WO2007110947A1 - Process for producing gas hydrate and apparatus therefor - Google Patents

Process for producing gas hydrate and apparatus therefor Download PDF

Info

Publication number
WO2007110947A1
WO2007110947A1 PCT/JP2006/306480 JP2006306480W WO2007110947A1 WO 2007110947 A1 WO2007110947 A1 WO 2007110947A1 JP 2006306480 W JP2006306480 W JP 2006306480W WO 2007110947 A1 WO2007110947 A1 WO 2007110947A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
hydrate
gas hydrate
reactor
temperature
Prior art date
Application number
PCT/JP2006/306480
Other languages
French (fr)
Japanese (ja)
Inventor
Masujiro Hisatani
Kazuyoshi Matsuo
Junya Miyata
Original Assignee
Mitsui Engineering And Shipbuilding Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering And Shipbuilding Co., Ltd. filed Critical Mitsui Engineering And Shipbuilding Co., Ltd.
Priority to PCT/JP2006/306480 priority Critical patent/WO2007110947A1/en
Publication of WO2007110947A1 publication Critical patent/WO2007110947A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas
    • C10L3/108Production of gas hydrates

Definitions

  • the present invention relates to a method and apparatus for producing gas hydrate, which is a solid hydrate of gas.
  • Natural gas mainly composed of methane is conventionally used as clean energy.
  • this natural gas is generally transported and stored in the state of liquefied liquefied natural gas (LNG) including the place to be transported or stored.
  • LNG liquefied liquefied natural gas
  • LNG needs to cool natural gas to a cryogenic temperature of -160 ° C or lower, requires a large-scale and high-priced liquefaction device, and transport ships also have a cooling facility that can maintain a cryogenic temperature.
  • a special transport ship must be used, which requires very large transportation and storage costs. For this reason, methods for transporting and storing natural gas without liquefaction have been studied, and in recent years, attention has been paid to transporting and storing natural gas in a hydrated manner, and research for practical application has been actively conducted. ing.
  • Natural Gas Hydrate is a crystal of water in the form of a bowl.
  • This NGH is produced as ice-like particles by blowing natural gas into water with a pressure of several MPa to 10 MPa and a temperature of about 0 to 10 ° C.
  • a particle size adjusting agent such as polyvinyl pyrrolidone or polyvinyl caprolatatam is added to raw water of methane hydrate to produce methane hydrate with a particle size of 1 ⁇ m to 5 mm. It describes a method for producing methane hydrate that prevents methane hydrate from adhering to heat transfer surfaces and piping.
  • Gasoline and idrate are produced by reacting a raw material gas such as natural gas or methane gas with water in a low-temperature and high-pressure vessel, and a large amount of unreacted gas hydrate is produced in the vessel.
  • a raw material gas such as natural gas or methane gas
  • a large amount of unreacted gas hydrate is produced in the vessel.
  • Patent Document 2 a slurry of gas hydrate and water extracted from a production vessel is guided to a double-structure screw press-type dehydrator having a meshed inner cylinder and physically dehydrated. Gas hydrate adhesion with screw type dehydrator By hydrating the water and the raw material gas, the attached water is hydrated to obtain a product gas hydrate with less attached water.
  • the gas hydrate production apparatus described in Patent Document 3 controls the concentration of gas hydrate discharged from the physical dehydrator and hydration dehydrator.
  • natural gas hydrate has a relationship as shown in FIG. 4 between the generation temperature (reaction temperature between gas and water) and the gas hydrate conversion rate. That is, the lower the production temperature of natural gas, the higher the hydrate yield rate, and the higher the production temperature, the lower the hydrate rate.
  • the relationship between the generation temperature of natural gas hydrate and the particle size of the generated gas hydrate is as shown in FIG. That is, natural gas hydrate has a higher particle size and higher self-storing property as the production temperature is higher, and the self-preserving property is lower and lower as the product temperature is lowered.
  • Patent Document 1 uses the methane hydrate, which has a low self-preserving property, during the transportation of methane hydrate from the production site to a destination such as a consumption place. As dissociation progresses and the residual rate of methane gas at the destination declines, transportation efficiency decreases and transportation costs increase. Patent Documents 2 and 3 do not describe any self-preserving property.
  • Patent Document 1 Japanese Patent Laid-Open No. 2001-72615
  • Patent Document 2 Japanese Patent Laid-Open No. 2003-55675
  • Patent Document 3 Japanese Patent Laid-Open No. 2003-64385
  • the present invention was made to eliminate the above-mentioned drawbacks of the prior art, and the residual rate of gas in the gas hydrate during transportation and storage, that is, the gas remains as hydrate.
  • the problem is to improve the ratio.
  • the present invention provides a product in which the hydrate yield rate, which is the ratio of gas hydrate in the product obtained in the reaction process between the raw material gas and water, is X and the gas hydrate is transported to the destination.
  • the gas residual rate of the gas hydrate in the gas is y
  • the evaluation function J when generating the gas hydrate is
  • the inventors have come up with the idea of controlling the gas hydrate generation conditions so that the evaluation function J is maximized.
  • the evaluation function # ⁇ indicates the amount of gas that can be conveniently consumed after transportation of gasno and idrate.
  • the method for producing a gas hydrate according to the present invention is a method for producing a gas hydrate by producing a gas hydrate and an hydrate by hydrating a raw material gas and water.
  • the residual characteristic representing the relationship with the gas residual rate in the gas hydrate that decreases in advance is obtained in advance, and the gas hydrate corresponding to the particle size of the gas hydrate in the product in the process of generating the gas hydrate is obtained.
  • a gas residual ratio is determined based on the residual characteristics, and an evaluation function value expressed as a product of the gas residual ratio determined above and a hydrate ratio, which is a ratio of the gas and idrate in the product, is obtained. It is characterized by controlling the generation temperature of the gas hydrate so as to be maximized.
  • the evaluation balance expressed as (hydrate yield rate X) X (gas residual rate y) corresponds to the net amount of gas that can be used after transportation of the generated gas hydrate. Therefore, by controlling the generation temperature so that the evaluation function J is maximized, the net amount of gas in the gas hydrate after the transportation of the gas hydrate is increased. For this reason, the transportation efficiency of natural gas can be maximized, and the transportation cost of natural gas can be reduced. In addition, since the gasno and idrate are manufactured so that the evaluation comfort is maximized, the efficiency of the gas hydrate toy can be substantially improved.
  • the particle size of gasno and idrate is smaller than 0.5 mm, the self-preserving property deteriorates rapidly.
  • the limiting condition is that the temperature of the idrate particle diameter is 0.5 mm or more.
  • a gasnoid and idlate production apparatus for carrying out the gas hydrate production method described above includes a reactor for producing a gas hydrate by hydrating a raw material gas and water, and the reaction described above.
  • a cooling unit that removes the heat of reaction between the water and the gas by supplying cold to the vessel, and the particle size during the production of the gas hydrate and decreases with the passage of time after the production
  • a residual rate storage unit that stores in advance a residual characteristic representing a relationship with a gas residual rate of the gas hydrate, a temperature detection unit that detects a temperature in the reactor, and a product generated in the reactor
  • a hydrate slag detector for detecting a hydrate slag that is a ratio of the gas and idrate in the gas
  • a particle size detector for detecting a particle size of the gas hydrate generated in the reactor
  • a residual rate calculating unit for obtaining a gas residual rate of the generated gas hydrate based on the particle diameter detected by the particle size detecting unit and the stored contents of the residual rate storage unit!
  • An evaluation function calculation unit that calculates the evaluation function represented, a control target temperature calculation unit that calculates a generation temperature that maximizes the value of the evaluation function calculated by the evaluation function calculation unit, and the control target temperature calculation unit And a control unit that controls the generated temperature to the control target temperature via the cooling unit based on the control target temperature and the generated temperature detected by the temperature detecting unit.
  • the reactor is generated by the first reactor that generates a slurry containing gas hydrate by hydrating the raw material gas and water, and the first reactor. It is possible to include a second reactor that introduces the gas hydrate that has been introduced and hydrates the water adhering to the gas hydrate with the raw material gas to generate gas hydrate.
  • the cooling unit circulates and supplies the cooled raw material gas to the second reactor, and the temperature detector detects the temperature in the second reactor, The hydrate recovery rate detection unit detects a hydration rate in the product generated in the second reactor, and the particle size detection unit generates in the second reactor. The particle size of the gas hydrate is detected, and the control unit controls the generation temperature in the second reactor to the control target temperature via the cooling unit.
  • the second reactor includes a cylindrical container having an axial line disposed horizontally, and a rotating shaft provided in the cylindrical container along the axial direction and having a plurality of knotted wings attached thereto.
  • the gas hydrate generated by the first reactor is provided at one end of the cylindrical vessel, and the gas hydrate outlet is provided at the other end of the cylindrical vessel. .
  • the second reactor includes a cylindrical vertical container into which the gas hydrate and raw material gas supplied from the first reactor are introduced, and the vertical container.
  • a perforated plate provided between a position where the gas hydrate is introduced and a bottom, and a discharger for discharging the gas hydrate above the perforated plate, and the cooling unit
  • a circulation gas blower that communicates with the upper part of the vertical container and sucks the raw material gas at the upper part of the vertical container and circulates it to the bottom of the vertical container through a cooler can be provided.
  • the gas hydrate production apparatus includes a reactor for producing a slurry containing gas hydrate by hydrating a raw material gas and water, and an upper portion of the reactor.
  • a gas circulation device for extracting the raw material gas from the bottom of the reactor and diffusing the gas into the reactor, and extracting the slurry containing gas hydrate from the bottom of the reactor, and passing the reaction through the cooler.
  • a slurry circulating device that returns to the top of the reactor, a slurry transfer pump that transports a slurry containing gas hydrate from the bottom of the reactor to a dehydrating device, and a honey degree of the circulating slurry circulated by the slurry circulating device, The amount of circulating gas circulated by the gas circulating device, the amount of circulating slurry of the slurry circulating device, and the circulating slurry temperature so that the detected slurry density falls within a set range.
  • Constituting a control means to control at least one.
  • the hydration reaction is promoted by increasing the circulation amount of the raw material gas diffused into the slurry in the reactor, so that the gas hydrate concentration in the slurry can be controlled. Also, since the hydration reaction is exothermic and the hydration reaction depends on the degree of supercooling (the difference between the equilibrium temperature for gas hydrate formation and the temperature in the reactor), the slurry temperature in the reactor is By controlling, the gas hydrate concentration in the slurry can be controlled.
  • the gas hydrate concentration in the slurry can be detected by detecting the honey degree of the circulating slurry.
  • the gas hydrate concentration in the slurry can be set to a desired value by controlling at least one of the circulating gas amount, the circulating slurry amount, and the circulating slurry temperature so that the honey level of the circulating slurry falls within the set range. Ff3 ⁇ 4 can be controlled accurately.
  • the gas hydrate transferred by the slurry transfer pump A first dehydrator for physically dehydrating by introducing a slurry containing a rate, and a high-concentration gas by hydrating the water adhering to the gas hydrate dehydrated by the first dehydrator with the source gas It is desirable to provide a second dehydrator that generates hydrate.
  • the first dehydrator discharges a cylindrical vertical container into which a slurry containing a gas hydrate transferred by the slurry transfer pump is introduced at the bottom, and a gas hydrate at the top of the container.
  • the drainage chamber force can be configured to include a control means for controlling the drainage amount to be drained.
  • the second dehydrator includes a cylindrical vertical container into which the gas hydrate discharged from the discharger of the first dehydrator and the raw material gas are introduced, and the vertical container
  • the perforated plate provided between the position where the gas hydrate is introduced and the bottom, and the upper part of the vertical container are connected to the upper part of the vertical container to suck the raw material gas and pass through the cooler to
  • a circulating gas blower that is circulated to the bottom of the mold vessel, a discharger that discharges the gas hydrate above the perforated plate, and a load amount of the discharger is detected, so that the detected load amount falls within a set range.
  • Control means for controlling at least one of the circulating gas amount circulated by the circulating gas blower, the temperature of the circulating gas, and the discharge amount of the discharger can be provided.
  • the second dehydrating device fluidizes the gas hydrate discharged from the first dehydrating device with the raw material gas to form a fluidized bed, and the adhering water of the gas hydrate is obtained by the fluidized bed reaction.
  • the concentration of gas hydrate can be increased to the required concentration level.
  • FIG. 1 is an explanatory diagram of a gas hydrate production apparatus according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of a second reactor according to the first embodiment.
  • FIG. 3 is an explanatory diagram of an operation control apparatus according to the first embodiment.
  • FIG. 4 is a conceptual diagram showing the relationship between the gas hydrate generation temperature and the hydrate yield rate.
  • FIG. 5 is a conceptual diagram showing the relationship between the gas hydrate formation temperature and the average particle size of the gas hydrate.
  • FIG. 6 is a diagram illustrating a method for producing a gas hydrate according to the present invention.
  • FIG. 7 is an overall configuration diagram of a hydrate slurry production apparatus according to another embodiment of the present invention.
  • FIG. 1 is an explanatory diagram showing an outline of a gas hydrate production apparatus according to an embodiment of the present invention.
  • the production of natural gas hydrate (NGH) will be described as an example.
  • the hydrate generation unit 12 in the gas hydrate production apparatus 10, the hydrate generation unit 12 includes a first reactor 14 and a second reactor 16.
  • a gas supply source 20 is connected to the first reactor 14 via a gas supply pipe 18, and a generated water supply source 24 is connected via a generated water supply pipe 22.
  • the interior of the first reactor 14 is maintained at a high pressure of several to lOMPa when the gas hydrate is generated, and the natural gas that is the raw material gas reacts with the generated water (water). Therefore, supply pumps 26 and 28 are installed in the gas supply pipe 18 and the generated water supply pipe 22 so that high-pressure gas and high-pressure water can be supplied to the first reactor 14. Yes.
  • the raw material gas is natural gas mainly composed of methane gas.
  • the first reactor 14 includes a publishing mechanism and a stirrer (not shown) so that the gas and water can be brought into contact efficiently.
  • the first reactor 14 is provided with a line for externally circulating and cooling the internal water.
  • the cooling unit 30 is connected to the cooling line so that the circulating water can be cooled with the refrigerant. It is. By circulating the internal water to the outside and cooling with the refrigerant, the reaction heat when the gas and water react to form gas hydrate is removed, and the inside of the first reactor 14 is brought to 0-10 ° C. Cooling.
  • a second reactor 16 is arranged below the first reactor 14, and the gas and idrate generated in the first reactor 14 are water. (Adhesive water) flows in.
  • the second reactor 16 is usually set to have the same internal pressure as that of the first reactor 14.
  • the second reactor 16 has a cooling medium flow path on its peripheral surface, and the heat of reaction when the gas hydrate is generated is removed by the refrigerant supplied from the cooling unit 32, so that the inside is zero. Hold at ⁇ 10 ° C. Further, the second reactor 16 is supplied with gas from a gas supply source 20 (not shown), and the water (adhesion water) flowing from the first reactor 14 is described in detail later. ) And gas to increase the gas hydrate content in the product (gas hydrate, adhering water, and powerful product).
  • the second reactor 16 includes a cylindrical container 34 whose axis is disposed horizontally, and the rotating shaft 36 passes through the center of the cylindrical container 34.
  • the rotary shaft 36 is rotatably supported by the cylindrical container 34, and a drive motor 38 is connected to one end thereof and is rotated by the drive motor 38.
  • the cylindrical container 34 is provided with an inflow port 40 at the upper part on one end side, and a discharge port 42 at the lower part on the other end side.
  • the inlet 40 is connected to the first reactor 14, and the gas hydrate product 45 composed of the gas hydrate and adhering water flows into the first reactor 14.
  • the discharge port 42 is connected to the hydrate cooling device 44, and supplies the gas hydrate product 95 generated in the second reactor 16 to the noise rate cooling device 44. To do.
  • a plurality of scissors wings 46 are attached to the rotary shaft 36.
  • Each stirring blade 46 has a portal shape.
  • These agitating blades 46 are arranged so as to form a spiral along the axis of the rotary shaft 36, and a part thereof is inclined with respect to the tangential direction of the rotary shaft 36. Therefore, the second reactor 16 agitates the gas hydrate product 45 flowing in from the inlet 40 in the gas by the stirring blade 46 rotating integrally with the rotating shaft 36, and reacts the adhering water and the gas. It is sent toward the discharge port 42 and is put into the next hydrate cooling device 44.
  • the idrate cooling device 44 cools the gas hydrate product 95 flowing from the second reactor 16 to about 20 ° C. with the supplied brine 62.
  • a depressurization device 64 is connected to the discharge port 97 of the hydrate cooling device 44.
  • the depressurizer 64 can depressurize the gas / idrate product 96 that has been cooled and maintained at a high pressure to atmospheric pressure.
  • the gas hydrate product 96 depressurized by the depressurizer 64 is transferred to the depressurizer 64.
  • the gasnoid and idrate product 96 stored in the storage tank 66 is sent to a pellets bowl device as necessary, and is made into spherical pellets having a diameter of about 2 cm, for example, for easy handling.
  • the cylindrical container 34 has a coolant channel 48 formed on the peripheral surface thereof, so that the inside can be cooled by the coolant 50 supplied from the cooling unit 32. Further, the cylindrical container 34 is provided with a sensor insertion part 52 for inserting a plurality of (three in the case of the present embodiment) temperature sensors along the axis, and is inserted into the cylindrical container 34 from the sensor insertion part 52.
  • the temperature in the cylindrical container 34 (generation temperature) can be detected by a temperature sensor that is a temperature detection unit.
  • the detection signal of the temperature sensor 54 inserted into the sensor insertion portion 52 of the cylindrical container 34 is input to the arithmetic / control device 60 described later in detail.
  • detection signals from the moisture sensor 56 and the particle size sensor 58 are input to the calculation / control device 60.
  • the moisture sensor 56 constitutes a hydrate ratio detection unit, and the gas hydrate product 95 or gas hydrate product generated and cooled in the second reactor 16 or the hydrate cooling device 44.
  • the 96 is irradiated with laser, infrared rays, or X-rays, and the ratio of adhering water (ice) in the product is detected.
  • the particle size sensor 58 constitutes a particle size detection unit, and the gas hydrate product 95 or the gas hydrate product 96 discharged from the second reactor 16 or the hydrate cooling device 44 has a laser or the like.
  • the particle size of gas hydrate products 95 and 96 is measured.
  • the water content and particle size of the product by the moisture sensor 56 and the particle size sensor 58 are measured by the gas and idrate discharged from the outlet 42 of the second reactor 16 or the outlet 97 of the hydrate cooling device 44.
  • the products 95 and 96 may be measured directly in-line by irradiating them with a laser or the like.
  • the second reactor 16 or hydrate cooling device 44 may be used to sample the gas and idrate products 95 and 96 that have also been discharged. You may measure with
  • the calculation / control device 60 is connected to the moisture sensor 56 and, together with the moisture sensor 56, constitutes a hydrate yield rate detection unit 70.
  • the unit 72 and the particle size sensor 58 have a particle size calculation unit 76 that constitutes a particle size detection unit 74.
  • the particle size calculator 76 is connected to the particle size sensor 58 on the input side, and the particle size sensor 58 detects the particle size.
  • the particle size of the gas hydrate product 95 or gas hydrate 96 is calculated.
  • the calculation / control apparatus 60 includes an evaluation function / control target temperature calculation unit 78, a remaining rate calculation unit 80, a control unit 82, a manufacturing / transport condition setting unit 84, and a remaining data storage unit 86.
  • the residual rate calculation unit 80 is connected to the output side of the particle size calculation unit 76 and inputs the particle size obtained by the particle size calculation unit 76.
  • the remaining rate calculation group 80 is connected to the manufacturing / transport condition setting unit 84 and the remaining data storage unit 86, and the gas hydrate manufacturing conditions and transport conditions set in the manufacturing / transport condition setting unit 84 are input. It is supposed to be.
  • the gas hydrate with respect to the grain size of the gas hydrate product 95 or the gas hydrate product 96 corresponding to the gasno and idrate production conditions and transport conditions determined in advance is stored.
  • the data of the gas remaining rate is recorded.
  • the data of the gas residual rate is read out when the residual rate calculating unit 80 calculates the gas residual rate in the gas hydrate based on the particle diameter obtained by the particle size calculating unit 76.
  • Control target temperature calculation unit 78 has an evaluation function calculation unit and a control target temperature calculation unit (not shown), and the input side has a hydrate ratio calculation unit 72 and a remaining rate calculation unit.
  • the evaluation function calculation unit calculates the evaluation interval J based on the nod rate increase rate X and the gas residual rate y obtained by these. Further, the evaluation function / control target temperature calculation unit 78 obtains the gas hydrate generation temperature at which the control target temperature calculation unit maximizes the value of the evaluation function J and outputs it to the control unit 82.
  • the control unit 82 The temperature of the second reactor 16 is controlled via the cooling unit 32 so that the generated temperature obtained by the function 'control target temperature calculator 78 is obtained.
  • the hydrate ratio which is the ratio of the gas hydrate in the product obtained in the process of reacting the raw material gas and water, and the gas in the gas hydrate with the passage of time after generation That is, the particle size of the gas hydrate product 95 or the gas hydrate product 96 in which the gas residual rate of the gas hydrate product 95 or the gas hydrate product 96 obtained in the reaction process of gas and water is maximized ( In the case of the embodiment, an average particle diameter) relationship (gas residual rate data) is obtained in advance. This gas residual rate data is simulated by considering the difference in the gas residual rate depending on the gas hydrate production conditions and transportation conditions, corresponding to the production conditions and the transportation conditions. -Ask for it with a Chillon.
  • the previously obtained gas residual ratio data is stored in the particle diameter storage unit 84 of the calculation / control apparatus 60.
  • the temperature in the second reactor 16 that is, the generation temperature (reaction temperature) and the generated gas hydrate product
  • the relationship with the particle size of 95 is obtained in advance.
  • the feed pumps 26 and 28 use the feed gas 26 to supply the raw material gas (natural gas mainly composed of methane gas) from the gas supply source 20 and the generated water supply source 24 to water (product water). ) Is supplied to the first reactor 14 constituting the hydrate generation unit 12.
  • the first reactor 14 includes a publishing mechanism and a stirrer, and is contained in the generated water in the first reactor 14.
  • the raw material gas is published, water and gas are mixed, and further stirred to react both efficiently.
  • a part of the gas supplied to the first reactor 14 is taken into a crystal of water in the form of a cage, and becomes a gas hydrate that is a clathrate compound.
  • the hydrate yield in the gas hydrate product 95 or the gas hydrate product 96 generated and cooled in the second reactor 16 or the hydrate cooling device 44 is about 90%.
  • Gas with which the particle size of the gas hydrate product 95 or gas hydrate product 96 produced and cooled in the second reactor 16 or the hydrate cooling device 44 is 0.5 mm or more.
  • Hydrate generation conditions are set. Specifically, the internal pressure of the first reactor 14 and the second reactor 16 is set so as to be around 5 MPa, for example.
  • the internal liquid is circulated to the outside, and cooling is supplied by cooling with a cooling medium in the cooling unit 30, and in the second reactor 16, cooling heat is supplied by the refrigerant of the cooling unit 32 power. Is supplied, and the heat of reaction in the hydration of water and gas is removed, and the inside is brought to a temperature of, for example, 0 to 5 ° C.
  • the gas / idrate product 45 produced in the first reactor 14 is a mixture of gas hydrate and water (adhesion water), and the ratio of gas hydrate in the mixture (hydrate yield rate). ) Is usually around 40% and moisture is around 60%.
  • the gas hydrate product 45 generated in the first reactor 14 is supplied to the second reactor 16 in a sherbet-like or slurry-like state.
  • the second reactor 16 is supplied with the gas hydrate product 45 in the first reactor 14 and the raw material gas.
  • the gas supplied from the first reactor 14 is rotated by rotating the stirring blade 46 by the drive motor 38.
  • the idrate product 45 is stirred and reacted with the gas and sent to the outlet 42.
  • Gasoline / idrate product 45 supplied with 14 forces of first reactor is agitated in the gas by stirring blade 46, and the water adhering to gasno / idleate product 45 reacts with the gas, resulting in a hydrate yield rate.
  • the gas hydrate product 95 with a force of about 90% is sent to the hydrate cooler 44.
  • the temperature sensor 54 attached to the second reactor 16 detects the reaction temperature in the second reactor 16 and inputs it as a feedback signal to the control unit 82 of the calculation / control apparatus 60. Based on the detection signal of the temperature sensor 54, the control unit 82 controls the amount of cold given to the second reactor 16 via the cooling unit 32 so that the reaction temperature is a predetermined temperature.
  • the moisture sensor 56 constituting the hydrate ratio detection unit 70 irradiates the gas hydrate product 95 generated in the second reactor 16 with laser, infrared rays, or X-rays to generate gas hydrate.
  • the ratio of the adhering water (ice) contained in the object 95 is detected and input to the hydrate ratio calculation unit 72 of the calculation / control device 60.
  • the hydrate yield ratio calculation unit 72 is a ratio of gas hydrate in the gas hydrate product 95 discharged from the second reactor 16 (hydrate yield ratio) x Is input to the evaluation function 'control target temperature calculator 78.
  • the particle size sensor 58 constituting the particle size detection unit 74 irradiates the gas hydrate product 95 discharged from the second reactor 16 with a laser to detect the particle size of the product. Input to the particle size calculator 76 of the control device 60.
  • the particle size calculation unit 76 calculates the particle size of the gas hydrate product 95 detected by the particle size sensor 58 (including the average particle size in the embodiment) and sends it to the residual rate calculation unit 80.
  • the remaining rate calculation unit 80 reads the manufacturing condition and the transportation condition set in the manufacturing / transport condition setting unit 84. Based on the particle size obtained by the particle size calculator 76, the remaining data storage unit 86 is examined, and the relationship between the particle size and the remaining rate corresponding to the read manufacturing conditions and transportation conditions is read, and the generated gas hydride is read. Evaluation function for target gas residual rate y ⁇ Control target temperature Output to operation unit 78.
  • Evaluation function ⁇ Control target temperature calculation unit 78 is configured so that the evaluation function calculation unit calculates the hydrate ratio X determined by the hydrate ratio calculation unit 72 and the hydrate gas residual rate y calculated by the remaining rate calculation unit 80. Based on the above, the evaluation function 3 ⁇ 4J is calculated. In the case of the embodiment, the evaluation function 3 ⁇ 4J is obtained as a product of the hydrate toy ratio X and the residual gas ratio y. That is, the evaluation function 3 ⁇ 4J is
  • the evaluation function “target temperature calculation unit 78 obtains the gas hydrate generation temperature at which the control target temperature calculation unit maximizes the evaluation function J.
  • the optimum gas hydrate formation temperature that maximizes the evaluation function J varies depending on the composition of the gas components. Therefore, the optimum generation temperature is recorded as data of the current value and past history of evaluation function # ⁇ and the generation temperature at that time, and the generation temperature that maximizes evaluation function J is estimated from this data group. Ask. Specifically, the following method is used.
  • the relationship shown in FIG. 6 exists among the hydrate yield rate x, the gas residual rate y, the evaluation function J, and the noise rate production temperature T at a certain hydrate production pressure. Therefore, first, the temperature is set so that the particle diameter is 0.5 mm. (At temperatures below this, the residual gas ratio drops extremely, so this temperature is taken as the minimum line.) Gradually raise the temperature while calculating the evaluation comfort. As the temperature rises, the particle size increases and the gas residual rate y increases. Since the hydrate yield rate X decreases, the evaluation function J should reach a local maximum (maximum value) somewhere. The maximum temperature Tm is controlled. When the value of the evaluation function J decreases, the direction in which the temperature is changed is determined according to the change in the particle diameter and the hydrate ratio X, the temperature is changed in that direction, and the evaluation function J To the maximum point.
  • the optimum generation temperature obtained by the evaluation function and the control target temperature calculation unit 78 is given to the control unit 82 as the control target temperature.
  • the control unit 82 reads the generation temperature in the second reactor 16 detected by the temperature sensor 54, and cools down so that the generation temperature becomes the optimum generation temperature obtained by the evaluation function 'control target temperature calculation unit 78'. Controls the amount of cold supplied by unit 32 to second reactor 16. [0053] This makes it possible to maximize the value of the evaluation interval J, which is obtained as the product of the No. and Idle ratio x and the gas residual rate y. Therefore, in the embodiment, since the net amount of gas after transportation of the generated gas hydrate increases, transportation efficiency and storage efficiency can be improved, and transportation cost of natural gas can be reduced.
  • the amount of water and the particle diameter contained in the gas hydrate product 95 at the outlet of the second reaction B16 sent from the second reactor 16 to the hydrate cooling device 44 are detected.
  • the detection of the amount of water and the particle diameter described in the example may be performed on the gas hydrate product 96 at the outlet of the hydrate cooling device 44 after being cooled in the idle cooling device 44.
  • the force described for the generation of gas hydrate in the second reactor 16 may be applied to the generation of gas hydrate in the first reactor 14.
  • FIG. 7 shows an overall configuration diagram of a hydrate slurry production apparatus according to another embodiment of the present invention.
  • this embodiment shows an example of producing a hydrate of natural gas (hereinafter abbreviated as NGH), the present invention is not limited to natural gas and can be applied to hydrate production of other raw material gases.
  • NGH natural gas
  • the hydrate production apparatus of the present embodiment includes a reactor 101 that generates NGH slurry, and water is separated from the NGH slurry generated in the reactor 101 to increase the concentration.
  • a first dehydrator that includes a dehydration tower 102 that produces NGH, and a fluidized bed reaction tower 103 that reacts the NGH adhering water dehydrated in the dehydration tower 102 with natural gas to increase the NGH concentration to the product level.
  • a second dehydrator and a hopper 104 for storing the product NGH are provided.
  • These reactors 101, dehydration tower 102, fluidized bed reaction tower 103 and hopper 104 Are maintained at a predetermined high pressure (for example, 3 to: LOMPa).
  • Reactor 101 is formed of a cylindrical container, and a certain amount of high-pressure source gas (natural gas) and high-pressure water is supplied from a supply device (not shown) and introduced into reactor 101. Natural gas and water react under low temperature conditions (eg, 1-5 ° C) to produce NGH. In order to accelerate the NGH production reaction, the water in the reactor 101 is agitated by the agitator 111, and the natural gas at the top of the reactor 101 is extracted by the circulating gas blower 112, and is discharged from the nozzle 113 at the bottom of the reactor 101. A gas circulation system that diffuses into the water of the reactor 101 is provided! The amount of circulating gas is controlled by a flow control valve 114 equipped with a gas flow meter.
  • a flow control valve 114 equipped with a gas flow meter.
  • NGH generation is accompanied by heat generation
  • the NGH slurry containing NGH generated from the bottom of the reactor 101 is extracted by the circulating slurry pump 115
  • a slurry circulation system is provided that is cooled with a refrigerant by a cooler 116 and returned to the top of the reactor 101.
  • the amount of slurry circulating is controlled by a flow control valve 117 equipped with a slurry flow meter.
  • the amount of refrigerant in the cooler 116 is controlled so that the temperature of the circulating slurry is detected by a thermometer 118 provided in the slurry circulation system, and the detected value matches the set temperature T2.
  • the NGH slurry produced in the reactor 101 is continuously extracted by the slurry transfer pump 120 by the bottom force of the reactor 101 and supplied to the bottom of the dehydration tower 102.
  • NGH is basically in the form of powder
  • the fluidity is drastically reduced, and it cannot be circulated by the circulating slurry pump 115 and cooled. It becomes difficult to generate NGH.
  • the process of producing the product NGH by stabilizing the process of producing the product NGH by reacting the dehydration treatment and the NGH adhering water with natural gas, which will be described later, is highly accurate! It is desirable to produce a concentrated NGH slurry
  • a density meter 119 of NGH slurry is provided in the slurry circulation system, and the amount of circulating gas and circulation slurry are set so that the detection density falls within a set range (for example, about 20% by weight). At least one of Lee's temperature T2 and circulating slurry volume is controlled.
  • a constant concentration of NGH slurry is continuously generated by continuously controlling the amount of circulating slurry and the amount of circulating gas so that the slurry density is a set density.
  • the amount of refrigerant in the cooler 116 is controlled to control the temperature 2 of the circulating slurry to the set temperature.
  • the NGH concentration of the NGH slurry can be continuously controlled accurately and stably to the desired value.
  • the dehydration tower 102 is formed of a cylindrical vertical container, and a large-diameter drainage part 121 is provided in the middle of the tower.
  • the inner wall of the tower corresponding to the drainage part 121 is, for example, a wire mesh or
  • the porous wall 122 is formed of a porous plate or the like.
  • the water in the NGH slurry introduced into the dehydration tower 102 is separated into the water drainage part 121 through the porous wall 122.
  • the water in the drain section 121 is extracted by the dehydration circulation pump 124 through the flow control valve 123 and returned to the reactor 101.
  • the water level in the drain part 121 is detected by a water level gauge 125, and the flow control valve 123 is adjusted so that the detected water level is maintained at the set water level. Also, one end of a screw conveyor 126 is inserted near the top of the dehydration tower 102. The screw conveyor 126 is provided with an opening in a casing (for example, a lower surface) of a portion located in the tower.
  • the dehydrating tower 102 of the present embodiment when the NGH slurry introduced from the bottom of the tower is pushed up to the top of the tower and reaches the drain section 121, the slurry is removed.
  • the water in the water is separated into the drainage part 121 through the porous wall 122.
  • the water separated in the drain part 121 is extracted by the dehydration circulation pump 124 and returned to the reactor 101.
  • the water in the NGH slurry introduced into the dehydration tower 102 is separated and removed by the water drainage section 121 and reaches the top of the tower as dehydrated NGH slurry having a high NGH concentration.
  • the NGH concentration in the process of reaching the top of the tower varies from a state where the finely packed powdery NGH voids are filled with water to a state where water is attached to the surface of the powdered NGH.
  • the force that holds water in the voids between powdery NGH by capillary action NGH force water is separated as the gravity of water becomes larger than its holding force. Therefore, in the process in which the position force of the drainage part 121 reaches the top of the tower, the moisture of the NGH becomes the same as the moisture adhering to the surface.
  • a screw conveyor 126 driven by a motor 127 and introduced into the fluidized bed reaction tower 103.
  • the concentration of NGH discharged from the dehydration tower 102 is too low, that is, if there is too much water adhering to NGH, the fluidity of NGH in the fluidized bed reaction tower 103 in the next step will decrease, and NG H adhesion will occur. Reaction of water and source gas becomes difficult. Therefore, in this embodiment, the concentration of NGH that is unloaded by the screw con bare 126 (NGHZ (NGH + adhering water)), for example, 4 5-70 0/0, preferably controlled to 50 ⁇ 5 weight 0/0 Like to do.
  • the NGH concentration is controlled by controlling the amount of water withdrawn by the flow rate control valve 123 so that the water level meter 125 maintains the water level at the water draining portion 121 at the set water level.
  • the position at which the water holding force held in the gap between the NGHs by the capillary phenomenon balances with the water strength is such that the water level force of the drain part 121 is also at a certain height.
  • the concentration of NGH carried out by the screen conveyor 126 can be controlled to a desired value by appropriately adjusting the equilibrium position 128 with reference to the water level of the water draining part 121.
  • the concentration of NGH entering the fluidized bed reaction tower 3 can be controlled to improve the fluidity and reaction with the raw material gas in the fluidized bed reaction tower 103. That is, according to the present embodiment, the concentration of NGH discharged from the dehydration tower 102 can be controlled to a desired value accurately and stably, so that the treatment in the fluidized bed reaction tower 103 in the next step can be performed. Stable and final product Improves NGH quality and enables stable production
  • the NGH concentration and the load (torque) of the screw conveyor 126 are correlated, so the current of the motor 127 is The extraction amount by the flow control valve 123 can be controlled so as to be within the set current range. Further, instead of the current of the motor 127, the load torque may be directly detected by a torque detector. In addition, by controlling the amount of water withdrawn by the flow control valve 123, by adjusting the amount of water separated through the porous wall 122 into the water drainage part 121 by changing the opening area of the porous wall 122. Can also be controlled.
  • a cylindrical partition plate is provided so as to be movable from the upper side to the lower side of the porous wall 121 along the porous wall 121. This can be realized by moving the partition plate up and down according to the current of 7.
  • the fluidized bed reaction tower 103 is formed of a cylindrical vertical container, and natural gas as a raw material gas is supplied to the top of the vertical container. Further, a perforated plate 131 is provided at a certain height from the bottom of the vertical container, and NGH conveyed by a screw conveyor 216 is placed on the perforated plate 131. In addition, natural gas, which is a raw material gas, is blown as a fluidized gas from the circulating gas blower 132 through the flow control valve 133 between the bottom and the perforated plate 131. The top of the fluidized bed reactor 103 communicates with the suction port of the circulating gas blower 132 through a cyclone 134.
  • thermometer 136 As a result, natural gas, which is a fluidized gas, is circulated in the fluidized bed reaction column 103.
  • a cooler 135 and a thermometer 136 are provided, and the flow rate of the refrigerant in the cooler 135 is controlled so that the detected temperature of the thermometer 136 is maintained at a set temperature.
  • one end of a screw compressor 138 driven by a motor 137 is inserted into the space above the perforated plate 131.
  • An opening is provided in a casing (for example, the upper surface) of a portion of the screw conveyor 138 located in the fluidized bed reaction tower 103.
  • the other end of the screw conveyor 138 communicates with the upper part of the hopper 104 that stores the product NGH!
  • a torque detector 139 that detects the torque of the output shaft of the motor 137 is provided.
  • the flow control valve 133 is controlled so that the load amount of the screw conveyor 138 detected by the torque detector 139 falls within the set range, and the circulating gas amount, the carry-out amount of the screw conveyor 138, and the refrigerant of the cooler 135 are controlled. It comprises a control means that controls at least one of the flow rates.
  • the current of the motor 137 may be detected to detect the load torque.
  • the porous An NGH fluidized bed is formed on top of the plate 131.
  • the NGH adhering water and natural gas react to generate NGH, and the NGH concentration, which is the gas hydrate yield rate, is increased to, for example, 90% by weight or more.
  • the NGH in which the amount of adhering water has been greatly reduced in this way is transported to the hopper 104 by the star conveyor 138 and stored temporarily.
  • the granular NGH stored in the hopper 104 is appropriately cut out through the gate valve 141 to obtain the product NGH. Or transported to an NGH pellet manufacturing equipment.
  • the inside of the hopper 104 is at a high pressure (for example, 3 to: LOMpa), although not shown, normally, a depressurization device is provided on the downstream side of the gate valve 141.
  • the reactor 101 can continuously generate an NGH slurry with a stable NGH concentration, so that the dehydration treatment and fluidized bed in the subsequent dehydration tower 102 can be performed.
  • the treatment of the attached water in the reaction tower 103 with NGH can be effectively and stably performed.
  • the concentration of NGH dehydrated in the dehydration tower 102 and the fluidized bed reaction tower 103 is also controlled with high precision, there is an effect that a high-quality product NGH can be produced stably and continuously.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

A process for producing a gas hydrate through hydration reaction between a starting gas and water, characterized in that residual characteristics signifying the relationship between particle diameter at the time of gas hydrate formation and gas residual ratio in gas hydrate which decreases with time passage during the transfer after gas hydrate formation are determined in advance, and that the gas residual ratio corresponding to the particle diameter of gas hydrate within product during the formation of gas hydrate is determined on the basis of the above residual characteristics, and that the formation temperature of gas hydrate is controlled so that the value of performance function represented as a product of the determined gas residual ratio multiplied by a hydrate conversion ratio being a proportion of gas hydrate within product is maximized.

Description

明 細 書  Specification
ガスハイドレートの製造方法及び装置  Method and apparatus for manufacturing gas hydrate
技術分野  Technical field
[0001] 本発明は、ガスの固体状水和物であるガスハイドレートの製造方法及び装置に関 する。  [0001] The present invention relates to a method and apparatus for producing gas hydrate, which is a solid hydrate of gas.
背景技術  Background art
[0002] メタンを主成分とする天然ガスは、従来力 クリーンなエネルギーとして使用されて いる。従来、この天然ガスは、輸送又は貯蔵する場含、液化した液化天然ガス (Liqu efied Natural Gas :LNG)の状態にして輸送、貯蔵するのが一般的である。しか し、 LNGは、天然ガスを— 160°C以下の極低温に冷却する必要があり、大規模で高 価な液化装置を必要とするとともに、輸送船も極低温を保持可能な冷却設備を備え た特殊な輸送船を使用しなければならず、非常に大きな輸送コスト、貯蔵コストを必 要とする。このため、天然ガスを液化せずに輸送、貯蔵する方法が研究され、近年、 天然ガスをハイドレートイ匕して輸送、貯蔵することが注目され、実用化に向けた研究 が盛んに行なわれている。  [0002] Natural gas mainly composed of methane is conventionally used as clean energy. Conventionally, this natural gas is generally transported and stored in the state of liquefied liquefied natural gas (LNG) including the place to be transported or stored. However, LNG needs to cool natural gas to a cryogenic temperature of -160 ° C or lower, requires a large-scale and high-priced liquefaction device, and transport ships also have a cooling facility that can maintain a cryogenic temperature. A special transport ship must be used, which requires very large transportation and storage costs. For this reason, methods for transporting and storing natural gas without liquefaction have been studied, and in recent years, attention has been paid to transporting and storing natural gas in a hydrated manner, and research for practical application has been actively conducted. ing.
[0003] 天然ガスハイドレート(Natural Gas Hydrate : NGH)は、籠状をなす水の結晶  [0003] Natural Gas Hydrate (NGH) is a crystal of water in the form of a bowl.
(クラスタ)の中にガス分子が取り込まれた包接ィ匕合物である。この NGHは、圧力が 数 MPa〜10MPa、温度が 0〜10°C程度の水の中に天然ガスを吹き込むことによつ て、氷状の粒子として生成される。特許文献 1には、メタンノヽイドレートの原料水にポリ ビニピロリドンやポリビニルカプロラタタムなどの粒子径調整剤を添加し、粒子径が 1 μ m〜5mmのメタンノヽイドレートを生成し、反応容器の伝熱面や配管等にメタンハイ ドレートが付着するのを防止するメタンハイドレートの製造方法が記載されている。  It is an inclusion complex in which gas molecules are taken into (cluster). This NGH is produced as ice-like particles by blowing natural gas into water with a pressure of several MPa to 10 MPa and a temperature of about 0 to 10 ° C. In Patent Document 1, a particle size adjusting agent such as polyvinyl pyrrolidone or polyvinyl caprolatatam is added to raw water of methane hydrate to produce methane hydrate with a particle size of 1 μm to 5 mm. It describes a method for producing methane hydrate that prevents methane hydrate from adhering to heat transfer surfaces and piping.
[0004] また、ガスノ、イドレートは、天然ガスやメタンガスなどの原料ガスと水とを低温高圧の 容器内で反応させて生成され、容器内で生成されるガスハイドレートには多量の未反 応水が含まれる。特許文献 2では、生成容器カゝら抜き出されるガスハイドレートと水の スラリーをメッシュ加工された内筒を有する 2重構造のスクリュープレス型脱水装置に 導いて物理的に脱水した後、 2軸スクリュー型脱水装置にてガスハイドレートの付着 水と原料ガスとを水和反応させて、付着水をハイドレートイ匕して、付着水の少ない製 品ガスハイドレートを得るようにしている。また、特許文献 3に記載されたガスハイドレ ート製造装置は、物理脱水装置および水和脱水装置力 排出されるガスハイドレート 濃度を制御するようにして 、る。 [0004] Gasoline and idrate are produced by reacting a raw material gas such as natural gas or methane gas with water in a low-temperature and high-pressure vessel, and a large amount of unreacted gas hydrate is produced in the vessel. Contains water. In Patent Document 2, a slurry of gas hydrate and water extracted from a production vessel is guided to a double-structure screw press-type dehydrator having a meshed inner cylinder and physically dehydrated. Gas hydrate adhesion with screw type dehydrator By hydrating the water and the raw material gas, the attached water is hydrated to obtain a product gas hydrate with less attached water. The gas hydrate production apparatus described in Patent Document 3 controls the concentration of gas hydrate discharged from the physical dehydrator and hydration dehydrator.
[0005] ところで、天然ガスハイドレートは、大気圧の状態で保存すると、天然ガスがハイドレ ートから解離する。しかし、天然ガスハイドレートは、大気圧状態であっても、 - 20°C 程度の温度に保持すると、ガスの解離が小さくなる自己保存性といわれる現象を示 す。このため、天然ガスハイドレートを輸送、貯蔵する場合、天然ガスノ、イドレートの 自己保存性を利用している。この自己保存性は、現在のところ、天然ガスを取り込ん でいるハイドレートの表層部が解けて氷の膜を作り、天然ガスがハイドレートから離脱 するのを防止しているためと解釈されている。そして、天然ガスハイドレートは、ノ、イド レートの粒子径が大きいほど自己保存性が大きぐ粒子径が小さいほど自己保存性 の小さ!/、ことが知られて!/、る。  [0005] By the way, when natural gas hydrate is stored at atmospheric pressure, natural gas is dissociated from the hydrate. However, natural gas hydrate exhibits a phenomenon called self-preservation that reduces gas dissociation when held at a temperature of about -20 ° C, even at atmospheric pressure. Therefore, when natural gas hydrate is transported and stored, the self-preserving property of natural gas and idrate is used. This self-preserving property is currently interpreted as preventing the natural gas from escaping from the hydrate by melting the surface of the hydrate that is taking in natural gas and creating an ice film. . Natural gas hydrate is known to have a higher self-preserving property as the particle size of the hydrate is larger and a smaller self-preserving property as the particle size is smaller! /.
[0006] 一方、天然ガスハイドレートは、生成温度 (ガスと水との反応温度)とガスのハイドレ ート化率との間に、図 4に示したような関係がある。すなわち、天然ガスは、生成温度 が低ければ低いほどハイドレートイ匕率が高くなり、生成温度が高くなるとハイドレート 化率が低下する。また、天然ガスハイドレートは、生成温度と生成されたガスハイドレ ートの粒子径との間に、図 5に示したような関係があることが実験的に得られている。 すなわち、天然ガスハイドレートは、生成温度が高ければ高いほど粒子径が大きくな つて自己保存性がよくなり、生成温度が低くなると粒子径が小さくなつて自己保存性 がよくない。つまり、天然ガスハイドレートの生成においては、ハイドレートイ匕率と粒子 径(自己保存性)との間にトレードオフの関係があることが実験的に得られている。し たがって、天然ガスハイドレートは、天然ガスのハイドレート化率とハイドレートの粒子 径とを考慮した生成条件により製造しなければならない。  [0006] On the other hand, natural gas hydrate has a relationship as shown in FIG. 4 between the generation temperature (reaction temperature between gas and water) and the gas hydrate conversion rate. That is, the lower the production temperature of natural gas, the higher the hydrate yield rate, and the higher the production temperature, the lower the hydrate rate. In addition, it has been experimentally obtained that the relationship between the generation temperature of natural gas hydrate and the particle size of the generated gas hydrate is as shown in FIG. That is, natural gas hydrate has a higher particle size and higher self-storing property as the production temperature is higher, and the self-preserving property is lower and lower as the product temperature is lowered. In other words, in the production of natural gas hydrate, it has been experimentally obtained that there is a trade-off relationship between the hydrate yield and the particle size (self-preserving property). Therefore, natural gas hydrates must be produced under production conditions that take into account the hydrate conversion rate of natural gas and the hydrate particle size.
[0007] 特に、天然ガスノ、イドレートの輸送を考えた場合、例えばガス田にお 、て天然ガス ハイドレートを製造して目的地に輸送したときに、いかに多くの天然ガスがハイドレー トとして残存しているかが問題となる。したがって、天然ガスハイドレートの製造は、ハ イドレートイ匕率を高くするとともに、自己保存性の大きなハイドレートとなるように生成 する必要がある。しかし、特許文献 1に記載のハイドレートの製造方法は、ハイドレー トの原料水に粒子径調整剤を添加して粒予径の小さなメタンハイドレートを製造する ようにしている。このため、特許文献 1に記載のメタンノヽイドレートの製造方法は、自 己保存性が小さぐメタンハイドレートを製造現地から消費地などの目的地に輸送す る間にノ、イドレートからのガスの解離が進行し、 目的地におけるメタンガスの残存率 の低下により、輸送効率の低下を招いて輸送コストが上昇する。また、特許文献 2, 3 には、 自己保存性について何ら記載されていない。 [0007] In particular, when transporting natural gas and idrate is considered, for example, when natural gas hydrate is manufactured and transported to a destination in a gas field, how much natural gas remains as hydrate. It is a problem. Therefore, the production of natural gas hydrate is generated so as to increase the hydrate ratio and to produce a hydrate with a high self-preserving property. There is a need to. However, according to the hydrate production method described in Patent Document 1, methane hydrate having a small particle diameter is produced by adding a particle size adjusting agent to the raw water of the hydrate. For this reason, the method for producing methane hydrate described in Patent Document 1 uses the methane hydrate, which has a low self-preserving property, during the transportation of methane hydrate from the production site to a destination such as a consumption place. As dissociation progresses and the residual rate of methane gas at the destination declines, transportation efficiency decreases and transportation costs increase. Patent Documents 2 and 3 do not describe any self-preserving property.
[0008] 特許文献 1 :特開 2001— 72615号公報 Patent Document 1: Japanese Patent Laid-Open No. 2001-72615
特許文献 2:特開 2003 - 55675号公報  Patent Document 2: Japanese Patent Laid-Open No. 2003-55675
特許文献 3:特開 2003 - 64385号公報  Patent Document 3: Japanese Patent Laid-Open No. 2003-64385
発明の開示  Disclosure of the invention
[0009] 本発明は、上述した従来技術の欠点を解消するためになされたもので、輸送中、貯 蔵中におけるガスハイドレート中のガスの残存率、すなわち、ガスがハイドレートとし て残って 、る割合を向上させることを課題とする。  [0009] The present invention was made to eliminate the above-mentioned drawbacks of the prior art, and the residual rate of gas in the gas hydrate during transportation and storage, that is, the gas remains as hydrate. The problem is to improve the ratio.
[0010] 発明者らは、天然ガスハイドレートの製造にっ 、て鋭意研究し、種々検討した結果 、天然ガスハイドレートを製造現地から目的地に輸送したときに、天然ガスの残存率、 すなわち正味利用できるガス量を最大にすることが非常に重要であることに思い至つ た。そこで、本発明は、原料ガスと水との反応過程で得た生成物中のガスハイドレー トの割合であるハイドレートイ匕率を Xとし、 目的地へガスハイドレートを輸送した場合に 、生成物中のガスハイドレートのガス残存率を yとしたとき、ガスハイドレートを生成す るときの評価関 ¾Jを、  [0010] As a result of diligent research and various studies on the production of natural gas hydrate, the inventors have found that when natural gas hydrate is transported from the production site to the destination, the residual rate of natural gas, I realized that it was very important to maximize the amount of net available gas. Therefore, the present invention provides a product in which the hydrate yield rate, which is the ratio of gas hydrate in the product obtained in the reaction process between the raw material gas and water, is X and the gas hydrate is transported to the destination. When the gas residual rate of the gas hydrate in the gas is y, the evaluation function J when generating the gas hydrate is
J=x'y  J = x'y
として求め、評価関 ¾Jが最大となるようにガスハイドレートの生成条件を制御すること に思い至つたのである。つまり、評価関 #αは、ガスノ、イドレートの輸送後における正 味便えるガスの量を示す。  As a result, the inventors have come up with the idea of controlling the gas hydrate generation conditions so that the evaluation function J is maximized. In other words, the evaluation function # α indicates the amount of gas that can be conveniently consumed after transportation of gasno and idrate.
[0011] すなわち、本発明に係るガスハイドレートの製造方法は、原料ガスと水を水和反応 させてガスノ、イドレートを生成するガスハイドレートの製造方法にぉ 、て、前記ガスハ イドレートの生成時における粒子径と、生成後の輸送する過程での時間経過に伴つ て減少する前記ガスハイドレート中のガス残存率との関係を表す残存特性を予め求 めておき、前記ガスハイドレートを生成する過程における、生成物中の前記ガスハイ ドレートの粒子径に対応する前記ガス残存率を、前記残存特性に基づいて求め、前 記求めたガス残存率と前記生成物中の前記ガスノ、イドレートの割合であるハイドレー ト化率との積として表される評価関数の値が最大となるように、前記ガスハイドレート の生成温度を制御することを特徴として ヽる。 That is, the method for producing a gas hydrate according to the present invention is a method for producing a gas hydrate by producing a gas hydrate and an hydrate by hydrating a raw material gas and water. With particle size and time course in transport after formation The residual characteristic representing the relationship with the gas residual rate in the gas hydrate that decreases in advance is obtained in advance, and the gas hydrate corresponding to the particle size of the gas hydrate in the product in the process of generating the gas hydrate is obtained. A gas residual ratio is determined based on the residual characteristics, and an evaluation function value expressed as a product of the gas residual ratio determined above and a hydrate ratio, which is a ratio of the gas and idrate in the product, is obtained. It is characterized by controlling the generation temperature of the gas hydrate so as to be maximized.
[0012] すなわち、(ハイドレートイ匕率 X) X (ガス残存率 y)として表される評価関衡は、生成 したガスハイドレートの輸送後における正味使用できるガスの量に対応する。したが つて、評価関 ¾Jが最大となるように生成温度を制御することにより、ガスハイドレート の輸送後におけるガスハイドレート中のガスの正味量が大きくなる。このため、天然ガ スの輸送効率を最大化することができ、天然ガスの輸送コストを低減することができる 。また、評価関慰が最大となるようにガスノ、イドレートを製造するため、ガスをハイドレ 一トイ匕の効率を実質的に向上させることができる。  That is, the evaluation balance expressed as (hydrate yield rate X) X (gas residual rate y) corresponds to the net amount of gas that can be used after transportation of the generated gas hydrate. Therefore, by controlling the generation temperature so that the evaluation function J is maximized, the net amount of gas in the gas hydrate after the transportation of the gas hydrate is increased. For this reason, the transportation efficiency of natural gas can be maximized, and the transportation cost of natural gas can be reduced. In addition, since the gasno and idrate are manufactured so that the evaluation comfort is maximized, the efficiency of the gas hydrate toy can be substantially improved.
[0013] 一方、発明者らの研究によると、ガスノ、イドレートの粒子径が 0. 5mmより小さくなる と、自己保存性が急速に悪ィ匕することから、ガスハイドレートの生成温度はガスノ、イド レートの粒子径が 0. 5mm以上となる温度以上であることを制限条件とする。  [0013] On the other hand, according to the study by the inventors, when the particle size of gasno and idrate is smaller than 0.5 mm, the self-preserving property deteriorates rapidly. The limiting condition is that the temperature of the idrate particle diameter is 0.5 mm or more.
[0014] また、上記のガスハイドレートの製造方法を実施する本発明に係るガスノ、イドレート の製造装置は、原料ガスと水を水和反応させてガスハイドレートを生成する反応器と 、前記反応器に冷熱を供給して前記水と前記ガスとの反応熱を除去する冷却ュニッ トと、前記ガスハイドレートの生成時における粒子径と生成後の輸送する過程での時 間経過に伴って減少する前記ガスハイドレートのガス残存率との関係を表す残存特 性を予め記憶した残存率記憶部と、前記反応器内の温度を検出する温度検出部と、 前記反応器において生成された生成物中の前記ガスノ、イドレートの割合であるハイ ドレートイ匕率を検出するハイドレートイ匕率検出部と、前記反応器において生成された 前記ガスハイドレートの粒子径を検出する粒子径検出部と、前記粒子径検出部によ り検出された粒子径と前記残存率記憶部の記憶内容とに基づ!/、て、生成された前記 ガスハイドレートのガス残存率を求める残存率演算部と、前記ハイドレート化率検出 部の検出したハイドレートイ匕率と前記残存率演算部の求めたガス残存率との積として 表される評価関数を求める評価関数演算部と、前記評価関数演算部が求めた評価 関数の値を最大にする生成温度を求める制御目標温度演算部と、前記制御目標温 度演算部が求めた制御目標温度と前記温度検出部の検出した生成温度とに基づい て、前記冷却ユニットを介して前記生成温度を前記制御目標温度に制御する制御部 とを有することを特徴とする。 [0014] In addition, a gasnoid and idlate production apparatus according to the present invention for carrying out the gas hydrate production method described above includes a reactor for producing a gas hydrate by hydrating a raw material gas and water, and the reaction described above. A cooling unit that removes the heat of reaction between the water and the gas by supplying cold to the vessel, and the particle size during the production of the gas hydrate and decreases with the passage of time after the production A residual rate storage unit that stores in advance a residual characteristic representing a relationship with a gas residual rate of the gas hydrate, a temperature detection unit that detects a temperature in the reactor, and a product generated in the reactor A hydrate slag detector for detecting a hydrate slag that is a ratio of the gas and idrate in the gas, and a particle size detector for detecting a particle size of the gas hydrate generated in the reactor And a residual rate calculating unit for obtaining a gas residual rate of the generated gas hydrate based on the particle diameter detected by the particle size detecting unit and the stored contents of the residual rate storage unit! And the product of the hydrate recovery rate detected by the hydrate ratio detection unit and the gas residual rate obtained by the residual rate calculation unit. An evaluation function calculation unit that calculates the evaluation function represented, a control target temperature calculation unit that calculates a generation temperature that maximizes the value of the evaluation function calculated by the evaluation function calculation unit, and the control target temperature calculation unit And a control unit that controls the generated temperature to the control target temperature via the cooling unit based on the control target temperature and the generated temperature detected by the temperature detecting unit.
[0015] この場合にお 、て、前記反応器は、原料ガスと水とを水和反応させてガスハイドレ ートを含むスラリーを生成する第 1の反応器と、該第 1の反応器で生成されたガスハイ ドレートを導入し該ガスハイドレートに付着する水分と原料ガスとを水和反応させてガ スハイドレートイ匕する第 2の反応器とを含んで構成することができる。これに対応させ て、前記冷却ユニットは、前記第 2の反応器に冷却した原料ガスを循環供給するもの であり、前記温度検出部は前記第 2の反応器内の温度を検出するものとし、前記ハイ ドレートイ匕率検出部は、前記第 2の反応器において生成された生成物中のハイドレ 一ト化率を検出するものであり、前記粒子径検出部は、前記第 2の反応器において 生成された記ガスハイドレートの粒子径を検出するものであり、前記制御部は、前記 冷却ユニットを介して前記第 2の反応器内の前記生成温度を前記制御目標温度に 制御するようにする。  [0015] In this case, the reactor is generated by the first reactor that generates a slurry containing gas hydrate by hydrating the raw material gas and water, and the first reactor. It is possible to include a second reactor that introduces the gas hydrate that has been introduced and hydrates the water adhering to the gas hydrate with the raw material gas to generate gas hydrate. Correspondingly, the cooling unit circulates and supplies the cooled raw material gas to the second reactor, and the temperature detector detects the temperature in the second reactor, The hydrate recovery rate detection unit detects a hydration rate in the product generated in the second reactor, and the particle size detection unit generates in the second reactor. The particle size of the gas hydrate is detected, and the control unit controls the generation temperature in the second reactor to the control target temperature via the cooling unit.
[0016] また、前記第 2の反応器は、軸線が水平に配置された円筒容器と、該円筒容器内 に軸方向に沿って設けられ複数の攬絆翼が取付けられた回転軸とを備え、前記円筒 容器の一端に前記第 1の反応器により生成された前記ガスハイドレートの流入口が 設けられ、前記円筒容器の他端に前記ガスハイドレートの排出口が設けて構成する ことができる。  [0016] Further, the second reactor includes a cylindrical container having an axial line disposed horizontally, and a rotating shaft provided in the cylindrical container along the axial direction and having a plurality of knotted wings attached thereto. The gas hydrate generated by the first reactor is provided at one end of the cylindrical vessel, and the gas hydrate outlet is provided at the other end of the cylindrical vessel. .
[0017] 又は、これに代えて、前記第 2の反応器は、前記第 1の反応器から供給されるガス ハイドレートと原料ガスが導入される円筒状の縦型容器と、該縦型容器の前記ガスハ イドレートが導入される位置と底部との間に設けられた多孔板と、該多孔板の上方の ガスハイドレートを排出する排出機とを有して形成され、前記冷却ユニットは、前記縦 型容器の上部に連通され前記縦型容器の上部の原料ガスを吸引し、冷却器を通し て前記縦型容器の底部に循環させる循環ガスブロワ一とを備えて構成することができ る。 [0018] ところで、本発明のガスハイドレート製造方法により自己保存性が高いガスハイドレ ート生成物を得ることができるが、上記の第 2の反応器に供給されるガスハイドレート に付着する未反応水が多 、と、第 2の反応器におけるガスハイドレートイ匕の効率が実 質低下する。そこで、上記の第 2の反応器に供給されるガスノ、イドレートに付着する 未反応水を低減することが要請される。 Alternatively, the second reactor includes a cylindrical vertical container into which the gas hydrate and raw material gas supplied from the first reactor are introduced, and the vertical container. A perforated plate provided between a position where the gas hydrate is introduced and a bottom, and a discharger for discharging the gas hydrate above the perforated plate, and the cooling unit A circulation gas blower that communicates with the upper part of the vertical container and sucks the raw material gas at the upper part of the vertical container and circulates it to the bottom of the vertical container through a cooler can be provided. [0018] By the way, a gas hydrate product having high self-storability can be obtained by the gas hydrate production method of the present invention, but unreacted adhering to the gas hydrate supplied to the second reactor. If there is a lot of water, the efficiency of gas hydrate steam in the second reactor will actually decrease. Therefore, it is required to reduce unreacted water adhering to the gas and idrate supplied to the second reactor.
[0019] そこで、本発明の第 1の反応器に係るガスハイドレート製造装置を、次のように構成 することが望ましい。  [0019] Therefore, it is desirable to configure the gas hydrate production apparatus according to the first reactor of the present invention as follows.
[0020] すなわち、本発明の第 1の反応器に係るガスハイドレート製造装置は、原料ガスと 水とを水和反応させてガスハイドレートを含むスラリーを生成する反応器と、該反応器 上部の原料ガスを抜き出して該反応器の底部カゝら反応器内に散気するガス循環装 置と、前記反応器の底部からガスハイドレートを含むスラリーを抜き出し、冷却器を通 して前記反応器の上部に戻すスラリー循環装置と、前記反応器の底部からガスハイ ドレートを含むスラリーを脱水装置に移送するスラリー移送ポンプと、前記スラリー循 環装置により循環される循環スラリーの蜜度を検出し、検出されたスラリー密度を設 定範囲に収めるように、前記ガス循環装置により循環される循環ガス量と、前記スラリ 一循環装置の循環スラリー量と、循環スラリー温度の少なくとも 1つを制御する制御手 段とを備えて構成する。  That is, the gas hydrate production apparatus according to the first reactor of the present invention includes a reactor for producing a slurry containing gas hydrate by hydrating a raw material gas and water, and an upper portion of the reactor. A gas circulation device for extracting the raw material gas from the bottom of the reactor and diffusing the gas into the reactor, and extracting the slurry containing gas hydrate from the bottom of the reactor, and passing the reaction through the cooler. A slurry circulating device that returns to the top of the reactor, a slurry transfer pump that transports a slurry containing gas hydrate from the bottom of the reactor to a dehydrating device, and a honey degree of the circulating slurry circulated by the slurry circulating device, The amount of circulating gas circulated by the gas circulating device, the amount of circulating slurry of the slurry circulating device, and the circulating slurry temperature so that the detected slurry density falls within a set range. Constituting a control means to control at least one.
[0021] このように構成することにより、反応器内のスラリー中に散気する原料ガスの循環量 を増やすと水和反応が促進されるから、スラリー中のガスハイドレート濃度を制御でき る。また、水和反応は発熱反応であり、かつ水和反応は過冷却度 (ガスハイドレート 生成の平衡温度と反応器内の温度との差)に依存するから、反応器内のスラリー温 度を制御することにより、スラリー中のガスハイドレート濃度を制御できる。  [0021] With this configuration, the hydration reaction is promoted by increasing the circulation amount of the raw material gas diffused into the slurry in the reactor, so that the gas hydrate concentration in the slurry can be controlled. Also, since the hydration reaction is exothermic and the hydration reaction depends on the degree of supercooling (the difference between the equilibrium temperature for gas hydrate formation and the temperature in the reactor), the slurry temperature in the reactor is By controlling, the gas hydrate concentration in the slurry can be controlled.
[0022] また、水とガスハイドレートは質量が異なるから、循環スラリーの蜜度を検出すること により、スラリー中のガスハイドレート濃度を検出できる。これらに鑑み、循環スラリー の蜜度を設定範囲に収めるように、循環ガス量と、循環スラリー量と、循環スラリーの 温度の少なくとも 1つを制御すれば、スラリー中のガスハイドレート濃度を所望値に精 度よく ff¾御することができる。  [0022] Further, since water and gas hydrate have different masses, the gas hydrate concentration in the slurry can be detected by detecting the honey degree of the circulating slurry. In view of these, the gas hydrate concentration in the slurry can be set to a desired value by controlling at least one of the circulating gas amount, the circulating slurry amount, and the circulating slurry temperature so that the honey level of the circulating slurry falls within the set range. Ff¾ can be controlled accurately.
[0023] 上記の場合において、さらに、前記スラリー移送ポンプにより移送されるガスハイド レートを含むスラリーを導入して物理的に脱水する第 1の脱水装置と、該第 1の脱水 装置により脱水されたガスハイドレートに付着する水分を原料ガスと水和反応させて 高濃度のガスハイドレートを生成する第 2の脱水装置とを備えて構成することが望まし い。 [0023] In the above case, further, the gas hydrate transferred by the slurry transfer pump. A first dehydrator for physically dehydrating by introducing a slurry containing a rate, and a high-concentration gas by hydrating the water adhering to the gas hydrate dehydrated by the first dehydrator with the source gas It is desirable to provide a second dehydrator that generates hydrate.
[0024] また、前記第 1の脱水装置は、前記スラリー移送ポンプにより移送されるガスハイド レートを含むスラリーが底部に導入される円筒状の縦型容器と、前記容器の上部の ガスハイドレートを排出する排出機と、前記容器の腹部に形成された複数の孔と、該 複数の孔を包囲する水抜き室を形成する水抜き部と、前記水抜き室の水位が設定水 位になるように前記水抜き室力 抜き出す水抜き量を制御する制御手段とを備えて 構成することができる。  [0024] The first dehydrator discharges a cylindrical vertical container into which a slurry containing a gas hydrate transferred by the slurry transfer pump is introduced at the bottom, and a gas hydrate at the top of the container. A discharger, a plurality of holes formed in the abdomen of the container, a drainage part forming a drainage chamber surrounding the plurality of holes, and a water level of the drainage chamber so as to be a set water level The drainage chamber force can be configured to include a control means for controlling the drainage amount to be drained.
[0025] また、前記第 2の脱水装置は、前記第 1の脱水装置の前記排出機により排出される ガスハイドレートと原料ガスが導入される円筒状の縦型容器と、該縦型容器の前記ガ スハイドレートが導入される位置と底部との間に設けられた多孔板と、前記縦型容器 の上部に連通され前記縦型容器の上部の原料ガスを吸引し、冷却器を通して前記 縦型容器の底部に循環させる循環ガスブロワ一と、前記多孔板の上方のガスハイド レートを排出する排出機と、該排出機の負荷量を検出し、検出された負荷量を設定 範囲に収めるように、前記循環ガスブロワ一により循環される循環ガス量と、循環ガス の温度と、前記排出機の排出量の少なくとも 1つを制御する制御手段と備えて構成 することができる。  [0025] In addition, the second dehydrator includes a cylindrical vertical container into which the gas hydrate discharged from the discharger of the first dehydrator and the raw material gas are introduced, and the vertical container The perforated plate provided between the position where the gas hydrate is introduced and the bottom, and the upper part of the vertical container are connected to the upper part of the vertical container to suck the raw material gas and pass through the cooler to A circulating gas blower that is circulated to the bottom of the mold vessel, a discharger that discharges the gas hydrate above the perforated plate, and a load amount of the discharger is detected, so that the detected load amount falls within a set range. Control means for controlling at least one of the circulating gas amount circulated by the circulating gas blower, the temperature of the circulating gas, and the discharge amount of the discharger can be provided.
[0026] すなわち、第 2の脱水装置は、第 1の脱水装置力 排出されるガスハイドレートを原 料ガスにより流動化させて流動層を形成し、ガスハイドレートの付着水を流動層反応 により原料ガスと反応させて、ガスハイドレートの濃度を要求される濃度レベルに高め ることがでさる。  [0026] That is, the second dehydrating device fluidizes the gas hydrate discharged from the first dehydrating device with the raw material gas to form a fluidized bed, and the adhering water of the gas hydrate is obtained by the fluidized bed reaction. By reacting with the raw material gas, the concentration of gas hydrate can be increased to the required concentration level.
図面の簡単な説明  Brief Description of Drawings
[0027] [図 1]本発明の第 1実施の形態に係るガスハイドレート製造装置の説明図である。  FIG. 1 is an explanatory diagram of a gas hydrate production apparatus according to a first embodiment of the present invention.
[図 2]第 1実施の形態に係る第 2反応器の断面図である。  FIG. 2 is a cross-sectional view of a second reactor according to the first embodiment.
[図 3]第 1実施形態に係る演算 '制御装置の説明図である。  FIG. 3 is an explanatory diagram of an operation control apparatus according to the first embodiment.
[図 4]ガスハイドレートの生成温度とハイドレートイ匕率との関係を示す概念図である。 [図 5]ガスハイドレートの生成温度とガスハイドレートの平均粒子径との関係を示す概 念図である。 FIG. 4 is a conceptual diagram showing the relationship between the gas hydrate generation temperature and the hydrate yield rate. FIG. 5 is a conceptual diagram showing the relationship between the gas hydrate formation temperature and the average particle size of the gas hydrate.
[図 6]本発明のガスハイドレートの製造方法を説明する図である。  FIG. 6 is a diagram illustrating a method for producing a gas hydrate according to the present invention.
[図 7]本発明の他の実施の形態のハイドレートスラリー製造装置の全体構成図である 発明を実施するための最良の形態  FIG. 7 is an overall configuration diagram of a hydrate slurry production apparatus according to another embodiment of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
[0028] 本発明に係るガスハイドレートの製造方法及び装置の好ま ヽ実施の形態を、添付 図面に従って詳細に説明する。  [0028] Preferred embodiments of a method and apparatus for producing a gas hydrate according to the present invention will be described in detail with reference to the accompanying drawings.
[0029] 〔第 1の実施の形態〕  [First Embodiment]
図 1は、本発明の一実施形態に係るガスハイドレート製造装置の概略を示す説明 図である。なお、実施形態においては、天然ガスハイドレート (NGH)の製造を例にし て説明する。図 1において、ガスハイドレート製造装置 10は、ハイドレート生成部 12 が第 1反応器 14と第 2反応器 16とによって構成してある。第 1反応器 14には、ガス供 給配管 18を介してガス供給源 20が接続してあるとともに、生成水供給配管 22を介し て生成水供給源 24が接続してある。  FIG. 1 is an explanatory diagram showing an outline of a gas hydrate production apparatus according to an embodiment of the present invention. In the embodiment, the production of natural gas hydrate (NGH) will be described as an example. In FIG. 1, in the gas hydrate production apparatus 10, the hydrate generation unit 12 includes a first reactor 14 and a second reactor 16. A gas supply source 20 is connected to the first reactor 14 via a gas supply pipe 18, and a generated water supply source 24 is connected via a generated water supply pipe 22.
[0030] 第 1反応器 14は、ガスハイドレートの生成時に内部が数〜 lOMPaの高圧に保持さ れ、原料ガスである天然ガスと生成水 (水)とを反応させる。このため、ガス供給配管 1 8と生成水供給配管 22とには、供給ポンプ 26、 28が設置してあり、高圧のガスと高圧 の水とを第 1反応器 14に供給できるようになつている。なお、本実施形態の場合、原 料ガスは、メタンガスを主成分とする天然ガスである。  [0030] The interior of the first reactor 14 is maintained at a high pressure of several to lOMPa when the gas hydrate is generated, and the natural gas that is the raw material gas reacts with the generated water (water). Therefore, supply pumps 26 and 28 are installed in the gas supply pipe 18 and the generated water supply pipe 22 so that high-pressure gas and high-pressure water can be supplied to the first reactor 14. Yes. In the present embodiment, the raw material gas is natural gas mainly composed of methane gas.
[0031] また、第 1反応器 14は、図示しないパブリング機構と攪拌機とを備えていて、ガスと 水とを効率よく接触させることができるようになつている。そして、第 1反応器 14は、内 部水を外部循環させて冷却するラインが設置されており、この冷却ラインには、冷却 ユニット 30が接続され、循環水を冷媒で冷却することができるようにしてある。内部水 を外部循環して冷媒で冷却することにより、ガスと水とが反応してガスハイドレートとな る際の反応熱を除去し、第 1反応器 14の内部を 0〜10°Cに冷却する。  [0031] The first reactor 14 includes a publishing mechanism and a stirrer (not shown) so that the gas and water can be brought into contact efficiently. The first reactor 14 is provided with a line for externally circulating and cooling the internal water. The cooling unit 30 is connected to the cooling line so that the circulating water can be cooled with the refrigerant. It is. By circulating the internal water to the outside and cooling with the refrigerant, the reaction heat when the gas and water react to form gas hydrate is removed, and the inside of the first reactor 14 is brought to 0-10 ° C. Cooling.
[0032] 第 1反応器 14の下方には、第 2反応器 16が配置してある。第 2反応器 16は、第 1 反応器 14と連通していて、第 1反応器 14において生成されたガスノ、イドレートが、水 (付着水)とともに流入するようになっている。また、第 2反応器 16は、通常、内部の圧 力が第 1反応器 14の内部と同じに設定してある。そして、第 2反応器 16は、周面に冷 媒流路を有していて、冷却ユニット 32から供給された冷媒によって、ガスハイドレート が生成される際の反応熱が除去され、内部が 0〜10°Cに保持される。さらに、第 2反 応器 16は、ガス供給源 20からガスが供給されるようになっていて(図示せず)、詳細 を後述するように、第 1反応器 14から流入した水 (付着水)とガスとを反応させて、ガ スハイドレートと付着水と力 なる生成物中のガスハイドレートの割含 (ハイドレートイ匕 率)を高めることができるようになって!/、る, [0032] Below the first reactor 14, a second reactor 16 is arranged. The second reactor 16 communicates with the first reactor 14, and the gas and idrate generated in the first reactor 14 are water. (Adhesive water) flows in. The second reactor 16 is usually set to have the same internal pressure as that of the first reactor 14. The second reactor 16 has a cooling medium flow path on its peripheral surface, and the heat of reaction when the gas hydrate is generated is removed by the refrigerant supplied from the cooling unit 32, so that the inside is zero. Hold at ~ 10 ° C. Further, the second reactor 16 is supplied with gas from a gas supply source 20 (not shown), and the water (adhesion water) flowing from the first reactor 14 is described in detail later. ) And gas to increase the gas hydrate content in the product (gas hydrate, adhering water, and powerful product).
第 2反応器 16は、図 2に示したように、軸線が水平に配置された円筒容器 34を備 えていて、円筒容器 34の中心部を回転軸 36が貫通している。回転軸 36は、円筒容 器 34に回転自在に支持されていて、一端に駆動モータ 38が接続してあり、駆動モ ータ 38によって回転させられる。また、円筒容器 34は、一端側の上部に流入口 40を 備え、他端側の下部に排出口 42を備えている。流入口 40は、第 1反応器 14に接続 してあって、第 1反応器 14力もガスハイドレートと付着水とからなるガスハイドレート生 成物 45が流入する。一方、排出口 42は、図 1に示したように、ハイドレート冷却装置 4 4に接続してあり、第 2反応器 16において生成されたガスハイドレート生成物 95をノヽ イドレート冷却装置 44に供給する。  As shown in FIG. 2, the second reactor 16 includes a cylindrical container 34 whose axis is disposed horizontally, and the rotating shaft 36 passes through the center of the cylindrical container 34. The rotary shaft 36 is rotatably supported by the cylindrical container 34, and a drive motor 38 is connected to one end thereof and is rotated by the drive motor 38. Further, the cylindrical container 34 is provided with an inflow port 40 at the upper part on one end side, and a discharge port 42 at the lower part on the other end side. The inlet 40 is connected to the first reactor 14, and the gas hydrate product 45 composed of the gas hydrate and adhering water flows into the first reactor 14. On the other hand, as shown in FIG. 1, the discharge port 42 is connected to the hydrate cooling device 44, and supplies the gas hydrate product 95 generated in the second reactor 16 to the noise rate cooling device 44. To do.
[0033] 回転軸 36には、複数の攬絆翼 46が取り付けてある。各攪拌翼 46は、門型をなして いる。これらの攪拌翼 46は、回転軸 36の軸線に沿って螺旋をなすよう配置してあると ともに、一部は回転軸 36の接線方向に対して傾斜して取り付けてある。したがって、 第 2反応器 16は、攪拌翼 46が回転軸 36と一体に回転することにより、流入口 40から 流入したガスハイドレート生成物 45をガス中で攪拌し、付着水とガスとを反応させつ つ排出口 42に向けて送り、次のハイドレート冷却装置 44に入れるようにしてある。  [0033] A plurality of scissors wings 46 are attached to the rotary shaft 36. Each stirring blade 46 has a portal shape. These agitating blades 46 are arranged so as to form a spiral along the axis of the rotary shaft 36, and a part thereof is inclined with respect to the tangential direction of the rotary shaft 36. Therefore, the second reactor 16 agitates the gas hydrate product 45 flowing in from the inlet 40 in the gas by the stirring blade 46 rotating integrally with the rotating shaft 36, and reacts the adhering water and the gas. It is sent toward the discharge port 42 and is put into the next hydrate cooling device 44.
[0034] ノ、イドレート冷却装置 44は、第 2反応器 16から流入したガスハイドレート生成物 95 を、供給されたブライン 62によって、一 20°C程度に冷却する。このハイドレート冷却 装置 44の排出口 97には、脱圧装置 64が接続してある。脱圧装置 64は、冷却され高 圧に保持されているガスノ、イドレート生成物 96を大気圧まで減圧できるようになって いる。脱圧装置 64によって脱圧されたガスハイドレート生成物 96は、脱圧装置 64に 接続した貯蔵タンク 66に貯蔵される。貯蔵タンク 66に貯蔵されたガスノ、イドレート生 成物 96は、必要に応じてペレツトイ匕装置に送られ、取り扱いを容易にするために、例 えば直径が 2cm程度の球状のペレットにされる。 The idrate cooling device 44 cools the gas hydrate product 95 flowing from the second reactor 16 to about 20 ° C. with the supplied brine 62. A depressurization device 64 is connected to the discharge port 97 of the hydrate cooling device 44. The depressurizer 64 can depressurize the gas / idrate product 96 that has been cooled and maintained at a high pressure to atmospheric pressure. The gas hydrate product 96 depressurized by the depressurizer 64 is transferred to the depressurizer 64. Stored in connected storage tank 66. The gasnoid and idrate product 96 stored in the storage tank 66 is sent to a pellets bowl device as necessary, and is made into spherical pellets having a diameter of about 2 cm, for example, for easy handling.
[0035] なお、円筒容器 34は、周面に冷媒流路 48が形成してあって、冷却ユニット 32から 供給された冷媒 50によって内部を冷却できるようになつている。また、円筒容器 34に は、軸線に沿って複数 (本実施形態の場合、 3つ)の温度センサを挿入するセンサ挿 入部 52が設けてあり、センサ挿入部 52から円筒容器 34内に挿入した温度検出部で ある温度センサによって、円筒容器 34内の温度(生成温度)を検出できるようにして ある。 Note that the cylindrical container 34 has a coolant channel 48 formed on the peripheral surface thereof, so that the inside can be cooled by the coolant 50 supplied from the cooling unit 32. Further, the cylindrical container 34 is provided with a sensor insertion part 52 for inserting a plurality of (three in the case of the present embodiment) temperature sensors along the axis, and is inserted into the cylindrical container 34 from the sensor insertion part 52. The temperature in the cylindrical container 34 (generation temperature) can be detected by a temperature sensor that is a temperature detection unit.
[0036] 円筒容器 34のセンサ挿入部 52に挿入した温度センサ 54の検出信号は、図 1に示 したように、詳細を後述する演算 ·制御装置 60に入力するようにしてある。また、演算 •制御装置 60には、水分センサ 56と粒径センサ 58との検出信号が入力するようにな つている。水分センサ 56は、後述するようにハイドレートイ匕率検出部を構成していて、 第 2反応器 16又はハイドレート冷却装置 44において生成'冷却されたガスハイドレー ト生成物 95又はガスハイドレート生成物 96にレーザや赤外線や X線を照射し、生成 物中の付着水 (氷)の割合を検出する。また、粒径センサ 58は、粒子径検出部を構 成していて、第 2反応器 16又はハイドレート冷却装置 44から排出されたガスハイドレ ート生成物 95又はガスハイドレート生成物 96にレーザなどを照射し、ガスハイドレー ト生成物 95、 96の粒子径を計測する。なお、水分センサ 56、粒径センサ 58による生 成物の水分、粒子径の計測は、第 2反応器 16の排出口 42またはハイドレート冷却装 置 44の排出口 97から排出されるガスノ、イドレート生成物 95、 96に直接レーザなどを 照射してインラインで測定してもよいし、第 2反応器 16又はハイドレート冷却装置 44 力も排出されたガスノ、イドレート生成物 95、 96をサンプリングしてオフラインで計測し てもよい。  [0036] As shown in FIG. 1, the detection signal of the temperature sensor 54 inserted into the sensor insertion portion 52 of the cylindrical container 34 is input to the arithmetic / control device 60 described later in detail. In addition, detection signals from the moisture sensor 56 and the particle size sensor 58 are input to the calculation / control device 60. As will be described later, the moisture sensor 56 constitutes a hydrate ratio detection unit, and the gas hydrate product 95 or gas hydrate product generated and cooled in the second reactor 16 or the hydrate cooling device 44. The 96 is irradiated with laser, infrared rays, or X-rays, and the ratio of adhering water (ice) in the product is detected. In addition, the particle size sensor 58 constitutes a particle size detection unit, and the gas hydrate product 95 or the gas hydrate product 96 discharged from the second reactor 16 or the hydrate cooling device 44 has a laser or the like. The particle size of gas hydrate products 95 and 96 is measured. The water content and particle size of the product by the moisture sensor 56 and the particle size sensor 58 are measured by the gas and idrate discharged from the outlet 42 of the second reactor 16 or the outlet 97 of the hydrate cooling device 44. The products 95 and 96 may be measured directly in-line by irradiating them with a laser or the like. Alternatively, the second reactor 16 or hydrate cooling device 44 may be used to sample the gas and idrate products 95 and 96 that have also been discharged. You may measure with
[0037] 演算'制御装置 60は、図 3に示したように、水分センサ 56に接続されて、水分セン サ 56とともにハイドレートイ匕率検出部 70を構成しているハイドレートイ匕率演算部 72、 粒径センサ 58とともに粒子径検出部 74を構成している粒子径演算部 76を有する。  As shown in FIG. 3, the calculation / control device 60 is connected to the moisture sensor 56 and, together with the moisture sensor 56, constitutes a hydrate yield rate detection unit 70. The unit 72 and the particle size sensor 58 have a particle size calculation unit 76 that constitutes a particle size detection unit 74.
[0038] 粒子径演算部 76は、入力側が粒径センサ 58に接続しており、粒径センサ 58が検 出したガスハイドレート生成物 95又はガスハイドレート 96の粒子径を求める。 [0038] The particle size calculator 76 is connected to the particle size sensor 58 on the input side, and the particle size sensor 58 detects the particle size. The particle size of the gas hydrate product 95 or gas hydrate 96 is calculated.
[0039] さらに、演算,制御装置 60は、評価関数 ·制御目標温度演算部 78、残存率演算部 80、制御部 82、製造'輸送条件設定部 84、残存データ記憶部 86を有する。残存率 演算部 80は、粒子径演算部 76の出力側に接続してあって、粒子径演算部 76の求 めた粒子径が入力する。また、残存率演算郡 80は、製造'輸送条件設定部 84と残 存データ記憶部 86が接続してあり、製造 ·輸送条件設定部 84で設定されたガスハイ ドレートの製造条件、輸送条件が入力するようになっている。一方、残存率データ記 憶部 86には、予め求めたガスノ、イドレートの製造条件、輸送条件に対応させた、ガス ハイドレート生成物 95又はガスハイドレート生成物 96の粒予径に対するガスハイドレ ートのガス残存率のデータが記億させてある。このガス残存率のデータは、残存率演 算部 80が粒子径演算部 76の求めた粒予径に基づいてガスハイドレート中のガス残 存率を演算する際に読み出される。 Further, the calculation / control apparatus 60 includes an evaluation function / control target temperature calculation unit 78, a remaining rate calculation unit 80, a control unit 82, a manufacturing / transport condition setting unit 84, and a remaining data storage unit 86. The residual rate calculation unit 80 is connected to the output side of the particle size calculation unit 76 and inputs the particle size obtained by the particle size calculation unit 76. The remaining rate calculation group 80 is connected to the manufacturing / transport condition setting unit 84 and the remaining data storage unit 86, and the gas hydrate manufacturing conditions and transport conditions set in the manufacturing / transport condition setting unit 84 are input. It is supposed to be. On the other hand, in the residual rate data storage unit 86, the gas hydrate with respect to the grain size of the gas hydrate product 95 or the gas hydrate product 96 corresponding to the gasno and idrate production conditions and transport conditions determined in advance is stored. The data of the gas remaining rate is recorded. The data of the gas residual rate is read out when the residual rate calculating unit 80 calculates the gas residual rate in the gas hydrate based on the particle diameter obtained by the particle size calculating unit 76.
[0040] 評価関数 ·制御目標温度演算部 78は、図示しない評価関数演算部と制御目標温 度演算部とを有して 、て、入力側がハイドレートイ匕率演算部 72と残存率演算部 80と に接続してあり、これらが求めたノヽイドレートイ匕率 Xとガス残存率 yとに基づいて、評価 関数演算部が評価間 ¾Jを演算する。さらに、評価関数 ·制御目標温度演算部 78は 、制御目標温度演算部が評価関 ¾Jの値を最大にするガスハイドレートの生成温度を 求めて制御部 82に出力する、制御部 82は、評価関数'制御目標温度演算部 78が 求めた生成温度となるように冷却ユニット 32を介して第 2反応器 16の温度を制御す る。 [0040] Evaluation function · Control target temperature calculation unit 78 has an evaluation function calculation unit and a control target temperature calculation unit (not shown), and the input side has a hydrate ratio calculation unit 72 and a remaining rate calculation unit. The evaluation function calculation unit calculates the evaluation interval J based on the nod rate increase rate X and the gas residual rate y obtained by these. Further, the evaluation function / control target temperature calculation unit 78 obtains the gas hydrate generation temperature at which the control target temperature calculation unit maximizes the value of the evaluation function J and outputs it to the control unit 82. The control unit 82 The temperature of the second reactor 16 is controlled via the cooling unit 32 so that the generated temperature obtained by the function 'control target temperature calculator 78 is obtained.
[0041] このようになっている第 1実施形態の作用は、次のとおりである。  [0041] The operation of the first embodiment configured as described above is as follows.
[0042] まず、原料ガスと水とを反応させる過程で得た生成物中のガスハイドレートの割合 であるハイドレートイ匕率と、生成した後の時間の経過に伴うガスハイドレート中のガス 、すなわちガスと水との反応過程で得たガスハイドレート生成物 95又はガスハイドレ ート生成物 96のガス残存率が最大となるガスハイドレート生成物 95又はガスハイドレ ート生成物 96の粒子径 (実施形態の場合、平均粒子径)の関係 (ガス残存率データ) を予め求める。このガス残存率データは、ガスハイドレートの製造条件、輸送条件に よるガス残存率の相違を考慮して、製造条件、輪送条件に対応させて実験ゃシミュレ ーシヨンなどによって求める。そして、予め求めたガス残存率データを演算 ·制御装 置 60の粒子径記憶部 84に記憶させる。また、第 2反応器 16において原料ガスと水( 付着水)とを反応させたときに、第 2反応器 16内の温度、すなわち生成温度 (反応温 度)と生成されたガスハイドレート生成物 95の粒子径との関係を予め求めておく。 [0042] First, the hydrate ratio, which is the ratio of the gas hydrate in the product obtained in the process of reacting the raw material gas and water, and the gas in the gas hydrate with the passage of time after generation That is, the particle size of the gas hydrate product 95 or the gas hydrate product 96 in which the gas residual rate of the gas hydrate product 95 or the gas hydrate product 96 obtained in the reaction process of gas and water is maximized ( In the case of the embodiment, an average particle diameter) relationship (gas residual rate data) is obtained in advance. This gas residual rate data is simulated by considering the difference in the gas residual rate depending on the gas hydrate production conditions and transportation conditions, corresponding to the production conditions and the transportation conditions. -Ask for it with a Chillon. Then, the previously obtained gas residual ratio data is stored in the particle diameter storage unit 84 of the calculation / control apparatus 60. In addition, when the raw material gas and water (attached water) are reacted in the second reactor 16, the temperature in the second reactor 16, that is, the generation temperature (reaction temperature) and the generated gas hydrate product The relationship with the particle size of 95 is obtained in advance.
[0043] 本実施形態でガスハイドレートを製造する場合、供給ポンプ 26、 28によってガス供 給源 20から原料ガス (メタンガスを主成分とする天然ガス)と、生成水供給源 24から 水(生成水)とを、ハイドレート生成部 12を構成している第 1反応器 14に供給する.第 1反応器 14は、パブリング機構と攪拌機とを備えており、第 1反応器 14中の生成水中 に原料ガスをパブリングして水とガスとを混合し、さらに攪拌して両者を効率よく反応 させる。第 1反応器 14に供給されたガスは、一部が籠状をなす水の結晶中に取り込 まれ、包接ィ匕合 '物であるガスハイドレートとなる。  [0043] When producing gas hydrate in this embodiment, the feed pumps 26 and 28 use the feed gas 26 to supply the raw material gas (natural gas mainly composed of methane gas) from the gas supply source 20 and the generated water supply source 24 to water (product water). ) Is supplied to the first reactor 14 constituting the hydrate generation unit 12. The first reactor 14 includes a publishing mechanism and a stirrer, and is contained in the generated water in the first reactor 14. The raw material gas is published, water and gas are mixed, and further stirred to react both efficiently. A part of the gas supplied to the first reactor 14 is taken into a crystal of water in the form of a cage, and becomes a gas hydrate that is a clathrate compound.
[0044] 本実施形態の場合、第 2反応器 16又はハイドレート冷却装置 44において生成'冷 却したガスハイドレート生成物 95又はガスハイドレート生成物 96中のハイドレートイ匕 率が 90%程度となるように、また第 2反応器 16又はハイドレート冷却装置 44におい て生成 ·冷却されたガスハイドレート生成物 95又はガスハイドレート生成物 96の粒子 径が 0. 5mm以上となるようなガスハイドレートの生成条件が設定される。具体的には 、第 1反応器 14及び第 2反応器 16の内部圧力が例えば 5MPa前後となるように設定 する。ここで、第 1反応器 14では、内部液を外部循環し、冷却ユニット 30において冷 媒で冷却することにより冷熱が供給され、また、第 2反応器 16では、冷却ユニット 32 力 の冷媒により冷熱が供給され、水とガスとのハイドレート化における反応熱が除 去されて内部が例えば 0〜5°Cの温度にされる。  In the present embodiment, the hydrate yield in the gas hydrate product 95 or the gas hydrate product 96 generated and cooled in the second reactor 16 or the hydrate cooling device 44 is about 90%. Gas with which the particle size of the gas hydrate product 95 or gas hydrate product 96 produced and cooled in the second reactor 16 or the hydrate cooling device 44 is 0.5 mm or more. Hydrate generation conditions are set. Specifically, the internal pressure of the first reactor 14 and the second reactor 16 is set so as to be around 5 MPa, for example. Here, in the first reactor 14, the internal liquid is circulated to the outside, and cooling is supplied by cooling with a cooling medium in the cooling unit 30, and in the second reactor 16, cooling heat is supplied by the refrigerant of the cooling unit 32 power. Is supplied, and the heat of reaction in the hydration of water and gas is removed, and the inside is brought to a temperature of, for example, 0 to 5 ° C.
[0045] 第 1反応器 14において生成されたガスノ、イドレート生成物 45は、ガスハイドレートと 水 (付着水)との混合物であって、混合物中のガスハイドレートの割合 (ハイドレートイ匕 率)が通常 40%程度で、水分が 60%程度である。そして、第 1反応器 14において生 成されたガスハイドレート生成物 45は、シャーベット状又はスラリー状の状態で第 2反 応器 16に供給される。第 2反応器 16には、第 1反応器 14におけるガスハイドレート 生成物 45が供給されるとともに、原料ガスが供給される。そして、第 2反応器 16は、 駆動モータ 38によって攪拌翼 46が回転させられ、第 1反応器 14から供給されたガス ノ、イドレート生成物 45を攪拌してガスと反応させつつ排出口 42に向けて送る。第 1反 応器 14力も供給されたガスノ、イドレート生成物 45は、攪拌翼 46によってガス中にお いて攪拌され、ガスノ、イドレート生成物 45の付着水がガスと反応し、ハイドレートイ匕率 力 90%程度のガスハイドレート生成物 95となってハイドレート冷却装置 44に送られ る。 [0045] The gas / idrate product 45 produced in the first reactor 14 is a mixture of gas hydrate and water (adhesion water), and the ratio of gas hydrate in the mixture (hydrate yield rate). ) Is usually around 40% and moisture is around 60%. The gas hydrate product 45 generated in the first reactor 14 is supplied to the second reactor 16 in a sherbet-like or slurry-like state. The second reactor 16 is supplied with the gas hydrate product 45 in the first reactor 14 and the raw material gas. Then, in the second reactor 16, the gas supplied from the first reactor 14 is rotated by rotating the stirring blade 46 by the drive motor 38. The idrate product 45 is stirred and reacted with the gas and sent to the outlet 42. Gasoline / idrate product 45 supplied with 14 forces of first reactor is agitated in the gas by stirring blade 46, and the water adhering to gasno / idleate product 45 reacts with the gas, resulting in a hydrate yield rate. The gas hydrate product 95 with a force of about 90% is sent to the hydrate cooler 44.
[0046] 第 2反応器 16に取り付けた温度センサ 54は、第 2反応器 16における反応温度を検 出し、演算 ·制御装置 60の制御部 82にフィードバック信号として入力する。制御部 8 2は、温度センサ 54の検出信号に基づいて、冷却ユニット 32を介して第 2反応器 16 に与える冷熱量を制御し、反応温良が所定の温度になるように制御する。  The temperature sensor 54 attached to the second reactor 16 detects the reaction temperature in the second reactor 16 and inputs it as a feedback signal to the control unit 82 of the calculation / control apparatus 60. Based on the detection signal of the temperature sensor 54, the control unit 82 controls the amount of cold given to the second reactor 16 via the cooling unit 32 so that the reaction temperature is a predetermined temperature.
[0047] 一方、第 2反応器 16の排出口 42からハイドレート冷却装置 44に送られるガスハイド レート生成物 95は、生成物に含まれる水分量と粒子径とが検出される。すなわち、ハ イドレートイ匕率検出部 70を構成している水分センサ 56は、第 2反応器 16において生 成されたガスハイドレート生成物 95にレーザや赤外線や X線を照射してガスハイドレ ート生成物 95に含まれて 、る付着水 (氷)の割合を検出し、演算 ·制御装置 60のハイ ドレートイ匕率演算部 72に入力する。ハイドレートイ匕率演算部 72は、水分センサ 56の 検出信号に基づいて、第 2反応器 16から排出されたガスハイドレート生成物 95中の ガスハイドレートの割合 (ハイドレートイ匕率 ) xを演算し、評価関数'制御目標温度演算 部 78に入力する。  On the other hand, in the gas hydrate product 95 sent from the outlet 42 of the second reactor 16 to the hydrate cooling device 44, the amount of water and the particle size contained in the product are detected. In other words, the moisture sensor 56 constituting the hydrate ratio detection unit 70 irradiates the gas hydrate product 95 generated in the second reactor 16 with laser, infrared rays, or X-rays to generate gas hydrate. The ratio of the adhering water (ice) contained in the object 95 is detected and input to the hydrate ratio calculation unit 72 of the calculation / control device 60. Based on the detection signal of the moisture sensor 56, the hydrate yield ratio calculation unit 72 is a ratio of gas hydrate in the gas hydrate product 95 discharged from the second reactor 16 (hydrate yield ratio) x Is input to the evaluation function 'control target temperature calculator 78.
[0048] また、粒子径検出部 74を構成している粒径センサ 58は、第 2反応器 16から排出さ れたガスハイドレート生成物 95にレーザを照射し、生成物の粒子径を検出して演算. 制御装置 60の粒子径演算部 76に入力する。粒子径演算部 76は、粒径センサ 58の 検出したガスハイドレート生成物 95の粒子径 (実施形態の場含、平均粒子径)を求め て残存率演算部 80に送出する。  [0048] The particle size sensor 58 constituting the particle size detection unit 74 irradiates the gas hydrate product 95 discharged from the second reactor 16 with a laser to detect the particle size of the product. Input to the particle size calculator 76 of the control device 60. The particle size calculation unit 76 calculates the particle size of the gas hydrate product 95 detected by the particle size sensor 58 (including the average particle size in the embodiment) and sends it to the residual rate calculation unit 80.
[0049] 残存率演算部 80は、粒子径演算部 76から粒子径が入力すると、製造'輸送条件 設定部 84に設定されている製造条件、輸送条件を読み込むとともに、この製造条件 、輸送条件と粒子径演算部 76が求めた粒子径とに基づいて残存データ記憶部 86を 検案し、読み込んだ製造条件、輸送条件に対応した粒子径と残存率との関係を読み 出し、生成されたガスハイドレートのガス残存率 yを求めて評価関数 ·制御目標温度 演算部 78に出力する。 [0049] When the particle size is input from the particle size calculation unit 76, the remaining rate calculation unit 80 reads the manufacturing condition and the transportation condition set in the manufacturing / transport condition setting unit 84. Based on the particle size obtained by the particle size calculator 76, the remaining data storage unit 86 is examined, and the relationship between the particle size and the remaining rate corresponding to the read manufacturing conditions and transportation conditions is read, and the generated gas hydride is read. Evaluation function for target gas residual rate y ・ Control target temperature Output to operation unit 78.
[0050] 評価関数 ·制御目標温度演算部 78は、評価関数演算部がハイドレートイ匕率演算部 72の求めたハイドレートィヒ率 Xと、残存率演算部 80の求めたハイドレートのガス残存 率 yとに基づいて、評価関 ¾Jを演算する,評価関 ¾Jは、実施形態の場合、ハイドレ 一トイ匕率 Xとガス残存率 yとの積として求めるようになつている。すなわち、評価関 ¾J は、  [0050] Evaluation function · Control target temperature calculation unit 78 is configured so that the evaluation function calculation unit calculates the hydrate ratio X determined by the hydrate ratio calculation unit 72 and the hydrate gas residual rate y calculated by the remaining rate calculation unit 80. Based on the above, the evaluation function ¾J is calculated. In the case of the embodiment, the evaluation function ¾J is obtained as a product of the hydrate toy ratio X and the residual gas ratio y. That is, the evaluation function ¾J is
J=x'y  J = x'y
として表され、製造したガスハイドレートの輸送後における正味に使用できるガス量を 意味するものとなっている。そして、評価関数'目標温度演算部 78は、制御目標温度 演算部が評価関 ¾Jを最大にするガスハイドレートの生成温度を求める。評価関 ¾Jを 最大にするガスハイドレート最適生成温度は、ガスの成分組成等によって変化する。 従って、この最適生成温度は、評価関 #αの現在値及び過去の履歴とその時の生成 温度をデータとして記録しておき、このデータ群から評価関 ¾Jを最大化する生成温 度を推定して求める。具体的には次の方法による。  It represents the amount of gas that can be used net after transportation of the manufactured gas hydrate. Then, the evaluation function “target temperature calculation unit 78 obtains the gas hydrate generation temperature at which the control target temperature calculation unit maximizes the evaluation function J. The optimum gas hydrate formation temperature that maximizes the evaluation function J varies depending on the composition of the gas components. Therefore, the optimum generation temperature is recorded as data of the current value and past history of evaluation function # α and the generation temperature at that time, and the generation temperature that maximizes evaluation function J is estimated from this data group. Ask. Specifically, the following method is used.
[0051] あるハイドレート生成圧力におけるハイドレートイ匕率 x、ガス残存率 y、評価関数 J及 びノヽイドレート生成温度 Tとの間には、図 6に示したような関係が存在する。そこで、ま ず、粒子径が 0. 5mmとなる温度に設定する。(これ以下の温度では、ガス残存率が 極端に落ちるため、この温度を最低ラインとする。)評価関慰を計算しながら、徐々 に温度を上げていく。温度が上がれば粒子径が大きくなり、ガス残存率 yは向上する 力 ハイドレートイ匕率 Xは低下するので、評価関 ¾Jがどこかで極大点(最大値)に達 するはずである。その最大値となる温度 Tmに制御する。評価関 ¾Jの値がそこ力も低 下する場合には、粒子径、ハイドレートイ匕率 Xの変化に応じて温度を変化させる方向 を決定し、その方向に温度を振って、再び評価関 ¾Jを極大点まで復帰させる。  [0051] The relationship shown in FIG. 6 exists among the hydrate yield rate x, the gas residual rate y, the evaluation function J, and the noise rate production temperature T at a certain hydrate production pressure. Therefore, first, the temperature is set so that the particle diameter is 0.5 mm. (At temperatures below this, the residual gas ratio drops extremely, so this temperature is taken as the minimum line.) Gradually raise the temperature while calculating the evaluation comfort. As the temperature rises, the particle size increases and the gas residual rate y increases. Since the hydrate yield rate X decreases, the evaluation function J should reach a local maximum (maximum value) somewhere. The maximum temperature Tm is controlled. When the value of the evaluation function J decreases, the direction in which the temperature is changed is determined according to the change in the particle diameter and the hydrate ratio X, the temperature is changed in that direction, and the evaluation function J To the maximum point.
[0052] 評価関数,制御目標温度演算部 78が求めた最適生成温度は、制御目標温度とし て制御部 82に与える。制御部 82は、温度センサ 54が検出した第 2反応器 16内の生 成温度を読み込み、この生成温度が評価関数'制御目標温度演算部 78の求めた最 適生成温度となるように、冷却ユニット 32が第 2反応器 16に供給する冷熱量を制御 する。 [0053] これにより、ノ、イドレートイ匕率 xとガス残存率 yとの積として求められる評価間 ¾Jの値 を最大とすることができる。したがって、実施形態においては、生成したガスハイドレ ートの輸送後におけるガスの正味量が大きくなつて輸送効率、貯蔵効率を向上する ことができ、天然ガスの輸送コストを低減することができる。また、一定の生成条件に 設定した場合に、外乱などによってハイドレートイ匕率が変動したり、粒子径の平均値 が変勤したりしても、これらの変動に容易、迅速に追従して評価関 ¾Jが最大となる生 成条件を得ることができ、この結果、ガスのハイドレートイ匕の効率を実質的に高めるこ とがでさる。 [0052] The optimum generation temperature obtained by the evaluation function and the control target temperature calculation unit 78 is given to the control unit 82 as the control target temperature. The control unit 82 reads the generation temperature in the second reactor 16 detected by the temperature sensor 54, and cools down so that the generation temperature becomes the optimum generation temperature obtained by the evaluation function 'control target temperature calculation unit 78'. Controls the amount of cold supplied by unit 32 to second reactor 16. [0053] This makes it possible to maximize the value of the evaluation interval J, which is obtained as the product of the No. and Idle ratio x and the gas residual rate y. Therefore, in the embodiment, since the net amount of gas after transportation of the generated gas hydrate increases, transportation efficiency and storage efficiency can be improved, and transportation cost of natural gas can be reduced. In addition, even if the hydrate yield rate fluctuates due to external disturbances or the average value of the particle size changes due to disturbances when set to a certain generation condition, these fluctuations can be easily and quickly followed. The production condition that maximizes the evaluation function J can be obtained, and as a result, the efficiency of gas hydrate is substantially increased.
[0054] なお、前記実施形態においては、第 2反応器 16からハイドレート冷却装置 44に送 られる第 2反応 B16の排出口におけるガスハイドレート生成物 95に含まれる水分量と 粒子径とを検出する例について説明した力 水分量と粒子径との検出は、ノ、イドレー ト冷却装置 44において冷却されたのちのハイドレート冷却装置 44の排出口における ガスハイドレート生成物 96について行なってもよい。また、前記実施形態においては [0054] In the above embodiment, the amount of water and the particle diameter contained in the gas hydrate product 95 at the outlet of the second reaction B16 sent from the second reactor 16 to the hydrate cooling device 44 are detected. The detection of the amount of water and the particle diameter described in the example may be performed on the gas hydrate product 96 at the outlet of the hydrate cooling device 44 after being cooled in the idle cooling device 44. In the embodiment,
、天然ガスをハイドレートイ匕する場合について説明したが、炭酸ガスなどの他のガス をハイドレートイ匕する場合にも通用することができる。さらに、前記実施形態において は、第 2反応器 16におけるガスハイドレートの生成について説明した力 第 1反応器 14におけるガスハイドレートの生成に対して適用してもよい。 Although the case of hydrating natural gas has been described, it can also be applied to the case of hydrating other gases such as carbon dioxide. Furthermore, in the embodiment, the force described for the generation of gas hydrate in the second reactor 16 may be applied to the generation of gas hydrate in the first reactor 14.
[0055] 〔第 2の実施の形態〕 [Second Embodiment]
図 7に、本発明の他の実施の形態明のハイドレートスラリー製造装置の全体構成図 を示す。本実施形態は、天然ガスのハイドレート(以下、 NGHと略す。)を製造する例 を示しているが、本発明は天然ガスに限らず、他の原料ガスのハイドレート製造に適 用できる。  FIG. 7 shows an overall configuration diagram of a hydrate slurry production apparatus according to another embodiment of the present invention. Although this embodiment shows an example of producing a hydrate of natural gas (hereinafter abbreviated as NGH), the present invention is not limited to natural gas and can be applied to hydrate production of other raw material gases.
[0056] 図 7に示すように、本実施形態のハイドレート製造装置は、 NGHスラリーを生成す る反応器 101と、反応器 101で生成された NGHスラリーから水分を分離して濃度の 高 、NGHを生成する脱水塔 102を含む第 1の脱水装置と、脱水塔 102で脱水され た NGHの付着水と天然ガスとを反応させて NGHの濃度を製品レベルに高める流動 層反応塔 103を含む第 2の脱水装置と、製品 NGHを貯留するホッパ 104を備えて構 成されている。これらの反応器 101、脱水塔 102、流動層反応塔 103及びホッパ 104 は、いずれも所定の高圧(例えば、 3〜: LOMPa)に保持されている。 [0056] As shown in FIG. 7, the hydrate production apparatus of the present embodiment includes a reactor 101 that generates NGH slurry, and water is separated from the NGH slurry generated in the reactor 101 to increase the concentration. Includes a first dehydrator that includes a dehydration tower 102 that produces NGH, and a fluidized bed reaction tower 103 that reacts the NGH adhering water dehydrated in the dehydration tower 102 with natural gas to increase the NGH concentration to the product level. A second dehydrator and a hopper 104 for storing the product NGH are provided. These reactors 101, dehydration tower 102, fluidized bed reaction tower 103 and hopper 104 Are maintained at a predetermined high pressure (for example, 3 to: LOMPa).
[0057] 反応器 101は、円筒状の容器で形成され、図示していない供給装置から、高圧の 原料ガス (天然ガス)と高圧の水が一定量供給され、反応器 101内に導入された天然 ガスと水は低温 (例えば、 1〜5°C)の条件下で反応して NGHが生成される。 NGHの 生成反応を促進するため、撹拌機 111により反応器 101内の水を撹拌するとともに、 循環ガスブロワ一 112によって反応器 101の上部の天然ガスを抜き出し、反応器 10 1の底部のノズル 113から反応器 101の水中に散気するガス循環系が設けられて!/ヽ る。循環ガス量はガス流量計を備えた流量制御弁 114によって制御される。また、 N GH生成は発熱を伴うことから、反応器 101内の温度を設定温度に保持するために、 反応器 101の底部から生成された NGHを含む NGHスラリーを循環スラリーポンプ 1 15により抜き出し、冷却器 116により冷媒で冷却して反応器 101の上部に戻すスラリ 一循環系が設けられている。スラリー循環量はスラリー流量計を備えた流量制御弁 1 17によって制御される。また、冷却器 116の冷媒量は、スラリー循環系に設けられた 温度計 118により循環スラリーの温度を検出し、その検出値を設定温度 T2に一致さ せるように制御される。このようにして反応器 101で生成された NGHスラリーは、反応 器 101の底部力もスラリー移送ポンプ 120によって連続的に抜き出され、脱水塔 102 の底部に供給されるようになって 、る。 [0057] Reactor 101 is formed of a cylindrical container, and a certain amount of high-pressure source gas (natural gas) and high-pressure water is supplied from a supply device (not shown) and introduced into reactor 101. Natural gas and water react under low temperature conditions (eg, 1-5 ° C) to produce NGH. In order to accelerate the NGH production reaction, the water in the reactor 101 is agitated by the agitator 111, and the natural gas at the top of the reactor 101 is extracted by the circulating gas blower 112, and is discharged from the nozzle 113 at the bottom of the reactor 101. A gas circulation system that diffuses into the water of the reactor 101 is provided! The amount of circulating gas is controlled by a flow control valve 114 equipped with a gas flow meter. In addition, since NGH generation is accompanied by heat generation, in order to maintain the temperature in the reactor 101 at the set temperature, the NGH slurry containing NGH generated from the bottom of the reactor 101 is extracted by the circulating slurry pump 115, A slurry circulation system is provided that is cooled with a refrigerant by a cooler 116 and returned to the top of the reactor 101. The amount of slurry circulating is controlled by a flow control valve 117 equipped with a slurry flow meter. Further, the amount of refrigerant in the cooler 116 is controlled so that the temperature of the circulating slurry is detected by a thermometer 118 provided in the slurry circulation system, and the detected value matches the set temperature T2. Thus, the NGH slurry produced in the reactor 101 is continuously extracted by the slurry transfer pump 120 by the bottom force of the reactor 101 and supplied to the bottom of the dehydration tower 102.
[0058] ここで、反応器 101で NGHスラリーを循環させて連続的に NGHを生成する場合、 NGHスラリー中の NGHの濃度が問題となる。すなわち、 NGHは基本的に粉粒状で あるから、スラリー液である水の量が少ないと、流動性が極端に低下して循環スラリー ポンプ 115で循環させて冷却することができなくなり、連続的に NGHを生成するのが 困難になる。また、スラリー移送ポンプ 120によって NGHスラリーを脱水塔 102に供 給することも難しくなる。特に、後述する脱水処理および NGHの付着水を天然ガスと 反応させて製品 NGHを製造するプロセスの制御を安定させて、精度のよ!、製品 NG Hを製造するためには、連続して一定濃度の NGHスラリーを生成することが望まれる Here, when NGH slurry is circulated in the reactor 101 to continuously generate NGH, the concentration of NGH in the NGH slurry becomes a problem. In other words, since NGH is basically in the form of powder, if the amount of water that is the slurry liquid is small, the fluidity is drastically reduced, and it cannot be circulated by the circulating slurry pump 115 and cooled. It becomes difficult to generate NGH. In addition, it becomes difficult to supply the NGH slurry to the dehydration tower 102 by the slurry transfer pump 120. In particular, the process of producing the product NGH by stabilizing the process of producing the product NGH by reacting the dehydration treatment and the NGH adhering water with natural gas, which will be described later, is highly accurate! It is desirable to produce a concentrated NGH slurry
[0059] そこで、本実施形態では、スラリー循環系に NGHスラリーの密度計 119を設け、検 出密度を設定範囲(例えば、 20重量%程度)に収めるように、循環ガス量、循環スラ リーの温度 T2、循環スラリー量の少なくとも 1つを制御するようにしている。本実施形 態では、スラリー密度を設定密度にするように、循環スラリー量及び循環ガス量を同 時に連続して制御することにより、一定濃度の NGHスラリーを連続的に生成するよう にしている。また、この場合、冷却器 116の冷媒量を制御して、循環スラリーの温度 Τ 2を設定温度に制御する。これにより、 NGHスラリーの NGH濃度を所望値に精度よ ぐかつ安定に連続して制御することができる。 Therefore, in this embodiment, a density meter 119 of NGH slurry is provided in the slurry circulation system, and the amount of circulating gas and circulation slurry are set so that the detection density falls within a set range (for example, about 20% by weight). At least one of Lee's temperature T2 and circulating slurry volume is controlled. In the present embodiment, a constant concentration of NGH slurry is continuously generated by continuously controlling the amount of circulating slurry and the amount of circulating gas so that the slurry density is a set density. In this case, the amount of refrigerant in the cooler 116 is controlled to control the temperature 2 of the circulating slurry to the set temperature. As a result, the NGH concentration of the NGH slurry can be continuously controlled accurately and stably to the desired value.
[0060] 一方、脱水塔 102は、円筒状の縦型容器により形成され、塔の途中に大径の水抜 き部 121が設けられ、この水抜き部 121に対応する塔内壁は、例えば金網や多孔板 等により形成された多孔壁 122とされている。脱水塔 102内に導入された NGHスラリ 一の水分は、多孔壁 122を通って水抜き部 121に分離される。水抜き部 121の水は 、流量制御弁 123を介して脱水循環ポンプ 124により抜き出され反応器 101に戻さ れるようになっている。水抜き部 121の水位は水位計 125によって検出され、その検 出水位を設定水位の保持するように流量制御弁 123を調節するようになっている。ま た、脱水塔 102内の頂部の近傍にスクリューコンベア 126の一端が挿入して設けられ ている。このスクリューコンベア 126は、塔内に位置する部位のケーシング(例えば、 下面)に開口が設けられて 、る。  [0060] On the other hand, the dehydration tower 102 is formed of a cylindrical vertical container, and a large-diameter drainage part 121 is provided in the middle of the tower. The inner wall of the tower corresponding to the drainage part 121 is, for example, a wire mesh or The porous wall 122 is formed of a porous plate or the like. The water in the NGH slurry introduced into the dehydration tower 102 is separated into the water drainage part 121 through the porous wall 122. The water in the drain section 121 is extracted by the dehydration circulation pump 124 through the flow control valve 123 and returned to the reactor 101. The water level in the drain part 121 is detected by a water level gauge 125, and the flow control valve 123 is adjusted so that the detected water level is maintained at the set water level. Also, one end of a screw conveyor 126 is inserted near the top of the dehydration tower 102. The screw conveyor 126 is provided with an opening in a casing (for example, a lower surface) of a portion located in the tower.
[0061] このように構成されることから、本実施形態の脱水塔 102によれば、塔の底部から導 入される NGHスラリーが塔の頂部に押し上げられて水抜き部 121に達すると、スラリ 一中の水分が多孔壁 122を通って水抜き部 121に分離される。水抜き部 121に分離 された水は脱水循環ポンプ 124により抜き出されて反応器 101に戻される。このよう にして、脱水塔 102に導入される NGHスラリー中の水分は水抜き部 121にて分離除 去され、脱水された NGH濃度の高い NGHスラリーとなって塔頂部に達する。塔頂部 に達する過程における NGH濃度は、細密充填された粉粒状の NGHの空隙部に水 が充満している状態から、粉粒状の NGHの表面に水が付着した状態まで変化する。 つまり、ある高さに達するまでは、毛管現象によって粉粒状の NGH相互間の空隙に 水が保持される力 その保持力よりも水の重力が大きくなるに従って NGH力 水が 分離される。したがって、水抜き部 121の位置力も塔頂部に達する過程で、 NGHの 水分は表面に付着した水分程度になる。このようにして脱水されて塔頂部に達した Ν GHは、モータ 127によって駆動されるスクリューコンベア 126により脱水塔 102から 排出され、流動層反応塔 103に導入される。 [0061] With this configuration, according to the dehydrating tower 102 of the present embodiment, when the NGH slurry introduced from the bottom of the tower is pushed up to the top of the tower and reaches the drain section 121, the slurry is removed. The water in the water is separated into the drainage part 121 through the porous wall 122. The water separated in the drain part 121 is extracted by the dehydration circulation pump 124 and returned to the reactor 101. In this way, the water in the NGH slurry introduced into the dehydration tower 102 is separated and removed by the water drainage section 121 and reaches the top of the tower as dehydrated NGH slurry having a high NGH concentration. The NGH concentration in the process of reaching the top of the tower varies from a state where the finely packed powdery NGH voids are filled with water to a state where water is attached to the surface of the powdered NGH. In other words, until reaching a certain height, the force that holds water in the voids between powdery NGH by capillary action NGH force water is separated as the gravity of water becomes larger than its holding force. Therefore, in the process in which the position force of the drainage part 121 reaches the top of the tower, the moisture of the NGH becomes the same as the moisture adhering to the surface. Thus dehydrated and reached the top of the tower 塔 GH is discharged from the dehydration tower 102 by a screw conveyor 126 driven by a motor 127 and introduced into the fluidized bed reaction tower 103.
[0062] ここで、脱水塔 102から排出される NGH濃度が低すぎると、すなわち NGHの付着 水が多すぎると、次工程の流動層反応塔 103における NGHの流動性が低下し、 NG H付着水と原料ガスとの反応が困難になる。そこで、本実施形態では、スクリューコン ベア 126によって搬出される NGHの濃度 (NGHZ (NGH+付着水))を、例えば、 4 5〜70重量0 /0、好ましくは 50± 5重量0 /0に制御するようにしている。この NGH濃度の 制御は、本実施形態では、水位計 125によって水抜き部 121における水位を設定水 位に保持するように、抜き出し水量を流量制御弁 123で制御することにより行ってい る。つまり、毛管現象によって NGH相互間の空隙に保持される水の保持力と水の重 力とが均衡する位置は、水抜き部 121の水位力も一定の高さ位置になる。そこで、そ の均衡位置 128を、水抜き部 121の水位を基準として適宜調整することにより、スクリ ユーコンベア 126によって搬出される NGHの濃度を所望値に制御することができる。 その結果、流動層反応塔 3に入る NGHの濃度を制御して、流動層反応塔 103にお ける流動性および原料ガスとの反応を良好にすることができる。すなわち、本実施形 態によれば、脱水塔 102から排出する NGHの濃度を所望値に精度よぐかつ安定 に連続して制御することができるから、次工程の流動層反応塔 103における処理が 安定し、最終的な製品 NGHの品質を向上させるとともに、安定製造することができる [0062] Here, if the concentration of NGH discharged from the dehydration tower 102 is too low, that is, if there is too much water adhering to NGH, the fluidity of NGH in the fluidized bed reaction tower 103 in the next step will decrease, and NG H adhesion will occur. Reaction of water and source gas becomes difficult. Therefore, in this embodiment, the concentration of NGH that is unloaded by the screw con bare 126 (NGHZ (NGH + adhering water)), for example, 4 5-70 0/0, preferably controlled to 50 ± 5 weight 0/0 Like to do. In this embodiment, the NGH concentration is controlled by controlling the amount of water withdrawn by the flow rate control valve 123 so that the water level meter 125 maintains the water level at the water draining portion 121 at the set water level. In other words, the position at which the water holding force held in the gap between the NGHs by the capillary phenomenon balances with the water strength is such that the water level force of the drain part 121 is also at a certain height. Accordingly, the concentration of NGH carried out by the screen conveyor 126 can be controlled to a desired value by appropriately adjusting the equilibrium position 128 with reference to the water level of the water draining part 121. As a result, the concentration of NGH entering the fluidized bed reaction tower 3 can be controlled to improve the fluidity and reaction with the raw material gas in the fluidized bed reaction tower 103. That is, according to the present embodiment, the concentration of NGH discharged from the dehydration tower 102 can be controlled to a desired value accurately and stably, so that the treatment in the fluidized bed reaction tower 103 in the next step can be performed. Stable and final product Improves NGH quality and enables stable production
[0063] なお、水抜き部 121の水位を制御して NGHの濃度を調整することに代えて、 NGH 濃度とスクリューコンベア 126の負荷(トルク)とは相関があることから、モータ 127の 電流が設定電流の範囲になるように、流量制御弁 123による抜き出し量を制御するよ うにすることができる。また、モータ 127の電流に代えて、トルク検出器により負荷トル クを直接検出するようにしてもよい。また、流量制御弁 123による抜き出し量を制御す ることに代えて、多孔壁 122の開口面積を可変することにより、多孔壁 122を通って 水抜き部 121に分離される水量を調整することによっても制御することができる。多孔 壁 122の開口面積を可変するには、例えば、多孔壁 121に沿って円筒状の仕切板 を多孔壁 121の上方から下方に移動可能に設け、水抜き部 121の水位又はモータ 2 7の電流に応じて仕切板を上下に移動することにより実現できる。 [0063] Instead of adjusting the NGH concentration by controlling the water level of the drainage part 121, the NGH concentration and the load (torque) of the screw conveyor 126 are correlated, so the current of the motor 127 is The extraction amount by the flow control valve 123 can be controlled so as to be within the set current range. Further, instead of the current of the motor 127, the load torque may be directly detected by a torque detector. In addition, by controlling the amount of water withdrawn by the flow control valve 123, by adjusting the amount of water separated through the porous wall 122 into the water drainage part 121 by changing the opening area of the porous wall 122. Can also be controlled. In order to vary the opening area of the porous wall 122, for example, a cylindrical partition plate is provided so as to be movable from the upper side to the lower side of the porous wall 121 along the porous wall 121. This can be realized by moving the partition plate up and down according to the current of 7.
[0064] 一方、流動層反応塔 103は、円筒状の縦型容器により形成され、縦型容器の頂部 に原料ガスである天然ガスが供給されている。また、縦型容器の底部から一定高さに 多孔板 131が設けられ、この多孔板 131の上にスクリューコンベア 216により搬送さ れた NGHが投入されるようになっている。また、底部と多孔板 131との間に、循環ガ スブロワ一 132から流量制御弁 133を介して原料ガスである天然ガスが、流動化ガス として吹き込まれるようになつている。流動層反応塔 103の頂部はサイクロン 134を介 して循環ガスブロワ一 132の吸引口に連通されている。これによつて、流動層反応塔 103内に流動化ガスである天然ガスが循環されるようになっている。この天然ガスの 循環系には、冷却器 135と温度計 136が設けられ、温度計 136の検出温度を設定温 度に保持するように、冷却器 135の冷媒の流量が制御されるようになって 、る。 [0064] On the other hand, the fluidized bed reaction tower 103 is formed of a cylindrical vertical container, and natural gas as a raw material gas is supplied to the top of the vertical container. Further, a perforated plate 131 is provided at a certain height from the bottom of the vertical container, and NGH conveyed by a screw conveyor 216 is placed on the perforated plate 131. In addition, natural gas, which is a raw material gas, is blown as a fluidized gas from the circulating gas blower 132 through the flow control valve 133 between the bottom and the perforated plate 131. The top of the fluidized bed reactor 103 communicates with the suction port of the circulating gas blower 132 through a cyclone 134. As a result, natural gas, which is a fluidized gas, is circulated in the fluidized bed reaction column 103. In this natural gas circulation system, a cooler 135 and a thermometer 136 are provided, and the flow rate of the refrigerant in the cooler 135 is controlled so that the detected temperature of the thermometer 136 is maintained at a set temperature. And
[0065] 一方、多孔板 131の上方の空間に、モータ 137によって駆動されるスクリューコンペ ァ 138の一端が挿入されている。このスクリューコンベア 138の流動層反応塔 103内 に位置する部位のケーシング (例えば、上面)に開口が設けられている。このスクリュ ーコンベア 138の他端は、製品 NGHを貯留するホッパ 104の上部に連通されて!/、る 。また、モータ 137の出力軸のトルクを検出するトルク検出器 139が設けられている。 このトルク検出器 139により検出されたスクリューコンベア 138の負荷量を設定範囲 に収めるように、流量制御弁 133を制御して循環ガス量と、スクリューコンベア 138の 搬出量と、冷却器 135の冷媒の流量の少なくとも 1つを制御する制御手段と備えて構 成される。トルク検出器 139に代えて、モータ 137の電流を検出して負荷トルクを検 出するようにしてもよい。 On the other hand, one end of a screw compressor 138 driven by a motor 137 is inserted into the space above the perforated plate 131. An opening is provided in a casing (for example, the upper surface) of a portion of the screw conveyor 138 located in the fluidized bed reaction tower 103. The other end of the screw conveyor 138 communicates with the upper part of the hopper 104 that stores the product NGH! A torque detector 139 that detects the torque of the output shaft of the motor 137 is provided. The flow control valve 133 is controlled so that the load amount of the screw conveyor 138 detected by the torque detector 139 falls within the set range, and the circulating gas amount, the carry-out amount of the screw conveyor 138, and the refrigerant of the cooler 135 are controlled. It comprises a control means that controls at least one of the flow rates. Instead of the torque detector 139, the current of the motor 137 may be detected to detect the load torque.
[0066] このように構成されることから、本実施形態によれば、流動層反応塔 103に投入さ れて形成される NGH層に多孔板 131を介して天然ガスが噴出されると、多孔板 131 の上部に NGHの流動層が形成される。この流動層において NGHの付着水と天然 ガスとが反応して NGHが生成され、ガスハイドレートイ匕率である NGH濃度が例えば 90重量%以上に高められる。このようにして付着水が大幅に低減された NGHは、ス タリユーコンベア 138によってホッパ 104に搬送されて一且貯留される。ホッパ 104に 貯留された粉粒状の NGHは、仕切弁 141を介して適宜切り出され、製品 NGHとし て、あるいは NGHペレット製造装置等に移送してカ卩ェされるようになつている。なお、 ホッパ 104内は高圧(例えば、 3〜: LOMpa)であることから、図示していないが、通常 は、仕切弁 141の下流側に脱圧装置が設けられる。 [0066] With this configuration, according to the present embodiment, when natural gas is ejected through the perforated plate 131 into the NGH layer formed by being charged into the fluidized bed reaction tower 103, the porous An NGH fluidized bed is formed on top of the plate 131. In this fluidized bed, the NGH adhering water and natural gas react to generate NGH, and the NGH concentration, which is the gas hydrate yield rate, is increased to, for example, 90% by weight or more. The NGH in which the amount of adhering water has been greatly reduced in this way is transported to the hopper 104 by the star conveyor 138 and stored temporarily. The granular NGH stored in the hopper 104 is appropriately cut out through the gate valve 141 to obtain the product NGH. Or transported to an NGH pellet manufacturing equipment. Although the inside of the hopper 104 is at a high pressure (for example, 3 to: LOMpa), although not shown, normally, a depressurization device is provided on the downstream side of the gate valve 141.
上述したように、本実施形態の NGH製造装置によれば、反応器 101によって NG H濃度の安定した NGHスラリーを連続的に生成することができるから、続く脱水塔 1 02における脱水処理及び流動層反応塔 103における付着水の NGH化の処理を効 果的に安定して行うことができる。また、脱水塔 102と流動層反応塔 103で脱水され た NGHの濃度も精度よく制御されるから、最終的に高品質の製品 NGHを安定して 、連続的に製造できるという効果がある。  As described above, according to the NGH production apparatus of the present embodiment, the reactor 101 can continuously generate an NGH slurry with a stable NGH concentration, so that the dehydration treatment and fluidized bed in the subsequent dehydration tower 102 can be performed. The treatment of the attached water in the reaction tower 103 with NGH can be effectively and stably performed. In addition, since the concentration of NGH dehydrated in the dehydration tower 102 and the fluidized bed reaction tower 103 is also controlled with high precision, there is an effect that a high-quality product NGH can be produced stably and continuously.

Claims

請求の範囲 The scope of the claims
[1] 原料ガスと水を水和反応させてガスハイドレートを生成するガスハイドレートの製造 方法において、  [1] In a method for producing a gas hydrate in which a gas hydrate is produced by hydrating a raw material gas and water,
前記ガスハイドレートの生成時における粒子径と、生成後の輸送する過程での時間 経過に伴って減少する前記ガスハイドレート中のガス残存率との関係を表す残存特 性を予め求めておき、  A residual characteristic representing a relationship between a particle size at the time of generation of the gas hydrate and a residual gas ratio in the gas hydrate that decreases with the passage of time in the transport process after the generation is obtained in advance.
前記ガスハイドレートを生成する過程における、生成物中の前記ガスハイドレートの 粒子径に対応する前記ガス残存率を、前記残存特性に基づ ヽて求め、  In the process of generating the gas hydrate, the gas residual rate corresponding to the particle size of the gas hydrate in the product is obtained based on the residual characteristics,
前記求めたガス残存率と、前記生成物中の前記ガスハイドレートの割合であるハイ ドレートイ匕率との積として表される評価関数の値が最大となるように、前記ガスハイド レートの生成温度を制御することを特徴とするガスハイドレートの製造方法。  The gas hydrate production temperature is set so that the value of the evaluation function expressed as the product of the obtained gas residual rate and the hydrate yield rate, which is the ratio of the gas hydrate in the product, is maximized. A method for producing a gas hydrate, characterized by controlling.
[2] 請求項 1に記載のガスハイドレートの製造方法にぉ 、て、  [2] A method for producing a gas hydrate according to claim 1, wherein
前記ガスハイドレートの生成温度は、 0. 5mm以上の前記粒子径が得られる温度 以上であることを特徴とするガスハイドレートの製造方法。  The method for producing a gas hydrate is characterized in that a generation temperature of the gas hydrate is not less than a temperature at which the particle diameter of 0.5 mm or more is obtained.
[3] 原料ガスと水を水和反応させてガスハイドレートを生成する反応器と、 [3] a reactor for generating a gas hydrate by hydrating a source gas and water;
前記反応器に冷熱を供給して前記水と前記ガスとの反応熱を除去する冷却ュニッ トと、  A cooling unit for supplying cold heat to the reactor to remove reaction heat between the water and the gas;
前記ガスハイドレートの生成時における粒子径と生成後の輸送する過程での時間 経過に伴って減少する前記ガスハイドレートのガス残存率との関係を表す残存特性 を予め記憶した残存率記憶部と、  A residual rate storage unit that stores in advance a residual characteristic that represents a relationship between the particle size at the time of the gas hydrate generation and the gas residual rate of the gas hydrate that decreases with the passage of time after the generation of the gas hydrate; ,
前記反応器内の温度を検出する温度検出部と、  A temperature detector for detecting the temperature in the reactor;
前記反応器において生成された生成物中の前記ガスハイドレー 2トの割合であるハ イドレート化率を検出するハイドレート化率検出部と、  A hydrate rate detection unit for detecting a hydrate rate that is a ratio of the gas hydrate 2 in the product generated in the reactor;
前記反応器において生成された前記ガスハイドレートの粒子径を検出する粒子径 検出部と、  A particle size detector for detecting the particle size of the gas hydrate produced in the reactor;
前記粒子径検出部により検出された粒子径と前記残存率記憶部の記憶内容と〖こ 基づ 、て、生成された前記ガスハイドレートのガス残存率を求める残存率演算部と、 前記ハイドレートイ匕率検出部の検出したハイドレートイ匕率と前記残存率演算部の求 めたガス残存率との積として表される評価関数を求める評価関数演算部と、 前記評価関数演算部が求めた評価関数の値を最大にする生成温度を求める制御 目標温度演算部と、 A residual rate calculating unit for determining a gas residual rate of the generated gas hydrate based on the particle diameter detected by the particle size detecting unit and the storage content of the residual rate storage unit; and the hydrate The hydrate yield rate detected by the yield rate detection unit and the remaining rate calculation unit An evaluation function calculation unit that calculates an evaluation function expressed as a product of the remaining gas residual rate, a control target temperature calculation unit that determines a generation temperature that maximizes the value of the evaluation function calculated by the evaluation function calculation unit,
前記制御目標温度演算部が求めた制御目標温度と前記温度検出部の検出した生 成温度とに基づいて、前記冷却ユニットを介して前記生成温度を前記制御目標温度 に制御する制御部と、を有することを特徴とするガスハイドレート製造装置。  A control unit that controls the generated temperature to the control target temperature via the cooling unit based on the control target temperature obtained by the control target temperature calculation unit and the generated temperature detected by the temperature detecting unit; A gas hydrate production apparatus comprising:
[4] 請求項 3に記載のガスハイドレート製造装置にぉ 、て、  [4] In the gas hydrate production apparatus according to claim 3,
前記反応器は、原料ガスと水とを水和反応させてガスハイドレートを含むスラリーを 生成する第 1の反応器と、該第 1の反応器で生成されたガスハイドレートを導入し該 ガスハイドレートに付着する水分と原料ガスとを水和反応させてガスノ、イドレートイ匕す る第 2の反応器とを含んでなり、  The reactor introduces the gas hydrate generated in the first reactor for generating a slurry containing gas hydrate by hydrating the raw material gas and water, and introducing the gas hydrate. A second reactor for hydrating the moisture adhering to the hydrate and the raw material gas to generate gas and idle gas,
前記冷却ユニットは、前記第 2の反応器に冷却した原料ガスを循環供給するもので あり、  The cooling unit circulates and supplies the cooled source gas to the second reactor,
前記温度検出部は前記第 2の反応器内の温度を検出するものとし、  The temperature detection unit detects the temperature in the second reactor,
前記ノ、イドレートイ匕率検出部は、前記第 2の反応器において生成された生成物中 のハイドレート化率を検出するものであり、  The no-drip rate detection unit detects a hydrate conversion rate in the product generated in the second reactor,
前記粒子径検出部は、前記第 2の反応器にぉ 、て生成された記ガスノ、イドレートの 粒子径を検出するものであり、  The particle size detector detects the particle size of the gas and idrate produced by the second reactor,
前記制御部は、前記冷却ユニットを介して前記第 2の反応器内の前記生成温度を 前記制御目標温度に制御することを特徴とするガスハイドレート製造装置。  The said control part controls the said production | generation temperature in the said 2nd reactor to the said control target temperature via the said cooling unit, The gas hydrate manufacturing apparatus characterized by the above-mentioned.
[5] 請求項 4に記載のガスハイドレート製造装置にぉ 、て、 [5] In the gas hydrate production apparatus according to claim 4,
前記第 2の反応器は、軸線が水平に配置された円筒容器と、該円筒容器内に軸方 向に沿って設けられ複数の攬絆翼が取付けられた回転軸とを備え、前記円筒容器の 一端に前記第 1の反応器により生成された前記ガスハイドレートの流入口が設けられ 、前記円筒容器の他端に前記ガスハイドレートの排出口が設けられていることを特徴 とするガスノ、イドレート製造装置。  The second reactor includes a cylindrical container having an axis disposed horizontally, and a rotating shaft provided in the cylindrical container along the axial direction and having a plurality of knotted wings attached thereto. The gas hydrate produced by the first reactor is provided at one end of the gas vessel, and the gas hydrate discharge port is provided at the other end of the cylindrical vessel. Idrate manufacturing equipment.
[6] 請求項 4に記載のガスハイドレート製造装置にぉ 、て、 [6] In the gas hydrate production apparatus according to claim 4,
前記第 2の反応器は、前記第 1の反応器カゝら供給されるガスハイドレートと原料ガス が導入される円筒状の縦型容器と、該縦型容器の前記ガスハイドレートが導入される 位置と底部との間に設けられた多孔板と、該多孔板の上方のガスハイドレートを排出 する排出機とを有して形成され、 The second reactor includes a gas hydrate and a raw material gas supplied from the first reactor. A cylindrical vertical container into which gas is introduced, a perforated plate provided between the position where the gas hydrate of the vertical container is introduced and the bottom, and a gas hydrate above the perforated plate are discharged. Formed with a discharging machine,
前記冷却ユニットは、前記縦型容器の上部に連通され前記縦型容器の上部の原 料ガスを吸引し、冷却器を通して前記縦型容器の底部に循環させる循環ガスブロワ 一とを備えてなることを特徴とするガスハイドレート製造装置。  The cooling unit includes a circulating gas blower that communicates with the upper part of the vertical container and sucks the raw material gas at the upper part of the vertical container and circulates it through the cooler to the bottom of the vertical container. A gas hydrate production apparatus.
[7] 原料ガスと水とを水和反応させてガスハイドレートを含むスラリーを生成する反応器 と、該反応器上部の原料ガスを抜き出して該反応器の底部から反応器内に散気する ガス循環装置と、前記反応器の底部力 ガスハイドレートを含むスラリーを抜き出し、 冷却器を通して前記反応器の上部に戻すスラリー循環装置と、前記反応器の底部か らガスハイドレートを含むスラリーを脱水装置に移送するスラリー移送ポンプと、前記 スラリー循環装置により循環される循環スラリーの蜜度を検出し、検出されたスラリー 密度を設定範囲に収めるように、前記ガス循環装置により循環される循環ガス量と、 前記スラリー循環装置の循環スラリー量と、循環スラリー温度の少なくとも 1つを制御 する制御手段とを備えてなるガスハイドレートスラリー製造装置。  [7] A reactor in which a raw material gas and water are hydrated to produce a slurry containing gas hydrate, and a raw material gas at the top of the reactor is extracted and diffused into the reactor from the bottom of the reactor A gas circulation device, a slurry circulation device that pulls out a slurry containing gas hydrate at the bottom of the reactor and returns it to the top of the reactor through a cooler, and a slurry containing gas hydrate from the bottom of the reactor A slurry transfer pump for transferring to the apparatus, and the amount of circulating gas circulated by the gas circulator so as to detect the honey level of the circulating slurry circulated by the slurry circulator and to keep the detected slurry density within a set range. And a gas hydrate slurry comprising a control means for controlling at least one of the circulating slurry amount of the slurry circulating device and the circulating slurry temperature. Manufacturing equipment.
[8] 請求項 7に記載のガスハイドレートスラリ一製造装置において、  [8] In the gas hydrate slurry manufacturing apparatus according to claim 7,
さらに、前記スラリー移送ポンプにより移送されるガスハイドレートを含むスラリーを 導入して物理的に脱水する第 1の脱水装置と、該第 1の脱水装置により脱水されたガ スハイドレートに付着する水分を原料ガスと水和反応させて高濃度のガスノ、イドレー トを生成する第 2の脱水装置とを備えてなるガスハイドレート製造プラント。  Furthermore, a first dehydrator for introducing a slurry containing gas hydrate transferred by the slurry transfer pump to physically dehydrate, and moisture adhering to the gas hydrate dehydrated by the first dehydrator A gas hydrate production plant comprising a second dehydration device that produces a high concentration gas and idrate by hydrating the gas with the raw material gas.
[9] 請求項 8に記載のガスハイドレートスラリー製造装置において、  [9] In the gas hydrate slurry manufacturing apparatus according to claim 8,
前記第 1の脱水装置は、前記スラリー移送ポンプにより移送されるガスハイドレート を含むスラリーが底部に導入される円筒状の縦型容器と、前記容器の上部のガスハ イドレートを排出する排出機と、前記容器の腹部に形成された複数の孔と、該複数の 孔を包囲する水抜き室を形成する水抜き部と、前記水抜き室の水位が設定水位にな るように前記水抜き室力 抜き出す水抜き量を制御する制御手段とを備えてなること を特徴とするガスハイドレート製造プラント。  The first dehydrator includes a cylindrical vertical container into which a slurry containing gas hydrate transferred by the slurry transfer pump is introduced at the bottom, and a discharger that discharges the gas hydrate at the top of the container. A plurality of holes formed in the abdomen of the container, a drainage part forming a drainage chamber surrounding the plurality of holes, and the drainage chamber force so that the water level of the drainage chamber becomes a set water level. A gas hydrate production plant comprising a control means for controlling the amount of water to be extracted.
[10] 前記第 2の脱水装置は、前記第 1の脱水装置の前記排出機により排出されるガス ハイドレートと原料ガスが導入される円筒状の縦型容器と、該縦型容器の前記ガスハ イドレートが導入される位置と底部との間に設けられた多孔板と、前記縦型容器の上 部に連通され前記縦型容器の上部の原料ガスを吸引し、冷却器を通して前記縦型 容器の底部に循環させる循環ガスブロワ一と、前記多孔板の上方のガスハイドレート を排出する排出機と、該排出機の負荷量を検出し、検出された負荷量を設定範囲に 収めるように、前記循環ガスブロワ一により循環される循環ガス量と、循環ガスの温度 と、前記排出機の排出量の少なくとも 1つを制御する制御手段と備えてなることを特 徴とするガスノ、イドレート製造プラント。 [10] The second dehydrator is a gas discharged by the discharger of the first dehydrator. A cylindrical vertical container into which hydrate and source gas are introduced; a perforated plate provided between a position at which the gas hydrate is introduced into the vertical container and a bottom; and an upper portion of the vertical container. A circulating gas blower that is connected to the vertical container and sucks the source gas at the top of the vertical container and circulates it through the cooler to the bottom of the vertical container; a discharger that discharges the gas hydrate above the perforated plate; At least one of the amount of circulating gas circulated by the circulating gas blower, the temperature of the circulating gas, and the amount of discharge of the discharger is detected so that the load amount of the discharger is detected and the detected load amount falls within a set range. A gasno and idrate manufacturing plant characterized by comprising control means for controlling one.
PCT/JP2006/306480 2006-03-29 2006-03-29 Process for producing gas hydrate and apparatus therefor WO2007110947A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/306480 WO2007110947A1 (en) 2006-03-29 2006-03-29 Process for producing gas hydrate and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/306480 WO2007110947A1 (en) 2006-03-29 2006-03-29 Process for producing gas hydrate and apparatus therefor

Publications (1)

Publication Number Publication Date
WO2007110947A1 true WO2007110947A1 (en) 2007-10-04

Family

ID=38540887

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/306480 WO2007110947A1 (en) 2006-03-29 2006-03-29 Process for producing gas hydrate and apparatus therefor

Country Status (1)

Country Link
WO (1) WO2007110947A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017008019A (en) * 2015-06-18 2017-01-12 宏祐 名倉 Methane hydrate artificial production method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000303083A (en) * 1999-04-23 2000-10-31 Ishikawajima Harima Heavy Ind Co Ltd Hydrate slurry fuel, its production, and apparatus for producing it, and method for storing it
JP2003105360A (en) * 2001-09-28 2003-04-09 Mitsui Eng & Shipbuild Co Ltd Indicator substance for measuring concentration of hydrate and method for measuring the same
JP2006096865A (en) * 2004-09-29 2006-04-13 Mitsui Eng & Shipbuild Co Ltd Apparatus for producing hydrate slurry and plant for producing hydrate
JP2006143771A (en) * 2004-11-16 2006-06-08 Mitsui Eng & Shipbuild Co Ltd Method and apparatus for producing gas hydrate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000303083A (en) * 1999-04-23 2000-10-31 Ishikawajima Harima Heavy Ind Co Ltd Hydrate slurry fuel, its production, and apparatus for producing it, and method for storing it
JP2003105360A (en) * 2001-09-28 2003-04-09 Mitsui Eng & Shipbuild Co Ltd Indicator substance for measuring concentration of hydrate and method for measuring the same
JP2006096865A (en) * 2004-09-29 2006-04-13 Mitsui Eng & Shipbuild Co Ltd Apparatus for producing hydrate slurry and plant for producing hydrate
JP2006143771A (en) * 2004-11-16 2006-06-08 Mitsui Eng & Shipbuild Co Ltd Method and apparatus for producing gas hydrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017008019A (en) * 2015-06-18 2017-01-12 宏祐 名倉 Methane hydrate artificial production method

Similar Documents

Publication Publication Date Title
US8309031B2 (en) Gas hydrate production apparatus
EP1375630A1 (en) Gas hydrate production device and gas hydrate dehydrating device
WO2004024854A1 (en) Process for producing gas clathrate and production apparatus
DK2781468T3 (en) Container for storing, transporting and dissociating hydrate pellets and method for storing, transporting and dissociating hydrate pellets using the same
JP2013540706A (en) Natural gas hydrate manufacturing apparatus and natural gas hydrate manufacturing method
JP2004075771A (en) Apparatus for producing gas hydrate
JP4303666B2 (en) Fluidized bed reactor for gas hydrate slurry
JP2007224249A (en) Cooling apparatus for gas hydrate pellet
JP5004630B2 (en) GAS HYDRATE CONCENTRATION MEASUREMENT METHOD AND MEASUREMENT DEVICE, AND GAS HYDRATE GENERATION DEVICE CONTROL METHOD AND CONTROL DEVICE USING THE MEASUREMENT METHOD
JP4672990B2 (en) Method and apparatus for manufacturing gas hydrate
JP2011231302A (en) Continuous production and dehydration device and method of gas hydrate by principle of centrifugal separation
JP5052386B2 (en) Gas hydrate manufacturing equipment
JP2006143771A (en) Method and apparatus for producing gas hydrate
WO2007110947A1 (en) Process for producing gas hydrate and apparatus therefor
JP4653993B2 (en) Dehydration tower for gas hydrate slurry
JP2009029946A (en) Concentration measuring method for gas hydrate, and device therefor
JP2006096865A (en) Apparatus for producing hydrate slurry and plant for producing hydrate
JP2006002000A (en) Methane hydrate generation device and methane gas supply system
JP2003050221A (en) Hydrate content measuring method, measuring device and facility equipped with the same
JP2007238715A (en) Gas hydrate slurry manufacturing apparatus
JP2003231892A (en) Method for producing gas hydrate and installation for producing the same
JP5426106B2 (en) Gas hydrate manufacturing apparatus and gas hydrate concentration measuring apparatus
JP2006116503A (en) Concentrator of low-concentration gas-hydrate slurry and gas-hydrate production plant
CN2539946Y (en) Deep cold high efficient dry-ice machine
JP4578930B2 (en) Gas hydrate manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06730428

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 06730428

Country of ref document: EP

Kind code of ref document: A1