WO2007113908A1 - Recording medium and image forming method - Google Patents

Recording medium and image forming method Download PDF

Info

Publication number
WO2007113908A1
WO2007113908A1 PCT/JP2006/307230 JP2006307230W WO2007113908A1 WO 2007113908 A1 WO2007113908 A1 WO 2007113908A1 JP 2006307230 W JP2006307230 W JP 2006307230W WO 2007113908 A1 WO2007113908 A1 WO 2007113908A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
drive electrode
discharge
electrode
recording medium
Prior art date
Application number
PCT/JP2006/307230
Other languages
French (fr)
Japanese (ja)
Inventor
Hisanobu Matsuzoe
Original Assignee
Fukuoka Technoken Kogyo, Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukuoka Technoken Kogyo, Co., Ltd. filed Critical Fukuoka Technoken Kogyo, Co., Ltd.
Priority to PCT/JP2006/307230 priority Critical patent/WO2007113908A1/en
Priority to JP2006536903A priority patent/JP3936727B1/en
Publication of WO2007113908A1 publication Critical patent/WO2007113908A1/en

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3433Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using light modulating elements actuated by an electric field and being other than liquid crystal devices and electrochromic devices
    • G09G3/344Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using light modulating elements actuated by an electric field and being other than liquid crystal devices and electrochromic devices based on particles moving in a fluid or in a gas, e.g. electrophoretic devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/166Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect
    • G02F1/167Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect by electrophoresis
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/1675Constructional details
    • G02F1/1676Electrodes
    • G02F1/16762Electrodes having three or more electrodes per pixel
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/06Passive matrix structure, i.e. with direct application of both column and row voltages to the light emitting or modulating elements, other than LCD or OLED

Definitions

  • the present invention relates to an electrostatic development type recording medium in which image or character information is displayed by being charged with electrons or ions, and selectively applying a charge to the recording medium.
  • the present invention relates to an image forming method to be formed.
  • recording media such as electronic paper and flexible displays that can be rewritten and have excellent portability have been developed.
  • a twisting ball system that divides a minute ball into two colors (for example, black and white) and rotates the ball depending on the electrical characteristics of each color to display any one color, for example, two colors in a minute ball (for example,
  • recording media such as electrophoretic, liquid crystal, and powder transfer systems that mix fine black and white powders and display only one color that floats due to the difference in electrical characteristics of the fine powders of each color.
  • the image forming method is different from those of these recording media, and the electrostatic developing type recording medium that selectively charges the surface of the electrostatic latent image carrier (recording medium) and thereby forms an image.
  • the electrostatic developing type recording medium that selectively charges the surface of the electrostatic latent image carrier (recording medium) and thereby forms an image.
  • Patent Document 1 describes a pair of recording media.
  • a flat plate, a first electrode and a second electrode formed between the flat plates, a plurality of separation walls formed between the flat plates and partitioning the flat plate into a plurality of regions, and a region partitioned by the separation walls.
  • An image display medium provided with a display dispersion medium in which electrophoretic particles of a plurality of enclosed unit dyes are dispersed is disclosed.
  • Patent Document 3 discloses a specific shape of an ion irradiation type print head compatible with a horizontal printer and an image forming apparatus provided with the shape.
  • the discharge control voltage is directly applied to the discharge electrode, a large amount of ions can be generated by heating, so the electrostatic development type recording medium can be selectively charged to write images without contact. To do this, it is the best print head you can think of now.
  • Patent Document 1 Japanese Unexamined Patent Application Publication No. 2004-94137
  • Patent Document 2 Japanese Patent Laid-Open No. 2003-326756
  • Patent Document 3 Japanese Patent Application 2004-69350
  • the image display medium disclosed in (Patent Document 1) forms a plurality of separation walls in a flat plate so as to be divided into a plurality of regions, and each region is different for each unit dye. Since the electrophoretic particles in which the electrophoretic particles of the color are dispersed are encapsulated, when manufacturing an image display medium, a process of forming a separation wall on a flat plate, an area defined by the separation wall A process for filling and encapsulating the display dispersion medium in which the electrophoretic particles are dispersed in each unit dye is necessary, and the manufacturing process is complicated, the productivity is low, and the product yield decreases.
  • the separation wall serving as a light shielding part is formed in the flat plate, the light transmittance is lowered, the display screen is darkened and the visibility is lowered, and no electrophoretic particles are present on the separation wall. Therefore, there is a problem that it is difficult to obtain a high-quality image because it is difficult to miniaturize pixels because image display and character display cannot be performed on the separation wall.
  • the first electrode or the second electrode must be formed as a matrix pixel electrode corresponding to each pixel of the recording medium, and in order to drive these, it corresponds to each pixel electrode.
  • productivity as a recording medium and low cost are lacking.
  • the heating and discharging type print heads of (Patent Document 2) and (Patent Document 3) are easy to control the discharge, and are optimal for non-contact writing on electrostatic development type recording media.
  • the discharge electrodes In order to improve the resolution, the discharge electrodes must be mounted at a high density, and there are restrictions on the technology for forming the discharge electrodes and the heating elements for the shape and arrangement of the discharge electrodes and the heating elements. And there was a limit of image quality.
  • the present invention solves the above-described conventional problems and meets the above-mentioned demand, and can selectively perform grounding or voltage application on the second substrate side facing the first substrate to which electric charge is applied.
  • images can be formed by reliably applying electron or ion charges to the desired position on the first substrate, and the manufacturing process is simple, with excellent productivity and high product yield.
  • Another object of the present invention is to provide a recording medium that is excellent in reliability, has high light transmittance, high visibility, miniaturizes pixels, and can form a high-quality image.
  • the present invention selectively generates a discharge between the heat-discharge type print head and the recording medium, and reliably discharges the discharged electrons and ions to a desired position on the first substrate. It is an object of the present invention to provide an image forming method capable of providing a high-resolution and high-quality image with easy control.
  • a recording medium and an image forming method of the present invention have the following configurations.
  • the recording medium according to claim 1 of the present invention includes a first substrate to which a charge is applied, and the first substrate.
  • a second substrate opposed to the plate, a display layer formed between the first substrate and the second substrate, charged particles sealed in the display layer, and the first substrate A first drive electrode formed in a part of a region in one pixel on the display layer side; a second drive electrode formed on the second substrate by being divided into display primary color units; and the second drive electrode
  • the display primary color filter or the color reflection plate arranged corresponding to the above-described configuration has the following effects.
  • the partial force of the charged particles on the first drive electrode moves to and adheres to the negatively charged first substrate by the Coulomb force, and the charged particles are transmitted through the color filter or the color reflector force. Since a part is shielded, an image can be formed according to the shielded light. Even if the voltage application is stopped in this state, the displayed image is maintained because the charged particles remain on the first substrate and the first drive electrode due to electrostatic adsorption and intermolecular force. Thus, an image can be formed by reliably applying an electron or ion charge to a desired position on the first substrate, and it is easy to color and is excellent in handleability and reliability.
  • the display layer Since the display layer only encloses the charged particles, there is no need to form a separation wall or encapsulate the electrophoretic particles for each unit color in the area partitioned by the separation wall. However, it is simple and excellent in productivity and high product yield. In addition, pixels cannot be formed, and depending on the material, the display layer has a separation wall that serves as a light-shielding part, so that the light transmittance is high and the visibility is high, and the pixels can be miniaturized. High quality images can be formed.
  • first substrate and the second substrate those made of a transparent synthetic resin such as polyethylene terephthalate, polycarbonate, polyether sulfone, or the like and made of glass or the like are used.
  • first substrate and the second substrate are made of a transparent synthetic resin because a flexible recording medium can be obtained.
  • first drive electrode and the second drive electrode ITO, indium zinc oxide (InZnO), conjugated conductive polyaline, polyethylene dioxythiophene and polystyrene sulfonic acid are used.
  • PEDOTZPSS conductive polymer
  • an opaque metal electrode such as copper can be used as the second drive electrode.
  • the second drive electrode is divided into display primary color units and formed on the second substrate.
  • the display primary colors are two or more colors, a combination of colors can be appropriately selected.
  • Coloring can be achieved by dividing one pixel into a plurality of sub-pixels according to the number of display primary colors and repeatedly arranging each display primary color in a striped pattern. It is preferable that the configuration can be simplified by forming the second drive electrodes in strips so as to correspond to the display primary colors arranged in a striped pattern and forming them in row units or column units of display pixels.
  • the second drive electrode can also be formed as a matrix pixel electrode corresponding to each pixel of the recording medium.
  • the display primary colors of the color filter and the color reflector include at least the three primary colors (Y, M, C) in the additive color mixing method or the three primary colors (Y, M, C) in the subtractive color mixing method, full color display can be performed. You may include other colors, such as black, as needed.
  • a color filter having the three primary colors (Y, M, C) in the subtractive color mixing method is arranged with the color filter having the three primary colors (R, G, B) in the additive color mixing method.
  • Color display can be performed.
  • the color filter only needs to be able to transmit light and perform color display. Therefore, the color filter may be disposed on the upper surface of the display layer not on the back surface of the display layer, or may be disposed on the transparent second drive electrode formed of ITO or the like. May be placed on the bottom.
  • the color reflector may be disposed on the lower surface of the second drive electrode formed of a transparent electrode such as ITO.
  • the second drive electrode is formed of copper or the like and is opaque, , That Place on the top surface.
  • the charged particles are particles that are positively or negatively charged and move by an electric field, and are colored particles such as white and black that have excellent concealability to shield transmitted light and reflected light.
  • the display layer a material in which charged particles are encapsulated with an insulating fluid such as fatty acid hydrocarbon, isoparaffin, silicon oil, air between the first substrate and the second substrate arranged opposite to each other is used.
  • an insulating fluid such as fatty acid hydrocarbon, isoparaffin, silicon oil
  • This recording medium can be used as a display medium such as a signboard that displays an advertisement or the like fixed to an image forming apparatus, in addition to being carried as a medium instead of paper.
  • the invention according to claim 2 of the present invention is the recording medium according to claim 1, wherein the charged particles are any one of monochromatic electrophoretic particles and monochromatic electropowder fluid. It has a composition that is a seed.
  • monochromatic particles such as white particles such as titanium oxide fine particles and alumina fine particles, and black particles such as toner particles may be used. it can.
  • monochromatic (white, black, gray, etc.) particles made by Priziston can be used as the electropowder fluid. In either case, a material having excellent concealability for shielding transmitted light and reflected light is used.
  • the recording medium according to claim 3 of the present invention includes a first substrate to which an electric charge is applied, a second substrate disposed opposite to the first substrate, the first substrate, and the second substrate.
  • a display layer formed between the display substrate, the charged particles sealed in the display layer, and a third drive arranged in parallel with a space on the display layer side of the first substrate or the second substrate.
  • the display layer Since the display layer only encloses the charged particles, there is no need to form a separation wall or encapsulate the electrophoretic particles for each unit color in the area partitioned by the separation wall. However, it is simple and excellent in productivity and high product yield. In addition, pixels cannot be formed, and depending on the material, the display layer has a separation wall that serves as a light-shielding part, so that the light transmittance is high and the visibility is high, and the pixels can be miniaturized. High quality images can be formed.
  • the first substrate and the second substrate are the same as those described in claim 1, and the description thereof is omitted.
  • the third drive electrode and the fourth drive electrode are the same as the first drive electrode and the second drive electrode described in claim 1, and thus the description thereof is omitted.
  • the color filter and the color reflector are the same as those described in claim 1, their descriptions are omitted.
  • the charged particles may be either positively or negatively charged single color (white, black, gray, etc.) enclosed in a transparent resin microcapsule with a transparent insulating liquid dispersion medium. Charged particles having a fine particle force can be used.
  • the charged particles use an electrophoretic phenomenon in which charged particles dispersed in a dispersion medium in a microcapsule move by an electric field.
  • the charged particles may be so-called twist balls such as a spherical shape or a cylindrical shape, and a rotating element that is partially colored in a single color (white, black, gray, etc.) and transparent in the rest can be used.
  • the rotating element is embedded in a transparent insulating sheet of the display layer, and is supported in an insulating fluid such as silicon oil in a cavity formed slightly larger than the diameter of the rotating element, and is charged.
  • the rotating element is rotated by the electric field. When observing from the first substrate side, it appears as a single color when the colored surface is on the first substrate side or the second substrate side, and appears transparent when the colored surface is in the horizontal direction.
  • the invention according to claim 4 of the present invention is the recording medium according to claim 3, wherein the charged particles are arranged in the display layer, partially colored in a single color, and the remainder transparent.
  • the rotating element has a configuration in which one of the monochromatic charged particles encapsulated with a transparent dispersion medium in the microcapsules arranged in the display layer is one type of displacement force.
  • the recording medium according to claim 5 of the present invention includes a first substrate to which an electric charge is applied, a second substrate disposed opposite to the first substrate, the first substrate, and the second substrate.
  • the first substrate and the second substrate are the same as those described in claim 1, and the description thereof is omitted.
  • the third drive electrode and the fourth drive electrode are the same as the first drive electrode and the second drive electrode described in claim 1, and thus the description thereof is omitted.
  • charged particles charged particles having fine particle force of a display primary color charged either positively or negatively enclosed in a transparent resin microcapsule together with a dispersion medium of a transparent insulating liquid may be used. It can. This utilizes an electrophoretic phenomenon in which charged particles dispersed in a dispersion medium in a microcapsule move by an electric field.
  • the charged particles are so-called twist balls such as a spherical shape or a cylindrical shape, and some of them are colored in display primary colors (red, green, blue, etc.) and the rest are colored in a single color such as white.
  • a rotating element with the remaining transparent can be used.
  • Rotating element is transparent insulation of the display layer
  • the rotating element that is charged is supported by an insulating fluid such as silicon oil in the cavity that is embedded in the conductive sheet and formed slightly larger than the diameter of the rotating element, and is rotated by the electric field.
  • the invention according to claim 6 of the present invention is the recording medium according to claim 5, wherein the charged particles are arranged in the display layer and partially rotated in the display primary color.
  • the device has a configuration in which one of the display primary color charged particles encapsulated in a microcapsule arranged in the display layer together with a transparent dispersion medium is one type of displacement force.
  • the following operation can be obtained.
  • An image forming apparatus for forming an image on a recording medium comprising: a discharge electrode having an electron emission portion; and a heating means for selectively heating the discharge electrode.
  • a potential difference setting unit configured to form an electric field by setting a potential difference corresponding to a discharge control voltage between the heat discharge type print head provided and the second drive electrode or the fourth drive electrode of the recording medium. And by controlling the temperature of the discharge electrode with the heating means, the potential difference is set between the discharge electrode and the second drive electrode or the fourth drive electrode. The discharge is controlled to be generated, and the discharge electrode force discharged electrons and ions are moved to the first substrate of the recording medium to form an image.
  • the image forming apparatus can obtain the following operations.
  • the potential difference setting unit can prepare for the discharge in a state where an electric field is formed by setting a potential difference corresponding to the discharge control voltage between the discharge electrode and the second drive electrode or the fourth drive electrode.
  • the potential control unit controls discharge to the second drive electrode, etc. Since part of the voltage can be selectively applied, the voltage applied directly to the discharge electrode of the heat-discharge-type printing head can be reduced, and discharge can be generated efficiently, resulting in excellent energy savings. .
  • the voltage value applied to each of the discharge electrode and the second drive electrode, etc. is arbitrarily set by the potential difference setting unit so that the potential difference between the discharge electrode and the second drive electrode becomes equal to the discharge control voltage. Therefore, the voltage value applied to the second drive electrode can be optimally adjusted according to the type of the recording medium, and the versatility is excellent.
  • a discharge is selectively generated between the discharge electrode of the heat discharge type print head and the drive electrode of the second substrate of the recording medium, and is discharged from the discharge electrode. It is possible to provide an image forming apparatus with high quality and excellent handling properties and reliability that can form an image by reliably irradiating electrons and ions to a desired position on the first substrate to give an electric charge.
  • the discharge control voltage means that no discharge occurs between the discharge electrode of the heat-discharge type print head and the second drive electrode or the like only by the potential difference, but the discharge electrode is heated by heating the discharge electrode. This refers to the voltage range where this occurs.
  • the discharge here means that electrons are emitted from the discharge electrode. The emitted electrons ionize oxygen and nitrogen in the atmosphere and make them reach the first substrate of the recording medium.
  • An electric field is formed by setting a potential difference corresponding to the discharge control voltage between the discharge electrode and the second drive electrode in the potential difference setting unit, and the discharge electrode is heated by heating the discharge electrode by the heating means. Since the generation can be controlled, electrons can be easily emitted selectively from the vicinity of any heating position (electron emission site) of the discharge electrode by selecting the heating location by the heating means. A discharge can be generated.
  • the discharge electrode of the heat discharge type print head is formed, for example, in a comb shape by connecting one end of a plurality of electron emission sites with a common electrode, or by connecting both ends of a plurality of electron emission sites with a common electrode.
  • Guests can may be formed in a ladder-type or the like and can be force s are formed on a single flat plate-shaped such as a rectangular or square shape (I Retsue if , JP 2003- 326756 Patent, WO2005 / 056 297 see) .
  • the cooling area of the discharge electrode and the responsiveness to heating stop are improved by increasing the heat radiation area of the discharge electrode and increasing the heat capacity.
  • the stability of discharge can be further improved. Note that the discharge electrode formed in a flat plate shape is a common electrode except for the electron emission site.
  • the cooling effect of the discharge electrode which is temporarily heated to 100 to 300 ° C, is improved, and heat can be prevented from being burned.
  • the discharge can be stopped in response to the heating off quickly, the discharge time interval can be shortened and the presence / absence of the discharge can be switched in a short time, and the recording speed can be increased.
  • the resistance value of the common electrode can be reduced, and the potential difference generated between the electron emission sites connected by the common electrode can be suppressed as much as possible. Therefore, the amount of electron emission at each electron emission site is reduced. Fluctuations and excellent discharge stability.
  • the discharge electrode is formed by depositing a metal such as gold, silver, copper, or aluminum on the substrate by vapor deposition, sputtering, printing, plating, or the like, and then etching as necessary to pattern the electron emission portion or the common electrode. In some cases, after forming at least a part of the metal such as stainless steel, copper, aluminum, etc., by thinning by etching or cutting, etc., and then patterning the discharge electrode by etching or laser cage if necessary. Preferably used. In addition, the discharge electrode may be formed using a conductive material such as carbon.
  • the material of the substrate may be any material as long as it can form the discharge electrode on the surface and has heat resistance to withstand the heating by the heating means. Further, when heating is performed from the back side of the substrate by the heating means, those having a heat transfer property capable of transferring the heat generated by the heating means to the discharge electrode are preferably used. Specifically, A synthetic resin such as glass, polyimide, aramid, or polyetherimide is preferably used.
  • each electron emission portion can be formed in a substantially rectangular shape, a trapezoidal shape, a semicircular shape, a bullet shape, or a combination thereof.
  • the peripheral length around the edge of the electron emission part can be increased by further dividing a part of the electron emission part with a slit or the like or by forming an uneven part on the peripheral part (for example, W02
  • the discharge electrode Since the discharge electrode has a large amount of electron emission from the periphery of the edge, it is possible to increase the amount of emitted ions and the intensity of emitted light by increasing the amount of electron emission of the discharge electrode force by increasing the circumference around the edge.
  • the discharge control voltage and heating temperature can be set low, and energy saving and discharge generation efficiency are excellent.
  • the discharge control voltage can be set low, the discharge electrode has excellent long life.
  • a discharge hole portion may be formed in the vicinity of the electron emission site (heating position).
  • the shape of the discharge hole portion can be formed in various shapes such as a substantially circular shape, a substantially elliptical shape, a polygonal shape such as a quadrangle and a hexagon, and a star shape.
  • the number and size of the discharge hole portions per one electron emission site (near the heating position) can be appropriately selected and combined.
  • the concave and convex portions and the discharge holes of the discharge electrode can be formed by the above-described etching or laser processing.
  • a conductive material layer may be formed on at least the surface of the common electrode among the discharge electrodes.
  • the resistance value of the common electrode can be further reduced, the potential difference generated between the electron emission portions can be reliably reduced, and the discharge stability is excellent.
  • the conductive material layer can be easily formed by screen printing of silver paste or silver plating as long as it has better conductivity than the discharge electrode. By increasing the thickness of the conductive material layer, the resistance value of the common electrode can be reduced, and the discharge stability can be improved.
  • the thickness of the discharge electrode is preferably 0.1 ⁇ : LOO / zm when it is formed with a force depending on the material.
  • Lm the thickness of the discharge electrode becomes less than 0 .: Lm
  • the discharge electrode tends to be affected by wear, and the life of the discharge electrode tends to be shortened.
  • the thickness exceeds 100 ⁇ m, the heat capacity increases and the on-off of heating is reduced. There is a tendency that the responsiveness tends to decrease, both of which are not preferable.
  • Discharge By making the thickness of the electrode 100 m or less, it is possible to quickly recover from the heated state and to increase the printing speed.
  • a heating means for heating the discharge electrode a laser beam irradiating unit, an infrared irradiating unit, etc., a method of irradiating laser beam, infrared ray or the like is preferably used.
  • a method for irradiating laser light the same laser scanner unit as in the conventional electrophotographic method can be used, and the laser irradiation unit is combined with a polygon mirror or a galvanometer mirror to scan only the laser light with respect to the discharge electrode.
  • a laser irradiation unit that scans the laser irradiation portion with respect to the discharge electrode is preferably used.
  • laser light or infrared light may be condensed with an optical fiber or a condensing lens and irradiated to the discharge electrode.
  • an optical fiber array in which a large number of optical fibers are arranged with high density and high accuracy is used, a plurality of electron emission sites can be simultaneously irradiated with laser light and infrared rays at high speed. Recording is possible and productivity is excellent.
  • the same structure as a thermal print head used in a conventional thermal facsimile can be used in close contact with the discharge electrode protective layer.
  • the heat generation of the heating resistor is controlled by a driver IC that is electrically connected to the heating resistor.
  • the potential difference setting unit is not particularly limited as long as it can set a potential difference corresponding to the discharge control voltage between the discharge electrode of the heat discharge type print head and the second drive electrode or the fourth drive electrode of the recording medium.
  • a material that selectively grounds or applies a voltage to the second drive electrode or the fourth drive electrode of the recording medium is preferably used.
  • the potential difference setting unit may apply all the voltage corresponding to the discharge control voltage only to the discharge electrode, and selectively ground the second drive electrode or the fourth drive electrode of the recording medium! Then, apply a part of the voltage corresponding to the discharge control voltage to the discharge electrode and selectively apply the remaining voltage to the second drive electrode or the fourth drive electrode of the recording medium.
  • the potential difference setting unit of the image forming apparatus is selected as a head side voltage application unit that applies a voltage to the discharge electrode and a second drive electrode or a fourth drive electrode of the recording medium based on the image information! It is preferable to have a configuration including a medium-side voltage control unit that performs general grounding or voltage application! With this configuration, the following effects can be obtained.
  • the potential difference setting unit includes a head-side voltage application unit that applies a voltage to the discharge electrode and a medium-side voltage control unit that selectively performs grounding or voltage application to the counter electrode based on image information. Since the discharge control voltage can be distributed and applied to the discharge electrode and the second drive electrode or the fourth drive electrode, it can be applied to the second drive electrode or the fourth drive electrode according to the type and characteristics of the recording medium. The voltage to be discharged can be adjusted, and the burden on the discharge electrode side can be reduced to efficiently generate discharge.
  • the head-side voltage application unit may apply a preset voltage to the entire discharge electrode, and does not need to apply a high voltage.
  • the medium side voltage control unit selectively grounds or applies voltage to the second drive electrode or the fourth drive electrode of the recording medium, but the second drive electrode or the fourth drive electrode is arranged at a high density to provide high quality. Image can be obtained, and a driver IC that supports low withstand voltage can be used.
  • An image forming method is an image forming method for forming an image on a recording medium according to any one of claims 1 to 6, wherein the temperature of the discharge electrode is controlled.
  • the discharge control voltage is set between the discharge electrode of the heating and discharge type print head that emits electrons from the discharge electrode and performs printing in the presence or absence of discharge and the second drive electrode or the fourth drive electrode of the recording medium. It has a configuration including a potential difference setting step for forming an electric field by setting a corresponding potential difference, and a discharge electrode heating step for selectively heating the discharge electrode based on image information.
  • a potential difference corresponding to the discharge control voltage is set between the discharge electrode and the second drive electrode or the fourth drive electrode of the recording medium to form an electric field, thereby preparing for discharge.
  • discharge can be generated simply by selectively heating the discharge electrode based on the image information, so there is no need to control high voltage and the generation of discharge can be easily controlled. Thus, an image can be formed on the recording medium.
  • the potential difference between the discharge electrode and the second drive electrode or the fourth drive electrode is made equal to the discharge control voltage by the potential difference setting step, so that each of the discharge electrode, the second drive electrode, and the fourth drive electrode is set. Since the voltage value to be applied can be set arbitrarily, the type and identification of the recording medium, etc. The voltage applied to the 2nd drive electrode or 4th drive electrode can be adjusted optimally according to the above, and the versatility is excellent.
  • a potential difference corresponding to the discharge control voltage is set between the discharge electrode of the heat discharge type print head and the second drive electrode or the fourth drive electrode of the recording medium.
  • the discharge electrode heating process the discharge electrode of the heating / discharge type print head is selectively heated to control the occurrence of discharge, so printing is performed as a subsequent process of the potential difference setting process.
  • the potential difference setting step and the discharge electrode heating step may be performed at the same time.
  • the invention according to claim 8 of the present invention is the image forming method according to claim 7, wherein the potential difference setting step includes a head-side voltage applying unit electrically connected to the discharge electrode. Based on the image information, a head side voltage applying step for applying a voltage to the discharge electrode and a medium side voltage controller electrically connected to the second drive electrode or the fourth drive electrode. And a medium side voltage control step for selectively grounding or applying a voltage to the fourth drive electrode or the fourth drive electrode.
  • the potential difference setting process includes a head-side voltage application process in which a voltage is applied to the discharge electrode by a head-side voltage application unit electrically connected to the discharge electrode, and the second drive electrode or the fourth drive electrode.
  • Medium-side voltage control step of grounding or applying a voltage to the second drive electrode or the fourth drive electrode by the medium-side voltage control unit connected to the discharge electrode in the head-side voltage application step.
  • the medium-side voltage control process is selectively performed based on image information, it can be performed in synchronization with the discharge electrode heating process, so that it is possible to prevent discharge due to malfunction and control reliability. As well as high image quality.
  • the voltage applied to the discharge electrode side by the head side voltage application unit is set to be equal to or slightly lower than the discharge control voltage.
  • the second drive electrode or the fourth drive electrode is grounded by the medium side voltage control unit, or a relatively low voltage that compensates for the shortage of the discharge control voltage is controlled.
  • a potential difference corresponding to the discharge control voltage can be set selectively, and by controlling the heating of the discharge electrode, the first substrate of the recording medium can be reliably irradiated with electrons and ions to impart a charge. Is possible.
  • the head-side voltage application unit controls the voltage application across the discharge electrode, the presence / absence of voltage application can be easily controlled even when the voltage applied to the discharge electrode is a high voltage.
  • discharge is not generated only by setting a potential difference corresponding to the discharge control voltage between the discharge electrode and the second drive electrode or the fourth drive electrode.
  • a discharge electrode heating process may be performed, and a medium side voltage control process and a discharge electrode heating process may be performed simultaneously.
  • the invention according to claim 9 of the present invention is the image forming method according to claim 8, wherein the selection unit force of the second drive electrode or the fourth drive electrode in the medium side voltage control step is described above. It has a configuration that is one of the pixel unit, row unit, and column unit of the display pixels of the recording medium! /
  • the selection unit of the second drive electrode or the fourth drive electrode in the medium-side voltage control step is the pixel unit of the display pixel of the recording medium
  • the resolution of the heat discharge type print head is higher than the resolution of the recording medium. Even in a rough case, it is possible to generate a discharge by discharging electrons from the discharge electrode of the heating discharge type print head facing the selected second drive electrode or the fourth drive electrode, and the ions generated by the electrons and the discharge are generated.
  • the desired position on the first substrate of the recording medium can be accurately irradiated, and an image can be formed by applying electric charge, resulting in excellent image quality.
  • the selection unit of the second drive electrode or the fourth drive electrode in the medium side voltage control step is When the display pixels of the recording medium are in units of rows or columns, recording is performed by arranging the discharge electrodes of the heat-discharge type print head in the column direction or the row direction so as to be orthogonal to the second drive electrode or the fourth drive electrode.
  • An image can be formed by reliably irradiating electrons and ions at the position where the two on the first substrate of the medium intersect (overlap), and the image has high quality.
  • the second drive electrode or the fourth drive electrode can be easily selected, and control of grounding or voltage application can be easily performed, resulting in excellent handling.
  • the selection of the second drive electrode or the fourth drive electrode may be performed simultaneously on the entire surface of the recording medium! It may be divided into such blocks and the vicinity of the portion facing the heat-discharge type print head may be partially selected.
  • the display layer only encloses monochromatic charged particles, there is no need to form a separation wall or encapsulate electrophoretic particles for each unit color in the area partitioned by the separation wall. It is possible to provide a recording medium with a simple process, excellent productivity and high product yield.
  • the display layer has a separation wall that serves as a light-shielding part. And a recording medium capable of forming a high-quality full-color image can be provided.
  • the display layer only includes microcapsules or rotating elements in which charged particles are sealed, electrophoretic particles for each unit color are formed in the area formed by the separation wall or partitioned by the separation wall. It is possible to provide a recording medium that does not require a process for encapsulating a child, has a simple manufacturing process, is excellent in productivity, and provides a high product yield.
  • the display layer has a separation wall that serves as a light-shielding part. And a recording medium capable of forming a high-quality full-color image can be provided.
  • the display layer only has microcapsules or rotating elements in which charged particles are enclosed, electrophoretic particles are encapsulated for each unit color in the area formed by the separation wall or partitioned by the separation wall. Therefore, it is possible to provide a recording medium in which the manufacturing process is simple, the manufacturing process is simple, the productivity is high, and the product yield is high.
  • the display layer has a separation wall that serves as a light-shielding part. And a recording medium capable of forming a high-quality full-color image can be provided.
  • the potential difference between the discharge electrode and the second drive electrode or the fourth drive electrode is made equal to the discharge control voltage by the potential difference setting step, so that each of the discharge electrode, the second drive electrode, and the fourth drive electrode is set.
  • the voltage value to be applied can be set arbitrarily, and the voltage value to be applied to the second drive electrode or the fourth drive electrode can be optimally adjusted according to the type or specification of the recording medium, making it highly versatile.
  • An image forming method can be provided.
  • the potential difference setting process includes a head-side voltage application process and a medium-side voltage control process
  • the voltage is applied to the entire discharge electrode in the head-side voltage application process, and the image is transmitted through the medium-side voltage control process.
  • the discharge control voltage selectively between the discharge electrode and the second drive electrode or the fourth drive electrode. Therefore, it is possible to provide an image forming method capable of generating a potential difference and preparing for discharge, easily controlling the voltage, and having excellent handleability.
  • the medium-side voltage control process can be performed in synchronization with the discharge electrode heating process, and it is possible to prevent discharge from occurring due to malfunctions and to provide excellent control reliability and image quality with high image quality.
  • a method can be provided.
  • Images and images can be formed by accurately irradiating the desired position on the first substrate of the recording medium with electrons and ions generated from the discharge electrodes of the heat-discharge-type print head and applying charges.
  • An image forming method having excellent properties can be provided.
  • FIG. 1 is a schematic diagram of a main part of a recording medium showing a state before image formation of the recording medium in Embodiment 1.
  • FIG. 2 is a schematic diagram of a main part of a recording medium and an image forming apparatus showing a state of the recording medium during image formation in Embodiment 1.
  • FIG. 3 is a schematic diagram of a main part of a recording medium showing a state of the recording medium before image formation in Embodiment 2.
  • FIG. 4 is a schematic diagram of a main part of a recording medium and an image forming apparatus showing a state of the recording medium during image formation in Embodiment 2.
  • FIG. 5 is a schematic diagram of a main part of a recording medium showing a state of the recording medium before image formation in Embodiment 3.
  • FIG. 6 is a schematic diagram of a main part of a recording medium and an image forming apparatus showing a state at the time of image formation of the recording medium in Embodiment 3.
  • FIG. 1 is a schematic diagram of a main part of a recording medium showing the state of the recording medium in the first embodiment before image formation.
  • FIG. 2 shows the state of the recording medium in the first embodiment during image formation. It is a principal part schematic diagram of a formation apparatus.
  • 1 is a recording medium according to Embodiment 1 of the present invention
  • 2 is a first substrate formed in a film shape made of a transparent synthetic resin such as polyethylene terephthalate, polycarbonate, or polyether sulfone
  • 3 is polyethylene.
  • a second substrate 4 is formed between the first substrate 2 and the second substrate 3 and is formed in a film shape made of a transparent synthetic resin such as terephthalate, polycarbonate, or polyethersulfone, and is disposed opposite to the first substrate 2.
  • the display layer 5 is filled with an insulating fluid such as isoparaffin, silicon oil, air, etc. 5 is a white oxide titanium fine particle, alumina fine particle, black toner particle, etc.
  • Charged monochromatic charged electrophoretic particles or charged particles made of monochromatic electro-powder fluid, 6 is a transparent first drive electrode formed of ITO or the like on the display layer 4 side of the first substrate 2 In order to improve visibility, it is formed into a fine line that occupies a part of the area within one pixel.
  • 7 is a color filter in which the three primary colors (R, G, B), which are display primary color units in the additive color mixing method, are arranged on the second substrate 3 in a striped pattern, 7a is a red (R) color filter, 7b Is a green (G) power color filter, and 7c is a blue (B) color filter. 8 is divided into display primary color units.
  • . 9 is a transparent insulating layer laminated on the second substrate 3 and the second drive electrode 8, and 10 is a drive electrode controller for applying a voltage to the first drive electrode 6.
  • the first drive electrode 6 is connected to the switches SI and S2 of the drive electrode control unit 10, and the switches SI and S2 are voltage application means V, V, GND
  • V for applying repulsive force to charged particle 5 V for applying attractive force
  • ground level grounding
  • 11 is an image forming apparatus according to Embodiment 1 of the present invention
  • 12 is a heating / discharging print head of image forming apparatus 11
  • 13 is a heating / discharging print head formed of a material such as aluminum.
  • 12 heat sinks, 14 is made of ceramic, etc., and a heat generating part 15 and a discharge electrode 18 which will be described later are laminated on the heat dissipating plate 13 and 15 is a heat discharge type print head 12 formed on the substrate 14.
  • the heating part, 16 is an electrode of the heating part 15 arranged in parallel at a predetermined pitch
  • 16a is a heating resistor of the heating part 15 formed by being electrically connected to the electrode 16, and 17 is covered with the substrate 14.
  • the heat generating part insulating film, 18 is a discharge electrode formed in a substantially rectangular flat plate shape, 19 is an electron emitting part of the discharge electrode 18 from which electrons are emitted by heating by the heat generating resistor 16a, and 20 is a discharge.
  • a potential difference setting unit that forms an electric field by setting a potential difference corresponding to the discharge control voltage during the period, 21 is a head side voltage application unit of the potential difference setting unit 20 that applies a voltage to the discharge electrode 18, and 22 is based on image information
  • This is a medium side voltage control unit for selectively grounding or applying a voltage to the second drive electrode 8.
  • the second drive electrode 8 is connected to the switches S3 to S5 of the medium side voltage control unit 22, and the switches S3 to S5 are connected to the voltage applying means V, V, GND.
  • connection is switched.
  • three potential forces are selected: V for applying repulsive force to charged particles, V for applying attractive force, and ground level (grounding).
  • the heating means of the heat-discharge type print head 12 controls the heat generation of the heat generating resistor 16a of the heat generating part 15 by a driver IC (not shown) electrically connected to the heat generating part 15.
  • the heating / discharge type print head 12 includes a discharge electrode 18 and a second drive electrode 8 in the potential difference setting unit 10. Since the electric field is formed by setting a potential difference corresponding to the discharge control voltage during this period and the generation of discharge can be controlled by heating with the heating means, it is easy to select any heating location by heating means. Electrons can be selectively emitted from the electron-emitting portion 19 of this, and it is not necessary to limit the discharge electrode 18 to a specific shape, and the shape flexibility is excellent.
  • the discharge electrode 18 having a plurality of electron emission portions 19 is formed in a single rectangular plate, but for example, one end of the plurality of electron emission portions 19 is connected by a common electrode to form a comb shape. Forming or connecting both ends of a plurality of electron emitting portions 9 with a common electrode to form a ladder type or the like. (See)
  • a heating method that radiates laser light or a method that irradiates infrared rays may be used as a heating means that is heated away from the discharge electrode 18. Oh ,.
  • An image forming method will be described based on the operations of the recording medium and the image forming apparatus according to Embodiment 1 configured as described above.
  • the charged particles 5 of the recording medium 1 will be described by taking as an example a case where black charged swimming particles are positively charged.
  • the first drive electrode 6 exerts an attractive force on the charged particles 5, and the charged particles 5 are not affected by the potential difference setting unit 20 on the first drive electrode 6. get together. Since the first drive electrode 6 is a part of the area in one pixel and does not occupy the area, the observer who also viewed the first substrate 2 side force shields the combined light of the transmitted light from the color filter 7 on the charged particles 5 Observable without being observed.
  • a voltage is applied to the discharge electrode 18 of the heat-discharge type print head 12 by the head-side voltage application unit 21 in the head-side voltage application step of the potential difference setting step.
  • the medium side voltage control unit 22 selects the color unit of the display primary color (green (G) is selected in FIG. 2) and is connected to the second drive electrode 8b.
  • Switch S4 is switched to V, and the potential difference between discharge electrode 18 and second drive electrode 8b
  • the selected color (G) corresponds to the pixel to be displayed.
  • the heating resistor 16a located at the position where the heat is generated generates heat and the discharge electrode 18 is selectively heated.
  • the discharge electrode 18 electrons are not emitted from the electron emission portion 19 that is not heated by the heating resistor 16 a, and no discharge is generated.
  • electrons are emitted from the electron emission portion 19 of the discharge electrode 18 heated by the heating resistor 16a.
  • the voltage is applied only to the second drive electrode 8b corresponding to the selected color (G) of one pixel, the electrons and ions generated by the discharge are selected.
  • a predetermined wavelength is used instead of the force color filter described in the case where the color filter 7 is laminated on the second drive electrode 8 that is divided and arranged for each display primary color.
  • a color reflector that reflects light may be laminated.
  • a recording medium capable of displaying a color image using reflected light can be obtained.
  • the color filter 7 only needs to be able to transmit light and perform color display. Therefore, the color filter 7 may be replaced with the second drive electrode 8. Further, the insulating layer 9 may be disposed on the display layer 4 side.
  • an electronic powder fluid may be used, and not only black particles but also white particles can be used.
  • the potential difference setting unit 20 sets a potential difference corresponding to the discharge control voltage between the discharge electrode 18 and the second drive electrode 8 to prepare for the discharge in a state where an electric field is formed, and the discharge becomes a high voltage. It is not necessary to directly control the control voltage, and by selectively heating the discharge electrode 18 from the heating resistor 16a of the heat generating part 15, a discharge can be generated between the discharge electrode 18 and the second drive electrode 8. An image can be formed by moving electrons and ions emitted from the electron emission portion 19 of the discharge electrode 18 to the recording medium 1 side by an electric field and applying charges to the first substrate 2 of the recording medium 1.
  • the second drive electrode 8 mm can be selected according to the type and characteristics of the recording medium 1.
  • the voltage value to be applied can be optimally adjusted, and the versatility is excellent.
  • the following operation is obtained.
  • a potential difference corresponding to the discharge control voltage is set between the discharge electrode 18 and the second drive electrode 8 to form an electric field. Since the discharge can be generated simply by selectively heating the discharge electrode 18 based on the information, it is not necessary to control the high voltage, and it is possible to easily control the generation of the discharge and apply the charge to the recording medium. An image can be formed.
  • the potential difference setting step includes a head side voltage application step in which a voltage is applied to the discharge electrode 18 by the head side voltage application unit 21 electrically connected to the discharge electrode 18, and a second drive electrode 8 is electrically connected.
  • Medium-side voltage control step of applying a voltage to the second drive electrode 8 by the connected medium-side voltage control unit 22, so that the voltage is applied to the entire discharge electrode 18 in the head-side voltage application step.
  • a voltage is selectively applied between the discharge electrode 18 and the second drive electrode 8 by applying a voltage to the second drive electrode 8 based on the image information.
  • a potential difference corresponding to the control voltage can be generated to prepare for the discharge.
  • the medium-side voltage control process is selectively performed based on image information, it can be performed in synchronization with the discharge electrode heating process. As well as high image quality.
  • the selection unit of the second drive electrode 8 in the medium-side voltage control step is a row unit or a column unit of the display pixels of the recording medium 1
  • the discharge electrode 18 of the heating discharge type print head 12 is connected to the second drive electrode.
  • FIG. 3 is a schematic diagram of a main part of the recording medium showing the state of the recording medium in the second embodiment before image formation.
  • FIG. 4 shows the state of the recording medium in the second embodiment at the time of image formation. It is a principal part schematic diagram of a formation apparatus. Components similar to those in the first embodiment are denoted by the same reference numerals and description thereof is omitted.
  • 31 is a recording medium in Embodiment 2 of the present invention
  • 32 is a display layer formed between the first substrate 2 and the second substrate 3
  • 33 is a third drive electrode 38a, 38b described later.
  • Avoid Transparent resin microcapsules arranged in the display layer 32, 34 is composed of positively or negatively charged monochromatic charged particles such as white or black enclosed in a micropower cell 33 with a transparent insulating fluid. Charged particles.
  • the display layer 32 is formed with a thickness approximately equal to the outer diameter of the microcapsule 33.
  • the first substrate 2 and the second substrate 3 so that the state of the charged particles 34 in the microcapsule 33 is changed. It is shown with a large gap.
  • the white charged particles 34 move to the black portion in the microcapsule 33.
  • 35 is a fourth drive electrode formed in striped strips on the second substrate 3 with ITO, copper, etc.
  • 36 is a striped pattern of the three primary colors (R, G, B) that are the display primary color units.
  • the color reflector is laminated on the fourth drive electrode 35
  • the red (R) color reflector 36a is laminated on the fourth drive electrode 35a
  • the green (G) color reflector 36b on the fourth drive electrode 35b
  • a blue (B) color reflector 36c is laminated on the fourth drive electrode 35c.
  • Reference numeral 39 denotes a drive electrode controller that applies a voltage to the third drive electrodes 38a and 38b.
  • the third drive electrodes 38a, 38b are connected to the switches SI, S2 of the drive electrode control unit 39, and the switches SI, S2 switch the connection of the voltage applying means V, V, GND.
  • reference numeral 40 denotes a potential difference setting unit that sets an electric potential difference corresponding to the discharge control voltage between the discharge electrode 18 and the fourth drive electrode 35 of the recording medium 31, and 41 denotes a voltage across the discharge electrode 18.
  • the head-side voltage application unit 42 of the potential difference setting unit 40 for applying voltage
  • a medium-side voltage control unit 42 for selectively grounding or applying voltage to the fourth drive electrode 35 based on image information.
  • the fourth drive electrode 35 is connected to the switches S3 to S5 of the medium side voltage control unit 42, and the switches S3 to S5 switch the connection of the voltage applying means V, V, and GND.
  • V that exerts repulsive force on charged particles 34 V that exerts attractive force
  • V that exerts attractive force V that exerts attractive force
  • switch S1 of drive electrode control unit 39 is switched to V and S2 is switched to V.
  • the third driving electrode 38a applies a repulsive force to the charged particles 34
  • the adjacent third driving electrode 38b applies an attractive force to the charged particles 34. Since the charged particles 34 in 33 move horizontally in the direction of the third drive electrode 38b, the microcapsules appear to be transparent when the force on the first substrate 2 side is also seen. Therefore, the observer viewed from the first substrate 2 can observe the combined light of the reflected light from the color reflector 36 without being shielded by the charged particles 34.
  • a voltage is applied to the discharge electrode 18 of the heat-discharge type print head 12 by the head-side voltage application unit 41 in the head-side voltage application step of the potential difference setting step. Subsequently, the switch S1 connected to the third drive electrode 38a is switched to V, and the switch S2 and
  • the medium side voltage control unit 42 selects the color unit of the display primary color (in FIG. 4, green (G Switch) S4 connected to the 4th drive electrode 35b is switched to V
  • the potential difference between the discharge electrode 18 and the fourth drive electrode 35b is set so as to correspond to the discharge control voltage.
  • the heating resistor 16a located at a position corresponding to the pixel to display the selected color (G) is caused to generate heat and the discharge electrode 18 is selectively heated.
  • the discharge electrode 18 electrons are not emitted from the electron emission portion 19 that is not heated by the heating resistor 16 a, and no discharge is generated.
  • electrons are emitted from the electron emission portion 19 of the discharge electrode 18 heated by the heating resistor 16a.
  • the voltage is applied only to the fourth drive electrode 35b corresponding to the selected color (G) in one pixel, the electrons and ions generated by the discharge are selected in the selected color (G).
  • the charged particles 34 of the microcapsule 33 at the position of the sub-pixel corresponding to the color (G) are caused by the Coulomb force in the direction of the first substrate 2 to which the charge is applied. Move and charge Since the particles 34 shield a part of the reflected light from the color reflector 36b, an image corresponding to the shielded light can be formed. Since the charged particles 34 are retained by electrostatic adsorption or intermolecular force, the displayed image is maintained.
  • the discharge electrode 18 corresponding to the fourth drive electrode 35 selected based on the image information is provided. Electrons can be selectively emitted from the electron emission portion 19 and an image can be formed by irradiating a desired position on the first substrate 2 with an electron ion associated with the discharge by the action of charges. A high-quality color image can be obtained by reliably preventing displacement.
  • Embodiment 2 According to the image forming apparatus and the image forming method in Embodiment 2 configured as described above, the same operation as described in Embodiment 1 can be obtained.
  • a force pole method may be used instead of the force microcapsule method described for the microphone-type capsule method in which the microcapsules 33 are arranged on the display layer 32.
  • a transparent insulating sheet is used as the display layer 32, and charged particles having a spherical or cylindrical rotating element force are embedded therein.
  • the rotating element is supported in an insulating fluid such as silicon oil in the cavity formed slightly larger than the diameter of the rotating element so that the rotating element is rotated by an electric field.
  • the third drive electrodes 38a and 38b are formed on the second substrate 3 so as to be orthogonal to the fourth drive electrode 35. As described above, when the image is formed, it is sufficient that a voltage is applied to the third drive electrodes 38a and 38b so that the charged particles 34 can be aligned in the horizontal direction. 38a and 38b may be formed. In this case, the same effect can be obtained.
  • FIG. 5 is a schematic diagram of a main part of the recording medium showing the state of the recording medium in the third embodiment before image formation.
  • FIG. 6 shows the state of the recording medium in the third embodiment at the time of image formation. It is a principal part schematic diagram of a formation apparatus. Note that the same components as those in the first embodiment or the second embodiment are denoted by the same reference numerals and description thereof is omitted.
  • 51 is a recording medium according to Embodiment 3 of the present invention
  • 52 is a transparent resin microcapsule arranged in the display layer 32 so as to avoid the third drive electrodes 38a and 38b
  • 53 is a microcapsule 52.
  • Charged particles with positive or negatively charged display primary colors such as Y, M, and C enclosed with a transparent insulating fluid inside are laminated on the second substrate 3 and the fourth drive electrode 35. It is a white scattering layer that reflects white light.
  • the three primary colors (Y, M, C), which are display primary color units, are arranged in a striped pattern above the fourth drive electrode 35 via the white scattering layer 54.
  • the fourth driving electrode 35a has a micro-power cell with yellow (Y) charged particles
  • the fourth driving electrode 35b has a micro-power cell with magenta (M) charged particles, the fourth driving electrode.
  • microcapsules with cyan (C) charged particles are laid down.
  • switch S1 of drive electrode control unit 39 is switched to V
  • S2 is switched to V
  • the third driving electrode 38a applies a repulsive force to the charged particles 34
  • the adjacent third driving electrode 38b applies an attractive force to the charged particles 34. Since the charged particles 53 in 52 move horizontally in the direction of the third drive electrode 38b, the microcapsules appear to be transparent when the force on the first substrate 2 side is also seen. Therefore, the first An observer viewed from the substrate 2 can observe the white light reflected from the white scattering layer 54 without being shielded by the charged particles 53.
  • the medium-side voltage control unit 42 performs display primary color unit processing over the medium-side voltage control process in the potential difference setting process.
  • Magenta (M) is selected in FIG. 6
  • the switch S4 connected to the fourth drive electrode 35b is switched to V, and the potential difference between the discharge electrode 18 and the fourth drive electrode 35b is released.
  • the heat generating resistor 16a located at a position corresponding to the pixel to display the selected color (M) is heated to selectively heat the discharge electrode 18.
  • electrons are emitted from the electron emission portion 19 of the discharge electrode 18 heated by the heating resistor 16a.
  • the voltage is applied only to the fourth drive electrode 35b corresponding to the selected color (M) of one pixel, the electrons and ions generated by the discharge are selected ( The position of the sub-pixel corresponding to M) can be reliably irradiated, and a charge can be imparted to the first substrate 2.
  • the charged particles 53 of the microcapsule 52 at the position of the sub-pixel corresponding to the color (M) cause the Coulomb force in the direction of the first substrate 2 to which the charge is applied. Since the magenta (M) charged particles 53 are observed, an image corresponding to the charge applied to the first substrate 2 can be formed.
  • the charged particles 53 are retained by electrostatic adsorption or intermolecular force, so that the displayed image is maintained. According to the recording medium in the third embodiment configured as described above, the following operations are obtained.
  • microcapsule 52 in which the display primary color charged particles 53 are encapsulated is arranged in the display layer 32 in a striped pattern corresponding to the fourth drive electrode 35, a color image is easily displayed. It has excellent handleability and high product yield.
  • the fourth drive electrode 35 Since the fourth drive electrode 35 is provided so as to be divided for each display primary color of the charged particles 53, the electron emission of the discharge electrode 18 corresponding to the fourth drive electrode 35 selected based on the image information Electrons can be selectively emitted from the part 19 and an image can be formed by the action of electric charge by irradiating the electrons and ions accompanying the discharge to the desired position of the first substrate 2, thereby ensuring color misregistration. Therefore, a high-quality color image can be obtained. (3) Since color images can be formed with a simple configuration, it is excellent in productivity, and because there are no consumables, it is excellent in resource saving.
  • Embodiment 3 configured as described above, the same operation as described in Embodiment 1 can be obtained.
  • the present invention relates to an electrostatic development type recording medium in which an image or character information is displayed by being charged by electrons or ions, and by selectively applying a charge to the recording medium, the image is recorded on the recording medium.
  • image forming methods for forming characters and characters selective grounding or voltage application can be performed on the second substrate side facing the first substrate to which electric charges are applied, and the first substrate can be reliably placed at a desired position.
  • An image can be formed by applying charges of electrons and ions, and the manufacturing process is simple and excellent in productivity, and a high product yield is obtained, handling and reliability are excellent, and light transmittance is high. It is possible to provide a recording medium that can increase visibility, miniaturize pixels, and form a high-quality image.
  • a discharge is selectively generated between the heat-discharge type print head and the recording medium. Released from To provide an image forming method that can reliably irradiate a desired position on a first substrate with ions or ions to impart charges, and can be easily controlled to form a high-resolution and high-quality image. Is possible.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Printers Or Recording Devices Using Electromagnetic And Radiation Means (AREA)

Abstract

A recording medium in which grounding or voltage application can be carried out selectively on the side of a first substrate to which charges are imparted and a second substrate opposing the first substrate, an image can be formed exactly at a desired position of the first substrate by imparting charges of electron or ion, high product yield and excellent handleability and reliability are attained while exhibiting excellent productivity through simple production process, high light transmittance and visibility are ensured and a high quality image can be formed by shrinking the pixel. The recording medium comprises a first substrate (2) to which charges are imparted, a second substrate (3) arranged oppositely to the first substrate (2), a display layer (4) formed between the first substrate (2) and the second substrate (3), charged particles (5) filled in the display layer (4), a first drive electrode (6) formed at a part of a region in one pixel on the side of the display layer (4) of the first substrate (2), a second drive electrode (8) formed on the second substrate (3) while being divided in units of display prime color, and a color filter (7) of display prime color arranged in correspondence with the second drive electrode (8).

Description

明 細 書  Specification
記録媒体及び画像形成方法  Recording medium and image forming method
技術分野  Technical field
[0001] 本発明は、電子やイオンによって電荷を付与されることにより画像や文字情報が表 示される静電現像方式の記録媒体、記録媒体に選択的に電荷を付与することにより 画像や文字を形成する画像形成方法に関するものである。  [0001] The present invention relates to an electrostatic development type recording medium in which image or character information is displayed by being charged with electrons or ions, and selectively applying a charge to the recording medium. The present invention relates to an image forming method to be formed.
背景技術  Background art
[0002] 近年、書き換えが可能で携帯性に優れた電子ペーパーやフレキシブルディスプレ ィ等の記録媒体が開発されている。現時点においては、微小なボールを二色 (例え ば白黒)に色分けし、各色の電気特性の違いによりボールを回転させて任意の一色 を表示させるツイストボール方式、微小なボール中に二色 (例えば白黒)の微粉末を 混入し、各色の微粉末がもつ電気特性の違いにより一色のみを浮上させて表示させ る電気泳動方式、液晶方式、粉体移動方式等の記録媒体がある。また、これらの記 録媒体とは画像形成方式が異なるものとして、静電潜像担持体 (記録媒体)の表面を 選択的に帯電させ、それによつて画像を形成する静電現像方式の記録媒体も提案さ れている。  In recent years, recording media such as electronic paper and flexible displays that can be rewritten and have excellent portability have been developed. At present, a twisting ball system that divides a minute ball into two colors (for example, black and white) and rotates the ball depending on the electrical characteristics of each color to display any one color, for example, two colors in a minute ball (for example, There are recording media such as electrophoretic, liquid crystal, and powder transfer systems that mix fine black and white powders and display only one color that floats due to the difference in electrical characteristics of the fine powders of each color. In addition, it is assumed that the image forming method is different from those of these recording media, and the electrostatic developing type recording medium that selectively charges the surface of the electrostatic latent image carrier (recording medium) and thereby forms an image. Has also been proposed.
近年、電子ペーパー等の記録媒体は、視認性が高くフルカラー表示が可能なもの が要求されており、フルカラー表示が可能な電子ペーパーの従来の技術としては、 例えば (特許文献 1)に「一対の平板と、前記平板間に形成された第 1電極及び第 2 電極と、前記平板間に形成され平板内を複数の領域に区画する複数の分離壁と、前 記分離壁で区画された領域に封入された複数の単位色素の電気泳動粒子を分散さ せた表示分散媒と、を備えた画像表示媒体」が開示されている。  In recent years, recording media such as electronic paper have been required to be highly visible and capable of full-color display. As a conventional technology of electronic paper capable of full-color display, for example, (Patent Document 1) describes a pair of recording media. A flat plate, a first electrode and a second electrode formed between the flat plates, a plurality of separation walls formed between the flat plates and partitioning the flat plate into a plurality of regions, and a region partitioned by the separation walls. An image display medium provided with a display dispersion medium in which electrophoretic particles of a plurality of enclosed unit dyes are dispersed is disclosed.
[0003] また、近年、静電現像方式の記録媒体に静電潜像を形成するための印字ヘッドと して、イオン照射方式の印字ヘッドが開発されている (特許文献 2)。(特許文献 3)に は、水平プリンタ対応型のイオン照射型印字ヘッドの具体的な形状及びそれを備え た画像形成装置が開示されて 、る。 In recent years, an ion irradiation type print head has been developed as a print head for forming an electrostatic latent image on an electrostatic development type recording medium (Patent Document 2). (Patent Document 3) discloses a specific shape of an ion irradiation type print head compatible with a horizontal printer and an image forming apparatus provided with the shape.
これらの印字ヘッドは、放電電極に印加しただけでは放電が発生せず加熱すること により放電が発生する電圧 (放電制御電圧)を印加した状態で、放電電極への加熱 の有無を制御することにより放電の有無を制御してイオンの発生制御を行うもの (カロ 熱放電方式)であり、放電電極に印加する電圧の制御が不要である。その結果、発 熱抵抗体等による加熱の制御に使用する 5V駆動のような低耐電圧対応のドライバ I Cで放電の発生を制御することができ、放電の制御の観点からは最も優れた制御方 式であるといえる。また、放電電極に放電制御電圧が直接印加されていることにより、 加熱によって多量のイオンを発生させることができるため、静電現像方式の記録媒体 を選択的に帯電させて非接触で画像の書き込みを行うには、現在考え得る最適な印 字ヘッドである。 These print heads must be heated without being discharged when applied to the discharge electrodes. This is a device that controls the generation of ions by controlling the presence or absence of heating by controlling the presence or absence of heating to the discharge electrode in the state where the voltage (discharge control voltage) is generated by the discharge (calo heat discharge method). There is no need to control the voltage applied to the discharge electrode. As a result, it is possible to control the occurrence of discharge with a low withstand voltage driver IC such as 5V drive that is used to control heating with a heating resistor, etc., and the most excellent control method from the viewpoint of discharge control. It can be said that it is a formula. In addition, since the discharge control voltage is directly applied to the discharge electrode, a large amount of ions can be generated by heating, so the electrostatic development type recording medium can be selectively charged to write images without contact. To do this, it is the best print head you can think of now.
特許文献 1:特開 2004— 94137号公報 Patent Document 1: Japanese Unexamined Patent Application Publication No. 2004-94137
特許文献 2:特開 2003 - 326756号公報 Patent Document 2: Japanese Patent Laid-Open No. 2003-326756
特許文献 3:特願 2004 -69350 Patent Document 3: Japanese Patent Application 2004-69350
発明の開示 Disclosure of the invention
発明が解決しょうとする課題 Problems to be solved by the invention
し力しながら上記従来の技術においては、以下のような課題を有していた。  However, the conventional techniques described above have the following problems.
(1) (特許文献 1)に開示の画像表示媒体は、フルカラー表示を実現するため、平板 内に複数の分離壁を形成して複数の領域に区画し、各々の領域に単位色素毎に異 なる色の電気泳動粒子を分散させた電気泳動粒子を封入した構成を有しているので 、画像表示媒体を製造する際、平板上に分離壁を形成する工程、分離壁によって区 画された領域内に電気泳動粒子が分散した表示分散媒を単位色素毎に充填し封入 する工程が必要で、製造工程が煩雑で生産性に欠けるとともに製品得率が低下する という課題を有していた。  (1) In order to realize full color display, the image display medium disclosed in (Patent Document 1) forms a plurality of separation walls in a flat plate so as to be divided into a plurality of regions, and each region is different for each unit dye. Since the electrophoretic particles in which the electrophoretic particles of the color are dispersed are encapsulated, when manufacturing an image display medium, a process of forming a separation wall on a flat plate, an area defined by the separation wall A process for filling and encapsulating the display dispersion medium in which the electrophoretic particles are dispersed in each unit dye is necessary, and the manufacturing process is complicated, the productivity is low, and the product yield decreases.
(2)また、遮光部となる分離壁が平板内に形成されるので、光透過率が低下し表示 画面が暗くなり視認性が低下するとともに、分離壁の部分には電気泳動粒子が存在 しないので、分離壁の部分に画像表示や文字表示ができないため、画素の微細化 が困難で高品質な画像を得ることが困難であるという課題を有していた。  (2) In addition, since the separation wall serving as a light shielding part is formed in the flat plate, the light transmittance is lowered, the display screen is darkened and the visibility is lowered, and no electrophoretic particles are present on the separation wall. Therefore, there is a problem that it is difficult to obtain a high-quality image because it is difficult to miniaturize pixels because image display and character display cannot be performed on the separation wall.
(3)また、第 1電極又は第 2電極を記録媒体の各画素に対応したマトリクス状の画素 電極として形成しなければならず、これらを駆動するために各々の画素電極に対応さ せて薄膜トランジスタを配置する必要があるため、記録媒体としての生産性、低コスト 性に欠けると 、う課題を有して 、た。 (3) Further, the first electrode or the second electrode must be formed as a matrix pixel electrode corresponding to each pixel of the recording medium, and in order to drive these, it corresponds to each pixel electrode. However, since it is necessary to dispose a thin film transistor, there is a problem that productivity as a recording medium and low cost are lacking.
(4) (特許文献 2)、(特許文献 3)の加熱放電型印字ヘッドは、放電の制御が容易で 静電現像方式の記録媒体に非接触で書き込むには最適なものである力 画像の解 像度を向上させるためには放電電極を高密度に実装しなければならず、放電電極及 び発熱素子の形状や配置に対し、放電電極や発熱素子の形成技術上の制約があり 、解像度及び画像品質の限界があった。  (4) The heating and discharging type print heads of (Patent Document 2) and (Patent Document 3) are easy to control the discharge, and are optimal for non-contact writing on electrostatic development type recording media. In order to improve the resolution, the discharge electrodes must be mounted at a high density, and there are restrictions on the technology for forming the discharge electrodes and the heating elements for the shape and arrangement of the discharge electrodes and the heating elements. And there was a limit of image quality.
(5)また、加熱放電型印字ヘッドと記録媒体を相対的に移動させながら書き込みを 行うので、高画質化、カラー化を図るためには、加熱放電型印字ヘッドと記録媒体と の位置合わせやイオン照射のタイミング等の制御に高い精度が要求され、高画質ィ匕 、カラー化が困難で、静電現像方式の記録媒体の普及における課題となっていた。 以上のような観点から、製造技術上の制約を受けることなく高解像度で高品質な力 ラー画像を形成することができる記録媒体、画像形成装置及び画像形成方法の開発 が強く望まれていた。  (5) In addition, since writing is performed while relatively moving the heat-discharge type print head and the recording medium, in order to improve the image quality and color, the position of the heat-discharge type print head and the recording medium must be adjusted. High precision is required for the control of the timing of ion irradiation and the like, high image quality and colorization are difficult, and this has been a problem in the spread of electrostatic development recording media. In view of the above, there has been a strong demand for the development of a recording medium, an image forming apparatus, and an image forming method capable of forming a high-resolution, high-quality powerful image without being restricted by manufacturing technology.
[0005] 本発明は上記従来の課題を解決するとともに上記要望に応えるもので、電荷が付 与される第 1基板と対向する第 2基板側で選択的な接地又は電圧印加を行うことがで き、第 1基板の所望の位置に確実に電子やイオンの電荷を付与することにより画像を 形成することができ、また製造工程が単純で生産性に優れるとともに高い製品得率が 得られ取扱性及び信頼性に優れ、さらに光透過率が高く視認性を高くでき画素を微 細化でき高品質の画像を形成できる記録媒体を提供することを目的とする。  [0005] The present invention solves the above-described conventional problems and meets the above-mentioned demand, and can selectively perform grounding or voltage application on the second substrate side facing the first substrate to which electric charge is applied. In addition, images can be formed by reliably applying electron or ion charges to the desired position on the first substrate, and the manufacturing process is simple, with excellent productivity and high product yield. Another object of the present invention is to provide a recording medium that is excellent in reliability, has high light transmittance, high visibility, miniaturizes pixels, and can form a high-quality image.
また本発明は、加熱放電型印字ヘッドと記録媒体との間で選択的に放電を発生さ せ、放電電極力 放出された電子やイオンを第 1基板の所望の位置に確実に照射し て電荷を付与することができ、制御が容易で高解像度で高品質な画像を形成するこ とが可能な画像形成方法を提供することを目的とする。  Further, the present invention selectively generates a discharge between the heat-discharge type print head and the recording medium, and reliably discharges the discharged electrons and ions to a desired position on the first substrate. It is an object of the present invention to provide an image forming method capable of providing a high-resolution and high-quality image with easy control.
課題を解決するための手段  Means for solving the problem
[0006] 上記従来の課題を解決するために本発明の記録媒体及び画像形成方法は、以下 の構成を有している。 [0006] In order to solve the above conventional problems, a recording medium and an image forming method of the present invention have the following configurations.
本発明の請求項 1に記載の記録媒体は、電荷が付与される第 1基板と、前記第 1基 板に対向配置された第 2基板と、前記第 1基板と前記第 2基板との間に形成された表 示層と、前記表示層内に封入された帯電粒子と、前記第 1基板の前記表示層側の 1 画素内の領域の一部に形成された第 1駆動電極と、表示原色の色単位に分割され て前記第 2基板に形成された第 2駆動電極と、前記第 2駆動電極に対応して配設さ れた前記表示原色のカラーフィルタ又はカラー反射板と、を備えた構成を有して ヽる この構成により、以下のような作用が得られる。 The recording medium according to claim 1 of the present invention includes a first substrate to which a charge is applied, and the first substrate. A second substrate opposed to the plate, a display layer formed between the first substrate and the second substrate, charged particles sealed in the display layer, and the first substrate A first drive electrode formed in a part of a region in one pixel on the display layer side; a second drive electrode formed on the second substrate by being divided into display primary color units; and the second drive electrode The display primary color filter or the color reflection plate arranged corresponding to the above-described configuration has the following effects.
(1)帯電粒子がプラスに帯電している場合は、マイナスの電圧を第 1駆動電極に印 加すると帯電粒子は第 1駆動電極上に集まる。第 1駆動電極は 1画素内の領域の一 部に形成されているので、第 1基板側カゝら見た観測者は、カラーフィルタ又はカラー 反射板からの透過光又は反射光の合成光を、帯電粒子に遮蔽されることなく観測で きる。次に、第 1基板の任意の箇所に選択的にマイナスの電荷 (電子又はイオン)を 付与するとともに、その箇所に対応する第 2駆動電極にプラスの電圧を印加すると、 第 1駆動電極と第 2駆動電極との間に形成された電界の影響で、第 1基板の第 1駆動 電極以外の任意の箇所に電荷が付与されマイナスに帯電する。これにより、第 1駆動 電極上の帯電粒子の一部力 マイナスに帯電した第 1基板にクーロン力で移動し付 着して、帯電粒子がカラーフィルタ又はカラー反射板力 の透過光又は反射光の一 部を遮蔽するので、遮蔽された光に応じて画像を形成することができる。なお、この 状態で電圧の印加をやめても、帯電粒子は静電吸着や分子間力などによって第 1基 板や第 1駆動電極上にとどまるので表示された画像が維持される。このように、第 1基 板の所望の位置に確実に電子やイオンの電荷を付与することにより画像を形成する ことができ、高品質でカラー化が容易で取扱性及び信頼性に優れる。  (1) When charged particles are positively charged, charged particles collect on the first drive electrode when a negative voltage is applied to the first drive electrode. Since the first drive electrode is formed in a part of the area within one pixel, the observer looking at the first substrate side sees the transmitted light from the color filter or the color reflector or the combined light of the reflected light. It can be observed without being shielded by charged particles. Next, when a negative charge (electrons or ions) is selectively applied to an arbitrary portion of the first substrate and a positive voltage is applied to the second drive electrode corresponding to the portion, the first drive electrode and the first drive electrode Due to the effect of the electric field formed between the two drive electrodes, an electric charge is applied to any part of the first substrate other than the first drive electrode and is negatively charged. As a result, the partial force of the charged particles on the first drive electrode moves to and adheres to the negatively charged first substrate by the Coulomb force, and the charged particles are transmitted through the color filter or the color reflector force. Since a part is shielded, an image can be formed according to the shielded light. Even if the voltage application is stopped in this state, the displayed image is maintained because the charged particles remain on the first substrate and the first drive electrode due to electrostatic adsorption and intermolecular force. Thus, an image can be formed by reliably applying an electron or ion charge to a desired position on the first substrate, and it is easy to color and is excellent in handleability and reliability.
(2)表示層には帯電粒子を封入するだけなので、分離壁を形成したり分離壁で区画 された領域内に単位色毎に電気泳動粒子を封入したりする工程が不要で、製造ェ 程が単純で生産性に優れるとともに高い製品得率が得られる。また、画素を形成する ことができず、材質によっては遮光部となる分離壁を表示層内に有して!/ヽな 、ので光 透過率が高く視認性を高くでき、画素を微細化でき高品質の画像を形成できる。 (2) Since the display layer only encloses the charged particles, there is no need to form a separation wall or encapsulate the electrophoretic particles for each unit color in the area partitioned by the separation wall. However, it is simple and excellent in productivity and high product yield. In addition, pixels cannot be formed, and depending on the material, the display layer has a separation wall that serves as a light-shielding part, so that the light transmittance is high and the visibility is high, and the pixels can be miniaturized. High quality images can be formed.
(3)簡単な構成でカラー画像を形成できるので生産性に優れるとともに、消耗品がな く省資源性に優れる。 (3) Since a color image can be formed with a simple configuration, productivity is high and there are no consumables. Excellent resource saving.
[0007] ここで、第 1基板、第 2基板としては、ポリエチレンテレフタレート,ポリカーボネート, ポリエーテルスルフォン等の透明な合成樹脂製、ガラス製等でフィルム状やシート状 に形成されたものが用いられる。なかでも、透明な合成樹脂製で第 1基板、第 2基板 が形成されている場合はフレキシブルな記録媒体が得られるため好適である。  [0007] Here, as the first substrate and the second substrate, those made of a transparent synthetic resin such as polyethylene terephthalate, polycarbonate, polyether sulfone, or the like and made of glass or the like are used. In particular, the case where the first substrate and the second substrate are made of a transparent synthetic resin is preferable because a flexible recording medium can be obtained.
[0008] 第 1駆動電極、第 2駆動電極としては、 ITO製、インジウム亜鉛酸ィ匕物 (InZnO)製 、共役系の導電性ポリア-リンやポリエチレンジォキシチォフェンとポリスチレンスルフ オン酸からなる導電性高分子 (PEDOTZPSS)製等の透明電極が用いられる。 なお、表示層と第 2駆動電極との間にカラー反射板が配設された記録媒体の場合 は、第 2駆動電極として、銅等の不透明な金属製電極を用いることができる。 [0008] As the first drive electrode and the second drive electrode, ITO, indium zinc oxide (InZnO), conjugated conductive polyaline, polyethylene dioxythiophene and polystyrene sulfonic acid are used. A transparent electrode made of conductive polymer (PEDOTZPSS) or the like made of is used. In the case of a recording medium in which a color reflector is disposed between the display layer and the second drive electrode, an opaque metal electrode such as copper can be used as the second drive electrode.
第 2駆動電極は、表示原色の色単位に分割されて第 2基板に形成されるが、表示 原色は二色以上であればよぐ色の組み合わせも適宜選択することができる。一画素 を表示原色の色数に応じて複数のサブ画素に分割して各々の表示原色を縞模様状 に繰り返し配置することでカラー化できる。縞模様状に配置する表示原色に対応する ように、第 2駆動電極を短冊状にして、表示画素の行単位或いは列単位に形成する ことにより構成を単純ィ匕でき好ましい。また、第 2駆動電極は、記録媒体の各画素に 対応したマトリクス状の画素電極として形成することもできる。  The second drive electrode is divided into display primary color units and formed on the second substrate. However, if the display primary colors are two or more colors, a combination of colors can be appropriately selected. Coloring can be achieved by dividing one pixel into a plurality of sub-pixels according to the number of display primary colors and repeatedly arranging each display primary color in a striped pattern. It is preferable that the configuration can be simplified by forming the second drive electrodes in strips so as to correspond to the display primary colors arranged in a striped pattern and forming them in row units or column units of display pixels. The second drive electrode can also be formed as a matrix pixel electrode corresponding to each pixel of the recording medium.
なお、カラーフィルタやカラー反射板の表示原色が少なくとも加法混色法における 三原色 , G, B)又は減法混色法における三原色 (Y, M, C)を備えた場合、フル カラー表示を行うことができる。必要に応じて、黒色等の他の色を含めてもよい。  In addition, when the display primary colors of the color filter and the color reflector include at least the three primary colors (Y, M, C) in the additive color mixing method or the three primary colors (Y, M, C) in the subtractive color mixing method, full color display can be performed. You may include other colors, such as black, as needed.
[0009] 第 2駆動電極に対応して、加法混色法における三原色 (R, G, B)をもつカラーフィ ルタゃ減法混色法における三原色 (Y, M, C)をもつカラー反射板を配設し、カラー 表示を行うことができる。 [0009] In correspondence with the second drive electrode, a color filter having the three primary colors (Y, M, C) in the subtractive color mixing method is arranged with the color filter having the three primary colors (R, G, B) in the additive color mixing method. Color display can be performed.
カラーフィルタは光を透過してカラー表示することができればよ 、ので、表示層の裏 面ではなぐ表示層の上面に配置してもよいし、 ITO等で形成された透明な第 2駆動 電極の下面に配置してもよ 、。  The color filter only needs to be able to transmit light and perform color display. Therefore, the color filter may be disposed on the upper surface of the display layer not on the back surface of the display layer, or may be disposed on the transparent second drive electrode formed of ITO or the like. May be placed on the bottom.
また、カラー反射板は、第 2駆動電極が ITO等の透明電極で形成された場合は、そ の下面に配置してもよいが、第 2駆動電極が銅等で形成されて不透明な場合は、そ の上面に配置する。 In addition, the color reflector may be disposed on the lower surface of the second drive electrode formed of a transparent electrode such as ITO. However, if the second drive electrode is formed of copper or the like and is opaque, , That Place on the top surface.
[0010] 帯電粒子としては、正又は負に帯電して電界によって移動する粒子であって、透過 光や反射光を遮蔽する隠蔽性に優れる白色,黒色等に着色された着色粒子が用い られる。  [0010] The charged particles are particles that are positively or negatively charged and move by an electric field, and are colored particles such as white and black that have excellent concealability to shield transmitted light and reflected light.
表示層としては、対向配置された第 1基板と第 2基板との間に、脂肪酸炭化水素, イソパラフィン,シリコンオイル,空気等の絶縁性流体とともに帯電粒子を封入したも のが用いられる。  As the display layer, a material in which charged particles are encapsulated with an insulating fluid such as fatty acid hydrocarbon, isoparaffin, silicon oil, air between the first substrate and the second substrate arranged opposite to each other is used.
[0011] この記録媒体は、紙代わりの媒体として持ち運んだりして使用する以外に、画像形 成装置に固定して広告などを表示する看板等の表示媒体として使用することもできる  [0011] This recording medium can be used as a display medium such as a signboard that displays an advertisement or the like fixed to an image forming apparatus, in addition to being carried as a medium instead of paper.
[0012] 本発明の請求項 2に記載の発明は、請求項 1に記載の記録媒体であって、前記帯 電粒子が、単色の帯電泳動粒子、単色の電子粉流体の内のいずれか 1種である構 成を有している。 [0012] The invention according to claim 2 of the present invention is the recording medium according to claim 1, wherein the charged particles are any one of monochromatic electrophoretic particles and monochromatic electropowder fluid. It has a composition that is a seed.
この構成により、請求項 1で得られる作用に加え、以下のような作用が得られる。 (1)単色の帯電泳動粒子や電子粉流体を表示媒体に封入するだけでカラー画像が 得られるので、生産性に優れる。  With this configuration, in addition to the operation obtained in claim 1, the following operation can be obtained. (1) Productivity is excellent because a color image can be obtained simply by encapsulating monochromatic electrophoretic particles or electropowder fluid in a display medium.
[0013] ここで、帯電粒子の帯電泳動粒子としては、酸化チタン微粒子,アルミナ微粒子等 の白色粒子、トナー粒子等の黒色粒子等の単色(白色、黒色、灰色等)の粒子を用 いることができる。電子粉流体としては、プリジストン製の単色(白色、黒色、灰色等) の粒子を用いることができる。いずれも、透過光や反射光を遮蔽する隠蔽性に優れ たものが用いられる。 Here, as the electrophoretic particles of the charged particles, monochromatic (white, black, gray, etc.) particles such as white particles such as titanium oxide fine particles and alumina fine particles, and black particles such as toner particles may be used. it can. As the electropowder fluid, monochromatic (white, black, gray, etc.) particles made by Priziston can be used. In either case, a material having excellent concealability for shielding transmitted light and reflected light is used.
[0014] 本発明の請求項 3に記載の記録媒体は、電荷が付与される第 1基板と、前記第 1基 板に対向配置された第 2基板と、前記第 1基板と前記第 2基板との間に形成された表 示層と、前記表示層内に封入された帯電粒子と、前記第 1基板又は前記第 2基板の 前記表示層側に間隔をあけて並設された第 3駆動電極と、前記第 3駆動電極と絶縁 され表示原色の色単位に分割されて前記第 2基板に形成された第 4駆動電極と、前 記第 4駆動電極に対応して配設された前記表示原色のカラーフィルタ又はカラー反 射板と、を備えた構成を有している。 この構成により、以下のような作用が得られる。 [0014] The recording medium according to claim 3 of the present invention includes a first substrate to which an electric charge is applied, a second substrate disposed opposite to the first substrate, the first substrate, and the second substrate. A display layer formed between the display substrate, the charged particles sealed in the display layer, and a third drive arranged in parallel with a space on the display layer side of the first substrate or the second substrate. An electrode, a fourth drive electrode insulated from the third drive electrode and divided into display primary color units and formed on the second substrate, and the display disposed corresponding to the fourth drive electrode And a primary color filter or a color reflection plate. With this configuration, the following effects can be obtained.
(1)隣り合う第 3駆動電極の一方にプラスの電圧を印加し他方にマイナスの電圧を印 加すると、表示層内の荷電粒子は帯電極性と逆の方向の電圧が印加された第 3駆動 電極に水平移動するので、第 1基板側から見ると表示層は透明に見える。そのため、 第 1基板から見た観測者は、カラーフィルタ又はカラー反射板力 の透過光又は反 射光の合成光を、帯電粒子に遮蔽されることなく観測できる。次に、第 3駆動電極を マイナスの等電位にした後、第 1基板の任意の箇所に選択的にマイナスの電荷 (電 子又はイオン)を付与するとともに、その箇所に対応する第 4駆動電極にプラスの電 圧を印加すると、第 3駆動電極と第 4駆動電極との間に形成された電界の影響で、第 1基板の第 3駆動電極の上部以外の任意の箇所に電荷が付与されマイナスに帯電 する。これにより、マイナスに帯電した第 1基板の方向にプラスに帯電した帯電粒子 力 Sクーロン力で移動し、帯電粒子がカラーフィルタ又はカラー反射板からの透過光又 は反射光の一部を遮蔽するので、遮蔽された光に応じて画像を形成することができ る。なお、この状態で電圧の印加をやめても、帯電粒子は静電吸着などによって固定 されるので画像が維持される。  (1) When a positive voltage is applied to one of the adjacent third drive electrodes and a negative voltage is applied to the other, the charged particles in the display layer are applied with a voltage in the direction opposite to the charged polarity. Since the electrode moves horizontally, the display layer looks transparent when viewed from the first substrate side. Therefore, the observer viewed from the first substrate can observe the transmitted light of the color filter or the color reflector force or the combined light of the reflected light without being shielded by the charged particles. Next, after the third drive electrode is set to a negative equipotential, a negative charge (electron or ion) is selectively applied to any part of the first substrate, and the fourth drive electrode corresponding to the part is applied. When a positive voltage is applied to the first electrode, an electric field is formed between the third drive electrode and the fourth drive electrode, and an electric charge is applied to any part other than the upper part of the third drive electrode on the first substrate. Negatively charged. As a result, the charged particle force positively charged in the direction of the negatively charged first substrate moves by the S-Coulomb force, and the charged particles block a part of the transmitted light or reflected light from the color filter or color reflector. Therefore, an image can be formed according to the shielded light. Even if the application of voltage is stopped in this state, the image is maintained because the charged particles are fixed by electrostatic adsorption or the like.
(2)表示層には帯電粒子を封入するだけなので、分離壁を形成したり分離壁で区画 された領域内に単位色毎に電気泳動粒子を封入したりする工程が不要で、製造ェ 程が単純で生産性に優れるとともに高い製品得率が得られる。また、画素を形成する ことができず、材質によっては遮光部となる分離壁を表示層内に有して!/ヽな 、ので光 透過率が高く視認性を高くでき、画素を微細化でき高品質の画像を形成できる。 (2) Since the display layer only encloses the charged particles, there is no need to form a separation wall or encapsulate the electrophoretic particles for each unit color in the area partitioned by the separation wall. However, it is simple and excellent in productivity and high product yield. In addition, pixels cannot be formed, and depending on the material, the display layer has a separation wall that serves as a light-shielding part, so that the light transmittance is high and the visibility is high, and the pixels can be miniaturized. High quality images can be formed.
(3)簡単な構成でカラー画像を形成できるので生産性に優れるとともに、消耗品がな く省資源性に優れる。 (3) Since a color image can be formed with a simple configuration, the productivity is excellent, and there are no consumables and resource saving is excellent.
[0015] ここで、第 1基板、第 2基板としては、請求項 1で説明したものと同様なので、説明を 省略する。また、第 3駆動電極、第 4駆動電極としては、請求項 1で説明した第 1駆動 電極、第 2駆動電極と同様なので、説明を省略する。カラーフィルタ、カラー反射板も 、請求項 1で説明したものと同様なので、説明を省略する。  [0015] Here, the first substrate and the second substrate are the same as those described in claim 1, and the description thereof is omitted. Further, the third drive electrode and the fourth drive electrode are the same as the first drive electrode and the second drive electrode described in claim 1, and thus the description thereof is omitted. Since the color filter and the color reflector are the same as those described in claim 1, their descriptions are omitted.
[0016] 帯電粒子としては、透明樹脂のマイクロカプセルの中に透明な絶縁性液体の分散 媒と共に封入された正又は負のいずれかに帯電した単色(白色、黒色、灰色等)の 微粒子力もなる荷電粒子を用いることができる。荷電粒子は、マイクロカプセル内の 分散媒に分散された荷電粒子が電界によって移動する電気泳動現象を利用したも のである。 [0016] The charged particles may be either positively or negatively charged single color (white, black, gray, etc.) enclosed in a transparent resin microcapsule with a transparent insulating liquid dispersion medium. Charged particles having a fine particle force can be used. The charged particles use an electrophoretic phenomenon in which charged particles dispersed in a dispersion medium in a microcapsule move by an electric field.
また、帯電粒子としては、球状や円柱状等のいわゆるツイストボールであって、一部 が単色(白色、黒色、灰色等)に着色され残りが透明な回転素子を用いることができ る。回転素子は、表示層の透明な絶縁性シートの中に埋め込まれ、回転素子径よりも 少し大きめに形成されたキヤビティ内のシリコンオイル等の絶縁性流体中に支持され ており、帯電している回転素子が電界によって回転する。第 1基板側から観測する場 合、着色された面が第 1基板側又は第 2基板側にあると単色に見え、着色された面が 水平方向にあると透明に見える。  The charged particles may be so-called twist balls such as a spherical shape or a cylindrical shape, and a rotating element that is partially colored in a single color (white, black, gray, etc.) and transparent in the rest can be used. The rotating element is embedded in a transparent insulating sheet of the display layer, and is supported in an insulating fluid such as silicon oil in a cavity formed slightly larger than the diameter of the rotating element, and is charged. The rotating element is rotated by the electric field. When observing from the first substrate side, it appears as a single color when the colored surface is on the first substrate side or the second substrate side, and appears transparent when the colored surface is in the horizontal direction.
[0017] 本発明の請求項 4に記載の発明は、請求項 3に記載の記録媒体であって、前記帯 電粒子が、前記表示層に配列され一部が単色に着色され残りが透明な回転素子、 前記表示層内に配列されたマイクロカプセルに透明な分散媒と共に封入された単色 の荷電粒子の内の 、ずれ力 1種である構成を有して 、る。  [0017] The invention according to claim 4 of the present invention is the recording medium according to claim 3, wherein the charged particles are arranged in the display layer, partially colored in a single color, and the remainder transparent. The rotating element has a configuration in which one of the monochromatic charged particles encapsulated with a transparent dispersion medium in the microcapsules arranged in the display layer is one type of displacement force.
この構成により、請求項 3で得られる作用に加え、以下のような作用が得られる。 (1)帯電粒子が、表示層に配列され一部が単色に着色され残りが透明な回転素子、 表示層内に配列されたマイクロカプセルに透明な分散媒と共に封入された単色の荷 電粒子の内のいずれか 1種なので、第 3駆動電極への電圧の印加や第 1基板への電 荷の付与によって、表示層に配列された回転素子やマイクロカプセルの荷電粒子が 配列された位置で回転したり移動したりすることによって、表示層内を通る光を透過 又は遮蔽してカラー画像を形成することができる。  With this configuration, in addition to the operation obtained in claim 3, the following operation can be obtained. (1) Rotating element in which charged particles are arranged in the display layer, partially colored in a single color, and the rest are transparent, monochromatic charged particles enclosed in a microcapsule arranged in the display layer together with a transparent dispersion medium Therefore, the rotating element arranged in the display layer and the charged particles of the microcapsule are rotated at the position where the charged particles are arranged by applying the voltage to the third drive electrode or applying the charge to the first substrate. By moving or moving, light passing through the display layer can be transmitted or shielded to form a color image.
[0018] 本発明の請求項 5に記載の記録媒体は、電荷が付与される第 1基板と、前記第 1基 板に対向配置された第 2基板と、前記第 1基板と前記第 2基板との間に形成された表 示層と、前記表示層内に封入され少なくとも一部が表示原色に着色された帯電粒子 と、前記第 1基板又は前記第 2基板の前記表示層側に間隔をあけて並設された第 3 駆動電極と、前記第 3駆動電極と絶縁され表示原色の色単位に分割されて前記第 2 基板に形成された第 4駆動電極と、を備えた構成を有して!/ヽる。  [0018] The recording medium according to claim 5 of the present invention includes a first substrate to which an electric charge is applied, a second substrate disposed opposite to the first substrate, the first substrate, and the second substrate. A gap between the display layer formed between the display layer, the charged particles encapsulated in the display layer and colored at least partially in the display primary color, and the display layer side of the first substrate or the second substrate. A third drive electrode that is arranged in parallel with each other, and a fourth drive electrode that is insulated from the third drive electrode and divided into display primary color units and formed on the second substrate. Talk!
この構成により、以下のような作用が得られる。 (1)隣り合う第 3駆動電極の一方にプラスの電圧を印加し他方にマイナスの電圧を印 加すると、表示層内の荷電粒子は帯電極性と逆の方向の電圧が印加された第 3駆動 電極に水平移動するので、第 1基板側からは水平移動した帯電粒子の色を観測でき る。次に、第 3駆動電極をマイナスの等電位にした後、第 1基板の任意の箇所に選択 的にマイナスの電荷 (電子又はイオン)を付与するとともに、その箇所に対応する第 4 駆動電極にプラスの電圧を印加すると、第 3駆動電極と第 4駆動電極との間に形成さ れた電界の影響で、第 1基板の第 3駆動電極の上部以外の任意の箇所に電荷が付 与されマイナスに帯電する。これにより、マイナスに帯電した第 1基板の方向にプラス に帯電した帯電粒子がクーロン力で移動し、帯電粒子の表示原色に応じて画像を形 成することができる。なお、この状態で電圧の印加をやめても、荷電粒子や回転素子 は静電吸着などによって固定されるので画像が維持される。 With this configuration, the following effects can be obtained. (1) When a positive voltage is applied to one of the adjacent third drive electrodes and a negative voltage is applied to the other, the charged particles in the display layer are applied with a voltage in the direction opposite to the charged polarity. Since it moves horizontally to the electrode, the color of the horizontally moving charged particles can be observed from the first substrate side. Next, after the third drive electrode is set to a negative equipotential, a negative charge (electrons or ions) is selectively applied to an arbitrary position of the first substrate, and the fourth drive electrode corresponding to the position is applied to the fourth drive electrode. When a positive voltage is applied, an electric field is formed between the third drive electrode and the fourth drive electrode, and an electric charge is applied to any location other than the top of the third drive electrode on the first substrate. Negatively charged. As a result, the charged particles positively charged in the direction of the negatively charged first substrate move by the Coulomb force, and an image can be formed according to the display primary color of the charged particles. Even if the application of voltage is stopped in this state, the image is maintained because the charged particles and the rotating element are fixed by electrostatic adsorption or the like.
(2)表示層に分離壁を形成したり分離壁で区画された領域内に単位色毎に電気泳 動粒子を封入したりする工程が不要で、製造工程が単純で生産性に優れるとともに 高い製品得率が得られる。また、画素を形成することができず、材質によっては遮光 部となる分離壁を表示層内に有して!/ヽな ヽので光透過率が高く視認性を高くでき、 画素を微細化でき高品質の画像を形成できる。  (2) There is no need to form a separation wall in the display layer or to enclose electrophoretic particles for each unit color in the area partitioned by the separation wall, and the manufacturing process is simple and excellent in productivity and high. Product yield is obtained. In addition, a pixel cannot be formed, and depending on the material, the display layer has a separation wall that serves as a light-shielding part. The light transmittance is high and the visibility is high, so that the pixel can be miniaturized. High quality images can be formed.
(3)簡単な構成でカラー画像を形成できるので生産性に優れるとともに、消耗品がな く省資源性に優れる。  (3) Since a color image can be formed with a simple configuration, the productivity is excellent, and there are no consumables and resource saving is excellent.
[0019] ここで、第 1基板、第 2基板としては、請求項 1で説明したものと同様なので、説明を 省略する。また、第 3駆動電極、第 4駆動電極としては、請求項 1で説明した第 1駆動 電極、第 2駆動電極と同様なので、説明を省略する。  [0019] Here, the first substrate and the second substrate are the same as those described in claim 1, and the description thereof is omitted. Further, the third drive electrode and the fourth drive electrode are the same as the first drive electrode and the second drive electrode described in claim 1, and thus the description thereof is omitted.
[0020] 帯電粒子としては、透明樹脂のマイクロカプセルの中に透明な絶縁性液体の分散 媒と共に封入された正又は負のいずれかに帯電した表示原色の微粒子力 なる荷 電粒子を用いることができる。これは、マイクロカプセル内の分散媒に分散された荷 電粒子が電界によって移動する電気泳動現象を利用したものである。  [0020] As the charged particles, charged particles having fine particle force of a display primary color charged either positively or negatively enclosed in a transparent resin microcapsule together with a dispersion medium of a transparent insulating liquid may be used. it can. This utilizes an electrophoretic phenomenon in which charged particles dispersed in a dispersion medium in a microcapsule move by an electric field.
また、帯電粒子としては、球状や円柱状等のいわゆるツイストボールであって、一部 が表示原色 (赤、緑、青等)に着色され、残りが白色等の単色に着色された回転素子 や残りが透明な回転素子を用いることができる。回転素子は、表示層の透明な絶縁 性シートの中に埋め込まれ、回転素子径よりも少し大きめに形成されたキヤビティ内 のシリコンオイル等の絶縁性流体中に支持されており、帯電している回転素子が電 界によって回転する。第 1基板側から観測する場合、表示原色に着色された面が第 1 基板側にあると表示原色が見え、着色された面が水平方向にあると他方の単色が見 えるか透明に見える。 In addition, the charged particles are so-called twist balls such as a spherical shape or a cylindrical shape, and some of them are colored in display primary colors (red, green, blue, etc.) and the rest are colored in a single color such as white. A rotating element with the remaining transparent can be used. Rotating element is transparent insulation of the display layer The rotating element that is charged is supported by an insulating fluid such as silicon oil in the cavity that is embedded in the conductive sheet and formed slightly larger than the diameter of the rotating element, and is rotated by the electric field. When observing from the first substrate side, the display primary color can be seen if the surface colored in the display primary color is on the first substrate side, and the other single color can be seen or transparent if the colored surface is in the horizontal direction.
[0021] 本発明の請求項 6に記載の発明は、請求項 5に記載の記録媒体であって、前記帯 電粒子が、前記表示層に配列され一部が前記表示原色に着色された回転素子、前 記表示層内に配列されたマイクロカプセルに透明な分散媒と共に封入された前記表 示原色の荷電粒子の内の 、ずれ力 1種である構成を有して 、る。  [0021] The invention according to claim 6 of the present invention is the recording medium according to claim 5, wherein the charged particles are arranged in the display layer and partially rotated in the display primary color. The device has a configuration in which one of the display primary color charged particles encapsulated in a microcapsule arranged in the display layer together with a transparent dispersion medium is one type of displacement force.
この構成により、請求項 5で得られる作用に加え、以下のような作用が得られる。 (1)帯電粒子が、表示層に配列され一部が表示原色に着色され残りが透明な回転 素子、表示層内に配列されたマイクロカプセルに透明な分散媒と共に封入された表 示原色の荷電粒子の内のいずれ力 1種なので、第 3駆動電極への電圧の印加や第 1 基板への電荷の付与によって、表示層に配列された回転素子やマイクロカプセルの 荷電粒子が配列された位置で回転したり移動したりすることによって、帯電粒子の表 示原色を観測者に見えるようにしてカラー画像を形成することができる。  With this configuration, in addition to the operation obtained in claim 5, the following operation can be obtained. (1) Charge of display primary color in which charged particles are arranged in the display layer, partially colored in the display primary color, and the rest are transparent, and the microcapsules arranged in the display layer are encapsulated with a transparent dispersion medium Since any one of the forces is one of the particles, the rotating element arranged in the display layer and the charged particles in the microcapsule are arranged at the position where the voltage is applied to the third drive electrode and the charge is applied to the first substrate. By rotating or moving, a color image can be formed so that the observer can see the primary color of the charged particles.
[0022] 請求項 1乃至 6の内 ヽずれか 1に記載の記録媒体に画像を形成する画像形成装置 は、電子放出部を有する放電電極と前記放電電極を選択的に加熱する加熱手段と を備えた加熱放電型印字ヘッドと、前記放電電極と前記記録媒体の第 2駆動電極又 は第 4駆動電極との間に放電制御電圧に相当する電位差を設定して電界を形成す る電位差設定部と、を備え、前記放電電極を前記加熱手段で温度制御することによ り、前記電位差設定部で電位差が設定された前記放電電極と前記第 2駆動電極又 は前記第 4駆動電極との間の放電の発生制御を行い、前記放電電極力 放出させ た電子やイオンを前記記録媒体の第 1基板に移動させて画像を形成するものが用い られる。  [0022] An image forming apparatus for forming an image on a recording medium according to any one of claims 1 to 6, comprising: a discharge electrode having an electron emission portion; and a heating means for selectively heating the discharge electrode. A potential difference setting unit configured to form an electric field by setting a potential difference corresponding to a discharge control voltage between the heat discharge type print head provided and the second drive electrode or the fourth drive electrode of the recording medium. And by controlling the temperature of the discharge electrode with the heating means, the potential difference is set between the discharge electrode and the second drive electrode or the fourth drive electrode. The discharge is controlled to be generated, and the discharge electrode force discharged electrons and ions are moved to the first substrate of the recording medium to form an image.
画像形成装置は、この構成により、以下のような作用が得られる。  With this configuration, the image forming apparatus can obtain the following operations.
(1)電位差設定部により放電電極と第 2駆動電極又は第 4駆動電極との間に放電制 御電圧に相当する電位差を設定して電界を形成した状態で放電に備えることができ 、高電圧となる放電制御電圧を直接制御する必要がなぐ加熱手段により放電電極 を選択的に加熱することで放電電極と第 2駆動電極又は第 4駆動電極との間で放電 を発生させることができ、電界によって放電電極力も放出させた電子やイオンを記録 媒体側に移動させ、記録媒体の第 1基板に電荷を付与して画像を形成することがで きる。 (1) The potential difference setting unit can prepare for the discharge in a state where an electric field is formed by setting a potential difference corresponding to the discharge control voltage between the discharge electrode and the second drive electrode or the fourth drive electrode. In addition, it is possible to generate a discharge between the discharge electrode and the second drive electrode or the fourth drive electrode by selectively heating the discharge electrode by a heating means that does not need to directly control the discharge control voltage that becomes a high voltage. It is possible to form an image by moving electrons and ions, which have also discharged the discharge electrode force by an electric field, to the recording medium side and applying a charge to the first substrate of the recording medium.
(2)放電電極と第 2駆動電極等との間に放電制御電圧に相当する電位差を設定して 電界を形成する電位差設定部を有することにより、電位差設定部で第 2駆動電極等 に放電制御電圧の一部を選択的に印加することができるので、加熱放電型印字へッ ドの放電電極に直接印加する電圧を低減して、効率的に放電を発生させることがで き省エネルギー性に優れる。  (2) By having a potential difference setting unit that forms an electric field by setting a potential difference corresponding to the discharge control voltage between the discharge electrode and the second drive electrode, etc., the potential control unit controls discharge to the second drive electrode, etc. Since part of the voltage can be selectively applied, the voltage applied directly to the discharge electrode of the heat-discharge-type printing head can be reduced, and discharge can be generated efficiently, resulting in excellent energy savings. .
(3)電位差設定部により放電電極と第 2駆動電極等との間の電位差が放電制御電圧 と等しくなるように放電電極及び第 2駆動電極等の各々に印加する電圧値を任意に 設定することができるので、記録媒体の種類等に応じて第 2駆動電極に印加する電 圧値を最適に調整することができ汎用性に優れる。  (3) The voltage value applied to each of the discharge electrode and the second drive electrode, etc. is arbitrarily set by the potential difference setting unit so that the potential difference between the discharge electrode and the second drive electrode becomes equal to the discharge control voltage. Therefore, the voltage value applied to the second drive electrode can be optimally adjusted according to the type of the recording medium, and the versatility is excellent.
[0023] 以上のような構成を有することで、加熱放電型印字ヘッドの放電電極と記録媒体と の第 2基板の駆動電極との間で選択的に放電を発生させ、放電電極から放出された 電子やイオンを第 1基板の所望の位置に確実に照射して電荷を付与して画像を形成 することができる高品質で取扱性、信頼性に優れる画像形成装置を提供することが できる。  [0023] By having the configuration as described above, a discharge is selectively generated between the discharge electrode of the heat discharge type print head and the drive electrode of the second substrate of the recording medium, and is discharged from the discharge electrode. It is possible to provide an image forming apparatus with high quality and excellent handling properties and reliability that can form an image by reliably irradiating electrons and ions to a desired position on the first substrate to give an electric charge.
[0024] ここで、放電制御電圧とは、その電位差だけでは加熱放電型印字ヘッドの放電電 極と第 2駆動電極等との間で放電は起こらないが、放電電極を加熱することにより放 電が起こる電圧域をいう。また、ここでの放電とは、放電電極から電子が放出されるこ とをいう。放出された電子は、大気中においては酸素や窒素をイオン化し、それらを 記録媒体の第 1基板に到達させる。  [0024] Here, the discharge control voltage means that no discharge occurs between the discharge electrode of the heat-discharge type print head and the second drive electrode or the like only by the potential difference, but the discharge electrode is heated by heating the discharge electrode. This refers to the voltage range where this occurs. The discharge here means that electrons are emitted from the discharge electrode. The emitted electrons ionize oxygen and nitrogen in the atmosphere and make them reach the first substrate of the recording medium.
電位差設定部で放電電極と第 2駆動電極等との間に放電制御電圧に相当する電 位差を設定して電界を形成するとともに、加熱手段で放電電極の加熱を行うことによ り放電の発生を制御できるので、加熱手段による加熱箇所を選択することで容易に 放電電極の任意の加熱位置近傍 (電子放出部位)から選択的に電子を放出させて 放電を発生させることができる。 An electric field is formed by setting a potential difference corresponding to the discharge control voltage between the discharge electrode and the second drive electrode in the potential difference setting unit, and the discharge electrode is heated by heating the discharge electrode by the heating means. Since the generation can be controlled, electrons can be easily emitted selectively from the vicinity of any heating position (electron emission site) of the discharge electrode by selecting the heating location by the heating means. A discharge can be generated.
[0025] 加熱放電型印字ヘッドの放電電極は、例えば複数の電子放出部位の一端部を共 通電極で接続して櫛型に形成したり、複数の電子放出部位の両端部を共通電極で 接続して梯子型等に形成したりできるほか、長方形状や正方形状等の一枚の平板状 に形成すること力 sできる(ί列えば、、特開 2003— 326756号、 WO2005/056297参 照)。 [0025] The discharge electrode of the heat discharge type print head is formed, for example, in a comb shape by connecting one end of a plurality of electron emission sites with a common electrode, or by connecting both ends of a plurality of electron emission sites with a common electrode. Guests can may be formed in a ladder-type or the like and can be force s are formed on a single flat plate-shaped such as a rectangular or square shape (I Retsue if ,, JP 2003- 326756 Patent, WO2005 / 056 297 see) .
櫛型や梯子型のように電子放出部位近傍に共通電極を設けることで、放電電極の 放熱面積の拡大及び、熱容量の増大により、放電電極の冷却効果、加熱停止に対 する応答性が向上し、また、抵抗値の低減により常に安定した電圧を印加できるので 、放電の安定性等を更に向上させることができる。尚、平板状に形成した放電電極は 、電子放出部位以外が共通電極となる。  By providing a common electrode in the vicinity of the electron emission site, such as a comb-type or ladder-type, the cooling area of the discharge electrode and the responsiveness to heating stop are improved by increasing the heat radiation area of the discharge electrode and increasing the heat capacity. In addition, since a stable voltage can always be applied by reducing the resistance value, the stability of discharge can be further improved. Note that the discharge electrode formed in a flat plate shape is a common electrode except for the electron emission site.
特に、共通電極の幅を電子放出部位の幅より幅広に形成した場合、一時的に 100 〜300°Cに加熱される放電電極の冷却効果が向上し、熱の籠りを防ぐことができるの で、加熱のオフに迅速に応答して放電を停止でき、放電時間間隔を短縮して短時間 で放電の有無を切替えることができ、記録速度の高速ィ匕を図ることができる。また、共 通電極の抵抗値を引き下げることができ、共通電極で接続された各々の電子放出部 位の間に生じる電位差を極力抑えることができるので、各々の電子放出部位におけ る電子放出量のばらつきを低減でき、放電の安定性に優れる。  In particular, when the width of the common electrode is wider than the width of the electron emission site, the cooling effect of the discharge electrode, which is temporarily heated to 100 to 300 ° C, is improved, and heat can be prevented from being burned. In addition, the discharge can be stopped in response to the heating off quickly, the discharge time interval can be shortened and the presence / absence of the discharge can be switched in a short time, and the recording speed can be increased. In addition, the resistance value of the common electrode can be reduced, and the potential difference generated between the electron emission sites connected by the common electrode can be suppressed as much as possible. Therefore, the amount of electron emission at each electron emission site is reduced. Fluctuations and excellent discharge stability.
[0026] 放電電極は、基板上に金、銀、銅、アルミニウム等の金属を蒸着、スパッタ、印刷、 メツキ等で形成した後、必要に応じてエッチングして、電子放出部や共通電極をパタ ーン形成するもの、ステンレス、銅、アルミニウム等の金属の少なくとも一部をエツチン グゃ切削等により薄肉化した後、必要に応じてエッチングやレーザカ卩ェ等により放電 電極をパターン形成するもの等が好適に用いられる。また、その他にカーボン等の導 電材料を用いて放電電極を形成してもよ ヽ。 [0026] The discharge electrode is formed by depositing a metal such as gold, silver, copper, or aluminum on the substrate by vapor deposition, sputtering, printing, plating, or the like, and then etching as necessary to pattern the electron emission portion or the common electrode. In some cases, after forming at least a part of the metal such as stainless steel, copper, aluminum, etc., by thinning by etching or cutting, etc., and then patterning the discharge electrode by etching or laser cage if necessary. Preferably used. In addition, the discharge electrode may be formed using a conductive material such as carbon.
基板上に放電電極を形成する場合、基板の材質としては、表面に放電電極を形成 することができるとともに、加熱手段による加熱に耐える耐熱性を有するものであれば よい。また、加熱手段で基板の裏面側から加熱を行う場合、加熱手段が発する熱を 放電電極に伝達できる熱伝達性を有するものが好適に用いられる。具体的には、ガ ラスやポリイミド,ァラミド,ポリエーテルイミド等の合成樹脂等が好適に用いられる。 When the discharge electrode is formed on the substrate, the material of the substrate may be any material as long as it can form the discharge electrode on the surface and has heat resistance to withstand the heating by the heating means. Further, when heating is performed from the back side of the substrate by the heating means, those having a heat transfer property capable of transferring the heat generated by the heating means to the discharge electrode are preferably used. Specifically, A synthetic resin such as glass, polyimide, aramid, or polyetherimide is preferably used.
[0027] 放電電極を櫛形に形成する場合、各々の電子放出部の形状は、略矩形状、台形 状、半円形状、砲弾状あるいはこれらを組み合わせた形状等に形成することができる When the discharge electrodes are formed in a comb shape, the shape of each electron emission portion can be formed in a substantially rectangular shape, a trapezoidal shape, a semicircular shape, a bullet shape, or a combination thereof.
。また、電子放出部の一部をさらにスリット等で分割したり、周縁部に凹凸部を形成し たりすることで電子放出部の縁周辺の周長を増加させることができる(例えば、 W02. In addition, the peripheral length around the edge of the electron emission part can be increased by further dividing a part of the electron emission part with a slit or the like or by forming an uneven part on the peripheral part (for example, W02
005Z056297参照)。放電電極は縁周辺からの電子放出量が多いので、縁周辺の 周長を長くすることで、放電電極力 の電子放出量を増加させて照射されるイオン量 や発光強度を増加させることができ、放電制御電圧や加熱温度を低く設定することが でき、省エネルギー性及び放電発生の効率性に優れる。また、放電制御電圧を低く 設定できるので、放電電極の長寿命性にも優れる。 005Z056297). Since the discharge electrode has a large amount of electron emission from the periphery of the edge, it is possible to increase the amount of emitted ions and the intensity of emitted light by increasing the amount of electron emission of the discharge electrode force by increasing the circumference around the edge. In addition, the discharge control voltage and heating temperature can be set low, and energy saving and discharge generation efficiency are excellent. In addition, since the discharge control voltage can be set low, the discharge electrode has excellent long life.
放電電極の端部を分割したり周縁部に凹凸部を形成したりする代りに、電子放出 部位 (加熱位置)の近傍に放電孔部を形成してもよい。これにより、放電孔部の縁周 辺から電子を放出させることができ、放電電極の端部を分割するのと同様の作用を 得ることができる。放電孔部の形状は、略円形、略楕円形、四角形や六角形等の多 角形、星形など様々な形状に形成することができる。また、電子放出部位 (加熱位置 近傍)の 1箇所当たりの放電孔部の数及び大きさは適宜選択して組合せることができ る。尚、放電電極の凹凸部や放電孔部は前述のエッチングやレーザ加工等により形 成することができる。  Instead of dividing the end portion of the discharge electrode or forming the uneven portion on the peripheral edge portion, a discharge hole portion may be formed in the vicinity of the electron emission site (heating position). As a result, electrons can be emitted from the peripheral edge of the discharge hole, and the same effect as dividing the end of the discharge electrode can be obtained. The shape of the discharge hole portion can be formed in various shapes such as a substantially circular shape, a substantially elliptical shape, a polygonal shape such as a quadrangle and a hexagon, and a star shape. Further, the number and size of the discharge hole portions per one electron emission site (near the heating position) can be appropriately selected and combined. Note that the concave and convex portions and the discharge holes of the discharge electrode can be formed by the above-described etching or laser processing.
[0028] また、放電電極の内の少なくとも共通電極の表面には導電材層を形成してもよい。  [0028] Further, a conductive material layer may be formed on at least the surface of the common electrode among the discharge electrodes.
これにより、共通電極の抵抗値を更に引き下げることができ、各々の電子放出部間に 生じる電位差を確実に低減でき、放電の安定性に優れる。導電材層は放電電極より も良導電性であればよぐ銀ペーストのスクリーン印刷や銀メツキ等により容易に形成 することができる。導電材層の厚みを増すことにより、共通電極の抵抗値を低減でき、 放電の安定性を向上させることができる。  As a result, the resistance value of the common electrode can be further reduced, the potential difference generated between the electron emission portions can be reliably reduced, and the discharge stability is excellent. The conductive material layer can be easily formed by screen printing of silver paste or silver plating as long as it has better conductivity than the discharge electrode. By increasing the thickness of the conductive material layer, the resistance value of the common electrode can be reduced, and the discharge stability can be improved.
放電電極の厚さは材質にもよる力 金で形成する場合は 0. 1〜: LOO /z mが好まし い。放電電極の厚さが 0.: L mより薄くなるにつれ磨耗の影響を受け易く放電電極 の寿命が短くなる傾向があり、 100 μ mより厚くなるにつれ熱容量が増加し加熱のォ ン Zオフに対する応答性が低下し易くなる傾向があり、いずれも好ましくない。放電 電極の厚さを 100 m以下にすることで、加熱状態から急速に復帰させることができ 、印字速度を高速ィ匕することができる。 The thickness of the discharge electrode is preferably 0.1 ~: LOO / zm when it is formed with a force depending on the material. When the thickness of the discharge electrode becomes less than 0 .: Lm, the discharge electrode tends to be affected by wear, and the life of the discharge electrode tends to be shortened. As the thickness exceeds 100 μm, the heat capacity increases and the on-off of heating is reduced. There is a tendency that the responsiveness tends to decrease, both of which are not preferable. Discharge By making the thickness of the electrode 100 m or less, it is possible to quickly recover from the heated state and to increase the printing speed.
[0029] 放電電極を加熱するための加熱手段としては、レーザ光照射部や赤外線照射部等 力 レーザ光や赤外線等を照射する方式等が好適に用いられる。レーザ光を照射す る方式としては、従来の電子写真方式と同様のレーザスキャナユニットを用いることが でき、レーザ照射部にポリゴンミラー又はガルバノミラーを組合せて放電電極に対し てレーザ光のみをスキャンさせるもの、放電電極に対してレーザ照射部自体をシリア ル走査させるもの等が好適に用いられる。また、レーザ光や赤外線を光ファイバ一や 集光レンズで集光して放電電極に照射してもよ ヽ。特に多本数の光ファイバ一を高 密度かつ高精度に配列した光ファイバ一アレイを用いた場合、同時に複数の電子放 出部位に対し、レーザ光や赤外線を選択的に照射することができ、高速記録が可能 で生産性に優れる。 [0029] As a heating means for heating the discharge electrode, a laser beam irradiating unit, an infrared irradiating unit, etc., a method of irradiating laser beam, infrared ray or the like is preferably used. As a method for irradiating laser light, the same laser scanner unit as in the conventional electrophotographic method can be used, and the laser irradiation unit is combined with a polygon mirror or a galvanometer mirror to scan only the laser light with respect to the discharge electrode. For example, a laser irradiation unit that scans the laser irradiation portion with respect to the discharge electrode is preferably used. In addition, laser light or infrared light may be condensed with an optical fiber or a condensing lens and irradiated to the discharge electrode. In particular, when an optical fiber array in which a large number of optical fibers are arranged with high density and high accuracy is used, a plurality of electron emission sites can be simultaneously irradiated with laser light and infrared rays at high speed. Recording is possible and productivity is excellent.
また、加熱手段として従来の感熱式のファクシミリに使用されるサーマルプリントへッ ドと同様の構成を放電電極保護層と密着させて用いることもできる。具体的には、発 熱抵抗体と電気的に接続されたドライバ ICで発熱抵抗体の発熱を制御するものであ る。  Further, as a heating means, the same structure as a thermal print head used in a conventional thermal facsimile can be used in close contact with the discharge electrode protective layer. Specifically, the heat generation of the heating resistor is controlled by a driver IC that is electrically connected to the heating resistor.
[0030] 電位差設定部は、加熱放電型印字ヘッドの放電電極と記録媒体の第 2駆動電極又 は第 4駆動電極との間に放電制御電圧に相当する電位差を設定できるものであれば よぐ記録媒体の第 2駆動電極又は第 4駆動電極に選択的な接地又は電圧印加を行 うものが好適に用いられる。つまり、電位差設定部は、放電制御電圧に相当する電圧 を全て放電電極のみに印加し、記録媒体の第 2駆動電極又は第 4駆動電極を選択 的に接地するようにしてもよ!ヽし、放電制御電圧に相当する電圧の一部を放電電極 に印加し、残りの電圧を記録媒体の第 2駆動電極又は第 4駆動電極に選択的に印加 するようにしてちょい。  [0030] The potential difference setting unit is not particularly limited as long as it can set a potential difference corresponding to the discharge control voltage between the discharge electrode of the heat discharge type print head and the second drive electrode or the fourth drive electrode of the recording medium. A material that selectively grounds or applies a voltage to the second drive electrode or the fourth drive electrode of the recording medium is preferably used. In other words, the potential difference setting unit may apply all the voltage corresponding to the discharge control voltage only to the discharge electrode, and selectively ground the second drive electrode or the fourth drive electrode of the recording medium! Then, apply a part of the voltage corresponding to the discharge control voltage to the discharge electrode and selectively apply the remaining voltage to the second drive electrode or the fourth drive electrode of the recording medium.
[0031] また、画像形成装置の電位差設定部は、放電電極に電圧を印加するヘッド側電圧 印加部と、画像情報に基づ!、て記録媒体の第 2駆動電極又は第 4駆動電極に選択 的な接地又は電圧印加を行う媒体側電圧制御部と、を備えた構成を有して!/ヽると好 ましい。 この構成により、以下のような作用が得られる。 In addition, the potential difference setting unit of the image forming apparatus is selected as a head side voltage application unit that applies a voltage to the discharge electrode and a second drive electrode or a fourth drive electrode of the recording medium based on the image information! It is preferable to have a configuration including a medium-side voltage control unit that performs general grounding or voltage application! With this configuration, the following effects can be obtained.
(1)電位差設定部が、放電電極に電圧を印加するヘッド側電圧印加部と、画像情報 に基づいて対向電極に選択的な接地又は電圧印加を行う媒体側電圧制御部を備え ていることにより、放電制御電圧を放電電極と第 2駆動電極又は第 4駆動電極に分配 して印加することができるので、記録媒体の種類や特性等に応じて第 2駆動電極又 は第 4駆動電極に印加する電圧を調整することができ、放電電極側の負担を軽減し て効率的に放電を発生させることができる。  (1) The potential difference setting unit includes a head-side voltage application unit that applies a voltage to the discharge electrode and a medium-side voltage control unit that selectively performs grounding or voltage application to the counter electrode based on image information. Since the discharge control voltage can be distributed and applied to the discharge electrode and the second drive electrode or the fourth drive electrode, it can be applied to the second drive electrode or the fourth drive electrode according to the type and characteristics of the recording medium. The voltage to be discharged can be adjusted, and the burden on the discharge electrode side can be reduced to efficiently generate discharge.
[0032] ここで、ヘッド側電圧印加部は、予め設定した電圧を放電電極全体に印加すれば よく高電圧を印加する必要はない。媒体側電圧制御部は、記録媒体の第 2駆動電極 又は第 4駆動電極に選択的な接地又は電圧印加を行うが、第 2駆動電極又は第 4駆 動電極を高密度に配置して高品質な画像を得ることができるとともに、低耐電圧対応 のドライバ ICを使用することができ、制御が容易で取扱性に優れる。  [0032] Here, the head-side voltage application unit may apply a preset voltage to the entire discharge electrode, and does not need to apply a high voltage. The medium side voltage control unit selectively grounds or applies voltage to the second drive electrode or the fourth drive electrode of the recording medium, but the second drive electrode or the fourth drive electrode is arranged at a high density to provide high quality. Image can be obtained, and a driver IC that supports low withstand voltage can be used.
[0033] 本発明の請求項 7に記載の画像形成方法は、請求項 1乃至 6の内いずれか 1に記 載の記録媒体に画像を形成する画像形成方法であって、放電電極を温度制御する ことにより前記放電電極から電子を放出させ放電の有無で印字を行う加熱放電型印 字ヘッドの前記放電電極と前記記録媒体の第 2駆動電極又は第 4駆動電極との間に 放電制御電圧に相当する電位差を設定して電界を形成する電位差設定工程と、画 像情報に基づいて前記放電電極を選択的に加熱する放電電極加熱工程と、を備え た構成を有している。  [0033] An image forming method according to claim 7 of the present invention is an image forming method for forming an image on a recording medium according to any one of claims 1 to 6, wherein the temperature of the discharge electrode is controlled. Thus, the discharge control voltage is set between the discharge electrode of the heating and discharge type print head that emits electrons from the discharge electrode and performs printing in the presence or absence of discharge and the second drive electrode or the fourth drive electrode of the recording medium. It has a configuration including a potential difference setting step for forming an electric field by setting a corresponding potential difference, and a discharge electrode heating step for selectively heating the discharge electrode based on image information.
この構成により、以下のような作用が得られる。  With this configuration, the following effects can be obtained.
(1)電位差設定工程で放電電極と記録媒体の第 2駆動電極又は第 4駆動電極との 間に放電制御電圧に相当する電位差を設定して電界を形成することにより放電に備 えることができ、放電電圧加熱工程で画像情報に基づ ヽて放電電極を選択的に加 熱するだけで放電を発生させることができるので、高電圧の制御が不要で、容易に放 電の発生を制御して記録媒体に画像を形成することができる。  (1) In the potential difference setting step, a potential difference corresponding to the discharge control voltage is set between the discharge electrode and the second drive electrode or the fourth drive electrode of the recording medium to form an electric field, thereby preparing for discharge. In the discharge voltage heating process, discharge can be generated simply by selectively heating the discharge electrode based on the image information, so there is no need to control high voltage and the generation of discharge can be easily controlled. Thus, an image can be formed on the recording medium.
(2)電位差設定工程により放電電極と第 2駆動電極又は第 4駆動電極との間の電位 差が放電制御電圧と等しくなるように放電電極、第 2駆動電極又は第 4駆動電極の各 々に印加する電圧値を任意に設定することができるので、記録媒体の種類や特定等 に応じて第 2駆動電極又は第 4駆動電極に印加する電圧値を最適に調整することが でき汎用性に優れる。 (2) The potential difference between the discharge electrode and the second drive electrode or the fourth drive electrode is made equal to the discharge control voltage by the potential difference setting step, so that each of the discharge electrode, the second drive electrode, and the fourth drive electrode is set. Since the voltage value to be applied can be set arbitrarily, the type and identification of the recording medium, etc. The voltage applied to the 2nd drive electrode or 4th drive electrode can be adjusted optimally according to the above, and the versatility is excellent.
[0034] 電位差設定工程にお!ヽて、加熱放電型印字ヘッドの放電電極と記録媒体の第 2駆 動電極又は第 4駆動電極との間に放電制御電圧に相当する電位差を設定する。そし て、放電電極加熱工程において、加熱放電型印字ヘッドの放電電極を選択的にカロ 熱することにより放電の発生を制御して印字を行うので、電位差設定工程の後工程と して放電電極加熱工程を行ってもょ ヽし、電位差設定工程と放電電極加熱工程を同 時に行ってもよい。  [0034] In the potential difference setting step, a potential difference corresponding to the discharge control voltage is set between the discharge electrode of the heat discharge type print head and the second drive electrode or the fourth drive electrode of the recording medium. In the discharge electrode heating process, the discharge electrode of the heating / discharge type print head is selectively heated to control the occurrence of discharge, so printing is performed as a subsequent process of the potential difference setting process. Alternatively, the potential difference setting step and the discharge electrode heating step may be performed at the same time.
[0035] 本発明の請求項 8に記載の発明は、請求項 7に記載の画像形成方法であって、前 記電位差設定工程が、前記放電電極に電気的に接続されたヘッド側電圧印加部に より前記放電電極に電圧を印加するヘッド側電圧印加工程と、前記第 2駆動電極又 は前記第 4駆動電極に電気的に接続された媒体側電圧制御部により前記画像情報 に基づいて前記第 2駆動電極又は前記第 4駆動電極に選択的な接地又は電圧印加 を行う媒体側電圧制御工程と、を備えた構成を有して!/ヽる。  [0035] The invention according to claim 8 of the present invention is the image forming method according to claim 7, wherein the potential difference setting step includes a head-side voltage applying unit electrically connected to the discharge electrode. Based on the image information, a head side voltage applying step for applying a voltage to the discharge electrode and a medium side voltage controller electrically connected to the second drive electrode or the fourth drive electrode. And a medium side voltage control step for selectively grounding or applying a voltage to the fourth drive electrode or the fourth drive electrode.
この構成により、請求項 7で得られる作用に加え、以下のような作用が得られる。 With this configuration, in addition to the operation obtained in the seventh aspect, the following operation can be obtained.
(1)電位差設定工程が、放電電極に電気的に接続されたヘッド側電圧印加部により 放電電極に電圧を印加するヘッド側電圧印加工程と、第 2駆動電極又は第 4駆動電 極に電気的に接続された媒体側電圧制御部により第 2駆動電極又は第 4駆動電極 に接地又は電圧印加を行う媒体側電圧制御工程と、を有するので、ヘッド側電圧印 加工程にお!ヽて放電電極全体に電圧を印加しておき、媒体側電圧制御工程にお!ヽ て画像情報に基づいて第 2駆動電極又は第 4駆動電極に接地又は電圧印加を行う ことにより、放電電極と第 2駆動電極又は第 4駆動電極との間に選択的に放電制御電 圧に相当する電位差を発生させ放電に備えることができる。 (1) The potential difference setting process includes a head-side voltage application process in which a voltage is applied to the discharge electrode by a head-side voltage application unit electrically connected to the discharge electrode, and the second drive electrode or the fourth drive electrode. Medium-side voltage control step of grounding or applying a voltage to the second drive electrode or the fourth drive electrode by the medium-side voltage control unit connected to the discharge electrode in the head-side voltage application step. By applying a voltage to the whole and grounding or applying a voltage to the second drive electrode or the fourth drive electrode based on the image information in the medium side voltage control step, the discharge electrode and the second drive electrode Alternatively, a potential difference corresponding to the discharge control voltage can be selectively generated between the fourth drive electrode and the fourth drive electrode to prepare for the discharge.
(2)媒体側電圧制御工程を画像情報に基づいて選択的に行うので、放電電極加熱 工程と同期させて行うことができるので、誤作動によって放電が発生するのを防止で き制御の信頼性に優れるとともに画像の高品質性に優れる。  (2) Since the medium-side voltage control process is selectively performed based on image information, it can be performed in synchronization with the discharge electrode heating process, so that it is possible to prevent discharge due to malfunction and control reliability. As well as high image quality.
[0036] ここで、ヘッド側電圧印加工程にぉ ヽて、ヘッド側電圧印加部によって放電電極側 に印加する電圧を放電制御電圧と同等か、放電制御電圧よりやや低めに設定してお く。そして、媒体側電圧制御工程において、媒体側電圧制御部によって第 2駆動電 極又は第 4駆動電極を接地するか、放電制御電圧の不足分を補うだけの比較的低 い電圧を制御して第 2駆動電極又は第 4駆動電極に印加する。これにより、選択的に 放電制御電圧に相当する電位差を設定することができ、放電電極を加熱制御するこ とにより記録媒体の第 1基板に確実に電子やイオンを照射して電荷を付与することが できる。また、ヘッド側電圧印加部は放電電極全体の電圧印加を制御するので、放 電電極側に印加する電圧が高電圧の場合でも、電圧印加の有無を容易に制御する ことができる。 Here, for the head side voltage application step, the voltage applied to the discharge electrode side by the head side voltage application unit is set to be equal to or slightly lower than the discharge control voltage. The Then, in the medium side voltage control step, the second drive electrode or the fourth drive electrode is grounded by the medium side voltage control unit, or a relatively low voltage that compensates for the shortage of the discharge control voltage is controlled. Applied to 2nd drive electrode or 4th drive electrode. As a result, a potential difference corresponding to the discharge control voltage can be set selectively, and by controlling the heating of the discharge electrode, the first substrate of the recording medium can be reliably irradiated with electrons and ions to impart a charge. Is possible. In addition, since the head-side voltage application unit controls the voltage application across the discharge electrode, the presence / absence of voltage application can be easily controlled even when the voltage applied to the discharge electrode is a high voltage.
また、媒体側電圧制御部で放電制御電圧の一部を第 2駆動電極又は第 4駆動電 極に印加する場合、媒体側電圧制御工程を画像情報に基づいて選択的に行うこと により、不必要な電圧が印加されることがなく省エネルギー性に優れる。  In addition, when a part of the discharge control voltage is applied to the second drive electrode or the fourth drive electrode by the medium side voltage control unit, it is unnecessary by selectively performing the medium side voltage control process based on the image information. Excellent voltage and energy saving.
なお、加熱放電型印字ヘッドは、放電電極と第 2駆動電極又は第 4駆動電極との間 に放電制御電圧に相当する電位差を設定しただけでは放電は発生しないので、媒 体側電圧制御工程の後工程として放電電極加熱工程を行ってもょ 、し、媒体側電圧 制御工程と放電電極加熱工程を同時に行ってもよい。  In the heat-discharge type print head, discharge is not generated only by setting a potential difference corresponding to the discharge control voltage between the discharge electrode and the second drive electrode or the fourth drive electrode. As a process, a discharge electrode heating process may be performed, and a medium side voltage control process and a discharge electrode heating process may be performed simultaneously.
本発明の請求項 9に記載の発明は、請求項 8に記載の画像形成方法であって、前 記媒体側電圧制御工程における前記第 2駆動電極又は前記第 4駆動電極の選択単 位力 前記記録媒体の表示画素の画素単位、行単位、列単位の内のいずれか 1つ の単位である構成を有して!/、る。  The invention according to claim 9 of the present invention is the image forming method according to claim 8, wherein the selection unit force of the second drive electrode or the fourth drive electrode in the medium side voltage control step is described above. It has a configuration that is one of the pixel unit, row unit, and column unit of the display pixels of the recording medium! /
この構成により、請求項 8で得られる作用に加え、以下のような作用が得られる。 (1)媒体側電圧制御工程における第 2駆動電極又は第 4駆動電極の選択単位が、 記録媒体の表示画素の画素単位である場合、加熱放電型印字ヘッドの解像度が記 録媒体の解像度よりも粗!ヽ場合でも、選択された第 2駆動電極又は第 4駆動電極に 対向する加熱放電型印字ヘッドの放電電極から電子を放出させて放電を発生させる ことができ、その電子や放電によるイオンを記録媒体の第 1基板の所望の位置に精 度良く照射し、電荷を付与して画像を形成することができ、画像の高品質性に優れる  With this configuration, in addition to the operation obtained in the eighth aspect, the following operation can be obtained. (1) When the selection unit of the second drive electrode or the fourth drive electrode in the medium-side voltage control step is the pixel unit of the display pixel of the recording medium, the resolution of the heat discharge type print head is higher than the resolution of the recording medium. Even in a rough case, it is possible to generate a discharge by discharging electrons from the discharge electrode of the heating discharge type print head facing the selected second drive electrode or the fourth drive electrode, and the ions generated by the electrons and the discharge are generated. The desired position on the first substrate of the recording medium can be accurately irradiated, and an image can be formed by applying electric charge, resulting in excellent image quality.
(2)媒体側電圧制御工程における第 2駆動電極又は第 4駆動電極の選択単位が、 記録媒体の表示画素の行単位或いは列単位である場合、加熱放電型印字ヘッドの 放電電極を第 2駆動電極又は第 4駆動電極と直交するように列方向或いは行方向に 配置することにより、記録媒体の第 1基板上の両者が交差する(重なる)位置に確実 に電子やイオンを照射させて画像を形成することができ、画像の高品質性に優れる。 また、第 2駆動電極又は第 4駆動電極の選択が容易で接地又は電圧印加の制御を 簡便に行うことができ取扱性に優れる。 (2) The selection unit of the second drive electrode or the fourth drive electrode in the medium side voltage control step is When the display pixels of the recording medium are in units of rows or columns, recording is performed by arranging the discharge electrodes of the heat-discharge type print head in the column direction or the row direction so as to be orthogonal to the second drive electrode or the fourth drive electrode. An image can be formed by reliably irradiating electrons and ions at the position where the two on the first substrate of the medium intersect (overlap), and the image has high quality. In addition, the second drive electrode or the fourth drive electrode can be easily selected, and control of grounding or voltage application can be easily performed, resulting in excellent handling.
[0038] ここで、第 2駆動電極又は第 4駆動電極の選択は、記録媒体の全面に対して同時 に行ってもよ!、し、第 2駆動電極又は第 4駆動電極の選択範囲を幾つかのブロックに 分割して加熱放電型印字ヘッドと対向する箇所の近傍を部分的に選択してもよい。 発明の効果 [0038] Here, the selection of the second drive electrode or the fourth drive electrode may be performed simultaneously on the entire surface of the recording medium! It may be divided into such blocks and the vicinity of the portion facing the heat-discharge type print head may be partially selected. The invention's effect
[0039] 以上のように、本発明の記録媒体及び画像形成方法によれば、以下のような有利 な効果が得られる。  [0039] As described above, according to the recording medium and the image forming method of the present invention, the following advantageous effects can be obtained.
請求項 1に記載の発明によれば、  According to the invention of claim 1,
(1)表示層には単色の帯電粒子を封入するだけなので、分離壁を形成したり分離壁 で区画された領域内に単位色毎に電気泳動粒子を封入したりする工程が不要で、 製造工程が単純で生産性に優れるとともに製品得率の高い記録媒体を提供すること ができる。  (1) Since the display layer only encloses monochromatic charged particles, there is no need to form a separation wall or encapsulate electrophoretic particles for each unit color in the area partitioned by the separation wall. It is possible to provide a recording medium with a simple process, excellent productivity and high product yield.
(2)画素を形成することができず、材質によっては遮光部となる分離壁を表示層内に 有して!/ヽな!ヽので光透過率が高く視認性を高くでき、画素を微細化でき高品質のフ ルカラー画像を形成できる記録媒体を提供することができる。  (2) Pixels cannot be formed, and depending on the material, the display layer has a separation wall that serves as a light-shielding part. And a recording medium capable of forming a high-quality full-color image can be provided.
(3)簡単な構成でカラー画像を形成できるので生産性に優れるとともに、消耗品がな いので省資源性に優れた記録媒体を提供することができる。  (3) Since a color image can be formed with a simple configuration, it is excellent in productivity, and since there are no consumables, a recording medium excellent in resource saving can be provided.
[0040] 請求項 2に記載の発明によれば、請求項 1の効果に加え、  [0040] According to the invention of claim 2, in addition to the effect of claim 1,
(1)単色の帯電泳動粒子や電子粉流体を表示媒体に封入するだけでカラー画像が 得られるので、生産性に優れた記録媒体を提供することができる。  (1) Since a color image can be obtained simply by enclosing monochromatic electrophoretic particles or electropowder fluid in a display medium, a recording medium having excellent productivity can be provided.
[0041] 請求項 3に記載の発明によれば、  [0041] According to the invention of claim 3,
(1)表示層には帯電粒子が封入されたマイクロカプセルや回転素子を配列するだけ なので、分離壁を形成したり分離壁で区画された領域内に単位色毎に電気泳動粒 子を封入したりする工程が不要で、製造工程が単純で生産性に優れるとともに高い 製品得率が得られる記録媒体を提供することができる (1) Since the display layer only includes microcapsules or rotating elements in which charged particles are sealed, electrophoretic particles for each unit color are formed in the area formed by the separation wall or partitioned by the separation wall. It is possible to provide a recording medium that does not require a process for encapsulating a child, has a simple manufacturing process, is excellent in productivity, and provides a high product yield.
(2)画素を形成することができず、材質によっては遮光部となる分離壁を表示層内に 有して!/ヽな!ヽので光透過率が高く視認性を高くでき、画素を微細化でき高品質のフ ルカラー画像を形成できる記録媒体を提供することができる。  (2) Pixels cannot be formed, and depending on the material, the display layer has a separation wall that serves as a light-shielding part. And a recording medium capable of forming a high-quality full-color image can be provided.
(3)簡単な構成でカラー画像を形成できるので生産性に優れるとともに、消耗品がな いので省資源性に優れた記録媒体を提供することができる。  (3) Since a color image can be formed with a simple configuration, it is excellent in productivity, and since there are no consumables, a recording medium excellent in resource saving can be provided.
[0042] 請求項 4に記載の発明によれば、請求項 3の効果に加え、  [0042] According to the invention of claim 4, in addition to the effect of claim 3,
(1)第 3駆動電極への電圧の印加や第 1基板への電荷の付与によって、表示層に配 列された回転素子やマイクロカプセルの荷電粒子が配列された位置で回転したり移 動したりすることによって、表示層内を通る光を透過又は遮蔽してカラー画像を形成 することができ構成が簡単で生産性に優れる。  (1) By applying a voltage to the third drive electrode or applying a charge to the first substrate, the rotating elements arranged in the display layer and the charged particles of the microcapsules rotate or move at the arranged positions. As a result, a color image can be formed by transmitting or blocking light passing through the display layer, and the configuration is simple and the productivity is excellent.
[0043] 請求項 5に記載の発明によれば、  [0043] According to the invention of claim 5,
(1)表示層には帯電粒子が封入されたマイクロカプセルや回転素子を配列するだけ なので、分離壁を形成したり分離壁で区画された領域内に単位色毎に電気泳動粒 子を封入したりする工程が不要で、製造工程が単純で生産性に優れるとともに高い 製品得率が得られる記録媒体を提供することができる。  (1) Since the display layer only has microcapsules or rotating elements in which charged particles are enclosed, electrophoretic particles are encapsulated for each unit color in the area formed by the separation wall or partitioned by the separation wall. Therefore, it is possible to provide a recording medium in which the manufacturing process is simple, the manufacturing process is simple, the productivity is high, and the product yield is high.
(2)画素を形成することができず、材質によっては遮光部となる分離壁を表示層内に 有して!/ヽな!ヽので光透過率が高く視認性を高くでき、画素を微細化でき高品質のフ ルカラー画像を形成できる記録媒体を提供することができる。  (2) Pixels cannot be formed, and depending on the material, the display layer has a separation wall that serves as a light-shielding part. And a recording medium capable of forming a high-quality full-color image can be provided.
(3)簡単な構成でカラー画像を形成できるので生産性に優れるとともに、消耗品がな いので省資源性に優れた記録媒体を提供することができる。  (3) Since a color image can be formed with a simple configuration, it is excellent in productivity, and since there are no consumables, a recording medium excellent in resource saving can be provided.
[0044] 請求項 6に記載の発明によれば、請求項 5の効果に加え、  [0044] According to the invention of claim 6, in addition to the effect of claim 5,
(1)第 3駆動電極への電圧の印加や第 1基板への電荷の付与によって、表示層に配 列された回転素子やマイクロカプセルの荷電粒子が配列された位置で回転したり移 動したりすることによって、帯電粒子の表示原色を観測者に見えるようにしてカラー画 像を形成することができ構成が簡単で生産性に優れる。  (1) By applying a voltage to the third drive electrode or applying a charge to the first substrate, the rotating elements arranged in the display layer and the charged particles of the microcapsules rotate or move at the arranged positions. As a result, a color image can be formed by making the display primary color of the charged particles visible to the observer, and the configuration is simple and the productivity is excellent.
[0045] 請求項 7に記載の発明によれば、 (1)放電電圧加熱工程を備えて!/、るので、画像情報に基づ!、て放電電極を選択的 に加熱するだけで放電を発生させることができ、高電圧の制御が不要で容易に放電 の発生を制御して記録媒体に画像を形成することができる取扱性に優れた画像形成 方法を提供することができる。 [0045] According to the invention of claim 7, (1) Since a discharge voltage heating process is provided! /, Therefore, discharge can be generated simply by selectively heating the discharge electrode based on image information, and high voltage control is not required and easy. In addition, it is possible to provide an image forming method excellent in handleability capable of controlling the occurrence of discharge and forming an image on a recording medium.
(2)電位差設定工程により放電電極と第 2駆動電極又は第 4駆動電極との間の電位 差が放電制御電圧と等しくなるように放電電極、第 2駆動電極又は第 4駆動電極の各 々に印加する電圧値を任意に設定することができ、記録媒体の種類や特定等に応じ て第 2駆動電極又は第 4駆動電極に印加する電圧値を最適に調整することができ汎 用性に優れた画像形成方法を提供することができる。  (2) The potential difference between the discharge electrode and the second drive electrode or the fourth drive electrode is made equal to the discharge control voltage by the potential difference setting step, so that each of the discharge electrode, the second drive electrode, and the fourth drive electrode is set. The voltage value to be applied can be set arbitrarily, and the voltage value to be applied to the second drive electrode or the fourth drive electrode can be optimally adjusted according to the type or specification of the recording medium, making it highly versatile. An image forming method can be provided.
[0046] 請求項 8に記載の発明によれば、請求項 7の効果に加え、  [0046] According to the invention of claim 8, in addition to the effect of claim 7,
(1)電位差設定工程がヘッド側電圧印加工程と媒体側電圧制御工程とを有するので 、ヘッド側電圧印加工程において放電電極全体に電圧を印加しておき、媒体側電圧 制御工程にぉ 、て画像情報に基づ!、て第 2駆動電極又は第 4駆動電極に接地又は 電圧印加を行うことにより、放電電極と第 2駆動電極又は第 4駆動電極との間に選択 的に放電制御電圧に相当する電位差を発生させ放電に備えることができ、電圧制御 が容易で取扱性に優れた画像形成方法を提供することができる。  (1) Since the potential difference setting process includes a head-side voltage application process and a medium-side voltage control process, the voltage is applied to the entire discharge electrode in the head-side voltage application process, and the image is transmitted through the medium-side voltage control process. Based on the information, by applying grounding or voltage application to the second drive electrode or the fourth drive electrode, it is equivalent to the discharge control voltage selectively between the discharge electrode and the second drive electrode or the fourth drive electrode. Therefore, it is possible to provide an image forming method capable of generating a potential difference and preparing for discharge, easily controlling the voltage, and having excellent handleability.
(2)媒体側電圧制御工程を放電電極加熱工程と同期させて行うことができ、誤作動 によって放電が発生するのを防止でき制御の信頼性に優れるとともに画像の高品質 性に優れた画像形成方法を提供することができる。  (2) The medium-side voltage control process can be performed in synchronization with the discharge electrode heating process, and it is possible to prevent discharge from occurring due to malfunctions and to provide excellent control reliability and image quality with high image quality. A method can be provided.
[0047] 請求項 9に記載の発明によれば、請求項 8の効果に加え、  [0047] According to the invention of claim 9, in addition to the effect of claim 8,
(1)加熱放電型印字ヘッドの放電電極から発生させた電子やイオンを記録媒体の第 1基板の所望の位置に精度良く照射し電荷を付与して画像を形成することができる 画像の高品質性に優れた画像形成方法を提供することができる。  (1) Images and images can be formed by accurately irradiating the desired position on the first substrate of the recording medium with electrons and ions generated from the discharge electrodes of the heat-discharge-type print head and applying charges. An image forming method having excellent properties can be provided.
図面の簡単な説明  Brief Description of Drawings
[0048] [図 1]実施の形態 1における記録媒体の画像形成前の状態を示す記録媒体の要部 模式図  FIG. 1 is a schematic diagram of a main part of a recording medium showing a state before image formation of the recording medium in Embodiment 1.
[図 2]実施の形態 1における記録媒体の画像形成時の状態を示す記録媒体及び画 像形成装置の要部模式図 [図 3]実施の形態 2における記録媒体の画像形成前の状態を示す記録媒体の要部 模式図 FIG. 2 is a schematic diagram of a main part of a recording medium and an image forming apparatus showing a state of the recording medium during image formation in Embodiment 1. FIG. 3 is a schematic diagram of a main part of a recording medium showing a state of the recording medium before image formation in Embodiment 2.
[図 4]実施の形態 2における記録媒体の画像形成時の状態を示す記録媒体及び画 像形成装置の要部模式図  FIG. 4 is a schematic diagram of a main part of a recording medium and an image forming apparatus showing a state of the recording medium during image formation in Embodiment 2.
[図 5]実施の形態 3における記録媒体の画像形成前の状態を示す記録媒体の要部 模式図  FIG. 5 is a schematic diagram of a main part of a recording medium showing a state of the recording medium before image formation in Embodiment 3.
[図 6]実施の形態 3における記録媒体の画像形成時の状態を示す記録媒体及び画 像形成装置の要部模式図  FIG. 6 is a schematic diagram of a main part of a recording medium and an image forming apparatus showing a state at the time of image formation of the recording medium in Embodiment 3.
符号の説明 Explanation of symbols
1, 31, 51 記録媒体  1, 31, 51 Recording media
2 第 1基板  2 First board
3 第 2基板  3 Second board
4, 32 表示層  4, 32 display layers
5, 34, 53 帯電粒子  5, 34, 53 Charged particles
6 第 1駆動電極  6 First drive electrode
7, 7a, 7b, 7c カラーフィルタ  7, 7a, 7b, 7c Color filter
8, 8a, 8b, 8c 第 2駆動電極  8, 8a, 8b, 8c Second drive electrode
9, 37 絶縁層  9, 37 Insulation layer
10, 39 駆動電極制御部  10, 39 Drive electrode controller
11 画像形成装置  11 Image forming device
12 加熱放電型印字ヘッド  12 Heating discharge type print head
13 放熱板  13 Heat sink
14 基板  14 Board
15 発熱部  15 Heating part
16 電極  16 electrodes
16a 発熱抵抗体  16a Heating resistor
17 発熱部絶縁膜  17 Heat-generating part insulation film
18 放電電極 19 電子放出部 18 Discharge electrode 19 Electron emitter
20, 40 電位差設定部  20, 40 Potential difference setting section
21, 41 ヘッド側電圧印加部  21, 41 Head side voltage application section
22, 42 媒体側電圧制御部  22, 42 Medium side voltage controller
33, 52 マイクロカプセノレ  33, 52 Micro Capsenore
35, 35a, 35b, 35c 第 4駆動電極  35, 35a, 35b, 35c 4th drive electrode
36, 36a, 36b, 36c カラー反射板  36, 36a, 36b, 36c color reflector
38a, 38b 第 3駆動電極  38a, 38b Third drive electrode
54 白色散乱層  54 White scattering layer
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
以下、本発明を実施するための最良の形態を、図面を参照しながら説明する。 (実施の形態 1)  Hereinafter, the best mode for carrying out the present invention will be described with reference to the drawings. (Embodiment 1)
図 1は実施の形態 1における記録媒体の画像形成前の状態を示す記録媒体の要 部模式図であり、図 2は実施の形態 1における記録媒体の画像形成時の状態を示す 記録媒体及び画像形成装置の要部模式図である。  FIG. 1 is a schematic diagram of a main part of a recording medium showing the state of the recording medium in the first embodiment before image formation. FIG. 2 shows the state of the recording medium in the first embodiment during image formation. It is a principal part schematic diagram of a formation apparatus.
図中、 1は本発明の実施の形態 1における記録媒体、 2はポリエチレンテレフタレー ト,ポリカーボネート,ポリエーテルスルフォン等の透明な合成樹脂製等でフィルム状 に形成された第 1基板、 3はポリエチレンテレフタレート,ポリカーボネート,ポリエーテ ルスルフォン等の透明な合成樹脂製等でフィルム状に形成され第 1基板 2に対向配 置された第 2基板、 4は第 1基板 2と第 2基板 3との間に形成されイソパラフィン,シリコ ンオイル,空気等の絶縁性流体が封入された表示層、 5は表示層 4内に絶縁性流体 とともに封入された白色の酸ィ匕チタン微粒子,アルミナ微粒子,黒色のトナー粒子等 の帯電した単色の帯電泳動粒子や単色の電子粉流体からなる帯電粒子、 6は第 1基 板 2の表示層 4側に ITO等で形成された透明な第 1駆動電極であり、視認性を高める ため 1画素内の領域の一部を占める微細な線状に形成されている。 7は加法混色法 における表示原色の色単位である三原色 (R, G, B)が縞模様状に第 2基板 3に配置 されたカラーフィルタであり、 7aはレッド (R)のカラーフィルタ、 7bはグリーン(G)の力 ラーフィルタ、 7cはブルー(B)のカラーフィルタである。 8は表示原色の色単位に分 割されてカラーフィルタ 7の各々と積層して ITO等で形成された透明な第 2駆動電極 であり、カラーフィルタ 7a, 7b, 7cに第 2駆動電極 8a, 8b, 8cが各々積層されている 。 9は第 2基板 3及び第 2駆動電極 8に積層された透明な絶縁層、 10は第 1駆動電極 6に電圧を印加する駆動電極制御部である。第 1駆動電極 6は駆動電極制御部 10の スィッチ SI, S2に接続されており、スィッチ SI, S2は電圧印加手段 V , V , GND In the figure, 1 is a recording medium according to Embodiment 1 of the present invention, 2 is a first substrate formed in a film shape made of a transparent synthetic resin such as polyethylene terephthalate, polycarbonate, or polyether sulfone, and 3 is polyethylene. A second substrate 4 is formed between the first substrate 2 and the second substrate 3 and is formed in a film shape made of a transparent synthetic resin such as terephthalate, polycarbonate, or polyethersulfone, and is disposed opposite to the first substrate 2. The display layer 5 is filled with an insulating fluid such as isoparaffin, silicon oil, air, etc. 5 is a white oxide titanium fine particle, alumina fine particle, black toner particle, etc. enclosed in the display layer 4 together with the insulating fluid. Charged monochromatic charged electrophoretic particles or charged particles made of monochromatic electro-powder fluid, 6 is a transparent first drive electrode formed of ITO or the like on the display layer 4 side of the first substrate 2 In order to improve visibility, it is formed into a fine line that occupies a part of the area within one pixel. 7 is a color filter in which the three primary colors (R, G, B), which are display primary color units in the additive color mixing method, are arranged on the second substrate 3 in a striped pattern, 7a is a red (R) color filter, 7b Is a green (G) power color filter, and 7c is a blue (B) color filter. 8 is divided into display primary color units. This is a transparent second drive electrode that is divided and laminated with each of the color filters 7 and formed of ITO or the like, and the second drive electrodes 8a, 8b, 8c are laminated on the color filters 7a, 7b, 7c, respectively. . 9 is a transparent insulating layer laminated on the second substrate 3 and the second drive electrode 8, and 10 is a drive electrode controller for applying a voltage to the first drive electrode 6. The first drive electrode 6 is connected to the switches SI and S2 of the drive electrode control unit 10, and the switches SI and S2 are voltage application means V, V, GND
H L  H L
の接続を切り替えている。本実施の形態においては、帯電粒子 5に対して斥力を作 用させる V、引力を作用させる V、並びにグランドレベル (接地)の 3種の電位力 選  The connection is switched. In the present embodiment, there are three potential force selections: V for applying repulsive force to charged particle 5, V for applying attractive force, and ground level (grounding).
H L  H L
択を行っている。  Is selected.
[0051] 図 2において、 11は本発明の実施の形態 1における画像形成装置、 12は画像形 成装置 11の加熱放電型印字ヘッド、 13はアルミニウム等の材質で形成した加熱放 電型印字ヘッド 12の放熱板、 14はセラミック等で形成され後述する発熱部 15や放 電電極 18が積層され放熱板 13に配設された基板、 15は基板 14に形成された加熱 放電型印字ヘッド 12の発熱部、 16は所定のピッチで並設された発熱部 15の電極、 16aは電極 16に電気的に接続されて形成された発熱部 15の発熱抵抗体、 17は基 板 14に覆設された発熱部絶縁膜、 18は略矩形状の平板状に形成された放電電極、 19は発熱抵抗体 16aで加熱されることにより電子が放出される放電電極 18の電子放 出部、 20は放電電極 18と放電加熱型印字ヘッド 12に対向して配置された記録媒体 1の第 2駆動電極 8との間に放電制御電圧に相当する電位差を設定して電界を形成 する電位差設定部、 21は放電電極 18に電圧を印加する電位差設定部 20のヘッド 側電圧印加部、 22は画像情報に基づいて第 2駆動電極 8に選択的な接地又は電圧 印加を行う媒体側電圧制御部である。第 2駆動電極 8は媒体側電圧制御部 22のスィ ツチ S3〜S5に接続されており、スィッチ S3〜S5は電圧印加手段 V , V , GNDの  In FIG. 2, 11 is an image forming apparatus according to Embodiment 1 of the present invention, 12 is a heating / discharging print head of image forming apparatus 11, and 13 is a heating / discharging print head formed of a material such as aluminum. 12 heat sinks, 14 is made of ceramic, etc., and a heat generating part 15 and a discharge electrode 18 which will be described later are laminated on the heat dissipating plate 13 and 15 is a heat discharge type print head 12 formed on the substrate 14. The heating part, 16 is an electrode of the heating part 15 arranged in parallel at a predetermined pitch, 16a is a heating resistor of the heating part 15 formed by being electrically connected to the electrode 16, and 17 is covered with the substrate 14. The heat generating part insulating film, 18 is a discharge electrode formed in a substantially rectangular flat plate shape, 19 is an electron emitting part of the discharge electrode 18 from which electrons are emitted by heating by the heat generating resistor 16a, and 20 is a discharge. A second drive electrode 8 of the recording medium 1 disposed opposite to the electrode 18 and the discharge heating type print head 12; A potential difference setting unit that forms an electric field by setting a potential difference corresponding to the discharge control voltage during the period, 21 is a head side voltage application unit of the potential difference setting unit 20 that applies a voltage to the discharge electrode 18, and 22 is based on image information This is a medium side voltage control unit for selectively grounding or applying a voltage to the second drive electrode 8. The second drive electrode 8 is connected to the switches S3 to S5 of the medium side voltage control unit 22, and the switches S3 to S5 are connected to the voltage applying means V, V, GND.
H L  H L
接続を切り替えている。本実施の形態においては、帯電粒子に対して斥力を作用さ せる V、引力を作用させる V、並びにグランドレベル (接地)の 3種の電位力 選択 The connection is switched. In the present embodiment, three potential forces are selected: V for applying repulsive force to charged particles, V for applying attractive force, and ground level (grounding).
H L H L
を行っている。  It is carried out.
[0052] なお、発熱部 15と電気的に接続された図示しないドライバ ICで発熱部 15の発熱抵 抗体 16aの発熱を制御するのが加熱放電型印字ヘッド 12の加熱手段となる。  It is to be noted that the heating means of the heat-discharge type print head 12 controls the heat generation of the heat generating resistor 16a of the heat generating part 15 by a driver IC (not shown) electrically connected to the heat generating part 15.
加熱放電型印字ヘッド 12は、電位差設定部 10で放電電極 18と第 2駆動電極 8と の間に放電制御電圧に相当する電位差を設定して電界を形成するとともに、加熱手 段で加熱を行うことにより放電の発生を制御できるので、加熱手段によって加熱箇所 を選択することで容易に任意の電子放出部 19から選択的に電子を放出させることが でき、放電電極 18を特定の形状に限定する必要がなく形状の自在性に優れる。 本実施の形態では、複数の電子放出部 19を有する放電電極 18を長方形の一枚 の平板状に形成したが、例えば複数の電子放出部 19の一端部を共通電極で接続し て櫛型に形成したり、複数の電子放出部 9の両端部を共通電極で接続して梯子型等 【こ形成したりしてもょ ヽ(f列え ίま、特開 2003— 326756号、 WO2005/056297参 照)。 The heating / discharge type print head 12 includes a discharge electrode 18 and a second drive electrode 8 in the potential difference setting unit 10. Since the electric field is formed by setting a potential difference corresponding to the discharge control voltage during this period and the generation of discharge can be controlled by heating with the heating means, it is easy to select any heating location by heating means. Electrons can be selectively emitted from the electron-emitting portion 19 of this, and it is not necessary to limit the discharge electrode 18 to a specific shape, and the shape flexibility is excellent. In the present embodiment, the discharge electrode 18 having a plurality of electron emission portions 19 is formed in a single rectangular plate, but for example, one end of the plurality of electron emission portions 19 is connected by a common electrode to form a comb shape. Forming or connecting both ends of a plurality of electron emitting portions 9 with a common electrode to form a ladder type or the like. (See)
また、加熱手段として、発熱抵抗体 16aを有する発熱部 15を用いる代わりに、放電 電極 18から離間して加熱する加熱手段として、レーザ光を照射する方式や赤外線を 照射する方式等を用いてもょ 、。  Further, instead of using the heat generating portion 15 having the heating resistor 16a as the heating means, a heating method that radiates laser light or a method that irradiates infrared rays may be used as a heating means that is heated away from the discharge electrode 18. Oh ,.
以上のように構成された実施の形態 1における記録媒体、画像形成装置の動作に 基づいて画像形成方法を説明する。なお、記録媒体 1の帯電粒子 5は黒色の帯電泳 動粒子がプラス帯電している場合を例に挙げて説明する。  An image forming method will be described based on the operations of the recording medium and the image forming apparatus according to Embodiment 1 configured as described above. The charged particles 5 of the recording medium 1 will be described by taking as an example a case where black charged swimming particles are positively charged.
図 1において、駆動電極制御部 10のスィッチ SI, S2を Vに切り替え、電位差設定  In Fig. 1, switch SI and S2 of drive electrode controller 10 are switched to V, and potential difference is set
 Shi
部 20のスィッチ S3〜S5を GNDに設定すると、第 1駆動電極 6は帯電粒子 5に引力 を作用させ、帯電粒子 5は電位差設定部 20の影響をほとんど受けることなく第 1駆動 電極 6上に集まる。第 1駆動電極 6は 1画素内の領域の一部しカゝ占めていないので、 第 1基板 2側力も見た観測者は、カラーフィルタ 7からの透過光の合成光を帯電粒子 5に遮蔽されることなく観測できる。 When the switches S3 to S5 of the unit 20 are set to GND, the first drive electrode 6 exerts an attractive force on the charged particles 5, and the charged particles 5 are not affected by the potential difference setting unit 20 on the first drive electrode 6. get together. Since the first drive electrode 6 is a part of the area in one pixel and does not occupy the area, the observer who also viewed the first substrate 2 side force shields the combined light of the transmitted light from the color filter 7 on the charged particles 5 Observable without being observed.
次に、図 2において、電位差設定工程のヘッド側電圧印加工程により、ヘッド側電 圧印加部 21によって加熱放電型印字ヘッド 12の放電電極 18に電圧を印加する。 続いて、電位差設定工程の媒体側電圧制御工程において、媒体側電圧制御部 22 により表示原色の色単位を選択し(図 2ではグリーン (G)を選択)、第 2駆動電極 8bに 接続されたスィッチ S4を V に切り替え、放電電極 18と第 2駆動電極 8bとの電位差が  Next, in FIG. 2, a voltage is applied to the discharge electrode 18 of the heat-discharge type print head 12 by the head-side voltage application unit 21 in the head-side voltage application step of the potential difference setting step. Subsequently, in the medium side voltage control step of the potential difference setting step, the medium side voltage control unit 22 selects the color unit of the display primary color (green (G) is selected in FIG. 2) and is connected to the second drive electrode 8b. Switch S4 is switched to V, and the potential difference between discharge electrode 18 and second drive electrode 8b
H  H
放電制御電圧に相当するように設定する。 Set to correspond to the discharge control voltage.
次に、放電電極加熱工程において、選択された色 (G)を表示すべき画素に対応す る位置にある発熱抵抗体 16aを発熱させ放電電極 18を選択的に加熱する。なお、放 電電極 18のうち、発熱抵抗体 16aにより加熱されていない部分の電子放出部 19から は電子は放出されず放電は発生しない。これにより、発熱抵抗体 16aにより加熱され た放電電極 18の電子放出部 19において電子が放出される。このとき、一画素のうち の選択された色 (G)に対応した第 2駆動電極 8bのみに電圧が印加されているので、 放電に伴って発生した電子やイオンを選択された色 (G)に対応したサブ画素の位置 に確実に照射することができ、第 1基板 2に電荷を付与できる。記録媒体 1への電圧 の印加を止めると、第 1駆動電極 6上の帯電粒子 5の一部が、電荷が付与された第 1 基板 2にクーロン力で移動し付着して、第 1基板 2に付着した帯電粒子 5がカラーフィ ルタ 7からの透過光の一部を遮蔽するので、遮蔽された光に応じた画像を形成するこ とができる。なお、帯電粒子 5は静電吸着や分子間力などによって第 1基板 2や第 1 駆動電極 6上にとどまるので表示された画像が維持される。 Next, in the discharge electrode heating step, the selected color (G) corresponds to the pixel to be displayed. The heating resistor 16a located at the position where the heat is generated generates heat and the discharge electrode 18 is selectively heated. In the discharge electrode 18, electrons are not emitted from the electron emission portion 19 that is not heated by the heating resistor 16 a, and no discharge is generated. As a result, electrons are emitted from the electron emission portion 19 of the discharge electrode 18 heated by the heating resistor 16a. At this time, since the voltage is applied only to the second drive electrode 8b corresponding to the selected color (G) of one pixel, the electrons and ions generated by the discharge are selected. It is possible to reliably irradiate the position of the sub-pixel corresponding to the above, and to charge the first substrate 2. When the application of voltage to the recording medium 1 is stopped, a part of the charged particles 5 on the first drive electrode 6 moves and adheres to the charged first substrate 2 by the Coulomb force, and the first substrate 2 Since the charged particles 5 adhering to the light shield a part of the transmitted light from the color filter 7, an image corresponding to the shielded light can be formed. Since the charged particles 5 remain on the first substrate 2 and the first drive electrode 6 due to electrostatic adsorption, intermolecular force, etc., the displayed image is maintained.
[0054] 以上のように構成された実施の形態 1における記録媒体によれば、以下のような作 用が得られる。 [0054] According to the recording medium in the first embodiment configured as described above, the following operations are obtained.
(1)帯電粒子 5が封入された表示層 4と、複数の表示原色が縞模様状に配置された カラーフィルタ 7を積層することにより、簡便にカラー画像を表示することができ取扱 性に優れ、高い製品得率を得ることができる。  (1) By laminating the display layer 4 in which the charged particles 5 are encapsulated and the color filter 7 in which a plurality of display primary colors are arranged in a striped pattern, a color image can be displayed easily and the handling is excellent. High product yield can be obtained.
(2)カラーフィルタ 7の表示原色毎に分割されて配置された第 2駆動電極 8を備えて いるので、画像情報に基づいて選択された第 2駆動電極 8に対応する放電電極 18の 電子放出部 19から選択的に電子を放出させることができ、放電に伴う電子やイオン を第 1基板 2の所望の位置に照射して電荷の作用で画像を形成することができ、色 ずれを確実に防止して高品質なカラー画像を得ることができる。  (2) Since the second drive electrode 8 is arranged and divided for each display primary color of the color filter 7, the electron emission of the discharge electrode 18 corresponding to the second drive electrode 8 selected based on the image information Electrons can be selectively emitted from the part 19 and an image can be formed by the action of electric charge by irradiating the electrons and ions accompanying the discharge to the desired position of the first substrate 2, thereby ensuring color misregistration. Therefore, a high-quality color image can be obtained.
(3)簡単な構成でカラー画像を形成できるので生産性に優れるとともに、消耗品がな いので省資源性に優れる。  (3) Since color images can be formed with a simple configuration, it is excellent in productivity, and because there are no consumables, it is excellent in resource saving.
[0055] なお、本実施の形態においては、表示原色毎に分割されて配置された第 2駆動電 極 8にカラーフィルタ 7を積層した場合について説明した力 カラーフィルタに代えて 、所定の波長の光を反射するカラー反射板を積層する場合もある。これにより、反射 光を利用してカラー画像を表示できる記録媒体を得ることができる。 また、カラーフィルタ 7は光を透過してカラー表示することができればよいので、第 2 駆動電極 8と入れ替えて配置してもよい。また、絶縁層 9の表示層 4側に配置してもよ い。 In the present embodiment, instead of the force color filter described in the case where the color filter 7 is laminated on the second drive electrode 8 that is divided and arranged for each display primary color, a predetermined wavelength is used. A color reflector that reflects light may be laminated. As a result, a recording medium capable of displaying a color image using reflected light can be obtained. The color filter 7 only needs to be able to transmit light and perform color display. Therefore, the color filter 7 may be replaced with the second drive electrode 8. Further, the insulating layer 9 may be disposed on the display layer 4 side.
また、帯電粒子 5が帯電泳動粒子の場合について説明したが、電子粉流体を用い る場合もあり、黒色粒子だけでなく白色粒子等も用いることができる。  Further, although the case where the charged particles 5 are charged electrophoretic particles has been described, an electronic powder fluid may be used, and not only black particles but also white particles can be used.
[0056] また、以上のように構成された実施の形態 1における画像形成装置によれば、以下 のような作用が得られる。 In addition, according to the image forming apparatus in the first embodiment configured as described above, the following operation can be obtained.
(1)電位差設定部 20により放電電極 18と第 2駆動電極 8との間に放電制御電圧に 相当する電位差を設定して電界を形成した状態で放電に備えることができ、高電圧と なる放電制御電圧を直接制御する必要がなく、発熱部 15の発熱抵抗体 16aより放電 電極 18を選択的に加熱することで放電電極 18と第 2駆動電極 8との間で放電を発生 させることができ、電界によって放電電極 18の電子放出部 19から放出させた電子や イオンを記録媒体 1側に移動させ、記録媒体 1の第 1基板 2に電荷を付与して画像を 形成することができる。  (1) The potential difference setting unit 20 sets a potential difference corresponding to the discharge control voltage between the discharge electrode 18 and the second drive electrode 8 to prepare for the discharge in a state where an electric field is formed, and the discharge becomes a high voltage. It is not necessary to directly control the control voltage, and by selectively heating the discharge electrode 18 from the heating resistor 16a of the heat generating part 15, a discharge can be generated between the discharge electrode 18 and the second drive electrode 8. An image can be formed by moving electrons and ions emitted from the electron emission portion 19 of the discharge electrode 18 to the recording medium 1 side by an electric field and applying charges to the first substrate 2 of the recording medium 1.
(2)電位差設定部 20が放電電極 18に電圧を印加するヘッド側電圧印加部 21と、画 像情報に基づいて第 2駆動電極 8に選択的な接地や電圧印加を行う媒体側電圧制 御部 22を備えて ヽるので、媒体側電圧制御部 22で第 2駆動電極 8に選択的に電圧 印加をするだけで放電電極 18と第 2駆動電極 8との間に放電制御電圧に相当する 電位差を設定することができる。  (2) The head-side voltage application unit 21 in which the potential difference setting unit 20 applies a voltage to the discharge electrode 18, and the medium-side voltage control in which the second drive electrode 8 is selectively grounded and voltage is applied based on the image information. Since the medium-side voltage control unit 22 selectively applies a voltage to the second drive electrode 8, it corresponds to the discharge control voltage between the discharge electrode 18 and the second drive electrode 8. The potential difference can be set.
(3)放電電極 18と第 2駆動電極 8との間に放電制御電圧に相当する電位差を設定し て電界を形成する電位差設定部 20を有するので、第 2駆動電極 8に放電制御電圧 の一部を選択的に印加した場合、加熱放電型印字ヘッド 12の放電電極 18に直接印 加する電圧を低減して、効率的に放電を発生させることができる。  (3) Since there is a potential difference setting unit 20 that sets an electric potential difference corresponding to the discharge control voltage between the discharge electrode 18 and the second drive electrode 8 to form an electric field, the second drive electrode 8 When the portion is selectively applied, the voltage directly applied to the discharge electrode 18 of the heat-discharge type print head 12 can be reduced, and discharge can be generated efficiently.
(4)電位差設定部 20により放電電極 18と第 2駆動電極 8の各々に印加する電圧値 を任意に設定することにより、記録媒体 1の種類や特性等に応じて第 2駆動電極 8〖こ 印加する電圧値を最適に調整することができ汎用性に優れる。  (4) By arbitrarily setting the voltage value applied to each of the discharge electrode 18 and the second drive electrode 8 by the potential difference setting unit 20, the second drive electrode 8 mm can be selected according to the type and characteristics of the recording medium 1. The voltage value to be applied can be optimally adjusted, and the versatility is excellent.
[0057] また、本発明の実施の形態 1における画像形成方法によれば、以下のような作用が 得られる。 (1)電位差設定工程で放電電極 18と第 2駆動電極 8との間に放電制御電圧に相当 する電位差を設定して電界を形成することにより放電に備えることができ、放電電極 加熱工程で画像情報に基づいて放電電極 18を選択的に加熱するだけで放電を発 生させることができるので、高電圧の制御が不要で、容易に放電の発生を制御して 記録媒体に電荷を付与して画像を形成することができる。 In addition, according to the image forming method in Embodiment 1 of the present invention, the following operation is obtained. (1) In the potential difference setting step, a potential difference corresponding to the discharge control voltage is set between the discharge electrode 18 and the second drive electrode 8 to form an electric field. Since the discharge can be generated simply by selectively heating the discharge electrode 18 based on the information, it is not necessary to control the high voltage, and it is possible to easily control the generation of the discharge and apply the charge to the recording medium. An image can be formed.
(2)電位差設定工程が、放電電極 18に電気的に接続されたヘッド側電圧印加部 21 により放電電極 18に電圧を印加するヘッド側電圧印加工程と、第 2駆動電極 8に電 気的に接続された媒体側電圧制御部 22により第 2駆動電極 8に電圧印加を行う媒体 側電圧制御工程と、を有するので、ヘッド側電圧印加工程において放電電極 18全 体に電圧を印カ卩しておき、媒体側電圧制御工程にお!、て画像情報に基づ!ヽて第 2 駆動電極 8に電圧印加を行うことにより、放電電極 18と第 2駆動電極 8との間に選択 的に放電制御電圧に相当する電位差を発生させ放電に備えることができる。  (2) The potential difference setting step includes a head side voltage application step in which a voltage is applied to the discharge electrode 18 by the head side voltage application unit 21 electrically connected to the discharge electrode 18, and a second drive electrode 8 is electrically connected. Medium-side voltage control step of applying a voltage to the second drive electrode 8 by the connected medium-side voltage control unit 22, so that the voltage is applied to the entire discharge electrode 18 in the head-side voltage application step. In the medium side voltage control process, a voltage is selectively applied between the discharge electrode 18 and the second drive electrode 8 by applying a voltage to the second drive electrode 8 based on the image information. A potential difference corresponding to the control voltage can be generated to prepare for the discharge.
(3)媒体側電圧制御工程を画像情報に基づいて選択的に行うので、放電電極加熱 工程と同期させて行うことができるので、誤作動によって放電が発生するのを防止で き制御の信頼性に優れるとともに画像の高品質性に優れる。  (3) Since the medium-side voltage control process is selectively performed based on image information, it can be performed in synchronization with the discharge electrode heating process. As well as high image quality.
(4)媒体側電圧制御工程における第 2駆動電極 8の選択単位が、記録媒体 1の表示 画素の行単位或いは列単位であるので、加熱放電型印字ヘッド 12の放電電極 18を 第 2駆動電極 8と直交するように列方向或いは行方向に配置することにより、発熱抵 抗体 16aで選択的に加熱された電子放出部 19と第 2駆動電極 8とが重なる位置にの み確実に電子やイオンを照射させて電荷を付与して画像を形成することができ画像 の高品質性に優れる。  (4) Since the selection unit of the second drive electrode 8 in the medium-side voltage control step is a row unit or a column unit of the display pixels of the recording medium 1, the discharge electrode 18 of the heating discharge type print head 12 is connected to the second drive electrode. By arranging them in the column direction or the row direction so as to be orthogonal to 8, it is ensured that electrons and ions are only in the position where the electron emission portion 19 and the second drive electrode 8 selectively heated by the exothermic antibody 16 a overlap. The image can be formed by irradiating with an electric charge and excellent in image quality.
(実施の形態 2)  (Embodiment 2)
図 3は実施の形態 2における記録媒体の画像形成前の状態を示す記録媒体の要 部模式図であり、図 4は実施の形態 2における記録媒体の画像形成時の状態を示す 記録媒体及び画像形成装置の要部模式図である。なお、実施の形態 1と同様のもの は、同じ符号を付して説明を省略する。  FIG. 3 is a schematic diagram of a main part of the recording medium showing the state of the recording medium in the second embodiment before image formation. FIG. 4 shows the state of the recording medium in the second embodiment at the time of image formation. It is a principal part schematic diagram of a formation apparatus. Components similar to those in the first embodiment are denoted by the same reference numerals and description thereof is omitted.
図 3において、 31は本発明の実施の形態 2における記録媒体、 32は第 1基板 2と第 2基板 3との間に形成された表示層、 33は後述する第 3駆動電極 38a, 38bを避けて 表示層 32内に敷き詰めて配列された透明樹脂のマイクロカプセル、 34はマイクロ力 プセル 33内に透明な絶縁性流体とともに封入された正又は負に帯電した白色又は 黒色等の単色の荷電粒子からなる帯電粒子である。表示層 32はマイクロカプセル 3 3の外径程度の厚さで形成されている力 図面では、マイクロカプセル 33内の帯電粒 子 34の様子がわ力るように第 1基板 2と第 2基板 3との間隔を大きくあけて示している 。また、本実施の形態では帯電粒子 34としてプラスに帯電された白色粒子を用いた 場合について説明する力 図示の都合上、マイクロカプセル 33内の黒色の部分に白 色の帯電粒子 34が移動して 、るものとする。 In FIG. 3, 31 is a recording medium in Embodiment 2 of the present invention, 32 is a display layer formed between the first substrate 2 and the second substrate 3, and 33 is a third drive electrode 38a, 38b described later. Avoid Transparent resin microcapsules arranged in the display layer 32, 34 is composed of positively or negatively charged monochromatic charged particles such as white or black enclosed in a micropower cell 33 with a transparent insulating fluid. Charged particles. In the drawing, the display layer 32 is formed with a thickness approximately equal to the outer diameter of the microcapsule 33. In the drawing, the first substrate 2 and the second substrate 3 so that the state of the charged particles 34 in the microcapsule 33 is changed. It is shown with a large gap. Further, in the present embodiment, the force for explaining the case where positively charged white particles are used as the charged particles 34. For convenience of illustration, the white charged particles 34 move to the black portion in the microcapsule 33. Suppose.
35は ITOや銅等で第 2基板 3に縞模様状の短冊状に形成された第 4駆動電極、 3 6は表示原色の色単位である三原色 (R, G, B)が縞模様状に第 4駆動電極 35上に 積層されたカラー反射板であり、第 4駆動電極 35aにレッド (R)のカラー反射板 36a が積層され、第 4駆動電極 35bにグリーン (G)のカラー反射板 36bが積層され、第 4 駆動電極 35cにブルー (B)のカラー反射板 36cが積層されている。 37は第 2基板 3 及びカラー反射板 36に積層された透明な絶縁層、 38a, 38bは ITO等で形成され絶 縁層 37の表示層 32側に間隔をあけて並設された透明な第 3駆動電極であり、高解 像度を実現するため 1画素内の領域の一部を占める微細な線状に形成されている。 39は第 3駆動電極 38a, 38bに電圧を印加する駆動電極制御部である。第 3駆動電 極 38a, 38bは,駆動電極制御部 39のスィッチ SI, S2に接続されており、スィッチ SI , S2は電圧印加手段 V , V , GNDの接続を切り替えている。本実施の形態におい  35 is a fourth drive electrode formed in striped strips on the second substrate 3 with ITO, copper, etc., and 36 is a striped pattern of the three primary colors (R, G, B) that are the display primary color units. The color reflector is laminated on the fourth drive electrode 35, the red (R) color reflector 36a is laminated on the fourth drive electrode 35a, and the green (G) color reflector 36b on the fourth drive electrode 35b. And a blue (B) color reflector 36c is laminated on the fourth drive electrode 35c. 37 is a transparent insulating layer laminated on the second substrate 3 and the color reflector 36, and 38a and 38b are made of ITO or the like, and a transparent second insulating layer 37 arranged in parallel with a gap on the display layer 32 side. Three drive electrodes, which are formed in fine lines that occupy a part of the area within one pixel in order to achieve high resolution. Reference numeral 39 denotes a drive electrode controller that applies a voltage to the third drive electrodes 38a and 38b. The third drive electrodes 38a, 38b are connected to the switches SI, S2 of the drive electrode control unit 39, and the switches SI, S2 switch the connection of the voltage applying means V, V, GND. In this embodiment
H L  H L
ては、帯電粒子 34に対して斥力を作用させる V、引力を作用させる V、並びにダラ In this case, the repulsive force V is applied to the charged particles 34, the attractive force V is applied,
H L  H L
ンドレベル(接地)の 3種の電位から選択を行って!/、る。 Select from three potential levels (ground level)!
図 4において、 40は放電電極 18と記録媒体 31の第 4駆動電極 35との間に放電制 御電圧に相当する電位差を設定して電界を形成する電位差設定部、 41は放電電極 18に電圧を印加する電位差設定部 40のヘッド側電圧印加部、 42は画像情報に基 づいて第 4駆動電極 35に選択的な接地又は電圧印加を行う媒体側電圧制御部であ る。第 4駆動電極 35は媒体側電圧制御部 42のスィッチ S3〜S5に接続されており、 スィッチ S3〜S5は電圧印加手段 V , V , GNDの接続を切り替えている。本実施の  In FIG. 4, reference numeral 40 denotes a potential difference setting unit that sets an electric potential difference corresponding to the discharge control voltage between the discharge electrode 18 and the fourth drive electrode 35 of the recording medium 31, and 41 denotes a voltage across the discharge electrode 18. The head-side voltage application unit 42 of the potential difference setting unit 40 for applying voltage, and a medium-side voltage control unit 42 for selectively grounding or applying voltage to the fourth drive electrode 35 based on image information. The fourth drive electrode 35 is connected to the switches S3 to S5 of the medium side voltage control unit 42, and the switches S3 to S5 switch the connection of the voltage applying means V, V, and GND. This implementation
H L  H L
形態においては、帯電粒子 34に対して斥力を作用させる V、引力を作用させる V、 並びにグランドレベル (接地)の 3種の電位力 選択を行って!/、る。 In the form, V that exerts repulsive force on charged particles 34, V that exerts attractive force, In addition, select three types of potential force at the ground level (ground)!
以上のように構成された実施の形態 2における記録媒体の動作に基づ 、て画像形 成方法を説明する。  An image forming method will be described based on the operation of the recording medium in the second embodiment configured as described above.
図 3において、駆動電極制御部 39のスィッチ S1を V 〖こ、 S2を Vに切り替え、電位  In Fig. 3, switch S1 of drive electrode control unit 39 is switched to V and S2 is switched to V.
H L  H L
差設定部 40のスィッチ S3〜S5を GNDに設定すると、第 3駆動電極 38aは帯電粒子 34に斥力を作用させ、隣り合う第 3駆動電極 38bは帯電粒子 34に引力を作用させる ので、マイクロカプセル 33中の帯電粒子 34は第 3駆動電極 38bの方向に水平移動 するので、第 1基板 2側力も見るとマイクロカプセルは透明に見える。そのため、第 1 基板 2から見た観測者は、カラー反射板 36からの反射光の合成光を帯電粒子 34に 遮蔽されることなく観測できる。 When the switches S3 to S5 of the difference setting unit 40 are set to GND, the third driving electrode 38a applies a repulsive force to the charged particles 34, and the adjacent third driving electrode 38b applies an attractive force to the charged particles 34. Since the charged particles 34 in 33 move horizontally in the direction of the third drive electrode 38b, the microcapsules appear to be transparent when the force on the first substrate 2 side is also seen. Therefore, the observer viewed from the first substrate 2 can observe the combined light of the reflected light from the color reflector 36 without being shielded by the charged particles 34.
次に、図 4において、電位差設定工程のヘッド側電圧印加工程により、ヘッド側電 圧印加部 41によって加熱放電型印字ヘッド 12の放電電極 18に電圧を印加する。 続いて、第 3駆動電極 38aに接続されたスィッチ S1を Vに切り替えてスィッチ S2と  Next, in FIG. 4, a voltage is applied to the discharge electrode 18 of the heat-discharge type print head 12 by the head-side voltage application unit 41 in the head-side voltage application step of the potential difference setting step. Subsequently, the switch S1 connected to the third drive electrode 38a is switched to V, and the switch S2 and
 Shi
接続された第 3駆動電極 38bと等電位に設定した後、電位差設定工程の媒体側電 圧制御工程において、媒体側電圧制御部 42により表示原色の色単位を選択し(図 4 ではグリーン (G)を選択)、第 4駆動電極 35bに接続されたスィッチ S4を V に切り替 After setting the same potential as the connected third drive electrode 38b, in the medium side voltage control step of the potential difference setting step, the medium side voltage control unit 42 selects the color unit of the display primary color (in FIG. 4, green (G Switch) S4 connected to the 4th drive electrode 35b is switched to V
H  H
え、放電電極 18と第 4駆動電極 35bとの間の電位差が放電制御電圧に相当するよう に設定する。 In addition, the potential difference between the discharge electrode 18 and the fourth drive electrode 35b is set so as to correspond to the discharge control voltage.
次に、放電電極加熱工程において、選択された色 (G)を表示すべき画素に対応す る位置にある発熱抵抗体 16aを発熱させ放電電極 18を選択的に加熱する。なお、放 電電極 18のうち、発熱抵抗体 16aにより加熱されていない部分の電子放出部 19から は電子は放出されず放電は発生しない。これにより、発熱抵抗体 16aにより加熱され た放電電極 18の電子放出部 19において電子が放出される。このとき、一画素のうち の選択された色 (G)に対応した第 4駆動電極 35bのみに電圧が印加されているので 、放電に伴って発生した電子やイオンを選択された色 (G)に対応したサブ画素の位 置に確実に照射することができ、第 1基板 2に電荷を付与できる。記録媒体 1への電 圧の印加を止めると、色(G)に対応したサブ画素の位置にあるマイクロカプセル 33 の帯電粒子 34が、電荷が付与された第 1基板 2の方向にクーロン力で移動し、帯電 粒子 34がカラー反射板 36bからの反射光の一部を遮蔽するので、遮蔽された光に 応じた画像を形成することができる。なお、帯電粒子 34は静電吸着や分子間力など によってとどまるので表示された画像が維持される。 Next, in the discharge electrode heating step, the heating resistor 16a located at a position corresponding to the pixel to display the selected color (G) is caused to generate heat and the discharge electrode 18 is selectively heated. In the discharge electrode 18, electrons are not emitted from the electron emission portion 19 that is not heated by the heating resistor 16 a, and no discharge is generated. As a result, electrons are emitted from the electron emission portion 19 of the discharge electrode 18 heated by the heating resistor 16a. At this time, since the voltage is applied only to the fourth drive electrode 35b corresponding to the selected color (G) in one pixel, the electrons and ions generated by the discharge are selected in the selected color (G). Therefore, it is possible to reliably irradiate the position of the sub-pixel corresponding to the above, and to charge the first substrate 2. When the application of the voltage to the recording medium 1 is stopped, the charged particles 34 of the microcapsule 33 at the position of the sub-pixel corresponding to the color (G) are caused by the Coulomb force in the direction of the first substrate 2 to which the charge is applied. Move and charge Since the particles 34 shield a part of the reflected light from the color reflector 36b, an image corresponding to the shielded light can be formed. Since the charged particles 34 are retained by electrostatic adsorption or intermolecular force, the displayed image is maintained.
[0061] 以上のように構成された実施の形態 2における記録媒体によれば、以下のような作 用が得られる。 [0061] According to the recording medium of the second embodiment configured as described above, the following operations are obtained.
(1)配置されたマイクロカプセル 33内に帯電粒子 34が封入された表示層 32と、複数 の表示原色が縞模様状に配置されたカラー反射板 36を積層することにより、簡便に カラー画像を表示することができ取扱性に優れ、高 、製品得率を得ることができる。 (1) By laminating the display layer 32 in which the charged particles 34 are enclosed in the arranged microcapsules 33 and the color reflector 36 in which a plurality of display primary colors are arranged in a striped pattern, a color image can be easily obtained. It can be displayed and has excellent handleability and high product yield.
(2)カラー反射板 36の表示原色毎に分割されて配置された第 4駆動電極 35を備え ているので、画像情報に基づいて選択された第 4駆動電極 35に対応する放電電極 1 8の電子放出部 19から選択的に電子を放出させることができ、放電に伴う電子ゃィォ ンを第 1基板 2の所望の位置に照射して電荷の作用で画像を形成することができ、色 ずれを確実に防止して高品質なカラー画像を得ることができる。 (2) Since the fourth drive electrode 35 is arranged so as to be divided for each display primary color of the color reflector 36, the discharge electrode 18 corresponding to the fourth drive electrode 35 selected based on the image information is provided. Electrons can be selectively emitted from the electron emission portion 19 and an image can be formed by irradiating a desired position on the first substrate 2 with an electron ion associated with the discharge by the action of charges. A high-quality color image can be obtained by reliably preventing displacement.
(3)簡単な構成でカラー画像を形成できるので生産性に優れるとともに、消耗品がな いので省資源性に優れる。  (3) Since color images can be formed with a simple configuration, it is excellent in productivity, and because there are no consumables, it is excellent in resource saving.
[0062] また、以上のように構成された実施の形態 2における画像形成装置及び画像形成 方法によれば、実施の形態 1に記載したのと同様の作用が得られる。  Further, according to the image forming apparatus and the image forming method in Embodiment 2 configured as described above, the same operation as described in Embodiment 1 can be obtained.
[0063] なお、本実施の形態においては、表示層 32にマイクロカプセル 33が配列されたマ イク口カプセル方式の場合について説明した力 マイクロカプセル方式に代えて、ッ イストポール方式を用いる場合もある。この場合は、透明な絶縁性シートを表示層 32 として、この中に球状や円柱状の回転素子力 なる帯電粒子を埋め込む。回転素子 を、回転素子径よりも少し大きめに形成されたキヤビティ内のシリコンオイル等の絶縁 性流体中に支持するようにして、帯電して 、る回転素子が電界によって回転するよう にする。これにより、第 1基板 2側から観測する場合、回転素子の着色面が第 1基板 2 側又は第 2基板 3側にあると反射光や透過光の一部が遮蔽され、着色面が水平方向 にあると反射光や透過光のほとんど全てを透過させることができる。これにより、反射 光や透過光の一部を遮蔽して画像を形成することができる。  [0063] In the present embodiment, a force pole method may be used instead of the force microcapsule method described for the microphone-type capsule method in which the microcapsules 33 are arranged on the display layer 32. . In this case, a transparent insulating sheet is used as the display layer 32, and charged particles having a spherical or cylindrical rotating element force are embedded therein. The rotating element is supported in an insulating fluid such as silicon oil in the cavity formed slightly larger than the diameter of the rotating element so that the rotating element is rotated by an electric field. Thus, when observing from the first substrate 2 side, if the colored surface of the rotating element is on the first substrate 2 side or the second substrate 3 side, a part of the reflected light or transmitted light is shielded, and the colored surface is horizontal. In this case, almost all of the reflected light and transmitted light can be transmitted. As a result, an image can be formed while blocking a part of the reflected light or transmitted light.
また、第 3駆動電極 38a, 38bが第 2基板 3に第 4駆動電極 35と直交して形成された 場合について説明したが、画像を形成する際に、第 3駆動電極 38a, 38bに電圧を 印加して帯電粒子 34を水平方向に整列させることができればよいので、第 1基板 2に 第 3駆動電極 38a, 38bを形成する場合もある。この場合も同様の作用が得られる。 The third drive electrodes 38a and 38b are formed on the second substrate 3 so as to be orthogonal to the fourth drive electrode 35. As described above, when the image is formed, it is sufficient that a voltage is applied to the third drive electrodes 38a and 38b so that the charged particles 34 can be aligned in the horizontal direction. 38a and 38b may be formed. In this case, the same effect can be obtained.
[0064] (実施の形態 3) [Embodiment 3]
図 5は実施の形態 3における記録媒体の画像形成前の状態を示す記録媒体の要 部模式図であり、図 6は実施の形態 3における記録媒体の画像形成時の状態を示す 記録媒体及び画像形成装置の要部模式図である。なお、実施の形態 1又は実施の 形態 2と同様のものは、同じ符号を付して説明を省略する。  FIG. 5 is a schematic diagram of a main part of the recording medium showing the state of the recording medium in the third embodiment before image formation. FIG. 6 shows the state of the recording medium in the third embodiment at the time of image formation. It is a principal part schematic diagram of a formation apparatus. Note that the same components as those in the first embodiment or the second embodiment are denoted by the same reference numerals and description thereof is omitted.
図中、 51は本発明の実施の形態 3における記録媒体、 52は第 3駆動電極 38a, 38 bを避けて表示層 32内に敷き詰めて配列された透明樹脂のマイクロカプセル、 53は マイクロカプセル 52内に透明な絶縁性流体とともに封入された正又は負に帯電した Y, M, C等の表示原色の荷電粒子力 なる帯電粒子、 54は第 2基板 3及び第 4駆動 電極 35に積層された白色光を反射する白色散乱層である。  In the figure, 51 is a recording medium according to Embodiment 3 of the present invention, 52 is a transparent resin microcapsule arranged in the display layer 32 so as to avoid the third drive electrodes 38a and 38b, and 53 is a microcapsule 52. Charged particles with positive or negatively charged display primary colors such as Y, M, and C enclosed with a transparent insulating fluid inside are laminated on the second substrate 3 and the fourth drive electrode 35. It is a white scattering layer that reflects white light.
本実施の形態においては、マイクロカプセル 52は表示原色の色単位である三原色 (Y, M, C)が縞模様状に白色散乱層 54を介して第 4駆動電極 35の上部に配置さ れており、第 4駆動電極 35aの上部にはイェロー (Y)の帯電粒子を有するマイクロ力 プセル、第 4駆動電極 35bの上部にはマゼンダ (M)の帯電粒子を有するマイクロ力 プセル、第 4駆動電極 35cの上部にはシアン (C)の帯電粒子を有するマイクロカプセ ルが各々敷き詰められて ヽる。  In the present embodiment, in the microcapsule 52, the three primary colors (Y, M, C), which are display primary color units, are arranged in a striped pattern above the fourth drive electrode 35 via the white scattering layer 54. The fourth driving electrode 35a has a micro-power cell with yellow (Y) charged particles, and the fourth driving electrode 35b has a micro-power cell with magenta (M) charged particles, the fourth driving electrode. On the top of 35c, microcapsules with cyan (C) charged particles are laid down.
なお、本実施の形態においては、マイクロカプセル 52の三原色の帯電粒子がプラ スに帯電して 、る場合にっ 、て説明する。  In the present embodiment, the case where the charged particles of the three primary colors of the microcapsule 52 are positively charged will be described.
[0065] 以上のように構成された実施の形態 3における記録媒体の動作に基づ 、て画像形 成方法を説明する。 An image forming method will be described based on the operation of the recording medium according to Embodiment 3 configured as described above.
図 5において、駆動電極制御部 39のスィッチ S1を V 〖こ、 S2を Vに切り替え、電位  In Fig. 5, switch S1 of drive electrode control unit 39 is switched to V, S2 is switched to V, and the potential
H L  H L
差設定部 40のスィッチ S3〜S5を GNDに設定すると、第 3駆動電極 38aは帯電粒子 34に斥力を作用させ、隣り合う第 3駆動電極 38bは帯電粒子 34に引力を作用させる ので、マイクロカプセル 52中の帯電粒子 53は第 3駆動電極 38bの方向に水平移動 するので、第 1基板 2側力も見るとマイクロカプセルは透明に見える。そのため、第 1 基板 2から見た観測者は、白色散乱層 54からの反射光の白色光を帯電粒子 53に遮 蔽されることなく観測できる。 When the switches S3 to S5 of the difference setting unit 40 are set to GND, the third driving electrode 38a applies a repulsive force to the charged particles 34, and the adjacent third driving electrode 38b applies an attractive force to the charged particles 34. Since the charged particles 53 in 52 move horizontally in the direction of the third drive electrode 38b, the microcapsules appear to be transparent when the force on the first substrate 2 side is also seen. Therefore, the first An observer viewed from the substrate 2 can observe the white light reflected from the white scattering layer 54 without being shielded by the charged particles 53.
次に、図 6において、実施の形態 2で説明したヘッド側電圧印加工程を経て、電位 差設定工程の媒体側電圧制御工程にぉ ヽて、媒体側電圧制御部 42により表示原 色の色単位を選択し(図 6ではマゼンダ (M)を選択)、第 4駆動電極 35bに接続され たスィッチ S4を V に切り替え、放電電極 18と第 4駆動電極 35bとの間の電位差が放  Next, in FIG. 6, after the head-side voltage application process described in the second embodiment, the medium-side voltage control unit 42 performs display primary color unit processing over the medium-side voltage control process in the potential difference setting process. (Magenta (M) is selected in FIG. 6), the switch S4 connected to the fourth drive electrode 35b is switched to V, and the potential difference between the discharge electrode 18 and the fourth drive electrode 35b is released.
H  H
電制御電圧に相当するように設定する。 Set to correspond to the electric control voltage.
次に、放電電極加熱工程において、選択された色 (M)を表示すべき画素に対応 する位置にある発熱抵抗体 16aを発熱させ放電電極 18を選択的に加熱する。これ により、発熱抵抗体 16aにより加熱された放電電極 18の電子放出部 19において電 子が放出される。このとき、一画素のうちの選択された色 (M)に対応した第 4駆動電 極 35bのみに電圧が印加されているので、放電に伴って発生した電子やイオンを選 択された色 (M)に対応したサブ画素の位置に確実に照射することができ、第 1基板 2 に電荷を付与できる。記録媒体 1への電圧の印加を止めると、色 (M)に対応したサ ブ画素の位置にあるマイクロカプセル 52の帯電粒子 53が、電荷が付与された第 1基 板 2の方向にクーロン力で移動し、マゼンダ(M)の帯電粒子 53が観測されるので、 第 1基板 2に付与された電荷に応じた画像を形成することができる。なお、帯電粒子 5 3は静電吸着や分子間力などによってとどまるので表示された画像が維持される。 以上のように構成された実施の形態 3における記録媒体によれば、以下のような作 用が得られる。  Next, in the discharge electrode heating step, the heat generating resistor 16a located at a position corresponding to the pixel to display the selected color (M) is heated to selectively heat the discharge electrode 18. As a result, electrons are emitted from the electron emission portion 19 of the discharge electrode 18 heated by the heating resistor 16a. At this time, since the voltage is applied only to the fourth drive electrode 35b corresponding to the selected color (M) of one pixel, the electrons and ions generated by the discharge are selected ( The position of the sub-pixel corresponding to M) can be reliably irradiated, and a charge can be imparted to the first substrate 2. When the voltage application to the recording medium 1 is stopped, the charged particles 53 of the microcapsule 52 at the position of the sub-pixel corresponding to the color (M) cause the Coulomb force in the direction of the first substrate 2 to which the charge is applied. Since the magenta (M) charged particles 53 are observed, an image corresponding to the charge applied to the first substrate 2 can be formed. The charged particles 53 are retained by electrostatic adsorption or intermolecular force, so that the displayed image is maintained. According to the recording medium in the third embodiment configured as described above, the following operations are obtained.
(1)表示原色の帯電粒子 53が封入されたマイクロカプセル 52が、第 4駆動電極 35 に対応して縞模様状に表示層 32内に配置されているので、簡便にカラー画像を表 示することができ取扱性に優れ、高 、製品得率を得ることができる。  (1) Since the microcapsule 52 in which the display primary color charged particles 53 are encapsulated is arranged in the display layer 32 in a striped pattern corresponding to the fourth drive electrode 35, a color image is easily displayed. It has excellent handleability and high product yield.
(2)帯電粒子 53の表示原色毎に分割されて配置された第 4駆動電極 35を備えてい るので、画像情報に基づいて選択された第 4駆動電極 35に対応する放電電極 18の 電子放出部 19から選択的に電子を放出させることができ、放電に伴う電子やイオン を第 1基板 2の所望の位置に照射して電荷の作用で画像を形成することができ、色 ずれを確実に防止して高品質なカラー画像を得ることができる。 (3)簡単な構成でカラー画像を形成できるので生産性に優れるとともに、消耗品がな いので省資源性に優れる。 (2) Since the fourth drive electrode 35 is provided so as to be divided for each display primary color of the charged particles 53, the electron emission of the discharge electrode 18 corresponding to the fourth drive electrode 35 selected based on the image information Electrons can be selectively emitted from the part 19 and an image can be formed by the action of electric charge by irradiating the electrons and ions accompanying the discharge to the desired position of the first substrate 2, thereby ensuring color misregistration. Therefore, a high-quality color image can be obtained. (3) Since color images can be formed with a simple configuration, it is excellent in productivity, and because there are no consumables, it is excellent in resource saving.
[0067] また、以上のように構成された実施の形態 3における画像形成装置及び画像形成 方法によれば、実施の形態 1に記載したのと同様の作用が得られる。 In addition, according to the image forming apparatus and the image forming method in Embodiment 3 configured as described above, the same operation as described in Embodiment 1 can be obtained.
[0068] なお、本実施の形態にぉ 、ては、マイクロカプセル方式の記録媒体にっ 、て説明 したが、片側が表示原色に着色されたツイストボール方式の回転素子を用いることも できる。この場合も同様の作用が得られる。 Note that although the present embodiment has been described with reference to a microcapsule type recording medium, a twisting ball type rotating element in which one side is colored with a display primary color can also be used. In this case, the same effect can be obtained.
産業上の利用可能性  Industrial applicability
[0069] 本発明は、電子やイオンによって電荷を付与されることにより画像や文字情報が表 示される静電現像方式の記録媒体、記録媒体に選択的に電荷を付与することにより 記録媒体に画像や文字を形成する画像形成方法に関し、電荷が付与される第 1基 板と対向する第 2基板側で選択的な接地又は電圧印加を行うことができ、第 1基板の 所望の位置に確実に電子やイオンの電荷を付与することにより画像を形成することが でき、また製造工程が単純で生産性に優れるとともに高い製品得率が得られ取扱性 及び信頼性に優れ、さらに光透過率が高く視認性を高くでき画素を微細化でき高品 質の画像を形成できる記録媒体を提供することができ、また加熱放電型印字ヘッドと 記録媒体との間で選択的に放電を発生させ、放電電極から放出された電子やイオン を第 1基板の所望の位置に確実に照射して電荷を付与することができ、制御が容易 で高解像度で高品質な画像を形成することが可能な画像形成方法を提供することが できる。 [0069] The present invention relates to an electrostatic development type recording medium in which an image or character information is displayed by being charged by electrons or ions, and by selectively applying a charge to the recording medium, the image is recorded on the recording medium. For image forming methods for forming characters and characters, selective grounding or voltage application can be performed on the second substrate side facing the first substrate to which electric charges are applied, and the first substrate can be reliably placed at a desired position. An image can be formed by applying charges of electrons and ions, and the manufacturing process is simple and excellent in productivity, and a high product yield is obtained, handling and reliability are excellent, and light transmittance is high. It is possible to provide a recording medium that can increase visibility, miniaturize pixels, and form a high-quality image. In addition, a discharge is selectively generated between the heat-discharge type print head and the recording medium. Released from To provide an image forming method that can reliably irradiate a desired position on a first substrate with ions or ions to impart charges, and can be easily controlled to form a high-resolution and high-quality image. Is possible.

Claims

請求の範囲 The scope of the claims
[1] 電荷が付与される第 1基板と、前記第 1基板に対向配置された第 2基板と、前記第 1 基板と前記第 2基板との間に形成された表示層と、前記表示層内に封入された帯電 粒子と、前記第 1基板の前記表示層側の 1画素内の領域の一部に形成された第 1駆 動電極と、表示原色の色単位に分割されて前記第 2基板に形成された第 2駆動電極 と、前記第 2駆動電極に対応して配設された前記表示原色のカラーフィルタ又はカラ 一反射板と、を備えていることを特徴とする記録媒体。  [1] A first substrate to which an electric charge is applied, a second substrate disposed opposite to the first substrate, a display layer formed between the first substrate and the second substrate, and the display layer The charged particles enclosed in the first substrate, the first driving electrode formed in a part of the region in one pixel on the display layer side of the first substrate, and the second primary color divided into display primary color units. A recording medium comprising: a second drive electrode formed on a substrate; and the display primary color filter or color reflector disposed in correspondence with the second drive electrode.
[2] 前記帯電粒子が、単色の帯電泳動粒子,単色の電子粉流体の内のいずれか 1種 であることを特徴とする請求項 1に記載の記録媒体。  2. The recording medium according to claim 1, wherein the charged particles are any one of monochromatic charged electrophoretic particles and monochromatic electronic powder fluid.
[3] 電荷が付与される第 1基板と、前記第 1基板に対向配置された第 2基板と、前記第 1 基板と前記第 2基板との間に形成された表示層と、前記表示層内に封入された帯電 粒子と、前記第 1基板又は前記第 2基板の前記表示層側に間隔をあけて並設された 第 3駆動電極と、前記第 3駆動電極と絶縁され表示原色の色単位に分割されて前記 第 2基板に形成された第 4駆動電極と、前記第 4駆動電極に対応して配設された前 記表示原色のカラーフィルタ又はカラー反射板と、を備えて 、ることを特徴とする記 録媒体。  [3] A first substrate to which an electric charge is applied, a second substrate disposed opposite to the first substrate, a display layer formed between the first substrate and the second substrate, and the display layer The charged particles sealed in, the third drive electrode arranged in parallel with the display layer side of the first substrate or the second substrate, and the color of the display primary color insulated from the third drive electrode A fourth driving electrode divided into units and formed on the second substrate; and a color filter or a color reflector of the display primary color disposed corresponding to the fourth driving electrode. A recording medium characterized by this.
[4] 前記帯電粒子が、前記表示層に配列され一部が単色に着色され残りが透明な回 転素子,前記表示層内に配列されたマイクロカプセルに透明な分散媒と共に封入さ れた単色の荷電粒子の内のいずれか 1種であることを特徴とする請求項 3に記載の 記録媒体。  [4] A monochromatic color in which the charged particles are arranged in the display layer, partially colored in a single color and the rest are transparent, and a microcapsule arranged in the display layer is enclosed with a transparent dispersion medium. The recording medium according to claim 3, wherein the recording medium is any one of the charged particles.
[5] 電荷が付与される第 1基板と、前記第 1基板に対向配置された第 2基板と、前記第 1 基板と前記第 2基板との間に形成された表示層と、前記表示層内に封入され少なくと も一部が表示原色に着色された帯電粒子と、前記第 1基板又は前記第 2基板の前記 表示層側に間隔をあけて並設された第 3駆動電極と、前記第 3駆動電極と絶縁され 表示原色の色単位に分割されて前記第 2基板に形成された第 4駆動電極と、を備え て 、ることを特徴とする記録媒体。  [5] A first substrate to which an electric charge is applied, a second substrate disposed opposite to the first substrate, a display layer formed between the first substrate and the second substrate, and the display layer Charged particles encapsulated in at least a part of which are colored display primary color, a third drive electrode arranged in parallel with a gap on the display layer side of the first substrate or the second substrate, And a fourth drive electrode formed on the second substrate by being insulated from the third drive electrode and divided into display primary color units.
[6] 前記帯電粒子が、前記表示層に配列され一部が前記表示原色に着色された回転 素子,前記表示層内に配列されたマイクロカプセルに透明な分散媒と共に封入され た前記表示原色の荷電粒子の内のいずれか 1種であることを特徴とする請求項 5に 記載の記録媒体。 [6] The charged particles are encapsulated in a rotating element arranged in the display layer and partially colored in the display primary color, and a microcapsule arranged in the display layer together with a transparent dispersion medium. 6. The recording medium according to claim 5, wherein the recording medium is one of the display primary color charged particles.
[7] 請求項 1乃至 6の内 ヽずれか 1に記載の記録媒体に画像を形成する画像形成方法 であって、放電電極を温度制御することにより前記放電電極から電子を放出させ放 電の有無で印字を行う加熱放電型印字ヘッドの前記放電電極と前記記録媒体の第 2駆動電極又は第 4駆動電極との間に放電制御電圧に相当する電位差を設定して 電界を形成する電位差設定工程と、画像情報に基づいて前記放電電極を選択的に 加熱する放電電極加熱工程と、を備えて!ヽることを特徴とする画像形成方法。  [7] An image forming method for forming an image on a recording medium according to any one of claims 1 to 6, wherein electrons are discharged from the discharge electrode by controlling the temperature of the discharge electrode. Potential difference setting step of setting an electric potential difference corresponding to a discharge control voltage between the discharge electrode of the heat discharge type print head that performs printing with or without and the second drive electrode or the fourth drive electrode of the recording medium to form an electric field And a discharge electrode heating step of selectively heating the discharge electrode based on image information. An image forming method comprising:
[8] 前記電位差設定工程が、前記放電電極に電気的に接続されたヘッド側電圧印加 部により前記放電電極に電圧を印加するヘッド側電圧印加工程と、前記第 2駆動電 極又は前記第 4駆動電極に電気的に接続された媒体側電圧制御部により前記画像 情報に基づいて前記第 2駆動電極又は前記第 4駆動電極に選択的な接地又は電圧 印加を行う媒体側電圧制御工程と、を備えて!/ヽることを特徴とする請求項 7に記載の 画像形成方法。  [8] The potential difference setting step includes a head side voltage application step in which a voltage is applied to the discharge electrode by a head side voltage application unit electrically connected to the discharge electrode, and the second drive electrode or the fourth drive electrode. A medium-side voltage control step of selectively grounding or applying a voltage to the second drive electrode or the fourth drive electrode based on the image information by a medium-side voltage control unit electrically connected to the drive electrode; The image forming method according to claim 7, wherein the image forming method includes:!
[9] 前記媒体側電圧制御工程における前記第 2駆動電極又は前記第 4駆動電極の選 択単位が、前記記録媒体の表示画素の画素単位、行単位、列単位の内のいずれか 1つの単位であることを特徴とする請求項 8に記載の画像形成方法。  [9] The selection unit of the second drive electrode or the fourth drive electrode in the medium-side voltage control step is any one of a pixel unit, a row unit, and a column unit of a display pixel of the recording medium. The image forming method according to claim 8, wherein:
PCT/JP2006/307230 2006-04-05 2006-04-05 Recording medium and image forming method WO2007113908A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2006/307230 WO2007113908A1 (en) 2006-04-05 2006-04-05 Recording medium and image forming method
JP2006536903A JP3936727B1 (en) 2006-04-05 2006-04-05 Recording medium and image forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/307230 WO2007113908A1 (en) 2006-04-05 2006-04-05 Recording medium and image forming method

Publications (1)

Publication Number Publication Date
WO2007113908A1 true WO2007113908A1 (en) 2007-10-11

Family

ID=38249196

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/307230 WO2007113908A1 (en) 2006-04-05 2006-04-05 Recording medium and image forming method

Country Status (2)

Country Link
JP (1) JP3936727B1 (en)
WO (1) WO2007113908A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0486784A (en) * 1990-07-31 1992-03-19 Hitachi Chem Co Ltd Electrophoresis display liquid and electrophoretic display device using the liquid
JP2000085175A (en) * 1998-09-14 2000-03-28 Makoto Mentani Record erasing method and rewriting unit for reversible record indicating medium
JP2004045644A (en) * 2002-07-10 2004-02-12 Fuji Photo Film Co Ltd Electronic paper

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0486784A (en) * 1990-07-31 1992-03-19 Hitachi Chem Co Ltd Electrophoresis display liquid and electrophoretic display device using the liquid
JP2000085175A (en) * 1998-09-14 2000-03-28 Makoto Mentani Record erasing method and rewriting unit for reversible record indicating medium
JP2004045644A (en) * 2002-07-10 2004-02-12 Fuji Photo Film Co Ltd Electronic paper

Also Published As

Publication number Publication date
JPWO2007113908A1 (en) 2009-08-13
JP3936727B1 (en) 2007-06-27

Similar Documents

Publication Publication Date Title
JP5718651B2 (en) Multicolor subpixel full color reflective display
JP4372257B2 (en) Electrical paper composition material
JP4783781B2 (en) Backplane for electro-optic display
JP4568429B2 (en) Method for obtaining an improved color in a microencapsulated electrophoretic device
JP4416380B2 (en) Electrophoretic display device and driving method thereof
US6727883B2 (en) Electrophoretic display device
JP5390136B2 (en) Electrophoretic display element and driving method thereof
JP2005003964A (en) Image display medium, image display device, and image display method
JP2002189234A (en) Fiber containing microcapsule for displaying electrophoresis, display device using the same, and manufacturing method therefor
JP2008033221A (en) Electronic ink display panel
JP3868788B2 (en) Electrophoretic display device
JP3936727B1 (en) Recording medium and image forming method
JP3935196B1 (en) Recording medium with discharge electrode
JP3993884B2 (en) Display device and image display method thereof
WO2012112824A1 (en) Dual particle electrophoretic display and method of manufacturing same
WO2007099597A1 (en) Image forming method and image forming device
JP4185558B2 (en) Image forming apparatus, image forming method, and recording medium
JP4041522B2 (en) Recording medium, image forming method, and image forming apparatus
JP4099214B2 (en) Image forming apparatus and image forming method
JP4797179B2 (en) Image forming method and image forming apparatus
JP4851991B2 (en) Image forming method and image forming apparatus
JP4117011B1 (en) Image forming method and image forming apparatus used therefor
JP4117010B1 (en) recoding media
JP3955081B1 (en) recoding media
JP2004012829A (en) Electrophoresis display device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2006536903

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06731178

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06731178

Country of ref document: EP

Kind code of ref document: A1