WO2007108436A1 - Liquid crystal display device - Google Patents

Liquid crystal display device Download PDF

Info

Publication number
WO2007108436A1
WO2007108436A1 PCT/JP2007/055502 JP2007055502W WO2007108436A1 WO 2007108436 A1 WO2007108436 A1 WO 2007108436A1 JP 2007055502 W JP2007055502 W JP 2007055502W WO 2007108436 A1 WO2007108436 A1 WO 2007108436A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel
liquid crystal
subpixel
voltage
sub
Prior art date
Application number
PCT/JP2007/055502
Other languages
French (fr)
Japanese (ja)
Inventor
Akihiro Yamamoto
Masumi Kubo
Yohichi Naruse
Takashi Ochi
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Publication of WO2007108436A1 publication Critical patent/WO2007108436A1/en

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2007Display of intermediate tones
    • G09G3/207Display of intermediate tones by domain size control
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2007Display of intermediate tones
    • G09G3/2074Display of intermediate tones using sub-pixels

Definitions

  • the present invention relates to a liquid crystal display device, and more particularly to a liquid crystal display device having excellent viewing angle characteristics.
  • a liquid crystal display device is a flat display device having excellent features such as high definition, thinness, light weight, and low power consumption.
  • liquid crystal display devices have been improved in display performance, production capacity, and price for other display devices. As the competitiveness increases, the market scale is rapidly expanding.
  • the in-plane 'switching' mode (IPS mode) described in Patent Document 1 and the multi-domain described in Patent Document 2 are liquid crystal display devices that have improved viewing angle characteristics in these TN mode liquid crystal display devices.
  • a “vertical” aligned mode (MVA mode), an axially symmetric alignment mode (ASM mode) described in Patent Document 3, a liquid crystal display device described in Patent Document 4, and the like have been developed.
  • the problem with viewing angle characteristics is that the ⁇ characteristics during frontal observation and the ⁇ characteristics during oblique observation are different.
  • The problem of viewing angle dependence of characteristics has become newly apparent.
  • the ⁇ characteristic is the gradation dependence of the display brightness.
  • the fact that the ⁇ characteristic differs between the front direction and the diagonal direction means that the gradation display state differs depending on the observation direction. This is especially a problem when displaying or when displaying TV broadcasts.
  • Patent Document 5 discloses a liquid that can improve the viewing angle dependency of ⁇ characteristics, in particular, white floating characteristics, by dividing one pixel into a plurality of sub-pixels having different brightness.
  • a crystal display device and a driving method are disclosed.
  • display or driving may be referred to as area gradation display, area gradation driving, multi-pixel display, or multi-pixel driving.
  • an auxiliary capacitor is provided for each of a plurality of subpixels in one pixel, and an auxiliary capacitor counter electrode (connected to the CS bus line) constituting the auxiliary capacitor is electrically connected to each subpixel.
  • the auxiliary capacitor counter voltage By changing the voltage supplied to the auxiliary capacitor counter electrode (referred to as the auxiliary capacitor counter voltage) by changing the effective voltage applied to the liquid crystal layers of the plurality of sub-pixels by changing the capacity.
  • a liquid crystal display device is disclosed.
  • Patent Document 1 Japanese Patent Publication No. 63-21907
  • Patent Document 2 Japanese Patent Laid-Open No. 11-242225
  • Patent Document 3 Japanese Patent Laid-Open No. 10-186330
  • Patent Document 4 Japanese Patent Laid-Open No. 2002-55343
  • Patent Document 5 Japanese Patent Application Laid-Open No. 2004-62146 (US Pat. No. 6,695,8791) Disclosure of Invention
  • each pixel has Elementary subpixels (bright subpixels) exhibiting higher luminance than the luminance corresponding to the gradation to be displayed and subpixels (dark subpixels) exhibiting lower luminance than the luminance corresponding to the gradation to be displayed. This is because the voltage applied to the liquid crystal layer of the bright subpixel and the voltage applied to the liquid crystal layer of the dark subpixel are restricted by capacitive coupling rather than being independent of each other.
  • the present invention has been made in view of the above points, and an object of the present invention is to provide a liquid crystal display device in which the viewing angle dependency of the ⁇ characteristic is improved. Independently from the conventional multi-pixel driving described above, Alternatively, a novel multi-pixel driving technology that can be used in combination is provided.
  • the liquid crystal display device of the present invention is a liquid crystal display device having a plurality of pixels, and each of the plurality of pixels has a plurality of voltages that can be controlled independently of each other.
  • the plurality of subpixels includes a first subpixel and a second subpixel having an area larger than or equal to the first subpixel, and up to a predetermined first gradation.
  • a voltage corresponding to the gradation to be displayed is applied only to the liquid crystal layer of the first sub-pixel, and a gradation greater than a predetermined second gradation higher than the first gradation is to be displayed.
  • a voltage corresponding to a gradation to be displayed is applied to at least the liquid crystal layer of the second subpixel.
  • the area of the first subpixel is smaller than the area of the second subpixel.
  • the plurality of sub-pixels further include a third sub-pixel having a larger area than or equal to the second sub-pixel, and a predetermined third higher than the second gray level.
  • a voltage corresponding to the gradation to be displayed is applied to at least the liquid crystal layer of the third subpixel.
  • the area of the first subpixel is smaller than the area of the third subpixel.
  • the viewing angle dependency of the y characteristic can be improved.
  • the viewing angle dependency of the y characteristic can be further improved by combining with the conventional multi-pixel drive technology using capacitive division.
  • FIG. L (a) is a graph showing a voltage-luminance (transmittance) curve (V—T force curve) of a liquid crystal display device in a vertical alignment mode, and (b) is a graph in (a). This is a graph obtained by standardizing the V-T curve shown with each maximum brightness as 100.
  • FIG. 2 is a diagram schematically showing the structure of one pixel P of the liquid crystal display device according to the embodiment of the present invention.
  • FIG. 3 (a) and (b) are graphs schematically showing gradation display characteristics of a liquid crystal display device according to an embodiment of the present invention.
  • FIG. 4] (a) to (c) are diagrams illustrating an example of a multi-pixel structure according to an embodiment of the present invention and how to apply a voltage to the liquid crystal layer of each sub-pixel.
  • FIGS. 5 (a) to 5 (d) are diagrams illustrating another example of a multi-pixel structure according to an embodiment of the present invention and a method of applying a voltage to the liquid crystal layer of each sub-pixel.
  • FIG. 6 (a) to (d) are diagrams illustrating another example of a multi-pixel structure according to an embodiment of the present invention and a method of applying a voltage to the liquid crystal layer of each sub-pixel.
  • FIG. 7] (a) to (g) are diagrams illustrating another example of a multi-pixel structure according to an embodiment of the present invention and a method of applying a voltage to the liquid crystal layer of each sub-pixel.
  • FIG. 8] (a) to (e) are diagrams illustrating another example of a multi-pixel structure according to an embodiment of the present invention and a method of applying a voltage to the liquid crystal layer of each sub-pixel.
  • FIG. 9 (a) to (i) are diagrams illustrating another example of a multi-pixel structure according to an embodiment of the present invention and a method of applying a voltage to the liquid crystal layer of each sub-pixel.
  • FIG. 1 (a) shows a liquid crystal including a liquid crystal layer having a nematic liquid crystal material force having a negative dielectric anisotropy.
  • the voltage-luminance (transmittance) curve (VT curve) of a display device, a so-called vertical alignment mode liquid crystal display device is shown.
  • the curve attached to the front in the figure is the VT curve when observed from the normal direction of the display surface.
  • the curve with left / right direction and polar angle 60 ° is the azimuth direction force
  • the horizontal axis is placed within the polarization axis (transmission axis) of the polarizing plate placed in crossed Nicols
  • the polar angle The V-T curve is shown when the display surface normal force angle is observed from 60 °. This curve will be explained as a typical VT curve at an oblique viewing angle.
  • the vertical axis of the VT curve shown in Fig. 1 (a) is the absolute luminance (arbitrary unit).
  • the V—T curve shown in Fig. 1 (a) is standardized with the maximum luminance as 100, and the vertical axis is the normalized luminance (hereinafter referred to as “normalized V—T curve”).
  • the V-T curve at the front viewing angle and the V-T curve at the oblique viewing angle are almost the same.
  • the normalized luminance at an oblique viewing angle is large.
  • the fact that the normalized brightness at the oblique viewing angle is higher than the normalized brightness at the front viewing angle is a cause of the phenomenon that the display at the oblique viewing angle looks whitish (so-called “white floating”).
  • the normalized VT curve shown in FIG. 1 (b) matches the curve of the front viewing angle and the curve of the oblique viewing angle in the region where the normalized luminance is about 70. Focused on. In other words, in this example, if the gradation display is performed using only the range where the applied voltage is 4.2 V or higher or the normalized luminance is about 70 or higher, the “whitening” does not occur. However, if display is performed with normal pixels (one type of voltage applied to the liquid crystal layer), the display will be performed with a normalized luminance in the range of about 70 to 100, so a contrast ratio cannot be obtained.
  • each pixel has a plurality of sub-pixels whose voltages applied to the respective liquid crystal layers can be controlled independently of each other.
  • the voltage applied to the liquid crystal layer of each sub-pixel is used in accordance with the gradation to be displayed by the pixel, so that the above “white floating” in the standard ⁇ V-T curve of each sub-pixel does not occur and the range is used.
  • the voltage applied to the liquid crystal layer of each sub-pixel is set.
  • Conventional multi-pixel structure using capacitive division In a liquid crystal display device with a structure, the voltage applied to the liquid crystal layer of the sub-pixel cannot be controlled independently of each other.
  • the normalized VT curve of each sub-pixel makes maximum use of the range where the oblique viewing angle and the front viewing angle match. It becomes possible to do.
  • each pixel has a first subpixel SP1 and a second subpixel SP2
  • S is the area of the first subpixel SP1 and S is the area of the second subpixel SP2
  • S is the area of the second subpixel SP2
  • a voltage corresponding to the gray level to be displayed is applied only to the liquid crystal layer of the first sub-pixel SP1, and the second gray level higher than the first gray level is determined.
  • a voltage corresponding to the tone to be displayed is applied to at least the liquid crystal layer of the second subpixel SP2.
  • gradation display is performed only with the first subpixel, and in the gradation range over the second gradation, the second subpixel SP2 Apply a voltage according to the gradation to be displayed on the liquid crystal layer.
  • a voltage corresponding to the highest gradation is applied to both the first sub-pixel SP1 and the second sub-pixel SP2.
  • the “voltage according to the gradation to be displayed” is independent of the voltage for the first subpixel SP1 and the voltage for the second subpixel SP2.
  • a voltage is applied to the liquid crystal layer of both the first sub-pixel SP1 and the second sub-pixel SP2 in order to display a gray level that is greater than or equal to the second gray level
  • the voltage is applied to the liquid crystal layer of the first sub-pixel SP1.
  • the voltage VSP1 and the voltage VSP2 applied to the liquid crystal layer of the second sub-pixel SP2 are not necessarily the same, but a certain combination is set.
  • the liquid crystal display device can be obtained by making the configuration of each subpixel the same as that of a conventional pixel.
  • a TFT-type liquid crystal display device one TFT is provided for each sub-pixel, and one gate bus line and one source bus line are provided.
  • a pixel division structure using conventional capacity division for example, a pixel division structure described in Patent Document 5 can be applied to each sub-pixel.
  • FIG. 2 schematically shows the structure of one pixel P of the liquid crystal display device according to the embodiment of the present invention.
  • the pixel P includes three subpixels, that is, a first subpixel SP1, a second subpixel SP2, and a third subpixel SP3.
  • the areas of the first subpixel SP1, the second subpixel SP2, and the third subpixel SP3 are S, S, and S, respectively, S ⁇ S ⁇ S of
  • a gradation display characteristic as schematically shown in FIG. 3 can be obtained.
  • the horizontal axis represents the display gradation at the front viewing angle (frontal gradation)
  • the vertical axis represents the gradation display characteristics at the oblique viewing angle (left-right direction 'polar angle 60 °).
  • a 256 gradation display from OZ255 gradation (black) to 255Z255 gradation (white) is exemplified.
  • the display gradation is the same between the oblique viewing angle and the front viewing angle, that is, “whitening” does not occur.
  • the display gradation at the oblique viewing angle is larger than the display gradation at the front viewing angle within a range below a certain gradation.
  • the range where the display gradation of the oblique viewing angle is relatively large is the range where the normalized luminance is about 70 or less within the range where display is performed using only one sub-pixel (see Fig. 1 (b)). ).
  • the area S of the first sub-pixel SP1 that performs gradation display with only one sub-pixel is reduced.
  • the area S of the third subpixel SP3 is preferably larger than the area S of the second subpixel SP2.
  • Characteristics can be obtained.
  • the display gradation of the oblique viewing angle becomes relatively high even in the intermediate gradation.
  • the normalized luminance is about 70 or more
  • the normalized V-T curve is the same between the oblique viewing angle and the front viewing angle, so A is about 70. .
  • N is 1 or more and N or less
  • N 2 is the lowest number of divisions.
  • the minimum value of the sub-pixel area of the nth division or more is S. For example, in the case of two divisions, S
  • S S is the minimum value S min of S.
  • the maximum value S max is the maximum value
  • N is required, i.e.
  • the minimum value S of the sub-pixel area of the m-th division (m is an integer of m> N) is S
  • FIGS. 4 to 9 shows the area of the subpixel (the area of the first subpixel is 1) and the range of the voltage Vx applied to the liquid crystal layer of each subpixel. It is shown for each method of voltage application (distribution method).
  • the voltage Vx means the voltage corresponding to the gradation to be displayed in the entire pixel, the voltage displaying the lowest gradation (black) is 0, and the voltage displaying the highest gradation (white) is 1. .
  • a voltage below the threshold voltage may be applied when displaying the lowest gradation (black) (for example, the V-T curve shown in Fig. 1 (a) is approximately 0.5V black voltage force is also started).
  • the square in the figure indicates the size of the subpixel, and the area of the hatched portion schematically represents the magnitude of the applied voltage.
  • the hatched portion is on the top with respect to the lower side of the square indicating the subpixel. The larger the voltage, the larger the applied voltage.
  • the magnitude of the applied voltage is relative to each subpixel.
  • a voltage for displaying the maximum gradation is applied to the liquid crystal layer of the subpixel. Indicates that The broken line shown in the rectangle indicating the sub-pixel indicates the highest voltage level at which the viewing angle dependence occurs in the normalized VT curve.
  • the area ratio between the first sub-pixel SP1 (left side in the figure) and the second sub-pixel SP2 (right side in the figure) is 1: 1.
  • the voltage range of 0Z2 ⁇ Vx ⁇ lZ2 (until the normalized luminance of the first subpixel SP1 reaches 100), the liquid crystal of the first subpixel SP1 Apply voltage only to the layer.
  • the normalized luminance of the entire pixel is 25 because the normalized VT curve has a viewing angle dependency. The whitening occurs until (136Z2 55 gradation).
  • the area ratio of the first subpixel SP1 (left side in the figure) and the second subpixel SP2 (right side in the figure) is 1: 2.
  • the first subpixel SP1 and the second subpixel SP2 Is used.
  • the highest gradation voltage is applied to the liquid crystal layer of the first subpixel SP1
  • the normalized luminance of the first subpixel SP1 is 100
  • the entire pixel displays a gradation that is one third of the highest gradation.
  • a voltage for displaying a gradation exceeding this is applied to the liquid crystal layer of the second sub-pixel SP2.
  • the area ratio of the first subpixel SP1 (left side in the figure), the second subpixel SP2 (center in the figure), and the third subpixel SP3 (right side in the figure) is 1: 1: 1.
  • the second subpixel SP2 and the third subpixel SP3 are equally used. In other words, a voltage with a normalized luminance exceeding 50 is equally applied to each sub-pixel.
  • the area ratio of the first subpixel SP1 (left side in the figure), the second subpixel SP2 (center in the figure), and the third subpixel SP3 (right side in the figure) is 1: 2: 6.
  • a voltage is applied only to the liquid crystal layer of the first subpixel SP1. That is, a voltage is applied only to the first subpixel SP1 until the normalized luminance of the first subpixel SP1 reaches 100. At this time, the region where the normalized luminance of the first subpixel SP1 is less than 50 (the range indicated by the arrow in the figure) is dependent on the viewing angle of the normalized VT curve, so 5.6 (69Z255 gradation Whitening will occur until).
  • the voltage with the normalized luminance of 100 is applied to the liquid crystal layer of the first subpixel SP1.
  • a voltage with a normalized luminance exceeding 50 is applied to the liquid crystal layer of the 3 sub-pixel SP3.
  • the normalized luminance is 100 in each liquid crystal layer of the first subpixel SP1 and the second subpixel SP2. With the voltage applied, a voltage with a normalized luminance exceeding 50 is applied to the liquid crystal layer of the third subpixel SP3.
  • the area ratio between the first subpixel SP1 (left side in the figure) and the second subpixel SP2 (right side in the figure) is 2: 3.
  • the first subpixel SP2 is applied with the voltage corresponding to the normalized luminance 67 and the first subpixel is applied.
  • Voltage is applied to the liquid crystal layer of pixel SP1 until the normalized luminance reaches 100.
  • whitening occurs when the voltage range applied to the liquid crystal layer of the first sub-pixel SP1 is less than the normalized luminance 67, so that the normalized luminance of the entire pixel is 60 or more and less than 66.7 (202Z255 Whitening occurs in the range of gradation to 212Z255.
  • the voltage with the normalized luminance of 100 is applied to the liquid crystal layer of the first subpixel SP1.
  • a voltage with the normalized luminance of the second subpixel SP2 exceeding 67 is applied to the liquid crystal layer of the second subpixel SP2. Whitening does not occur even in this voltage range.
  • the area ratio of the first subpixel SP1 (left side in the figure), the second subpixel SP2 (center in the figure), and the third subpixel SP3 (right side in the figure) is 4: 6: 9.
  • the liquid crystal of the first subpixel SP1 Apply voltage only to the layer.
  • the region where the normalized luminance of the first subpixel SP1 is less than 67 has a viewing angle dependency on the normalized VT curve. The whitening occurs until (10 5Z255 gradation).
  • each subpixel is normalized to the liquid crystal layer of each of the first subpixel SP1 and the third subpixel SP3.
  • a voltage with a normalized luminance exceeding 67 is applied to the liquid crystal layer of the first sub-pixel SP1 with a voltage at which the luminance becomes 67 applied.
  • the normalized luminance of each subpixel is set in each liquid crystal layer of the second subpixel SP2 and the third subpixel SP3.
  • a voltage with a normalized luminance exceeding 67 is applied to the liquid crystal layer of the second sub-pixel SP2 in a state in which a voltage of becomes 67 is applied.
  • the first sub-pixel A voltage with a normalized luminance exceeding 67 is applied to the liquid crystal layer of the third sub-pixel SP3 with a voltage at which the normalized luminance of each sub-pixel is 100 applied to the liquid crystal layer of the SP1 and the second sub-pixel SP2.
  • Table 1 shows the results. Table 1 holds for 2 to 5 divisions. Table 1 shows gradations at which whitening occurs in pixels having each pixel division structure. For each divided structure, “min” and “max” indicate the minimum and maximum configurations of the subpixel area after the second subpixel, respectively. The division structure specified by the numerical value marked with * in Table 1 indicates that there is an area where whitening occurs in the halftone area as shown in Fig. 3 (b).
  • the numerical range described in the VT characteristic is the relative transmittance corresponding to A described above. [0082] [Table 2]
  • the number of divisions and the division ratio of the pixel division structure are set, and the voltage applied to each subpixel is set to the maximum in the range where the normalized V-T curve of each subpixel has no viewing angle dependency.
  • the V-repulsive force at the left / right direction and the polar angle of 60 ° is used as the oblique viewing angle characteristic.
  • the viewing angle characteristic required for the liquid crystal display device to which the present invention is applied It can be changed as appropriate. For example, if the V- ⁇ curve with a 45 ° polar angle 45 ° coincides with the V- ⁇ curve at the front viewing angle, there are sufficient applications. In this case, the value of ⁇ can be around 50.
  • a liquid crystal display device excellent in viewing angle characteristics is provided.
  • the present invention is particularly suitably applied to large liquid crystal display devices such as liquid crystal televisions.

Abstract

A liquid crystal display device has a plurality of pixels and each pixel (P) has a plurality of sub-pixels with respective liquid crystal layers to which independently controllable voltages are applied. Each sub-pixel has a first sub-pixel (SP1) and a second sub-pixel (SP2), the area of which is larger than or equal to that of the first sub-pixel (SP1). Until a prescribed first gray scale, a voltage in accordance with a gray scale to be displayed is applied only to the first sub-pixel but a voltage in accordance with a gray scale to be display is applied at least to the second sub-pixel when a prescribed second gray scale or more which is higher than the first gray scale is to be displayed.

Description

明 細 書  Specification
液晶表示装置  Liquid crystal display
技術分野  Technical field
[0001] 本発明は、液晶表示装置に関し、特に視野角特性に優れた液晶表示装置に関す る。  The present invention relates to a liquid crystal display device, and more particularly to a liquid crystal display device having excellent viewing angle characteristics.
背景技術  Background art
[0002] 液晶表示装置は、高精細、薄型、軽量および低消費電力等の優れた特長を有する 平面表示装置であり、近年、表示性能の向上、生産能力の向上および他の表示装 置に対する価格競争力の向上に伴 、、市場規模が急速に拡大して 、る。  A liquid crystal display device is a flat display device having excellent features such as high definition, thinness, light weight, and low power consumption. In recent years, liquid crystal display devices have been improved in display performance, production capacity, and price for other display devices. As the competitiveness increases, the market scale is rapidly expanding.
[0003] 従来一般的であったッイステッド'ネマテイク'モード (TNモード)の液晶表示装置 は、表示性能とりわけ視角特性の点で問題があった。具体的には、 TNモードの液晶 表示装置の表示面を斜め方向から観測すると、表示のコントラスト比が著しく低下し、 正面からの観測で黒力 白までの複数の階調が明瞭に観測される画像を斜め方向 から観測すると階調間の輝度差が著しく不明瞭となる点が問題であった。さらに、表 示の階調特性が反転し、正面からの観測でより暗い部分が斜め方向力 の観測では より明るく観測される現象 (いわゆる、階調反転現象)も問題であった。  [0003] A liquid crystal display device of the twisted 'nematic' mode (TN mode), which has been common in the past, has a problem in display performance, particularly viewing angle characteristics. Specifically, when the display surface of a TN mode liquid crystal display device is observed from an oblique direction, the contrast ratio of the display is remarkably reduced, and multiple gradations up to black strength white can be clearly observed when observed from the front. When the image was observed from an oblique direction, the problem was that the brightness difference between the gradations became very unclear. In addition, the gradation characteristics of the display were reversed, and a phenomenon in which darker parts were observed brighter when viewed from the front (so-called gradation inversion phenomenon) was also a problem.
[0004] 近年、これら TNモードの液晶表示装置における視野角特性を改善した液晶表示 装置として、特許文献 1に記載のインプレイン 'スイッチング 'モード (IPSモード)、特 許文献 2に記載のマルチドメイン 'バーティカル'ァラインド'モード (MVAモード)、特 許文献 3に記載の軸対称配向モード (ASMモード)および、特許文献 4などに記載 の液晶表示装置等が開発された。  [0004] In recent years, the in-plane 'switching' mode (IPS mode) described in Patent Document 1 and the multi-domain described in Patent Document 2 are liquid crystal display devices that have improved viewing angle characteristics in these TN mode liquid crystal display devices. A “vertical” aligned mode (MVA mode), an axially symmetric alignment mode (ASM mode) described in Patent Document 3, a liquid crystal display device described in Patent Document 4, and the like have been developed.
[0005] これらの新規なモード (広視野角モード)の液晶表示装置は、いずれも視野角特性 に関する上記の具体的な問題点を解決している。すなわち、表示面を斜め方向から 観測した場合に表示コントラスト比が著しく低下したり、表示階調が反転するなどの問 題は起こらない。  [0005] All of these novel mode (wide viewing angle mode) liquid crystal display devices solve the above-mentioned specific problems relating to viewing angle characteristics. In other words, when the display surface is observed from an oblique direction, problems such as a significant decrease in display contrast ratio and inversion of display gradation do not occur.
[0006] 液晶表示装置の表示品位の改善が進む状況下にお!/、て、今日では視野角特性の 問題点として、正面観測時の γ特性と斜め観測時の γ特性が異なる点、すなわち γ 特性の視角依存性の問題が新たに顕在化してきた。ここで、 γ特性とは表示輝度の 階調依存性であり、 γ特性が正面方向と斜め方向で異なるということは、階調表示状 態が観測方向によって異なることとなるため、写真等の画像を表示する場合や、また TV放送等を表示する場合に特に問題となる。 [0006] Under the circumstances where the display quality of liquid crystal display devices is improving! Today, the problem with viewing angle characteristics is that the γ characteristics during frontal observation and the γ characteristics during oblique observation are different. γ The problem of viewing angle dependence of characteristics has become newly apparent. Here, the γ characteristic is the gradation dependence of the display brightness. The fact that the γ characteristic differs between the front direction and the diagonal direction means that the gradation display state differs depending on the observation direction. This is especially a problem when displaying or when displaying TV broadcasts.
[0007] γ特性の視野角依存性の問題は、 IPSモードよりも、 MVAモードや ASMモードに おいて顕著である。一方、 IPSモードは、 MVAモードや ASMモードに比べて正面 観測時のコントラスト比の高いパネルを生産性良く製造することが難しい。これらの点 から、特に MVAモードや ASMモードの液晶表示装置における γ特性の視角依存 性を改善することが望まれる。 [0007] The problem of viewing angle dependence of γ characteristics is more prominent in MVA mode and ASM mode than in IPS mode. On the other hand, in the IPS mode, it is difficult to produce a panel with a high contrast ratio in front view with high productivity compared to the MVA mode and ASM mode. From these points, it is desirable to improve the viewing angle dependency of the γ characteristics, especially in liquid crystal display devices in MVA mode and ASM mode.
[0008] そこで本出願人は、特許文献 5に、 1つの画素を明るさの異なる複数の副画素に分 割することにより γ特性の視角依存性、とりわけ白浮特性を改善することができる液 晶表示装置および駆動方法を開示して 、る。本明細書にぉ 、てこのような表示ある いは駆動を面積階調表示、面積階調駆動、マルチ画素表示またはマルチ画素駆動 などと呼ぶことがある。 [0008] Therefore, the applicant of Patent Document 5 discloses a liquid that can improve the viewing angle dependency of γ characteristics, in particular, white floating characteristics, by dividing one pixel into a plurality of sub-pixels having different brightness. A crystal display device and a driving method are disclosed. In this specification, such display or driving may be referred to as area gradation display, area gradation driving, multi-pixel display, or multi-pixel driving.
[0009] 特許文献 5には、 1つの画素内の複数の副画素ごとに補助容量を設け、補助容量 を構成する補助容量対向電極 (CSバスラインに接続されている)を副画素ごとに電 気的に独立とし、補助容量対向電極に供給する電圧 (補助容量対向電圧という。)を 変化させることによって、容量分割を利用して、複数の副画素の液晶層に印加される 実効電圧を異ならせる液晶表示装置が開示されている。  [0009] In Patent Document 5, an auxiliary capacitor is provided for each of a plurality of subpixels in one pixel, and an auxiliary capacitor counter electrode (connected to the CS bus line) constituting the auxiliary capacitor is electrically connected to each subpixel. By changing the voltage supplied to the auxiliary capacitor counter electrode (referred to as the auxiliary capacitor counter voltage) by changing the effective voltage applied to the liquid crystal layers of the plurality of sub-pixels by changing the capacity. A liquid crystal display device is disclosed.
特許文献 1:特公昭 63— 21907号公報  Patent Document 1: Japanese Patent Publication No. 63-21907
特許文献 2:特開平 11― 242225号公報  Patent Document 2: Japanese Patent Laid-Open No. 11-242225
特許文献 3 :特開平 10— 186330号公報  Patent Document 3: Japanese Patent Laid-Open No. 10-186330
特許文献 4:特開 2002— 55343号公報  Patent Document 4: Japanese Patent Laid-Open No. 2002-55343
特許文献 5 :特開 2004— 62146号公報 (米国特許第 6958791号明細書) 発明の開示  Patent Document 5: Japanese Patent Application Laid-Open No. 2004-62146 (US Pat. No. 6,695,8791) Disclosure of Invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0010] し力しながら、上記特許文献 5に記載されている従来のマルチ画素駆動技術による γ特性の視角依存性の改善効果には限界があった。これは、各画素が有する副画 素は、表示すべき階調に対応する輝度よりも高い輝度を呈する副画素(明副画素)と 表示すべき階調に対応する輝度よりも低い輝度を呈する副画素(暗副画素)とを有す る力 明副画素の液晶層に印加される電圧と暗副画素の液晶層に印加される電圧は 、互いに独立ではなぐ容量結合による制約が課せられているためである。 However, there is a limit to the effect of improving the viewing angle dependency of the γ characteristic by the conventional multi-pixel driving technique described in Patent Document 5 described above. This is a sub-picture that each pixel has Elementary subpixels (bright subpixels) exhibiting higher luminance than the luminance corresponding to the gradation to be displayed and subpixels (dark subpixels) exhibiting lower luminance than the luminance corresponding to the gradation to be displayed. This is because the voltage applied to the liquid crystal layer of the bright subpixel and the voltage applied to the liquid crystal layer of the dark subpixel are restricted by capacitive coupling rather than being independent of each other.
[0011] 本発明は上記諸点に鑑みてなされたものであり、その目的は、 γ特性の視角依存 性を改善した液晶表示装置を提供することにあり、上記の従来のマルチ画素駆動と 独立に、あるいは、組み合わせて用いることが可能な新規なマルチ画素駆動技術を 提供する。 The present invention has been made in view of the above points, and an object of the present invention is to provide a liquid crystal display device in which the viewing angle dependency of the γ characteristic is improved. Independently from the conventional multi-pixel driving described above, Alternatively, a novel multi-pixel driving technology that can be used in combination is provided.
課題を解決するための手段  Means for solving the problem
[0012] 本発明の液晶表示装置は、複数の画素を有する液晶表示装置であって、前記複 数の画素のそれぞれは、それぞれの液晶層に印加される電圧は互いに独立に制御 され得る複数の副画素を有し、前記複数の副画素は、第 1副画素と、前記第 1副画 素よりも面積が大きいか等しい第 2副画素を有し、予め決められた第 1階調までは、 表示すべき階調に応じた電圧を前記第 1副画素の液晶層にのみ印加し、前記第 1階 調よりも高い予め決められた第 2階調以上の階調を表示すべきときに、表示すべき階 調に応じた電圧を少なくとも前記第 2副画素の液晶層に印加することを特徴とする。  [0012] The liquid crystal display device of the present invention is a liquid crystal display device having a plurality of pixels, and each of the plurality of pixels has a plurality of voltages that can be controlled independently of each other. The plurality of subpixels includes a first subpixel and a second subpixel having an area larger than or equal to the first subpixel, and up to a predetermined first gradation. When a voltage corresponding to the gradation to be displayed is applied only to the liquid crystal layer of the first sub-pixel, and a gradation greater than a predetermined second gradation higher than the first gradation is to be displayed. A voltage corresponding to a gradation to be displayed is applied to at least the liquid crystal layer of the second subpixel.
[0013] ある実施形態において、前記第 1副画素の面積は前記第 2副画素の面積よりも小さ い。  In one embodiment, the area of the first subpixel is smaller than the area of the second subpixel.
[0014] ある実施形態において、前記複数の副画素は、前記第 2副画素よりも面積が大きい か等しい第 3副画素をさらに有し、前記第 2階調よりも高い予め決められた第 3階調 以上の階調を表示すべきときに、表示すべき階調に応じた電圧を少なくとも前記第 3 副画素の液晶層に印加する。  [0014] In one embodiment, the plurality of sub-pixels further include a third sub-pixel having a larger area than or equal to the second sub-pixel, and a predetermined third higher than the second gray level. When gradations higher than the gradation are to be displayed, a voltage corresponding to the gradation to be displayed is applied to at least the liquid crystal layer of the third subpixel.
[0015] ある実施形態において、前記第 1副画素の面積は前記第 3副画素の面積よりも小さ い。  [0015] In one embodiment, the area of the first subpixel is smaller than the area of the third subpixel.
発明の効果  The invention's effect
[0016] 本発明によると、 y特性の視角依存性を改善することができる。また、容量分割を 利用した従来のマルチ画素駆動技術と組み合わせることによって、 y特性の視角依 存性をさらに改善することができる。 図面の簡単な説明 [0016] According to the present invention, the viewing angle dependency of the y characteristic can be improved. In addition, the viewing angle dependency of the y characteristic can be further improved by combining with the conventional multi-pixel drive technology using capacitive division. Brief Description of Drawings
[0017] [図 l] (a)は、垂直配向モードの液晶表示装置の電圧一輝度 (透過率)曲線 (V— T力 ーブ)を示すグラフであり、 (b)は(a)に示した V—Tカーブをそれぞれの最高輝度を 100として規格ィ匕したグラフである。  [0017] [Fig. L] (a) is a graph showing a voltage-luminance (transmittance) curve (V—T force curve) of a liquid crystal display device in a vertical alignment mode, and (b) is a graph in (a). This is a graph obtained by standardizing the V-T curve shown with each maximum brightness as 100.
[図 2]本発明による実施形態の液晶表示装置の 1つの画素 Pの構造を模式的に示す 図である。  FIG. 2 is a diagram schematically showing the structure of one pixel P of the liquid crystal display device according to the embodiment of the present invention.
[図 3] (a)および (b)は、本発明による実施形態の液晶表示装置の階調表示特性を 模式的に示すグラフである。  FIG. 3 (a) and (b) are graphs schematically showing gradation display characteristics of a liquid crystal display device according to an embodiment of the present invention.
[図 4] (a)〜 (c)は、本発明による実施形態のマルチ画素構造および各副画素の液晶 層への電圧の印加の仕方の例を説明する図である。  [FIG. 4] (a) to (c) are diagrams illustrating an example of a multi-pixel structure according to an embodiment of the present invention and how to apply a voltage to the liquid crystal layer of each sub-pixel.
[図 5] (a)〜 (d)は、本発明による実施形態のマルチ画素構造および各副画素の液 晶層への電圧の印加の仕方の他の例を説明する図である。  FIGS. 5 (a) to 5 (d) are diagrams illustrating another example of a multi-pixel structure according to an embodiment of the present invention and a method of applying a voltage to the liquid crystal layer of each sub-pixel.
[図 6] (a)〜 (d)は、本発明による実施形態のマルチ画素構造および各副画素の液 晶層への電圧の印加の仕方の他の例を説明する図である。  [FIG. 6] (a) to (d) are diagrams illustrating another example of a multi-pixel structure according to an embodiment of the present invention and a method of applying a voltage to the liquid crystal layer of each sub-pixel.
[図 7] (a)〜 (g)は、本発明による実施形態のマルチ画素構造および各副画素の液 晶層への電圧の印加の仕方の他の例を説明する図である。  [FIG. 7] (a) to (g) are diagrams illustrating another example of a multi-pixel structure according to an embodiment of the present invention and a method of applying a voltage to the liquid crystal layer of each sub-pixel.
[図 8] (a)〜 (e)は、本発明による実施形態のマルチ画素構造および各副画素の液晶 層への電圧の印加の仕方の他の例を説明する図である。  [FIG. 8] (a) to (e) are diagrams illustrating another example of a multi-pixel structure according to an embodiment of the present invention and a method of applying a voltage to the liquid crystal layer of each sub-pixel.
[図 9] (a)〜 (i)は、本発明による実施形態のマルチ画素構造および各副画素の液晶 層への電圧の印加の仕方の他の例を説明する図である。  [FIG. 9] (a) to (i) are diagrams illustrating another example of a multi-pixel structure according to an embodiment of the present invention and a method of applying a voltage to the liquid crystal layer of each sub-pixel.
符号の説明  Explanation of symbols
[0018] P 画素 [0018] P pixel
SP1、 SP2 畐幌素 1  SP1, SP2 Kajihoromoto 1
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0019] まず、液晶表示装置の γ特性の視野角依存性につ!、て説明する。ここでは、本発 明の効果が顕著に得られる垂直配向モードの液晶表示装置を例示するが、適用で きる表示モードに特に制限はない。 First, the viewing angle dependence of the γ characteristic of the liquid crystal display device will be described. Here, a vertical alignment mode liquid crystal display device in which the effect of the present invention is remarkably obtained is illustrated, but there is no particular limitation on the applicable display mode.
[0020] 図 1 (a)に、誘電率異方性が負のネマチック液晶材料力 なる液晶層を備える液晶 表示装置、いわゆる垂直配向モードの液晶表示装置の電圧一輝度 (透過率)曲線( V—Tカーブ)を示す。図中に正面と付した曲線は、表示面法線方向から観察したと きの V— Tカーブである。図中に左右方向 ·極角 60° と付した曲線は、方位角方向 力 クロスニコルに配置された偏光板の偏光軸 (透過軸)内で水平方向に配置されて 偏光軸方向で、極角(表示面法線力 の角)が 60° から観察したときの V—Tカーブ を示している。このカーブは斜め視角における V—Tカーブの代表として説明する。 図 1 (a)に示した V—Tカーブの縦軸は、絶対輝度 (任意単位)である。 [0020] FIG. 1 (a) shows a liquid crystal including a liquid crystal layer having a nematic liquid crystal material force having a negative dielectric anisotropy. The voltage-luminance (transmittance) curve (VT curve) of a display device, a so-called vertical alignment mode liquid crystal display device is shown. The curve attached to the front in the figure is the VT curve when observed from the normal direction of the display surface. In the figure, the curve with left / right direction and polar angle 60 ° is the azimuth direction force, the horizontal axis is placed within the polarization axis (transmission axis) of the polarizing plate placed in crossed Nicols, and the polar angle The V-T curve is shown when the display surface normal force angle is observed from 60 °. This curve will be explained as a typical VT curve at an oblique viewing angle. The vertical axis of the VT curve shown in Fig. 1 (a) is the absolute luminance (arbitrary unit).
[0021] 図 1 (a)からわ力るように、斜め視角においては、得られる最高輝度が正面視角に 比べて小さい。一方、輝度が立ち上がりはじめる電圧は、斜め視角の方が正面視角 よりち低い。 [0021] As can be seen from FIG. 1 (a), at the oblique viewing angle, the maximum luminance obtained is smaller than the front viewing angle. On the other hand, the voltage at which the luminance starts to rise is lower in the oblique viewing angle than in the front viewing angle.
[0022] 図 1 (a)に示した V—Tカーブをそれぞれの最高輝度を 100として規格ィ匕し、縦軸の 規格化輝度をとつたカーブ (以下、「規格化 V—Tカーブ」という。)を図 1 (b)に示す。 図 1 (b)から分力るように、ある電圧 (約 4. 2V)よりも高電圧側(高階調側)においては 、正面視角の V—Tカーブと斜め視角の V—Tカーブがほぼ一致しているのに対し、 当該電圧 (約 4. 2V)よりも低電圧側では、斜め視角における規格化輝度が大きい。 斜め視角における規格化輝度が正面視角における規格化輝度よりも高くなることが、 斜め視角における表示が白っぽく見える現象 (いわゆる「白浮き」)の原因である。  [0022] The V—T curve shown in Fig. 1 (a) is standardized with the maximum luminance as 100, and the vertical axis is the normalized luminance (hereinafter referred to as “normalized V—T curve”). Is shown in Fig. 1 (b). As shown in Fig. 1 (b), on the higher voltage side (high gradation side) than a certain voltage (about 4.2V), the V-T curve at the front viewing angle and the V-T curve at the oblique viewing angle are almost the same. On the other hand, on the low voltage side of the voltage (about 4.2V), the normalized luminance at an oblique viewing angle is large. The fact that the normalized brightness at the oblique viewing angle is higher than the normalized brightness at the front viewing angle is a cause of the phenomenon that the display at the oblique viewing angle looks whitish (so-called “white floating”).
[0023] 本発明者は、図 1 (b)に示した規格化 V—Tカーブは、規格化輝度が約 70の領域 においては、正面視角のカーブと斜め視角のカーブとがー致することに着目した。す なわち、この例では、印加電圧が 4. 2V以上または規格化輝度が約 70以上の範囲 だけを利用して階調表示を行えば、「白浮き」が発生しない。但し、通常の画素 (液晶 層に印加される電圧が 1種類)で表示を行うと、規格化輝度が約 70から 100の範囲 で表示を行うことになるので、コントラスト比が得られない。  [0023] The inventor found that the normalized VT curve shown in FIG. 1 (b) matches the curve of the front viewing angle and the curve of the oblique viewing angle in the region where the normalized luminance is about 70. Focused on. In other words, in this example, if the gradation display is performed using only the range where the applied voltage is 4.2 V or higher or the normalized luminance is about 70 or higher, the “whitening” does not occur. However, if display is performed with normal pixels (one type of voltage applied to the liquid crystal layer), the display will be performed with a normalized luminance in the range of about 70 to 100, so a contrast ratio cannot be obtained.
[0024] 本発明による実施形態の液晶表示装置にお!、ては、各画素がそれぞれの液晶層 に印加される電圧は互いに独立に制御され得る複数の副画素を有する。各副画素 の液晶層に印加する電圧を当該画素で表示すべき階調に応じて、各副画素の規格 ィ匕 V—Tカーブにおける上記「白浮き」が発生しな 、範囲を利用するように、各副画 素の液晶層に印加する電圧を設定する。容量分割を利用した従来のマルチ画素構 造を有する液晶表示装置では、副画素の液晶層に印加する電圧を互いに独立に制 御することができないので、ある関係を有する V— Tカーブを足し合わせ、それによつ て視野角特性を平均化するに過ぎないのに対し、本発明による実施形態の液晶表 示装置においては、各副画素の規格化 V— Tカーブが、斜め視角と正面視角とで一 致する範囲を最大限に利用することが可能となる。 In the liquid crystal display device according to the embodiment of the present invention, each pixel has a plurality of sub-pixels whose voltages applied to the respective liquid crystal layers can be controlled independently of each other. The voltage applied to the liquid crystal layer of each sub-pixel is used in accordance with the gradation to be displayed by the pixel, so that the above “white floating” in the standard 匕 V-T curve of each sub-pixel does not occur and the range is used. Next, the voltage applied to the liquid crystal layer of each sub-pixel is set. Conventional multi-pixel structure using capacitive division In a liquid crystal display device with a structure, the voltage applied to the liquid crystal layer of the sub-pixel cannot be controlled independently of each other. Therefore, a V-T curve having a certain relationship is added to thereby average the viewing angle characteristics. In contrast, in the liquid crystal display device according to the embodiment of the present invention, the normalized VT curve of each sub-pixel makes maximum use of the range where the oblique viewing angle and the front viewing angle match. It becomes possible to do.
[0025] 例えば、各画素が第 1副画素 SP1と第 2副画素 SP2とを有する場合、第 1副画素 S P1の面積を S 、第 2副画素 SP2の面積を S とすると、 S ≤S とし、予め決め  For example, if each pixel has a first subpixel SP1 and a second subpixel SP2, if S is the area of the first subpixel SP1 and S is the area of the second subpixel SP2, then S ≤ S And pre-determined
(SP1) (SP2) (SP1) (SP2)  (SP1) (SP2) (SP1) (SP2)
られた第 1階調までは、表示すべき階調に応じた電圧を第 1副画素 SP1の液晶層に のみ印加し、第 1階調よりも高い予め決められた第 2階調以上の階調を表示すべきと きに、表示すべき階調に応じた電圧を少なくとも第 2副画素 SP2の液晶層に印加す る。すなわち、最低階調 (黒)から第 1階調までの階調範囲は、第 1副画素だけで階 調表示を行い、第 2階調以上の階調範囲においては、第 2副画素 SP2の液晶層に 表示すべき階調に応じた電圧を印加する。最高階調を表示する際には、第 1副画素 SP1および第 2副画素 SP2の両方に最高階調に応じた電圧を印加する。なお、「表 示すべき階調に応じた電圧」は、第 1副画素 SP1に対するものと、第 2副画素 SP2〖こ 対するものとは独立である。第 2階調以上のある階調を表示するために第 1副画素 S P1と第 2副画素 SP2との両方の液晶層に電圧を印加する場合、第 1副画素 SP1の 液晶層に印加される電圧 VSP1と第 2副画素 SP2の液晶層に印加される電圧 VSP2 とは、同じであるとは限らないが、ある 1つの組合せが設定される。  Up to the first gray level, a voltage corresponding to the gray level to be displayed is applied only to the liquid crystal layer of the first sub-pixel SP1, and the second gray level higher than the first gray level is determined. When a tone is to be displayed, a voltage corresponding to the tone to be displayed is applied to at least the liquid crystal layer of the second subpixel SP2. In other words, in the gradation range from the lowest gradation (black) to the first gradation, gradation display is performed only with the first subpixel, and in the gradation range over the second gradation, the second subpixel SP2 Apply a voltage according to the gradation to be displayed on the liquid crystal layer. When displaying the highest gradation, a voltage corresponding to the highest gradation is applied to both the first sub-pixel SP1 and the second sub-pixel SP2. The “voltage according to the gradation to be displayed” is independent of the voltage for the first subpixel SP1 and the voltage for the second subpixel SP2. When a voltage is applied to the liquid crystal layer of both the first sub-pixel SP1 and the second sub-pixel SP2 in order to display a gray level that is greater than or equal to the second gray level, the voltage is applied to the liquid crystal layer of the first sub-pixel SP1. The voltage VSP1 and the voltage VSP2 applied to the liquid crystal layer of the second sub-pixel SP2 are not necessarily the same, but a certain combination is set.
[0026] 本発明による実施形態の液晶表示装置は、各副画素の構成を従来の画素と同様 の構成とすること〖こよって得られる。例えば、 TFT型の液晶表示装置の場合には、副 画素毎に 1つの TFTが設けられ、それぞれ 1本のゲートバスラインおよび 1本のソー スバスラインが設けられる。このとき、各副画素に従来の容量分割を利用した画素分 割構造 (例えば特許文献 5に記載の画素分割構造)を適用することができる。  The liquid crystal display device according to the embodiment of the present invention can be obtained by making the configuration of each subpixel the same as that of a conventional pixel. For example, in the case of a TFT-type liquid crystal display device, one TFT is provided for each sub-pixel, and one gate bus line and one source bus line are provided. At this time, a pixel division structure using conventional capacity division (for example, a pixel division structure described in Patent Document 5) can be applied to each sub-pixel.
[0027] 図 2に本発明による実施形態の液晶表示装置の 1つの画素 Pの構造を模式的に示 す。画素 Pは、 3つの副画素、すなわち第 1副画素 SP1、第 2副画素 SP2および第 3 副画素 SP3から構成されている。ここでは、第 1副画素 SP1、第 2副画素 SP2および 第 3副画素 SP3の面積をそれぞれ S 、S および S とすると、 S < S < S の FIG. 2 schematically shows the structure of one pixel P of the liquid crystal display device according to the embodiment of the present invention. The pixel P includes three subpixels, that is, a first subpixel SP1, a second subpixel SP2, and a third subpixel SP3. Here, if the areas of the first subpixel SP1, the second subpixel SP2, and the third subpixel SP3 are S, S, and S, respectively, S <S <S of
3) 関係を満足している。  3) Satisfied the relationship.
[0028] このような画素分割構造を採用すると、例えば、図 3に模式的に示すような階調表 示特性を得ることができる。図 3は、横軸に正面視角における表示階調 (正面階調)を とり、縦軸に斜め視角(左右方向'極角 60° )における階調表示特性を示している。 ここでは、 OZ255階調(黒)〜255Z255階調(白)の 256階調表示を例示して 、る 。図 3に示すように、ある階調以上の表示階調では、斜め視角と正面視角とで表示階 調が一致しており、すなわち、「白浮き」が発生しない。一方、ある階調未満の範囲で は斜め視角の表示階調が正面視角の表示階調よりも大きくなつている。この斜め視 角の表示階調が相対的に大きい範囲は、 1つの副画素だけを用いて表示を行ってい る範囲の内で、規格化輝度が約 70以下の範囲(図 1 (b)参照)に対応する範囲であ る。このことから分力るように、「白浮き」の発生をできるだけ広い階調範囲で防止する ためには、 1つの副画素だけで階調表示を行う第 1副画素 SP1の面積 S を小さく  When such a pixel division structure is adopted, for example, a gradation display characteristic as schematically shown in FIG. 3 can be obtained. In FIG. 3, the horizontal axis represents the display gradation at the front viewing angle (frontal gradation), and the vertical axis represents the gradation display characteristics at the oblique viewing angle (left-right direction 'polar angle 60 °). Here, a 256 gradation display from OZ255 gradation (black) to 255Z255 gradation (white) is exemplified. As shown in FIG. 3, in a display gradation of a certain gradation or more, the display gradation is the same between the oblique viewing angle and the front viewing angle, that is, “whitening” does not occur. On the other hand, the display gradation at the oblique viewing angle is larger than the display gradation at the front viewing angle within a range below a certain gradation. The range where the display gradation of the oblique viewing angle is relatively large is the range where the normalized luminance is about 70 or less within the range where display is performed using only one sub-pixel (see Fig. 1 (b)). ). As can be seen from this, in order to prevent the occurrence of “whitening” in the widest possible gradation range, the area S of the first sub-pixel SP1 that performs gradation display with only one sub-pixel is reduced.
(SP1) することが好ましい。同様の理由から、第 3副画素 SP3を設ける場合には、第 3副画 素 SP3の面積 S は、第 2副画素 SP2の面積 S よりも大きくすることが好ましい。  (SP1) is preferable. For the same reason, when the third subpixel SP3 is provided, the area S of the third subpixel SP3 is preferably larger than the area S of the second subpixel SP2.
(SP3) (SP2)  (SP3) (SP2)
[0029] 各画素を構成する副画素の数 (以下、「分割数」とも!、う。)と、副画素の面積比 (最 小の副画素の面積(S )に対する他の副画素の面積の比、 S /S 、S /S  [0029] The number of sub-pixels constituting each pixel (hereinafter, also referred to as "division number"!) And the area ratio of sub-pixels (the area of other sub-pixels relative to the area of the smallest sub-pixel (S)) Ratio of S / S, S / S
(SPl) (SP2) (SP1) (SP3) (S など、「分割比」ともいう。)を設定することによって、図 3 (a)に示したような階調表示 By setting (SPl) (SP2) (SP1) (SP3) (also referred to as “splitting ratio”, such as S), gradation display as shown in Fig. 3 (a)
P1) P1)
特性を得ることができる。ここで、分割数または分割比が最適値からずれると、図 3 (b )に示すように、中間階調においても斜め視角の表示階調が相対的に高くなる。  Characteristics can be obtained. Here, when the number of divisions or the division ratio deviates from the optimum value, as shown in FIG. 3B, the display gradation of the oblique viewing angle becomes relatively high even in the intermediate gradation.
[0030] 次に、分割数および分割比の決め方を説明する。 [0030] Next, how to determine the number of divisions and the division ratio will be described.
[0031] ここで、規格化輝度 0〜: LOOの内の A以上の規格化輝度範囲において、斜め視角 における規格化 V— Tカーブと正面視角の規格化 V— Tカーブとが互いに一致する 副画素を組み合わせる最適の条件を検討する。図 1 (a)に示した例では規格化輝度 が約 70以上で斜め視角と正面視角にお 、て規格化 V—Tカーブが一致して 、るの で、 Aは約 70ということになる。  [0031] Here, the normalized luminance 0 to: within the normalized luminance range of A or more of LOO, the normalized V-T curve at the oblique viewing angle and the normalized V-T curve at the front viewing angle coincide with each other. Consider optimal conditions for combining pixels. In the example shown in Fig. 1 (a), the normalized luminance is about 70 or more, and the normalized V-T curve is the same between the oblique viewing angle and the front viewing angle, so A is about 70. .
[0032] なお、規格化輝度と階調との関係は表示装置の γ値、典型的には γ = 2. 2によつ て関係付けられる。 AZ100を aで表し、画素の分割数を Nとし、各副画素の面積を S 、S 、 ' " S とし、 S ≤S ≤- - -≤S の関係を満足するものとすると、分 Note that the relationship between the normalized luminance and the gradation is related by the γ value of the display device, typically γ = 2.2. Assuming that AZ100 is represented by a, the number of pixel division is N, the area of each subpixel is S, S, '"S, and the relationship S ≤ S ≤---≤ S is satisfied,
SPl) (SP2) (SPN) (SPl) (SP2) (SPN) 割数 Nおよび S は以下のようにして求めることができる。なお、 nは 1以上 N以下の (SPl) (SP2) (SPN) (SPl) (SP2) (SPN) The divisors N and S can be obtained as follows. N is 1 or more and N or less
(SPn)  (SPn)
整数である。  It is an integer.
[0033] (I) 0<A≤50に設定する場合、分割数 N = 2で中間階調における白浮き(図 3 (b) 参照)を発生し無いようにできる。従って、 N = 2が最低の分割数である。また、このと きの n分割目以上の副画素面積の最小値は、 S であり、例えば 2分割の場合、 S  [0033] (I) When 0 <A≤50 is set, it is possible to prevent whitening (see FIG. 3 (b)) in the intermediate gradation with the division number N = 2. Therefore, N = 2 is the lowest number of divisions. In this case, the minimum value of the sub-pixel area of the nth division or more is S. For example, in the case of two divisions, S
(SPn-1) (S (SPn-1) (S
=S が S の最小値 S minということになる。また、 S の最大値 S maxは次= S is the minimum value S min of S. The maximum value S max is
P2) (SP1) (SP2) (SP2) (SPn) (SPn) 式(1)で与えられる。 P2) (SP1) (SP2) (SP2) (SPn) (SPn) is given by equation (1).
[数 1]  [Number 1]
n-1  n-1
' » (SPn) max―- /j S (SPk) I  '»(SPn) max― / / j S (SPk) I
[0034] (II) 50< A< 100に設定する場合、 [0034] (II) When setting 50 <A <100,
{S /a(N_1)} - (l -a)≥ S -a {S / a (N_1) }-(l -a) ≥ S -a
(SP1) (SP1)  (SP1) (SP1)
を満足する Nが必要であり、すなわち、 N is required, i.e.
Figure imgf000010_0001
Figure imgf000010_0001
を満足する Nが必要である。  N that satisfies is required.
[0035] このとき、 n分割目(nは 1 <η≤Νの整数)の副画素の面積 S は S  [0035] At this time, the area S of the sub-pixel in the n-th division (n is an integer satisfying 1 <η≤Ν) is S
(SPn) (SP1) Za(nϋであり(SPn) (SP1) Za (n — is ϋ
、言!/ヽ換免ると、 S /aと!/ヽうことになる。 , Say! / Convert and S / a! / I will meet you.
(SPn-l)  (SPn-l)
[0036] また、このときの m分割目(mは m〉Nの整数)の副画素面積の最小値 S は S  [0036] At this time, the minimum value S of the sub-pixel area of the m-th division (m is an integer of m> N) is S
(SPm)min (SP であり、 S の最大値 S は次式(2)で与えられる。  (SPm) min (SP, and the maximum value S of S is given by the following equation (2).
m-1) (SPm) (SPm)max  m-1) (SPm) (SPm) max
[数 2]
Figure imgf000010_0002
[Equation 2]
Figure imgf000010_0002
[0037] 次に、図 4〜図 9を参照しながら、本発明による実施形態のマルチ画素構造および 各副画素の液晶層への電圧の印加の仕方の例を説明する。図 4〜図 9のそれぞれ は、副画素の面積(第 1副画素の面積を 1とする)および各副画素の液晶層に印加さ れる電圧 Vxの範囲を示しており、副画素の液晶層への電圧の印加の仕方 (分配方 法)毎に図示している。 [0038] 電圧 Vxは画素全体で表示すべき階調に対応する電圧を意味し、最低階調 (黒)を 表示する電圧を 0とし、最高階調(白)を表示する電圧を 1としている。但し、実際の表 示装置においては、最低階調 (黒)を表示する際にしきい値電圧以下の電圧を印加 する場合がある(例えば、図 1 (a)に示した V—Tカーブは約 0. 5Vの黒電圧力もスタ ートしている)。図中の四角形は、副画素の大きさを示しており、ハッチング部の面積 は印加電圧の大きさを模式的に表しており、副画素を示す四角形の下辺を基準にハ ツチング部分が上に広がるほど印加電圧は大き 、ことを意味する。印加電圧の大きさ は、副画素ごとに相対的であり、副画素の全体がハッチングされている場合は、当該 副画素の液晶層には最高階調を表示するための電圧が印加されて 、ることを示す。 副画素を示す四角形中に示した破線は、規格化 V— Tカーブに視角依存性が発生 する最高の電圧のレベルを示して 、る。 Next, an example of a multi-pixel structure according to an embodiment of the present invention and how to apply a voltage to the liquid crystal layer of each sub-pixel will be described with reference to FIGS. Each of FIGS. 4 to 9 shows the area of the subpixel (the area of the first subpixel is 1) and the range of the voltage Vx applied to the liquid crystal layer of each subpixel. It is shown for each method of voltage application (distribution method). [0038] The voltage Vx means the voltage corresponding to the gradation to be displayed in the entire pixel, the voltage displaying the lowest gradation (black) is 0, and the voltage displaying the highest gradation (white) is 1. . However, in an actual display device, a voltage below the threshold voltage may be applied when displaying the lowest gradation (black) (for example, the V-T curve shown in Fig. 1 (a) is approximately 0.5V black voltage force is also started). The square in the figure indicates the size of the subpixel, and the area of the hatched portion schematically represents the magnitude of the applied voltage. The hatched portion is on the top with respect to the lower side of the square indicating the subpixel. The larger the voltage, the larger the applied voltage. The magnitude of the applied voltage is relative to each subpixel. When the entire subpixel is hatched, a voltage for displaying the maximum gradation is applied to the liquid crystal layer of the subpixel. Indicates that The broken line shown in the rectangle indicating the sub-pixel indicates the highest voltage level at which the viewing angle dependence occurs in the normalized VT curve.
[0039] まず、図 4〜図 7を参照して、 A= 50の場合、すなわち、規格化輝度が 50以上で規 格化 V—Tカーブに視角依存性がない場合について説明する。  First, with reference to FIGS. 4 to 7, a case where A = 50, that is, a case where the normalized luminance is 50 or more and the normalized VT curve has no viewing angle dependency will be described.
[0040] 図 4 (a)〜 (c)に 2分割構造 (分割数 N = 2)の例を示す。第 1副画素 SP1 (図中の左 側)と第 2副画素 SP2 (図中の右側)との面積比は 1: 1である。  [0040] Figures 4 (a) to 4 (c) show examples of a two-part structure (number of divisions N = 2). The area ratio between the first sub-pixel SP1 (left side in the figure) and the second sub-pixel SP2 (right side in the figure) is 1: 1.
[0041] 図 4 (a)に示すように、黒表示 (Vx=0)の場合は、いずれの副画素にも電圧が印加 されない。  [0041] As shown in FIG. 4 (a), in the case of black display (Vx = 0), no voltage is applied to any sub-pixel.
[0042] 次に、図 4 (b)に示すように、 0Z2<Vx≤lZ2の電圧範囲、(第 1副画素 SP1の規 格化輝度が 100となるまで)、第 1副画素 SP1の液晶層にのみ電圧を印加する。この とき、第 1副画素 SP1の規格化輝度が 50未満の領域(図中の矢印で示す範囲)は、 規格化 V—T曲線に視角依存性があるので、画素全体の規格化輝度が 25 (136Z2 55階調)までは白浮きが発生することになる。  [0042] Next, as shown in FIG. 4B, the voltage range of 0Z2 <Vx≤lZ2 (until the normalized luminance of the first subpixel SP1 reaches 100), the liquid crystal of the first subpixel SP1 Apply voltage only to the layer. At this time, in the region where the normalized luminance of the first sub-pixel SP1 is less than 50 (the range indicated by the arrow in the figure), the normalized luminance of the entire pixel is 25 because the normalized VT curve has a viewing angle dependency. The whitening occurs until (136Z2 55 gradation).
[0043] 次に、図 4 (c)に示すように、 lZ2<Vx≤2Z2の電圧範囲(すなわち画素全体の 規格化輝度が 50を超える範囲)では、第 1副画素 SP1および第 2副画素 SP2にそれ ぞれ規格化輝度が 50を超える、同じ電圧を印加する。  [0043] Next, as shown in FIG. 4 (c), in the voltage range of lZ2 <Vx≤2Z2 (that is, the range where the normalized luminance of the entire pixel exceeds 50), the first subpixel SP1 and the second subpixel Apply the same voltage to SP2, each with a normalized brightness exceeding 50.
[0044] 図 5 (a)〜(d)に、 2分割構造 (分割数 N= 2)の他の例を示す。第 1副画素 SP1 (図 中の左側)と第 2副画素 SP2 (図中の右側)との面積比は 1: 2である。  [0044] Figs. 5 (a) to (d) show other examples of a two-divided structure (number of divisions N = 2). The area ratio of the first subpixel SP1 (left side in the figure) and the second subpixel SP2 (right side in the figure) is 1: 2.
[0045] 図 5 (a)に示すように、黒表示 (Vx = 0)の場合は、いずれの副画素にも電圧が印加 されない。 [0045] As shown in Fig. 5 (a), in the case of black display (Vx = 0), voltage is applied to any sub-pixel. Not.
[0046] 次に、図 5 (b)に示すように、 OZ3<Vx≤lZ3の電圧範囲では (第 1副画素 SP1 の規格化輝度が 100となるまで)、第 1副画素 SP1の液晶層にのみ電圧を印加する。 このとき、第 1副画素 SP1の規格化輝度が 50未満の領域(図中の矢印で示す範囲) は、規格化 V—T曲線に視角依存性があるので、画素全体の規格化輝度が 16. 7 (1 13Z255階調)までは白浮きが発生する。  [0046] Next, as shown in FIG. 5 (b), in the voltage range of OZ3 <Vx≤lZ3 (until the normalized luminance of the first subpixel SP1 reaches 100), the liquid crystal layer of the first subpixel SP1 Apply voltage only to. At this time, in the region where the normalized luminance of the first sub-pixel SP1 is less than 50 (the range indicated by the arrow in the figure), the normalized luminance of the entire pixel is 16 because the normalized VT curve has a viewing angle dependency. . Whitening occurs until 7 (1 13Z255 gradation).
[0047] 次に、図 5 (c)に示すように、 lZ3<Vx≤2Z3の電圧範囲では(第 2副画素 SP2 の規格化輝度が 100となるまで)、第 2副画素 SP2の液晶層にのみ電圧を印加する。  Next, as shown in FIG. 5 (c), in the voltage range of lZ3 <Vx≤2Z3 (until the normalized luminance of the second subpixel SP2 reaches 100), the liquid crystal layer of the second subpixel SP2 Apply voltage only to.
[0048] 次に、図 5 (d)に示すように、 Vxが 2Z3を超える電圧範囲(画素全体の規格化輝 度が 67を超える範囲)では、第 1副画素 SP1および第 2副画素 SP2を利用する。この とき、第 1副画素 SP1の液晶層には最高階調電圧が印加されており、第 1副画素 SP 1の規格化輝度は 100であり、面積が全体の 1Z3である第 1副画素 SP1に最高階調 電圧を印加することによって、画素全体として最高階調の 3分の 1の階調を表示して いる。第 2副画素 SP2の液晶層にはこれを超える階調を表示するための電圧が印加 される。  [0048] Next, as shown in FIG. 5 (d), in the voltage range where Vx exceeds 2Z3 (the range where the normalized luminance of the entire pixel exceeds 67), the first subpixel SP1 and the second subpixel SP2 Is used. At this time, the highest gradation voltage is applied to the liquid crystal layer of the first subpixel SP1, the normalized luminance of the first subpixel SP1 is 100, and the first subpixel SP1 whose area is 1Z3 as a whole. By applying the highest gradation voltage to the pixel, the entire pixel displays a gradation that is one third of the highest gradation. A voltage for displaying a gradation exceeding this is applied to the liquid crystal layer of the second sub-pixel SP2.
[0049] 図 6 (a)〜(d)に、 3分割構造 (分割数 N= 3)の例を示す。第 1副画素 SP1 (図中の 左側)、第 2副画素 SP2 (図中の中央)、第 3副画素 SP3 (図中の右側)との面積比は 1 : 1 : 1である。  [0049] Figs. 6 (a) to (d) show examples of a three-division structure (division number N = 3). The area ratio of the first subpixel SP1 (left side in the figure), the second subpixel SP2 (center in the figure), and the third subpixel SP3 (right side in the figure) is 1: 1: 1.
[0050] 図 6 (a)に示すように、黒表示 (Vx = 0)の場合は、いずれの副画素にも電圧が印加 されない。  [0050] As shown in FIG. 6 (a), in the case of black display (Vx = 0), no voltage is applied to any sub-pixel.
[0051] 次に、図 6 (b)に示すように、 OZ3く Vx≤lZ3の電圧範囲では (第 1副画素 SP1 の規格化輝度が 100となるまで)、第 1副画素 SP1の液晶層にのみ電圧を印加する。 このとき、第 1副画素 SP1の規格化輝度が 50未満の領域(図中の矢印で示す範囲) は、規格化 V—T曲線に視角依存性があるので、画素全体の規格化輝度が 16. 7 (1 13Z255階調)までは白浮きが発生する。  [0051] Next, as shown in FIG. 6 (b), in the voltage range of OZ3 and Vx≤lZ3 (until the normalized luminance of the first subpixel SP1 reaches 100), the liquid crystal layer of the first subpixel SP1 Apply voltage only to. At this time, in the region where the normalized luminance of the first sub-pixel SP1 is less than 50 (the range indicated by the arrow in the figure), the normalized luminance of the entire pixel is 16 because the normalized VT curve has a viewing angle dependency. . Whitening occurs until 7 (1 13Z255 gradation).
[0052] 次に、図 6 (c)に示すように、 l/3<Vx≤l . 5Z3の電圧範囲(画素全体の規格化 輝度が 50以下の範囲)では、第 1副画素 SP1および第 2副画素 SP2の液晶層にそ れぞれ規格化輝度が 50となる電圧を印加した状態から、第 1副画素 SP1に規格ィ匕 輝度が 50を超える電圧が印加される。 [0052] Next, as shown in FIG. 6 (c), in the voltage range of l / 3 <Vx≤l.5Z3 (the normalized luminance of the entire pixel is 50 or less), the first subpixel SP1 and the first subpixel SP1 From the state in which a voltage with a normalized luminance of 50 is applied to the liquid crystal layer of the 2nd subpixel SP2, the standard value is applied to the 1st subpixel SP1. A voltage with a luminance exceeding 50 is applied.
[0053] 次に、図 6 (d)に示すように、 Vxが 1. 5Z3を超える電圧範囲では、第 1副画素 SPNext, as shown in FIG. 6 (d), in the voltage range where Vx exceeds 1.5Z3, the first subpixel SP
1、第 2副画素 SP2および第 3副画素 SP3を均等に利用する。すなわち、各副画素に 規格化輝度が 50を超える電圧を均等に印加する。 1. The second subpixel SP2 and the third subpixel SP3 are equally used. In other words, a voltage with a normalized luminance exceeding 50 is equally applied to each sub-pixel.
[0054] 図 7 (a)〜(g)に、 3分割構造 (分割数 N = 3)の他の例を示す。第 1副画素 SP1 (図 中の左側)、第 2副画素 SP2 (図中の中央)、第 3副画素 SP3 (図中の右側)との面積 比は 1 : 2 : 6である。 [0054] FIGS. 7A to 7G show other examples of a three-division structure (number of divisions N = 3). The area ratio of the first subpixel SP1 (left side in the figure), the second subpixel SP2 (center in the figure), and the third subpixel SP3 (right side in the figure) is 1: 2: 6.
[0055] 図 7 (a)に示すように、黒表示 (Vx = 0)の場合は、いずれの副画素にも電圧が印加 されない。  As shown in FIG. 7 (a), in the case of black display (Vx = 0), no voltage is applied to any sub-pixel.
[0056] 次に、図 7 (b)に示すように、 OZ9<Vx≤lZ9の電圧範囲では、第 1副画素 SP1 の液晶層にのみ電圧を印加する。すなわち、第 1副画素 SP1の規格化輝度が 100と なるまでは、第 1副画素 SP1にのみ電圧を印加する。このとき、第 1副画素 SP1の規 格化輝度が 50未満の領域 (図中の矢印で示す範囲)は、規格化 V— T曲線に視角 依存性があるので、 5. 6 (69Z255階調)までは白浮きが発生する。  Next, as shown in FIG. 7B, in the voltage range of OZ9 <Vx ≦ lZ9, a voltage is applied only to the liquid crystal layer of the first subpixel SP1. That is, a voltage is applied only to the first subpixel SP1 until the normalized luminance of the first subpixel SP1 reaches 100. At this time, the region where the normalized luminance of the first subpixel SP1 is less than 50 (the range indicated by the arrow in the figure) is dependent on the viewing angle of the normalized VT curve, so 5.6 (69Z255 gradation Whitening will occur until).
[0057] 次に、図 7 (c)に示すように、 l/9<Vx≤l . 5Z9の電圧範囲では、第 2副画素 S P2の液晶層のみに規格化輝度が 50を超える電圧を規格化輝度が 100まで印加す る。  [0057] Next, as shown in FIG. 7 (c), in the voltage range of l / 9 <Vx≤l.5Z9, a voltage with a normalized luminance exceeding 50 is applied only to the liquid crystal layer of the second sub-pixel SP2. Apply normalized brightness up to 100.
[0058] 次に、図 7 (d)に示すように、 1. 5Z9<Vx≤3Z9の電圧範囲では、第 1副画素 S P1および第 2副画素 SP2の液晶層にそれぞれに、規格化輝度が 50を超える電圧が 印加される。  [0058] Next, as shown in FIG. 7 (d), in the voltage range of 1.5Z9 <Vx≤3Z9, the normalized luminance is applied to the liquid crystal layers of the first subpixel SP1 and the second subpixel SP2, respectively. A voltage exceeding 50 is applied.
[0059] 次に、図 7 (e)に示すように、 3Z9<Vx≤4Z9の電圧範囲では、第 3副画素 SP3 の液晶層にのみ、規格化輝度が 50を超える電圧が印加される。  Next, as shown in FIG. 7 (e), in the voltage range of 3Z9 <Vx≤4Z9, a voltage with a normalized luminance exceeding 50 is applied only to the liquid crystal layer of the third subpixel SP3.
[0060] 次に、図 7 (f)に示すように、 4Z9<Vx≤6Z9の電圧範囲では、第 1副画素 SP1 の液晶層に規格化輝度が 100となる電圧を印加した状態で、第 3副画素 SP3の液晶 層に規格化輝度が 50を超える電圧が印加される。  Next, as shown in FIG. 7 (f), in the voltage range of 4Z9 <Vx≤6Z9, the voltage with the normalized luminance of 100 is applied to the liquid crystal layer of the first subpixel SP1. A voltage with a normalized luminance exceeding 50 is applied to the liquid crystal layer of the 3 sub-pixel SP3.
[0061] 次に、図 7 (g)に示すように、 6Z9<Vx≤9Z9の電圧範囲では、第 1副画素 SP1 および第 2副画素 SP2のそれぞれの液晶層に規格化輝度が 100となる電圧を印加し た状態で、第 3副画素 SP3の液晶層に規格化輝度が 50を超える電圧が印加される。 [0062] 次に、図 8および図 9を参照しながら、 A=67の場合、すなわち、規格化輝度が 67 以上で規格化 V—Tカーブに視角依存性がない場合について説明する。 [0061] Next, as shown in FIG. 7 (g), in the voltage range of 6Z9 <Vx≤9Z9, the normalized luminance is 100 in each liquid crystal layer of the first subpixel SP1 and the second subpixel SP2. With the voltage applied, a voltage with a normalized luminance exceeding 50 is applied to the liquid crystal layer of the third subpixel SP3. Next, the case where A = 67, that is, the case where the normalized luminance is 67 or more and the normalized VT curve has no viewing angle dependency will be described with reference to FIGS. 8 and 9.
[0063] 図 8 (a)〜(e)に、 2分割構造 (分割数 N = 2)の例を示す。第 1副画素 SP1 (図中の 左側)と第 2副画素 SP2 (図中の右側)との面積比は 2 : 3である。  [0063] FIGS. 8 (a) to 8 (e) show examples of a two-divided structure (number of divisions N = 2). The area ratio between the first subpixel SP1 (left side in the figure) and the second subpixel SP2 (right side in the figure) is 2: 3.
[0064] 図 8 (a)に示すように、黒表示 (Vx=0)の場合は、いずれの副画素にも電圧が印加 されない。  [0064] As shown in FIG. 8 (a), in the case of black display (Vx = 0), no voltage is applied to any sub-pixel.
[0065] 次に、図 8 (b)に示すように、 OZ5<Vx≤2Z5の電圧範囲では (第 1副画素 SP1 の規格化輝度が 100となるまで)、第 1副画素 SP1の液晶層にのみ電圧を印加する。 このとき、第 1副画素 SP1の規格化輝度が 67未満の領域(図中の矢印で示す範囲) は、規格化 V—T曲線に視角依存性があるので、画素全体の規格化輝度が 26. 7 (1 40Z255階調)までは白浮きが発生する。  [0065] Next, as shown in FIG. 8 (b), in the voltage range of OZ5 <Vx≤2Z5 (until the normalized luminance of the first subpixel SP1 reaches 100), the liquid crystal layer of the first subpixel SP1 Apply voltage only to. At this time, the region where the normalized luminance of the first sub-pixel SP1 is less than 67 (the range indicated by the arrow in the figure) has a viewing angle dependency on the normalized VT curve, so that the normalized luminance of the entire pixel is 26 . Whitening occurs until 7 (1 40Z255 gradation).
[0066] 次に、図 8 (c)〖こ示すように、 2Z5<Vx≤3Z5の電圧範囲では(第 2副画素 SP2 の規格化輝度が 100となるまで)、第 2副画素 SP2の液晶層にのみ電圧を印加する。 この電圧範囲では白浮きは発生しない。  [0066] Next, as shown in FIG. 8 (c), in the voltage range of 2Z5 <Vx≤3Z5 (until the normalized luminance of the second subpixel SP2 reaches 100), the liquid crystal of the second subpixel SP2 Apply voltage only to the layer. Whitening does not occur in this voltage range.
[0067] 次に、図 8 (d)〖こ示すように、 3Z5<Vx≤4Z5の電圧範囲では、第 2副画素 SP2 に規格化輝度 67に対応する電圧を印加した状態で、第 1副画素 SP1の液晶層に規 格化輝度が 100になるまで電圧を印加する。このとき、第 1副画素 SP1の液晶層に印 加される電圧範囲が規格化輝度 67未満の範囲において白浮きが発生するので、画 素全体の規格化輝度が 60以上 66. 7未満(202Z255階調〜 212Z255階調)の 範囲で白浮きが発生する。  [0067] Next, as shown in FIG. 8 (d), in the voltage range of 3Z5 <Vx≤4Z5, the first subpixel SP2 is applied with the voltage corresponding to the normalized luminance 67 and the first subpixel is applied. Voltage is applied to the liquid crystal layer of pixel SP1 until the normalized luminance reaches 100. At this time, whitening occurs when the voltage range applied to the liquid crystal layer of the first sub-pixel SP1 is less than the normalized luminance 67, so that the normalized luminance of the entire pixel is 60 or more and less than 66.7 (202Z255 Whitening occurs in the range of gradation to 212Z255.
[0068] 次に、図 8 (e)に示すように、 4Z5<Vx≤5Z5の電圧範囲では、第 1副画素 SP1 の液晶層に規格化輝度が 100となる電圧を印加した状態で、第 2副画素 SP2の液晶 層に、第 2副画素 SP2の規格化輝度が 67を超える電圧を印加する。この電圧範囲に おいても白浮きは発生しな 、。  Next, as shown in FIG. 8 (e), in the voltage range of 4Z5 <Vx≤5Z5, the voltage with the normalized luminance of 100 is applied to the liquid crystal layer of the first subpixel SP1. A voltage with the normalized luminance of the second subpixel SP2 exceeding 67 is applied to the liquid crystal layer of the second subpixel SP2. Whitening does not occur even in this voltage range.
[0069] 図 9 (a)〜(i)に、 3分割構造 (分割数 N= 3)の例を示す。第 1副画素 SP1 (図中の 左側)、第 2副画素 SP2 (図中の中央)、第 3副画素 SP3 (図中の右側)との面積比は 4 : 6 : 9である。  [0069] Figs. 9 (a) to (i) show examples of a three-division structure (division number N = 3). The area ratio of the first subpixel SP1 (left side in the figure), the second subpixel SP2 (center in the figure), and the third subpixel SP3 (right side in the figure) is 4: 6: 9.
[0070] 図 9 (a)に示すように、黒表示 (Vx = 0)の場合は、いずれの副画素にも電圧が印加 されない。 [0070] As shown in Fig. 9 (a), in the case of black display (Vx = 0), voltage is applied to all sub-pixels. Not.
[0071] 次に、図 9 (b)に示すように、 OZ19く Vx≤4Zl9の電圧範囲では (第 1副画素 SP 1の規格化輝度が 100となるまで)、第 1副画素 SP1の液晶層にのみ電圧を印加する 。このとき、第 1副画素 SP1の規格化輝度が 67未満の領域(図中の矢印で示す範囲 )は、規格化 V—T曲線に視角依存性があるので、画素全体の規格化輝度が 14 (10 5Z255階調)までは白浮きが発生する。  Next, as shown in FIG. 9B, in the voltage range of OZ19 and Vx≤4Zl9 (until the normalized luminance of the first subpixel SP 1 reaches 100), the liquid crystal of the first subpixel SP1 Apply voltage only to the layer. At this time, the region where the normalized luminance of the first subpixel SP1 is less than 67 (the range indicated by the arrow in the figure) has a viewing angle dependency on the normalized VT curve. The whitening occurs until (10 5Z255 gradation).
[0072] 次に、図 9 (c)に示すように、 4Z19く Vx≤6Zl9の電圧範囲では、(第 2副画素 S P2の規格化輝度が 100となるまで)、第 2副画素 SP2の液晶層にのみ、規格化輝度 力 S67超となる電圧を印加する。  [0072] Next, as shown in FIG. 9 (c), in the voltage range of 4Z19 and Vx≤6Zl9 (until the normalized luminance of the second subpixel SP2 becomes 100), the second subpixel SP2 A voltage that exceeds the standardized luminance power S67 is applied only to the liquid crystal layer.
[0073] 次に、図 9 (d)に示すように、 6Z19く Vx≤9Zl9の電圧範囲では、(第 3副画素 S P3の規格化輝度が 100となるまで)、第 3副画素 SP3の液晶層にのみ、規格化輝度 力 S67超となる電圧を印加する。  [0073] Next, as shown in FIG. 9 (d), in the voltage range of 6Z19 and Vx≤9Zl9 (until the normalized luminance of the third subpixel SP3 becomes 100), the third subpixel SP3 A voltage that exceeds the standardized luminance power S67 is applied only to the liquid crystal layer.
[0074] 次に、図 9 (e)に示すように、 9Z19く Vx≤10Zl9の電圧範囲では、第 1副画素 S P1および第 3副画素 SP3のそれぞれの液晶層に各副画素の規格化輝度が 67となる 電圧を印加した状態で、第 1副画素 SP1の液晶層に規格化輝度が 67を超える電圧 を印加する。  [0074] Next, as shown in FIG. 9 (e), in the voltage range of 9Z19 and Vx≤10Zl9, each subpixel is normalized to the liquid crystal layer of each of the first subpixel SP1 and the third subpixel SP3. A voltage with a normalized luminance exceeding 67 is applied to the liquid crystal layer of the first sub-pixel SP1 with a voltage at which the luminance becomes 67 applied.
[0075] 次に、図 9 (f)に示すように、 10Z19く Vx≤12Zl9の電圧範囲では、第 2副画素 SP2および第 3副画素 SP3のそれぞれの液晶層に各副画素の規格化輝度が 67とな る電圧を印加した状態で、第 2副画素 SP2の液晶層に規格化輝度が 67を超える電 圧を印加する。  [0075] Next, as shown in FIG. 9 (f), in the voltage range of 10Z19 and Vx≤12Zl9, the normalized luminance of each subpixel is set in each liquid crystal layer of the second subpixel SP2 and the third subpixel SP3. A voltage with a normalized luminance exceeding 67 is applied to the liquid crystal layer of the second sub-pixel SP2 in a state in which a voltage of becomes 67 is applied.
[0076] 次に、図 9 (g)に示すように、 12719<¥ ≤15 19の電圧範囲では、第 2副画素 SP2の液晶層に第 2副画素 SP2の規格化輝度が 100となる電圧を印加した状態で、 第 3副画素 SP3の液晶層に規格化輝度が 67を超える電圧を印加する。  Next, as shown in FIG. 9 (g), in the voltage range of 12719 <¥ ≤15 19, the voltage at which the normalized luminance of the second subpixel SP2 becomes 100 in the liquid crystal layer of the second subpixel SP2 With voltage applied, a voltage with a normalized luminance exceeding 67 is applied to the liquid crystal layer of the third subpixel SP3.
[0077] 次に、図 9 (h)に示すように、 15Z19く Vx≤16Zl9の電圧範囲では、第 2副画素 SP2の液晶層に第 2副画素 SP2の規格化輝度が 100となる電圧を印加し、かつ、第 3副画素 SP3の液晶層に各副画素の規格化輝度が 67となる電圧を印加した状態で 、第 1副画素 SP1の液晶層に規格化輝度が 67を超える電圧を印加する。  Next, as shown in FIG. 9 (h), in the voltage range of 15Z19 and Vx≤16Zl9, a voltage at which the normalized luminance of the second subpixel SP2 becomes 100 is applied to the liquid crystal layer of the second subpixel SP2. With the voltage applied to the liquid crystal layer of the third subpixel SP3 and a voltage with a normalized luminance of 67 for each subpixel applied, a voltage with a normalized luminance exceeding 67 is applied to the liquid crystal layer of the first subpixel SP1. Apply.
[0078] 次に、図 9 (i)に示すように、 16Z19く Vx≤19Zl9の電圧範囲では、第 1副画素 SP1および第 2副画素 SP2のそれぞれの液晶層に各副画素の規格ィ匕輝度が 100と なる電圧を印加した状態で、第 3副画素 SP3の液晶層に規格化輝度が 67を超える 電圧を印加する。 Next, as shown in FIG. 9 (i), in the voltage range of 16Z19 and Vx≤19Zl9, the first sub-pixel A voltage with a normalized luminance exceeding 67 is applied to the liquid crystal layer of the third sub-pixel SP3 with a voltage at which the normalized luminance of each sub-pixel is 100 applied to the liquid crystal layer of the SP1 and the second sub-pixel SP2. Apply.
[0079] 規格化 V—Tカーブに視角依存性が発生しない輝度 Aが異なる場合について、上 述した設計指針に基づ 、て、分割数、分割比 (各副画素の面積を S で示す。 )を  [0079] Normalized V—T curve where the luminance A that does not depend on the viewing angle is different. Based on the design guidelines described above, the number of divisions and the division ratio (the area of each subpixel is denoted by S. )
(SPn)  (SPn)
求めた結果を表 1に示す。表 1は分割数 2〜5についてそれぞれ成立する。表 1には 、各画素分割構造を有する画素において白浮きが発生する階調を示している。また 、各分割構造について、「min」および「max」は、第 2副画素以降の副画素の面積が 最小の構成および最大の構成をそれぞれ示して!/ヽる。表 1中の *を付した数値で特 定される分割構造は、図 3 (b)に示したような中間調領域に白浮きが発生する領域が あることを示している。  Table 1 shows the results. Table 1 holds for 2 to 5 divisions. Table 1 shows gradations at which whitening occurs in pixels having each pixel division structure. For each divided structure, “min” and “max” indicate the minimum and maximum configurations of the subpixel area after the second subpixel, respectively. The division structure specified by the numerical value marked with * in Table 1 indicates that there is an area where whitening occurs in the halftone area as shown in Fig. 3 (b).
[0080] [表 1] [0080] [Table 1]
Figure imgf000016_0001
Figure imgf000016_0001
*この分割数では中間調にコブが発生  * At this division number, bumps occur in the halftone.
また表 2に、 MVAモードの液晶表示装置の V— Tカーブの視角依存性(図 1参照) について、量産性を考慮して、分割数 N = 3または 4について、好ましい分割比を求 めた結果をまとめて示す。 V—T特性に記載の数値範囲は、上述の Aに対応する相 対透過率である。 [0082] [表 2] Table 2 also shows the preferred split ratio for the number of divisions N = 3 or 4 with regard to the viewing angle dependence of the VT curve of the liquid crystal display device in the MVA mode (see Fig. 1) in consideration of mass productivity. The results are shown together. The numerical range described in the VT characteristic is the relative transmittance corresponding to A described above. [0082] [Table 2]
Figure imgf000017_0001
Figure imgf000017_0001
但し、低階調の白浮きは各パラメータにより差有り  However, low gradation whitening varies depending on each parameter.
[0083] 上述したように、画素分割構造の分割数および分割比を設定し、各副画素に印加 する電圧を、各副画素の規格化 V— Tカーブに視角依存性がない範囲を最大限に 利用するように供給することによって、画素全体の白浮きを効果的に抑制し、 γ特性 の視角依存性を低減することが出来る。  [0083] As described above, the number of divisions and the division ratio of the pixel division structure are set, and the voltage applied to each subpixel is set to the maximum in the range where the normalized V-T curve of each subpixel has no viewing angle dependency. By supplying it to be used for the above, it is possible to effectively suppress the whitening of the entire pixel and reduce the viewing angle dependency of the γ characteristic.
[0084] なお、上記説明では、斜め視角特性として、左右方向 ·極角 60° における V— Τ力 ーブを用いたが、本発明を適用する液晶表示装置に求められる視野角特性に応じ て適宜変更できる。例えば、左右方向'極角 45° の V— Τカーブが正面視角の V— Τカーブと一致すれば、十分な用途もある。この場合、上記 Αの値は 50程度であり得 る。  [0084] In the above description, the V-repulsive force at the left / right direction and the polar angle of 60 ° is used as the oblique viewing angle characteristic. However, depending on the viewing angle characteristic required for the liquid crystal display device to which the present invention is applied. It can be changed as appropriate. For example, if the V-Τ curve with a 45 ° polar angle 45 ° coincides with the V-Τ curve at the front viewing angle, there are sufficient applications. In this case, the value of Α can be around 50.
[0085] また、各副画素について、特許文献 4等に記載されている従来の画素分割構造を 適用することによって、さらに γ特性の視角依存性を低減することができる。  Further, by applying the conventional pixel division structure described in Patent Document 4 or the like to each sub-pixel, the viewing angle dependency of the γ characteristic can be further reduced.
産業上の利用可能性  Industrial applicability
[0086] 本発明によると、視野角特性に優れた液晶表示装置が提供される。本発明は特に 液晶テレビなどの大型の液晶表示装置に好適に適用される。 [0086] According to the present invention, a liquid crystal display device excellent in viewing angle characteristics is provided. The present invention is particularly suitably applied to large liquid crystal display devices such as liquid crystal televisions.

Claims

請求の範囲 The scope of the claims
[1] 複数の画素を有する液晶表示装置であって、  [1] A liquid crystal display device having a plurality of pixels,
前記複数の画素のそれぞれは、それぞれの液晶層に印加される電圧は互いに独 立に制御され得る複数の副画素を有し、  Each of the plurality of pixels has a plurality of subpixels in which voltages applied to the respective liquid crystal layers can be controlled independently of each other,
前記複数の副画素は、第 1副画素と、前記第 1副画素よりも面積が大きいか等しい 第 2副画素を有し、  The plurality of sub-pixels include a first sub-pixel and a second sub-pixel having an area larger than or equal to the first sub-pixel,
予め決められた第 1階調までは、表示すべき階調に応じた電圧を前記第 1副画素 の液晶層にのみ印加し、  Up to a predetermined first gradation, a voltage corresponding to the gradation to be displayed is applied only to the liquid crystal layer of the first subpixel,
前記第 1階調よりも高い予め決められた第 2階調以上の階調を表示すべきときに、 表示すべき階調に応じた電圧を少なくとも前記第 2副画素の液晶層に印加する、 液晶表示装置。  Applying a voltage corresponding to the gradation to be displayed to at least the liquid crystal layer of the second sub-pixel when displaying a gradation equal to or higher than a predetermined second gradation higher than the first gradation; Liquid crystal display device.
[2] 前記第 1副画素の面積は前記第 2副画素の面積よりも小さい、請求項 1に記載の液 晶表示装置。  [2] The liquid crystal display device according to [1], wherein an area of the first sub-pixel is smaller than an area of the second sub-pixel.
[3] 前記複数の副画素は、前記第 2副画素よりも面積が大きいか等しい第 3副画素をさ らに有し、  [3] The plurality of sub-pixels further include a third sub-pixel having a larger area than or equal to the second sub-pixel,
前記第 2階調よりも高い予め決められた第 3階調以上の階調を表示すべきときに、 表示すべき階調に応じた電圧を少なくとも前記第 3副画素の液晶層に印加する、請 求項 1または 2に記載の液晶表示装置。  Applying a voltage corresponding to the gradation to be displayed to at least the liquid crystal layer of the third sub-pixel when displaying a gradation equal to or higher than a predetermined third gradation higher than the second gradation; A liquid crystal display device according to claim 1 or 2.
[4] 前記第 1副画素の面積は前記第 3副画素の面積よりも小さい、請求項 3に記載の液 晶表示装置。 4. The liquid crystal display device according to claim 3, wherein an area of the first subpixel is smaller than an area of the third subpixel.
PCT/JP2007/055502 2006-03-20 2007-03-19 Liquid crystal display device WO2007108436A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-077041 2006-03-20
JP2006077041 2006-03-20

Publications (1)

Publication Number Publication Date
WO2007108436A1 true WO2007108436A1 (en) 2007-09-27

Family

ID=38522465

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/055502 WO2007108436A1 (en) 2006-03-20 2007-03-19 Liquid crystal display device

Country Status (1)

Country Link
WO (1) WO2007108436A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009122608A1 (en) * 2008-03-31 2009-10-08 シャープ株式会社 Active matrix board, liquid crystal panel, liquid crystal display device, liquid crystal display unit and television receiver
JP2009237266A (en) * 2008-03-27 2009-10-15 Sony Corp Liquid crystal display device
JP2010152320A (en) * 2008-12-24 2010-07-08 Samsung Electronics Co Ltd Liquid crystal display device and method of driving the same
JP2015079081A (en) * 2013-10-16 2015-04-23 シャープ株式会社 Liquid crystal display device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002328655A (en) * 2001-04-27 2002-11-15 Sanyo Electric Co Ltd Active matrix type display
JP2003337345A (en) * 2003-03-20 2003-11-28 Seiko Epson Corp Reflection type liquid crystal device and reflection type projector
JP2006276120A (en) * 2005-03-28 2006-10-12 Seiko Epson Corp Electrooptical apparatus, display control apparatus, display control method and display control program

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002328655A (en) * 2001-04-27 2002-11-15 Sanyo Electric Co Ltd Active matrix type display
JP2003337345A (en) * 2003-03-20 2003-11-28 Seiko Epson Corp Reflection type liquid crystal device and reflection type projector
JP2006276120A (en) * 2005-03-28 2006-10-12 Seiko Epson Corp Electrooptical apparatus, display control apparatus, display control method and display control program

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009237266A (en) * 2008-03-27 2009-10-15 Sony Corp Liquid crystal display device
US8334882B2 (en) 2008-03-27 2012-12-18 Sony Corporation Liquid crystal display apparatus
WO2009122608A1 (en) * 2008-03-31 2009-10-08 シャープ株式会社 Active matrix board, liquid crystal panel, liquid crystal display device, liquid crystal display unit and television receiver
JP2010152320A (en) * 2008-12-24 2010-07-08 Samsung Electronics Co Ltd Liquid crystal display device and method of driving the same
US8674922B2 (en) 2008-12-24 2014-03-18 Samsung Display Co., Ltd. Liquid crystal display and method of driving the same
US8810496B2 (en) 2008-12-24 2014-08-19 Samsung Display Co., Ltd. Liquid crystal display and method of driving the same
JP2015079081A (en) * 2013-10-16 2015-04-23 シャープ株式会社 Liquid crystal display device
WO2015056684A1 (en) * 2013-10-16 2015-04-23 シャープ株式会社 Lcd device

Similar Documents

Publication Publication Date Title
WO2019127668A1 (en) Liquid crystal display device
KR100624586B1 (en) Liquid crystal display device and electronic device
US7595781B2 (en) Liquid crystal display device
JP5335937B2 (en) Liquid crystal display
US20120223931A1 (en) Liquid crystal display device
WO2008056574A1 (en) Liquid crystal display device
WO2011145672A1 (en) Liquid crystal display device
US7876410B2 (en) Multi-domain vertically aligned liquid crystal display having a plurality of jagged and non-jagged slits
WO2011093387A1 (en) Liquid crystal display device
WO2019127669A1 (en) Display driving method and apparatus
WO2012090823A1 (en) Liquid crystal display device
JP2007156379A (en) Va type liquid crystal display device and pixel circuit thereof
JP2008268384A (en) Liquid crystal display
JP2009080197A (en) Liquid crystal display device
WO2007108436A1 (en) Liquid crystal display device
JP2014119757A (en) Display device
WO2019037291A1 (en) Method for driving liquid crystal display apparatus
JP2004318112A (en) Liquid crystal display and electronic equipment
WO2011024966A1 (en) Liquid crystal display
WO2012093621A1 (en) Liquid-crystal display device
WO2019037294A1 (en) Method for driving liquid crystal display apparatus
US8654288B2 (en) Method for manufacturing liquid crystal display device including forming alignment sustaining layers
Kim et al. New era for TFT‐LCD size and viewing‐angle performance
US20200243027A1 (en) Liquid Crystal Display Apparatus
WO2019037295A1 (en) Liquid crystal display apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07738947

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07738947

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP