by performing solid phase peptide synthesis using amino acids, sugar amino acids, and keto acids or aldehyde acids that can be cleaved by a protease as raw materials;
(B)工程 (A)で得た化合物と、該化合物のケトン残基またはアルデヒド残基と特異的 に反応しうる保護されていてもよいアミノォキシ基、 N—アルキルアミノォキシ基、ヒド ラジド基、アジド基、チォセミカルバジド基、 1, 2—ジチオール基およびシスティン残 基からなる群から選択される官能基を含む担体とを反応させ、これと同時に工程 (A) における未反応物を除去する工程;  (B) The compound obtained in step (A) and an optionally protected aminooxy group, N-alkylaminooxy group, hydrazide group capable of reacting specifically with the ketone residue or aldehyde residue of the compound , An azide group, a thiosemicarbazide group, a 1,2-dithiol group, and a carrier containing a functional group selected from the group consisting of cysteine residues, and at the same time, removing unreacted substances in step (A) ;
(C)工程 (B)で得た担体に結合したィ匕合物に、糖ヌクレオチドの存在下で糖転移酵 素を作用させることにより、該糖ヌクレオチドより糖残基を該化合物に転移させ、糖鎖 が伸長されたィ匕合物を得る工程であって、該糖ヌクレオチド力 Gal基、 GlcNAc基、 Fuc基および Neu5Ac基力もなる群より選択される糖残基を有する、工程;  (C) A sugar transfer enzyme is allowed to act on the compound bound to the carrier obtained in step (B) in the presence of a sugar nucleotide to transfer a sugar residue from the sugar nucleotide to the compound, A step of obtaining a compound in which a sugar chain is extended, the sugar nucleotide having a sugar residue selected from the group consisting of a Gal group, a GlcNAc group, a Fuc group and a Neu5Ac group;
(D)工程 (C)を 1回または 2回以上繰り返して糖鎖を伸長させる工程;  (D) Step (C) is repeated once or twice or more to extend the sugar chain;
(E)必要に応じて未反応の糖ヌクレオチド類および副生したヌクレオチド類を除去す る工程;および (E) Remove unreacted sugar nucleotides and by-product nucleotides as necessary And
(F)複数の糖残基が転移して糖鎖が伸長したィ匕合物にプロテアーゼを作用させるェ 程、を包含する、糖ペプチドを製造する方法。  (F) A method for producing a glycopeptide, comprising the step of causing a protease to act on a compound in which a plurality of sugar residues are transferred and the sugar chain is elongated.
[13] 前記工程 (A)のケト酸またはアルデヒド酸力 以下の式: [13] Keto acid or aldehyde acid power in the step (A) The following formula:
X-C ( = 0) - (CH ) -A -COOH (III)  X-C (= 0)-(CH) -A -COOH (III)
2 n 1  2 n 1
式中、 Xは水素原子、 c 1〜c アルキル、  In which X is a hydrogen atom, c1-c alkyl,
30 c 6〜c ァリールまたは発色団を表し;  30 c represents 6 to c aryl or chromophore;
30  30
nは 0〜20の整数を表し;  n represents an integer of 0 to 20;
Aは、メチレン鎖 1〜20個分の長さを有するリンカ一を表す、  A represents a linker having a length of 1 to 20 methylene chains,
で表される化合物である、請求項 11または 12に記載の方法。  The method of Claim 11 or 12 which is a compound represented by these.
[14] 以下の工程: [14] The following steps:
(A)請求項 1〜3のいずれか 1項に記載の化合物に、糖ヌクレオチドの存在下で糖転 移酵素を作用させることにより、該糖ヌクレオチドより糖残基を該化合物に転移させ、 糖鎖を伸長させたィ匕合物を得る工程であって、該糖ヌクレオチド力 Gal基、 GlcNA c基、 Fuc基および Neu5Ac基カゝらなる群より選択される糖残基を有する、工程; (A) A sugar residue is transferred from the sugar nucleotide to the compound by allowing a sugar transferase to act on the compound according to any one of claims 1 to 3 in the presence of the sugar nucleotide. A step of obtaining a chain-extended compound having a sugar residue selected from the group consisting of the sugar nucleotide force Gal group, GlcNA c group, Fuc group and Neu5Ac group;
(B)必要に応じて工程 (A)を 1回または 2回以上繰り返して糖鎖を伸長させる工程;( C)糖残基が転移して糖鎖が伸長した化合物と、該化合物のケトン残基またはアルデ ヒド残基と特異的に反応しうる保護されて 、てもよ 、ァミノォキシ基、 N—アルキルアミ ノォキシ基、ヒドラジド基、アジド基、チォセミカルバジド基、 1, 2—ジチオール基およ びシスティン残基からなる群から選択される官能基を含む担体と、を反応させる工程(B) Step (A) is repeated one or more times as necessary to extend the sugar chain; (C) a compound in which the sugar residue is transferred and the sugar chain is extended, and the ketone residue of the compound Protected, which can react specifically with a group or aldehyde residue, may be an aminooxy group, N-alkylaminooxy group, hydrazide group, azide group, thiosemicarbazide group, 1,2-dithiol group and cysteine. Reacting with a carrier containing a functional group selected from the group consisting of residues
;および ;and
(D)必要に応じて未反応の糖ヌクレオチド類および副生したヌクレオチド類を除去す る工程;  (D) removing unreacted sugar nucleotides and by-product nucleotides as necessary;
を包含する、糖ペプチドを製造する方法。  A process for producing a glycopeptide comprising
[15] 以下の工程: [15] The following steps:
(A)請求項 1〜3のいずれか 1項に記載の化合物に、糖ヌクレオチドの存在下で糖転 移酵素を作用させることにより、該糖ヌクレオチドより糖残基を該化合物に転移させ、 糖鎖を伸長させたィ匕合物を得る工程であって、該糖ヌクレオチド力 Gal基、 GlcNA c基、 Fuc基および Neu5Ac基カゝらなる群より選択される糖残基を有する、工程; (B)必要に応じて工程 (A)を 1回または 2回以上繰り返して糖鎖を伸長させる工程;(A) A sugar residue is transferred from the sugar nucleotide to the compound by allowing a sugar transferase to act on the compound according to any one of claims 1 to 3 in the presence of the sugar nucleotide, A step of obtaining a chain-extended compound comprising a sugar residue selected from the group consisting of the sugar nucleotide force Gal group, GlcNA c group, Fuc group and Neu5Ac group; (B) Step (A) is repeated one or more times as necessary to extend the sugar chain as necessary;
(C)糖残基が転移して糖鎖が伸長した化合物と、該化合物のケトン残基またはアル デヒド残基と特異的に反応しうる保護されて 、てもよ 、ァミノォキシ基、 N—アルキル アミノォキシ基、ヒドラジド基、アジド基、チォセミカルバジド基、 1, 2—ジチオール基 およびシスティン残基からなる群から選択される官能基を含む担体と、を反応させる 工程; (C) a compound in which a sugar residue is transferred and a sugar chain is extended, and a protected compound capable of reacting specifically with a ketone residue or an aldehyde residue of the compound, and may be an aminooxy group, N-alkyl Reacting a carrier containing a functional group selected from the group consisting of an aminooxy group, a hydrazide group, an azide group, a thiosemicarbazide group, a 1,2-dithiol group and a cysteine residue;
(D)必要に応じて未反応の糖ヌクレオチド類および副生したヌクレオチド類を除去す る工程;および  (D) removing unreacted sugar nucleotides and by-product nucleotides as necessary; and
(E)糖残基が転移して糖鎖が伸長したィ匕合物にプロテアーゼを作用させる工程、 を包含する、糖ペプチドを製造する方法。  (E) A method for producing a glycopeptide, comprising a step of allowing a protease to act on a compound in which a sugar residue is transferred and a sugar chain is elongated.
前記糖ペプチドが、以下の式: Said glycopeptide has the following formula:
[化 6] [Chemical 6]
X1 X1 X1 X 1 X 1 X 1
Y1 -His- Gly-Va卜 Thr-Ser- Ala-Pro- Asp- Thr-Arg-Y2 Y 1 -His- Gly-Va 卜 Thr-Ser- Ala-Pro- Asp- Thr-Arg-Y 2
(配列番号 2)  (SEQ ID NO: 2)
[化 7]  [Chemical 7]
X1 X1 X1 X 1 X 1 X 1
Y' -Ala-His- Gly- Va卜 Thr-Se「AI a- Pro-Asp- Thr-Arg- Y2 Y '-Ala-His- Gly- Va 卜 Thr-Se `` AI a- Pro-Asp- Thr-Arg- Y 2
(配列番号 21)  (SEQ ID NO: 21)
または Or
[化 8]  [Chemical 8]
X1 X1 X1 X1 X1 X 1 X 1 X 1 X 1 X 1
Y' -His-Gly-Val-Thr-Ser-Ala-Pro-Asp-Thr-Arg-Pro-Ala-Pro-Gly-Ser-Thr-Ala-Pro -Pro-Ala-Y2 Y '-His-Gly-Val-Thr-Ser-Ala-Pro-Asp-Thr-Arg-Pro-Ala-Pro-Gly-Ser-Thr-Ala-Pro -Pro-Ala-Y 2
(配列番号 41) (SEQ ID NO: 41)
式中、 X1は、それぞれ独立して、水素原子または以下の式: In the formula, each X 1 independently represents a hydrogen atom or the following formula:
[化 9] [Chemical 9]
Figure imgf000242_0001
Figure imgf000242_0001
式中、 R1および R6は、それぞれ独立して、水素、 Neu5Ac基または GlcNAc基で あり; Wherein R 1 and R 6 are each independently hydrogen, Neu5Ac group or GlcNAc group. Yes;
R2および R7は、 Gal基であり; R 2 and R 7 are Gal groups;
R3および R8は、 GlcNAc基であり; R 3 and R 8 are GlcNAc groups;
R4および R9は、 Gal基であり; R 4 and R 9 are Gal groups;
R5は、 GlcNAc基であり; R 5 is a GlcNAc group;
R10は、 GalNAc基であり; R 10 is a GalNAc group;
Z2および Z3は、それぞれ独立して、水素または Fuc基であり;ならびに nおよび mは、それぞれ独立して、 0以上の整数であり; Z 2 and Z 3 are each independently hydrogen or a Fuc group; and n and m are each independently an integer of 0 or more;
ここで、 R1と R2との間の結合は、 R1が Neu5Ac基の場合、 ひ 2, 3結合であり、 R1が GlcNAc基の場合、 β ΐ, 3結合であり; Here, the bond between R 1 and R 2 is a 2, 3 bond when R 1 is a Neu5Ac group, and a β ΐ, 3 bond when R 1 is a GlcNAc group;
R2と R3との間の結合は、 β ΐ, 4結合であり; The bond between R 2 and R 3 is a β ΐ, 4 bond;
R3と R4との間の結合は、 β ΐ, 3結合であり; The bond between R 3 and R 4 is a β ΐ, 3 bond;
R4と R5との間の結合は、 β ΐ, 4結合であり; The bond between R 4 and R 5 is a β ΐ, 4 bond;
R6と R7との間の結合は、 R6が Neu5Ac基の場合、 α 2, 3結合であり、 R6が GlcNA c基の場合、 β ΐ, 3結合であり; The bond between R 6 and R 7 is an α 2,3 bond when R 6 is a Neu5Ac group, and a β ΐ, 3 bond when R 6 is a GlcNA c group;
R7と R8との間の結合は、 β ΐ, 4結合であり; The bond between R 7 and R 8 is a β ΐ, 4 bond;
R8と R9との間の結合は、 β ΐ, 3結合であり; The bond between R 8 and R 9 is a β ΐ, 3 bond;
R9と R10との間の結合は、 β ΐ, 3結合であり; The bond between R 9 and R 10 is a β ΐ, 3 bond;
R5と R1Gとの間の結合は、 β ΐ, 6結合であり; The bond between R 5 and R 1G is a β ΐ, 6 bond;
Ζ1と R3との間の結合は、 al, 3結合であり; The bond between Ζ 1 and R 3 is al, 3 bond;
Ζ2と R5との間の結合は、 αΐ, 3結合であり;ならびに The bond between Ζ 2 and R 5 is an αΐ, 3 bond; and
Ζ3と R8との間の結合は、 αΐ, 3結合である、 The bond between Ζ 3 and R 8 is αΐ, 3 bond,
で表される基を表し、ただし、 X1のすべてが水素原子である場合を除く; Represents a group represented by the formula, except when all of X 1 are hydrogen atoms;
Υ1は、水素原子、ァセチル、ァシル、アルキルまたはァリールを表し; Υ 1 represents a hydrogen atom, acetyl, acyl, alkyl or aryl;
Υ2は、水酸基、 ΝΗ、アルキルまたはァリールを表す、 Υ 2 represents a hydroxyl group, ΝΗ, alkyl or aryl.
2  2
で表される糖ペプチドである、請求項 8〜15のいずれか 1項に記載の方法。 The method according to any one of claims 8 to 15, which is a glycopeptide represented by the formula:
以下の式: The following formula:
[化 10] X1 X1 X1 [Chemical 10] X 1 X 1 X 1
Y1 -His- Gly-Va卜 Thr-Ser- Ala-Pro- Asp- Thr-Arg-Y2 Y 1 -His- Gly-Va 卜 Thr-Ser- Ala-Pro- Asp- Thr-Arg-Y 2
(配列番号 2)  (SEQ ID NO: 2)
[化 11] [Chemical 11]
X1 X1 X1 X 1 X 1 X 1
Y1 -Ala-His- Gly-Val-Thr-Ser-AI a- Pro-Asp- Thr-Arg- γ2 Y 1 -Ala-His- Gly-Val-Thr-Ser-AI a- Pro-Asp- Thr-Arg- γ2
(配列番号 21)  (SEQ ID NO: 21)
または Or
[化 12]  [Chemical 12]
X1 X1 X1 X1 X1 X 1 X 1 X 1 X 1 X 1
Y1 -His— Gly—Va卜 Thr—Ser— Ala-Pro— Asp— Thr—Arg— Pro-Ala— Pro-Gly-Ser-Thr-Ala— Pro -Pro— Ala— Υ2 Y 1 -His— Gly—Va 卜 Thr—Ser— Ala-Pro— Asp— Thr—Arg— Pro-Ala— Pro-Gly-Ser-Thr-Ala— Pro-Pro— Ala— Υ 2
(配列番号 41) (SEQ ID NO: 41)
式中、 X1は、それぞれ独立して、水素原子または以下の式: In the formula, each X 1 independently represents a hydrogen atom or the following formula:
[化 13]
Figure imgf000244_0001
[Chemical 13]
Figure imgf000244_0001
式中、 R1および R6は、それぞれ独立して、水素、 Neu5 Ac基または GlcNAc基で あり; Wherein R 1 and R 6 are each independently hydrogen, Neu5 Ac group or GlcNAc group;
R2および R7は、 Gal基であり; R 2 and R 7 are Gal groups;
R3および R8は、 GlcNAc基であり; R 3 and R 8 are GlcNAc groups;
R4および R9は、 Gal基であり; R 4 and R 9 are Gal groups;
R5は、 GlcNAc基であり; R 5 is a GlcNAc group;
R10は、 GalNAc基であり; R 10 is a GalNAc group;
Z Z2および Z3は、それぞれ独立して、水素または Fuc基であり;ならびに nおよび mは、それぞれ独立して、 0以上の整数であり; ZZ 2 and Z 3 are each independently hydrogen or a Fuc group; and n and m are each independently an integer greater than or equal to 0;
ここで、 R1と R2との間の結合は、 R1が Neu5Ac基の場合、 a 2, 3結合であり、 R1が GlcNAc基の場合、 j8 1 , 3結合であり; Here, the bond between R 1 and R 2 is a 2, 3 bond when R 1 is Neu5Ac group, and j8 1, 3 bond when R 1 is GlcNAc group;
R2と R3との間の結合は、 β ΐ , 4結合であり; The bond between R 2 and R 3 is a β,, 4 bond;
R3と R4との間の結合は、 β ΐ , 3結合であり; R4と R5との間の結合は、 /31, 4結合であり; The bond between R 3 and R 4 is a β,, 3 bond; The bond between R 4 and R 5 is a / 31, 4 bond;
R6と R7との間の結合は、 R6が Neu5Ac基の場合、 α 2, 3結合であり、 R6が GlcNA c基の場合、 β ΐ, 3結合であり; The bond between R 6 and R 7 is an α 2,3 bond when R 6 is a Neu5Ac group, and a β ΐ, 3 bond when R 6 is a GlcNA c group;
R7と R8との間の結合は、 β ΐ, 4結合であり; The bond between R 7 and R 8 is a β ΐ, 4 bond;
R8と R9との間の結合は、 β ΐ, 3結合であり; The bond between R 8 and R 9 is a β ΐ, 3 bond;
R9と R1Gとの間の結合は、 β ΐ, 3結合であり; The bond between R 9 and R 1G is a β ΐ, 3 bond;
R5と R1Gとの間の結合は、 β ΐ, 6結合であり; The bond between R 5 and R 1G is a β ΐ, 6 bond;
Ζ1と R3との間の結合は、 《1, 3結合であり; The bond between Ζ 1 and R 3 is << 1 , 3 bond;
Ζ2と R5との間の結合は、 《1, 3結合であり;ならびに The bond between Ζ 2 and R 5 is << 1, 3 bond; and
Ζ3と R8との間の結合は、 《1, 3結合である、 The bond between Ζ 3 and R 8 is << 1, 3 bond,
で表される基を表し、ただし、 X1のすべてが水素原子である場合を除く; Represents a group represented by the formula, except when all of X 1 are hydrogen atoms;
Υ1は、水素原子、ァセチル、ァシル、アルキルまたはァリールを表し; Υ 1 represents a hydrogen atom, acetyl, acyl, alkyl or aryl;
Υ2は、水酸基、 ΝΗ、アルキルまたはァリールを表す、 Υ 2 represents a hydroxyl group, ΝΗ, alkyl or aryl.
2  2
で表される糖ペプチド。 A glycopeptide represented by
所望の糖ペプチドを製造する方法であって、該方法は、以下の工程: A method for producing a desired glycopeptide comprising the following steps:
(Α)  (Α)
以下の式: The following formula:
[化 14] [Chemical 14]
Figure imgf000245_0001
式中、 R1および R。は、それぞれ独立して、水素、 Neu5 Ac基または GlcNAc基で あり; R2および R7は、 Gal基であり;
Figure imgf000245_0001
Where R 1 and R. Are each independently hydrogen, Neu5 Ac group or GlcNAc group; R 2 and R 7 are Gal groups;
R3および R8は、 GlcNAc基であり; R 3 and R 8 are GlcNAc groups;
R4および R9は、 Gal基であり; R 4 and R 9 are Gal groups;
R5は、 GlcNAc基であり; R 5 is a GlcNAc group;
R10は、 GalNAc基であり; R 10 is a GalNAc group;
R11は、水素原子またはメチル基であり; R 11 is a hydrogen atom or a methyl group;
Z2および Z3は、それぞれ独立して、水素または Fuc基であり;ならびに nおよび mは、それぞれ独立して、 0以上の整数であり; Z 2 and Z 3 are each independently hydrogen or a Fuc group; and n and m are each independently an integer of 0 or more;
ここで、 R1と R2との間の結合は、 R1が Neu5Ac基の場合、 a 2, 3結合であり、 R1が GlcNAc基の場合、 j81, 3結合であり; Here, the bond between R 1 and R 2 is a 2, 3 bond when R 1 is Neu5Ac group, and j81, 3 bond when R 1 is GlcNAc group;
R2と R3との間の結合は、 β ΐ, 4結合であり; The bond between R 2 and R 3 is a β ΐ, 4 bond;
R3と R4との間の結合は、 β ΐ, 3結合であり; The bond between R 3 and R 4 is a β ΐ, 3 bond;
R4と R5との間の結合は、 β ΐ, 4結合であり; The bond between R 4 and R 5 is a β ΐ, 4 bond;
R6と R7との間の結合は、 R6が Neu5Ac基の場合、 α 2, 3結合であり、 R6が GlcNA c基の場合、 ΐ, 3結合であり; The bond between R 6 and R 7 is an α 2,3 bond when R 6 is a Neu5Ac group, and a ΐ, 3 bond when R 6 is a GlcNA c group;
R7と R8との間の結合は、 β ΐ, 4結合であり; The bond between R 7 and R 8 is a β ΐ, 4 bond;
R8と R9との間の結合は、 β ΐ, 3結合であり; The bond between R 8 and R 9 is a β ΐ, 3 bond;
R9と R10との間の結合は、 β ΐ, 3結合であり; The bond between R 9 and R 10 is a β ΐ, 3 bond;
R5と R1Gとの間の結合は、 β ΐ, 6結合であり; The bond between R 5 and R 1G is a β ΐ, 6 bond;
Ζ1と R3との間の結合は、 《1, 3結合であり; The bond between Ζ 1 and R 3 is << 1 , 3 bond;
Ζ2と R5との間の結合は、 《1, 3結合であり; The bond between Ζ 2 and R 5 is << 1, 3 bond;
Ζ3と R8との間の結合は、 《1, 3結合であり;ならびに The bond between Ζ 3 and R 8 is << 1, 3 bond; and
Ρは、 9 フルォレ -ルメチルォキシカルボ-ル基または tert ブトキシカルボ-ル 基である、  Ρ is a 9-fluormethylcarboxyl group or a tert-butoxycarbol group,
で表される糖アミノ酸の糖鎖を保護基により保護して糖鎖が保護された糖アミノ酸を 生成する工程であって、該保護基は、ァセチル基、ベンゾィル基、メチル基、メトキシ メチル基、トリメチルシリル基、 tーブチルジメチルシリル基、ジメチルフヱ-ル基およ びトリイソプロビルシリル基、ベンジル基、ベンジリデン基、イソプロピリデン基、ジ tert- ブ A sugar amino acid having a sugar chain protected by protecting the sugar chain of the sugar amino acid represented by the following: a acetyl group, a benzoyl group, a methyl group, a methoxymethyl group, Trimethylsilyl group, t-butyldimethylsilyl group, dimethylphenol group and triisopropylpropylsilyl group, benzyl group, benzylidene group, isopropylidene group, di-tert- The
チルシリリデン基力 なる群より選択される、工程; A process selected from the group consisting of:
(B)工程 (A)で得られた該糖鎖が保護された糖アミノ酸および 9 -フルォレニルメチ ルォキシカルボ-ル基または tert—ブトキシカルボ-ル基で N—保護されたアミノ酸 を用いて、所望のペプチド配列を有する糖鎖が保護された糖ペプチドを合成するェ 程;ならびに  (B) Using the sugar amino acid in which the sugar chain obtained in step (A) is protected and an N-protected amino acid with a 9-fluorenylmethylcarboxyl group or a tert-butoxycarbol group, the desired peptide Synthesizing a glycopeptide in which the sugar chain having the sequence is protected; and
(C)工程 (B)で得られた該糖鎖が保護された糖ペプチドを脱保護して該所望の糖べ プチドを生成させる工程、  (C) a step of deprotecting the glycopeptide protected in sugar chain obtained in step (B) to produce the desired glycopeptide;
を包含する、方法。 Including the method.
PCT/JP2007/057001 2006-03-31 2007-03-29 Mucin-type glycopeptide having polylactosamine backbone WO2007114307A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006100923A JP2009143809A (en) 2006-03-31 2006-03-31 Mucin type glycopeptide having polylactosamine backbone
JP2006-100923 2006-03-31

Publications (1)

Publication Number Publication Date
WO2007114307A1 true WO2007114307A1 (en) 2007-10-11

Family

ID=38563575

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/057001 WO2007114307A1 (en) 2006-03-31 2007-03-29 Mucin-type glycopeptide having polylactosamine backbone

Country Status (2)

Country Link
JP (1) JP2009143809A (en)
WO (1) WO2007114307A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020104486A1 (en) * 2018-11-19 2020-05-28 Gnubiotics Sciences Sa Compositions from gastrointestinal tract mucins and uses thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005108417A1 (en) * 2004-05-07 2005-11-17 National Institute Of Advanced Industrial Science And Technology Polymeric primer for sugar peptide synthesis
WO2006030840A1 (en) * 2004-09-14 2006-03-23 National Institute Of Advanced Industrial Scienceand Technology Process for synthesis of mucin-type peptides and muc1-related glycopeptides

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005108417A1 (en) * 2004-05-07 2005-11-17 National Institute Of Advanced Industrial Science And Technology Polymeric primer for sugar peptide synthesis
WO2006030840A1 (en) * 2004-09-14 2006-03-23 National Institute Of Advanced Industrial Scienceand Technology Process for synthesis of mucin-type peptides and muc1-related glycopeptides

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020104486A1 (en) * 2018-11-19 2020-05-28 Gnubiotics Sciences Sa Compositions from gastrointestinal tract mucins and uses thereof

Also Published As

Publication number Publication date
JP2009143809A (en) 2009-07-02

Similar Documents

Publication Publication Date Title
Herzner et al. Synthesis of glycopeptides containing carbohydrate and peptide recognition motifs
Wen et al. Toward automated enzymatic synthesis of oligosaccharides
Seitz et al. Chemoenzymatic solution-and solid-phase synthesis of O-glycopeptides of the mucin domain of MAdCAM-1. A general route to O-LacNAc, O-sialyl-LacNAc, and O-sialyl-Lewis-X peptides
Li et al. Efficient chemoenzymatic synthesis of an N-glycan isomer library
Pratt et al. Synthetic glycopeptides and glycoproteins as tools for biology
Grayson et al. A coordinated synthesis and conjugation strategy for the preparation of homogeneous glycoconjugate vaccine candidates
Dziadek et al. Biomimetic Synthesis of the Tumor‐Associated (2, 3)‐Sialyl‐T Antigen and Its Incorporation into Glycopeptide Antigens from the Mucins MUC1 and MUC4
US7193034B2 (en) Synthetic peptides, conjugation reagents and methods
Pudelko et al. Chemical and chemoenzymatic synthesis of glycopeptide selectin ligands containing sialyl Lewis X structures
Meldal et al. Synthetic methods of glycopeptide assembly, and biological analysis of glycopeptide products
US7273934B2 (en) Three-branched sugar-chain asparagine derivatives, the sugar-chain asparagines, the sugar chains, and processes for producing these
Peri et al. Chemoselective ligation in glycochemistry
Matsushita et al. Functional neoglycopeptides: synthesis and characterization of a new class of MUC1 glycoprotein models having core 2-based O-glycan and complex-type N-glycan chains
Liu et al. Advances in glycoprotein synthesis
Dziadek et al. Synthetic glycopeptides for the development of antitumour vaccines
Meldal Glycopeptide synthesis
AU2012226981B2 (en) Method for producing glycopeptide having sialyl sugar chain, sialyl sugar chain-added amino acid derivative to be used in same, and glycopeptide
US20100069607A1 (en) Method of covalently linking a carbohydrate or polyalkylene oxide to a peptide, precursors for use in the method and resultant products
WO2006030840A1 (en) Process for synthesis of mucin-type peptides and muc1-related glycopeptides
WO2007114307A1 (en) Mucin-type glycopeptide having polylactosamine backbone
Frison et al. Oligolysine-based saccharide clusters: synthesis and specificity
Norberg et al. Reversible derivatization of sugars with carbobenzyloxy groups and use of the derivatives in solution-phase enzymatic oligosaccharide synthesis
JP2009215207A (en) Amino acid bonded with o-mannose type sugar chain and method for producing sugar peptide by using the same
Westerlind et al. Advances in N‐and O‐glycopeptide synthesis–a tool to study glycosylation and develop new therapeutics
WO2010150558A1 (en) Method for synthesizing glycopeptide

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07740439

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 07740439

Country of ref document: EP

Kind code of ref document: A1