WO2007111919A1 - Two component low pressure egr module - Google Patents

Two component low pressure egr module Download PDF

Info

Publication number
WO2007111919A1
WO2007111919A1 PCT/US2007/007074 US2007007074W WO2007111919A1 WO 2007111919 A1 WO2007111919 A1 WO 2007111919A1 US 2007007074 W US2007007074 W US 2007007074W WO 2007111919 A1 WO2007111919 A1 WO 2007111919A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
actuator
exhaust gas
gas recirculation
throttle valve
Prior art date
Application number
PCT/US2007/007074
Other languages
French (fr)
Inventor
Volker Joergl
Timm Kiener
Robert S. Czarnowski
Original Assignee
Borgwarner Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Borgwarner Inc. filed Critical Borgwarner Inc.
Priority to CN200780010080.7A priority Critical patent/CN101405500B/en
Priority to EP07753682A priority patent/EP1996811B1/en
Priority to DE602007008376T priority patent/DE602007008376D1/en
Priority to US12/224,402 priority patent/US7963274B2/en
Publication of WO2007111919A1 publication Critical patent/WO2007111919A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D9/00Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
    • F02D9/04Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits concerning exhaust conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/06Low pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust downstream of the turbocharger turbine and reintroduced into the intake system upstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/09Constructional details, e.g. structural combinations of EGR systems and supercharger systems; Arrangement of the EGR and supercharger systems with respect to the engine
    • F02M26/10Constructional details, e.g. structural combinations of EGR systems and supercharger systems; Arrangement of the EGR and supercharger systems with respect to the engine having means to increase the pressure difference between the exhaust and intake system, e.g. venturis, variable geometry turbines, check valves using pressure pulsations or throttles in the air intake or exhaust system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/45Sensors specially adapted for EGR systems
    • F02M26/48EGR valve position sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D9/00Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
    • F02D9/02Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits concerning induction conduits
    • F02D2009/0201Arrangements; Control features; Details thereof
    • F02D2009/0276Throttle and EGR-valve operated together
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/52Systems for actuating EGR valves
    • F02M26/53Systems for actuating EGR valves using electric actuators, e.g. solenoids
    • F02M26/54Rotary actuators, e.g. step motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/52Systems for actuating EGR valves
    • F02M26/59Systems for actuating EGR valves using positive pressure actuators; Check valves therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/65Constructional details of EGR valves
    • F02M26/70Flap valves; Rotary valves; Sliding valves; Resilient valves

Definitions

  • the present invention relates to an engine assembly having an actuator connected to an EGR valve and a throttle valve.
  • EGR exhaust gas recirculation
  • the EGR valve redirects at least a portion of the gaseous fluid from the exhaust manifold of the engine, so that the gaseous fluid is recirculated into the intake manifold of the engine along with fresh air.
  • the gaseous fluid recirculated into the engine's intake manifold reduces the temperature of the combustions during engine operation which reduces the amount of emissions created as a result of the combustion.
  • the engine assemblies typically include at least one EGR valve and other types of valves which are controlled by actuators.
  • EGR valve and other types of valves which are controlled by actuators.
  • actuators the addition of valves to the engine assembly and the addition of actuators to control those valves increases the amount of materials and parts that need to be assembled in order to make the engine assembly.
  • the present invention relates to an engine assembly comprising an engine, at least one exhaust gas recirculation valve, at least one throttle valve, and an actuator operably connected to the EGR valve and the throttle valve.
  • the actuator can be operably connected to any predetermined combination of a predetermined number of EGR valves and a predetermined number of throttle valves.
  • the actuator can be a mechanical actuator, a pneumatic actuator, a hydraulic actuator, or an electrical actuator.
  • Figure 1 is a schematic view of an actuator operably connected to valves in accordance with a first embodiment of the present invention
  • Figure 2 is a schematic view of the actuator operably connected to the valves in accordance with a second embodiment of the present invention
  • Figure 3 is a schematic view of the actuator operably connected to the valves in accordance with a third embodiment of the present invention.
  • Figure 4 is a schematic plan view of an engine assembly in accordance with the present invention.
  • valve assembly is generally shown at 10.
  • the valve assembly 10 has an actuator generally indicated at 12, a first valve 14, and a second valve 16.
  • the actuator 12 through a linkage is operably connected to the first valve 14 and second valve 16 so that the actuator 12 alters the position of both the first valve 14 and the second valve 16.
  • any predetermined number of valves 14, 16 can be operably connected to the actuator 12 so that the actuator 12 can control the valves simultaneously.
  • the second valve 16 remains closed when the first valve 14 is closed.
  • the open and closed relationship between the valves 14, 16 is shown in Figures 1-4 by the valves 14, 16 position shown by solid lines and phantom.
  • the first embodiment shows a mechanical actuator 12 operably connected to the first valve 14 and second valve 16.
  • the actuator 12 is an electric motor 11 having a linkage 13 that is a Bowden cable or a push-pull cable connected to the valves 14, 16.
  • a linkage 13 that is a Bowden cable or a push-pull cable connected to the valves 14, 16.
  • any type of fixed mechanical linkage can be used.
  • the actuator 12 is actuated the position of the first valve 14 with respect to the first passageway 18 is altered and when the first valve 14 is in a predetermined position the actuator 12 will cause the second valve 16 to move.
  • the actuator 12 and second valve 16 act as a lost motion device, such that the second valve 16 is not actuated until the first valve 14 is in a predetermined position.
  • the electric motor is coupled directly to one of the valves 14, 16 and drives the valve with a direct drive gear or gear train, in addition to the electric motor being coupled to the other valve that is not directly coupled to the electric motor with a linkage.
  • a second embodiment of the valve assembly is generally shown at 100.
  • the valve assembly 100 has an actuator that is generally indicated at 112.
  • the actuator 112 is an electric motor111 connected to a linkage 113 that is pneumatic and is operably connected to the first valve 14 and second valve 16.
  • the pneumatic linkage 113 causes the air pressure to decrease in the linkage 113 at the first valve 14.
  • the decrease in air pressure causes the first valve 14 to move to a predetermined position with respect to the first passageway 18.
  • a valve 124 that is located at the connector point between the linkage 113 and a second connector 126 is opened.
  • the valve 124 opens after a predetermined pressure is reached in the first passageway 18.
  • valve assembly 200 has an actuator 212 which is an electric motor 211 operably coupled to a hydraulic linkage 213. While an electric motor is described it is within the scope of this invention to use some other type of electrical actuator and not necessarily an electric motor.
  • the electric actuator can be valves for hydraulics or pneumatics such as a spool valve or other types of electrically actuated valve.
  • the electric motor 211 causes hydraulic fluid to flow through the hydraulic linkage 213 to the first connector 222 to alter the position of the first valve 14 with respect to the first passageway 18.
  • the pressure in the hydraulic linkage 212 is increased and pressure in a second connector 226 is increased.
  • the first valve 14 is actuated at a first predetermined pressure at the first connector 222 and the second valve 16 is actuated at a second predetermined pressure at the second connector 226, where the second pressure is higher than the first pressure.
  • the first valve 14 is actuated prior to the second valve 16.
  • a valve can be used to control the flow to both the first connector 222 and second connector 226.
  • the valve assembly 10, 100, 200, 300 is used in an engine assembly which is generally shown at 34.
  • the engine assembly 34 has an engine 36 which comprises an exhaust manifold 38 and an intake manifold 40.
  • a turbine is operably connected to the exhaust manifold 38, such that the gaseous fluid or exhaust gas flows through the turbine 42.
  • the gaseous fluid that passes through the turbine 42 rotates the turbine 42 and then passes through a diesel particulate filter (DPF) 48.
  • the gaseous fluid then passes through an exhaust pipe 50 or an EGR path 52.
  • the gaseous fluid that passes through the exhaust pipe 50 exits the engine assembly 34.
  • the gaseous fluid that passes through the EGR path 52 passes through an EGR valve 54.
  • the EGR valve 54 is a low pressure EGR valve.
  • a throttle valve 55 is used to control the amount of gaseous fluid flowing through the exhaust pipe 50 and the EGR path 52.
  • the gaseous fluid that passes through the EGR path 52 then passes through an EGR cooler 62 and mixes with fresh air from an inlet 58.
  • the combination of gaseous fluid and fresh air pass through a compressor 60, which is operably connected to the turbine 42.
  • the turbine 42 causes the compressor 60 to rotate and compress the gaseous fluid and fresh air mixture.
  • a predetermined number of valve positioning sensors are used to determine the position of the valves 14, 16.
  • the valve positioning sensors are operably connected to a control unit (not shown) which is used to actuate the actuator 12, 112, 212, 312 and change the position of the valves 14, 16.
  • the control unit is the Engine Control Unit (ECU) or a control unit connected to the ECU.
  • the control unit can be part of the actuator 12, 112, 212, 312 so that it can determine how to move the valves 14, 16.
  • the actuator 12, 112, 212, 312 is used to control the exhaust gas throttle valve 54 and the EGR valve 56.
  • the EGR valve 56 is represented by the first valve 14, and the exhaust gas throttle valve 54 is represented by the second valve 16 in Figures 1-4.
  • the EGR valve 56 is substantially open before the throttle valve 54 is altered or closed.
  • the flow through the EGR valve 56 is increased when the throttle valve 54 is closed.
  • the EGR valve 56 is substantially open prior to altering the throttle valve 54 because it is undesirable to increase the back pressure of the gaseous fluid, which increases the flow of the gaseous fluid through the EGR path 52 if the EGR valve 56 is not substantially open.
  • the actuator 12, 112, 212, 312 to actuate the EGR valve 56 and throttle valve 54 in a different manner so long as the EGR valve 56 and throttle valve 54 are actuated in conjunction.
  • the EGR valve 56 and throttle valve 54 are relatively close to one another in the engine assembly 34 in order to reduce the size of the actuator 12, 112, 212, 312 that is used to actuate the EGR valve 56 and throttle valve 54.
  • the shorter the distance between the EGR valve 56 and throttle valve 54 allows for less materials to be used in order to make the connector between the EGR valve 56 and throttle valve 54.
  • any predetermined distance can be placed between the EGR valve 56 and throttle valve 54.
  • connection can be used in different manner in engine assemblies where multiple valves are controlled in the same manner. For example, if the engine assembly has a bypass around a cooler the EGR valve and a bypass valve can be operably connected to an actuator.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Abstract

An engine (10, 100, 200, 34) assembly comprising an engine (36), at least one exhaust gas recirculation valve, (54) at least one throttle valve, and an actuator (12,112,212) operably connected to the EGR valve (56) and the throttle valve (54). The actuator (12, 112, 212) can be operably connected to any predetermined combination of a predetermined number of EGR valves (56) and a predetermined number of throttle valves (54). The actuator (12, 112, 212) can be a mechanical actuator, a pneumatic actuator, a hydraulic actuator, or an electrical actuator.

Description

TWO COMPONENT LOW PRESSURE EGR MODULE
CROSS-REFERENCE TO RELATED APPLICATIONS This application claims the benefit of U.S. Provisional Application No. 60/784,568, filed March 22, 2006.
FIELD OF THE INVENTION
The present invention relates to an engine assembly having an actuator connected to an EGR valve and a throttle valve.
BACKGROUND OF THE INVENTION
Due to both federal and state regulations, motorized vehicles today are limited to the amount of emissions in which they can release during operation. One way of reducing the amount of emissions released by the vehicle is to include an exhaust gas recirculation (EGR) valve in the vehicle's exhaust system. The EGR valve redirects at least a portion of the gaseous fluid from the exhaust manifold of the engine, so that the gaseous fluid is recirculated into the intake manifold of the engine along with fresh air. The gaseous fluid recirculated into the engine's intake manifold reduces the temperature of the combustions during engine operation which reduces the amount of emissions created as a result of the combustion.
The engine assemblies typically include at least one EGR valve and other types of valves which are controlled by actuators. However, the addition of valves to the engine assembly and the addition of actuators to control those valves increases the amount of materials and parts that need to be assembled in order to make the engine assembly.
Therefore, it is desirable to develop an assembly in which multiple valves can be controlled by a single actuator. This reduction in the number of actuators would allow for a reduction in the number of parts that need to be manufactured and assembled to create the engine assembly. SUMMARY OF THE INVENTION
The present invention relates to an engine assembly comprising an engine, at least one exhaust gas recirculation valve, at least one throttle valve, and an actuator operably connected to the EGR valve and the throttle valve. The actuator can be operably connected to any predetermined combination of a predetermined number of EGR valves and a predetermined number of throttle valves. The actuator can be a mechanical actuator, a pneumatic actuator, a hydraulic actuator, or an electrical actuator.
Further areas of applicability of the present invention will become apparent from the detailed description provided hereinafter. It should be understood that the detailed description and specific examples, while indicating the preferred embodiment of the invention, are intended for purposes of illustration only and are not intended to limit the scope of the invention.
BRIEF DESCRIPTION OF THE DRAWINGS
The present invention will become more fully understood from the detailed description and the accompanying drawings, wherein:
Figure 1 is a schematic view of an actuator operably connected to valves in accordance with a first embodiment of the present invention;
Figure 2 is a schematic view of the actuator operably connected to the valves in accordance with a second embodiment of the present invention;
Figure 3 is a schematic view of the actuator operably connected to the valves in accordance with a third embodiment of the present invention; and Figure 4 is a schematic plan view of an engine assembly in accordance with the present invention.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
The following description of the preferred embodiment(s) is merely exemplary in nature and is in no way intended to limit the invention, its application, or uses.
Referring to Figures 1-4, a valve assembly is generally shown at 10.
The valve assembly 10 has an actuator generally indicated at 12, a first valve 14, and a second valve 16. The actuator 12 through a linkage is operably connected to the first valve 14 and second valve 16 so that the actuator 12 alters the position of both the first valve 14 and the second valve 16. However, it should be appreciated that any predetermined number of valves 14, 16 can be operably connected to the actuator 12 so that the actuator 12 can control the valves simultaneously. in all of the embodiments disclosed below, it is preferred that the first valve 14 be substantially open with respect to the first passageway 18 prior to the second valve 16 being altered with respect to the second passageway 20 for reasons described in greater detail below. The second valve 16 remains closed when the first valve 14 is closed. The open and closed relationship between the valves 14, 16 is shown in Figures 1-4 by the valves 14, 16 position shown by solid lines and phantom.
With continued reference to Figure 1, the first embodiment shows a mechanical actuator 12 operably connected to the first valve 14 and second valve 16. In a preferred embodiment, the actuator 12 is an electric motor 11 having a linkage 13 that is a Bowden cable or a push-pull cable connected to the valves 14, 16. Although any type of fixed mechanical linkage can be used. As the actuator 12 is actuated the position of the first valve 14 with respect to the first passageway 18 is altered and when the first valve 14 is in a predetermined position the actuator 12 will cause the second valve 16 to move. Thus, the actuator 12 and second valve 16 act as a lost motion device, such that the second valve 16 is not actuated until the first valve 14 is in a predetermined position. In another alternate embodiment of the invention the electric motor is coupled directly to one of the valves 14, 16 and drives the valve with a direct drive gear or gear train, in addition to the electric motor being coupled to the other valve that is not directly coupled to the electric motor with a linkage.
Referring to Figure 2, a second embodiment of the valve assembly is generally shown at 100. The valve assembly 100 has an actuator that is generally indicated at 112. In a preferred embodiment, the actuator 112 is an electric motor111 connected to a linkage 113 that is pneumatic and is operably connected to the first valve 14 and second valve 16. The pneumatic linkage 113 causes the air pressure to decrease in the linkage 113 at the first valve 14. The decrease in air pressure causes the first valve 14 to move to a predetermined position with respect to the first passageway 18. Once the first valve 14 is in the predetermined position, a valve 124 that is located at the connector point between the linkage 113 and a second connector 126 is opened. Thus, the valve 124 opens after a predetermined pressure is reached in the first passageway 18. Once the valve 124 is opened the pressure decreases in the second connector 126 which causes the second valve 16 to move. Referring the Figure 3, a third embodiment of the valve assembly is generally shown at 200. The valve assembly 200 has an actuator 212 which is an electric motor 211 operably coupled to a hydraulic linkage 213. While an electric motor is described it is within the scope of this invention to use some other type of electrical actuator and not necessarily an electric motor. For example the electric actuator can be valves for hydraulics or pneumatics such as a spool valve or other types of electrically actuated valve. The electric motor 211 causes hydraulic fluid to flow through the hydraulic linkage 213 to the first connector 222 to alter the position of the first valve 14 with respect to the first passageway 18. As the hydraulic actuator 212 is actuated, the pressure in the hydraulic linkage 212 is increased and pressure in a second connector 226 is increased. In a preferred embodiment, the first valve 14 is actuated at a first predetermined pressure at the first connector 222 and the second valve 16 is actuated at a second predetermined pressure at the second connector 226, where the second pressure is higher than the first pressure. Thus, the first valve 14 is actuated prior to the second valve 16. Alternatively a valve can be used to control the flow to both the first connector 222 and second connector 226.
Referring to Figure 4, in operation the valve assembly 10, 100, 200, 300 is used in an engine assembly which is generally shown at 34. The engine assembly 34 has an engine 36 which comprises an exhaust manifold 38 and an intake manifold 40. A turbine is operably connected to the exhaust manifold 38, such that the gaseous fluid or exhaust gas flows through the turbine 42. The gaseous fluid that passes through the turbine 42 rotates the turbine 42 and then passes through a diesel particulate filter (DPF) 48. The gaseous fluid then passes through an exhaust pipe 50 or an EGR path 52. The gaseous fluid that passes through the exhaust pipe 50 exits the engine assembly 34. The gaseous fluid that passes through the EGR path 52 passes through an EGR valve 54. In a preferred embodiment the EGR valve 54 is a low pressure EGR valve. A throttle valve 55 is used to control the amount of gaseous fluid flowing through the exhaust pipe 50 and the EGR path 52.
The gaseous fluid that passes through the EGR path 52 then passes through an EGR cooler 62 and mixes with fresh air from an inlet 58. The combination of gaseous fluid and fresh air pass through a compressor 60, which is operably connected to the turbine 42. Thus, as the gaseous fluid passes through and rotates the turbine 42, the turbine 42 causes the compressor 60 to rotate and compress the gaseous fluid and fresh air mixture. Referring to Figures 1-4, a predetermined number of valve positioning sensors (not shown) are used to determine the position of the valves 14, 16. The valve positioning sensors are operably connected to a control unit (not shown) which is used to actuate the actuator 12, 112, 212, 312 and change the position of the valves 14, 16. In a preferred embodiment the control unit is the Engine Control Unit (ECU) or a control unit connected to the ECU. However, the control unit can be part of the actuator 12, 112, 212, 312 so that it can determine how to move the valves 14, 16.
In a preferred embodiment, the actuator 12, 112, 212, 312 is used to control the exhaust gas throttle valve 54 and the EGR valve 56. Thus, the EGR valve 56 is represented by the first valve 14, and the exhaust gas throttle valve 54 is represented by the second valve 16 in Figures 1-4.
In a preferred embodiment, the EGR valve 56 is substantially open before the throttle valve 54 is altered or closed. When the EGR valve 56 is substantially open the flow through the EGR valve 56 is increased when the throttle valve 54 is closed. Thus, it is preferred that the EGR valve 56 is substantially open prior to altering the throttle valve 54 because it is undesirable to increase the back pressure of the gaseous fluid, which increases the flow of the gaseous fluid through the EGR path 52 if the EGR valve 56 is not substantially open. However, it is within the scope of the present invention for the actuator 12, 112, 212, 312 to actuate the EGR valve 56 and throttle valve 54 in a different manner so long as the EGR valve 56 and throttle valve 54 are actuated in conjunction. In a preferred embodiment, the EGR valve 56 and throttle valve 54 are relatively close to one another in the engine assembly 34 in order to reduce the size of the actuator 12, 112, 212, 312 that is used to actuate the EGR valve 56 and throttle valve 54. The shorter the distance between the EGR valve 56 and throttle valve 54 allows for less materials to be used in order to make the connector between the EGR valve 56 and throttle valve 54. However, it should be appreciated that due to the design of the actuator 12, 112, 212, 312 any predetermined distance can be placed between the EGR valve 56 and throttle valve 54.
This type of connection can be used in different manner in engine assemblies where multiple valves are controlled in the same manner. For example, if the engine assembly has a bypass around a cooler the EGR valve and a bypass valve can be operably connected to an actuator. These types of connections are described in greater detail in a patent application having the same inventor, Volker Joergl, filed on March 22, 2006, entitled "Integrated Charge Air and EGR Valve," hereby incorporated into this application by reference.
The description of the invention is merely exemplary in nature and, thus, variations that do not depart from the gist of the invention are intended to be within the scope of the invention. Such variations are not to be regarded as a departure from the spirit and scope of the invention.

Claims

CLAIMSWhat is claimed is:
1. An engine assembly comprising: an engine; at least one exhaust gas recirculation valve operably connected to said engine; at least one throttle valve operably connected to said engine; and an actuator operably connected to a predetermined combination of said at least one exhaust gas recirculation valve and said at least one throttle valve.
2. The engine assembly of claim 1, wherein said exhaust gas recirculation valve is in a first housing and said throttle valve is in a second housing.
3. The engine assembly of claim 1 , wherein said actuator substantially opens said exhaust gas recirculation valve prior to altering the position of said throttle valve.
4. The engine assembly of claim 1, wherein said actuator includes an electric motor connected to a cable extending from said electric motor to said at least one exhaust gas recirculation valve and to said at least one throttle valve.
5. The engine assembly of claim 1 wherein said actuator is connected to one valve of said predetermined combination of said at least one exhaust gas recirculation valve or said at least one throttle valve using a direct drive gear, and another valve of said predetermined combination of said at least one exhaust gas recirculation valve and said at least one throttle valve being actuated by a linkage between said one valve and said another valve.
6. The engine assembly of claim 5 wherein said direct drive gear is a series of two or more gears.
7. The engine assembly of claim 1 , wherein said actuator includes one selected from the following group comprising: an electric motor, pneumatic valves, and hydraulic valves; and wherein said actuator is connected to a pneumatic linkage with a first connector extending to said exhaust gas recirculation valve and a second connector extending from said first connector to said throttle valve.
8. The engine assembly of claim 1 , wherein said actuator includes one selected from the group comprising: an electric motor, pneumatic valves, and hydraulic valves; and wherein said actuator is connected to a hydraulic linkage with a first connector extending to said exhaust gas recirculation valve and a second connector extending from said first connector to said throttle valve.
9. The engine assembly of claim 1 further comprising at least one valve positioning sensor operably connected to at least one of said exhaust gas recirculation valve and said throttle valve.
10. The engine assembly of claim 1 further comprising a control unit operable connected to said actuator.
11. The engine assembly of claim 10, wherein said control unit is directly connected to said actuator, so that said control unit determines the position of said actuator and controls the movement of said actuator.
12. The engine assembly of claim 10, wherein said control unit is integrated into an engine control unit, and said actuator changes positions when said actuator receives signals from said engine control unit.
13. An engine assembly comprising: an engine, wherein said engine has an intake manifold and an exhaust manifold; at least one exhaust gas recirculation valve operably connected to said intake manifold and said exhaust manifold, wherein said at least one exhaust gas recirculation valve is in a first housing; at feast one throttle valve operably connected to said exhaust manifold, wherein said at least one throttle valve is in a second housing; and an actuator operably connected to a predetermined combination of said at least one exhaust gas recirculation valve and said at least one throttle valve, wherein said actuator opens in a predetermined relationship said exhaust gas recirculation valve prior to altering the position of said throttle valve.
14. The engine assembly of claim 13, wherein said actuator includes an electric motor connected to a cable extending from said electric motor to said exhaust gas recirculation valve and to said throttle valve.
15. The engine assembly of claim 13 wherein said actuator is connected to one valve of said predetermined combination of said at least one exhaust gas recirculation valve or said at least one throttle valve using a direct drive gear, and another valve of said predetermined combination of said at least one exhaust gas recirculation valve and said at least one throttle valve being actuated by a linkage between said one valve and said another valve.
16. The engine assembly of claim 15 wherein said direct drive gear is a series of two or more gears.
17. The engine assembly of claim 13, wherein said actuator includes one selected from the group comprising: an electric motor, pneumatic valves, and hydraulic valves; and wherein said actuator is connected to a pneumatic linkage with a first connector extending to said exhaust gas recirculation valve and a second connector extending from said first connector to said throttle valve.
18. The engine assembly of claim 13, wherein said actuator includes one selected from the group comprising: an electric motor, pneumatic valves, and hydraulic valves; and wherein said actuator is connected to a hydraulic linkage with a first connector extending to said exhaust gas recirculation valve and a second connector extending from said first connector to said throttle valve.
19. The engine assembly of claim 13, wherein said at least one throttle valve is connected to said intake manifold in a second housing.
20. The engine assembly of claim 13 further comprising at least one valve positioning sensor operabiy connected to at least one of said exhaust gas recirculation valve and said throttle valve.
21. The engine assembly of claim 13 further comprising a control unit operable connected to said actuator.
22. An engine assembly comprising: an engine, wherein said engine has an intake manifold and an exhaust manifold; at least one exhaust gas recirculation valve operabiy connected to said intake manifold and said exhaust manifold, wherein said at least one exhaust gas recirculation valve is in a first housing; at least one throttle valve operabiy connected to said exhaust manifold, wherein said at least one throttle valve is in a second housing; an actuator operabiy connected to a predetermined combination of said at least one exhaust gas recirculation valve and said at least one throttle valve, wherein said actuator opens in a predetermined relationship said exhaust gas recirculation valve prior to altering the position of said throttle valve; a control unit operably connected to said actuator; and at least one valve positioning sensor operably connected to at least open to said exhaust gas recirculation valve and said throttle valve.
23. The engine assembly of claim 22, wherein said actuator further includes a linkage that is one selected from a mechanical linkage, a pneumatic linkage or a hydraulic linkage.
PCT/US2007/007074 2006-03-22 2007-03-22 Two component low pressure egr module WO2007111919A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN200780010080.7A CN101405500B (en) 2006-03-22 2007-03-22 Two component low pressure EGR module
EP07753682A EP1996811B1 (en) 2006-03-22 2007-03-22 Two component low pressure egr module
DE602007008376T DE602007008376D1 (en) 2006-03-22 2007-03-22 SECONDARY EGR MODULE WITH LOW PRESSURE
US12/224,402 US7963274B2 (en) 2006-03-22 2007-03-22 Two component low pressure EGR module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US78456806P 2006-03-22 2006-03-22
US60/784,568 2006-03-22

Publications (1)

Publication Number Publication Date
WO2007111919A1 true WO2007111919A1 (en) 2007-10-04

Family

ID=38291280

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2007/007074 WO2007111919A1 (en) 2006-03-22 2007-03-22 Two component low pressure egr module

Country Status (5)

Country Link
US (1) US7963274B2 (en)
EP (1) EP1996811B1 (en)
CN (1) CN101405500B (en)
DE (1) DE602007008376D1 (en)
WO (1) WO2007111919A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010000426A1 (en) * 2008-07-02 2010-01-07 Knorr-Bremse Systeme für Nutzfahrzeuge GmbH Compressor system having limited suction charging pressure
EP2313636A4 (en) * 2008-07-10 2015-10-07 Actuant Corp Exhaust gas recirculation valve actuator

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008005591A1 (en) * 2008-01-22 2009-07-23 Bayerische Motoren Werke Aktiengesellschaft Valve device for an exhaust gas recirculation device
FR2954407B1 (en) * 2009-12-22 2018-11-23 Valeo Systemes De Controle Moteur METHOD FOR CONTROLLING AN EGR CIRCUIT OF A MOTOR VEHICLE MOTOR, VALVE FOR IMPLEMENTING THE METHOD AND ENGINE WITH THE VALVE.
CN103850781B (en) * 2014-03-28 2016-04-13 长城汽车股份有限公司 Pressurized machine

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2314461A1 (en) * 1973-03-23 1974-10-03 Bosch Gmbh Robert EXHAUST GAS RECIRCULATION VALVE FOR COMBUSTION MACHINERY
US4020809A (en) * 1975-06-02 1977-05-03 Caterpillar Tractor Co. Exhaust gas recirculation system for a diesel engine
US4064851A (en) * 1975-09-05 1977-12-27 Robert Bosch Gmbh Servo controlled exhaust gas recycle system
DE3007927A1 (en) * 1980-03-01 1981-09-17 Daimler-Benz Ag, 7000 Stuttgart Spark ignition vehicle engine - runs on vaporised fuel-air mixture with exhaust recirculation reducing up to full throttle then to zero
US4296724A (en) * 1979-01-08 1981-10-27 Nissan Motor Company, Limited Internal combustion engine
EP0900930A2 (en) * 1997-09-04 1999-03-10 General Motors Corporation Exhaust gas recirculation valve
WO2000028203A1 (en) * 1998-11-09 2000-05-18 Stt Emtec Aktiebolag A method and device for an egr-system and a valve as well as a regulation method and device
WO2000042305A1 (en) * 1999-01-15 2000-07-20 Borg-Warner Automotive, Inc. Turbocharger and egr system
EP1103715A1 (en) * 1999-11-29 2001-05-30 Delphi Technologies, Inc. Exhaust gas re-circulation device for an internal combustion engine
US20030000497A1 (en) * 2001-06-28 2003-01-02 Brosseau Michael R. Manifold inlet valve having linear response

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4924840A (en) * 1988-10-05 1990-05-15 Ford Motor Company Fast response exhaust gas recirculation (EGR) system
US6000222A (en) 1997-12-18 1999-12-14 Allied Signal Inc. Turbocharger with integral turbine exhaust gas recirculation control valve and exhaust gas bypass valve
JP4089396B2 (en) 2002-11-15 2008-05-28 いすゞ自動車株式会社 EGR system for internal combustion engine with turbocharger
DE102004055846B4 (en) 2004-11-19 2016-12-15 Bayerische Motoren Werke Aktiengesellschaft Vehicle with turbo diesel engine and exhaust gas recirculation
WO2007089771A2 (en) * 2006-01-31 2007-08-09 Borgwarner Inc. Integrated egr valve and throttle valve

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2314461A1 (en) * 1973-03-23 1974-10-03 Bosch Gmbh Robert EXHAUST GAS RECIRCULATION VALVE FOR COMBUSTION MACHINERY
US4020809A (en) * 1975-06-02 1977-05-03 Caterpillar Tractor Co. Exhaust gas recirculation system for a diesel engine
US4064851A (en) * 1975-09-05 1977-12-27 Robert Bosch Gmbh Servo controlled exhaust gas recycle system
US4296724A (en) * 1979-01-08 1981-10-27 Nissan Motor Company, Limited Internal combustion engine
DE3007927A1 (en) * 1980-03-01 1981-09-17 Daimler-Benz Ag, 7000 Stuttgart Spark ignition vehicle engine - runs on vaporised fuel-air mixture with exhaust recirculation reducing up to full throttle then to zero
EP0900930A2 (en) * 1997-09-04 1999-03-10 General Motors Corporation Exhaust gas recirculation valve
WO2000028203A1 (en) * 1998-11-09 2000-05-18 Stt Emtec Aktiebolag A method and device for an egr-system and a valve as well as a regulation method and device
WO2000042305A1 (en) * 1999-01-15 2000-07-20 Borg-Warner Automotive, Inc. Turbocharger and egr system
EP1103715A1 (en) * 1999-11-29 2001-05-30 Delphi Technologies, Inc. Exhaust gas re-circulation device for an internal combustion engine
US20030000497A1 (en) * 2001-06-28 2003-01-02 Brosseau Michael R. Manifold inlet valve having linear response

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010000426A1 (en) * 2008-07-02 2010-01-07 Knorr-Bremse Systeme für Nutzfahrzeuge GmbH Compressor system having limited suction charging pressure
US8739529B2 (en) 2008-07-02 2014-06-03 Knorr-Bremse Systeme Fuer Nutzfahrzeuge Gmbh Compressor system having limited suction charging pressure and method of operating same
EP2313636A4 (en) * 2008-07-10 2015-10-07 Actuant Corp Exhaust gas recirculation valve actuator

Also Published As

Publication number Publication date
US20090056683A1 (en) 2009-03-05
US7963274B2 (en) 2011-06-21
DE602007008376D1 (en) 2010-09-23
EP1996811A1 (en) 2008-12-03
CN101405500A (en) 2009-04-08
CN101405500B (en) 2015-07-08
EP1996811B1 (en) 2010-08-11

Similar Documents

Publication Publication Date Title
EP2558752B1 (en) Multifunction valve
EP2312146A1 (en) Exhaust throttle-EGR valve module for a diesel engine
JP4995259B2 (en) Integrated air supply and EGR valve
US7007680B2 (en) Cooler bypass valve system and method
US9145841B2 (en) Low-pressure exhaust gas recirculation system
US7621128B2 (en) Combined EGR valve and cooler by-pass
CN101498239B (en) Variable geometry turbocharger and control method for the same
US7963274B2 (en) Two component low pressure EGR module
JPH05288123A (en) Exhaust gas circulation apparatus for internal combustion engine
WO2007089771A2 (en) Integrated egr valve and throttle valve
EP1923551A2 (en) Bypass assembly for a charge-air cooler including two valve members
US8763592B2 (en) EGR valve assembly for internal combustion engines
EP1136688B1 (en) Exhaust gas re-circulation device for an internal combustion engine
EP1923550A2 (en) Bypass assembly for a charge-air cooler
KR102000758B1 (en) Integrated back pressure and egr valve module
KR101948520B1 (en) Integrated back pressure and egr valve module
US20100006074A1 (en) Egr valve assembly

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07753682

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2007753682

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12224402

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200780010080.7

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE