WO2007108140A1 - Identification method and quantification method for protein sample using electrophoresis and mass spectrometry - Google Patents

Identification method and quantification method for protein sample using electrophoresis and mass spectrometry Download PDF

Info

Publication number
WO2007108140A1
WO2007108140A1 PCT/JP2006/306396 JP2006306396W WO2007108140A1 WO 2007108140 A1 WO2007108140 A1 WO 2007108140A1 JP 2006306396 W JP2006306396 W JP 2006306396W WO 2007108140 A1 WO2007108140 A1 WO 2007108140A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
protein
group
modifying
carrier
Prior art date
Application number
PCT/JP2006/306396
Other languages
French (fr)
Japanese (ja)
Inventor
Kumi Matsumoto
Iwao Ohtsu
Hiroyuki Fukuda
Shinichiro Kobayashi
Hiroki Kuyama
Chikako Toda
Eiichi Matsuo
Toshikazu Minohata
Osamu Nishimura
Original Assignee
Shimadzu Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corporation filed Critical Shimadzu Corporation
Priority to PCT/JP2006/306396 priority Critical patent/WO2007108140A1/en
Publication of WO2007108140A1 publication Critical patent/WO2007108140A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44704Details; Accessories
    • G01N27/44717Arrangements for investigating the separated zones, e.g. localising zones
    • G01N27/44739Collecting the separated zones, e.g. blotting to a membrane or punching of gel spots

Definitions

  • the present invention relates to proteomics, that is, a comprehensive analysis method of proteins. More specifically, the present invention relates to a method for identification and quantification of protein using electrophoresis and mass spectrometry using electrophoresis and mass spectrometry.
  • 2005-189104 describes a method of concentrating and separating a protein peptide modified with an NBS reagent using a carrier having a phenyl group.
  • a peptide modified with an NBS reagent is designated as ⁇ -cyan-3-hydroxygay cinnamate, 3-hydroxy-4-hydroxybenzoate, or 3-hydroxy-1 4 —A mixture of nitrobenzoic acid and ⁇ -cyano 4-hydroxygaynamic acid is used as a matrix and measured using a MALD I mass spectrometer to efficiently detect peptides modified with NBS reagent .
  • NBS-labeled peptides that is, NBS group-containing peptides
  • NBS reagent modifies tributophane residues that are abundant in proteins
  • peptides in MS samples will be labeled with NBS-unlabeled peptides (ie, NBS Group-free peptides).
  • NBS Group-free peptides A large amount of NBS group-free peptide causes ion subsidence for the NBS group-containing peptide to be detected by mass spectrometry. For this reason, the detection efficiency of a NB S group containing peptide worsens.
  • an object of the present invention is to provide a proteome analysis method using an electrophoresis method, which enables differential display with a single gel. is there. Furthermore, a further object of the present invention is to provide a proteome analysis method using an electrophoresis method, which provides a quantitative reliability and sensitivity.
  • the present inventor has found that the object of the present invention can be achieved by removing the NBS group-free peptide and concentrating the NBS group-containing peptide. Furthermore, the present inventor has found that the object of the present invention and the further object can be achieved by using a matrix more suitable for detection of NBS group-containing peptides by mass spectrometry. Based on these findings, the present invention has been completed.
  • the present invention includes the following inventions.
  • the following (1) to (5) are directed to methods for identifying and quantifying protein samples.
  • the following (6) is directed to a separation device that can be usefully used in the methods (1) to (5).
  • the following (7) is directed to a kit that can be usefully used in the methods (1) to (5).
  • a desired protein spot is cut out from the plurality of protein spots, the cut out protein spot is fragmented in the gel, and the peptide fragment containing the modifying group and other peptide fragments are concentrated. Obtaining a mixed sample for separation;
  • a method for identifying and quantifying protein samples comprising:
  • the term “protein” is used to include a peptide having a relatively small molecular weight.
  • step (i) two types of protein samples are prepared in step (i), and the two types of protein samples are separately prepared using two types of modifying reagents that differ only in the isotopic composition in step (ii).
  • Modified ie, isotope-labeled one of the protein samples by the isotope labeling method
  • step (iii) electrophoresed in step (iV)
  • step (vii) fragmentation in the gel was performed, and in step (vi) the modified peptide Is concentrated and separated, and mass spectrometry is performed in step (vii).
  • step (ii) a compound having an aryl group is used as a modifying reagent, and the modified protein into which the aryl group is introduced as a modifying group and the modified protein 1 are obtained.
  • step (vi) The method for identifying and quantifying a protein sample according to (1), wherein a carrier having an aryl group is used as a carrier having a structure capable of interacting with the modifying group.
  • the compound having an aryl group as the modifying reagent is 2-nitro [ 13 C 6 ] benzenesulfuryl chloride and 2-nitro [ 12 C 6 ] benzenesulfuryl chloride.
  • a tip for concentration and separation in which a pipette tip is filled or fixed with a carrier having a phenyl group.
  • a proteome analysis method using electrophoresis which enables a differential display with a single gel. Furthermore, according to the present invention, there is provided a proteome analysis method using an electrophoresis method, and an analysis method with high reliability and sensitivity of quantification.
  • Figure 1 shows the results obtained by subjecting sample 1 obtained by electrophoresis and in-gel digestion to a protein sample labeled with an isotope labeling method using NBS reagent, and desalting purification using Ziptip. This is the MA LD I—TOF MS spectrum of the sample for mass spectrometry.
  • Figure 2 shows a sample sample obtained by electrophoresis and in-gel digestion of a protein sample labeled by the isotope labeling method using NBS reagent.
  • 2 is a MA LD I-TOF MS spectrum of a sample for mass spectrometry obtained by concentrating and separating an NBS group-containing peptide fragment by ⁇ .
  • Figure 3 shows protein samples labeled with the isotope labeling method using NBS reagent.
  • the sample is obtained using the MA LD I-TOF MS spectrum of the sample for mass spectrometry obtained by desalting and purification using Ziptip on sample 2 obtained by electrophoresis and in-gel digestion.
  • Figure 4 shows sample 2 obtained by electrophoresis and in-gel digestion of a protein sample labeled with an isotope labeling method using an NBS reagent. Desalting and purification using Ziptip and NBS group using Phenyltip 2 is a MALD I-TOF MS spectrum of a sample for mass spectrometry obtained by concentrating and separating a peptide fragment contained therein.
  • Figure 5 shows Pheny's analysis of NBS group-containing peptide fragments by ip against sample 2 obtained by electrophoresis and in-gel digestion of a protein sample labeled by the isotope labeling method using NBS reagent. It is a MA LD I-TOF MSZMS spectrum of the sample for mass spectrometry obtained by performing concentration separation.
  • Figure 6 is obtained by desalting and purifying Sample 3 obtained by electrophoresis and in-gel digestion of a protein sample labeled with an isotope labeling method using NBS reagent. This is a MA LD I-TO F MS spectrum of a sample for mass spectrometry.
  • Figure 7 shows sample 3 obtained by electrophoresis and in-gel digestion of a protein sample labeled by the isotope labeling method using NBS reagent, and desalted by Ziptip and NBS group by Phenyltip. It is a MALD I-TOF MS spectrum of a sample for mass spectrometry obtained by concentration separation of peptide fragments.
  • the present invention provides protein identification and quantification methods. Identification and quantification method of the present invention
  • the step (i) of preparing two kinds of protein samples two kinds of proteins are modified separately using a modification reagent that differs only in the isotopic composition (that is, one of the two isotopes is labeled by the isotope labeling method).
  • Labeling a protein sample) step (ii) mixing two modified protein samples (iii), performing electrophoresis (iv), performing gel fragmentation, and step (V)
  • one protein is a protein sample from one sample and the other protein is a protein sample from another sample; one protein is the protein sample to be analyzed and the other protein sample is When it is a control protein for said one protein; when one protein sample is a protein sample extracted from a pathologic sample and the other protein sample is a protein sample extracted from a normal sample, etc. .
  • the protein sample may be collected and / or extracted from an individual and then solubilized.
  • the solubilization method is not particularly limited.
  • a protein can be solubilized using a surfactant such as sodium dodecyl sulfate (SDS), urea, guanidine hydrochloride, etc. as a denaturing agent.
  • SDS sodium dodecyl sulfate
  • urea urea
  • guanidine hydrochloride etc.
  • concentration of denaturing agent is not particularly limited, so that protein samples can be solubilized and denatured.
  • a person skilled in the art may determine as appropriate in consideration of the type of sample and other conditions.
  • the reaction conditions may be appropriately determined by those skilled in the art in consideration of the modifying agent to be used regardless of normal temperature modification or heat modification.
  • one of the two proteins isotope-labeled by the so-called isotope labeling method.
  • an appropriate group is introduced as a modifying group into both of the two types of proteins so that the molecule to be detected in the present invention can be efficiently concentrated and separated in the subsequent step (vi).
  • a specific structure in the protein is used as the modification target.
  • the modifying reagent is particularly limited to a compound having a group capable of selectively modifying the specific structure and capable of interacting with the carrier used in the subsequent step (vi). It can be used without using it.
  • a triftophan residue in a protein may be used as a modified target.
  • the modifying reagent in the present invention uses a combination of two compounds having the same molecular structure but having different molecular weights by containing isotopes having different mass numbers.
  • compounds with higher molecular weights are used as heavy reagents, and reagents with lower molecular weights are used as light reagents.
  • a compound in which at least one element constituting the modifying reagent molecule is labeled with a stable isotope has the same structure, but the aforementioned element is a stable isotope. Use in combination with a compound labeled with another stable isotope.
  • the compound labeled with a stable isotope having a large mass number is used as a heavier reagent, and the other compound is used as a light reagent.
  • R represents an organic group
  • X represents a leaving group
  • R 2 -X 2 R 2 represents a substituted aralkyl group.
  • X 2 represents a leaving group
  • R 1 S or 1 R 2 is introduced as a modifying group into the protein.
  • the compound represented by the above general formula 1 that is, a sulfinyl compound, aryl sulfenyl halide in which in the above general formula 1 is substituted is a aryl group.
  • arylsulfenyl halide 2-nitrobenzenesulfenyl chloride (NBSG NBS reagent) is preferable.
  • NBSGI heavy 2-nitro [ 13 C 6 ] benzenesulfuryl chloride
  • Toro [ 12 C 6 ] benzenesulfuryl chloride (NBSGI light) is preferable to use in combination with Toro [ 12 C 6 ] benzenesulfuryl chloride (NBSGI light).
  • NBSCI heavy reagent and NBSCI light reagents both manufactured by Shimadzu Corporation 13 G NBS (R) Stable Isotope Label ing Kit - sold housed in N.
  • sulf-L nyl compounds as modifying reagents for tributophan residues in proteins and peptides are described in detail in International Publication No. 2004/002950 / Nflet.
  • benzyl halide is preferable.
  • examples of the benzyl halide include 2-hydroxy-5-nitrobenzyl bromide (2-hydroxy-5-nitrobenzyl bromide).
  • 2-hydroxy-5-nitrobenzylbutamide 2-hydroxy-5-nitro [ 13 C S ] benzyl bromide as a heavy reagent and 2-hydroxy-5- Nitro [ 12 C 6 ] benzylbutamide is preferably used in combination.
  • Heavy reagent light reagent As for the benzyl halide compound as a modification reagent for the tributophane residue in the protein 'peptide, see Horton, HR and Koshland, D.E, Jr. (1972), Modification of proteins with actibenzylyl amide, Methods in It is described in detail in ENZYM0L0GY, 25, 468-482, etc.
  • the modifying reagent is not limited to the compounds listed above, and a person skilled in the art appropriately selects a compound having the ability to modify a specific structure in the protein and is particularly limited as long as it is combined with a heavy reagent and a light reagent. Not.
  • the two modified protein samples I ′ and II ′ obtained by the above modification process are mixed together.
  • the mixed modified protein sample may be appropriately subjected to a treatment such as a reductive alkylation treatment.
  • the reductive alkylation treatment can be performed by a usual method.
  • this process may be performed in the following step (V) instead of being performed in this step.
  • the mixed sample for electrophoresis obtained in this step may use a normal buffer known to those skilled in the art, including Tris-HG, SDS, -mercaptoethanol, glycerol, and the like.
  • the electrophoresis sample obtained by the above process is subjected to electrophoresis.
  • electrophoretic movement a method known to those skilled in the art may be used.
  • isoelectric focusing SDS-polyacrylamide gel electrophoresis (SDS-PAGE), or
  • gel electrophoresis such as two-dimensional electrophoresis (2D-PAGE) combining them, it is developed into multiple protein spots.
  • the detection of the protein after the electrophoresis is preferably performed by Coomassie prioriant blue staining and fluorescence detection.
  • a desired protein spot is cut out from the plurality of protein spots obtained in the above process.
  • In-gel fragmentation is performed on the excised protein spots.
  • the fragmentation method may be enzymatic fragmentation or chemical fragmentation.
  • digestion using an enzyme such as trypsin is performed.
  • the desired protein cleaved is fragmented into a peptide fragment containing a modifying group and other peptide fragments.
  • an N B S reagent is used as a modifying reagent in the above-described step (U)
  • this step results in fragmentation into a peptide fragment having an N B S group and a peptide fragment having no N B S group.
  • the mixture of the thus obtained modifying group-containing peptide fragment and its ⁇ (ya's peptide fragment) is subjected to an appropriate treatment if necessary, and becomes a mixed sample for concentration and separation described later.
  • the treatment to be performed include reduction, alkylation, and desalting treatment, etc.
  • This desalting treatment can be performed using a desalting instrument such as Ziptip (manufactured by Millipore).
  • the modified group-containing peptide fragment is concentrated and separated from the obtained mixed sample for concentration and separation (mixture of modified group-containing peptide fragments and other peptide fragments).
  • concentration and separation step in the present invention is preferable because it enables highly efficient detection of a desired modified group-containing peptide fragment.
  • peptide fragments containing tributophane with a low content in the protein are efficiently concentrated and separated, so that the peptide fragments containing tributophane are detected with higher sensitivity by mass spectrometry than when they are not concentrated and separated. The For this reason, protein quantification is also improved.
  • the concentration / separation method it is preferable to use a separation instrument in which a small instrument such as a pipette tip is filled or fixed with a carrier.
  • a separation device in which a carrier is packed or fixed in a small device such as a pipette tip is very suitable for concentration separation on such a small sample scale.
  • a carrier used in the concentration separation a carrier having a group capable of interacting with the modifying group introduced in the modifying step (U) is used.
  • the interaction here is an action based on affinity such as van der Waals interaction, 7 ⁇ -7 ⁇ electron interaction, hydrophilic interaction and hydrophobic interaction.
  • the carrier having a group capable of interacting with the modifying group ODS, silica gel, cephadex, and the like may be used.
  • ODS organic compound
  • silica gel, cephadex, and the like may be used as the carrier having a group capable of interacting with the modifying group.
  • an ODS-based carrier is used from the viewpoint of workability in the production of the separation instrument.
  • a monolith type carrier with high decomposition performance as the ODS-based carrier.
  • the monolith type ODS column differs from the widely used packed column in that the framework on the 3D network and its voids (ie, the flow path) are integrated.
  • the carrier and the column are in the form of a body and do not require frit.
  • arylsulfenyl which is a preferred form of the compound represented by the above-described modification step (wherein i represents general formula 1: F ⁇ —S—X, represents an organic group and X represents a leaving group)
  • an R, 1 S— group (in this case is an aryl group) is introduced as a modifying group.
  • R 2 _X 2 (R 2 represents an aralkyl group, X 2 represents a leaving group), the R 2 — group is introduced as a modifying group
  • a ⁇ -electron group such as a modifying group having an aryl group.
  • a carrier having an aryl group is preferably used as the carrier, and a carrier having a phenyl group is preferable as the carrier having an aryl group, in which case the peptide fragment to be concentrated and separated from the carrier is used.
  • Phenyltip a separation device in which a carrier having a phenyl group is filled in a pipette tip
  • a Phenyltip Further details of Phenyltip will be described in “Concentration separation chip and kit containing it” described later.
  • a combination using an NBS reagent as a modifying reagent in the step (ii) and using a carrier having a phenyl group in the step (vi) is particularly preferable.
  • acetonitrile and 0.1% TFA aqueous solution may be used.
  • chemical species other than the modifying group-containing peptide can be positively removed.
  • the adsorbed modification group-containing peptide fragment is eluted with an appropriate solution and then subjected to an appropriate treatment as necessary to become a sample for the next mass spectrometry.
  • a matrix may be included in the sample for mass spectrometry. The matrix will be described in detail in step (vii) below.
  • the elution solution can be appropriately determined by those skilled in the art depending on the type of the modified modifying group-containing peptide fragment.
  • a hydrophobic group such as an NBS group
  • MALDI mass spectrometry is performed in the step (vii) described later
  • it may be eluted using a matrix solution described later.
  • the matrix (described later) preferably used in the present invention is very compatible with an NBS group-containing peptide, particularly when an NBS group is introduced as a modifying group. Therefore, elution with a preferred matrix solution improves workability for subsequent mass spectrometry measurements.
  • a desired peptide fragment can be eluted more efficiently. Note that, for example, a fractionation process is performed as an appropriate process performed as necessary.
  • the method for desalting can be carried out by methods known to those skilled in the art.
  • Examples of the method for performing fractionation include a method using a system using a reverse phase column and HPLC.
  • the sample for mass spectrometry obtained in the above step is subjected to mass spectrometry.
  • a MALDI mass spectrometer can be used for the measurement in this step.
  • a MALDI-T0F type mass spectrometer eg Shimadzu Corporation / Craitos AXIMA- GFR plus
  • a MAID ⁇ IT-T0F type mass spectrometer eg Shimadzu Corporation / Crates AXIMA-QIT
  • the matrix used for the sample for mass spectrometry is not particularly limited.
  • DHB (2,5-dihydroxybenzoic acid; 2, 5-dihydroxybenzoic acid)
  • 4-CHCA Hydrophilic 4-hydroxycinnamic acid; -cyano-4-hydroxycinnamic acid
  • 3-CHCA —cyano 3-hydroxy Cinnamic acid (a-cyano-3-hydroxycinnamic acid), 3H4NBA (3-hydroxy-4-nitrobenzoic acid), etc.
  • 4-GHGA should be used as the matrix.
  • a mixture of 3H4MBA and / or 3-GHGA and 4-GHGA may be used as a matrix.
  • 3-CHCA and 3H4MBA are preferably used when a hydrophobic ⁇ -electron group such as an NBS group is introduced into the protein in the step (i ⁇ ).
  • a mixed matrix obtained by mixing 3-GHGA or 3 ⁇ 4 ⁇ with 4-CHGA is particularly preferably used when a hydrophobic group such as an NBS group is introduced into a protein in the step (ii).
  • a hydrophobic group such as an NBS group
  • Such a mixed matrix is an excellent matrix having the above-mentioned specific ionization ability and self-decay suppression ability as well as high-sensitivity measurement ability. For this reason, the quantitative reliability of the method of the present invention is very high.
  • the compound used as a matrix can be appropriately determined by those skilled in the art for the purpose of being used as a matrix for mass spectrometry. For example, these compounds can be used as a solution having a concentration of 1 mg / mI to saturation.
  • aqueous solution of acetonitrile As a solvent used for the preparation of such a solution, it is preferable to use an aqueous solution of acetonitrile, an aqueous solution of trifluoroacetic acid (TFA), or an aqueous solution of acetonitrile-trifluoroacetic acid (TFA).
  • the concentration of the acetonitrile is not particularly limited, but 90% or less, preferably about 7 O v / v% can be used.
  • the concentration of TFA is not particularly limited, but it may be 1 ⁇ / ⁇ / 0 or less, preferably about 0.1 ⁇ / ⁇ %.
  • 1 mg / ml to saturated concentration for 4-CHGA preferably 5 to 8 mg / m I; 1 mg / m I to saturated for 3-CHGA concentration
  • the matrix solution is preferably used in a volume ratio of 1:10 to 10 : 1, more preferably 1 : 3 to 3: 1, for example, 1: 1.
  • such a matrix solution can be used for elution of the peptide fragment containing the modified group separated in the step (vi).
  • the use of such an elution solution means that the modifying group-containing peptide fragment to be eluted in the step (vi) 7 ⁇ - ⁇ , which is thought to work with the matrix contained in the solution, has the advantage of efficient elution of the peptide fragment containing the modifying group due to the affinity resulting from electron interaction and hydrophobic interaction. is there.
  • the modification group-containing peptide is detected as a pair peak by MS measurement, and the protein can be quantified from the intensity ratio of two peaks constituting the pair peak.
  • protein identification may be performed by PMF analysis or MSZMS analysis.
  • identification may be performed by PMF analysis and quantification by MS analysis.
  • the sample after gel fragmentation is desalted using Ziptip to prepare a sample for mass spectrometry for identification by PMF analysis.
  • Samples for mass spectrometry can be prepared for quantification by MS analysis by concentrating and separating the modifying group-containing peptide fragments using Phenyltip or the like.
  • PMF solution For mass spectrometry samples for analysis, 4-CHCA is preferably used as the matrix.
  • the sample for mass spectrometry for MS analysis it is preferable to use a mixture of 3 H4 NBA and / or 3-0! To 10 and 4-01 "10 8 as a matrix.
  • Samples for mass spectrometry can be dropped on a single MS plate and used for mass spectrometry measurement, ie, this method requires the preparation of two types of mass spectrometry samples. Identification and quantification can be performed with this mass spectrometer.
  • identification and quantification are performed using two mass spectrometers
  • identification can be performed by MS / MS analysis and quantification can be performed by MS analysis.
  • 'Pheny can concentrate and separate the modifying group-containing peptide fragment using ip or the like on the sample after gel fragmentation to prepare a sample for mass spectrometry. Before the concentration and separation treatment, desalting treatment may be performed using Ziptip or the like. It is preferable to use a mixture of 3 H 4 NBA and / or 3-CH CA and 4-CH CA as a matrix for the sample for mass spectrometry.
  • the prepared sample for mass spectrometry can be used for MS measurement for quantification and MSZMS measurement for identification.
  • identification and quantification can be performed simply by preparing a single sample for mass spectrometry, and in an environment where not only an MS measurement mass spectrometer but also an MS ZMS measurement mass spectrometer can be used.
  • This is a very useful method.
  • it is possible to perform a differential display with a single gel.
  • the present invention can be said to be a very useful method.
  • the present invention also provides a chip for concentration and separation.
  • the concentration and separation chip of the present invention is an instrument that can be usefully used in the protein identification and quantification method of the present invention. More specifically, a chip for concentration and separation that is preferably used in the preferred form of the above-described protein identification and quantification method, that is, the form using the N B S reagent.
  • the instrument in which the carrier is filled or fixed is a pipette tip.
  • the material of the instrument include polypropylene resin, polyethylene resin, and fluororesin (such as PTEE, PTFE, and ET FE) that are used in commercially available pipette tips.
  • the dimensions of the device can be, for example, a volume of 5 to 1 000 L and a length of 3 to 5 cm, for example.
  • the carrier is as described in the above step ( ⁇ ) in the protein identification and quantification method of the present invention.
  • a particularly preferred form of the concentration and separation chip is one in which a carrier having a filter shape in which the surface of monolithic silica is modified with a phenyl group is fixed to a pipette chip.
  • the use conditions of concentration and separation chip of the present invention the temperature can be 15 to 40 ° C, P H 7 or less.
  • it is used by being attached to an apparatus having a pump function capable of sucking and discharging liquid, such as a micropipette, and is preferably used by being incorporated in an automation device.
  • an automation device it can be used for equipment such as Xcise (manufactured by Shimadzu Corporation).
  • suction and discharge can be performed through the carrier in the chip.
  • the elution solution can be sucked up and discharged through the carrier in the chip.
  • the present invention also provides a kit including the concentration and separation chip.
  • the kit of the present invention is a kit that can be usefully used in the identification and quantification method of the protein of the present invention. More specifically, the kit is preferably used in the preferred form of the above-described protein identification and quantification method, that is, in the form using the NBS reagent.
  • the NBS reagent ie, 2 -Nitro [ 13 C 6 ] benzenesulfuryl chloride and 2-nitro [ 12 C 6 ] benzenesulfuryl chloride are included as kit contents.
  • a TFA aqueous solution for example, about 1 V / V ⁇ 1 ⁇ 2
  • acetonitrile, or the like may be included in the kit contents.
  • the obtained sample for electrophoresis was subjected to two-dimensional electrophoresis. Specifically, IPG Ready strip (pH 5-8) gel is used (or pH 4-7 can be used), and isoelectric focusing is performed as the first dimension. SDS-PAGE was performed. After electrophoresis, G 250 staining was performed to detect protein spots.
  • Sample 1 is Pheny's sample that does not perform concentration separation by ip (Sample 1 1 a),
  • sample 1 a The sample was divided into the sample to be concentrated and separated by Phenyltip (Sample 1-b) and analyzed by the following method. [Sample 1 a]
  • Sample 1 a was desalted and purified using Ziptip. After that, MS was prepared using a matrix solution prepared with 4 mg CH CA (—Cyanol 4-hydroxycinnamic acid) in a concentration of 5 mgZm I in 0% acetonitrile — 0 ⁇ 1% TFA aqueous solution (v / v / v). The sample was eluted in a single volume and used as a sample for mass spectrometry. About this sample for mass spectrometry, MS measurement was performed with a MALDI-TO-F mass spectrometer (AXIMA-GFR, manufactured by Shimadzu Corporation), and PMF analysis was performed.
  • MALDI-TO-F MALDI-TO-F mass spectrometer
  • MA LDI -TO F MS scan Bae spectrum ( Figure 1) shows, on the one hand the peptide fragment having 13 CNBS group ions being barely detectable, from peptide fragments having the 13 CN BS group 1 6 Da and 32 Da mass numbers are also detected.
  • FIG. 1 in the range of m / z 2898-2952, ions of a peptide fragment having a 13 CNBS group, and ions having 16 Da and 32 Da mass numbers smaller than the fragment are detected. It is enlarged and displayed separately. These ions with lower mass numbers are generated by the loss of one or two nitro group oxygens in the peptide fragment with 13 CN BS groups, respectively.
  • “dividing one peak of a peptide fragment having a CNBS group into two peaks means an unfavorable result from the viewpoint of analysis sensitivity.
  • Sample 1-b was desalted and purified using Ziptip. After that, Phenyltip (filter type silica monolith is chemically bonded to phenyl group, and 10 ⁇ 1 volume pipette
  • Phenyltip filter type silica monolith is chemically bonded to phenyl group
  • 10 ⁇ 1 volume pipette The NBS group-containing peptide fragments were concentrated and separated using a fixed to a chip and obtained by custom order from Kyoto Monotech Co., Ltd. In concentrated separation, chemical species other than NBS group-containing peptide fragments are actively removed by desalting with 0.1% aqueous TFA (0.1% TFA) (v / v / v). did.
  • 4-CHCA (monocyan-4-hydroxycinnamic acid) was prepared at a concentration of 5 mgZm I in 70% acetonitrile and 0.1% TFA aqueous solution (v / v / v).
  • TFA aqueous solution
  • 3H4NBA 3-hydroxy-4-nitrobenzoic acid
  • FIG. 2 shows the obtained MALD I-T OF MS spectrum.
  • the range near m / z 2900-2960 where ions of peptide fragments having 13 CNBS groups are detected is shown separately enlarged.
  • the MA LDI-TO FMS spectrum in Fig. 2 the only peptide fragment ion with 13 CNBS groups was detected and generated from the peptide fragment as detected in Sample 1-a above.
  • One 16 Da and one 32 Da peaks were not detected. Therefore, it can be said that favorable results were obtained from the viewpoint of analysis sensitivity.
  • sample 1b since it is not necessary to perform PMF analysis on sample 1b, it was possible to perform highly sensitive analysis by using a mixed matrix.
  • a 13 CNBS group-containing peptide fragment having the sequence of KQYPIVSIEDGLDESDDGFAYQTKV (SEQ ID NO: 1) was detected as an NBS group-containing peptide fragment, but the score was 77, sample 1—a It was lower than the score.
  • the sample 1 a has a high identification score, but the analysis caused by the 16 Da and 32 Da fragments generated undesirably from the peptide fragments to be detected. The sensitivity was lowered.
  • Sample 2 is a sample that is not concentrated and separated by Phenyltip (Sample 2-a),
  • sample 2-b Then was divided into samples (sample 2-b and sample 2-c) to be concentrated and separated by Phenyltip and analyzed by the following method.
  • Sample 2—a was subjected to the same treatment as Sample 1—a.
  • Sample 2-b was subjected to the same treatment as sample 1-b.
  • Sample 2—c was treated in the same manner as Sample 1b above, except that desalting and purification using Z ⁇ pt ip was not performed.
  • Sample 3 is a sample that Pheny does not perform concentration separation with ip (Sample 3- a ),
  • the sample was divided into the sample to be concentrated and separated by Phenyltip (Sample 3-b) and analyzed by the following method.
  • Sample 3—a was subjected to the same treatment as Sample 1-a.
  • Sample 3—b was treated in the same way as Sample 1—b.
  • the EBS protein is the target of analysis, and the NBS reagent that has the ability to modify tributofan residues is used as a modification reagent for isotope labeling, and a phenyl group-containing carrier is used as a carrier for concentration and separation.
  • the present invention is also applicable to proteins other than E. coli, isotope labeling modifying reagents other than NBS reagents, and phenyl group-containing carriers.
  • the examples of these four samples are therefore merely illustrative in all respects and should not be interpreted in a limited way. Further, all modifications belonging to the equivalent scope of the claims are within the scope of the present invention.

Abstract

Disclosed is a method for the analysis of a proteome utilizing electrophoresis which enables the differential display on a single of gel. A method for identification or quantification of a protein sample comprising the steps of (i) providing two protein samples, (ii) modifying the two proteins separately using modification reagents which are only different from each other in the isotope composition, respectively (that is, labeling either of the two protein samples by the isotope labeling method), (iii) mixing the two modified protein samples together, (iv) performing electrophoresis, (v) performing in-gel fragmentation, (vi) concentrating and separating the modified peptides, and (vii) performing mass spectrometry of the resulting peptides.

Description

明 細 書 電気泳動法及び質量分析法を用いるタンパク質試料の同定及び定量法 技術分野  Description Identification and quantification of protein samples using electrophoresis and mass spectrometry Technical Field
本発明は、 プロテオミクスすなわちタンパク質の網羅的解析法に関する。 より 詳しくは、 本発明は、 電気泳動法及び質量分析法を用いるタンパク質試料の同定 及び定重法 (Method for Identification and Quantification of Protein Using Electrophoresis and Mass Spectrometry) に関する。  The present invention relates to proteomics, that is, a comprehensive analysis method of proteins. More specifically, the present invention relates to a method for identification and quantification of protein using electrophoresis and mass spectrometry using electrophoresis and mass spectrometry.
背景技術 Background art
現在のプロテオミクス (タンパク質の網羅的解析) には、 1 ) 二次元電気泳動 法(2D-PAGE) と質量分析計(MALD卜 T0F/MS) とを併用した P M F解析法、及び 2) 二次元液体クロマトグラフィー (2D- HPLG) と質量分析計 (MALD卜 T0FT0F或いは ESI-MSMS) とを用いた解析法という、 2つの大きな流れがある。 上記 1 ) の角?析法においては、 Ettan-DIGE (Deference Gel Electrophoresis) 法が 2D-PAGEの再現性の問題を解決し、 蛍光量の相対比から発現量を決めること が容易になった。 この方法は、 発現比較が視覚化できるところに利点がある。 上記 2) の解析法においては、 質量分析の感度と微量サンプルに適した分離装 置の組み合わせで高感度化が測られている上に、 数々の手法が導入されている。 ゲルを用いない定量的プロテオームの手法として、 安定同位体標識法を利用する 方法がいくつか知られている。 安定同位体標識法としては、 1602Z1802法、 I C A T法、 i T R A Q法、 ニトロベンゼンスルフエニルクロリ ド (N B S試薬) を 用いた N B S法などが挙げられる。 N B S法に関しては、国際公報第 2004/002950 パンフレツトなどに詳述されている。 日本国特開 2005-189104号公報には、 N B S試薬で修飾されたタンパク質 'ぺ プチドを、フエ二ル基を有する担体を用いて濃縮分離する方法が記載されている。 日本国特開 2005-326391号公報においては、 N B S試薬で修飾されたぺプチド を、 α—シァノ一3—ヒドロキシゲイ皮酸、 3—ヒドロキシ一 4一二トロ安息香 酸、 或いは 3—ヒドロキシ一 4—ニトロ安息香酸と α—シァノー 4ーヒドロキシ ゲイ皮酸との混合物をマトリックスに用いて、 MALD I 型質量分析装置を用いて測 定し、 N B S試薬で修飾されたぺプチドを効率よく検出している。 Current proteomics (comprehensive analysis of proteins) includes 1) two-dimensional electrophoresis (2D-PAGE) and mass spectrometry (MALD 卜 T0F / MS) PMF analysis, and 2) two-dimensional liquids There are two major flows: analysis using chromatography (2D-HPLG) and mass spectrometry (MALDMAL T0FT0F or ESI-MSMS). The corner of 1) above? In the analysis method, Ettan-DIGE (Deference Gel Electrophoresis) method solved the reproducibility problem of 2D-PAGE, and it became easy to determine the expression level from the relative ratio of fluorescence. This method has the advantage that expression comparison can be visualized. In the analysis method of 2) above, high sensitivity is measured by combining the sensitivity of mass spectrometry and a separation device suitable for a small amount of sample, and various methods are introduced. Several methods using stable isotope labeling are known as quantitative proteome methods that do not use gels. As stable isotope labeling methods, 16 0 2 Z 18 0 2 method, IC Examples include AT method, iTRAQ method, NBS method using nitrobenzenesulfenyl chloride (NBS reagent). The NBS method is described in detail in International Publication No. 2004/002950 Pamphlet. Japanese Patent Application Laid-Open No. 2005-189104 describes a method of concentrating and separating a protein peptide modified with an NBS reagent using a carrier having a phenyl group. In Japanese Patent Application Laid-Open No. 2005-326391, a peptide modified with an NBS reagent is designated as α-cyan-3-hydroxygay cinnamate, 3-hydroxy-4-hydroxybenzoate, or 3-hydroxy-1 4 —A mixture of nitrobenzoic acid and α-cyano 4-hydroxygaynamic acid is used as a matrix and measured using a MALD I mass spectrometer to efficiently detect peptides modified with NBS reagent .
日本国特開 2006-010672公報には、 N B S試薬で修飾されたペプチドと、 それ 以外の物質とを含む混合サンプルを、 ニトロベンゼン誘導体、 或いはニトロベン ゼン誘導体と ーシァノー 4—ヒドロキシゲイ皮酸との混合物をマトリックスに 用いて、 MALDI 型質量分析装置を用いて測定し、 混合サンプルから N B S試薬で 修飾されたペプチドを選択的に検出している。 一方、 最近では、 日本ヒ トプロテオーム機構第 3回大会 (The 3rd JHUP0 Conference)要旨集 55頁において、 N B S試薬によって修飾されたタンパク質を、 2D-PAGEによって分離したことが報告された。  In Japanese Unexamined Patent Publication No. 2006-010672, a mixed sample containing a peptide modified with an NBS reagent and a substance other than that is mixed with a nitrobenzene derivative, or a mixture of a nitrobenzene derivative and a cyano 4-hydroxygaynamic acid. It is used as a matrix, measured using a MALDI mass spectrometer, and peptides modified with NBS reagent are selectively detected from the mixed sample. On the other hand, recently, in the 55th edition of The 3rd JHUP0 Conference, it was reported that proteins modified with NBS reagent were separated by 2D-PAGE.
発明の開示 Disclosure of the invention
発明の目的 Object of the invention
N B S試薬によって修飾タンパク質を、 2D- PAGE によって分離した方法による と、 PMF解析法によって同定されるタンパク質のうち約 50%のタンパク質に ついてしか定量解析を行うことができない。 また、 この方法では、 PMF解析と 定量解析とを同時に行う目的から、 マトリックスとして 4一 CHCA (α—シァ ノー 4ーヒドロキシ桂皮酸) が用いられている。 しかしながら、 質量分析の結果 は、 NBS基を有するフラグメント以外に、 当該フラグメントに由来するピーク (すなわち当該フラグメン卜に相当するピークより質量数が 32 D a、 或いは 1 6 D a小さいピークなど) が検出されるため、 解析感度が低い。 従って、 この方 法でトリブトファン残基を含むぺプチド断片の効率よい検出を行うことができな い。 この問題の原因の 1つとして、 ゲルベースの解析であるために、 NBSラベル 化ペプチド (すなわち N BS基含有ペプチド) の濃縮操作が行われないことが挙 【ナ'られる。 NBS試薬はタンパク質中の存在量の少ないトリブトファン残基を修 飾するため、 N BS基含有ペプチドの濃縮が行われないと、 MS測定用サンプル 中のペプチドは N BS非ラベル化ペプチド (すなわち N BS基不含ペプチド) が ほとんどを占める。 多量の NBS基不含ペプチドは、 質量分析で検出すべき NB S基含有ペプチドにとってイオンサブレッシヨンの原因となる。 このため、 NB S基含有ぺプチドの検出効率が悪くなる。 この問題の他の原因としては、 PMF法によって同定と解析との両方を行おう としているために、 N BS基含有べプチドの検出に不利なマトリックスが用いら れていることが挙げられる。 そこで本発明の目的は、 電気泳動法を用いるプロテオーム解析法であって、 1 枚のゲルでディファレンシャルディスプレイが可能となる方法を提供することに ある。 また、 本発明の更なる目的は、 電気泳動法を用いるプロテオーム解析法で あって、 定量の信頼性及び感度の高い解析法を提供することにある。 According to the method in which modified proteins are separated by 2D-PAGE using NBS reagent Thus, only about 50% of the proteins identified by the PMF analysis method can be quantitatively analyzed. Also, in this method, for the purpose of performing PMF analysis and quantitative analysis at the same time, 4-one CHCA (α-cyan 4-hydroxycinnamic acid) is used as a matrix. However, as a result of mass spectrometry, in addition to the fragment having an NBS group, a peak derived from the fragment (that is, a peak whose mass number is 32 Da or 16 Da smaller than the peak corresponding to the fragment) is detected. Analysis sensitivity is low. Therefore, this method cannot efficiently detect peptide fragments containing tributophan residues. One of the causes of this problem is that NBS-labeled peptides (that is, NBS group-containing peptides) cannot be concentrated because of gel-based analysis. Since NBS reagent modifies tributophane residues that are abundant in proteins, if NBS group-containing peptides are not concentrated, peptides in MS samples will be labeled with NBS-unlabeled peptides (ie, NBS Group-free peptides). A large amount of NBS group-free peptide causes ion subsidence for the NBS group-containing peptide to be detected by mass spectrometry. For this reason, the detection efficiency of a NB S group containing peptide worsens. Another cause of this problem is that a matrix that is unfavorable for the detection of peptides containing NBS groups is used because both identification and analysis are performed by the PMF method. Accordingly, an object of the present invention is to provide a proteome analysis method using an electrophoresis method, which enables differential display with a single gel. is there. Furthermore, a further object of the present invention is to provide a proteome analysis method using an electrophoresis method, which provides a quantitative reliability and sensitivity.
発明の概要 Summary of the Invention
本発明者は、 NBS基不含ぺプチドの除去及び NBS基含有べプチドの濃縮を 行うことによって、 上記本発明の目的が達成されることを見出した。 さらに本発 明者は、 NBS基含有ペプチドの質量分析による検出により適したマトリックス を用いることによって、 上記本発明の目的及び更なる目的が達成されることを見 出した。 これらの知見により、 本発明が完成されるに至った。 本発明には、 以下の発明が含まれる。 下記 (1) ~ (5) は、 タンパク質試料の同定及び定量を行う方法に向けられ る。 下記 (6) は、 (1 ) 〜 (5) の方法に有用に用いることができる分離器具に 向けられる。下記 (7) は、 (1) 〜 (5) の方法に有用に用いることができるキ ッ卜に向けられる。  The present inventor has found that the object of the present invention can be achieved by removing the NBS group-free peptide and concentrating the NBS group-containing peptide. Furthermore, the present inventor has found that the object of the present invention and the further object can be achieved by using a matrix more suitable for detection of NBS group-containing peptides by mass spectrometry. Based on these findings, the present invention has been completed. The present invention includes the following inventions. The following (1) to (5) are directed to methods for identifying and quantifying protein samples. The following (6) is directed to a separation device that can be usefully used in the methods (1) to (5). The following (7) is directed to a kit that can be usefully used in the methods (1) to (5).
(1) (!) タンパク質試料し 及び前記タンパク質試料 Iの対照となるタンパ ク質試料 IIを用意する工程と、 (1) (!) Preparing a protein sample and preparing a protein sample II as a control of the protein sample I;
(ii) 修飾試薬として、 互いに同じ分子構造を有し、 且つ互いに質量数の異な る同位体を含むことによって異なる分子量を有する 2種の化合物を用意し、 前記タンパク質試料 Iに対し、 前記 2種の化合物のうちいずれか一方の化合物 を用いて修飾を行い、 前記いずれか一方の化合物に由来する修飾基が導入された 修飾タンパク質試料 I' を得る一方、 前記タンパク質試料 I Iに対し、前記 2種の化合物のうちいずれか他方の化合物 を用いて修飾を行い、 前記他方の化合物に由来する修飾基が導入された修飾タン パク質試料 I を得る工程と、 (ii) preparing two kinds of compounds having different molecular weights by containing isotopes having the same molecular structure and different mass numbers as the modifying reagent, and for the protein sample I, the two kinds While modifying either one of the compounds to obtain a modified protein sample I ′ into which a modifying group derived from any one of the compounds is introduced, Modifying the protein sample II with one of the two compounds and obtaining a modified protein sample I into which a modifying group derived from the other compound is introduced;
( i i i )前記修飾タンパク質試料 と前記修飾タンパク質試料 I I ' とを混合し、 電気泳動用混合試料を得る工程と、  (ii) Mixing the modified protein sample and the modified protein sample I I ′ to obtain a mixed sample for electrophoresis;
( iv) 前記電気泳動用混合試料を電気泳動に供し、 複数のタンパク質スポット に展開する工程と、  (iv) subjecting the mixed sample for electrophoresis to electrophoresis and spreading the sample into a plurality of protein spots;
(V)前記複数のタンパク質スポッ卜から所望のタンパク質スポットを切り出し、 切り出されたタンパク質スポッ卜に対してゲル内断片化を行い、 修飾基含有ぺプ チド断片とその他のぺプチド断片とを含む濃縮分離用混合試料を得る工程と、 (V) A desired protein spot is cut out from the plurality of protein spots, the cut out protein spot is fragmented in the gel, and the peptide fragment containing the modifying group and other peptide fragments are concentrated. Obtaining a mixed sample for separation;
(v i ) 前記いずれか一方の化合物に由来する修飾基及び前記いずれか他方の化 合物に由来する修飾基と相互作用することができる構造を有する担体を用いて、 前記濃縮分離用混合試料から前記修飾基含有べプチド断片を濃縮分離し、 前記濃 縮分離された修飾基含有ぺプチド断片を含む質量分析用試料を得る工程と、 (vi i )前記質量分析用試料を、質量分析装置を用いて測定し、前記濃縮分離さ れた修飾基含有べプチド断片を同定及び定量する工程と、 (vi) Using the carrier having a structure capable of interacting with the modifying group derived from one of the compounds and the modifying group derived from the other compound, from the mixed sample for concentration and separation A step of concentrating and separating the modifying group-containing peptide fragment to obtain a sample for mass spectrometry containing the concentrated peptide fragment containing the modifying group; (vi i) Identifying and quantifying the concentrated and separated modified group-containing peptide fragment,
を含む、 タンパク質試料の同定及び定量法。 上記 (1 ) において、 タンパク質とは、 比較的分子量の小さいペプチドをも含 む意味で用いる。 A method for identifying and quantifying protein samples, comprising: In the above (1), the term “protein” is used to include a peptide having a relatively small molecular weight.
上記(1 )においては、工程(i )で 2種類のタンパク質試料を用意し、工程(i i ) で同位体組成のみが異なる 2種類の修飾試薬を用いて当該 2種類のタンパク質試 料を別々に修飾し (すなわち同位体標識法によりいずれか一方のタンパク質試料 を同位体標識し)、工程( i i i )で 2種類の修飾タンパク質試料を混合し、工程( i V) で電気泳動を行い、 工程 (V) でゲル内断片化を行い、 工程 (v i ) で修飾ペプチド を濃縮分離し、 工程 (vii) で質量分析を行う。 In (1) above, two types of protein samples are prepared in step (i), and the two types of protein samples are separately prepared using two types of modifying reagents that differ only in the isotopic composition in step (ii). Modified (ie, isotope-labeled one of the protein samples by the isotope labeling method), mixed the two kinds of modified protein samples in step (iii), electrophoresed in step (iV), In V) fragmentation in the gel was performed, and in step (vi) the modified peptide Is concentrated and separated, and mass spectrometry is performed in step (vii).
(2) 前記工程 (ii) において、 修飾試薬としてァリール基を有する化合物を 用い、 ァリール基が修飾基として導入された修飾タンパク質に 及び修飾タンパ ク質 1に を得て、前記工程 (vi) において、 前記修飾基と相互作用することがで きる構造を有する担体として、ァリール基を有する担体を用いる、 (1 )に記載の タンパク質試料の同定及び定量法。 (2) In the step (ii), a compound having an aryl group is used as a modifying reagent, and the modified protein into which the aryl group is introduced as a modifying group and the modified protein 1 are obtained. In the step (vi), The method for identifying and quantifying a protein sample according to (1), wherein a carrier having an aryl group is used as a carrier having a structure capable of interacting with the modifying group.
(3) 前記担体が有する前記ァリール基は、 フエニル基である、 (2) に記載の タンパク質試料の同定及び定量法。 (3) The protein sample identification and quantification method according to (2), wherein the aryl group of the carrier is a phenyl group.
(4) 前記修飾試薬としてのァリール基を有する化合物が、 2—二トロ [13C6] ベンゼンスルフエニルクロリド及び 2—二トロ [12C6] ベンゼンスルフエニルク ロリ ドである、 (2) 又は (3) に記載のタンパク質試料の同定及び定量法。 (4) The compound having an aryl group as the modifying reagent is 2-nitro [ 13 C 6 ] benzenesulfuryl chloride and 2-nitro [ 12 C 6 ] benzenesulfuryl chloride. 2) The protein sample identification and quantification method according to (3).
(5) 前記工程 (vi) において、 前記担体は、 ピペットチップに充填又は固定 されて用いられる、 (1 ) ~ (4)のいずれかに記載のタンパク質試料の同定及び 定量法。 (6) 前記工程 (vii) において、 マトリックスとして、 (5) The protein sample identification and quantification method according to any one of (1) to (4), wherein in the step (vi), the carrier is used by being filled or fixed in a pipette tip. (6) In the step (vii), as a matrix,
3—ヒドロキシ一 4一二トロ安息香酸 及び/又は 一シァノー 3—ヒドロキ シ桂皮酸と、  3-hydroxy-1,4,12-trobenzoic acid and / or mono-cyano 3-hydroxycinnamic acid,
一シァノ一4—ヒドロキシ桂皮酸と、  1-Ciano 1-hydroxycinnamic acid,
の混合物が用いられる、 (1 ) 〜 (5) のいずれかに記載のタンパク質試料の同定 及び定量法。 (7) ピペットチップにフエ二ル基を有する担体が充填又は固定された、 濃縮 分離用チップ。 The protein sample identification and quantification method according to any one of (1) to (5), wherein the mixture is used. (7) A tip for concentration and separation, in which a pipette tip is filled or fixed with a carrier having a phenyl group.
(8) ピぺットチップにフエ二ル基を有する担体が充填又は固定された濃縮分 離用チップと、 (8) A tip for concentration / separation in which a pipette tip is filled or fixed with a carrier having a phenyl group;
2—ニトロ [13C6] ベンゼンスルフエニルクロリ ド及び 2—二トロ [12C6] ベ ンゼンスルフエニルクロリ ドと、 2-nitro [13 C 6] benzene sulphates enyl chloride Li de and 2 two Toro [12 C 6] and base emissions Zen sulphates enyl chloride Li de,
を含むキット。 本発明によると、 電気泳動法を用いるプロテオーム解析法であって、 1枚のゲ ルでディファレンシャルディスプレイが可能となる方法が提供される。 さらに、 本発明によると、 電気泳動法を用いるプロテオーム解析法であって、 定量の信頼 性及び感度の高い解析法が提供される。 Including kit. According to the present invention, there is provided a proteome analysis method using electrophoresis, which enables a differential display with a single gel. Furthermore, according to the present invention, there is provided a proteome analysis method using an electrophoresis method, and an analysis method with high reliability and sensitivity of quantification.
図面の簡単な説明 Brief Description of Drawings
図 1は、 NBS試薬を用いた同位体標識法による標識を行ったタンパク質試 料を、電気泳動及びゲル内消化して得られた試料 1に対して、 Ziptipによる脱塩 精製を行って得られた質量分析用試料の、 MA LD I— TOF MSスぺクトルで ある。  Figure 1 shows the results obtained by subjecting sample 1 obtained by electrophoresis and in-gel digestion to a protein sample labeled with an isotope labeling method using NBS reagent, and desalting purification using Ziptip. This is the MA LD I—TOF MS spectrum of the sample for mass spectrometry.
図 2は、 N BS試薬を用いた同位体標識法による標識を行ったタンパク質試 料を、電気泳動及びゲル内消化して得られた試料 1に対して、 Ziptipによる脱塩 精製及び Phenyは 'ιρによる NBS基含有ペプチド断片の濃縮分離を行って得られ た質量分析用試料の、 MA LD I— TOF MSスペクトルである。  Figure 2 shows a sample sample obtained by electrophoresis and in-gel digestion of a protein sample labeled by the isotope labeling method using NBS reagent. 2 is a MA LD I-TOF MS spectrum of a sample for mass spectrometry obtained by concentrating and separating an NBS group-containing peptide fragment by ιρ.
図 3は、 NBS試薬を用いた同位体標識法による標識を行ったタンパク質試 料を、電気泳動及びゲル内消化して得られた試料 2に対して、 Ziptipによる脱塩 精製を行って得られた質量分析用試料の、 MA LD I— TOF MSスぺクトルで める。 Figure 3 shows protein samples labeled with the isotope labeling method using NBS reagent. The sample is obtained using the MA LD I-TOF MS spectrum of the sample for mass spectrometry obtained by desalting and purification using Ziptip on sample 2 obtained by electrophoresis and in-gel digestion.
図 4は、 N B S試薬を用いた同位体標識法による標識を行ったタンパク質試 料を、電気泳動及びゲル内消化して得られた試料 2に対して、 Ziptipによる脱塩 精製及び Phenyltipによる NBS基含有ペプチド断片の濃縮分離を行って得られ た質量分析用試料の、 MALD I—TOF MSスペクトルである。  Figure 4 shows sample 2 obtained by electrophoresis and in-gel digestion of a protein sample labeled with an isotope labeling method using an NBS reagent. Desalting and purification using Ziptip and NBS group using Phenyltip 2 is a MALD I-TOF MS spectrum of a sample for mass spectrometry obtained by concentrating and separating a peptide fragment contained therein.
図 5は、 N B S試薬を用いた同位体標識法による標識を行ったタンパク質試 料を、 電気泳動及びゲル内消化して得られた試料 2に対して、 Phenyは ipによる NBS基含有ペプチド断片の濃縮分離を行って得られた質量分析用試料の、 MA LD I—TOF MSZMSスペクトルである。  Figure 5 shows Pheny's analysis of NBS group-containing peptide fragments by ip against sample 2 obtained by electrophoresis and in-gel digestion of a protein sample labeled by the isotope labeling method using NBS reagent. It is a MA LD I-TOF MSZMS spectrum of the sample for mass spectrometry obtained by performing concentration separation.
図 6は、 N B S試薬を用いた同位体標識法による標識を行ったタンパク質試 料を、電気泳動及びゲル内消化して得られた試料 3に対して、 Ziptipによる脱塩 精製を行って得られた質量分析用試料の、 MA LD I -TO F MSスぺクトルで ある。  Figure 6 is obtained by desalting and purifying Sample 3 obtained by electrophoresis and in-gel digestion of a protein sample labeled with an isotope labeling method using NBS reagent. This is a MA LD I-TO F MS spectrum of a sample for mass spectrometry.
図 7は、 N B S試薬を用いた同位体標識法による標識を行ったタンパク質試 料を、電気泳動及びゲル内消化して得られた試料 3に対して、 Ziptipによる脱塩 精製及び Phenyltipによる NBS基含有ペプチド 片の濃縮分離を行って得られ た質量分析用試料の、 MALD I— TOF MSスペクトルである。  Figure 7 shows sample 3 obtained by electrophoresis and in-gel digestion of a protein sample labeled by the isotope labeling method using NBS reagent, and desalted by Ziptip and NBS group by Phenyltip. It is a MALD I-TOF MS spectrum of a sample for mass spectrometry obtained by concentration separation of peptide fragments.
発明を実施するための形態 BEST MODE FOR CARRYING OUT THE INVENTION
<タンパク質の同定及び定量法 > <Protein identification and quantification method>
本発明は、 タンパク質の同定及び定量法を提供する。 本発明の同定及び定量法 は、 2種類のタンパク質試料を用意する工程 (i ) と、 同位体組成のみが異なる修 飾試薬を用いて 2種のタンパク質を別々に修飾する (すなわち同位体標識法によ りいずれか一方のタンパク質試料を標識する) 工程 (i i ) と、 2種類の修飾タン パク質試料を混合する工程 (i i i ) と、 電気泳動を行う工程 (i v) と、 ゲル内断片 化を行い工程 (V) と、 修飾ペプチドを濃縮分離する工程 (v i ) と、 質量分析を行 う工程 (v i とを含む。 The present invention provides protein identification and quantification methods. Identification and quantification method of the present invention In the step (i) of preparing two kinds of protein samples, two kinds of proteins are modified separately using a modification reagent that differs only in the isotopic composition (that is, one of the two isotopes is labeled by the isotope labeling method). Labeling a protein sample) step (ii), mixing two modified protein samples (iii), performing electrophoresis (iv), performing gel fragmentation, and step (V) A step (vi) for concentrating and separating the modified peptide, and a step (vi) for performing mass spectrometry.
( i : タンパク質試料の準備) (i: Preparation of protein sample)
まず、 タンパク質の同定及び定量を行うべき 2種類のタンパク質試料を用意す る。 2種のタンパク質試料としては、 以下の関係にあるものを挙げることができ る。  First, prepare two types of protein samples for protein identification and quantification. Examples of the two kinds of protein samples include those having the following relationship.
例えば、 一方のタンパク質がある検体に由来するタンパク質試料であり、 他方 のタンパク質が別の検体に由来するタンパク質試料である場合;一方のタンパク 質が解析すべきタンパク質試料であり、 他方のタンパク質試料が前記一方のタン パク質に対する対照タンパク質である場合;一方のタンパク質試料が病態サンプ ルから抽出したタンパク質試料であり、 他方のタンパク質試料が正常サンプルか ら抽出したタンパク質試料である場合、 などが挙げられる。  For example, if one protein is a protein sample from one sample and the other protein is a protein sample from another sample; one protein is the protein sample to be analyzed and the other protein sample is When it is a control protein for said one protein; when one protein sample is a protein sample extracted from a pathologic sample and the other protein sample is a protein sample extracted from a normal sample, etc. .
本発明に供する 2種のタンパク質は、 後の質量分析において解析を行いやすい ように、 互いに同じ量を用意することが好ましい。 タンパク質試料は個体から採取及び/又は抽出された後、可溶化処理が行われた ものであっても良い。 可溶化の方法としては、 特に限定されない。 例えば、 変性 剤として、 ドデシル硫酸ナトリウム (S D S ) などの界面活性剤、 尿素、 グァニ ジン塩酸塩などを用いてタンパク質を可溶化することができる。 変性剤の濃度は 特に限定されず、 タンパク質試料の可溶化及び変性が起こるように、 タンパク質 試料の種類やその他の条件等を考慮して当業者が適宜決定すればよい。 反応条件 についても、 常温変性及び熱変性を問わず、 使用する変性剤を考慮して当業者が 適宜決定すればよい。 It is preferable to prepare the same amount of the two types of proteins used in the present invention so as to facilitate analysis in later mass spectrometry. The protein sample may be collected and / or extracted from an individual and then solubilized. The solubilization method is not particularly limited. For example, a protein can be solubilized using a surfactant such as sodium dodecyl sulfate (SDS), urea, guanidine hydrochloride, etc. as a denaturing agent. The concentration of denaturing agent is not particularly limited, so that protein samples can be solubilized and denatured. A person skilled in the art may determine as appropriate in consideration of the type of sample and other conditions. The reaction conditions may be appropriately determined by those skilled in the art in consideration of the modifying agent to be used regardless of normal temperature modification or heat modification.
( i i ) タンパク質試料の修飾 (i i) Modification of protein sample
本工程では、 いわゆる同位体標識法により、 2種類のタンパク質のいずれか一 方を同位体標識する。 この際、 本発明で検出すべき分子を後の工程 (vi ) で効率 よく濃縮分離できるように、 2種類の ンパク質の両方に、 適当な基が修飾基と して導入される。 本工程では、 タンパク質中の特定の構造を修飾ターゲットとする。 そして、 修 飾試薬としては、 当該特定の構造への選択的修飾能を有し、且つ、後の工程(v i ) で用いられる担体と相互作用することが可能な基を有する化合物を、 特に限定す ることなく用いることができる。 本発明においては、 たとえば、 タンパク質中の トリブトファン残基を修飾ターゲッ卜とすると良い。 なおかつ、 本発明における修飾試薬は、 互いに分子構造は同じであるが、 互い に質量数の異なる同位体を含むことによって分子量が異なる 2種の化合物を組み 合わせて用いる。 このうち、 分子量が大きい化合物を重い試薬とし、 分子量が小 さい試薬を軽い試薬とする。 より具体的にいうと、 修飾試薬分子を構成する少な くとも 1種類の元素が安定同位体で標識された化合物と、 それとは同一構造であ るが、 前述の元素が前記安定同位体とは別の安定同位体で標識された化合物とを 組み合わせて用いる。 そして、 質量数の大きい安定同位体で標識された化合物の 方を重い試薬として、 他方の化合物を軽い試薬として用いる。 なお、 安定同位体で標識される元素は複数であっても良い。 具体的には、 タンパク質試料 I及び IIを用意した場合は、 タンパク質試料 Iを重 い試薬及び軽い試薬のうちいずれか一方で修飾し、修飾タンパク質試料 を得て、 タンパク質試料 IIを重い試薬及び軽い試薬のうちいずれか他方で修飾し、 修飾タ ンパク質 II' を得る。 トリブトファン残基を修飾ターゲットとする場合、 修飾試薬としては、 一般式In this process, one of the two proteins isotope-labeled by the so-called isotope labeling method. At this time, an appropriate group is introduced as a modifying group into both of the two types of proteins so that the molecule to be detected in the present invention can be efficiently concentrated and separated in the subsequent step (vi). In this step, a specific structure in the protein is used as the modification target. The modifying reagent is particularly limited to a compound having a group capable of selectively modifying the specific structure and capable of interacting with the carrier used in the subsequent step (vi). It can be used without using it. In the present invention, for example, a triftophan residue in a protein may be used as a modified target. In addition, the modifying reagent in the present invention uses a combination of two compounds having the same molecular structure but having different molecular weights by containing isotopes having different mass numbers. Of these, compounds with higher molecular weights are used as heavy reagents, and reagents with lower molecular weights are used as light reagents. More specifically, a compound in which at least one element constituting the modifying reagent molecule is labeled with a stable isotope has the same structure, but the aforementioned element is a stable isotope. Use in combination with a compound labeled with another stable isotope. Then, the compound labeled with a stable isotope having a large mass number is used as a heavier reagent, and the other compound is used as a light reagent. There may be a plurality of elements labeled with stable isotopes. Specifically, when protein samples I and II are prepared, protein sample I is modified with one of a heavy reagent and a light reagent to obtain a modified protein sample, and protein sample II is prepared with a heavy reagent and a light reagent. Modify with either one of the reagents to obtain modified protein II '. When a tribtophan residue is used as a modification target,
1 : (R,は有機基を表し、 X は脱離基を表す) で表される構造を 有する化合物や、 一般式 2 : R2-X2 (R2は置換されてよぃァラルキル基を表 し、 X2は脱離基を表す) で表される構造を有する化合物などが挙げられる。 こ のような修飾試薬を用いることにより、タンパク質に修飾基 R 一 S一基や R 2一 基が修飾基として導入される。 上記一般式 1で表される化合物、 すなわちスルフ Iニル化合物としては、 上記 一般式 1における が置換されてよぃァリール基である、 ァリールスルフエ二 ルハライドが好ましい。 さらに、 ァリールスルフエニルハライドとしては、 2— ニトロベンゼンスルフエニルクロリ ド (2-nitrobenzenesulfenyl chloride; NBSG NBS試薬) が好ましい。 1: (R, represents an organic group, X represents a leaving group) or a compound represented by the general formula 2: R 2 -X 2 (R 2 represents a substituted aralkyl group. X 2 represents a leaving group), and the like. By using such a modifying reagent, one modifying group R 1 S or 1 R 2 is introduced as a modifying group into the protein. As the compound represented by the above general formula 1, that is, a sulfinyl compound, aryl sulfenyl halide in which in the above general formula 1 is substituted is a aryl group. Furthermore, as the arylsulfenyl halide, 2-nitrobenzenesulfenyl chloride (NBSG NBS reagent) is preferable.
2—ニトロベンゼンスルフエニルクロリ ドを用いる場合、下記式に示すように、 重い試薬としての 2—ニトロ [13C6] ベンゼンスルフエニルクロリ ド (NBSGI heavy)と、軽い試薬との 2—二トロ [12C6]ベンゼンスルフヱニルクロリ ド(NBSGI light) とを組み合わせて用いることが好ましい。 When 2-nitrobenzenesulfuryl chloride is used, as shown in the following formula, 2-nitro [ 13 C 6 ] benzenesulfuryl chloride (NBSGI heavy) as a heavy reagent and 2-2 It is preferable to use in combination with Toro [ 12 C 6 ] benzenesulfuryl chloride (NBSGI light).
NBSCI heavy試薬及び NBSCI light試薬は、ともに島津製作所製13 G NBS(R) Stable Isotope Label ing Kit - Nに収容されて販売されている。 トロベンゼンスルフエニルクロリ ド (NBSC I ) NBSCI heavy reagent and NBSCI light reagents, both manufactured by Shimadzu Corporation 13 G NBS (R) Stable Isotope Label ing Kit - sold housed in N. Trobenzenesulfenyl chloride (NBSC I)
Figure imgf000014_0001
Figure imgf000014_0001
重い試薬 軽い試薬 なお、 タンパク質 ·ペプチド中のトリブトファン残基に対する修飾試薬として のスルフ ;Lニル化合物については、国際公報第 2004/002950/ ンフレットなどに詳 述されている。 上記一般式 2で表される化合物としては、 ベンジルハライドが好ましい。 さら に、 ベンジルハライドとしては、 2—ヒドロキシー 5—ニトロベンジルブロミド (2 - hydroxy— 5 - n i trobenzy l brom i de) などが挙げられる。  Heavy reagents Light reagents In addition, sulf-L nyl compounds as modifying reagents for tributophan residues in proteins and peptides are described in detail in International Publication No. 2004/002950 / Nflet. As the compound represented by the general formula 2, benzyl halide is preferable. Furthermore, examples of the benzyl halide include 2-hydroxy-5-nitrobenzyl bromide (2-hydroxy-5-nitrobenzyl bromide).
2—ヒドロキシ一 5—ニトロベンジルブ口ミドを用いる場合、 下記式に示すよ うに、 重い試薬としての 2—ヒドロキシー 5—ニトロ [13 CS] ベンジルブロミド と、 軽い試薬としての 2—ヒドロキシー 5—二トロ [12 C6] ベンジルブ口ミドと を組み合わせて用いることが好ましい。 When 2-hydroxy-5-nitrobenzylbutamide is used, 2-hydroxy-5-nitro [ 13 C S ] benzyl bromide as a heavy reagent and 2-hydroxy-5- Nitro [ 12 C 6 ] benzylbutamide is preferably used in combination.
2—ヒドロキシー 5—二トロべンジルプロミ ド 2-Hydroxy-5-nitrobenzene
Figure imgf000014_0002
重い試薬 軽い試薬 なお、 タンパク質'ペプチド中のトリブトファン残基に対する修飾試薬として のべンジルハライド化合物については、 Horton, H. R. and Koshland, D. E, Jr. (1972) , Modification of proteins with acti e benzyl ha I ides, Methods in ENZYM0L0GY, 25, 468-482などに詳述されている。 修飾試薬としては、 上に挙げた化合物に限らず、 当業者によって、 タンパク質 中の特定の構造に対する修飾能を有する化合物が適宜選択され、 重い試薬と軽い 試薬と組み合わされたものであれば特に限定されない。
Figure imgf000014_0002
Heavy reagent light reagent As for the benzyl halide compound as a modification reagent for the tributophane residue in the protein 'peptide, see Horton, HR and Koshland, D.E, Jr. (1972), Modification of proteins with actibenzylyl amide, Methods in It is described in detail in ENZYM0L0GY, 25, 468-482, etc. The modifying reagent is not limited to the compounds listed above, and a person skilled in the art appropriately selects a compound having the ability to modify a specific structure in the protein and is particularly limited as long as it is combined with a heavy reagent and a light reagent. Not.
(iii :電気泳動用混合試料の調製) . (iii: Preparation of mixed sample for electrophoresis)
上記の修飾工程によって得られた 2種の修飾タンパク質試料 I' と II' とを互 いに混合する。 本工程において得られる電気泳動用混合試料においては、 混合さ れた修飾タンパク質試料が、 還元アルキル化処理などの処理が適宜行われたもの であって良い。 還元アルキル化処理は、 通常の方法によって行うことができる。 また、 当該処理は、本工程で行われるかわりに、後述の工程 (V) で行われても良 し、。 本工程で得られる電気泳動用混合試料には、 Tris-HGし S DS、 —メルカ ブトエタノール 、グリセロールなどを含む、当業者に公知の通常のバッファーが 用いられていて良い。  The two modified protein samples I ′ and II ′ obtained by the above modification process are mixed together. In the mixed sample for electrophoresis obtained in this step, the mixed modified protein sample may be appropriately subjected to a treatment such as a reductive alkylation treatment. The reductive alkylation treatment can be performed by a usual method. In addition, this process may be performed in the following step (V) instead of being performed in this step. The mixed sample for electrophoresis obtained in this step may use a normal buffer known to those skilled in the art, including Tris-HG, SDS, -mercaptoethanol, glycerol, and the like.
(iv:電気泳動) (iv: electrophoresis)
上記の工程によって得られた電気泳動用試料は、 電気泳動に供される。 電気泳 動の具体的方法としては、 当業者に公知の方法を用いればよい。 たとえば、 等電 点電気泳動法、 S D S—ポリアクリルアミドゲル電気泳動法(SDS- PAGE)、或いは それらを組み合わせた 2次元電気泳動法(2D-PAGE)などのゲル電気泳動を行うこ とによ y、複数のタンパク質スポッ卜に展開する。泳動後のタンパク質の検出は、 クーマシープリリアントブルー染色及び蛍光検出により行うと良い。 The electrophoresis sample obtained by the above process is subjected to electrophoresis. As a specific method of electrophoretic movement, a method known to those skilled in the art may be used. For example, isoelectric focusing, SDS-polyacrylamide gel electrophoresis (SDS-PAGE), or By performing gel electrophoresis such as two-dimensional electrophoresis (2D-PAGE) combining them, it is developed into multiple protein spots. The detection of the protein after the electrophoresis is preferably performed by Coomassie prioriant blue staining and fluorescence detection.
(V:ゲル内断片化) (V: gel fragmentation)
上記工程で得られた複数のタンパクスポッ卜から所望のタンパク質のスポッ卜 を切り出す。 切り出されたタンパク質スポットに対して、 ゲル内断片化を行う。 断片化方法としては酵素学的断片化及び化学的断片化を問わない。 好ましくは、 トリプシンなどの酵素を用いた消化を行う。 ゲル内断片化を行うことによって、, 切リ出された所望のタンパク質は、 修飾基含有べプチド断片とその他のぺプチド 断片とに断片化される。 例えば、 上述の工程 (U ) で N B S試薬を修飾試薬とし て用いた場合は、 本工程によって、 N B S基を有するぺプチド断片とN B S基を 有しないぺプチド断片とに断片化される。 このようにして得られた修飾基含有べプチド断片とその^ (也のぺプチド断片との 混合物は、必要に応じ適当な処理が行われ、後述の濃縮分離用の混合試料となる。 必要に応じ行われる処理としては、 例えば、 還元,アルキル化や脱塩処理などが 挙げられる。 この脱塩処理は、 Z i pti p (ミリポア社製) などの脱塩器具を用いて 行うことができる。  A desired protein spot is cut out from the plurality of protein spots obtained in the above process. In-gel fragmentation is performed on the excised protein spots. The fragmentation method may be enzymatic fragmentation or chemical fragmentation. Preferably, digestion using an enzyme such as trypsin is performed. By performing in-gel fragmentation, the desired protein cleaved is fragmented into a peptide fragment containing a modifying group and other peptide fragments. For example, when an N B S reagent is used as a modifying reagent in the above-described step (U), this step results in fragmentation into a peptide fragment having an N B S group and a peptide fragment having no N B S group. The mixture of the thus obtained modifying group-containing peptide fragment and its ^ (ya's peptide fragment) is subjected to an appropriate treatment if necessary, and becomes a mixed sample for concentration and separation described later. Examples of the treatment to be performed include reduction, alkylation, and desalting treatment, etc. This desalting treatment can be performed using a desalting instrument such as Ziptip (manufactured by Millipore).
(vi :濃縮分離) (vi: concentrated separation)
本工程では、 得られた濃縮分離用混合試料 (修飾基含有ペプチド断片とその 他のペプチド断片との混合物) から、 修飾基含有ペプチド断片を濃縮分離する。 本発明で濃縮分離工程を導入することは、 所望する修飾基含有ペプチド断片の 高効率の検出を可能にする点で好ましい。 具体的には、 タンパク質中の含有量が 少ないトリブトファンを含有するペプチド断片が効率よく濃縮分離されるため、 濃縮分離されなかった場合と比べ、 トリブトファン含有べプチド断片が質量分析 で高感度に検出される。 このため、 タンパク質の定量性も向上する。 濃縮分離方法としては、 ピぺットチップなどの小さい器具に担体を充填又は固 定した分離器具を用いることが好ましい。 本発明ではゲルベースで濃縮分離を行 うことから、 サンプルスケールが極めて小さい。 ピペットチップなどの小さい器 具に担体を充填又は固定した分離器具を用いることは、 このような微量のサンプ ルスケールでの濃縮分離に大変適している。 また、 そのような器具を用いると、 煩雑な操作が軽減できる点や、 自動化装置にも対応可能となる点で好ましい。 濃縮分離において用いられる担体は、 前記修飾工程 (U ) で導入された修飾基 と相互作用することができる基を有するものを用いる。ここでいう相互作用とは、 ファンデルワールス相互作用、 7Γ— 7Γ電子相互作用、 親水性相互作用及び疎水性 相互作用などの親和力に基づく作用である。 また、 修飾基と相互作用することができる基を有している担体としては、 O D S系、 シリカゲル系、 セフアデックス系などのものが使用されてよい。 本発明で は、 上述のように小さい規格の分離器具を用いるため、 分離器具の作製時におけ る作業性の観点から、 O D S系の担体が使用されていることが好ましし、。さらに、 O D S系の担体としては、 分解性能の高いモノリス型のものを用いることが好ま しい。モノリス型の O D Sカラムは、広く用いられている充填型カラムと異なり、 3次元ネットワーク上の骨格とその空隙 (すなわち流路) とが一体になつた構造 を有し、 担体とカラムとがー体型でフリットが不要である。 例えば、 前記修飾工程 (i において、 一般式 1 : F^— S— X, は有機 基を表し、 X は脱離基を表す) で表される化合物の好ましい形態であるァリ一 ルスルフエニルハライドを用いると、修飾基として R,一 S—基 (この場合の はァリール基〉が導入される。また、前記修飾工程(ii) において、 R2_X2 (R 2はァラルキル基を表し、 X2は脱離基を表す) で表される化合物を用いると、修 飾基として R2—基が導入される。 ァリール基を有する修飾基のように、 π電子 性基が導入される場合は、 本工程で用いる担体としては、 ァリール基を有するも のを用いると良い。 ァリール基を有する担体としては、 フエ二ル基を有する担体 が好ましい。 この場合、 担体と濃縮分離すべきペプチド断片との間に働く、 7Γ— π電子相互作用、 さらには疎水性相互作用に起因する固有の選択性によって、 特 異的濃縮分離が実現する。 フエ二ル基を有する担体としては、 Hi- Trap phenyl FF、 Hi-Trap phenyl HP、 Phenyl Sepharose 6 Fast Flow、 Phenyl Sepharose Hi h Performance^ (以上、 アマシャムバイオサイエンス社製)、 YMC*GEL Ph (ヮイエムシィ社製) などのフエ 二ルカラムに用いられている担体が挙げられる。 In this step, the modified group-containing peptide fragment is concentrated and separated from the obtained mixed sample for concentration and separation (mixture of modified group-containing peptide fragments and other peptide fragments). Introducing a concentration / separation step in the present invention is preferable because it enables highly efficient detection of a desired modified group-containing peptide fragment. Specifically, peptide fragments containing tributophane with a low content in the protein are efficiently concentrated and separated, so that the peptide fragments containing tributophane are detected with higher sensitivity by mass spectrometry than when they are not concentrated and separated. The For this reason, protein quantification is also improved. As the concentration / separation method, it is preferable to use a separation instrument in which a small instrument such as a pipette tip is filled or fixed with a carrier. In the present invention, since the gel-based concentration separation is performed, the sample scale is extremely small. Using a separation device in which a carrier is packed or fixed in a small device such as a pipette tip is very suitable for concentration separation on such a small sample scale. Moreover, it is preferable to use such an instrument because it can reduce complicated operations and can be applied to an automated apparatus. As the carrier used in the concentration separation, a carrier having a group capable of interacting with the modifying group introduced in the modifying step (U) is used. The interaction here is an action based on affinity such as van der Waals interaction, 7Γ-7Γ electron interaction, hydrophilic interaction and hydrophobic interaction. In addition, as the carrier having a group capable of interacting with the modifying group, ODS, silica gel, cephadex, and the like may be used. In the present invention, as described above, since a separation instrument having a small standard is used, it is preferable that an ODS-based carrier is used from the viewpoint of workability in the production of the separation instrument. Furthermore, it is preferable to use a monolith type carrier with high decomposition performance as the ODS-based carrier. The monolith type ODS column differs from the widely used packed column in that the framework on the 3D network and its voids (ie, the flow path) are integrated. The carrier and the column are in the form of a body and do not require frit. For example, arylsulfenyl which is a preferred form of the compound represented by the above-described modification step (wherein i represents general formula 1: F ^ —S—X, represents an organic group and X represents a leaving group) When a halide is used, an R, 1 S— group (in this case is an aryl group) is introduced as a modifying group. In the modification step (ii), R 2 _X 2 (R 2 represents an aralkyl group, X 2 represents a leaving group), the R 2 — group is introduced as a modifying group When a π-electron group is introduced, such as a modifying group having an aryl group. In this step, a carrier having an aryl group is preferably used as the carrier, and a carrier having a phenyl group is preferable as the carrier having an aryl group, in which case the peptide fragment to be concentrated and separated from the carrier is used. 7Γ- π-electron interaction, and sparse Specific selectivity due to aqueous interaction enables specific enrichment separation Hi-trap phenyl FF, Hi-Trap phenyl HP, Phenyl Sepharose 6 Fast Flow, Phenyl Sepharose Hi h Performance ^ (above, manufactured by Amersham Biosciences), YMC * GEL Ph (manufactured by YMC Co., Ltd.), and other carriers used in the vinyl column.
なお、 本明細書においては、 フエ二ル基を有する担体がピペットチップに充填 された分離器具を、 Phenyltip (フエニルチップ)と呼称する場合がある。 Phenyltip の更なる詳細については、 後述の 「濃縮分離用チップ及びそれを含むキット」 に おいて記載する。 本発明においては、 前記工程 (ii) で修飾試薬として NBS試薬を用い、 本ェ 程 (vi) でフエ二ル基を有する担体を用いる組み合わせが特に好ましい。 この場 合、 NBS修飾基を有するぺプチドにおけるトリプ卜ファンのインドール基及び ニトロフ; c二ルチオ基が有する 7Γ電子と、 担体におけるフェニル基が有する π電 子との相互作用によって、 担体は NBS修飾べプチドに対して優れた保持能力を 発揮する。 このような担体を用いて、 ペプチド断片混合物から、 修飾基を有する所望のぺ プチド断片のみを吸着させる。 その後、 ァセトニトリル一 T F Α (トリフルォロ 酢酸) 混合水溶液などを甩いて、 脱塩処理を行うことが好ましい。 この混合溶液 においては、 ァセトニトリルの濃度は 5〜25体積%程度とすることが良い。 よ リ具体的には、 1 5%ァセトニトリル一 0. 1 %T F A水溶液(v/v/v) とすると 良い。 このような脱塩処理を行うことによって、 修飾基含有ペプチド以外の化学 種を積極的に除去することができる。 吸着した修飾基含有ペプチド断片は、 適当な溶液で溶出された後、 必要に応じ 適当な処理が行われ、 次の質量分析用の試料となる。 後述の質量分析工程 (vii) で MALDI質量分析を行う場合は、 質量分析用試料にはマトリックスを含ませて良 し、。 マトリックスについては、 後述の工程 (vii) で詳述する。 すなわち、 溶出用の溶液としては、 分離された修飾基含有ペプチド断片の種類 によって当業者が適宜决定することができる。 例えば、 上記工程 (ii) で NBS 基などの疎水性基を修飾基として導入し、後述の工程(vii) で MALDI質量分析を 行う場合は、 後述するマトリックス溶液を用いて溶出すると良い。 本発明で好ま しく用いられるマトリックス (後述) は、 特に NBS基を修飾基として導入した 場合に、 NBS基含有ペプチドと非常に相性が良い。 従って、 好ましいマトリツ クス溶液を用いた溶出は、 引き続き行われる質量分析測定への作業性がよくなる ばかりでなく、所望のぺプチド断片をより効率よく溶出できるという利点がある。 なお、 必要に応じて行われる適当な処理として、 例えば、 分画処理などが行わ れる。 In the present specification, a separation device in which a carrier having a phenyl group is filled in a pipette tip may be referred to as a Phenyltip. Further details of Phenyltip will be described in “Concentration separation chip and kit containing it” described later. In the present invention, a combination using an NBS reagent as a modifying reagent in the step (ii) and using a carrier having a phenyl group in the step (vi) is particularly preferable. This place The NBS-modified peptide in the NBS-modified peptide due to the interaction of the 7Γ electron of the triphphane in the peptide with the NBS-modified group and the π-electron of the phenyl group in the carrier. Exhibits excellent holding ability against Using such a carrier, only the desired peptide fragment having a modifying group is adsorbed from the peptide fragment mixture. Thereafter, desalting treatment is preferably performed using a mixed aqueous solution of acetonitrile and TFTF (trifluoroacetic acid). In this mixed solution, the concentration of acetonitrile is preferably about 5 to 25% by volume. More specifically, 15% acetonitrile and 0.1% TFA aqueous solution (v / v / v) may be used. By performing such a desalting treatment, chemical species other than the modifying group-containing peptide can be positively removed. The adsorbed modification group-containing peptide fragment is eluted with an appropriate solution and then subjected to an appropriate treatment as necessary to become a sample for the next mass spectrometry. When performing MALDI mass spectrometry in the mass spectrometry step (vii) described later, a matrix may be included in the sample for mass spectrometry. The matrix will be described in detail in step (vii) below. That is, the elution solution can be appropriately determined by those skilled in the art depending on the type of the modified modifying group-containing peptide fragment. For example, when a hydrophobic group such as an NBS group is introduced as a modifying group in the step (ii) and MALDI mass spectrometry is performed in the step (vii) described later, it may be eluted using a matrix solution described later. The matrix (described later) preferably used in the present invention is very compatible with an NBS group-containing peptide, particularly when an NBS group is introduced as a modifying group. Therefore, elution with a preferred matrix solution improves workability for subsequent mass spectrometry measurements. In addition, there is an advantage that a desired peptide fragment can be eluted more efficiently. Note that, for example, a fractionation process is performed as an appropriate process performed as necessary.
脱塩を行う方法としては当業者に公知の方法によって行うことができる。 分画 処理を行うための方法としては、 逆相カラムと H P L Cとを用いたシステムを用 いる方法などが挙げられる。  The method for desalting can be carried out by methods known to those skilled in the art. Examples of the method for performing fractionation include a method using a system using a reverse phase column and HPLC.
(Vi 質量分析) (Vi mass spectrometry)
前記工程で得られた質量分析用試料は、 質量分析に供される。 本工程における 測定には、 MALDI型質量分析装置を用いることができる。 この場合、 MALDI - T0F型 質量分析装置 (例えば島津製作所/ク レイ トス製 AXIMA- GFR plus) 等や、 MAID卜 IT-T0F型質量分析装置 (例えば島津製作所/クレイ トス製 AXIMA- QIT) 等が 用いられる。  The sample for mass spectrometry obtained in the above step is subjected to mass spectrometry. A MALDI mass spectrometer can be used for the measurement in this step. In this case, a MALDI-T0F type mass spectrometer (eg Shimadzu Corporation / Craitos AXIMA- GFR plus) or a MAID 卜 IT-T0F type mass spectrometer (eg Shimadzu Corporation / Crates AXIMA-QIT) is used. Used.
MALDI 質量分析装置を用いる場合、 質量分析用試料に用いられるマトリックス としては特に限定されない。 例えば、 DHB (2, 5—ジヒドロキシ安息香酸; 2, 5-dihydroxybenzoic acid), 4-CHCA (ひーシァノー 4ーヒドロキシ桂皮酸; - cyano - 4- hydroxycinnamic acid)、 3-CHCA ( —シァノ一 3—ヒドロキシ桂皮 酸; a— cyano-3 - hydroxycinnamic acid)、 3H4NBA (3—ヒドロキシ一 4一二トロ 安,害、香酸; 3- hydroxy-4-nitrobenzoic acid) などをマトリックスとして用いるこ とができる。 MALD卜 T0F型質量分析装置を用いる場合は、 4- GHGAをマトリックス として用いると良い。一方、 MAIDI-IT- T0F型質量分析装置を用いる場合は、 3H4MBA 及び/又は 3-GHGAと、 4-GHGAとの混合物をマトリックスとして用いると良い。 3-CHCAや 3H4MBAは、 前記工程 ( i ί ) で N B S基などの疎水性ノ π電子性基を タンパク質に導入した場合に好ましく用いられる。 これらのマトリックスを用い ることにより、 疎水性相互作用ゃ兀一 π電子相互作用に起因する親和力によって 所望のぺプチド断片の特異的なイオン化が達成できるとともに、 当該べプチド断 片の自己崩壊 (特に、 N B S基におけるニトロ基酸素の脱落) を抑制することが できる。 When a MALDI mass spectrometer is used, the matrix used for the sample for mass spectrometry is not particularly limited. For example, DHB (2,5-dihydroxybenzoic acid; 2, 5-dihydroxybenzoic acid), 4-CHCA (Hycyan 4-hydroxycinnamic acid; -cyano-4-hydroxycinnamic acid), 3-CHCA (—cyano 3-hydroxy Cinnamic acid (a-cyano-3-hydroxycinnamic acid), 3H4NBA (3-hydroxy-4-nitrobenzoic acid), etc. can be used as a matrix. When using a MALD 卜 T0F mass spectrometer, 4-GHGA should be used as the matrix. On the other hand, when a MAIDI-IT-T0F mass spectrometer is used, a mixture of 3H4MBA and / or 3-GHGA and 4-GHGA may be used as a matrix. 3-CHCA and 3H4MBA are preferably used when a hydrophobic π-electron group such as an NBS group is introduced into the protein in the step (i ί). By using these matrices, specific interaction of the desired peptide fragment can be achieved by the affinity resulting from the hydrophobic interaction and the π-electron interaction, and the self-disintegration of the peptide fragment (especially , And the elimination of nitro group oxygen in the NBS group.
さらに、 3-GHGAや 3Η4ΝΒΑを 4 - CHGAと混合した混合マトリックスは、前記工程 ( i i ) で N B S基などの疎水性ノ π電子性基をタンパク質に導入した場合に特に 好ましく用いられる。 このような混合マトリックスは、 上記の特異的イオン化能 と、 自己崩壊抑制能とともに、 高感度測定能が備わった、 優れたマトリックスで ある。 このため、 本発明の方法の定量の信頼性は大変高くなる。 なお、 マトリックスとして用いられる化合物は、 質量分析用マトリックスとし て用いるという目的において、 当業者が適宜その使用形態を決定することができ る。例えば、 これら化合物は、 1 m g /m I〜飽和濃度の溶液として用いることが できる。  Further, a mixed matrix obtained by mixing 3-GHGA or 3Η4Η with 4-CHGA is particularly preferably used when a hydrophobic group such as an NBS group is introduced into a protein in the step (ii). Such a mixed matrix is an excellent matrix having the above-mentioned specific ionization ability and self-decay suppression ability as well as high-sensitivity measurement ability. For this reason, the quantitative reliability of the method of the present invention is very high. The compound used as a matrix can be appropriately determined by those skilled in the art for the purpose of being used as a matrix for mass spectrometry. For example, these compounds can be used as a solution having a concentration of 1 mg / mI to saturation.
このような溶液の調製に用いられる溶媒としては、 ァセトニ卜リル水溶液、 ト リフルォロ酢酸 (TFA) 水溶液、 又はァセトニトリル—トリフルォロ酢酸 (TFA) 水溶液を用いることが好ましい。ァセトニトリル水溶液又はァセトニトリル一 TFA 水溶液を用いる場合、ァセトニトリルの濃度は特に限定されないが、 9 0 %以 下、好ましくは 7 O v/v%程度用いることができる。 TFA水溶液又はァセトニトリ ルー TFA水溶液を用いる場合、 TFAの濃度も特に限定されないが、 1 ν/νο/0以下、 好ましくは 0 . 1 ν/ν%程度用いることができる。 As a solvent used for the preparation of such a solution, it is preferable to use an aqueous solution of acetonitrile, an aqueous solution of trifluoroacetic acid (TFA), or an aqueous solution of acetonitrile-trifluoroacetic acid (TFA). When using an acetonitrile solution or an acetonitrile-TFA aqueous solution, the concentration of the acetonitrile is not particularly limited, but 90% or less, preferably about 7 O v / v% can be used. When using a TFA aqueous solution or acetonitriru TFA aqueous solution, the concentration of TFA is not particularly limited, but it may be 1 ν / νο / 0 or less, preferably about 0.1 ν / ν%.
このような溶媒に溶解させることにより、 4-CHGA の場合は、 1 m g /m l〜飽 和濃度、好ましくは 5 ~ 8 m g /m I ; 3- CHGAの場合は、 1 m g /m I〜飽和濃度、 好ましくは 5~8mg/m I ; 3H4NBAの場合は、 1 m g /m I〜飽和濃度、 好まし くは 5〜 8 m g /m Iのマトリツクス溶液として用いることができる。混合マトリ ックスとして用いる場合は、 上記マトリックス溶液を、 好ましくは 1 : 1 0〜1 0 : 1、 より好ましくは 1 : 3〜3 : 1、 例えば 1 : 1の体積比で混合して用い る。 すでに述べたように、 このようなマトリックス溶液は、 上記工程 (vi) におい て、 分離された修飾基含有ペプチド断片の溶出に用いることができる。 前記工程 (M) で NBS基などの疎水性 をタンパク質に導入した場合に、 このような溶 出用溶液を用いることは、 前記工程 (vi) で溶出すべき修飾基含有ペプチド断片 と、 溶出用溶液に含まれるマ卜リックスとの間で働いていると考えられる 7Γ—兀 電子相互作用や疎水性相互作用に起因する親和力によって、 修飾基含有べプチド 断片の溶出が効率的になるという利点がある。 本発明においては、 MS測定によって修飾基含有ペプチドをペアピークとして 検出し、 ペアピークを構成する 2本のピークの強度比からタンパク質の定量を行 うことができる。 一方、 タンパク質の同定は、 PMF解析によって行ってもよい し、 MSZMS解析によって行ってもよい。 1合の質量分析装置を用いて同定及び定量を行う場合は、 PMF解析によって 同定を行い、 MS解析によって定量を行えばよい。 この場合、 ゲル内断片化後の 料に対し、 Ziptipなどを用いた脱塩処理を行って、 PMF解析による同定を行 うための質量分析用試料を調製し、 一方で、 ゲル内断片化後の試料に対し、 Phenyltipなどを用いて修飾基含有べプチド断片の濃縮分離処理を行って、 MS 解析による定量を行うための質量分析用試料を調製することができる。 PMF解 析のための質量分析試料には、 マトリックスとして 4— C H C Aを用いることが 好ましい。 MS解析のための質量分析用試料には、 マトリックスとして、 3 H4 N B A及び/又は 3— 0!~1〇 と、4— 01"10八との混合物を用いることが好まし い。 調製した両質量分析用試料は、 1枚の MSプレート上に並べて滴下し、 質量 分析測定に供することができる。 すなわち、 この方法では、 2種の質量分析用試 料を調製する必要があるが、 1台の質量分析装置によって同定及び定量を行うこ とができる。 By dissolving in such a solvent, 1 mg / ml to saturated concentration for 4-CHGA, preferably 5 to 8 mg / m I; 1 mg / m I to saturated for 3-CHGA concentration, In the case of 5 to 8 mg / m I; 3H4NBA, it can be used as a matrix solution of 1 mg / m I to a saturated concentration, preferably 5 to 8 mg / m I. When used as a mixed matrix, the matrix solution is preferably used in a volume ratio of 1:10 to 10 : 1, more preferably 1 : 3 to 3: 1, for example, 1: 1. As described above, such a matrix solution can be used for elution of the peptide fragment containing the modified group separated in the step (vi). When hydrophobicity such as NBS group is introduced into the protein in the step (M), the use of such an elution solution means that the modifying group-containing peptide fragment to be eluted in the step (vi) 7Γ- 兀, which is thought to work with the matrix contained in the solution, has the advantage of efficient elution of the peptide fragment containing the modifying group due to the affinity resulting from electron interaction and hydrophobic interaction. is there. In the present invention, the modification group-containing peptide is detected as a pair peak by MS measurement, and the protein can be quantified from the intensity ratio of two peaks constituting the pair peak. On the other hand, protein identification may be performed by PMF analysis or MSZMS analysis. When performing identification and quantification using a single mass spectrometer, identification may be performed by PMF analysis and quantification by MS analysis. In this case, the sample after gel fragmentation is desalted using Ziptip to prepare a sample for mass spectrometry for identification by PMF analysis. Samples for mass spectrometry can be prepared for quantification by MS analysis by concentrating and separating the modifying group-containing peptide fragments using Phenyltip or the like. PMF solution For mass spectrometry samples for analysis, 4-CHCA is preferably used as the matrix. For the sample for mass spectrometry for MS analysis, it is preferable to use a mixture of 3 H4 NBA and / or 3-0! To 10 and 4-01 "10 8 as a matrix. Samples for mass spectrometry can be dropped on a single MS plate and used for mass spectrometry measurement, ie, this method requires the preparation of two types of mass spectrometry samples. Identification and quantification can be performed with this mass spectrometer.
2台の質量分析装置を用いて同定及び定量を行う場合は、 MS /MS解析によ つて同定を行い、 MS解析によって定量を行うことができる。 この場合、 ゲル内 断片化後の試料に対し、 'Phenyは ipなどを用いて修飾基含有べプチド断片の濃縮 分離処理を行って、 質量分析用試料を調製することができる。 濃縮分離処理の前 に、 Ziptipなどを用いて脱塩処理を行っても良い。 質量分析用試料には、 マトリ ックスとして、 3 H 4 N B A及び/又は 3— CH CAと 4— CH C Aとの混合物を 用いることが好ましい。 調製した質量分析用試料は、 定量のための MS測定及び 同定のための MSZMS測定に供することができる。 すなわち、 この方法では、 1種類の質量分析用試料を調製するだけで同定及び定量を行うことができ、 MS 測定用質量分析装置だけでなく M S ZM S測定用質量分析装置が使用できる環境 にあれば大変有用な方法であるといえる。 上記いずれの場合も、 一枚のゲルで、 ディファレンシャルディスプレイするこ とが可能である。 この点でも、 本発明は大変有用な方法であるといえる。 <濃縮分離用チップ及びそれを含むキット> When identification and quantification are performed using two mass spectrometers, identification can be performed by MS / MS analysis and quantification can be performed by MS analysis. In this case, 'Pheny can concentrate and separate the modifying group-containing peptide fragment using ip or the like on the sample after gel fragmentation to prepare a sample for mass spectrometry. Before the concentration and separation treatment, desalting treatment may be performed using Ziptip or the like. It is preferable to use a mixture of 3 H 4 NBA and / or 3-CH CA and 4-CH CA as a matrix for the sample for mass spectrometry. The prepared sample for mass spectrometry can be used for MS measurement for quantification and MSZMS measurement for identification. In other words, with this method, identification and quantification can be performed simply by preparing a single sample for mass spectrometry, and in an environment where not only an MS measurement mass spectrometer but also an MS ZMS measurement mass spectrometer can be used. This is a very useful method. In any of the above cases, it is possible to perform a differential display with a single gel. In this respect, the present invention can be said to be a very useful method. <Concentration separation chip and kit containing it>
本発明は、 濃縮分離用チップをも提供する。 本発明の濃縮分離用チップは、 上 記本発明のタンパク質の同定及び定量法で有用に用いることができる器具である。 より具体的には、 上記のタンパク質の同定及び定量法の好ましい形態、 すなわち N B S試薬を用いた形態において好ましく用いられる濃縮分離用チップ  The present invention also provides a chip for concentration and separation. The concentration and separation chip of the present invention is an instrument that can be usefully used in the protein identification and quantification method of the present invention. More specifically, a chip for concentration and separation that is preferably used in the preferred form of the above-described protein identification and quantification method, that is, the form using the N B S reagent.
(Phenyは ipフエニルチップ) であり、 上記工程 (vi) でのべたもののうち、 フ ェニル基を有する担体を充填又は固定したものである。 以下に、本発明の濃縮分離器具(Phenyは ip) のより具体的な仕様について説明 する。 担体が充填又は固定されている器具は、 ピペットチップである。 当該器具 の材質としては、 市販のピぺットチップに用いられているようなポリプロピレン 樹脂や、 ポリエチレン樹脂、 フッ素樹脂 (PTEE、 PTFE、 ET FEなど) などが挙げられる。 当該器具の寸法としては、 容量を、 例えば 5〜1 000 L とし、 長さを、 例えば 3〜5 cmとすることができる。 担体については、上記本発明のタンパク質の同定及び定量法における工程(νί) で述べたとおりである。 特に好ましい濃縮分離用チップ (フエニルチップ) の形 態としては、 モノリスシリカの表面がフエニル基で修飾された、 フィルター型の 形状を有する担体が、 ピぺットチップに固定されたものが挙げられる。 本発明の濃縮分離用チップの使用条件としては、 温度は 15〜40°C、 PHは 7以下とすることができる。 好ましくは、 マイクロピペットなどの、 液体の吸引 及び排出が可能なポンプ機能を有する機器に取リ付けられて使用され、 よリ好ま しくは、 自動化装置に組み込まれて使用される。 自動化装置としては、 Xcise (島 津製作所製) などの機器への使用が可能である。 濃縮分離用試料の吸着をするた めに、 チップ中の担体を通して吸い上げと吐き出しとを行うことができる。 吸着 された分子の溶出を行うときも、 溶出用溶液をチップ中の担体を通して吸い上げ と吐き出しとを行うことができる。 本発明の濃縮分離用チップを用いることにより、 電気泳動用ゲルから切り出さ れゲル内断片化が行われた試料のような、 極小スケールの試料 (すなわちフエム トモルからピコモルレベルの分子を含む試料) であっても、 所望の分子の濃縮分 離を、 簡便に、 且つ高い再現性及び回収率でもって行うことができる。 また、 本発明は、 上記濃縮分離用チップを含むキットをも提供する。 本発明の キットは、 上記本発明のタンパク質の同定及び定量法で有用に用いることができ るキットである。 より具体的には、 上記のタンパク質の同定及び定量法の好まし い形態、 すなわち N B S試薬を用いた形態において好ましく用いられるキッ卜で あり、上述の濃縮分離用チップのほか、 N B S試薬、 すなわち 2—二トロ [13 C 6] ベンゼンスルフエニルクロリ ド及び 2—二トロ [12 C 6] ベンゼンスルフエニルク 口リドがキット内容として含まれたものである。このほかにも、 T F A水溶液(例 えば 1 V/V<½程度のもの)や、ァセトニトリルなどがキット内容として含まれてい ても良い。 (Pheny is an ip phenyl chip), and among those described in the above step (vi), a carrier having a phenyl group is filled or fixed. Hereinafter, more specific specifications of the concentration / separation apparatus (Pheny is ip) of the present invention will be described. The instrument in which the carrier is filled or fixed is a pipette tip. Examples of the material of the instrument include polypropylene resin, polyethylene resin, and fluororesin (such as PTEE, PTFE, and ET FE) that are used in commercially available pipette tips. The dimensions of the device can be, for example, a volume of 5 to 1 000 L and a length of 3 to 5 cm, for example. The carrier is as described in the above step (νί) in the protein identification and quantification method of the present invention. A particularly preferred form of the concentration and separation chip (phenyl chip) is one in which a carrier having a filter shape in which the surface of monolithic silica is modified with a phenyl group is fixed to a pipette chip. The use conditions of concentration and separation chip of the present invention, the temperature can be 15 to 40 ° C, P H 7 or less. Preferably, it is used by being attached to an apparatus having a pump function capable of sucking and discharging liquid, such as a micropipette, and is preferably used by being incorporated in an automation device. As an automation device, it can be used for equipment such as Xcise (manufactured by Shimadzu Corporation). For adsorption of samples for concentration and separation For this purpose, suction and discharge can be performed through the carrier in the chip. When the adsorbed molecules are eluted, the elution solution can be sucked up and discharged through the carrier in the chip. By using the chip for concentration and separation of the present invention, a sample on a very small scale (that is, a sample containing molecules at femtomole to picomolar level) such as a sample cut out from an electrophoresis gel and subjected to fragmentation in the gel. Even in such a case, the concentration and separation of the desired molecule can be performed simply and with high reproducibility and recovery rate. The present invention also provides a kit including the concentration and separation chip. The kit of the present invention is a kit that can be usefully used in the identification and quantification method of the protein of the present invention. More specifically, the kit is preferably used in the preferred form of the above-described protein identification and quantification method, that is, in the form using the NBS reagent. In addition to the concentration separation chip described above, the NBS reagent, ie, 2 -Nitro [ 13 C 6 ] benzenesulfuryl chloride and 2-nitro [ 12 C 6 ] benzenesulfuryl chloride are included as kit contents. In addition to this, a TFA aqueous solution (for example, about 1 V / V <½), acetonitrile, or the like may be included in the kit contents.
実施例 Example
以下に実施例により本発明をさらに詳しく説明するが、 本発明はこれにより限 定されるものではない。 <試料 1、 試料 2及び試料 3の調製 > The present invention will be described in more detail with reference to the following examples, but the present invention is not limited thereto. <Preparation of sample 1, sample 2 and sample 3>
(i) 大腸菌の野生株と cra/mg欠損株との菌体 0. 1 gを集菌し、 8M 尿素水溶 液 2m Iに懸濁後、 超音波破砕を '行った。  (i) 0.1 g of cells of a wild strain of E. coli and a cra / mg-deficient strain were collected, suspended in 2 ml of 8M urea aqueous solution, and subjected to ultrasonic disruption.
(M) 各超音波破砕液に対し、 安定同位体標識を行った。 具体的には、 野生株の 超音波破砕液 500 /しに、 12C NBS試薬 (I mg) の酢酸 ( 1 OOjU L) 溶 液を加えた。一方、 cra/mg欠損株の超音波破砕液 50 Ojuしに、 13C NBS試薬 (1 mg) の酢酸 (1 00 jU L) 溶液を加えた。 双方の試料を、 室温で 3時間反 応させた。 (M) Stable isotope labeling was performed on each ultrasonic disruption solution. Specifically, an acetic acid (1 OOjUL) solution of 12 C NBS reagent (I mg) was added to a wild strain of ultrasonic disruption solution 500 /. On the other hand, 13 C NBS reagent (1 mg) in acetic acid (1 00 jU L) was added to 50 Oju of the ultrasonically disrupted cra / mg-deficient strain. Both samples were reacted for 3 hours at room temperature.
(iii) 反応終了後、 両反応液を混合し LH— 20カラム (脱塩カラム) により、 過剰な N BS試薬を除去した。その後、ョ一ドアセトアミドと DTTとを用いて、 還元アルキル化を行った。 このようにして、 電気泳動用試料を得た。  (iii) After completion of the reaction, both reaction solutions were mixed, and excess NBS reagent was removed using an LH-20 column (desalting column). Thereafter, reductive alkylation was performed using chloroacetamide and DTT. In this way, a sample for electrophoresis was obtained.
(iv) 得られた電気泳動用試料について、 2次元電気泳動を行つた。具体的には、 IPG Ready strip (p H 5-8) ゲルを用い (或いは、 p H 4— 7のものを用いる こともできる)、 1次元目として等電点電気泳動を行い、 2次元目として SDS— PAGEを行った。 電気泳動後、 G 250染色を行い、 タンパク質スポットを検 出した。  (iv) The obtained sample for electrophoresis was subjected to two-dimensional electrophoresis. Specifically, IPG Ready strip (pH 5-8) gel is used (or pH 4-7 can be used), and isoelectric focusing is performed as the first dimension. SDS-PAGE was performed. After electrophoresis, G 250 staining was performed to detect protein spots.
(V) 検出されたスポッ卜の切り出しを行った。具体的には、 3箇所のスポットを 切り出し、 それぞれのスポットについて、 トリプシンを用いてゲル内酵素消化を 行った。 得られた消化物をそれぞれ試料 1、 試料 2、 及び試料 3とした。  (V) The detected spot was cut out. Specifically, three spots were cut out, and each spot was digested with enzyme in the gel using trypsin. The digests obtained were designated as Sample 1, Sample 2, and Sample 3, respectively.
<実験例 1 > <Experimental example 1>
試料 1は、 Phenyは ipによる濃縮分離を行わない試料 (試料 1一 a ) と、  Sample 1 is Pheny's sample that does not perform concentration separation by ip (Sample 1 1 a),
Phenyltipによる濃縮分離を行う試料 (試料 1— b) とに分け、 以下の方法によ リ解析を行った。 [試料 1一 a ] The sample was divided into the sample to be concentrated and separated by Phenyltip (Sample 1-b) and analyzed by the following method. [Sample 1 a]
試料 1 — aを、 Ziptipを用いて脱塩精製した。 その後、 Ί 0%ァセトニトリル — 0 · 1 % T F A水溶液 (v/v/v) 中に 4一 CH CA ( —シァノ一 4ーヒドロキ シ桂皮酸) を 5mgZm Iの濃度で調製したマトリックス溶液を用いて M Sプレ 一卜に溶出し、 質量分析用試料とした。 この質量分析用試料について、 MA L D I 一 TO F型質量分析装置 (AXIMA- GFR、 島津製作所製) により MS測定を行い、 PM F解析を行った。  Sample 1—a was desalted and purified using Ziptip. After that, MS was prepared using a matrix solution prepared with 4 mg CH CA (—Cyanol 4-hydroxycinnamic acid) in a concentration of 5 mgZm I in 0% acetonitrile — 0 · 1% TFA aqueous solution (v / v / v). The sample was eluted in a single volume and used as a sample for mass spectrometry. About this sample for mass spectrometry, MS measurement was performed with a MALDI-TO-F mass spectrometer (AXIMA-GFR, manufactured by Shimadzu Corporation), and PMF analysis was performed.
PM F解析の結果、 高いスコア (1 47) で同定を行うことが可能であった。 例えば、 NBS基含有ペプチド断片としては、 KQYPIVSIEDGLDESDWDGFAYQTKV (配 列番号 1 ) の配列を有する13 CN B S基含有ペプチド断片が検出された。 As a result of PMF analysis, identification with a high score (1 47) was possible. For example, as an NBS group-containing peptide fragment, a 13 CN BS group-containing peptide fragment having the sequence of KQYPIVSIEDGLDESDWDGFAYQTKV (SEQ ID NO: 1) was detected.
しかしながら、 MA L D I -TO F MSスぺクトル (図 1 ) が示すように、 13C N B S基を有するぺプチド断片のイオンはわずかに検出されている一方で、 当該 13CN BS基を有するペプチド断片より 1 6 D a及び 32 D a質量数が小さいィ オンも検出されている。 なお、 図 1においては、 13C N B S基を有するペプチド 断片のイオン、 及び当該断片より 1 6 D a及び 32 D a質量数が小さいイオンが 検出されている、 m/z 2898-2952 の範囲について、 別途拡大して表示している。 質量数がより小さいこれらのイオンは、 13CN BS基を有するぺプチド断片にお けるニトロ基酸素がそれぞれ 1個或いは 2個脱落したことによって生じる。 この ように、 "CN BS基を有するペプチド断片のピーク 1本が、 2本のピークに分 割されることは、 解析感度という観点から好ましくない結果であることを意味す る。 However, MA LDI -TO F MS scan Bae spectrum (Figure 1) shows, on the one hand the peptide fragment having 13 CNBS group ions being barely detectable, from peptide fragments having the 13 CN BS group 1 6 Da and 32 Da mass numbers are also detected. In addition, in FIG. 1, in the range of m / z 2898-2952, ions of a peptide fragment having a 13 CNBS group, and ions having 16 Da and 32 Da mass numbers smaller than the fragment are detected. It is enlarged and displayed separately. These ions with lower mass numbers are generated by the loss of one or two nitro group oxygens in the peptide fragment with 13 CN BS groups, respectively. Thus, “dividing one peak of a peptide fragment having a CNBS group into two peaks means an unfavorable result from the viewpoint of analysis sensitivity.
[試料 1— b ] [Sample 1—b]
試料 1— bを、 Ziptipを用いて脱塩精製した。 その後、 Phenyltip (フィル ター型シリカモノリスに、 フエ二ル基を化学結合させ、 1 0〃 1容量のピペット チップに固定したものであり、 京都モノテック社に特注して入手) を用い、 NB S基含有ペプチド断片の濃縮分離を行った。 濃縮分離においては、 15%ァセト 二トリル一0. 1 %T F A水溶液(v/v/v) を用いて脱塩を行うことによって、 N BS基含有べプチド断片以外の化学種を積極的に除去した。そしてその後、 70% ァセトニトリル一 0. 1 %T FA水溶液 (v/v/v) 中に 4— CHCA ( 一シァノ —4—ヒドロキシ桂皮酸)を 5m gZm Iの濃度で調製した 4— C H C A溶液と、 同水溶液中に 3H4NBA (3—ヒドロキシー 4—ニトロ安息香酸) を 5mgZ m Iの濃度で調製した 3H4NBA溶液との 1 : 1 (体積比) 混合マトリックス 溶液を調製し、 NBS基含有ペプチド断片を MSプレートに溶出し、 質量分析用 試料とした。 この質量分析用試料について、 MALD I— TOF型質量分析装置 (AXIMA-CFR.島津製作所製) により MS測定を行った。得られた MALD I—T OF MSスぺクトルを図 2に示す。 なお、 図 2においては、 13CNBS基を有す るぺプチド断片のイオンが検出されている、 m/z 2900- 2960付近の範囲について、 別途拡大して表示している。図 2の MA L D I— TO F MSスぺクトルが示すよ うに、 13CNBS基を有するペプチド断片のイオンが唯一検出されており、 上記 試料 1—aにおいて検出されたような、 当該ペプチド断片から生成した一 1 6D a及び一 32 D aピークは検出されていない。 このため、 解析感度の観点から好 ましい結果が得られたといえる。 このように、 試料 1一 bにおいては、 PM F解析を行わなくとも良いため、 混 合マトリックスを使用することによって、 感度の高い解析を行うことができた。 ちなみに、 PMF解析による同定を行ったところ、 NBS基含有ペプチド断片 として、 KQYPIVSIEDGLDESDDGFAYQTKV (配列番号 1 ) の配列を有する 13 C N B S 基含有ペプチド断片が検出されたが、 スコアは 77であり、 試料 1— aにおける スコアより低下した。 以上の結果が示すように、 試料 1一 aにおいては、 同定スコアが高い一方で、 検出すべきぺプチド断片から不所望に生成した一 1 6 D a及び一 32 D a断片に 起因する解析の感度の低下を招いた。 これは、 原因の 1つとして、 PMF解析を 行う目的からマトリックスとして 4一 CHCAを用いたためであると考えられる。 そして、 試料 1一 bにおいては、 そのような一 1 6 D a及び一 32 D a断片を生 じることなく感度の高い解析を行うことができた。 これは、 原因の 1つとして、 PMF解析を行わなくともよいため、 混合マトリックスを用いたことが功を奏し たと考えられる。 Sample 1-b was desalted and purified using Ziptip. After that, Phenyltip (filter type silica monolith is chemically bonded to phenyl group, and 10 ~ 1 volume pipette The NBS group-containing peptide fragments were concentrated and separated using a fixed to a chip and obtained by custom order from Kyoto Monotech Co., Ltd. In concentrated separation, chemical species other than NBS group-containing peptide fragments are actively removed by desalting with 0.1% aqueous TFA (0.1% TFA) (v / v / v). did. After that, 4-CHCA (monocyan-4-hydroxycinnamic acid) was prepared at a concentration of 5 mgZm I in 70% acetonitrile and 0.1% TFA aqueous solution (v / v / v). Prepare a 1: 1 (volume ratio) mixed matrix solution of 3H4NBA (3-hydroxy-4-nitrobenzoic acid) at a concentration of 5 mgZ m I in the same aqueous solution and mix the NBS group-containing peptide fragments with MS. The sample was eluted on a plate and used as a sample for mass spectrometry. About this sample for mass spectrometry, MS measurement was performed with a MALD I-TOF type mass spectrometer (AXIMA-CFR, manufactured by Shimadzu Corporation). Figure 2 shows the obtained MALD I-T OF MS spectrum. In FIG. 2, the range near m / z 2900-2960 where ions of peptide fragments having 13 CNBS groups are detected is shown separately enlarged. As shown in the MA LDI-TO FMS spectrum in Fig. 2, the only peptide fragment ion with 13 CNBS groups was detected and generated from the peptide fragment as detected in Sample 1-a above. One 16 Da and one 32 Da peaks were not detected. Therefore, it can be said that favorable results were obtained from the viewpoint of analysis sensitivity. Thus, since it is not necessary to perform PMF analysis on sample 1b, it was possible to perform highly sensitive analysis by using a mixed matrix. By the way, when identified by PMF analysis, a 13 CNBS group-containing peptide fragment having the sequence of KQYPIVSIEDGLDESDDGFAYQTKV (SEQ ID NO: 1) was detected as an NBS group-containing peptide fragment, but the score was 77, sample 1—a It was lower than the score. As can be seen from the above results, the sample 1 a has a high identification score, but the analysis caused by the 16 Da and 32 Da fragments generated undesirably from the peptide fragments to be detected. The sensitivity was lowered. This is probably because one CHCA was used as a matrix for the purpose of PMF analysis. Sample 1b could be analyzed with high sensitivity without producing such 116 Da and 32 Da fragments. One reason for this is that it is not necessary to perform PMF analysis, so it seems that the use of a mixed matrix was successful.
<実験例 2> <Experimental example 2>
試料 2は、 Phenyltipによる濃縮分離を行わない試料 (試料 2— a) と、  Sample 2 is a sample that is not concentrated and separated by Phenyltip (Sample 2-a),
Phenyltipによる濃縮分離を行う試料(試料 2— b 及び 試料 2— c)とに分け、 以下の方法によリ解析を行った。 It was divided into samples (sample 2-b and sample 2-c) to be concentrated and separated by Phenyltip and analyzed by the following method.
[試料 2— a ] [Sample 2— a]
試料 2— aに対し、 上記試料 1一 aと同じ処理を行った。  Sample 2—a was subjected to the same treatment as Sample 1—a.
PMF解析の結果、 高いスコア (1 1 2、 1 1 0) で同定を行うことが可能で あった。例えば、 NBS基含有ペプチド断片としては、 KKLLPWIDGLLDAGEKH (配列 番号 2) の配列を有する13 CNBS基含有ペプチド断片が検出された。 MALD I -TO F MSスぺクトル(図 3)でも、 NBS基を有するぺプチド断片のィォ ンがわずかに 1本検出されたのみであった。 なお、 図 3においては、 13CNBS 基を有するペプチド断片のイオンが検出されている、 m/z 2900- 2960付近の範囲 について、 別途拡大して表示している。 しかしながら、 この試料 2中には実際には N BS基を有するぺプチド断片は 3 種類存在することが分かっている。 (このことは、後述の試料 2— bにおける解析 結果でも示されている。)それにもかかわらず、 NBS基含有べプチド断片のピー クを 1本しか検出できなかったことは、 解析感度という観点から好ましくない結 果であったことが分かる。 As a result of PMF analysis, it was possible to identify with high scores (1 1 2, 1 1 0). For example, as an NBS group-containing peptide fragment, a 13 CNBS group-containing peptide fragment having the sequence of KKLLPWIDGLLDAGEKH (SEQ ID NO: 2) was detected. In the MALD I-TO FMS spectrum (Fig. 3), only one peptide fragment with an NBS group was detected. In FIG. 3, the range around m / z 2900-2960 where ions of peptide fragments having 13 CNBS groups are detected is shown separately enlarged. However, it is known that there are actually three types of peptide fragments having NBS groups in Sample 2. (This is also shown in the analysis results of Sample 2-b described later.) Nevertheless, the fact that only one peak of the NBS group-containing peptide fragment could be detected was the viewpoint of analysis sensitivity. This shows that the result was not preferable.
[試料 2— b ] [Sample 2-b]
試料 2— bに対し、 上記試料 1—bと同じ処理を行った。  Sample 2-b was subjected to the same treatment as sample 1-b.
得られた MA L D I— TO F MSスぺクトル(図 4) では、 N BS基を有する ペプチド断片の存在を示すペアピーク 3本をはっきり検出することができた。 な お、図 4においては、 N BS基を有するぺプチド断片のイオンが検出されている、 m/z 1418- 1436の範囲、 m/z 1692- 1714の範囲、 及び m/z 1814- 1842の範囲につい て、 それぞれ、 別途拡大して表示している。 図 4においては、 ペアピークを構成 する 2本のピークの強度比は、 3本のペアピークすべてにおいて同じであった。 このことから、 感度の高い解析を行うことができるため、 定量の信頼性が高い結 果が得られたことが分かる。 一方、 PMF解析による同定を行ったところ、 すべての NBS基含有ペプチド 断片; KKLLPWIDGLLDAGEKH (配列番号 2) の配列を有する 13CN B S基含有べプチ ド断片及び12 CN BS基含有ペプチド断片、 KLLPWIDGLLDAGEKH (配列番号 3) の 配列を有する13 CNBS基含有べプチド断片及び12 CNBS基含有べプチド断片、 MN1DTDTQWATWEGVLNYYKA (配列番号 4) の配列を有する 13 C N B S基含有べプチ ド断片、 KYYDPRVWLRA (配列番号 5) の配列を有する 13CNBS基含有べプチド断 片及び12 CNBS基含有ペプチド断片が検出されたが、 スコアは 28、 26であ リ、 試料 2— aにおけるスコアより低下した。 しかしながら、 後述の試料 2— cの結果が示すように、 図 4の MSスぺク トル における、 NBS基含有ペプチド断片のピークと、 N BS基不含ペプチド断片の ピークとをそれぞれプリカーサイオンとした M S M S測定を行えば、 より信頼 性の高い同定を行うことが可能である。 In the obtained MA LDI-TO FMS spectrum (Fig. 4), it was possible to clearly detect three paired peaks indicating the presence of peptide fragments having NBS groups. In FIG. 4, ions of peptide fragments having NBS groups are detected, in the range of m / z 1418-1436, in the range of m / z 1692-1714, and in the range of m / z 1814-1842. Each range is enlarged separately. In FIG. 4, the intensity ratio of the two peaks constituting the pair peak was the same for all three pair peaks. From this, it can be seen that highly sensitive analysis can be performed, and results with high reliability of quantification were obtained. On the other hand, as a result of identification by PMF analysis, all NBS group-containing peptide fragments; 13 CN BS group-containing peptide fragments having the sequence of KKLLPWIDGLLDAGEKH (SEQ ID NO: 2) and 12 CN BS group-containing peptide fragments, KLLPWIDGLLDAGEKH (sequence) No. 3) 13 CNBS group-containing peptide fragment and 12 CNBS group-containing peptide fragment, MN1DTDTQWATWEGVLNYYKA (SEQ ID NO: 4) 13 CNBS group-containing peptide fragment, KYYDPRVWLRA (SEQ ID NO: 5) sequence 13 CNBS group-containing peptide fragments and 12 CNBS group-containing peptide fragments were detected, but the scores were 28 and 26, which were lower than the scores in sample 2-a. However, as shown in the results of Sample 2-c described later, the peak of the NBS group-containing peptide fragment and the peak of the NBS group-free peptide fragment in the MS spectrum of Fig. 4 were used as precursor ions, respectively. If MSMS measurement is performed, it is possible to perform identification with higher reliability.
[試料 2— c ] [Sample 2-c]
試料 2— cに対し、 Z ί pt i pを用いた脱塩精製を行わなかつたこと以外は上記試 料 1一 bと同じ処理を行った。  Sample 2—c was treated in the same manner as Sample 1b above, except that desalting and purification using Z ί pt ip was not performed.
MA LD I— TOF MSスぺクトル(図示せず) では、 図 4と同様に、 N B S 基含有べプチド断片を示すペアピークが 3本検出された。 一方、 PMF解析を行うと、 NBS基含有ペプチド断片として  In MA LD I—TOF MS spectrum (not shown), as in FIG. 4, three paired peaks indicating N B S group-containing peptide fragments were detected. On the other hand, when PMF analysis was performed,
KKLLPWIDGLLDAGEKH (配列番号 2)の配列を有する 13CNBS基含有べプチド断片 や、 NBS基不含ペプチド断片として SKIFDFVKPGVITGDDVQKV (配列番号 6) の配 列を有するペプチド断片が検出されたが、 スコアは 52であり、 試料 2— aにお けるスコアより低下した。 しかしながら、 配列番号 2の配列を有する NBS基含有べプチド断片のピーク と、 配列番号 6の配列を有する NBS基不含ぺプチド断片のピークとをそれぞれ プリカーサイオンとした MSZMS測定を、 質量分析装置 AXIMA- QIT (島津製作 所製) を用いて行うことによって、 同定を行うことが可能であった。 当該 NBS 基含有べプチド断片のヒ°ークをプリカーサイオンとした MSZMSスぺクトルを 図 5 (a) に、 当該 N BS基不含ペプチド断片をプリカーサイオンとした MSノ MSスペクトルを図 (b) に示す。 このことから、 Phenyltipで十分な脱塩及び NBS基含有ペプチドの濃縮分離 を行えば、 Z i pt i p処理は必ずしも行わなければならないのではないことがわかる。 以上の結果が示すように、 試料 2— aにおいては、 同定スコアが高い一方で N BS基含有ペプチド断片を特異的に検出することはできなかった。 これは、 原因 の 1つとして、精製処理として Ziptipによる脱塩処理しか行われなかったためで あると考えられる。 そして、 試料 2— bにおいては、 すべての NBS基含有ぺプ チド断片を検出することができ、 複数のペアピークを検出することにより、 定量 の信頼性が高い結果が得られた。 これは、 原因の 1つとして、 精製処理としてさ らに Phenyltipによる濃縮分離を行ったためであると考えられる。 さらに、 試料 2— cにおいても、 定量の信頼性が高い結果が得られた。 さらに、 PM F解析に よる同定スコアは低かったが、 そのかわり、 MSZMS解析による同定を行うこ とができた。 すなわち、 フエ二ルカラムによる濃縮分離や、 混合マトリックスの 使用は、 PMF解析の同定スコアの低下を招くが、 そのかわりに、 MSZMS解 析を行うことによって、 より信頼性の高い同定を行うことが可能であることが示 された。、 A peptide fragment containing the sequence of 13 CNBS group containing the sequence of KKLLPWIDGLLDAGEKH (SEQ ID NO: 2) and a peptide fragment of SKIFDFVKPGVITGDDVQKV (SEQ ID NO: 6) as an NBS group-free peptide fragment was detected, but the score was 52 It was lower than the score in Sample 2-a. However, the MSZMS measurement using the peak of the NBS group-containing peptide fragment having the sequence of SEQ ID NO: 2 and the peak of the NBS group-free peptide fragment having the sequence of SEQ ID NO: 6 as precursor ions, respectively, was performed using the mass spectrometer AXIMA -Identification was possible by using QIT (manufactured by Shimadzu Corporation). Figure 5 (a) shows the MSZMS spectrum using the NBS group-containing peptide fragment as a precursor ion, and Fig. 5 (b) shows the MS spectrum using the NBS group-free peptide fragment as a precursor ion. ). From this, it can be seen that the Zipt ip treatment does not necessarily have to be performed if sufficient desalting with Phenyltip and concentration separation of the NBS group-containing peptide are performed. As can be seen from the above results, in sample 2-a, the NBS group-containing peptide fragment could not be specifically detected while the identification score was high. This is probably due to the fact that only desalting with Ziptip was performed as a purification process. In Sample 2-b, all NBS group-containing peptide fragments could be detected, and by detecting multiple paired peaks, a highly reliable result of quantification was obtained. This is thought to be because one of the reasons was the concentration and separation by Phenyltip as a purification process. In addition, Sample 2c also gave results with high quantitative reliability. Furthermore, although the identification score by the PMF analysis was low, the identification by the MSZMS analysis could be performed instead. In other words, concentration separation using a vinyl column and the use of a mixed matrix lead to a decrease in the identification score of PMF analysis, but instead, MSZMS analysis can be used to perform more reliable identification. It was shown that. ,
<実験例 3> <Experimental example 3>
試料 3は、 Phenyは ipによる濃縮分離を行わない試料 (試料 3— a) と、 Sample 3 is a sample that Pheny does not perform concentration separation with ip (Sample 3- a ),
Phenyltipによる濃縮分離を行う試料 (試料 3— b) とに分け、 以下の方法によ リ解析を行った。 The sample was divided into the sample to be concentrated and separated by Phenyltip (Sample 3-b) and analyzed by the following method.
[試料 3— a] [Sample 3—a]
試料 3— aに対し、 上記試料 1一 aと同じ処理を行った。  Sample 3—a was subjected to the same treatment as Sample 1-a.
PMF解析の結果、 高いスコア (1 97) で同定を行うことが可能であった しかしながら、 NBS基含有ペプチド断片は検出されなかった。 MALD I— T OF MSスぺクトル(図 6) にも示すように、 NBS基含有べプチド断片は検出 されなかった。 なお、 図 6においては、 m/z 1370- 1386の範囲について、 别途拡 大して表示している。 しかしながら、 試料 3中には、 実際には NBS基含有ぺプ チド断片は 1種類存在することが分かっている。(このことは、後述の試料 3— b における解析結果でも示されている。)それにもかかわらず、 NBS基含有べプチ ド断片のピークを検出できなかったことは、 解析感度という観点から好ましくな い結果であったことが分かる。 [試料 3— b] As a result of PMF analysis, identification with a high score (1 97) was possible. However, NBS group-containing peptide fragments were not detected. NBS group-containing peptide fragments were not detected, as shown in MALD I-TOFMS spectrum (Fig. 6). In Fig. 6, the range of m / z 1370-1386 is enlarged and displayed separately. However, it has been found that in Sample 3, there is actually one type of NBS group-containing peptide fragment. (This is also shown in the analysis results of Sample 3-b described later.) Nevertheless, the failure to detect the peak of the NBS group-containing peptide fragment is not preferable from the viewpoint of analysis sensitivity. It turns out that it was a good result. [Sample 3-b]
試料 3— bに対し、 上記試料 1— bと同じ処理を行つた。  Sample 3—b was treated in the same way as Sample 1—b.
得られた MA L D I -TO F MSスぺクトル(図 7)では、 NBS基を有する ぺプチド断片の存在を示すペアピーク 1本をはっきり検出することができた。 な お、 図 7においては、 NBS基を有するペプチド断片のイオンが検出されている m/z 1369- 1386の範囲について、 別途拡大して表示している。 このことから、 感 度の高い解析を行うことができるため、 定量の信頼性が高い結果が得られたこと が分かる。 一方、 PMF解析による同定を行ったところ、 NBS基含有ペプチド断片とし て KALEGDAEWEAKI (配列番号 7) の配列を有する1'3 C N B S基含有ペプチド断片 及び12 CNBS基含有ペプチド断片が検出されたが、 スコアは 31であり、 試料 3— aにおけるスコアより低下した。 しかしながら、 前述の試料 2— cの結果が示すように、 図 7の MSスペクトル における、 NBS基含有ペプチド断片のピークと、 NBS基不含ペプチド断片の ピークとをそれぞれプリカ一サイオンとした M S ZM S測定を行えば、 より信頼 性の高い同定を行うことが可能である。 以上の結果が示すように、 試料 3— aにおいては、 同定スコアが高い一方で N B S基含有ペプチド断片を検出することはできなかった。 これは、 原因の 1つと して、精製処理として Zi pti pによる脱塩処理しか行われなかったためであると考 えられる。 そして、 試料 3— bにおいては、 N B S基含有ペプチド断片をペアピ ークとして検出することができたことにより、 定量の信頼性が高い結果が得られ た。 これは、 原因の 1つとして、 精製処理としてさらに Pheny l ti pによる濃縮分 離を行ったためであると考えられる。 実際に、 試料 3— aの P M F解析結果にお しゝて、 rNumber of mass va l ues matchedj 力《3 1であったの ίこ対し、 試料 3— b の P M F解析結果において、 rNumber of mass va I ues matchedj は 1 7であった。 このことから、試料 3においては、 Pheny 11 ί pによる濃縮分離を行うことにより、 1 4のペプチド断片が除去され、 その結果、 N B S基含有ペプチド断片の検出を 可能にしたことが分かる。 上記実験例のうち、 試料 1一 b、 試料 2— b、 試料 2— c、 及び試料 3— bの 4種の試料については、 本発明の方法に従って実験を行った。 これら 4種の試料 については、 大腸菌のタンパク質を解析対象とし、 同位体標識法を行う修飾試薬 として、 トリブトファン残基に対する修飾能を有する N B S試薬を、 濃縮分離用 の担体としてフヱニル基含有担体を用いて解析を行った。 しかし、 本発明は、 大 腸菌以外のタンパク質、 N B S試薬以外の同位体標識用修飾試薬、 及びフエニル 基含有担体以外にも適用される。 そのため、 これら 4種の試料の例はあらゆる点 で単なる例示に過ぎず、 限定的に解釈してはならない。 さらに、 特許請求の範囲 の均等範囲に属する変更は、 すべて本発明の範囲内のものである。 In the obtained MA LDI-TO FMS spectrum (Fig. 7), it was possible to clearly detect one pair peak indicating the presence of a peptide fragment having an NBS group. In FIG. 7, the range of m / z 1369-1386 where ions of peptide fragments having an NBS group are detected is shown separately enlarged. This indicates that high-sensitivity analysis can be performed, and results with high quantitative reliability were obtained. On the other hand, as a result of identification by PMF analysis, 13 CNBS group-containing peptide fragments and 12 CNBS group-containing peptide fragments having the sequence of KALEGDAEWEAKI (SEQ ID NO: 7) were detected as NBS group-containing peptide fragments. Was 31, which was lower than the score in Sample 3-a. However, as shown in the result of Sample 2-c above, the peak of the NBS group-containing peptide fragment and the NBS group-free peptide fragment in the MS spectrum of FIG. If MS ZM S measurement is performed with each peak as a precursor ion, more reliable identification can be performed. As shown by the above results, in Sample 3-a, the identification score was high, but NBS group-containing peptide fragments could not be detected. This is thought to be due to the fact that only desalting with Ziptip was performed as a purification process. In Sample 3-b, the NBS group-containing peptide fragment could be detected as a pair peak, resulting in high quantitative reliability. This is probably due to the fact that Pheny ltip further concentrated and separated as a purification process. Actually, rNumber of mass va l ues matchedj force << 3 1 for the PMF analysis result of sample 3-a, while rNumber of mass va in the PMF analysis result of sample 3-b I ues matchedj was 1 7. From this, it can be seen that in sample 3, 14 peptide fragments were removed by concentration and separation with Pheny 11 and, as a result, it was possible to detect NBS group-containing peptide fragments. Among the above experimental examples, four types of samples, Sample 1 b, Sample 2-b, Sample 2-c, and Sample 3-b, were tested according to the method of the present invention. For these four types of samples, the EBS protein is the target of analysis, and the NBS reagent that has the ability to modify tributofan residues is used as a modification reagent for isotope labeling, and a phenyl group-containing carrier is used as a carrier for concentration and separation. Analysis. However, the present invention is also applicable to proteins other than E. coli, isotope labeling modifying reagents other than NBS reagents, and phenyl group-containing carriers. The examples of these four samples are therefore merely illustrative in all respects and should not be interpreted in a limited way. Further, all modifications belonging to the equivalent scope of the claims are within the scope of the present invention.

Claims

請 求 の 範 囲 The scope of the claims
1. (i) タンパク質試料し 及び前記タンパク質試料 Iの対照となるタンパク 質試料 IIを用意する工程と、 1. (i) preparing a protein sample II and a protein sample II as a control of the protein sample I;
(ii) 修飾試薬として、 互いに同じ分子構造を有し、 且つ互いに質量数の異な る同位体を含むことによって異なる分子量を有する 2種の化合物を用意し、 前記タンパク質試料 Iに対し、 前記 2種の化合物のうちいずれか一方の化合物 を用いて修飾を行い、 前記いずれか一方の化合物に由来する修飾基が導入された 修飾タンパク質試料 I' を得る一方、 ' 前記タンパク質試料 IIに対し、前記 2種の化合物のうちいずれか他方の化合物 を用いて修飾を行い、 前記他方の化合物に由来する修飾基が導入された修飾タン パク質試料 II' を得る工程と、  (ii) preparing two kinds of compounds having different molecular weights by containing isotopes having the same molecular structure and different mass numbers as the modifying reagent, and for the protein sample I, the two kinds The modified protein sample I ′ into which the modifying group derived from any one of the compounds is introduced is modified using either one of the compounds of Modifying one of the two kinds of compounds with the other compound to obtain a modified protein sample II ′ into which a modifying group derived from the other compound is introduced;
(iii)前記修飾タンパク質試料 I' と前記修飾タンパク質試料 Iに とを混合し、 電気泳動用混合試料を得る工程と、  (iii) mixing the modified protein sample I ′ and the modified protein sample I to obtain a mixed sample for electrophoresis;
(iv) 前記電気泳動用混合試料を電気泳動に供し、 複数のタンパク質スポット に展開する工程と、  (iv) subjecting the mixed sample for electrophoresis to electrophoresis and spreading it into a plurality of protein spots;
(V)前記複数のタンパク質スポッ卜から所望のタンパク質スポットを切り出し、 切り出されたタンパク質スポッ卜に対してゲル内断片化を行い、 修飾基含有ぺプ チド断片とその他のぺプチド断片とを含む濃縮分離用混合試料を得る工程と、 (vi) 前記いずれか一方の化合物に由来する修飾基及び前記いずれか他方の化 合物に由来する修飾基と相互作用することができる構造を有する担体を用いて、 前記濃縮分離用混合試料から前記修飾基含有べプチド断片を濃縮分離し、 前記濃 縮分離された修飾基含有ペプチド断片を含む質量分析用試料を得る工程と、 (vii)前記質量分析用試料を、質量分析装置を用いて測定し、前記濃縮分離さ れた修飾基含有ペプチド断片を同定及び定量する工程と、 2007/108140 (V) A desired protein spot is cut out from the plurality of protein spots, the cut out protein spots are fragmented in the gel, and the peptide fragments containing the modifying group and other peptide fragments are concentrated. (Vi) using a carrier having a structure capable of interacting with a modifying group derived from one of the compounds and a modifying group derived from the other compound; A step of concentrating and separating the modifying group-containing peptide fragment from the mixed sample for concentration and separation to obtain a sample for mass spectrometry containing the concentrated and separated peptide fragment of the modifying group; (vii) Measuring a sample using a mass spectrometer, and identifying and quantifying the concentrated and separated modified fragment-containing peptide fragment; 2007/108140
34 を含む、 タンパク質試料の同定及び定量法。 34 Identification and quantification of protein samples, including
2. 前記工程 (ii) において、 修飾試薬としてァリール基を有,する化合物を用 し、、 ァリール基が修飾基として導入された修飾タンパク質 I' 及び修飾タンパク 質 II' を得て、前記工程(νί) において、前記修飾基と相互作用することができ る構造を有する担体として、 ァリール基を有する担体を用いる、 請求の範囲第 1 項に記載のタンパク質試料の同定及び定量法。 2. In the step (ii), using a compound having an aryl group as a modifying reagent, modified protein I ′ and modified protein II ′ into which the aryl group has been introduced as a modifying group are obtained, The method for identifying and quantifying a protein sample according to claim 1, wherein a carrier having an aryl group is used as a carrier having a structure capable of interacting with the modifying group.
3. 前記担体が有する前記ァリール基は、 フ Iニル基である、 請求の範囲第 2 項に記載のタンパク質試料の同定及び定量法。 3. The protein sample identification and quantification method according to claim 2, wherein the aryl group of the carrier is a phenyl group.
4. 前記修飾試薬としてのァリール基を有する化合物が、 2—二トロ [13C6] ベ ンゼンスルフエニルクロリ ド及び 2—二トロ [12C6] ベンゼンスルフエニルクロ リドである、 請求の範囲第 2項に記載のタンパク質試料の同定及び定量法。 4. The compound having an aryl group as the modifying reagent is 2-nitro [ 13 C 6 ] benzenesulfenyl chloride and 2-nitro [ 12 C 6 ] benzenesulfuryl chloride. 3. A method for identifying and quantifying a protein sample according to the above item 2.
5. 前記工程 (vi) において、 前記担体は、 ピペットチップに充填又は固定さ れて用いられる、 請求の範囲第 1項に記載のタンパク質試料の同定及び定量法。 5. The protein sample identification and quantification method according to claim 1, wherein, in the step (vi), the carrier is used by being filled or fixed in a pipette tip.
6. 前記工程 (vii) において、 マトリックスとして、 6. In the step (vii), as a matrix,
3—ヒドロキシ一 4—ニトロ安息香酸 及び/又は —シァノー 3—ヒドロキ シ桂皮酸と、  3-hydroxymono-4-nitrobenzoic acid and / or —cyanol 3-hydroxycinnamic acid, and
α—シァノ一4—ヒドロキシ桂皮酸と、  α-cyan-4-hydroxycinnamic acid,
の混合物が用いられる、 請求の範囲第 1項に記載のタンパク質試料の同定及び定 量法。 The protein sample identification and quantification method according to claim 1, wherein a mixture of
7. ピペットチップにフエ二ル基を有する担体が充填又は固定された、 濃縮分 離用チップ。 7. A tip for concentration and separation, in which a pipette tip is filled or fixed with a carrier having a phenyl group.
8. ピぺットチップにフエ二ル基を有する担体が充填又は固定された濃縮分離 用チップと、 8. a tip for concentration separation in which a carrier having a phenyl group is filled or fixed on a pipette tip;
2—二トロ [13C6] ベンゼンスルフエニルクロリ ド及び 2—二トロ [12C6] ベ ンゼンスルフエニルクロリ ドと、 2-nitro [ 13 C 6 ] benzene sulfenyl chloride and 2-nitro [ 12 C 6 ] benzene sulfenyl chloride;
を含むキット。 Including kit.
PCT/JP2006/306396 2006-03-22 2006-03-22 Identification method and quantification method for protein sample using electrophoresis and mass spectrometry WO2007108140A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/306396 WO2007108140A1 (en) 2006-03-22 2006-03-22 Identification method and quantification method for protein sample using electrophoresis and mass spectrometry

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/306396 WO2007108140A1 (en) 2006-03-22 2006-03-22 Identification method and quantification method for protein sample using electrophoresis and mass spectrometry

Publications (1)

Publication Number Publication Date
WO2007108140A1 true WO2007108140A1 (en) 2007-09-27

Family

ID=38522180

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/306396 WO2007108140A1 (en) 2006-03-22 2006-03-22 Identification method and quantification method for protein sample using electrophoresis and mass spectrometry

Country Status (1)

Country Link
WO (1) WO2007108140A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111587373A (en) * 2018-01-09 2020-08-25 株式会社岛津制作所 Protein identification method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004002950A1 (en) * 2002-06-28 2004-01-08 Shimadzu Corporation Sulfenyl compound, labeling reagent, and method of analyzing peptide
JP2004301715A (en) * 2003-03-31 2004-10-28 Institute Of Physical & Chemical Research Protein primary structure information collecting method, hydrophobic microscopic particle carrier used therefor, and automatic acquisition system for the same information
JP2005189104A (en) * 2003-12-25 2005-07-14 Shimadzu Corp Method for condensing and separating protein or peptide
JP2005326391A (en) * 2004-04-13 2005-11-24 Shimadzu Corp Method for measuring hydrophobic peptide by maldi mass spectrometer
JP2006058111A (en) * 2004-08-19 2006-03-02 Shimadzu Corp Protein identification processing method and apparatus therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004002950A1 (en) * 2002-06-28 2004-01-08 Shimadzu Corporation Sulfenyl compound, labeling reagent, and method of analyzing peptide
JP2004301715A (en) * 2003-03-31 2004-10-28 Institute Of Physical & Chemical Research Protein primary structure information collecting method, hydrophobic microscopic particle carrier used therefor, and automatic acquisition system for the same information
JP2005189104A (en) * 2003-12-25 2005-07-14 Shimadzu Corp Method for condensing and separating protein or peptide
JP2005326391A (en) * 2004-04-13 2005-11-24 Shimadzu Corp Method for measuring hydrophobic peptide by maldi mass spectrometer
JP2006058111A (en) * 2004-08-19 2006-03-02 Shimadzu Corp Protein identification processing method and apparatus therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111587373A (en) * 2018-01-09 2020-08-25 株式会社岛津制作所 Protein identification method

Similar Documents

Publication Publication Date Title
JP7055634B2 (en) Rapid Preparation of Labeled Glycosylamines and Analytical Methods for Glycosylated Biomolecules Producing It
CA2420567C (en) Mass spectrometric analysis of biopolymers
CN1308690C (en) Methods and kits for sequencing polypeptides
US9159537B2 (en) Method for analyzing sample components
JP2007163423A (en) Amino acid analytical method by mass spectrometer
US20050153380A1 (en) Methods for mass spectrometry detection and quantification of specific target proteins in complex biological samples
US7163803B2 (en) Method for characterizing polypeptides
Deutzmann Structural characterization of proteins and peptides
Guttman et al. Bioanalytical tools for the characterization of biologics and biosimilars
Cheng et al. Peptide labeling using isobaric tagging reagents for quantitative phosphoproteomics
Weaver et al. Preparative capillary electrophoresis (CE) fractionation of protein digests improves protein and peptide identification in bottom-up proteomics
EP1617224A1 (en) De novo sequencing using tandem mass spectrometry
WO2007108140A1 (en) Identification method and quantification method for protein sample using electrophoresis and mass spectrometry
VanAernum et al. Rapid online buffer exchange: A method for screening of proteins, protein complexes, and cell lysates by native mass spectrometry
WO2010086386A1 (en) Protein quantification methods and use thereof for candidate biomarker validation
WO2005012914A2 (en) Method for characterising polypeptides by maldi-tof mas spectrometry
Cheon et al. Low-molecular-weight plasma proteome analysis using top-down mass spectrometry
Zeng et al. Impurity characterization and quantification by liquid chromatography–high-resolution mass spectrometry
JP4656236B2 (en) Method for quantifying and locating oxidized tryptophan residues in proteins
Heymann Synthesis and mass spectrometry based characterization of chemical tools to explore FK506 binding proteins
JP2005232132A (en) Labeling reagent specific to dansyl group-bearing thiol group, method for producing the same and labeling method using the labeling reagent
RUZICKA Impurity Characterization and Quantification by Liquid Chromatography–High-resolution Mass Spectrometry
Simpson et al. Sequence analysis of gel-resolved proteins
Susnea Analytical development, biochemical and biomedical applications of high resolution mass spectrometric proteome analysis
Holste Development of bio-analytical methods for the quantitative and qualitative analysis of labelled peptides and proteins via hyphenation of chromatography and mass spectrometry

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06730344

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06730344

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP