WO2007111046A1 - Optical fiber array, semiconductor laser light collecting device, and optical fiber array manufacturing method - Google Patents

Optical fiber array, semiconductor laser light collecting device, and optical fiber array manufacturing method Download PDF

Info

Publication number
WO2007111046A1
WO2007111046A1 PCT/JP2007/052203 JP2007052203W WO2007111046A1 WO 2007111046 A1 WO2007111046 A1 WO 2007111046A1 JP 2007052203 W JP2007052203 W JP 2007052203W WO 2007111046 A1 WO2007111046 A1 WO 2007111046A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
axis direction
array
light
incident surface
Prior art date
Application number
PCT/JP2007/052203
Other languages
French (fr)
Japanese (ja)
Inventor
Hiromichi Ota
Tomomi Nakano
Yoshinobu Katoh
Original Assignee
Jtekt Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jtekt Corporation filed Critical Jtekt Corporation
Priority to JP2008507389A priority Critical patent/JP5277959B2/en
Publication of WO2007111046A1 publication Critical patent/WO2007111046A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4249Packages, e.g. shape, construction, internal or external details comprising arrays of active devices and fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4202Packages, e.g. shape, construction, internal or external details for coupling an active element with fibres without intermediate optical elements, e.g. fibres with plane ends, fibres with shaped ends, bundles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02251Out-coupling of light using optical fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • H01S5/02325Mechanically integrated components on mount members or optical micro-benches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4012Beam combining, e.g. by the use of fibres, gratings, polarisers, prisms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4031Edge-emitting structures

Definitions

  • the present invention relates to an optical fiber array capable of efficiently condensing emitted laser light, a semiconductor laser condensing device, and a method of manufacturing the optical fiber array.
  • semiconductor lasers have a high oscillation efficiency ( ⁇ 50%), and therefore there is an increasing need for using them as excitation light for solid-state lasers or as direct light sources.
  • Semiconductor laser manufacturers also provide semiconductor laser bars in which multiple emitters (light emitting sections) are arranged one-dimensionally, and semiconductor lasers in which semiconductor laser bars are stacked and multiple emitters (light emitting sections) are arranged in two dimensions. The stack is commercialized.
  • a typical semiconductor laser bar is a semiconductor laser chip with an external dimension of about 10 mm in length, about 0.2 mm in thickness, and about 1 mm in width, mounted on a heat sink, and about 1 m in length in the thickness direction.
  • about 10 m of light emitting parts are integrated at a pitch of about 500 m.
  • a laser beam with an output of about 2 W is emitted from one light emitting unit. If these are condensed to increase the power density and used as excitation light or directly as a processing light source, metal welding, drilling, cutting, etc. can be performed.
  • the semiconductor laser bar and the semiconductor laser stack are collectively referred to as a semiconductor laser array.
  • the laser light L1 emitted from the light emitting part (12a to 12g) Proceeds while spreading almost elliptically in the minor axis direction.
  • the force S shear angle ⁇ f in the major axis direction is about several tens of degrees (for example, 30 to 40 degrees)
  • the minor axis direction as shown in the example of FIG.
  • the spread angle ⁇ s is about several degrees (for example, 3 to 4 degrees).
  • the dimension of each light emitting part (12a to 12 g) is about 1 m in the major axis direction in a general semiconductor laser array.
  • the minor axis direction is about 100 to 200 ⁇ m.
  • the condensing property of the laser light depends on the beam parameter product indicated by “beam diameter * divergence angle”.
  • the beam parameter port duct in the long axis direction is about 0.2 mm'mrad.
  • the beam parameter product in the short axis direction is 200mm • mrad. For this reason, when condensing, it is relatively easy to collect light in the long axis direction, but it is relatively difficult to collect light in the short axis direction.
  • a lens-shaped multimode fiber having a slanted cross section provided at one end of a single mode fiber and having a wedge shape and a tip curved surface is fused.
  • Fibers with end lenses have been proposed that are attached or bonded.
  • Laser light emitted from the light emitting part of the semiconductor laser is bent inward by a lens-like convex curved surface in the major axis direction, and further refracted so that the diameter becomes smaller due to the internal refractive index distribution, and the minor axis direction.
  • the light is refracted so that its diameter becomes smaller due to the refractive index distribution, and is guided to a single mode fiber.
  • Patent Document 2 the semiconductor laser array and the lens array are mounted on a metal block, and the metal block is laser welded to the inside of the window on the side wall of the package (housing).
  • a semiconductor laser module has been proposed in which a sleeve on which an optical fiber array is mounted is positioned and laser-welded.
  • a fiber array is formed of fibers having a material force with a cladding etching rate higher than the etching rate of the core. Each fiber tip is etched and the core end face is removed. Processed into a spherical lens.
  • Patent Document 1 Japanese Patent Laid-Open No. 2000-304965
  • Patent Document 2 JP-A-6-308358
  • Patent Document 3 JP-A-6-324234
  • Patent Document 1 In the prior art described in Patent Document 1, an optical fiber and a lens are integrated. It is only necessary to position the light emitting part of the semiconductor laser and the optical fiber without positioning the light emitting part of the body laser, the lens, and the optical fiber. However, when it is applied to a semiconductor laser array having a plurality of light emitting portions, it is necessary to align the optical fiber one by one with respect to each light emitting portion of the semiconductor laser array. The loss due to misalignment may increase.
  • the metal block on which the semiconductor laser array and the lens array are mounted is separate from the optical fiber array.
  • the heat generated by the semiconductor laser array and the lens array is larger than that of the optical fiber array, and the position due to the difference between the thermal expansion of the metal block and the thermal expansion of the optical fiber array. Misalignment may occur and loss may increase.
  • a lens is formed on the end face of the core by melting the fiber by etching, so that it cannot be formed into a substantially spherical lens shape.
  • a substantially spherical lens shape For example, a cylindrical lens shape, etc. It is difficult to form an appropriate lens shape that suppresses loss.
  • it is a method that expects to form a spherical surface by melting by etching, it is difficult to obtain desired lens characteristics such as a focal length that can further suppress loss. It is also difficult to further suppress loss by precisely matching the position of the lens formed on the core end face (position in the longitudinal direction of the core) for each fiber.
  • An object of the present invention is to provide an optical fiber array, a semiconductor laser condensing device, and a method for manufacturing the optical fiber array, which are conceived in view of such a point and can further suppress loss. .
  • the present invention is an optical fiber array, a semiconductor laser condensing device, and a method for manufacturing the optical fiber array, each having a configuration as described in the claims.
  • the optical fiber array according to the first aspect of the invention is configured to receive a plurality of light beams that are emitted from an array-shaped light source in which a plurality of light emitting portions that emit light that travels in an elliptical shape are arranged in the short axis direction of the ellipse.
  • This is an optical fiber array composed of optical fibers.
  • Each optical fiber has each incident surface of each optical fiber aligned with the short axis direction of the light emitting part. It is arranged to face each light emitting part.
  • each optical fiber is fixed by a fixing member to form an integral part of the fixing member and the incident surface of the optical fiber, and the incident surface side of each optical fiber in the integral part is incident.
  • Lens part force that collects light It is formed by polishing lj, cutting lj, or polishing or melting and pressing the mold.
  • the incident surfaces of the plurality of optical fibers in the integral part are arranged in line with the interval of the light emitting parts of the array light source, the individual optical fibers are adapted to the positions of the light emitting parts. Since positioning is not necessary, positioning is easy and positioning accuracy is high. Thereby, loss can be suppressed more.
  • the fixing member is made of a solid material that hardens the tip portions on the incident surface side of the plurality of optical fibers.
  • the fixing member can be easily configured with the solid material.
  • the fixing member is composed of at least two fixing plates whose surfaces orthogonal to the major axis direction of the ellipse are opposed to each other, and incident surfaces of a plurality of optical fibers The front end portion is sandwiched and fixed by a fixing plate.
  • the fixing member can be easily configured with at least two fixing plates that sandwich the optical fiber.
  • At least one of the fixed plates is formed with a groove for positioning the optical fiber at an interval in the short axis direction of the light emitting portion.
  • the optical fiber can be easily positioned with respect to the fixed plate.
  • the lens portion is integrally formed in a convex shape with respect to the major axis direction so that the light incident on the integral portion is refracted in the major axis direction.
  • the lens portion reduces the divergence angle and guides it into the optical fiber, and in the short axis direction with a small divergence angle, the light is guided as it is.
  • light can be appropriately guided into the optical fiber, and loss can be further suppressed.
  • the lens part is integrally formed in the integral part, it is easy to create the lens part. Moreover, since the lens part in each optical fiber becomes the same shape (variation is very small), positioning is easy and loss can be suppressed more.
  • the optical fiber array according to any one of the first to fifth inventions and a laser beam that travels in an elliptical shape as an arrayed light source comprising: a semiconductor laser array in which a plurality of light emitting portions for emitting the light are arranged in an elliptical short axis direction, each of the light emitting portions and each of the incident surfaces on which the lens portions are formed.
  • the semiconductor laser array and the integral part are positioned so that they face each other, and the laser light emitted from each light emitting part is incident on each optical fiber and condensed.
  • the plurality of light emitting portions and each optical fiber can be positioned together only by positioning the two of the semiconductor laser array and the integral portion. Since it is not necessary to position individual optical fibers according to the position of each light emitting section, positioning is easy and positioning accuracy is high. Thereby, loss can be suppressed more.
  • the semiconductor laser array and the integral part are fixed on the same member.
  • the fixed member is Since they are the same member and have the same coefficient of thermal expansion, the amount of misalignment due to thermal expansion can be suppressed, and loss can be further suppressed.
  • An optical fiber array manufacturing method provides each light emitted from an array light source in which a plurality of light emitting portions that emit light traveling in an elliptical shape are arranged in the minor axis direction of the ellipse.
  • a method of manufacturing an optical fiber array composed of a plurality of optical fibers that are incident on each of the optical fibers, wherein each optical fiber is aligned with the interval in the minor axis direction of the light emitting section, and each incident surface of each optical fiber is placed on each light emitting section. It arrange
  • the machining tool having a concave shape with respect to the major axis direction is pressed from the incident surface side of the optical fiber in the integral part to move the machining tool in the minor axis direction, and the incident light is refracted in the major axis direction.
  • a convex lens portion is formed integrally with the entrance surface of each optical fiber with respect to the long axis direction.
  • the lens portion having a convex shape with respect to the major axis direction is integrally formed easily and in a short time on the one body portion in which the tips of the optical fibers in the optical fiber array are integrated. That's right.
  • the method of manufacturing the optical fiber array according to the ninth aspect of the present invention provides each light emitted from an array-shaped light source in which a plurality of light emitting sections that emit light that travels in an elliptical shape are arranged in the minor axis direction of the ellipse.
  • a method of manufacturing an optical fiber array composed of a plurality of optical fibers that are incident on each of the optical fibers, wherein each optical fiber is aligned with the interval in the minor axis direction of the light emitting section, and each incident surface of each optical fiber is placed on each light emitting section. It arrange
  • a convex lens portion with respect to the long axis direction is integrally formed on the incident surface of each optical fiber.
  • a lens portion having a convex shape with respect to the major axis direction can be integrally formed with higher accuracy in a unitary portion in which the tips of the optical fibers in the optical fiber array are integrated.
  • the method for manufacturing an optical fiber array provides each light emitted from an arrayed light source in which a plurality of light emitting portions that emit light traveling in an elliptical shape are arranged in the minor axis direction of the ellipse.
  • a method of manufacturing an optical fiber array composed of a plurality of optical fibers that are incident on each of the optical fibers, wherein each optical fiber is aligned with the interval in the minor axis direction of the light emitting unit, and each incident surface of each optical fiber is connected to each light emitting unit.
  • the incident surface side of each optical fiber is fixed by a fixing member, and an integral part is formed by the fixing member and the incident surface of the optical fiber.
  • the optical fiber and the fixing member are made of the same material or a material with a close melting point, and the incident light side of the optical fiber in the unit is melted and pressed against the mold so that the incident light is in the long axis direction.
  • a lens portion having a convex shape with respect to the major axis direction is integrally formed on the incident surface of each optical fiber so as to be refracted into the light.
  • the tenth invention it is possible to more easily integrally form a convex lens portion with respect to the major axis direction in the integrated portion in which the tips of the optical fibers in the optical fiber array are integrated. it can.
  • the tip end portion projects into the groove array force in each groove of the groove array in which a plurality of grooves are formed at intervals in the minor axis direction of the light emitting portion.
  • Each optical fiber is disposed on the front, and the protruding tip is fixed with a fixing member to form an integral part.
  • the eleventh invention it is possible to easily position the optical fiber at intervals in the minor axis direction of the light emitting part, and it is easy to form a unitary part in which the tips of the optical fibers in the optical fiber array are integrated. Can be formed.
  • FIG. 1 is a diagram (perspective view) for explaining the structure of a general semiconductor laser array and emitted laser light.
  • FIG. 2 is a diagram (side view) for explaining the structure of a general semiconductor laser array and emitted laser light.
  • FIG. 3 is a diagram (plan view) for explaining the structure of a general semiconductor laser array and emitted laser light.
  • FIG. 4 is a diagram illustrating the configuration of an optical fiber array 20 of the present invention.
  • FIG. 5 is a diagram illustrating the configuration of the optical fiber array 20 and the semiconductor laser condensing device 1 of the present invention.
  • FIG. 6 is a diagram for explaining the relationship between the divergence angle and radius of laser light emitted from the optical fiber array 20 and the divergence angle and radius of laser light incident on the transmission optical fiber 40.
  • FIG. 7 is a diagram for explaining the structure (side view) and function of the body part 21.
  • FIG. 8 is a diagram for explaining the structure (plan view) and function of the body part 21.
  • FIG. 9 is a diagram showing an example of a groove array 26.
  • FIG. 10 is a diagram for explaining an example of a manufacturing method of the optical fiber array 20 in which a lens portion is integrally formed.
  • FIG. 11 is a diagram for explaining an application example of the semiconductor laser condensing device 1.
  • FIG. 12 is a diagram for explaining an application example of the semiconductor laser condensing device 1.
  • FIG. 13 is a diagram for explaining another embodiment in the configuration of the optical fiber array 20.
  • 14 is a diagram showing an example of a tip portion of the optical fiber array shown in FIG.
  • 15 is a diagram for explaining a method of integrally forming a lens portion on the incident surface side of the optical fiber array shown in FIG.
  • FIG. 16 is a view (perspective view) for explaining another embodiment in the method of integrally forming the lens portion on the incident surface side of the optical fiber array shown in FIG.
  • the X-axis direction indicates the short-axis direction
  • the Y-axis direction indicates the long-axis direction
  • the Z-axis direction indicates the emission direction of the laser light emitted from the light emitting unit.
  • FIGS. 4 to 6 show an example of a laser focusing device including the optical fiber array 20 of the present invention and the semiconductor laser focusing device 1 of the present invention.
  • the optical fiber array 20 of the present invention is configured such that each incident surface of each optical fiber (22a, 22b) corresponds to each light emitting unit in accordance with the interval in the minor axis direction of the light emitting unit of the semiconductor laser array 10. (The center interval in the minor axis direction of the adjacent light emitting units is the same as the center interval in the minor axis direction of the incident surface of the adjacent optical fiber).
  • each optical fiber (22a, 22b ' ⁇ ) constitutes an optical fiber array 20.
  • a lens portion for condensing incident laser light is formed on the incident surface side of the optical fiber (22a, 22b) in the integrated portion 21, and the lens portion will be described later.
  • the semiconductor laser condensing device 1 of the present invention includes a semiconductor laser array 10 and an optical fiber array 20.
  • the semiconductor laser array 10 and the integrated portion 21 are arranged so that each incident surface of the integrated portion 21 faces each light emitting portion (12a to 12g, see FIG. 1) of the semiconductor laser array 10. Positioning.
  • Outgoing surface force of optical fiber array 20 There are various forms of condensing means 30 for condensing light to optical fiber 40 for transmission.
  • condensing means 30 for condensing light to optical fiber 40 for transmission.
  • NA conversion optical system using lenses 31 and 32 is used.
  • laser light emitted from the semiconductor laser array is used as a direct processing light source.
  • FIG. 11 and FIG. 12 which will be described later, an example of using V as a direct processing light source and an example of using it as excitation light of a solid-state laser will be described.
  • the emission surface of the optical fiber array 20 is bundled (bundled) as shown in FIG. 6.
  • the laser light emitted from the optical fiber array 20 is used for transmission by selecting appropriate rl, r2, NA so that sin ⁇ 2 is NA. It can efficiently enter the optical fiber 40.
  • FIGS. 7 is a view of the light emitting portion 12a, the integrated portion 21 and the optical fiber 22a of the semiconductor laser array 10 in FIG. 4 as seen from the short axis direction (X axis direction), and FIG. 8 is the long axis direction (Y axis direction). ).
  • a lens portion for converging the incident laser beam L1 is formed on the incident surface side of the optical fiber 22a in the integrated portion 21, and the lens portion refracts the laser beam L1. It is possible to guide the light into the optical fiber 22a with a small divergence angle (refracted so as to be almost parallel light), and to properly guide the light into the core 24a covered with the cladding 23a. It is.
  • the lens portion is integrally formed in a convex shape with respect to the major axis direction in the integral portion 21 (the forming method will be described later in the description of FIGS. 9 and 10).
  • the lens shape is not formed in the minor axis direction, but the minor axis direction is wide and the angle is small.
  • the laser light L 1 can be guided.
  • a lens portion may be formed on the incident surface of each optical fiber so as to be further convex in the minor axis direction, but the curved surface in the major axis direction and the curved surface in the minor axis direction have different curvatures.
  • a groove array 26 is prepared in which V-grooves are formed at the center interval (interval in the short axis direction) of the light emitting portions 12x of the semiconductor laser array 10 (FIG. 9).
  • the number of V-grooves is the same as or more than the number of light emitting parts.
  • the shape of the groove is not limited to the V-groove, and various shapes of grooves can be used. Then, as shown in the example of FIG.
  • the same number of optical fibers 22 ⁇ as the number of light emitting portions are arranged in the V-groove so that the tip portion protrudes from the groove array 26.
  • the projecting tip is solidified with a solid material such as an ultraviolet curable resin, a quartz compound (polysilane, polysilazane), or an adhesive such as epoxy to form an integral part 21.
  • the lens portion is integrally formed by grinding from the tip of the integral portion 21 with a processing tool ⁇ (in this example, a rotating grindstone). Therefore, when the integral portion 21 is formed (before the lens portion is formed). ),
  • the incident surface of the optical fiber may be covered with the adhesive or the like, or the protruding length from the groove array 26 may not be uniform.
  • the inner wall Ta of the machining tool is integrated with the machining tool ⁇ ⁇ ⁇ whose inner wall Ta has a concave shape with respect to the major axis direction (in this example, the rotating grindstone T (the rotation axis is parallel to the major axis direction)). While pressing against part 21, it moves in the short axis direction (X-axis direction) to adjust the shape and expose the incident surface of each optical fiber to the surface.
  • the lens part is integrally formed. Since it is integrally formed, it can be formed easily in a short time.
  • the machining tool T is not limited to a rotating grindstone as long as it can transfer the shape of the inner wall Ta, and may be a machining tool that reciprocally vibrates in the short axis direction, for example.
  • the groove array 26 may be removed after the lens portion is formed, or may be attached as the condensing optical fiber portion 20 as it is.
  • the lens portions having the same shape are formed on the incident surfaces of the optical fibers, and the intervals between the incident surfaces of the optical fibers are the same as the intervals between the light emitting portions.
  • the laser beam emitted from the plurality of light emitting portions can be appropriately incident on each of the plurality of optical fibers only by positioning the semiconductor laser array 10 and the integrated portion 21, which is very convenient, Loss due to misalignment can be suppressed.
  • each lens part is integrally formed and the variation in the shape of each lens part is very small (the variation in the focal length is very small), the loss due to the positional deviation can be further suppressed.
  • Each of the optical fibers using a processing tool rotated at a predetermined angle rotated so that the concave shape of the inner wall Ta becomes concave in the minor axis direction, but the curvature of the concave shape of the inner wall Ta is different from that of the above processing tool T).
  • the lens part may be processed by moving in the long axis direction (Y-axis direction) while pressing against the incident surface.
  • the example shown in FIG. 11 uses six sets of the semiconductor laser array 10 and the optical fiber array 20 constituting the semiconductor laser condensing device 1 of the present invention.
  • the emission surface of each optical fiber array 20 is bundled by a bundle unit 29, and is composed of a lens 31 (a collimating lens that converts the light into parallel light) and a lens 32 (a condensing lens that reduces the diameter of the laser light of the parallel light).
  • the laser beam L1 emitted from the bundle unit 29 is collected using the condensing means and incident on the transmission optical fiber 40, and the laser beam is extracted from the emission surface of the transmission optical fiber 40.
  • laser light emitted from the semiconductor laser array 10 is directly used as a processing light source.
  • the semiconductor laser array 10 and the integrated portion 21 of the optical fiber array 20 are fixed to the same member (a substrate 50 for heat release, which is made of a metal having a high thermal conductivity). Even if the substrate 50 expands according to the coefficient of thermal expansion due to the heat generated by the semiconductor laser array 10 or the integrated part 21, the thermal expansion coefficient is different between the position where the semiconductor laser array 10 is fixed and the position where the integrated part 21 is fixed. Since there is no difference (because they are the same member) and they are fixed in the same direction, even if thermal expansion occurs, the same amount acts in the same direction, and displacement due to temperature changes can be suppressed. The loss can be further suppressed.
  • a heat sink 60 and a fan 70 are further provided on the substrate 50 to dissipate heat. It is also possible to make a pass hole in the substrate 50 and cool it with a fluid such as water or oil.
  • FIG. 12 uses six sets of the semiconductor laser array 10 and the optical fiber array 20 that constitute the semiconductor laser condensing device 1 of the present invention, as in FIG. 11 differs from the configuration shown in FIG. 11 from the bundle portion 29 of the optical fiber array 20.
  • reference numeral 80 denotes an optical fiber for a fiber laser having a core portion doped with a rare earth element (the periphery of the core portion is composed of a cladding portion for confining incident excitation light).
  • Excitation light in this case, emitted from the semiconductor laser array
  • the core part is excited and (oscillation) laser light is generated in the core part.
  • the (oscillation) laser light is emitted from both ends of the optical fiber 80 for fiber laser.
  • the FBG fiber Bragg grating
  • the FBG fiber Bragg grating
  • the fiber laser optical fino 80 the laser beam generated in the direction facing the FBG side but reflected by the FBG and generated in the direction facing the incident surface side (oscillation) ) Laser light is superimposed and the core force on the incident surface is emitted.
  • the emitted (oscillation) laser light is converted into parallel light by the lens 32, and the traveling direction is further converted by the dichroic mirror 81.
  • the lens 32 functions as a condensing lens for reducing the diameter of the laser light (excitation light) emitted from the semiconductor laser array 10 so as to guide the laser light to the optical fiber 80 for fiber laser.
  • the (oscillation) laser light emitted from the laser optical fiber 80 it functions as a collimating lens that converts the (oscillation) laser light into parallel light.
  • the dichroic mirror 81 transmits light having the wavelength of the excitation light (in this case, the laser light emitted from the semiconductor laser array 10), and is emitted from the (oscillation) laser light (fiber optical fiber 80). Laser light) is reflected.
  • the (oscillation) laser light reflected by the dichroic mirror 81 is reduced in diameter by the condenser lens 82 and is incident on the incident surface of the transmission optical fiber 40.
  • the exit surface force of the transmission optical fiber 40 also extracts the laser beam.
  • laser light emitted from the semiconductor laser array 10 is used as excitation light.
  • the integrated part 21 of the semiconductor laser array 10 and the optical fiber array 20 is fixed to the same member (such as the heat-dissipating substrate 50), and the loss power and the points are the same as in FIG. Omitted.
  • a fixing member is formed by the fixing plates 21a and 21b, and the tip portions on the incident surface side of the plurality of optical fibers 22a to 22e are sandwiched and fixed by the fixing plates 21a and 21b to form an integrated portion.
  • the force fixing plate 21a or 21b in which the fixing member is configured by one fixing plate 21a and one fixing plate 21b may be configured by two or more fixing plates.
  • the front ends of the optical fibers 22a to 22e are fixed to the fixing plate 21b that sandwiches the front ends of the optical fibers 22a to 22e.
  • the force fixing plate 27 provided with the fixing plate 27 that sandwiches the rear a little may be omitted.
  • the fixing plates 21b and 27 are fixed to the fixing plate 21a with screws 21 ⁇ .
  • grooves 21m are formed at intervals in the minor axis direction of the light emitting portions of the semiconductor laser array 10.
  • the optical fibers 22a to 22e are positioned in the minor axis direction at intervals of the grooves 21m, and are positioned on the surface of the fixing plate 21a that is orthogonal to the major axis direction.
  • a groove 21m may be provided on both the fixing plates 21a and 21b.
  • the material of the fixing plates 21a and 21b for example, metal or glass that is relatively heat resistant (melting point is higher than that of the optical fiber) can be used.
  • the leaked laser light (generally shown in FIG. 1) when the laser light is incident on the incident surface of the optical fiber.
  • the laser beam included in the range indicated by L1 in Fig. 3 is approximately 86%, and the remaining 14% of the laser beam leaks outside the range indicated by L1. can do.
  • the fixing plate 21a and the fixing plate 21b may be made of different materials!
  • the manufacturing method shown in FIG. 14 and FIG. 15 uses the same processing tool T (the processing tool whose inner wall Ta is concave in the long axis direction) as the manufacturing method described in FIG.
  • the machining tool T is moved in the minor axis direction (X axis direction), and grinding, cutting or polishing is performed, so that the convex lens part is formed with respect to the major axis direction.
  • the optical fiber array in this case may have the configuration shown in FIG. 10 or the configuration shown in FIG.
  • the manufacturing method shown in FIG. A substantially cylindrical rotating grindstone is used. Then, by moving the processing tool T along the shape of the lens portion that is formed in a convex shape with respect to the major axis direction, the incident light is refracted in the major axis direction so as to be refracted in the major axis direction.
  • a convex lens part is integrally formed on the incident surface of each optical fiber.
  • the optical fiber array may have the configuration shown in FIG. 10 or the configuration shown in FIG.
  • the optical fiber and the fixing member are made of the same material or a material having a close melting point.
  • the optical fiber array in this case may have the configuration shown in FIG. 10 or the configuration shown in FIG.
  • the incident surface side of the optical fiber in the integrated part is melted by heating or the like, and a mold (metal or cemented carbide mold) for forming (transferring) the lens part is pressed against the long axis direction.
  • a convex lens portion is integrally formed on the incident surface of each optical fiber (not shown).
  • a spherical lens (or an aspheric surface (curvature of curvature) is integrally formed on the incident surface of each optical fiber by simultaneously processing the integrated portion integrated with the optical fiber and the fixing member.
  • Non-constant spherical lens or cylindrical lens (or non-cylindrical (cylindrical cylinder) lens). Since a lens part of an arbitrary shape can be formed by processing, each optical fiber has an appropriate shape that can further suppress loss and an appropriate position (position aligned with each optical fiber).
  • a lens portion can be formed on the incident surface.
  • an optical fiber array that can prevent burning can be configured by appropriately selecting the material of the fixing plates 21a and 21b.
  • the fixing member is made of the same or similar material as the optical fiber, the processing accuracy can be further improved, the uneven wear of the processing tool T is suppressed, and the shape of the lens part after processing is lost. Is less likely to occur.
  • optical fiber array 20 and the semiconductor laser condensing device 1 of the present invention are not limited to the appearance, configuration, structure, and the like described in the present embodiment, and various modifications can be made without departing from the scope of the present invention. Can be added and deleted.
  • the optical fiber array 20 described in the present embodiment is a semiconductor laser array. It is not limited to the condensing of the laser beam, but is emitted from an array-shaped light source in which a plurality of light emitting sections emitting light that travels in an elliptical shape in the major axis direction and the minor axis direction are arranged in the minor axis direction. It can be used for the purpose of collecting each light.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Semiconductor Lasers (AREA)

Abstract

It is possible to provide an optical fiber array and a semiconductor laser light collecting device capable of suppressing a loss and an optical fiber array manufacturing method. The optical fiber array is formed by a plurality of optical fibers (22a) for receiving lights emitted from an array-shaped light emission source (10) having a plurality of light emission units (12a) for emitting lights advancing while spreading into an elliptical shape, the light emission units (12a) being arranged in a shorter axis direction of an ellipsis. Each of the optical fibers is arranged so that each incident face of each optical fiber arranged at an interval of the shorter axis direction of the light emission unit so as to oppose to each light emission unit. The incident face side of each optical fiber is fixed by a fixing member to form a unitary block (21) by the fixing member and the incident face of the optical fiber. At the incident face side of each optical fiber in the unitary block, a lens unit is formed by grinding or cutting or polishing or melting and master pressing.

Description

明 細 書  Specification
光ファイバアレイ及び半導体レーザ集光装置及び光ファイバアレイの 製造方法  Optical fiber array, semiconductor laser condensing device, and optical fiber array manufacturing method
技術分野  Technical field
[0001] 本発明は、半導体レーザアレイ力 出射されるレーザ光を効率良く集光することが 可能な光ファイバアレイ及び半導体レーザ集光装置及び光ファイバアレイの製造方 法に関する。  TECHNICAL FIELD [0001] The present invention relates to an optical fiber array capable of efficiently condensing emitted laser light, a semiconductor laser condensing device, and a method of manufacturing the optical fiber array.
背景技術  Background art
[0002] 近年、半導体レーザは発振効率が高 ヽ(〜50%)ことから、固体レーザの励起光と して、あるいは直接カ卩ェ光源として利用するニーズが高まっている。また、半導体レ 一ザメーカからは、複数のェミッタ (発光部)を一次元状に配置した半導体レーザバ 一や、半導体レーザバーを積層して複数のェミッタ (発光部)を二次元状に配置した 半導体レーザスタックが商品化されて 、る。  In recent years, semiconductor lasers have a high oscillation efficiency (˜50%), and therefore there is an increasing need for using them as excitation light for solid-state lasers or as direct light sources. Semiconductor laser manufacturers also provide semiconductor laser bars in which multiple emitters (light emitting sections) are arranged one-dimensionally, and semiconductor lasers in which semiconductor laser bars are stacked and multiple emitters (light emitting sections) are arranged in two dimensions. The stack is commercialized.
例えば一般的な半導体レーザバーは、長さ約 10mm、厚さ約 0. 2mm、幅約 lmm の外形寸法の半導体レーザチップをヒートシンクにマウントしたもので、この中に厚さ 方向に約 1 m、長さ方向に約 150 mの発光部がピッチ約 500 mで 10数個集積 化されている。そして 1個の発光部からは約 2Wの出力のレーザ光が出射される。こ れらを集光してパワー密度を高くして励起光として用いたり、直接加工光源として用 いたりすれば、金属の溶接や穴あけ、切断等を行うことができる。  For example, a typical semiconductor laser bar is a semiconductor laser chip with an external dimension of about 10 mm in length, about 0.2 mm in thickness, and about 1 mm in width, mounted on a heat sink, and about 1 m in length in the thickness direction. In the vertical direction, about 10 m of light emitting parts are integrated at a pitch of about 500 m. Then, a laser beam with an output of about 2 W is emitted from one light emitting unit. If these are condensed to increase the power density and used as excitation light or directly as a processing light source, metal welding, drilling, cutting, etc. can be performed.
なお、本明細書では、半導体レーザバーも半導体レーザスタックもまとめて半導体 レーザアレイと呼ぶ。  In this specification, the semiconductor laser bar and the semiconductor laser stack are collectively referred to as a semiconductor laser array.
[0003] 一般的な半導体レーザアレイにおいて、図 1の例 (発光部が一次元配置の例)に示 すように、発光部( 12a〜 12g)から出射されるレーザ光 L1は長軸方向及び短軸方向 にほぼ楕円状に広がりながら進行する。また、図 2の例に示すように、長軸方向の広 力 Sり角 Θ fは数 10度 (例えば 30度〜 40度)程度であり、図 3の例に示すように、短軸 方向の広がり角 Θ sは数度 (例えば 3度〜 4度)程度である。また各発光部(12a〜12 g)の寸法は、上述したように、一般的な半導体レーザアレイでは長軸方向が 1 m程 度、短軸方向が 100〜200 μ m程度である。 In a general semiconductor laser array, as shown in the example of FIG. 1 (example in which the light emitting part is one-dimensionally arranged), the laser light L1 emitted from the light emitting part (12a to 12g) Proceeds while spreading almost elliptically in the minor axis direction. In addition, as shown in the example of FIG. 2, the force S shear angle Θ f in the major axis direction is about several tens of degrees (for example, 30 to 40 degrees), and in the minor axis direction as shown in the example of FIG. The spread angle Θ s is about several degrees (for example, 3 to 4 degrees). In addition, as described above, the dimension of each light emitting part (12a to 12 g) is about 1 m in the major axis direction in a general semiconductor laser array. The minor axis direction is about 100 to 200 μm.
レーザ光の集光性は「ビーム径 *広がり角」で示されるビームパラメータプロダクト に依存し、上述のような半導体レーザアレイの場合、長軸方向のビームパラメータプ 口ダクトは 0. 2mm'mrad程度で、短軸方向のビームパラメータプロダクトは 200mm •mradである。このため、集光する場合、長軸方向には比較的容易に小さく集光でき るが、短軸方向に小さく集光することは比較的困難である。  The condensing property of the laser light depends on the beam parameter product indicated by “beam diameter * divergence angle”. In the case of the semiconductor laser array as described above, the beam parameter port duct in the long axis direction is about 0.2 mm'mrad. The beam parameter product in the short axis direction is 200mm • mrad. For this reason, when condensing, it is relatively easy to collect light in the long axis direction, but it is relatively difficult to collect light in the short axis direction.
[0004] 例えば特許文献 1に記載された従来技術では、シングルモードファイバの一方の先 端に、斜断面を設けて楔状にして先端部を凸曲面としたレンズ状のマルチモードファ ィバを融着もしくは接着した、端部レンズ付きファイバが提案されている。半導体レー ザの発光部から出射されるレーザ光は、長軸方向にはレンズ状の凸曲面で内側に屈 折し、更に内部の屈折率分布で径が小さくなるように屈折し、短軸方向には屈折率 分布で径が小さくなるように屈折し、シングルモードファイバへと導光される。 [0004] For example, in the prior art described in Patent Document 1, a lens-shaped multimode fiber having a slanted cross section provided at one end of a single mode fiber and having a wedge shape and a tip curved surface is fused. Fibers with end lenses have been proposed that are attached or bonded. Laser light emitted from the light emitting part of the semiconductor laser is bent inward by a lens-like convex curved surface in the major axis direction, and further refracted so that the diameter becomes smaller due to the internal refractive index distribution, and the minor axis direction. The light is refracted so that its diameter becomes smaller due to the refractive index distribution, and is guided to a single mode fiber.
また特許文献 2に記載された従来技術では、半導体レーザアレイとレンズアレイを 金属ブロックに搭載し、当該金属ブロックをパッケージ (筐体)の側壁の窓の内側にレ 一ザ溶着し、当該窓の外側には光ファイバアレイを搭載したスリーブを位置決めして レーザ溶着した、半導体レーザモジュールが提案されている。パッケージ (筐体)の 底面に金属ブロックを固定することなく側面に固定することで、底面の歪みや、レー ザ発光時の温度上昇による位置ずれ(半導体レーザアレイとレンズアレイと光フアイ バアレイの位置ずれ)に起因する光結合損失が抑制される。  In the prior art described in Patent Document 2, the semiconductor laser array and the lens array are mounted on a metal block, and the metal block is laser welded to the inside of the window on the side wall of the package (housing). A semiconductor laser module has been proposed in which a sleeve on which an optical fiber array is mounted is positioned and laser-welded. By fixing the metal block to the side of the package (chassis) without fixing it to the side, displacement due to distortion of the bottom or temperature rise during laser emission (positions of the semiconductor laser array, lens array, and optical fiber array) The optical coupling loss due to deviation) is suppressed.
また特許文献 3に記載された従来技術では、クラッドのエッチング速度がコアのエツ チング速度よりも速い材料力 なるファイバでファイバアレイを構成しており、各フアイ バ先端をエッチング処理し、コア端面を球面レンズ状に加工して 、る。  In the prior art described in Patent Document 3, a fiber array is formed of fibers having a material force with a cladding etching rate higher than the etching rate of the core. Each fiber tip is etched and the core end face is removed. Processed into a spherical lens.
特許文献 1:特開 2000— 304965号公報  Patent Document 1: Japanese Patent Laid-Open No. 2000-304965
特許文献 2:特開平 6 - 308358号公報  Patent Document 2: JP-A-6-308358
特許文献 3:特開平 6— 324234号公報  Patent Document 3: JP-A-6-324234
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] 特許文献 1に記載した従来技術では、光ファイバとレンズが一体となっており、半導 体レーザの発光部とレンズと光ファイバとの 3者を位置決めすることなぐ半導体レー ザの発光部と光ファイバの 2者を位置決めすれば良い。しかし、複数の発光部を有す る半導体レーザアレイに対応させた場合、半導体レーザアレイの各発光部に対して 1 本ずつ光ファイバの位置を合わせる必要があるため、非常に手間が力かるとともに、 位置ずれによる損失が大きくなる可能性がある。 [0005] In the prior art described in Patent Document 1, an optical fiber and a lens are integrated. It is only necessary to position the light emitting part of the semiconductor laser and the optical fiber without positioning the light emitting part of the body laser, the lens, and the optical fiber. However, when it is applied to a semiconductor laser array having a plurality of light emitting portions, it is necessary to align the optical fiber one by one with respect to each light emitting portion of the semiconductor laser array. The loss due to misalignment may increase.
また特許文献 2に記載した従来技術では、半導体レーザアレイとレンズアレイが搭 載された金属ブロックと、光ファイバアレイとが別体であるため、これらの位置合わせ に非常に手間が力かるとともに、半導体レーザアレイの出力が比較的大きい場合、半 導体レーザアレイとレンズアレイの発熱が光ファイバアレイよりも大きくなり、金属ブロ ックの熱膨張量と、光ファイバアレイの熱膨張量の差による位置ずれが発生して損失 が大きくなる可能性がある。  In the prior art described in Patent Document 2, the metal block on which the semiconductor laser array and the lens array are mounted is separate from the optical fiber array. When the output of the semiconductor laser array is relatively large, the heat generated by the semiconductor laser array and the lens array is larger than that of the optical fiber array, and the position due to the difference between the thermal expansion of the metal block and the thermal expansion of the optical fiber array. Misalignment may occur and loss may increase.
また特許文献 3に記載した従来技術では、エッチングによりファイバを溶力してコア 端面にレンズを形成するため、ほぼ球面状のレンズ形状し力カ卩ェできず、例えばシリ ンドリカルレンズ形状等、損失を抑制する適切なレンズ形状に形成することが困難で ある。また、エッチングで溶力して球面状となることを期待する方法であるため、損失 をより抑制することができる焦点距離等、所望するレンズ特性を得ることが困難である 。また、コア端面に形成されるレンズの位置 (コアの長手方向における位置)をフアイ バ毎に精密に一致させて損失をより抑制することも困難である。  In the prior art described in Patent Document 3, a lens is formed on the end face of the core by melting the fiber by etching, so that it cannot be formed into a substantially spherical lens shape. For example, a cylindrical lens shape, etc. It is difficult to form an appropriate lens shape that suppresses loss. In addition, since it is a method that expects to form a spherical surface by melting by etching, it is difficult to obtain desired lens characteristics such as a focal length that can further suppress loss. It is also difficult to further suppress loss by precisely matching the position of the lens formed on the core end face (position in the longitudinal direction of the core) for each fiber.
本発明は、このような点に鑑みて創案されたものであり、損失をより抑制することが できる光ファイバアレイ及び半導体レーザ集光装置及び光ファイバアレイの製造方法 を提供することを課題とする。  An object of the present invention is to provide an optical fiber array, a semiconductor laser condensing device, and a method for manufacturing the optical fiber array, which are conceived in view of such a point and can further suppress loss. .
課題を解決するための手段 Means for solving the problem
上記課題を解決するため、本発明は、請求の範囲に記載の通りの構成を備える光 ファイバアレイ、半導体レーザ集光装置及び光ファイバアレイの製造方法である。 第 1の発明の光ファイバアレイは、楕円状に広がりながら進行する光を出射する発 光部が楕円の短軸方向に複数配列されたアレイ状発光源から出射される各光を入 射する複数の光ファイバにて構成された光ファイバアレイである。  In order to solve the above-described problems, the present invention is an optical fiber array, a semiconductor laser condensing device, and a method for manufacturing the optical fiber array, each having a configuration as described in the claims. The optical fiber array according to the first aspect of the invention is configured to receive a plurality of light beams that are emitted from an array-shaped light source in which a plurality of light emitting portions that emit light that travels in an elliptical shape are arranged in the short axis direction of the ellipse. This is an optical fiber array composed of optical fibers.
各光ファイバは、発光部の短軸方向の間隔に合わせて各光ファイバの各入射面が 各発光部に対向するように配置されて 、る。 Each optical fiber has each incident surface of each optical fiber aligned with the short axis direction of the light emitting part. It is arranged to face each light emitting part.
そして、各光ファイバの入射面側は、固定部材で固定されて固定部材と光ファイバ の入射面による一体部が形成されており、一体部における各光ファイバの入射面側 には、入射された光を集光するレンズ部力 研肖 lj、または切肖 lj、または研磨、または 溶融させて型を押し当てること、によって形成されている。  The incident surface side of each optical fiber is fixed by a fixing member to form an integral part of the fixing member and the incident surface of the optical fiber, and the incident surface side of each optical fiber in the integral part is incident. Lens part force that collects light It is formed by polishing lj, cutting lj, or polishing or melting and pressing the mold.
第 1の発明によれば、一体部における複数の光ファイバの各入射面が、アレイ状発 光源の発光部の間隔に合わせて並んでいるので、各発光部の位置に合わせて個々 の光ファイバを位置決めする必要がないため、位置決めが容易であるとともに、位置 決め精度が高い。これにより、損失をより抑制することができる。  According to the first invention, since the incident surfaces of the plurality of optical fibers in the integral part are arranged in line with the interval of the light emitting parts of the array light source, the individual optical fibers are adapted to the positions of the light emitting parts. Since positioning is not necessary, positioning is easy and positioning accuracy is high. Thereby, loss can be suppressed more.
[0007] 第 2の発明の光ファイバアレイでは、固定部材は、複数の光ファイバの入射面側の 先端部を固める固形材にて構成されている。  [0007] In the optical fiber array of the second invention, the fixing member is made of a solid material that hardens the tip portions on the incident surface side of the plurality of optical fibers.
第 2の発明によれば、固形材にて固定部材を容易に構成することができる。  According to the second invention, the fixing member can be easily configured with the solid material.
[0008] 第 3の発明の光ファイバアレイでは、固定部材は、楕円の長軸方向に直交する面を 互いに対向させた少なくとも 2つの固定板にて構成されており、複数の光ファイバの 入射面側の先端部が固定板にて挟み込まれて固定されている。 [0008] In the optical fiber array of the third invention, the fixing member is composed of at least two fixing plates whose surfaces orthogonal to the major axis direction of the ellipse are opposed to each other, and incident surfaces of a plurality of optical fibers The front end portion is sandwiched and fixed by a fixing plate.
第 3の発明によれば、光ファイバを挟み込む少なくとも 2つの固定板にて固定部材 を容易に構成することができる。  According to the third aspect of the invention, the fixing member can be easily configured with at least two fixing plates that sandwich the optical fiber.
[0009] 第 4の発明の光ファイバアレイでは、少なくとも固定板の 1つには、発光部の短軸方 向の間隔にて光ファイバを位置決めする溝が形成されている。 [0009] In the optical fiber array according to the fourth aspect of the invention, at least one of the fixed plates is formed with a groove for positioning the optical fiber at an interval in the short axis direction of the light emitting portion.
第 4の発明によれば、固定板に対して光ファイバを容易に位置決めすることができ る。  According to the fourth invention, the optical fiber can be easily positioned with respect to the fixed plate.
[0010] 第 5の発明の光ファイバアレイでは、レンズ部は、一体部において入射された光が 長軸方向に屈折するように長軸方向に対して凸状に一体形成されて ヽる。  In the optical fiber array of the fifth invention, the lens portion is integrally formed in a convex shape with respect to the major axis direction so that the light incident on the integral portion is refracted in the major axis direction.
第 5の発明によれば、広がり角の大きな長軸方向に対してはレンズ部で広がり角を 小さくして光ファイバ内に導光し、広がり角の小さな短軸方向に対してはそのまま導 光し、光ファイバ内に適切に光を導光することができ、損失をより抑制することができ る。  According to the fifth aspect of the invention, in the long axis direction with a large divergence angle, the lens portion reduces the divergence angle and guides it into the optical fiber, and in the short axis direction with a small divergence angle, the light is guided as it is. In addition, light can be appropriately guided into the optical fiber, and loss can be further suppressed.
また、一体部においてレンズ部を一体形成するため、レンズ部の作成が容易である 。また、各光ファイバにおけるレンズ部が同一形状(ばらつきが非常に小さい)となる ため、位置決めが容易であるとともに、損失をより抑制することができる。 Also, since the lens part is integrally formed in the integral part, it is easy to create the lens part. . Moreover, since the lens part in each optical fiber becomes the same shape (variation is very small), positioning is easy and loss can be suppressed more.
[0011] 第 6の発明の半導体レーザ集光装置では、第 1の発明〜第 5の発明のいずれかに 記載の光ファイバアレイと、アレイ状発光源として、楕円状に広がりながら進行するレ 一ザ光を出射する発光部が楕円の短軸方向に複数配列された半導体レーザアレイ とを備えた半導体レーザ集光装置であって、発光部の各々と、レンズ部を形成した入 射面の各々とが対向するように、半導体レーザアレイと一体部とを位置決めして、各 発光部から出射されるレーザ光を各光ファイバに入射して集光する。  [0011] In the semiconductor laser condensing device of the sixth invention, the optical fiber array according to any one of the first to fifth inventions and a laser beam that travels in an elliptical shape as an arrayed light source. A semiconductor laser condensing device comprising: a semiconductor laser array in which a plurality of light emitting portions for emitting the light are arranged in an elliptical short axis direction, each of the light emitting portions and each of the incident surfaces on which the lens portions are formed The semiconductor laser array and the integral part are positioned so that they face each other, and the laser light emitted from each light emitting part is incident on each optical fiber and condensed.
第 6の発明によれば、半導体レーザアレイと一体部との 2つを位置決めするのみで 、複数の発光部と各光ファイバとをまとめて位置決めできる。各発光部の位置に合わ せて個々の光ファイバを位置決めする必要がないため、位置決めが容易であるととも に、位置決め精度が高い。これにより、損失をより抑制することができる。  According to the sixth aspect of the present invention, the plurality of light emitting portions and each optical fiber can be positioned together only by positioning the two of the semiconductor laser array and the integral portion. Since it is not necessary to position individual optical fibers according to the position of each light emitting section, positioning is easy and positioning accuracy is high. Thereby, loss can be suppressed more.
[0012] 第 7の発明の半導体レーザ集光装置では、半導体レーザアレイと一体部とが同一 部材上に固定されている。  In the semiconductor laser condensing device of the seventh invention, the semiconductor laser array and the integral part are fixed on the same member.
第 7の発明によれば、レーザ光が発光部から出射されて集光されるまでの経路に位 置する部材である半導体レーザアレイと一体部とが発熱しても、固定されている部材 が同一部材であり熱膨張率が同じであるため、熱膨張による位置ずれ量を抑制する ことができ、損失をより抑制することができる。  According to the seventh aspect of the present invention, even if the semiconductor laser array, which is a member positioned on the path from when the laser light is emitted from the light emitting portion and collected, and the integrated portion generate heat, the fixed member is Since they are the same member and have the same coefficient of thermal expansion, the amount of misalignment due to thermal expansion can be suppressed, and loss can be further suppressed.
[0013] 第 8の発明の光ファイバアレイの製造方法は、楕円状に広がりながら進行する光を 出射する発光部が楕円の短軸方向に複数配列されたアレイ状発光源から出射され る各光を入射する複数の光ファイバにて構成された光ファイバアレイの製造方法であ つて、各光ファイバを、発光部の短軸方向の間隔に合わせて各光ファイバの各入射 面が各発光部に対向するように配置し、各光ファイバの入射面側を固定部材で固定 し、固定部材と光ファイバの入射面による一体部を形成する。  [0013] An optical fiber array manufacturing method according to an eighth aspect of the present invention provides each light emitted from an array light source in which a plurality of light emitting portions that emit light traveling in an elliptical shape are arranged in the minor axis direction of the ellipse. A method of manufacturing an optical fiber array composed of a plurality of optical fibers that are incident on each of the optical fibers, wherein each optical fiber is aligned with the interval in the minor axis direction of the light emitting section, and each incident surface of each optical fiber is placed on each light emitting section. It arrange | positions so that it may oppose, the incident surface side of each optical fiber is fixed with a fixing member, and the integrated part by a fixing member and the incident surface of an optical fiber is formed.
そして、一体部における光ファイバの入射面側から、長軸方向に対して凹状形状を 有する加工工具を押しつけて加工工具を短軸方向に移動させて、入射された光が長 軸方向に屈折するように長軸方向に対して凸状形状のレンズ部を各光ファイバの入 射面に一体形成する。 第 8の発明によれば、光ファイバアレイにおける各光ファイバの先端を一体ィ匕した一 体部に、長軸方向に対して凸状形状のレンズ部を容易に且つ短時間に一体形成す ることがでさる。 Then, the machining tool having a concave shape with respect to the major axis direction is pressed from the incident surface side of the optical fiber in the integral part to move the machining tool in the minor axis direction, and the incident light is refracted in the major axis direction. Thus, a convex lens portion is formed integrally with the entrance surface of each optical fiber with respect to the long axis direction. According to the eighth aspect of the present invention, the lens portion having a convex shape with respect to the major axis direction is integrally formed easily and in a short time on the one body portion in which the tips of the optical fibers in the optical fiber array are integrated. That's right.
[0014] 第 9の発明の光ファイバアレイの製造方法は、楕円状に広がりながら進行する光を 出射する発光部が楕円の短軸方向に複数配列されたアレイ状発光源から出射され る各光を入射する複数の光ファイバにて構成された光ファイバアレイの製造方法であ つて、各光ファイバを、発光部の短軸方向の間隔に合わせて各光ファイバの各入射 面が各発光部に対向するように配置し、各光ファイバの入射面側を固定部材で固定 し、固定部材と光ファイバの入射面による一体部を形成する。  [0014] The method of manufacturing the optical fiber array according to the ninth aspect of the present invention provides each light emitted from an array-shaped light source in which a plurality of light emitting sections that emit light that travels in an elliptical shape are arranged in the minor axis direction of the ellipse. A method of manufacturing an optical fiber array composed of a plurality of optical fibers that are incident on each of the optical fibers, wherein each optical fiber is aligned with the interval in the minor axis direction of the light emitting section, and each incident surface of each optical fiber is placed on each light emitting section. It arrange | positions so that it may oppose, the incident surface side of each optical fiber is fixed with a fixing member, and the integrated part by a fixing member and the incident surface of an optical fiber is formed.
そして、一体部における光ファイバの入射面側にて、短軸方向に平行な回転軸を 有する円柱形状の加工工具を、入射された光が長軸方向に屈折するように一体部が 長軸方向に凸状となるように移動させて、入射された光が長軸方向に屈折するように 長軸方向に対して凸状形状のレンズ部を各光ファイバの入射面に一体形成する。 第 9の発明によれば、光ファイバアレイにおける各光ファイバの先端を一体ィ匕した一 体部に、長軸方向に対して凸状形状のレンズ部をより高精度に一体形成することが できる。  Then, on the incident surface side of the optical fiber in the integral part, the integral part is arranged in the major axis direction so that incident light is refracted in the major axis direction with a cylindrical processing tool having a rotation axis parallel to the minor axis direction. In order to refract the incident light in the long axis direction, a convex lens portion with respect to the long axis direction is integrally formed on the incident surface of each optical fiber. According to the ninth aspect of the present invention, a lens portion having a convex shape with respect to the major axis direction can be integrally formed with higher accuracy in a unitary portion in which the tips of the optical fibers in the optical fiber array are integrated. .
[0015] 第 10の発明の光ファイバアレイの製造方法は、楕円状に広がりながら進行する光 を出射する発光部が楕円の短軸方向に複数配列されたアレイ状発光源から出射さ れる各光を入射する複数の光ファイバにて構成された光ファイバアレイの製造方法で あって、各光ファイバを、発光部の短軸方向の間隔に合わせて各光ファイバの各入 射面が各発光部に対向するように配置し、各光ファイバの入射面側を固定部材で固 定し、固定部材と光ファイバの入射面による一体部を形成する。  [0015] The method for manufacturing an optical fiber array according to the tenth aspect of the invention provides each light emitted from an arrayed light source in which a plurality of light emitting portions that emit light traveling in an elliptical shape are arranged in the minor axis direction of the ellipse. A method of manufacturing an optical fiber array composed of a plurality of optical fibers that are incident on each of the optical fibers, wherein each optical fiber is aligned with the interval in the minor axis direction of the light emitting unit, and each incident surface of each optical fiber is connected to each light emitting unit. The incident surface side of each optical fiber is fixed by a fixing member, and an integral part is formed by the fixing member and the incident surface of the optical fiber.
そして、光ファイバと固定部材とを同じ材質または融点の近い材質にて構成し、一 体部における光ファイバの入射面側を溶融させて型を押し当てることで、入射された 光が長軸方向に屈折するように長軸方向に対して凸状形状のレンズ部を各光フアイ バの入射面に一体形成する。  Then, the optical fiber and the fixing member are made of the same material or a material with a close melting point, and the incident light side of the optical fiber in the unit is melted and pressed against the mold so that the incident light is in the long axis direction. A lens portion having a convex shape with respect to the major axis direction is integrally formed on the incident surface of each optical fiber so as to be refracted into the light.
第 10の発明によれば、光ファイバアレイにおける各光ファイバの先端を一体ィ匕した 一体部に、長軸方向に対して凸状形状のレンズ部をより容易に一体形成することが できる。 According to the tenth invention, it is possible to more easily integrally form a convex lens portion with respect to the major axis direction in the integrated portion in which the tips of the optical fibers in the optical fiber array are integrated. it can.
[0016] 第 11の発明の光ファイバアレイの製造方法では、発光部の短軸方向の間隔にて複 数の溝が形成された溝アレイの各溝に、先端部が溝アレイ力 突出するように各光フ アイバを配置し、突出させた先端部を固定部材で固定して一体部を形成する。  [0016] In the manufacturing method of the optical fiber array of the eleventh aspect of the invention, the tip end portion projects into the groove array force in each groove of the groove array in which a plurality of grooves are formed at intervals in the minor axis direction of the light emitting portion. Each optical fiber is disposed on the front, and the protruding tip is fixed with a fixing member to form an integral part.
第 11の発明によれば、発光部の短軸方向の間隔で光ファイバを容易に位置決め することが可能であり、光ファイバアレイにおける各光ファイバの先端を一体ィ匕した一 体部を容易に形成することができる。  According to the eleventh invention, it is possible to easily position the optical fiber at intervals in the minor axis direction of the light emitting part, and it is easy to form a unitary part in which the tips of the optical fibers in the optical fiber array are integrated. Can be formed.
図面の簡単な説明  Brief Description of Drawings
[0017] [図 1]一般的な半導体レーザアレイの構造及び出射されるレーザ光を説明する図 (斜 視図)である。  [0017] FIG. 1 is a diagram (perspective view) for explaining the structure of a general semiconductor laser array and emitted laser light.
[図 2]—般的な半導体レーザアレイの構造及び出射されるレーザ光を説明する図 (側 面図)である。  FIG. 2 is a diagram (side view) for explaining the structure of a general semiconductor laser array and emitted laser light.
[図 3]—般的な半導体レーザアレイの構造及び出射されるレーザ光を説明する図 (平 面図)である。  FIG. 3 is a diagram (plan view) for explaining the structure of a general semiconductor laser array and emitted laser light.
[図 4]本発明の光ファイバアレイ 20の構成を説明する図である。  FIG. 4 is a diagram illustrating the configuration of an optical fiber array 20 of the present invention.
[図 5]本発明の光ファイバアレイ 20、及び半導体レーザ集光装置 1の構成を説明する 図である。  FIG. 5 is a diagram illustrating the configuration of the optical fiber array 20 and the semiconductor laser condensing device 1 of the present invention.
[図 6]光ファイバアレイ 20から出射されるレーザ光の広がり角及び半径と、伝送用光 ファイバ 40に入射されるレーザ光の広がり角及び半径との関係を説明する図である  FIG. 6 is a diagram for explaining the relationship between the divergence angle and radius of laser light emitted from the optical fiber array 20 and the divergence angle and radius of laser light incident on the transmission optical fiber 40.
[図 7]—体部 21の構造 (側面図)と機能を説明する図である。 FIG. 7 is a diagram for explaining the structure (side view) and function of the body part 21.
[図 8]—体部 21の構造 (平面図)と機能を説明する図である。  FIG. 8 is a diagram for explaining the structure (plan view) and function of the body part 21.
[図 9]溝アレイ 26の例を示す図である。  FIG. 9 is a diagram showing an example of a groove array 26.
[図 10]レンズ部が一体形成された光ファイバアレイ 20の製造方法の例を説明する図 である。  FIG. 10 is a diagram for explaining an example of a manufacturing method of the optical fiber array 20 in which a lens portion is integrally formed.
[図 11]半導体レーザ集光装置 1の応用例を説明する図である。  FIG. 11 is a diagram for explaining an application example of the semiconductor laser condensing device 1.
[図 12]半導体レーザ集光装置 1の応用例を説明する図である。  FIG. 12 is a diagram for explaining an application example of the semiconductor laser condensing device 1.
[図 13]光ファイバアレイ 20の構成における他の実施例を説明する図である。 [図 14]図 13に示す光ファイバアレイの先端部の例を示す図である。 FIG. 13 is a diagram for explaining another embodiment in the configuration of the optical fiber array 20. 14 is a diagram showing an example of a tip portion of the optical fiber array shown in FIG.
[図 15]図 14に示す光ファイバアレイの入射面側にレンズ部を一体形成する方法を説 明する図である。  15 is a diagram for explaining a method of integrally forming a lens portion on the incident surface side of the optical fiber array shown in FIG.
[図 16]図 14に示す光ファイバアレイの入射面側にレンズ部を一体形成する方法にお ける他の実施例を説明する図 (斜視図)である。  FIG. 16 is a view (perspective view) for explaining another embodiment in the method of integrally forming the lens portion on the incident surface side of the optical fiber array shown in FIG.
符号の説明 Explanation of symbols
1 半導体レーザ集光装置  1 Semiconductor laser concentrator
10 半導体レーザアレイ  10 Semiconductor laser array
12a' 〜12g 発光部  12a 'to 12g Light emitting part
20 光ファイバアレイ  20 Optical fiber array
21 一体部  21 Integrated part
22a' 〜22g 光ファイバ  22a 'to 22g optical fiber
23a クラッド部材  23a Clad member
24a コア部材  24a Core material
26 溝アレイ  26 Groove array
29 パンドル部  29 Pandol Club
30 集光手段  30 Condensing means
31、 32 レンズ  31, 32 lenses
40 伝送用光ファイバ  40 Optical fiber for transmission
50 基板  50 substrates
60 ヒートシンク  60 heat sink
70 フィン  70 fins
80 ファイバレーザ用光ファイバ  80 Optical fiber for fiber laser
81 ダイクロイツクミラー  81 dichroic mirror
82 レンズ  82 lenses
83 FBG  83 FBG
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
以下に本発明を実施するための最良の形態を図面を用いて説明する。なお、全て
Figure imgf000011_0001
ヽて X軸方向は短軸方向を示しており、 Y軸方向は長軸方向を示してお り、 Z軸方向は発光部から出射されるレーザ光の出射方向を示している。
The best mode for carrying out the present invention will be described below with reference to the drawings. All
Figure imgf000011_0001
Thus, the X-axis direction indicates the short-axis direction, the Y-axis direction indicates the long-axis direction, and the Z-axis direction indicates the emission direction of the laser light emitted from the light emitting unit.
図 4〜図 6は、本発明の光ファイバアレイ 20、及び本発明の半導体レーザ集光装 置 1を含むレーザ集光装置の例を示している。  4 to 6 show an example of a laser focusing device including the optical fiber array 20 of the present invention and the semiconductor laser focusing device 1 of the present invention.
參 [光ファイバアレイの構成(図 4) ]  參 [Configuration of optical fiber array (Figure 4)]
図 4の例に示すように本発明の光ファイバアレイ 20は、半導体レーザアレイ 10の発 光部の短軸方向の間隔に合わせて各光ファイバ(22a、 22b)の各入射面が各発光 部に対向するように配置されている(隣り合う発光部の短軸方向の中心間隔と、隣り 合う光ファイバの入射面の短軸方向の中心間隔が同一)。  As shown in the example of FIG. 4, the optical fiber array 20 of the present invention is configured such that each incident surface of each optical fiber (22a, 22b) corresponds to each light emitting unit in accordance with the interval in the minor axis direction of the light emitting unit of the semiconductor laser array 10. (The center interval in the minor axis direction of the adjacent light emitting units is the same as the center interval in the minor axis direction of the incident surface of the adjacent optical fiber).
そして隣り合う光ファイバの入射面の周囲を固形材 (例えば、紫外線硬化榭脂や、 石英系化合物 (ポリシラン、ポリシラザン)もしくはエポキシ系の接着剤)で固めた一体 部 21が形成され、一体部 21と各光ファイバ(22a、 22b' ·)にて光ファイバアレイ 20を 構成している。  Then, an integrated part 21 is formed around the incident surface of the adjacent optical fiber, which is solidified with a solid material (for example, ultraviolet curing resin, quartz compound (polysilane, polysilazane) or epoxy adhesive). Each optical fiber (22a, 22b '·) constitutes an optical fiber array 20.
また、一体部 21における光ファイバ(22a、 22b)の入射面側には、入射されるレー ザ光を集光するレンズ部が形成されており、当該レンズ部については後述する。  Further, a lens portion for condensing incident laser light is formed on the incident surface side of the optical fiber (22a, 22b) in the integrated portion 21, and the lens portion will be described later.
[0020] 參 [半導体レーザ集光装置 1の構成 (図 5) ] [0020] 參 [Configuration of Semiconductor Laser Concentrator 1 (Figure 5)]
図 5の例に示すように本発明の半導体レーザ集光装置 1は、半導体レーザアレイ 1 0、光ファイバアレイ 20にて構成されている。  As shown in the example of FIG. 5, the semiconductor laser condensing device 1 of the present invention includes a semiconductor laser array 10 and an optical fiber array 20.
そして半導体レーザアレイ 10の各発光部(12a〜12g、図 1参照)に対して、一体部 21の各入射面が対向するように、半導体レーザアレイ 10と一体部 21 (光ファイバァ レイ 20)とを位置決めする。  Then, the semiconductor laser array 10 and the integrated portion 21 (optical fiber array 20) are arranged so that each incident surface of the integrated portion 21 faces each light emitting portion (12a to 12g, see FIG. 1) of the semiconductor laser array 10. Positioning.
光ファイバアレイ 20の出射面力 伝送用光ファイバ 40に集光するまでの集光手段 30には種々の形態があり、図 5の例ではレンズ 31、 32を用いた N A変換光学系を用 いており、半導体レーザアレイから出射されたレーザ光を直接加工光源として用いる 例を示している。なお、後述する図 11及び図 12の説明にて、直接加工光源として用 V、る例、及び固体レーザの励起光として用いる例にっ 、て説明する。  Outgoing surface force of optical fiber array 20 There are various forms of condensing means 30 for condensing light to optical fiber 40 for transmission. In the example of Fig. 5, NA conversion optical system using lenses 31 and 32 is used. In this example, laser light emitted from the semiconductor laser array is used as a direct processing light source. In the description of FIG. 11 and FIG. 12, which will be described later, an example of using V as a direct processing light source and an example of using it as excitation light of a solid-state laser will be described.
[0021] 光ファイバアレイ 20の出射面は図 6に示すようにバンドルされ (束ねられ)ており、そ の半径を rl、出射されるレーザ光の広がり角を 0 1とする。また、レンズ 31、 32にて 集光されたレーザ光が入射される伝送用光ファイバ 40の入射面の半径を r2、入射さ れるレーザ光の入射角を 0 2とすると、 rl * Θ l =r2 * θ 2が成立する。 The emission surface of the optical fiber array 20 is bundled (bundled) as shown in FIG. 6. The radius is rl and the spread angle of the emitted laser light is 01. Also with lenses 31 and 32 If the radius of the incident surface of the transmission optical fiber 40 on which the focused laser beam is incident is r2, and the incident angle of the incident laser beam is 02, then rl * Θl = r2 * θ2.
更に伝送用光ファイバ 40の開口数を ΝΑとすると、 sin Θ 2く NAとなるように、適切 な rl、 r2、 NAを選定することで、光ファイバアレイ 20から出射されたレーザ光を伝送 用光ファイバ 40に効率良く入射することができる。  Furthermore, if the numerical aperture of the transmission optical fiber 40 is ΝΑ, the laser light emitted from the optical fiber array 20 is used for transmission by selecting appropriate rl, r2, NA so that sin Θ2 is NA. It can efficiently enter the optical fiber 40.
[0022] 參 [一体部 21の構造と機能 (図 7、図 8) ] [0022] 參 [Structure and function of integrated part 21 (Fig. 7, Fig. 8)]
次に図 7及び図 8を用いて、一体部 21の構造と機能について説明する。 図 7は図 4における半導体レーザアレイ 10の発光部 12aと一体部 21及び光フアイ バ 22aとを短軸方向(X軸方向)から見た図であり、図 8は長軸方向(Y軸方向)から見 た図である。  Next, the structure and function of the integrated part 21 will be described with reference to FIGS. 7 is a view of the light emitting portion 12a, the integrated portion 21 and the optical fiber 22a of the semiconductor laser array 10 in FIG. 4 as seen from the short axis direction (X axis direction), and FIG. 8 is the long axis direction (Y axis direction). ).
図 7に示すように、一体部 21における光ファイバ 22aの入射面側には、入射される レーザ光 L1を集光するレンズ部が形成されており、当該レンズ部にてレーザ光 L1を 屈折させて広がり角を小さくして(ほぼ平行光となるように屈折させて)光ファイバ 22a 内に導光し、クラッド 23aに周囲を覆われたコア部 24a内に適切に導光することが可 能である。なお、レンズ部は一体部 21において長軸方向に対して凸状に一体形成さ れて 、る(形成方法にっ 、ては図 9及び図 10の説明にて後述する)。  As shown in FIG. 7, a lens portion for converging the incident laser beam L1 is formed on the incident surface side of the optical fiber 22a in the integrated portion 21, and the lens portion refracts the laser beam L1. It is possible to guide the light into the optical fiber 22a with a small divergence angle (refracted so as to be almost parallel light), and to properly guide the light into the core 24a covered with the cladding 23a. It is. The lens portion is integrally formed in a convex shape with respect to the major axis direction in the integral portion 21 (the forming method will be described later in the description of FIGS. 9 and 10).
また、図 8の例では短軸方向にはレンズ形状を形成していないが、短軸方向は広が り角が小さいため、特に集光しなくても開口数 NA以下で光ファイバ 22a内にレーザ 光 L 1を導光することが可能である。  In the example of Fig. 8, the lens shape is not formed in the minor axis direction, but the minor axis direction is wide and the angle is small. The laser light L 1 can be guided.
もちろん各光ファイバの入射面に、更に短軸方向に凸状となるようにレンズ部を形 成してもよいが、長軸方向の曲面と短軸方向の曲面では異なる曲率となる。  Of course, a lens portion may be formed on the incident surface of each optical fiber so as to be further convex in the minor axis direction, but the curved surface in the major axis direction and the curved surface in the minor axis direction have different curvatures.
[0023] 參 [レンズ部が一体形成された光ファイバアレイ 20の製造方法(図 9及び図 10) ] 次に図 9及び図 10を用いて、レンズ部が一体形成された光ファイバアレイ 20の製 造方法 (一体部 21の形成方法とレンズ部の一体形成方法)の例につ 、て説明する。 まず、半導体レーザアレイ 10の発光部 12xの中心間隔 (短軸方向における間隔) で V溝が形成された溝アレイ 26を用意する(図 9)。 V溝の数は発光部の数と同数あ るいは同数以上である。なお、溝の形状は V溝に限定されず、種々の形状の溝を使 用することが可能である。 そして図 10の例に示すように、発光部の数と同数の光ファイバ 22ηを、先端部が溝 アレイ 26から突出するように V溝に並べていく。そして突出させた先端部を紫外線硬 化榭脂や、石英系化合物 (ポリシラン、ポリシラザン)もしくは、エポキシ等の接着剤等 の固形材で固めて一体とした一体部 21を形成する。なお次の工程にて、一体部 21 の先端から加工工具 Τ (この例では回転砥石)にて研削してレンズ部を一体形成する ので、一体部 21を形成した時点(レンズ部を形成する前)では、光ファイバの入射面 を前記接着剤等が覆っていても、溝アレイ 26からの突出長さが均等でなくても構わな い。 [0023] 方法 [Production Method of Optical Fiber Array 20 with Lens Part Integrated (FIGS. 9 and 10)] Next, using FIG. 9 and FIG. An example of a manufacturing method (a method for forming the integral part 21 and a method for integrally forming the lens part) will be described. First, a groove array 26 is prepared in which V-grooves are formed at the center interval (interval in the short axis direction) of the light emitting portions 12x of the semiconductor laser array 10 (FIG. 9). The number of V-grooves is the same as or more than the number of light emitting parts. The shape of the groove is not limited to the V-groove, and various shapes of grooves can be used. Then, as shown in the example of FIG. 10, the same number of optical fibers 22η as the number of light emitting portions are arranged in the V-groove so that the tip portion protrudes from the groove array 26. Then, the projecting tip is solidified with a solid material such as an ultraviolet curable resin, a quartz compound (polysilane, polysilazane), or an adhesive such as epoxy to form an integral part 21. In the next step, the lens portion is integrally formed by grinding from the tip of the integral portion 21 with a processing tool Τ (in this example, a rotating grindstone). Therefore, when the integral portion 21 is formed (before the lens portion is formed). ), The incident surface of the optical fiber may be covered with the adhesive or the like, or the protruding length from the groove array 26 may not be uniform.
そして、内壁 Taが長軸方向に対して凹状形状を有する加工工具 Τ (この例では回 転砥石 T (回転軸は長軸方向と平行))を用いて、当該加工工具丁の内壁 Taを一体 部 21に押付けながら短軸方向 (X軸方向)に移動させて、形状を整えるとともに各光 ファイバの入射面を表面に露出させ、一体部 21にレンズ部 (長軸方向に対して凸状 形状のレンズ部)を一体形成する。一体形成するため、短時間に、且つ容易に形成 することができる。なお、加工工具 Tは内壁 Taの形状を転写できるものであればよぐ 回転砥石に限定されず、例えば短軸方向に往復振動する加工工具等であつてもよ い。  Then, the inner wall Ta of the machining tool is integrated with the machining tool 有 す る whose inner wall Ta has a concave shape with respect to the major axis direction (in this example, the rotating grindstone T (the rotation axis is parallel to the major axis direction)). While pressing against part 21, it moves in the short axis direction (X-axis direction) to adjust the shape and expose the incident surface of each optical fiber to the surface. The lens part) is integrally formed. Since it is integrally formed, it can be formed easily in a short time. The machining tool T is not limited to a rotating grindstone as long as it can transfer the shape of the inner wall Ta, and may be a machining tool that reciprocally vibrates in the short axis direction, for example.
溝アレイ 26は、レンズ部を形成した後に取り外してもよいし、そのまま集光用光ファ ィバ部 20として取り付けてお 、てもよ 、。  The groove array 26 may be removed after the lens portion is formed, or may be attached as the condensing optical fiber portion 20 as it is.
上記のようにレンズ部を形成した一体部 21では、各光ファイバの入射面に同一形 状のレンズ部が形成され、各光ファイバの入射面の間隔は発光部の間隔と同一であ る。  In the integrated portion 21 in which the lens portions are formed as described above, the lens portions having the same shape are formed on the incident surfaces of the optical fibers, and the intervals between the incident surfaces of the optical fibers are the same as the intervals between the light emitting portions.
従って、半導体レーザアレイ 10と一体部 21とを位置決めするのみで、複数の発光 部から出射されるレーザ光を複数の光ファイバの各々に適切に入射することができ、 非常に便利であるとともに、位置ずれによる損失を抑制することができる。  Therefore, the laser beam emitted from the plurality of light emitting portions can be appropriately incident on each of the plurality of optical fibers only by positioning the semiconductor laser array 10 and the integrated portion 21, which is very convenient, Loss due to misalignment can be suppressed.
また各レンズ部は一体形成されており、レンズ部毎の形状のばらつきが非常に小さ いため(焦点距離のばらつきが非常に小さいため)、位置ずれによる損失をより抑制 することができる。  In addition, since each lens part is integrally formed and the variation in the shape of each lens part is very small (the variation in the focal length is very small), the loss due to the positional deviation can be further suppressed.
また、更に短軸方向に凸状となるようにレンズ部を加工 (形成)したい場合には、 90 度回転させた加工工具(内壁 Taの凹状形状が短軸方向に凹状となるように回転、た だし内壁 Taの凹状形状の曲率は上記加工工具 Tとは異なる)を用いて、各光フアイ バの入射面に押付けながら長軸方向(Y軸方向)に移動させてレンズ部を加工しても よい。 If you want to process (form) the lens so that it is convex in the minor axis direction, Each of the optical fibers using a processing tool rotated at a predetermined angle (rotated so that the concave shape of the inner wall Ta becomes concave in the minor axis direction, but the curvature of the concave shape of the inner wall Ta is different from that of the above processing tool T). The lens part may be processed by moving in the long axis direction (Y-axis direction) while pressing against the incident surface.
[0025] 參 [半導体レーザ集光装置 1の応用例(図 11、図 12) ]  [0025] [Application example of semiconductor laser condensing device 1 (Fig. 11, Fig. 12)]
図 11に示した例は、本発明の半導体レーザ集光装置 1を構成している半導体レー ザアレイ 10と光ファイバアレイ 20とを 6セット用いている。各光ファイバアレイ 20の出 射面をバンドル部 29で束ね、レンズ 31 (平行光に変換するコリメートレンズ)、及びレ ンズ 32 (平行光のレーザ光の径を小さくする集光レンズ)で構成された集光手段を用 いて、バンドル部 29から出射されたレーザ光 L1を集光して伝送用光ファイバ 40に入 射し、伝送用光ファイバ 40の出射面からレーザ光を取り出すものである。この例は半 導体レーザアレイ 10から出射されるレーザ光を直接加工光源として利用する例であ る。  The example shown in FIG. 11 uses six sets of the semiconductor laser array 10 and the optical fiber array 20 constituting the semiconductor laser condensing device 1 of the present invention. The emission surface of each optical fiber array 20 is bundled by a bundle unit 29, and is composed of a lens 31 (a collimating lens that converts the light into parallel light) and a lens 32 (a condensing lens that reduces the diameter of the laser light of the parallel light). The laser beam L1 emitted from the bundle unit 29 is collected using the condensing means and incident on the transmission optical fiber 40, and the laser beam is extracted from the emission surface of the transmission optical fiber 40. In this example, laser light emitted from the semiconductor laser array 10 is directly used as a processing light source.
半導体レーザアレイ 10、及び光ファイバアレイ 20の一体部 21とは、同一部材 (放 熱用の基板 50であり、熱伝導率の高い金属等にて構成される)に固定されている。 半導体レーザアレイ 10や一体部 21の発熱により基板 50が熱膨張率に従って膨張し ても、半導体レーザアレイ 10が固定されている位置と一体部 21が固定されている位 置とで熱膨張率の差がなく(同一部材であるため)、同じ方向に固定しているため、熱 膨張が発生しても、同じ方向に同じ量が作用し、温度変化に伴う位置ずれを抑制す ることができ、損失をより抑制することができる。  The semiconductor laser array 10 and the integrated portion 21 of the optical fiber array 20 are fixed to the same member (a substrate 50 for heat release, which is made of a metal having a high thermal conductivity). Even if the substrate 50 expands according to the coefficient of thermal expansion due to the heat generated by the semiconductor laser array 10 or the integrated part 21, the thermal expansion coefficient is different between the position where the semiconductor laser array 10 is fixed and the position where the integrated part 21 is fixed. Since there is no difference (because they are the same member) and they are fixed in the same direction, even if thermal expansion occurs, the same amount acts in the same direction, and displacement due to temperature changes can be suppressed. The loss can be further suppressed.
なお、図 11では、更に基板 50にヒートシンク 60とファン 70とを設け、放熱している。 また、基板 50にパス穴をあけて水や油等の流体で冷却することも可能である。  In FIG. 11, a heat sink 60 and a fan 70 are further provided on the substrate 50 to dissipate heat. It is also possible to make a pass hole in the substrate 50 and cool it with a fluid such as water or oil.
[0026] 図 12に示した例は、図 11と同様に本発明の半導体レーザ集光装置 1を構成してい る半導体レーザアレイ 10と光ファイバアレイ 20とを 6セット用いている。図 11とは、光 ファイバアレイ 20のバンドル部 29から先の構成が異なる。 The example shown in FIG. 12 uses six sets of the semiconductor laser array 10 and the optical fiber array 20 that constitute the semiconductor laser condensing device 1 of the present invention, as in FIG. 11 differs from the configuration shown in FIG. 11 from the bundle portion 29 of the optical fiber array 20.
図 12において符号 80は希土類元素がドープされたコア部を内部に持つファイバレ 一ザ用光ファイバであり(コア部の周囲は、入射された励起光を閉じ込めるクラッド部 で構成されている)、入射面カゝら励起光 (この場合、半導体レーザアレイから出射され るレーザ光)が入射されると、前記コア部が励起されてコア部内で (発振)レーザ光が 発生する。(発振)レーザ光はファイバレーザ用光ファイバ 80の両端から出射される 力 励起光の入射面側の端面と反対側の端面に FBG (ファイバブラッググレーティン グ)を設けて (発振)レーザ光を反射して入射面側に戻し、励起光の入射面側から (発 振)レーザ光を取り出す。 In FIG. 12, reference numeral 80 denotes an optical fiber for a fiber laser having a core portion doped with a rare earth element (the periphery of the core portion is composed of a cladding portion for confining incident excitation light). Excitation light (in this case, emitted from the semiconductor laser array) When the laser beam is incident, the core part is excited and (oscillation) laser light is generated in the core part. The (oscillation) laser light is emitted from both ends of the optical fiber 80 for fiber laser. The FBG (fiber Bragg grating) is provided on the end surface opposite to the end surface on the incident surface side of the excitation light. The light is reflected back to the incident surface side, and (oscillation) laser light is extracted from the incident surface side of the excitation light.
[0027] ファイバレーザ用光ファイノ 80内にて、 FBG側に向力う方向に発生したが FBGに よって反射された (発振)レーザ光と、入射面側に向力う方向に発生した (発振)レー ザ光とが重畳されて入射面のコア部力 出射される。出射された (発振)レーザ光は、 レンズ 32にて平行光に変換され、更にダイクロイツクミラー 81にて進行方向が変換さ れる。なお、レンズ 32は、半導体レーザアレイ 10から出射されたレーザ光 (励起光) に対しては、ファイバレーザ用光ファイバ 80に導光するために径を小さくする集光レ ンズとして機能し、ファイバレーザ用光ファイバ 80から出射された (発振)レーザ光に 対しては、(発振)レーザ光を平行光に変換するコリメートレンズとして機能する。 また、ダイクロイツクミラー 81は、励起光 (この場合、半導体レーザアレイ 10から出射 されたレーザ光)の波長の光を透過させ、(発振)レーザ光 (ファイバレーザ用光フアイ バ 80から出射されたレーザ光)の波長の光を反射するものである。 [0027] In the fiber laser optical fino 80, the laser beam generated in the direction facing the FBG side but reflected by the FBG and generated in the direction facing the incident surface side (oscillation) ) Laser light is superimposed and the core force on the incident surface is emitted. The emitted (oscillation) laser light is converted into parallel light by the lens 32, and the traveling direction is further converted by the dichroic mirror 81. The lens 32 functions as a condensing lens for reducing the diameter of the laser light (excitation light) emitted from the semiconductor laser array 10 so as to guide the laser light to the optical fiber 80 for fiber laser. For the (oscillation) laser light emitted from the laser optical fiber 80, it functions as a collimating lens that converts the (oscillation) laser light into parallel light. The dichroic mirror 81 transmits light having the wavelength of the excitation light (in this case, the laser light emitted from the semiconductor laser array 10), and is emitted from the (oscillation) laser light (fiber optical fiber 80). Laser light) is reflected.
ダイクロイツクミラー 81にて反射された (発振)レーザ光は、集光レンズ 82にて径が 小さくされ、伝送用光ファイバ 40の入射面に入射される。そして伝送用光ファイバ 40 の出射面力もレーザ光を取り出すものである。この例は半導体レーザアレイ 10から出 射されるレーザ光を励起光として利用する例である。  The (oscillation) laser light reflected by the dichroic mirror 81 is reduced in diameter by the condenser lens 82 and is incident on the incident surface of the transmission optical fiber 40. The exit surface force of the transmission optical fiber 40 also extracts the laser beam. In this example, laser light emitted from the semiconductor laser array 10 is used as excitation light.
半導体レーザアレイ 10、及び光ファイバアレイ 20の一体部 21とは、同一部材 (放 熱用の基板 50等)に固定されており、損失力 、さい点については図 11と同様である ので説明を省略する。  The integrated part 21 of the semiconductor laser array 10 and the optical fiber array 20 is fixed to the same member (such as the heat-dissipating substrate 50), and the loss power and the points are the same as in FIG. Omitted.
[0028] 參 [光ファイバアレイの構成と製造方法のその他の実施例(図 13〜図 16) ] [0028] [Other Embodiments of Optical Fiber Array Configuration and Manufacturing Method (FIGS. 13 to 16)]
次に、光ファイバアレイ 20の構成におけるその他の実施例について、図 13を用い て説明し、光ファイバアレイ 20の製造方法におけるその他の実施例について、図 14 〜図 16を用いて説明する。  Next, another embodiment in the configuration of the optical fiber array 20 will be described with reference to FIG. 13, and another embodiment in the method for manufacturing the optical fiber array 20 will be described with reference to FIGS.
図 13に示すように、長軸方向(Y軸方向)に直交する面を互いに対向させた 2つの 固定板 21a、 21bにて固定部材を構成し、複数の光ファイバ 22a〜22eの入射面側 の先端部を固定板 21a、 21bにて挟み込んで固定し、一体部を形成する。なお、図 1 3の例では、 1つの固定板 21aと 1つの固定板 21bにて固定部材を構成した力 固定 板 21aまたは 21bを 2つ以上の固定板で構成してもよい。 As shown in Fig. 13, two planes that face each other perpendicular to the long axis direction (Y-axis direction) A fixing member is formed by the fixing plates 21a and 21b, and the tip portions on the incident surface side of the plurality of optical fibers 22a to 22e are sandwiched and fixed by the fixing plates 21a and 21b to form an integrated portion. In the example of FIG. 13, the force fixing plate 21a or 21b in which the fixing member is configured by one fixing plate 21a and one fixing plate 21b may be configured by two or more fixing plates.
また、図 13の例では、光ファイバ 22a〜22eをより安定的に位置決めするために、 光ファイバ 22a〜22eの先端部を挟み込む固定板 21bに対して、光ファイバ 22a〜2 2eの先端部よりやや後方を挟み込む固定板 27を備えている力 固定板 27は省略し てもよい。なお、固定板 21b、 27は、ネジ 21ηにて固定板 21aに固定される。  In the example of FIG. 13, in order to position the optical fibers 22a to 22e more stably, the front ends of the optical fibers 22a to 22e are fixed to the fixing plate 21b that sandwiches the front ends of the optical fibers 22a to 22e. The force fixing plate 27 provided with the fixing plate 27 that sandwiches the rear a little may be omitted. The fixing plates 21b and 27 are fixed to the fixing plate 21a with screws 21η.
[0029] 少なくとも 1つの固定板(図 13の例では固定板 21a)には、溝 21m (例えば V溝)が 、半導体レーザアレイ 10の発光部の短軸方向の間隔で形成されている。光ファイバ 22a〜22eは、この溝 21mの間隔にて短軸方向に位置決めされ、固定板 21aにおけ る長軸方向に直交する面上に位置決めされる。もちろん、固定板 21a、 21bの双方に 溝 21mを設けてもよい。  In at least one fixing plate (fixing plate 21a in the example of FIG. 13), grooves 21m (for example, V grooves) are formed at intervals in the minor axis direction of the light emitting portions of the semiconductor laser array 10. The optical fibers 22a to 22e are positioned in the minor axis direction at intervals of the grooves 21m, and are positioned on the surface of the fixing plate 21a that is orthogonal to the major axis direction. Of course, a groove 21m may be provided on both the fixing plates 21a and 21b.
また、固定板 21a、 21bの材質には、例えば、比較的熱に強い(融点が光ファイバよ りも高い)金属やガラスを用いることができる。これにより、接着剤ゃ榭脂等の比較的 熱に弱い材質で固定部材を形成した場合と比べて、光ファイバの入射面にレーザ光 を入射した際の漏れレーザ光(一般的に、図 1〜図 3の L1で示す範囲内に含まれる レーザ光は約 86%程度であり、残りの約 14%のレーザ光は L1で示す範囲の外に漏 れる)による発熱及び焼損等を確実に防止することができる。なお、固定板 21aと固 定板 21bを互 、に異なる材質で構成してもよ!/、。  Further, as the material of the fixing plates 21a and 21b, for example, metal or glass that is relatively heat resistant (melting point is higher than that of the optical fiber) can be used. As a result, compared with the case where the fixing member is formed of a relatively heat-sensitive material such as adhesive or resin, the leaked laser light (generally shown in FIG. 1) when the laser light is incident on the incident surface of the optical fiber. The laser beam included in the range indicated by L1 in Fig. 3 is approximately 86%, and the remaining 14% of the laser beam leaks outside the range indicated by L1. can do. The fixing plate 21a and the fixing plate 21b may be made of different materials!
[0030] 次に図 14〜図 16を用いて光ファイバアレイ 20の製造方法について説明する。  Next, a method for manufacturing the optical fiber array 20 will be described with reference to FIGS.
図 14及び図 15に示す製造方法は、図 10にて説明した製造方法と同じ加工工具 T (内壁 Taが長軸方向に凹形状の加工工具)を用い、加工工具 Tの内壁 Taを一体部 における光ファイバの入射面側力 押しつけて、加工工具 Tを短軸方向(X軸方向) に移動させて、研削または切削または研磨することで、長軸方向に対して凸状形状 のレンズ部を、各光ファイバの入射面に一体形成する。この場合の光ファイバアレイ は、図 10に示す構成であっても、図 13に示す構成であってもよい。  The manufacturing method shown in FIG. 14 and FIG. 15 uses the same processing tool T (the processing tool whose inner wall Ta is concave in the long axis direction) as the manufacturing method described in FIG. By pressing the incident surface side force of the optical fiber at, the machining tool T is moved in the minor axis direction (X axis direction), and grinding, cutting or polishing is performed, so that the convex lens part is formed with respect to the major axis direction. These are formed integrally on the incident surface of each optical fiber. The optical fiber array in this case may have the configuration shown in FIG. 10 or the configuration shown in FIG.
[0031] また、図 16に示す製造方法は、加工工具 Tとして短軸方向(X軸方向)に回転軸を 有する略円柱形状の回転砥石を用いる。そして、当該加工工具 Tを長軸方向に対し て凸状形状に形成するレンズ部の形状に沿って移動させることで、入射された光が 長軸方向に屈折するように長軸方向に対して凸状形状となるレンズ部を、各光フアイ バの入射面に一体形成する。この場合の光ファイバアレイは、図 10に示す構成であ つても、図 13に示す構成であってもよい。 [0031] In addition, the manufacturing method shown in FIG. A substantially cylindrical rotating grindstone is used. Then, by moving the processing tool T along the shape of the lens portion that is formed in a convex shape with respect to the major axis direction, the incident light is refracted in the major axis direction so as to be refracted in the major axis direction. A convex lens part is integrally formed on the incident surface of each optical fiber. In this case, the optical fiber array may have the configuration shown in FIG. 10 or the configuration shown in FIG.
[0032] また、更に他の製造方法として、光ファイバと固定部材とを同じ材質または融点の 近い材質にて構成する。この場合の光ファイバアレイは、図 10に示す構成であっても 、図 13に示す構成であってもよい。 [0032] As still another manufacturing method, the optical fiber and the fixing member are made of the same material or a material having a close melting point. The optical fiber array in this case may have the configuration shown in FIG. 10 or the configuration shown in FIG.
そして、一体部における光ファイバの入射面側を加熱等して溶融させ、レンズ部を 形成 (転写)するための型 (金属や超硬合金等の型)を押し当て、長軸方向に対して 凸状形状のレンズ部を、各光ファイバの入射面に一体形成する(図示省略)。  Then, the incident surface side of the optical fiber in the integrated part is melted by heating or the like, and a mold (metal or cemented carbide mold) for forming (transferring) the lens part is pressed against the long axis direction. A convex lens portion is integrally formed on the incident surface of each optical fiber (not shown).
[0033] 以上に説明したように、光ファイバと固定部材にて一体ィヒした一体部を同時に加工 することによって各光ファイバの入射面に、一体的に球面レンズ (もしくは非球面(曲 率が非一定の球面)レンズ)、もしくは円筒レンズ (もしくは非円筒(曲率が非一定の円 筒)レンズ)を形成する。加工によって任意形状のレンズ部を形成することができるの で、損失をより抑制することができる適切な形状、及び適切な位置 (各光ファイバで揃 つた位置)となるように、各光ファイバの入射面にレンズ部を形成することができる。 また、図 13に示す光ファイバアレイの構成にて、固定板 21a、 21bの材質を適切に 選定することで、焼損を防止できる光ファイバアレイを構成することができる。 [0033] As described above, a spherical lens (or an aspheric surface (curvature of curvature) is integrally formed on the incident surface of each optical fiber by simultaneously processing the integrated portion integrated with the optical fiber and the fixing member. Non-constant spherical lens), or cylindrical lens (or non-cylindrical (cylindrical cylinder) lens). Since a lens part of an arbitrary shape can be formed by processing, each optical fiber has an appropriate shape that can further suppress loss and an appropriate position (position aligned with each optical fiber). A lens portion can be formed on the incident surface. In addition, in the configuration of the optical fiber array shown in FIG. 13, an optical fiber array that can prevent burning can be configured by appropriately selecting the material of the fixing plates 21a and 21b.
また、光ファイバと同じまたは類似の材質にて固定部材を構成すれば、加工精度を より向上させることができ、加工工具 Tの偏摩耗も抑制され、加工後のレンズ部の形 状の崩れ等が生じにくくなる。  In addition, if the fixing member is made of the same or similar material as the optical fiber, the processing accuracy can be further improved, the uneven wear of the processing tool T is suppressed, and the shape of the lens part after processing is lost. Is less likely to occur.
[0034] 本発明の光ファイバアレイ 20、及び半導体レーザ集光装置 1は、本実施の形態で 説明した外観、構成、構造等に限定されず、本発明の要旨を変更しない範囲で種々 の変更、追加、削除が可能である。  [0034] The optical fiber array 20 and the semiconductor laser condensing device 1 of the present invention are not limited to the appearance, configuration, structure, and the like described in the present embodiment, and various modifications can be made without departing from the scope of the present invention. Can be added and deleted.
また、本実施の形態の説明に用いた数値は一例であり、この数値に限定されるもの ではない。  In addition, the numerical values used in the description of the present embodiment are examples, and are not limited to these numerical values.
また、本実施の形態にて説明した光ファイバアレイ 20は、半導体レーザアレイから のレーザ光の集光に限定されず、長軸方向及び短軸方向にほぼ楕円状に広がりな がら進行する光を出射する発光部が短軸方向に複数配列されたアレイ状発光源から 出射される各光を集光する用途に利用することができる。 Further, the optical fiber array 20 described in the present embodiment is a semiconductor laser array. It is not limited to the condensing of the laser beam, but is emitted from an array-shaped light source in which a plurality of light emitting sections emitting light that travels in an elliptical shape in the major axis direction and the minor axis direction are arranged in the minor axis direction. It can be used for the purpose of collecting each light.

Claims

請求の範囲 The scope of the claims
[1] 楕円状に広がりながら進行する光を出射する発光部が前記楕円の短軸方向に複 数配列されたアレイ状発光源から出射される各光を入射する複数の光ファイバにて 構成された光ファイバアレイであって、  [1] A light-emitting portion that emits light that travels while spreading in an elliptical shape is configured by a plurality of optical fibers that receive light emitted from an array-shaped light source that is arranged in a plurality in the short axis direction of the ellipse. An optical fiber array,
各光ファイバは、前記発光部の前記短軸方向の間隔に合わせて各光ファイバの各 入射面が各発光部に対向するように配置されており、  Each optical fiber is arranged so that each incident surface of each optical fiber faces each light emitting part according to the interval in the minor axis direction of the light emitting part,
各光ファイバの入射面側は、固定部材で固定されて当該固定部材と光ファイバの 入射面による一体部が形成されており、  The incident surface side of each optical fiber is fixed by a fixing member to form an integral part of the fixing member and the incident surface of the optical fiber.
前記一体部における各光ファイバの入射面側には、入射された光を集光するレン ズ部が、研肖 iJ、または切肖 iJ、または研磨、または溶融させて型を押し当てること、によ つて形成されて 、る光ファイバアレイ。  On the incident surface side of each optical fiber in the integrated part, a lens part that collects the incident light is pressed against the mold by polishing iJ, cutting iJ, or polishing or melting. Therefore, the optical fiber array formed.
[2] 請求項 1に記載の光ファイバアレイであって、  [2] The optical fiber array according to claim 1,
前記固定部材は、複数の前記光ファイバの入射面側の先端部を固める固形材にて 構成されて ヽる光ファイノくアレイ。  The fixing member is an optical fiber array made of a solid material that hardens the tip portions on the incident surface side of the plurality of optical fibers.
[3] 請求項 1に記載の光ファイバアレイであって、 [3] The optical fiber array according to claim 1,
前記固定部材は、前記楕円の長軸方向に直交する面を互 、に対向させた少なくと も 2つの固定板にて構成されており、複数の前記光ファイバの入射面側の先端部が 前記固定板にて挟み込まれて固定されている光ファイバアレイ。  The fixing member is composed of at least two fixing plates in which planes orthogonal to the major axis direction of the ellipse are opposed to each other, and the tip portions on the incident surface side of the plurality of optical fibers are the above-mentioned An optical fiber array that is sandwiched and fixed by a fixed plate.
[4] 請求項 3に記載の光ファイバアレイであって、 [4] The optical fiber array according to claim 3,
少なくとも前記固定板の 1つには、前記発光部の前記短軸方向の間隔にて前記光 ファイバを位置決めする溝が形成されている光ファイバアレイ。  An optical fiber array in which a groove for positioning the optical fiber is formed in at least one of the fixing plates at an interval in the minor axis direction of the light emitting unit.
[5] 請求項 1〜4の!、ずれかに記載の光ファイバアレイであって、 [5] The optical fiber array according to any one of Claims 1 to 4!
前記レンズ部は、前記一体部にお!、て入射された光が前記長軸方向に屈折するよ うに前記長軸方向に対して凸状に一体形成されて 、る光ファイバアレイ。  The optical fiber array, wherein the lens portion is integrally formed in a convex shape with respect to the major axis direction so that light incident on the integral portion is refracted in the major axis direction.
[6] 請求項 1〜5のいずれかに記載の光ファイバアレイと、 [6] The optical fiber array according to any one of claims 1 to 5,
前記アレイ状発光源として、楕円状に広がりながら進行するレーザ光を出射する発 光部が前記楕円の短軸方向に複数配列された半導体レーザアレイとを備えた半導 体レーザ集光装置であって、 前記発光部の各々と、前記レンズ部を形成した前記入射面の各々とが対向するよう に、前記半導体レーザアレイと前記一体部とを位置決めして、各発光部から出射され るレーザ光を各光ファイバに入射して集光する半導体レーザ集光装置。 A semiconductor laser condensing device provided with a semiconductor laser array in which a plurality of light emitting portions for emitting laser light traveling while spreading in an elliptical shape are arranged in the short axis direction of the ellipse as the arrayed light source. And The semiconductor laser array and the integrated part are positioned so that each of the light emitting parts and each of the incident surfaces on which the lens parts are formed face each other, and laser light emitted from each light emitting part is sent to each of the light emitting parts. A semiconductor laser condensing device that collects light by entering an optical fiber.
[7] 請求項 6に記載の半導体レーザ集光装置であって、 [7] The semiconductor laser condensing device according to claim 6,
前記半導体レーザアレイと前記一体部とが同一部材上に固定されている半導体レ 一ザ集光装置。  A semiconductor laser condensing device in which the semiconductor laser array and the integral part are fixed on the same member.
[8] 楕円状に広がりながら進行する光を出射する発光部が前記楕円の短軸方向に複 数配列されたアレイ状発光源から出射される各光を入射する複数の光ファイバにて 構成された光ファイバアレイの製造方法であって、  [8] A light emitting portion that emits light that travels while spreading in an elliptical shape is configured by a plurality of optical fibers that receive light emitted from an array-shaped light source that is arranged in a plurality in the minor axis direction of the ellipse. An optical fiber array manufacturing method comprising:
各光ファイバを、前記発光部の前記短軸方向の間隔に合わせて各光ファイバの各 入射面が各発光部に対向するように配置し、  Each optical fiber is arranged so that each incident surface of each optical fiber faces each light emitting part in accordance with the interval in the minor axis direction of the light emitting part,
各光ファイバの入射面側を固定部材で固定し、当該固定部材と光ファイバの入射 面による一体部を形成し、  The incident surface side of each optical fiber is fixed with a fixing member, and an integral part is formed by the fixing member and the incident surface of the optical fiber,
前記一体部における前記光ファイバの入射面側から、前記長軸方向に対して凹状 形状を有する加工工具を押しつけて当該加工工具を前記短軸方向に移動させて、 入射された光が前記長軸方向に屈折するように前記長軸方向に対して凸状形状の レンズ部を各光ファイバの入射面に一体形成する光ファイバアレイの製造方法。  The machining tool having a concave shape with respect to the major axis direction is pressed from the incident surface side of the optical fiber in the integrated portion to move the machining tool in the minor axis direction, and the incident light is incident on the major axis. A method of manufacturing an optical fiber array, in which a lens portion having a convex shape with respect to the major axis direction is integrally formed on an incident surface of each optical fiber so as to be refracted in a direction.
[9] 楕円状に広がりながら進行する光を出射する発光部が前記楕円の短軸方向に複 数配列されたアレイ状発光源から出射される各光を入射する複数の光ファイバにて 構成された光ファイバアレイの製造方法であって、 [9] A light emitting portion that emits light that travels while spreading in an elliptical shape is configured by a plurality of optical fibers that receive light emitted from an array-shaped light source that is arranged in a plurality in the minor axis direction of the ellipse. An optical fiber array manufacturing method comprising:
各光ファイバを、前記発光部の前記短軸方向の間隔に合わせて各光ファイバの各 入射面が各発光部に対向するように配置し、  Each optical fiber is arranged so that each incident surface of each optical fiber faces each light emitting part in accordance with the interval in the minor axis direction of the light emitting part,
各光ファイバの入射面側を固定部材で固定し、当該固定部材と光ファイバの入射 面による一体部を形成し、  The incident surface side of each optical fiber is fixed with a fixing member, and an integral part is formed by the fixing member and the incident surface of the optical fiber,
前記一体部における前記光ファイバの入射面側にて、前記短軸方向に平行な回 転軸を有する円柱形状の加工工具を、入射された光が前記長軸方向に屈折するよう に前記一体部が前記長軸方向に凸状となるように移動させて、入射された光が前記 長軸方向に屈折するように前記長軸方向に対して凸状形状のレンズ部を各光フアイ バの入射面に一体形成する光ファイバアレイの製造方法。 On the incident surface side of the optical fiber in the integrated part, a cylindrical processing tool having a rotation axis parallel to the short axis direction is applied to the integrated part so that incident light is refracted in the long axis direction. Is moved so as to be convex in the major axis direction, and the convex lens portion with respect to the major axis direction is moved to each optical fiber so that incident light is refracted in the major axis direction. A method of manufacturing an optical fiber array integrally formed on the incident surface of the bar.
[10] 楕円状に広がりながら進行する光を出射する発光部が前記楕円の短軸方向に複 数配列されたアレイ状発光源から出射される各光を入射する複数の光ファイバにて 構成された光ファイバアレイの製造方法であって、  [10] A light-emitting portion that emits light that travels while spreading in an elliptical shape is configured by a plurality of optical fibers that receive light emitted from an array-shaped light source that is arranged in a plurality in the minor axis direction of the ellipse. An optical fiber array manufacturing method comprising:
各光ファイバを、前記発光部の前記短軸方向の間隔に合わせて各光ファイバの各 入射面が各発光部に対向するように配置し、  Each optical fiber is arranged so that each incident surface of each optical fiber faces each light emitting part in accordance with the interval in the minor axis direction of the light emitting part,
各光ファイバの入射面側を固定部材で固定し、当該固定部材と光ファイバの入射 面による一体部を形成し、  The incident surface side of each optical fiber is fixed with a fixing member, and an integral part is formed by the fixing member and the incident surface of the optical fiber,
前記光ファイバと前記固定部材とを同じ材質または融点の近い材質にて構成し、 前記一体部における前記光ファイバの入射面側を溶融させて型を押し当てることで 、入射された光が前記長軸方向に屈折するように前記長軸方向に対して凸状形状の レンズ部を各光ファイバの入射面に一体形成する光ファイバアレイの製造方法。  The optical fiber and the fixing member are made of the same material or a material having a melting point close to each other, and the incident light side of the optical fiber in the integrated portion is melted and pressed against the mold so that the incident light is A method of manufacturing an optical fiber array, wherein a lens portion convex to the major axis direction is integrally formed on an incident surface of each optical fiber so as to be refracted in the axial direction.
[11] 請求項 8〜 10のいずれかに記載の光ファイバアレイの製造方法であって、  [11] A method of manufacturing an optical fiber array according to any one of claims 8 to 10,
前記発光部の前記短軸方向の間隔にて複数の溝が形成された溝アレイの各溝に 、先端部が前記溝アレイ力 突出するように各光ファイバを配置し、  In each groove of the groove array in which a plurality of grooves are formed at intervals in the minor axis direction of the light emitting portion, each optical fiber is arranged so that the tip portion protrudes from the groove array force,
前記突出させた先端部を前記固定部材で固定して前記一体部を形成する光フアイ バアレイの製造方法。  A method of manufacturing an optical fiber array, wherein the protruding tip portion is fixed by the fixing member to form the integrated portion.
PCT/JP2007/052203 2006-03-29 2007-02-08 Optical fiber array, semiconductor laser light collecting device, and optical fiber array manufacturing method WO2007111046A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008507389A JP5277959B2 (en) 2006-03-29 2007-02-08 Optical fiber array, semiconductor laser condensing device, and optical fiber array manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006090791 2006-03-29
JP2006-090791 2006-03-29

Publications (1)

Publication Number Publication Date
WO2007111046A1 true WO2007111046A1 (en) 2007-10-04

Family

ID=38540980

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/052203 WO2007111046A1 (en) 2006-03-29 2007-02-08 Optical fiber array, semiconductor laser light collecting device, and optical fiber array manufacturing method

Country Status (2)

Country Link
JP (1) JP5277959B2 (en)
WO (1) WO2007111046A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012027141A (en) * 2010-07-21 2012-02-09 Sumitomo Electric Ind Ltd Optical semiconductor device
JP2013064910A (en) * 2011-09-20 2013-04-11 Hitachi Media Electoronics Co Ltd Laser light source module and scanning type image display device including the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08271763A (en) * 1995-03-30 1996-10-18 Kyocera Corp Coupling structure of semiconductor laser and optical fiber and production of optical fiber array
JP2001183537A (en) * 1999-12-24 2001-07-06 Namiki Precision Jewel Co Ltd Fiber array having lens and its manufacturing method
JP2002214485A (en) * 2001-01-22 2002-07-31 Canon Inc Plane optical element, plane optical element mounting body, method for producing it and optical wiring device using it

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5822306B2 (en) * 1981-03-16 1983-05-07 富士通株式会社 Optical fiber end face bevel processing method
JP3857876B2 (en) * 1999-12-17 2006-12-13 古河電気工業株式会社 Fiber with lens, manufacturing method thereof, manufacturing apparatus and semiconductor laser module

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08271763A (en) * 1995-03-30 1996-10-18 Kyocera Corp Coupling structure of semiconductor laser and optical fiber and production of optical fiber array
JP2001183537A (en) * 1999-12-24 2001-07-06 Namiki Precision Jewel Co Ltd Fiber array having lens and its manufacturing method
JP2002214485A (en) * 2001-01-22 2002-07-31 Canon Inc Plane optical element, plane optical element mounting body, method for producing it and optical wiring device using it

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012027141A (en) * 2010-07-21 2012-02-09 Sumitomo Electric Ind Ltd Optical semiconductor device
JP2013064910A (en) * 2011-09-20 2013-04-11 Hitachi Media Electoronics Co Ltd Laser light source module and scanning type image display device including the same

Also Published As

Publication number Publication date
JPWO2007111046A1 (en) 2009-08-06
JP5277959B2 (en) 2013-08-28

Similar Documents

Publication Publication Date Title
US9036678B2 (en) Light emitting semiconductor device
US7539233B2 (en) Lens holder and laser array unit using the same
FI116010B (en) Method and laser device for producing high optical power density
US20060239317A1 (en) Laser apparatus and method for assembling the same
WO2014192944A1 (en) Semiconductor laser module
US20210135423A1 (en) Methods and systems for spectral beam-combining
US5859942A (en) Optical coupling device
US7899289B2 (en) Optical fiber structure
JP2004213003A (en) Optical fiber coupler and its manufacturing method
US7371013B2 (en) Laser apparatus and methods for assembling and installing the same
JP2011513774A (en) Optical transmission device manufacturing method and optical transmission device
US7769058B2 (en) Optical fiber laser
JP3932982B2 (en) Condensing optical circuit and light source device
JPH11305081A (en) Optical coupling structure, optical device, and method and device for manufacture thereof
KR20200070577A (en) Optical fiber support apparatus and laser appartus comprising the same
JP5277959B2 (en) Optical fiber array, semiconductor laser condensing device, and optical fiber array manufacturing method
JP4380615B2 (en) Light guide and light irradiation device
JP2008203598A (en) Laser beam condensing unit
JP4997543B2 (en) Laser focusing prism
JP2009047732A (en) Condensing optical system and laser oscillator
JP2008203774A (en) Laser beam condensing unit
WO2018181782A1 (en) Light receptacle and light transceiver
JP2002374031A (en) Convergence system for semiconductor laser
JP6026147B2 (en) Optical connector
JP4380287B2 (en) Lens holder for optical module, optical module, and method for assembling optical module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07708224

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2008507389

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07708224

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)