WO2007107678A2 - Autonomous unit for a network of measuring sensors, network comprising said autonomous unit, and communication protocol of said network - Google Patents

Autonomous unit for a network of measuring sensors, network comprising said autonomous unit, and communication protocol of said network Download PDF

Info

Publication number
WO2007107678A2
WO2007107678A2 PCT/FR2007/050985 FR2007050985W WO2007107678A2 WO 2007107678 A2 WO2007107678 A2 WO 2007107678A2 FR 2007050985 W FR2007050985 W FR 2007050985W WO 2007107678 A2 WO2007107678 A2 WO 2007107678A2
Authority
WO
WIPO (PCT)
Prior art keywords
autonomous
autonomous unit
network
transforming
housing
Prior art date
Application number
PCT/FR2007/050985
Other languages
French (fr)
Other versions
WO2007107678A3 (en
Inventor
Michel Petit
Stéphane URRUTIA
Hervé MICHON
Jean-Marc Bernex
Philippe Mirande-Iriberry
Original Assignee
Lyracom
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=37459331&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2007107678(A2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Lyracom filed Critical Lyracom
Priority to DE602007002995T priority Critical patent/DE602007002995D1/en
Priority to EP07731798A priority patent/EP1997355B1/en
Priority to AT07731798T priority patent/ATE447315T1/en
Publication of WO2007107678A2 publication Critical patent/WO2007107678A2/en
Publication of WO2007107678A3 publication Critical patent/WO2007107678A3/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/20Responsive to malfunctions or to light source life; for protection

Definitions

  • the present invention relates to an autonomous unit for a measurement sensor network, to a network incorporating at least one autonomous unit and to a communication protocol of said network.
  • the accuracy of a measurement over a relatively large geographic area is related to the number of measurement points.
  • the control of lighting or extinguishing of the public lighting for a sector of a city can be triggered from a value measured by a single brightness sensor, in particular a cell photovoltaic, measuring sunshine.
  • the measured value is often a rough approximation of the brightness of the area to be illuminated which does not allow to optimize the management of the lighting.
  • the measurement sensors are grafted onto a network having a power supply, for example a street lamp network of a public lighting, it is possible to capture a portion of this electrical energy to power the sensors of measure, and use said network power supply to transmit the data using the carrier current method.
  • a network having a power supply for example a street lamp network of a public lighting
  • this solution is not satisfactory because it induces overconsumption and the transmitted measurements can be tainted by error.
  • the power supply of said measurement sensors remains problematic.
  • Batteries or batteries can be provided to ensure the autonomy of said sensors.
  • this solution is not satisfactory because these power supply means have a limited life, which induces significant maintenance to ensure their replacement.
  • batteries are generally a source of significant pollution.
  • the present invention aims at overcoming the disadvantages of the prior art by proposing an autonomous unit incorporating at least one measurement sensor, making it possible to multiply the measurement points, not requiring the installation of a dedicated network and / or major maintenance and using renewable energy.
  • the subject of the invention is an autonomous unit incorporating at least one measurement means, comprising autonomous power supply means comprising means for transforming an external energy into electrical energy, in particular a photovoltaic panel using the energy solar, and capable of integrating into a network of autonomous units and communicating by means of communication the measured value or values, characterized in that it comprises means for storing said electrical energy comprising a switching device capacitors, at least two capacitors, protected by means of protection.
  • FIG. 1 represents the composition of an autonomous unit according to one embodiment
  • FIG. 2 is a perspective view illustrating the elements composing an autonomous unit
  • FIGS. 3A and 3B show the printed circuit of an autonomous unit according to its preferred embodiment
  • FIGS. AA and 4B illustrate the Parallel / Series switching method
  • the present invention is now described applied to the management of a public lighting network. Nevertheless, the invention may have other applications for which it is necessary to disseminate several measurement sensors over a geographical area.
  • a network consisting of at least one autonomous unit 20 incorporating at least one means is provided.
  • 18 measurement including brightness, and at least one coordinator, capable of communicating directly or indirectly with said autonomous units 20 and collect the measured values.
  • the coordinator is connected to the control means of said lighting network.
  • the autonomous unit may comprise one or more measuring means, in particular any type of sensor or probe, operating at low voltage, enabling it to perform point-by-point measurements on a network equipped with said autonomous units 20 in the purpose of communicating, in the same way as for the measurements of brightness, said measurements to the coordinator.
  • the autonomous unit 20 is independent of a f ilaire network, in particular of the power circuit for supplying electrical energy to the various light points of the public lighting, which does not cause overconsumption of the lighting network during the operation of the In addition, the measurements do not suffer any disturbance related to any interference on said power circuit during communication with the coordinator, as may be experienced by, for example, powerline systems.
  • each autonomous unit 20 has at least one measuring means 18, in particular means for measuring brightness, communication means 30, capable of communicating with the coordinator and / or another autonomous unit 20 and autonomous power supply means 38.
  • an autonomous unit 20 comprises a sealed housing 36 in which are arranged:
  • means for executing instructions 40 means for controlling an external unit.
  • the autonomous power supply means 38 provide the energy required by the other components.
  • the autonomous power supply means 38 comprise means for transforming an external renewable energy 42, in particular solar energy, into electrical energy and storage means 44 for said electrical energy.
  • the device could use wind power or any other renewable energy.
  • the autonomous unit 20 operates thanks to renewable energies so as to register in the field of sustainable development and urban ecology.
  • the means for transforming an external energy source 42 in particular a photovoltaic panel, transforming the solar energy into electrical energy, can be used as means for measuring brightness and means for detecting malfunction and lighting of a light point.
  • each autonomous unit 20 is equipped with a housing 36 having an upper portion 48 and a lower portion 50 between which are provided sealing means 46, in particular a silicone seal.
  • the upper portion 48 of the housing 36 comprises a transparent wall 52 behind which are positioned the means for transforming an external energy 42.
  • a one-way valve 54 is disposed on one of the faces of the housing 36, the opening of said valve being towards the outside of the housing 36.
  • the housing 36 comprises fastening means 26 adapted to the support on which is fixed the autonomous unit 20.
  • the housing 36 can take various forms, a spherical shape being preferably recommended for the discretion of the autonomous units 20.
  • said housing 36 contains a printed circuit 56 comprising the electrical energy storage means 44, the communication means 30 of the autonomous unit 20, the synchronization means 58, as well as possibly the means for executing instructions 40 and storage means 32, calibration means 62, power supply regulation means 64, temperature measuring means 60, secondary communication means 68.
  • a printed circuit 56 comprising the electrical energy storage means 44, the communication means 30 of the autonomous unit 20, the synchronization means 58, as well as possibly the means for executing instructions 40 and storage means 32, calibration means 62, power supply regulation means 64, temperature measuring means 60, secondary communication means 68.
  • the energy storage means 44 are relayed by the regulation means 64 of the power supply.
  • Said regulation means 64 of the power supply are in particular made using a DC / DC converter.
  • calibration means 62 may be used to calibrate the value of the voltage supplied by the means for transforming an external energy 42, which voltage is directly proportional to sunshine.
  • These calibration means 62 are in particular made using a voltage divider bridge.
  • the electrical energy storage means 44 are composed of a capacitor switching device 70 and protection means 72 of said capacitor switching device 70.
  • the protection means 72 of the capacitor switching device 70 are controlled by a control command from the means for executing instructions 40, a control command which allows the switching of said device between a serial circuit of the capacitor switching device 70, having at least two capacitors, and parallel mounting of said capacitor switching device 70.
  • the protection means 72 of said capacitor switching device 70 are made using low-voltage detection means and field-effect transistors, more particularly N-channel or P-channel MOSFETs, in order to avoid overloading. said capacitors when they have reached their charging voltage, the power supply of the capacitor switching device being cut off.
  • This capacitor switching device 70 furthermore has switching means, made by field effect transistors, more particularly of the N-channel or P-channel MOSFET type, referenced T8N, T8P and T2A in FIGS. 3A and 3B.
  • Said switching means have, for the purposes of this capacitor switching device 70, particularly fast switching speeds, in particular to have the minimum of pressure drop across the capacitors.
  • the operation of the capacitor switching device is illustrated in FIGS. AA and 4B.
  • the number of capacitors is set at two, but this capacitor switching device 70 may comprise more than one pair of capacitors of the moment that the charging voltage supplied by the means for transforming an external energy 42 is provided accordingly.
  • FIG. 4A represents the series circuit of the capacitor switching device 70.
  • the switching means T8N and T8P being open and T2A closed, the capacitors C1 and CZ are fed in series by a voltage U, resulting from the transformation means of FIG. an external energy 42.
  • This series assembly is intended to perform the charging of said capacitors C1 and C2.
  • the protection means 72 of said capacitor switching device 70 switch off the power supply from the means for transforming an external energy 42 and, as illustrated in FIG. 4B, the T2A switching means open, which causes the closing of the switching means T8N and T8P.
  • the capacitor switching device 70 has stored the electrical energy, and the two capacitors C1 and C2 are now connected in parallel to discharge their capacity and start delivering a voltage V substantially equal to half of said voltage U , the regulation means 64 of the power supply.
  • the electrical supply thus produced provides the electrical power required by the other components, in particular the measuring means 18, the means for executing the instructions 40, in particular a microprocessor, and the synchronization means 58, in particular an integrated time clock circuit.
  • Programmable real, storage means 32 including EEPROM type, the temperature measuring means 60, including a circuit incorporating a temperature probe, the communication means 30, including an ultra-high transceiver integrated circuit frequencies corresponding to the IEEE802.15.4 standard, called ZigBee, operating at low voltage, and secondary communication means 68, in particular an optical transceiver for transmitting and receiving information and instructions.
  • the storage means 32, in particular of the EEPROM type are used to store the information specific to each measurement point, whether it is information derived from brightness measurements, temperature measurements, or any other measurements. , as well as data sent to the means for executing the instructions 40. The data thus stored can be reused for the establishment of an ignition reference curve for example, or for the learning of the measurement means.
  • Learning means the establishment of a database of measurements obtained by the various measurement means available in an autonomous unit 20 and available in the storage means 32, this database making it possible to establish a map said measurements on a time scale for example being able to be hourly, daily, weekly or allowing to cross the different measurements between them and to deduce from them possible relations.
  • the advantages provided by the network of autonomous units 20 are dependent on a communication protocol, more particularly radio, adapted to the low voltage operating mode of the autonomous units 20. Because of the autonomy of the autonomous units 20, this protocol of communication is at low level of energy consumption.
  • This low power consumption is based on the programmable synchronization means 58 which define a time-stamped operation of the autonomous units 20, based on a periodic request / response method of each autonomous unit 20, this communication protocol therefore being time-stamped.
  • the synchronization means 58 are in the form of a real-time clock integrated circuit whose frequency deviations of the crystal oscillator due to temperature variations can be compensated, thereby obtaining a reliable time stamping. with negligible drift over time.
  • the communication protocol provides a periodic synchronization time interval during which the autonomous units synchronize two by two thanks to the programmable synchronization means 58, the synchronization means 58 enabling the autonomous units to synchronize with each other or with the coordinator, and through their means of communication 30.
  • the protocol is bidirectional in the sense that the transmission of the signal is performed downward then rising on the network of autonomous units 20.
  • the protocol defines a communication method carried out so that, during the downward phase, the signal transmitted by the communication means 28 of the coordinator, in particular a radio transceiver, is retransmitted to the communication means 30 of a first signal.
  • autonomous unit 20 in particular the one located the most upstream of the network close to the coordo nnateur, then successively autonomous unit 20 in autonomous unit down on the network, to the last autonomous unit 20 of said network, located the most downstream, and, during the rising phase succeeding a downward phase, the signal goes back the upstream downstream network, from autonomous unit 20 to autonomous unit, until returning to the coordinator.
  • the autonomous unit 20 knows when it should be in reception, referenced R in Figure 5.
  • the means of communication are listening and are therefore likely to receive a signal from a transmitter and the instructions it contains.
  • the communication means By following the reception period R and after the end of the reception of the signal, the communication means in turn transmit the signal, during a transmission period EM, to the communication means of the autonomous unit being in a period of reception.
  • the execution means 40 carry out the instructions transmitted in the signal, in particular measurements, then during the emission period EM of the rising phase M, they transmit the data corresponding to the instructions to the means of communication 30.
  • the protocol is bidirectional with beacons.
  • the protocol is tagged as each autonomous unit transmits a beacon, or message, to a specific EM transmission period, bearing the network identifier, the transmitter identifier, the number of the time slot , date and time.
  • the beacon is the means used by each autonomous unit 20 to synchronize with another autonomous unit 20 or the coordinator, said synchronization being effected in pairs.
  • the temporal accuracy of the emission period EM is essential to prevent sudden variations causing the stall of the tail of the network. Said accuracy of the emission period EM depends on the clock stability of each autonomous unit 20, this stability being obtained by compensating in temperature by the temperature measuring means 60 the high-precision clock defined by the synchronization means 58 programmable.
  • the communication protocol uses several signal transmission frequencies, a frequency however being reserved to synchronize or resynchronize the autonomous units 20 between them. This synchronization frequency is used to create a signaling link which is used to re-synchronize an autonomous unit 20.
  • an autonomous unit 20 In case of isolation of an autonomous unit 20, it performs its own search synchronization. An autonomous unit 20 declares itself isolated when it no longer sees a tag several times in a row. There are three modes synchronization search from self declaration of isolation. A quick mode that consists in remaining in the reception period for the isolated autonomous unit 20 after the rising phase M to find the signaling link signaling phase, the probability of finding the signaling beacon being directly related to the quality of the signal. Beyond the time of presence of the signaling link, since it is useless to continue the search, the isolated autonomous unit 20 then goes into the slow search mode which consists in waiting for the next reception transmission cycle to scan the semaphore channel in a time equivalent to that of the fast search.
  • the last search mode is established at each time slot where an autonomous unit 20 having lost the channel attached thereto will perform a close sequence to the second of synchronization cycles for one minute to give an order of ideas.
  • a child parent relationship is created between the autonomous unit 20 in research, called child, and the autonomous unit 20 or the coordinator, called said parent, who accepts it as part of the network.
  • the child inscribes in his means of storage 32 the coordinates of his parent.
  • an autonomous unit 20 is completely isolated and can then erase the coordinates stored by the storage means 32 to perform a connection procedure to the network, this procedure involved in the case of the disappearance of the parent corresponding to a destruction or replacement of an autonomous unit 20.
  • Attachment to a parent is a stable privileged relationship. There is no reason to change parents.
  • a parent standalone unit can accept multiple child standalone units as part of the manufacturing parameters. Each autonomous 20 child unit is identified separately. All stand-alone children's units listen to the same parent stand-alone unit during the same time interval. The different autonomous units 20 children of the same parent unit 20 then work on their own time interval and do not see each other.
  • the invention is obviously not limited to the embodiment shown and described above, but covers all variants, particularly with respect to the shapes, dimensions and materials of the various elements.

Landscapes

  • Arrangements For Transmission Of Measured Signals (AREA)
  • Communication Control (AREA)

Abstract

The invention relates to an autonomous unit (20) comprising at least one measuring means (18), autonomous supply means (38), and means for transforming external energy into electrical energy, especially a photovoltaic panel which uses solar energy, can be incorporated into a network of autonomous units, and can communicate the measured value(s) by communication means (30). Said autonomous unit is characterised in that it comprises means which are used to store the electrical energy and are provided with a device for switching at least two capacitors, protected by protection means.

Description

UNITE AUTONOME POUR UN RESEAU DE CAPTEURS DE MESURE, RESEAU INCORPORANT LADITE UNITE AUTONOME ET PROTOCOLE DE AUTONOMOUS UNIT FOR A NETWORK OF MEASURING SENSORS, NETWORK INCORPORATING SAME AUTONOMOUS UNIT AND PROTOCOL OF
COMMUNICATION DUDIT RESEAUCOMMUNICATION OF THE SAID NETWORK
La présente invention se rapporte à une unité autonome pour un réseau de capteurs de mesure, à un réseau incorporant au moins une unité autonome ainsi qu'à un protocole de communication dudit réseau.The present invention relates to an autonomous unit for a measurement sensor network, to a network incorporating at least one autonomous unit and to a communication protocol of said network.
Généralement, la précision d'une mesure sur une zone géographique relativement étendue est liée au nombre de points de mesure.Typically, the accuracy of a measurement over a relatively large geographic area is related to the number of measurement points.
Dans le domaine de l'éclairage public, la commande d'allumage ou d'extinction de l'éclairage public pour un secteur d'une ville peut être déclenchée à partir d'une valeur mesurée par un seul capteur de luminosité, notamment une cellule photovoltaïque, mesurant l'ensoleillement. La valeur mesurée est souvent une approximation grossière de la luminosité de la zone à éclairer qui ne permet pas d'optimiser la gestion de l'éclairage.In the field of public lighting, the control of lighting or extinguishing of the public lighting for a sector of a city can be triggered from a value measured by a single brightness sensor, in particular a cell photovoltaic, measuring sunshine. The measured value is often a rough approximation of the brightness of the area to be illuminated which does not allow to optimize the management of the lighting.
Pour augmenter la précision, une solution consiste à augmenter le nombre de points de mesure pour obtenir une valeur mesurée plus représentative. Toutefois, cette solution nécessite l'installation d'un réseau f ilaire pour assurer l'alimentation en énergie électrique des capteurs de mesure et la transmission des données. Or1 l'installation d'un réseau f ilaire est relativement coûteuse. Dans certains cas, elle peut même s'avérer impossible.One solution to increase accuracy is to increase the number of measurement points to obtain a more representative measured value. However, this solution requires the installation of a f ilaire network to ensure the power supply of the measurement sensors and the transmission of data. Or 1 installing a network ilar f is relatively expensive. In some cases, it may even be impossible.
Lorsque les capteurs de mesure viennent se greffer sur un réseau disposant d'une d'alimentation en énergie électrique, par exemple un réseau de lampadaires d'un éclairage public, il est possible de capter une partie de cette énergie électrique pour alimenter les capteurs de mesure, et utiliser ledit réseau d'alimentation pour transmettre les données en utilisant la méthode des courants porteurs. Cependant, cette solution n'est pas satisfaisante car elle induit une surconsommation et les mesures transmises peuvent être entachées d'erreur. En l'absence d'un réseau f ilaire existant, même si certains capteurs peuvent être communicants et transmettre les données par le biais de moyens de communication sans fil, l'alimentation en énergie électrique desdits capteurs de mesure demeure problématique.When the measurement sensors are grafted onto a network having a power supply, for example a street lamp network of a public lighting, it is possible to capture a portion of this electrical energy to power the sensors of measure, and use said network power supply to transmit the data using the carrier current method. However, this solution is not satisfactory because it induces overconsumption and the transmitted measurements can be tainted by error. In the absence of an existing network, even if some sensors can be communicating and transmit the data via wireless communication means, the power supply of said measurement sensors remains problematic.
On peut prévoir des piles ou des batteries pour assurer l'autonomie desdits capteurs. Cependant, cette solution n'est pas satisfaisante car ces moyens d'alimentation ont une durée de vie limitée, ce qui induit une maintenance importante pour assurer leur remplacement. De plus, les piles et batteries sont généralement une source de pollution importante.Batteries or batteries can be provided to ensure the autonomy of said sensors. However, this solution is not satisfactory because these power supply means have a limited life, which induces significant maintenance to ensure their replacement. In addition, batteries are generally a source of significant pollution.
Aussi, la présente invention vise à pallier les inconvénients de l'art antérieur en proposant une unité autonome incorporant au moins un capteur de mesure, permettant de multiplier les points de mesure, ne nécessitant pas l'installation d'un réseau f ilaire dédié et/ou une maintenance importante et utilisant une énergie renouvelable.Also, the present invention aims at overcoming the disadvantages of the prior art by proposing an autonomous unit incorporating at least one measurement sensor, making it possible to multiply the measurement points, not requiring the installation of a dedicated network and / or major maintenance and using renewable energy.
A cet effet, l'invention a pour objet une unité autonome incorporant au moins un moyen de mesure, comprenant des moyens d'alimentation autonome comprenant des moyens de transformation d'une énergie extérieure en énergie électrique, notamment un panneau photovoltaïque utilisant l'énergie solaire, et susceptible de s'intégrer dans un réseau d'unités autonomes et de communiquer grâce à des moyens de communication la ou les valeurs mesurées, caractérisée en ce qu'elle comprend des moyens de stockage de ladite énergie électrique comprenant un dispositif à commutations de condensateurs, au moins deux condensateurs, protégé par des moyens de protection. D'autres caractéristiques et avantages ressortïront de la description qui va suivre de l'invention, description donnée à titre d'exemple uniquement, en regard des dessins annexés sur lesquels :For this purpose, the subject of the invention is an autonomous unit incorporating at least one measurement means, comprising autonomous power supply means comprising means for transforming an external energy into electrical energy, in particular a photovoltaic panel using the energy solar, and capable of integrating into a network of autonomous units and communicating by means of communication the measured value or values, characterized in that it comprises means for storing said electrical energy comprising a switching device capacitors, at least two capacitors, protected by means of protection. Other features and advantages will become apparent from the following description of the invention, description given by way of example only, with reference to the accompanying drawings in which:
- la figure 1 représente la composition d'une unité autonome selon un mode de réalisation,FIG. 1 represents the composition of an autonomous unit according to one embodiment,
- la figure 2 est une vue en perspective illustrant les éléments composant une unité autonome,FIG. 2 is a perspective view illustrating the elements composing an autonomous unit,
- les figures 3A et 3B représentent le circuit imprimé d'une unité autonome selon son mode de réalisation préférentiel, - les figures AA et 4B illustrent le procédé de commutation Parallèle/Série,FIGS. 3A and 3B show the printed circuit of an autonomous unit according to its preferred embodiment, FIGS. AA and 4B illustrate the Parallel / Series switching method,
- la figure 5 représente le protocole de communication.- Figure 5 shows the communication protocol.
La présente invention est maintenant décrite appliquée à la gestion d'un réseau d'éclairage public. Néanmoins, l'invention peut avoir d'autres applications pour lesquelles, il est nécessaire de disséminer plusieurs capteurs de mesure sur une zone géographique.The present invention is now described applied to the management of a public lighting network. Nevertheless, the invention may have other applications for which it is necessary to disseminate several measurement sensors over a geographical area.
Afin d'affiner la mesure, notamment la mesure de luminosité pour commander l'allumage ou l'extinction des points lumineux d'un réseau d'éclairage, on prévoit un réseau composé d'au moins une unité autonome 20 intégrant au moins un moyen 18 de mesure, notamment de la luminosité, et d'au moins un coordonnateur, susceptible de communiquer directement ou indirectement avec lesdites unités autonomes 20 et de collecter les valeurs mesurées. Dans le cas de la gestion de l'éclairage public, le coordonnateur est relié aux moyens de commande dudit réseau d'éclairage. Selon les variantes, l'unité autonome peut comprendre un ou plusieurs moyens de mesure, notamment tout type de capteurs ou de sondes, fonctionnant à bas voltage, lui permettant d'effectuer des mesures point par point sur un réseau équipé desdites unités autonomes 20 dans le but de communiquer, de la même manière que pour les mesures de luminosité, lesdites mesures au coordonnateur. II peut s'agir de capteurs de mesure de pollution, sonore par exemple, d'hygrométrie, de température ou autre, la couverture de mesures point par point pouvant être très dense et facile à mettre en œuvre. L'unité autonome 20 est indépendante d'un réseau f ilaire, notamment du circuit de puissance pour alimenter en énergie électrique les différents points lumineux de l'éclairage public, ce qui ne provoque pas de surconsommations du réseau d'éclairage lors du fonctionnement du réseau d'unités autonomes 20. De plus, les mesures ne subissent aucune perturbation liée à d'éventuelles interférences sur ledit circuit de puissance lors de la communication avec le coordonnateur, comme peuvent le subir, par exemple, les systèmes à courant porteur.In order to refine the measurement, in particular the brightness measurement for controlling the switching on or off of the light points of a lighting network, a network consisting of at least one autonomous unit 20 incorporating at least one means is provided. 18 measurement, including brightness, and at least one coordinator, capable of communicating directly or indirectly with said autonomous units 20 and collect the measured values. In the case of management of public lighting, the coordinator is connected to the control means of said lighting network. According to the variants, the autonomous unit may comprise one or more measuring means, in particular any type of sensor or probe, operating at low voltage, enabling it to perform point-by-point measurements on a network equipped with said autonomous units 20 in the purpose of communicating, in the same way as for the measurements of brightness, said measurements to the coordinator. It may be sensors measuring pollution, for example sound, humidity, temperature or other, the coverage of point-by-point measurements can be very dense and easy to implement. The autonomous unit 20 is independent of a f ilaire network, in particular of the power circuit for supplying electrical energy to the various light points of the public lighting, which does not cause overconsumption of the lighting network during the operation of the In addition, the measurements do not suffer any disturbance related to any interference on said power circuit during communication with the coordinator, as may be experienced by, for example, powerline systems.
Selon l'invention, comme illustré en figures 1 et 2, chaque unité autonome 20 dispose d'au moins un moyen 18 de mesure, notamment de moyens de mesure de luminosité, de moyens de communication 30, susceptibles de communiquer avec le coordonnateur et/ou une autre unité autonome 20 et des moyens d'alimentation autonome 38.According to the invention, as illustrated in FIGS. 1 and 2, each autonomous unit 20 has at least one measuring means 18, in particular means for measuring brightness, communication means 30, capable of communicating with the coordinator and / or another autonomous unit 20 and autonomous power supply means 38.
De préférence, une unité autonome 20 comprend un boîtier étanche 36 dans lequel sont disposés :Preferably, an autonomous unit 20 comprises a sealed housing 36 in which are arranged:
- des moyens de communication 30 ,communication means 30,
- des moyens d'alimentation autonome 38, - au moins un moyen 18 de mesure,autonomous supply means 38, at least one measuring means 18,
- des moyens 58 de synchronisation,synchronization means 58,
- et éventuellement,- and eventually,
- des moyens de mise en mémoire 32,storage means 32,
- des moyens d'exécution d'instructions 40, - des moyens de commande d'une unité externe.means for executing instructions 40, means for controlling an external unit.
Dans une unité autonome 20, les moyens d'alimentation autonome 38 fournissent l'énergie nécessaire aux autres composants. Selon une caractéristique de l'invention, les moyens d'alimentation autonome 38 comprennent des moyens de transformation d'une énergie extérieure 42 renouvelable, notamment solaire, en énergie électrique et des moyens de stockage 44 de ladite énergie électrique. En complément ou en alternative, le dispositif pourrait utiliser l'énergie éolienne ou toute autre énergie renouvelable. Ainsi, l'unité autonome 20 fonctionne grâce aux énergies renouvelables de façon à s'inscrire dans le domaine du développement durable et de l'écologie urbaine. Dans l'application relative à la gestion de l'éclairage public, les moyens de transformation d'une énergie extérieure 42, notamment un panneau photovoltaïque, transformant l'énergie solaire en énergie électrique, peuvent être utilisés en tant que moyens de mesure de luminosité et de moyens de détection de défaut de fonctionnement et d'allumage d'un point lumineux. Comme illustré sur la figure 2, chaque unité autonome 20 est équipée d'un boîtier 36 comportant une partie supérieure 48 et une partie inférieure 50 entre lesquelles sont prévus des moyens d'étanchéité 46, notamment un joint en silicone. La partie supérieure 48 du boîtier 36 comprend une paroi transparente 52 derrière laquelle viennent se positionner les moyens de transformation d'une énergie extérieure 42. Pour compléter l'étanchéité du boîtier 36 et plus particulièrement pour lui assurer une étanchéité durable, étant donné la durée de vie nécessaire, notamment pour un dispositif destiné à s'installer sur un réseau d'éclairage public, une soupape monodirectionnelle 54 est disposée sur une des faces du boîtier 36, l'ouverture de ladite soupape se faisant vers l'extérieur du boîtier 36. Après assemblage des différents composants de l'unité autonome 20 et en suivant la fermeture du boîtier 36 avec disposition des moyens d'étanchéité 46 entre les parties supérieure 48 et inférieure 50, on vient chauffer l'unité autonome 20 à une température sensiblement supérieure à la température maximale d'utilisation. Cette montée en température fait augmenter la pression de l'air à l'intérieur dudit boîtier 36, et plus particulièrement à une pression supérieure à la pression de service de la soupape 54. Cette montée en température a donc pour effet d'évacuer une partie de l'air contenu dans le boîtier 36, qui par la suite, en se refroidissant, va être sensiblement sous vide et donc à étanchéité renforcée. Ce phénomène de mise sous vide peut de plus se réitérer et donc se régénérer lors de la saison estivale par exemple. Avantageusement, le boîtier 36 comprend des moyens de fixation 26 adaptés au support sur lequel est fixée l'unité autonome 20. Le boîtier 36 peut prendre diverses formes, une forme sphérique étant préférentiel lement recommandée pour la discrétion des unités autonomes 20. Comme l'illustrent les figures 3A et 3B, ledit boîtier 36 contient un circuit imprimé 56 regroupant les moyens de stockage de l'énergie électrique 44, les moyens de communication 30 de l'unité autonome 20, les moyens de synchronisation 58, ainsi qu'éventuellement les moyens d'exécution des instructions 40 et les moyens de mise en mémoire 32, des moyens de calibrage 62, des moyens de régulation de l'alimentation électrique 64, des moyens de mesure de température 60, des moyens secondaires de communication 68. Afin de permettre le fonctionnement des différents éléments situés sur le circuit imprimé 56, la tension fournie par les moyens de stockage de l'énergie électrique 44 doit être régulée de manière à fournir une alimentation stable auxdits différents éléments du circuit imprimé 56.In an autonomous unit 20, the autonomous power supply means 38 provide the energy required by the other components. According to one characteristic of the invention, the autonomous power supply means 38 comprise means for transforming an external renewable energy 42, in particular solar energy, into electrical energy and storage means 44 for said electrical energy. In addition or alternatively, the device could use wind power or any other renewable energy. Thus, the autonomous unit 20 operates thanks to renewable energies so as to register in the field of sustainable development and urban ecology. In the application relating to the management of public lighting, the means for transforming an external energy source 42, in particular a photovoltaic panel, transforming the solar energy into electrical energy, can be used as means for measuring brightness and means for detecting malfunction and lighting of a light point. As illustrated in Figure 2, each autonomous unit 20 is equipped with a housing 36 having an upper portion 48 and a lower portion 50 between which are provided sealing means 46, in particular a silicone seal. The upper portion 48 of the housing 36 comprises a transparent wall 52 behind which are positioned the means for transforming an external energy 42. To complete the sealing of the housing 36 and more particularly to ensure a durable seal, given the duration of life required, especially for a device intended to be installed on a public lighting network, a one-way valve 54 is disposed on one of the faces of the housing 36, the opening of said valve being towards the outside of the housing 36 After assembling the various components of the autonomous unit 20 and following the closure of the housing 36 with the provision of the sealing means 46 between the upper 48 and lower 50 parts, the autonomous unit 20 is heated to a substantially higher temperature. at the maximum temperature of use. This rise in temperature increases the pressure air inside said housing 36, and more particularly at a pressure greater than the operating pressure of the valve 54. This rise in temperature therefore has the effect of evacuating a portion of the air contained in the housing 36, which subsequently, while cooling, will be substantially under vacuum and thus reinforced sealing. This evacuation phenomenon can also be reiterated and therefore regenerate during the summer season for example. Advantageously, the housing 36 comprises fastening means 26 adapted to the support on which is fixed the autonomous unit 20. The housing 36 can take various forms, a spherical shape being preferably recommended for the discretion of the autonomous units 20. As the 3A and 3B, said housing 36 contains a printed circuit 56 comprising the electrical energy storage means 44, the communication means 30 of the autonomous unit 20, the synchronization means 58, as well as possibly the means for executing instructions 40 and storage means 32, calibration means 62, power supply regulation means 64, temperature measuring means 60, secondary communication means 68. allow the operation of the various elements located on the printed circuit 56, the voltage supplied by the electrical energy storage means 44 must be regulated in order to provide a stable supply to said various elements of the printed circuit board 56.
A ce titre, les moyens de stockage de l'énergie 44 sont relayés par les moyens de régulation 64 de l'alimentation électrique. Lesdits moyens de régulation 64 de l'alimentation électrique sont notamment réalisés à l'aide d'un convertisseur continu/continu.As such, the energy storage means 44 are relayed by the regulation means 64 of the power supply. Said regulation means 64 of the power supply are in particular made using a DC / DC converter.
Selon les variantes, des moyens de calibrage 62 peuvent être utilisés pour calibrer la valeur de la tension fournie par les moyens de transformation d'une énergie extérieure 42, tension qui est directement proportionnelle à l'ensoleillement. Ces moyens de calibrage 62 sont notamment réalisés à l'aide d'un pont diviseur de tension.According to the variants, calibration means 62 may be used to calibrate the value of the voltage supplied by the means for transforming an external energy 42, which voltage is directly proportional to sunshine. These calibration means 62 are in particular made using a voltage divider bridge.
Les moyens de stockage de l'énergie électrique 44 sont composés d'un dispositif à commutation de condensateurs 70 et de moyens de protection 72 dudit dispositif à commutation de condensateurs 70.The electrical energy storage means 44 are composed of a capacitor switching device 70 and protection means 72 of said capacitor switching device 70.
Les moyens de protection 72 du dispositif à commutation de condensateurs 70 sont commandés par un ordre de commande issu des moyens d'exécution des instructions 40, ordre de commande qui permet la commutation dudit dispositif entre un montage série du dispositif à commutation de condensateurs 70, ayant au moins deux condensateurs, et un montage parallèle dudit dispositif à commutation de condensateurs 70.The protection means 72 of the capacitor switching device 70 are controlled by a control command from the means for executing instructions 40, a control command which allows the switching of said device between a serial circuit of the capacitor switching device 70, having at least two capacitors, and parallel mounting of said capacitor switching device 70.
Les moyens de protection 72 dudit dispositif à commutation de condensateurs 70 sont réalisés à l'aide de moyens de détection de bas voltage et de transistors à effet de champ, plus particulièrement de type MOSFET à canal N ou P, afin d'éviter une surcharge desdits condensateurs lorsqu'ils ont atteint leur tension de charge, l'alimentation du dispositif à commutation de condensateurs étant coupée.The protection means 72 of said capacitor switching device 70 are made using low-voltage detection means and field-effect transistors, more particularly N-channel or P-channel MOSFETs, in order to avoid overloading. said capacitors when they have reached their charging voltage, the power supply of the capacitor switching device being cut off.
Ce dispositif à commutation de condensateurs 70 dispose en outre de moyens de commutation, réalisés par des transistors à effet de champ, plus particulièrement de type MOSFET à canal N ou P, référencés T8N, T8P et T2A sur les figures 3A et 3B. Lesdits moyens de commutation disposent pour les besoins de ce dispositif à commutation de condensateurs 70, de vitesses de commutation particulièrement rapides, notamment pour avoir le minimum de pertes de charge au niveau des condensateurs. Le fonctionnement du dispositif à commutation de condensateurs est illustré en figures AA et 4B. Pour le mode de réalisation préféré de l'unité autonome 20, le nombre de condensateurs est fixé à deux, mais ce dispositif à commutation de condensateurs 70 peut comprendre plus d'une paire de condensateurs du moment que la tension de charge fournie par les moyens de transformation d'une énergie extérieure 42 est prévue en conséquence.This capacitor switching device 70 furthermore has switching means, made by field effect transistors, more particularly of the N-channel or P-channel MOSFET type, referenced T8N, T8P and T2A in FIGS. 3A and 3B. Said switching means have, for the purposes of this capacitor switching device 70, particularly fast switching speeds, in particular to have the minimum of pressure drop across the capacitors. The operation of the capacitor switching device is illustrated in FIGS. AA and 4B. For the preferred embodiment of the standalone unit 20, the number of capacitors is set at two, but this capacitor switching device 70 may comprise more than one pair of capacitors of the moment that the charging voltage supplied by the means for transforming an external energy 42 is provided accordingly.
La figure 4A représente le montage série du dispositif à commutation de condensateurs 70. Les moyens de commutation T8N et T8P étant ouverts et T2A fermé, les condensateurs Cl et CZ se retrouvent alimentés en série par une tension U, issue des moyens de transformation d'une énergie extérieure 42. Ce montage série est destiné à effectuer la charge desdits condensateurs Cl et C2. Lorsque la tension de charge est atteinte, les moyens de protection 72 dudit dispositif à commutation de condensateurs 70 coupent l'alimentation issue des moyens de transformation d'une énergie extérieure 42 et, comme illustré sur la figure 4B, les moyens de commutation T2A s'ouvrent, ce qui provoque la fermeture des moyens de commutation T8N et T8P. Le dispositif à commutation de condensateurs 70 a emmagasiné l'énergie électrique, et les deux condensateurs Cl et C2 sont désormais montés en parallèle pour effectuer la décharge de leur capacité et commencer à délivrer une tension V, sensiblement égale à la moitié de ladite tension U, aux moyens de régulation 64 de l'alimentation électrique.FIG. 4A represents the series circuit of the capacitor switching device 70. The switching means T8N and T8P being open and T2A closed, the capacitors C1 and CZ are fed in series by a voltage U, resulting from the transformation means of FIG. an external energy 42. This series assembly is intended to perform the charging of said capacitors C1 and C2. When the charging voltage is reached, the protection means 72 of said capacitor switching device 70 switch off the power supply from the means for transforming an external energy 42 and, as illustrated in FIG. 4B, the T2A switching means open, which causes the closing of the switching means T8N and T8P. The capacitor switching device 70 has stored the electrical energy, and the two capacitors C1 and C2 are now connected in parallel to discharge their capacity and start delivering a voltage V substantially equal to half of said voltage U , the regulation means 64 of the power supply.
L'alimentation électrique ainsi réalisée fournit l'énergie électrique nécessaire aux autres composants, notamment aux moyens de mesure 18, aux moyens d'exécution des instructions 40, notamment un microprocesseur, aux moyens de synchronisation 58, notamment un circuit intégré d'horloge temps réel programmable, aux moyens de mise en mémoire 32, notamment de type EEPROM, aux moyens de mesure de température 60, notamment un circuit intégrant une sonde de température, aux moyens de communication 30, notamment un circuit intégré émetteur-récepteur d'ultra hautes fréquences correspondant à la norme IEEE802.15.4, dite ZigBee, fonctionnant à basse tension, et des moyens secondaires de communication 68, notamment un émetteur-récepteur optique destiné à l'émission-réception des informations et des instructions. Les moyens de mise en mémoire 32, notamment de type EEPROM, sont utilisés pour stocker les informations propres à chaque point de mesure, qu'il s'agisse d'informations issues des mesures de luminosité, de mesures de température, ou toutes autres mesures, ainsi que des données envoyées aux moyens d'exécution des instructions 40. Les données ainsi stockées peuvent être réutilisées pour l'établissement d'une courbe de référence d'allumage par exemple, ou pour l'apprentissage des moyens de mesures.The electrical supply thus produced provides the electrical power required by the other components, in particular the measuring means 18, the means for executing the instructions 40, in particular a microprocessor, and the synchronization means 58, in particular an integrated time clock circuit. Programmable real, storage means 32, including EEPROM type, the temperature measuring means 60, including a circuit incorporating a temperature probe, the communication means 30, including an ultra-high transceiver integrated circuit frequencies corresponding to the IEEE802.15.4 standard, called ZigBee, operating at low voltage, and secondary communication means 68, in particular an optical transceiver for transmitting and receiving information and instructions. The storage means 32, in particular of the EEPROM type, are used to store the information specific to each measurement point, whether it is information derived from brightness measurements, temperature measurements, or any other measurements. , as well as data sent to the means for executing the instructions 40. The data thus stored can be reused for the establishment of an ignition reference curve for example, or for the learning of the measurement means.
On désigne par apprentissage, l'établissement d'une base de données de mesures obtenues par les différents moyens de mesure disponibles dans une unité autonome 20 et disponibles dans les moyens de mise en mémoire 32, cette base de données permettant d'établir une cartographie desdites mesures à une échelle temporelle par exemple pouvant être horaire, quotidienne, hebdomadaire ou permettant de croiser les différentes mesures entre elles et d'en déduire d'éventuelles relations. Les avantages procurés par le réseau d'unités autonomes 20 sont dépendants d'un protocole de communication, plus particulièrement radio, adapté au mode de fonctionnement à basse tension des unités autonomes 20. De par l'autonomie des unités autonomes 20, ce protocole de communication est à faible niveau de consommation d'énergie. Cette faible consommation d'énergie est basée sur les moyens de synchronisation 58 programmable qui définissent un fonctionnement horodaté des unités autonomes 20, basé sur une méthode de requête/réponse périodique de chaque unité autonome 20, ce protocole de communication étant donc horodaté. De préférence, les moyens de synchronisation 58 se présentent sous la forme d'un circuit intégré à horloge temps réel dont les déviations de fréquences de l'oscillateur à quartz dues aux variations de température peuvent être compensées, permettant ainsi d'obtenir un horodatage fiable avec une dérive négligeable dans le temps. De manière à synchroniser les unités autonomes 20 entre elles, le protocole de communication prévoit un intervalle de temps périodique de synchronisation durant lequel les unités autonomes se synchronisent deux à deux grâce aux moyens de synchronisation 58 programmable, les moyens de synchronisation 58 permettant aux unités autonomes de se synchroniser entre elles ou avec le coordonnateur, et par le biais de leurs moyens de communication 30. Le protocole est bidirectionnel dans le sens où la transmission du signal s'effectue de façon descendante puis montante sur le réseau d'unités autonomes 20. Le protocole définit une méthode de communication réalisée de manière à ce que, lors de la phase descendante, le signal émis par les moyens de communication 28 du coordonnateur, notamment un émetteur-récepteur radio, soit retransmis aux moyens de communication 30 d'une première unité autonome 20, notamment celle située le plus en amont du réseau à proximité du coordonnateur, puis successivement d'unité autonome 20 en unité autonome en descendant sur le réseau, jusqu'à la dernière unité autonome 20 dudit réseau, située la plus en aval, et, lors de la phase montante succédant une phase descendante, le signal remonte le réseau d'aval en amont, d'unité autonome 20 en unité autonome, jusqu'à revenir au coordonnateur. Lors d'une phase montante M ou descendante D et grâce aux moyens de synchronisation 58, l'unité autonome 20 sait à quel moment elle doit se trouver en réception, référencée R en figure 5. Durant cette période de réception R, les moyens de communication se mettent en écoute et sont donc susceptibles de recevoir un signal d'un émetteur ainsi que les instructions qu'il contient. En suivant la période de réception R et après la fin de la réception du signal, les moyens de communication transmettent à leur tour le signal, durant une période d'émission EM, aux moyens de communication de l'unité autonome se trouvant en période de réception. Durant la période de réception R de la phase descendante D, les moyens d'exécution 40 effectuent les instructions transmises dans le signal, notamment des mesures, puis durant la période d'émission EM de la phase montante M, ils transmettent les données répondant aux instructions aux moyens de communication 30.Learning means the establishment of a database of measurements obtained by the various measurement means available in an autonomous unit 20 and available in the storage means 32, this database making it possible to establish a map said measurements on a time scale for example being able to be hourly, daily, weekly or allowing to cross the different measurements between them and to deduce from them possible relations. The advantages provided by the network of autonomous units 20 are dependent on a communication protocol, more particularly radio, adapted to the low voltage operating mode of the autonomous units 20. Because of the autonomy of the autonomous units 20, this protocol of communication is at low level of energy consumption. This low power consumption is based on the programmable synchronization means 58 which define a time-stamped operation of the autonomous units 20, based on a periodic request / response method of each autonomous unit 20, this communication protocol therefore being time-stamped. Preferably, the synchronization means 58 are in the form of a real-time clock integrated circuit whose frequency deviations of the crystal oscillator due to temperature variations can be compensated, thereby obtaining a reliable time stamping. with negligible drift over time. In order to synchronize the autonomous units 20 with each other, the communication protocol provides a periodic synchronization time interval during which the autonomous units synchronize two by two thanks to the programmable synchronization means 58, the synchronization means 58 enabling the autonomous units to synchronize with each other or with the coordinator, and through their means of communication 30. The protocol is bidirectional in the sense that the transmission of the signal is performed downward then rising on the network of autonomous units 20. The protocol defines a communication method carried out so that, during the downward phase, the signal transmitted by the communication means 28 of the coordinator, in particular a radio transceiver, is retransmitted to the communication means 30 of a first signal. autonomous unit 20, in particular the one located the most upstream of the network close to the coordo nnateur, then successively autonomous unit 20 in autonomous unit down on the network, to the last autonomous unit 20 of said network, located the most downstream, and, during the rising phase succeeding a downward phase, the signal goes back the upstream downstream network, from autonomous unit 20 to autonomous unit, until returning to the coordinator. During a rising phase M or downward D and thanks to the synchronization means 58, the autonomous unit 20 knows when it should be in reception, referenced R in Figure 5. During this reception period R, the means of communication are listening and are therefore likely to receive a signal from a transmitter and the instructions it contains. By following the reception period R and after the end of the reception of the signal, the communication means in turn transmit the signal, during a transmission period EM, to the communication means of the autonomous unit being in a period of reception. During the reception period R of the downward phase D, the execution means 40 carry out the instructions transmitted in the signal, in particular measurements, then during the emission period EM of the rising phase M, they transmit the data corresponding to the instructions to the means of communication 30.
Ainsi, et comme illustré sur la figure 5, le protocole est dit bidirectionnel à balises.Thus, and as illustrated in FIG. 5, the protocol is bidirectional with beacons.
Le protocole est dit à balises car chaque unité autonome émet une balise, ou message, à une période d'émission EM bien précise, portant l'identifiant du réseau, l'identifiant de l'émetteur, le numéro de l'intervalle de temps, la date et l'heure. La balise est le moyen utilisé par chaque unité autonome 20 pour effectuer sa synchronisation avec une autre unité autonome 20 ou le coordonnateur, ladite synchronisation s'effectuant par couples. La précision temporelle de la période d'émission EM est indispensable pour éviter que des variations brutales entraînent le décrochage de la queue du réseau. Ladite précision de la période d'émission EM dépend de la stabilité d'horloge de chaque unité autonome 20, cette stabilité étant obtenue en compensant en température grâce aux moyens de mesure de température 60 l'horloge de haute précision définie par les moyens de synchronisation 58 programmable. Pour augmenter le trafic de données pouvant transiter, le protocole de communication utilise plusieurs fréquences de transmission de signal, une fréquence étant toutefois réservée pour effectuer la synchronisation ou la resynchronisation des unités autonomes 20 entre elles. Cette fréquence de synchronisation est utilisée pour créer un canal sémaphore qui sert à la re-synchronisation d'une unité autonome 20.The protocol is tagged as each autonomous unit transmits a beacon, or message, to a specific EM transmission period, bearing the network identifier, the transmitter identifier, the number of the time slot , date and time. The beacon is the means used by each autonomous unit 20 to synchronize with another autonomous unit 20 or the coordinator, said synchronization being effected in pairs. The temporal accuracy of the emission period EM is essential to prevent sudden variations causing the stall of the tail of the network. Said accuracy of the emission period EM depends on the clock stability of each autonomous unit 20, this stability being obtained by compensating in temperature by the temperature measuring means 60 the high-precision clock defined by the synchronization means 58 programmable. To increase the data traffic that can pass, the communication protocol uses several signal transmission frequencies, a frequency however being reserved to synchronize or resynchronize the autonomous units 20 between them. This synchronization frequency is used to create a signaling link which is used to re-synchronize an autonomous unit 20.
En cas d'isolement d'une unité autonome 20, celle-ci effectue sa propre recherche de synchronisation. Une unité autonome 20 se déclare isolée lorsqu'elle ne voit plus de balise plusieurs fois de suite. On distingue trois modes de recherche de synchronisation à partir de l'auto déclaration d'isolement. Un mode rapide qui consiste à rester en période de réception pour l'unité autonome 20 isolée après la phase montante M pour trouver la phase de signalisation du canal sémaphore, la probabilité de trouver la balise de signalisation étant directement liée à la qualité du signal. Au delà du délai de présence du canal sémaphore, étant donné qu'il est inutile de continuer la recherche, l'unité autonome 20 isolée passe alors dans le mode de recherche lent qui consiste à attendre le prochain cycle d'émission réception pour scanner le canal sémaphore dans un délai équivalent à celui de la recherche rapide. Le dernier mode de recherche est établi à chaque tranche horaire où une unité autonome 20 ayant perdu le canal qui lui est rattaché va effectuer une séquence rapprochée à la seconde de cycles de synchronisation, pendant une minute pour donner un ordre d'idées. Lors de la première identification, une relation parent enfant se crée entre l'unité autonome 20 en recherche, dite enfant, et l'unité autonome 20 ou le coordonnateur, dite ou dit parent, qui l'accepte comme élément du réseau. Le parent inscrit dans ses moyens de mise en mémoire 32 les coordonnées de son nouvel enfant. De même l'enfant inscrit dans ses moyens de mise en mémoire 32 les coordonnées de son parent. Lors de l'isolement d'un enfant celui ci effectue une procédure dite orpheline pour retrouver son parent, la procédure de raccordement au réseau et celle de la resynchronisation étant basées sur les méthodes fixées par la norme IEEE802.15.4.In case of isolation of an autonomous unit 20, it performs its own search synchronization. An autonomous unit 20 declares itself isolated when it no longer sees a tag several times in a row. There are three modes synchronization search from self declaration of isolation. A quick mode that consists in remaining in the reception period for the isolated autonomous unit 20 after the rising phase M to find the signaling link signaling phase, the probability of finding the signaling beacon being directly related to the quality of the signal. Beyond the time of presence of the signaling link, since it is useless to continue the search, the isolated autonomous unit 20 then goes into the slow search mode which consists in waiting for the next reception transmission cycle to scan the semaphore channel in a time equivalent to that of the fast search. The last search mode is established at each time slot where an autonomous unit 20 having lost the channel attached thereto will perform a close sequence to the second of synchronization cycles for one minute to give an order of ideas. During the first identification, a child parent relationship is created between the autonomous unit 20 in research, called child, and the autonomous unit 20 or the coordinator, called said parent, who accepts it as part of the network. The parent enrolled in his means of memorizing 32 the coordinates of his new child. Similarly, the child inscribes in his means of storage 32 the coordinates of his parent. When a child is isolated, he / she performs a so-called orphan procedure to find his / her parent, the network connection procedure and the resynchronization procedure being based on the methods defined by the IEEE802.15.4 standard.
Au delà de la procédure orpheline, une unité autonome 20 se retrouve complètement isolée et peut alors effacer les coordonnées mémorisées par les moyens de mise en mémoire 32 pour effectuer une procédure de raccordement au réseau, cette procédure intervenant dans le cas de la disparition du parent correspondant à une destruction ou un remplacement d'une unité autonome 20. Le rattachement à un parent est une relation privilégiée stable. Il n'y a pas de raison pour changer de parent.Beyond the orphan procedure, an autonomous unit 20 is completely isolated and can then erase the coordinates stored by the storage means 32 to perform a connection procedure to the network, this procedure involved in the case of the disappearance of the parent corresponding to a destruction or replacement of an autonomous unit 20. Attachment to a parent is a stable privileged relationship. There is no reason to change parents.
Une unité autonome 20 parent peut accepter plusieurs unités autonomes 20 enfants, ceci faisant partie des paramètres de fabrication. Chaque unité autonome 20 enfant est identifiée séparément. Tous les unités autonomes enfants écoutent la même unité autonome 20 parent lors du même intervalle de temps. Les différentes unités autonomes 20 enfants de la même unité autonome 20 parent travaillent ensuite sur leur propre intervalle de temps et ne se voient pas. Bien entendu, l'invention n'est évidemment pas limitée au mode de réalisation représenté et décrit ci-dessus, mais en couvre au contraire toutes les variantes, notamment en ce qui concerne les formes, les dimensions et les matériaux des différents éléments. A parent standalone unit can accept multiple child standalone units as part of the manufacturing parameters. Each autonomous 20 child unit is identified separately. All stand-alone children's units listen to the same parent stand-alone unit during the same time interval. The different autonomous units 20 children of the same parent unit 20 then work on their own time interval and do not see each other. Of course, the invention is obviously not limited to the embodiment shown and described above, but covers all variants, particularly with respect to the shapes, dimensions and materials of the various elements.

Claims

REVENDICATIONS
1. Unité autonome (20) incorporant au moins un moyen de mesure (18), comprenant des moyens d'alimentation autonome (38) comprenant des moyens de transformation d'une énergie extérieure (42) en énergie électrique, notamment un panneau photovoltaïque utilisant l'énergie solaire, et susceptible de s'intégrer dans un réseau d'unités autonomes et de communiquer grâce à des moyens de communication (30) la ou les valeurs mesurées, caractérisée en ce qu'elle comprend des moyens de stockage (44) de ladite énergie électrique comprenant un dispositif à commutations de condensateurs (70), au moins deux condensateurs, protégé par des moyens de protection (72). An autonomous unit (20) incorporating at least one measuring means (18), comprising autonomous power supply means (38) comprising means for transforming an external energy (42) into electrical energy, in particular a photovoltaic panel using solar energy, and capable of integrating into a network of autonomous units and communicating by means of communication (30) the measured value or values, characterized in that it comprises storage means (44) said electrical energy comprising a capacitor switching device (70), at least two capacitors, protected by protection means (72).
2. Unité autonome selon la revendication 1, caractérisée en ce que le dispositif à commutations de condensateurs (70) comprend des moyens de commutation (T8N, T8P et T2A) commutant entre :2. autonomous unit according to claim 1, characterized in that the capacitor switching device (70) comprises switching means (T8N, T8P and T2A) switching between:
- un montage en série de condensateurs Cl et C2, alimentés en série par une tension U, issue des moyens de transformation d'une énergie extérieure (42), - et un montage en parallèle desdits condensateurs Cl et C2, les moyens de protection (72) coupant ladite alimentation issue des moyens de transformation d'une énergie extérieure (42).a series connection of capacitors C1 and C2, supplied in series by a voltage U, originating from the means for transforming an external energy (42), and a parallel connection of said capacitors C1 and C2, the protection means ( 72) cutting said power supply from the means for transforming an external energy (42).
3. Unité autonome selon l'une quelconque des revendications précédentes, caractérisée en ce qu'elle comprend des moyens de régulation (64) de l'alimentation électrique fournie par les moyens de stockage de l'énergie électrique (44).3. autonomous unit according to any one of the preceding claims, characterized in that it comprises control means (64) of the power supply provided by the electrical energy storage means (44).
4. Unité autonome selon l'une quelconque des revendications précédentes, caractérisée en ce qu'elle comprend des moyens de calibrage (62) pour calibrer la valeur de la tension fournie par les moyens de transformation d'une énergie extérieure (42). 4. autonomous unit according to any one of the preceding claims, characterized in that it comprises calibration means (62) for calibrating the value of the voltage supplied by the means for transforming an external energy (42).
5. Unité autonome selon l'une quelconque des revendications précédentes, caractérisée en ce qu'elle comprend des moyens de synchronisation (58) pour permettre un fonctionnement horodaté de ladite unité autonome.5. autonomous unit according to any one of the preceding claims, characterized in that it comprises synchronization means (58) to allow a time-stamped operation of said autonomous unit.
6. Unité autonome selon la revendication 5, caractérisée en ce qu'elle comprend des moyens de mesure de la température (60) pour ajuster les moyens de synchronisation (58) en fonction de la température mesurée.6. autonomous unit according to claim 5, characterized in that it comprises temperature measuring means (60) for adjusting the synchronization means (58) as a function of the measured temperature.
7. Unité autonome selon l'une quelconque des revendications précédentes, caractérisée en ce qu'elle comprend un boîtier dans lequel sont disposés les éléments la constituant, ledit boîtier comprenant une soupape monodirectionnelle (54) permettant d'avoir une pression de l'air à l'intérieur du boîtier (36) inférieure à la pression de l'air à l'extérieur dudit boîtier (36).7. autonomous unit according to any one of the preceding claims, characterized in that it comprises a housing in which are arranged the constituent elements, said housing comprises a one-way valve (54) for having an air pressure inside the housing (36) less than the air pressure outside said housing (36).
8. Réseau comprenant au moins une unité autonome (20) selon l'une quelconque des revendications précédentes et au moins un coordonnateur susceptible de collecter les valeurs mesurées. 8. Network comprising at least one autonomous unit (20) according to any one of the preceding claims and at least one coordinator capable of collecting the measured values.
9. Protocole de communication pour un réseau comprenant au moins une unité autonome (20) selon l'une quelconque des revendications 1 à 7 et au moins un coordonnateur, caractérisé en ce qu'il fonctionne de manière horodatée, les unités autonomes se synchronisant deux à deux, pour transmettre un signal de façon descendante puis montante sur ledit réseau d'unités autonomes et en ce que chaque unité autonome émet une balise à une période d'émission donnée, portant l'identifiant du réseau, l'identifiant de l'émetteur, le numéro de l'intervalle de temps, la date et l'heure. 9. Communication protocol for a network comprising at least one autonomous unit (20) according to any one of claims 1 to 7 and at least one coordinator, characterized in that it operates in a timestamped manner, the autonomous units synchronizing two to two, for transmitting a signal downward then rising on said network of autonomous units and in that each autonomous unit transmits a beacon to a given transmission period, carrying the network identifier, the identifier of the transmitter, the number of the time interval, the date and the time.
PCT/FR2007/050985 2006-03-22 2007-03-22 Autonomous unit for a network of measuring sensors, network comprising said autonomous unit, and communication protocol of said network WO2007107678A2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE602007002995T DE602007002995D1 (en) 2006-03-22 2007-03-22 , NETWORK WITH THIS AUTONOMOUS UNIT AND COMMUNICATION PROTOCOL OF THIS NETWORK
EP07731798A EP1997355B1 (en) 2006-03-22 2007-03-22 Autonomous unit for a network of measuring sensors, network comprising said autonomous unit, and communication protocol of said network
AT07731798T ATE447315T1 (en) 2006-03-22 2007-03-22 AUTONOMOUS UNIT FOR A NETWORK OF MEASUREMENT SENSORS, NETWORK WITH THIS AUTONOMOUS UNIT AND COMMUNICATION PROTOCOL OF THIS NETWORK

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0650987 2006-03-22
FR0650987A FR2899035B1 (en) 2006-03-22 2006-03-22 AUTONOMOUS UNIT FOR A MEASUREMENT SENSOR NETWORK, NETWORK INCORPORATING SAME AUTONOMOUS UNIT AND COMMUNICATION PROTOCOL OF SAID NETWORK

Publications (2)

Publication Number Publication Date
WO2007107678A2 true WO2007107678A2 (en) 2007-09-27
WO2007107678A3 WO2007107678A3 (en) 2007-11-08

Family

ID=37459331

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2007/050985 WO2007107678A2 (en) 2006-03-22 2007-03-22 Autonomous unit for a network of measuring sensors, network comprising said autonomous unit, and communication protocol of said network

Country Status (5)

Country Link
EP (1) EP1997355B1 (en)
AT (1) ATE447315T1 (en)
DE (1) DE602007002995D1 (en)
FR (1) FR2899035B1 (en)
WO (1) WO2007107678A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018117779A1 (en) * 2016-12-19 2018-06-28 Universite Internationale De Rabat Electronic system for telemetry and corrective maintenance for intelligent lighting

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0239653A1 (en) * 1986-03-29 1987-10-07 TELETTRA Telefonia Elettronica e Radio S.p.A. System for feeding and controlling low intensity obstruction lights
US5822200A (en) * 1997-04-21 1998-10-13 Nt International, Inc. Low level, high efficiency DC/DC converter
WO2001081166A1 (en) * 2000-04-20 2001-11-01 Chris Antico Remote synchronisation
EP1251721A1 (en) * 2001-04-04 2002-10-23 Eles Semiconductor Equipment S.P.A. Urban remote surveillance system for street lamps
GB2392326A (en) * 2002-08-20 2004-02-25 Christopher Laurie Malthouse System for monitoring street lighting
US20040124786A1 (en) * 2000-08-22 2004-07-01 Morrissey Jr Joseph F. Luminaire diagnostic and configuration identification system
EP1435678A2 (en) * 1999-06-08 2004-07-07 Lempia-Laboratoire d'Electronique, Mécanique, Pyrotechnique et Informatique Appliqué Remote administration of lighting
DE102004042093B3 (en) * 2004-08-30 2006-03-02 Pfeiffer, Ulrich, Dipl.-Ing.(FH) lamp

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0239653A1 (en) * 1986-03-29 1987-10-07 TELETTRA Telefonia Elettronica e Radio S.p.A. System for feeding and controlling low intensity obstruction lights
US5822200A (en) * 1997-04-21 1998-10-13 Nt International, Inc. Low level, high efficiency DC/DC converter
EP1435678A2 (en) * 1999-06-08 2004-07-07 Lempia-Laboratoire d'Electronique, Mécanique, Pyrotechnique et Informatique Appliqué Remote administration of lighting
WO2001081166A1 (en) * 2000-04-20 2001-11-01 Chris Antico Remote synchronisation
US20040124786A1 (en) * 2000-08-22 2004-07-01 Morrissey Jr Joseph F. Luminaire diagnostic and configuration identification system
EP1251721A1 (en) * 2001-04-04 2002-10-23 Eles Semiconductor Equipment S.P.A. Urban remote surveillance system for street lamps
GB2392326A (en) * 2002-08-20 2004-02-25 Christopher Laurie Malthouse System for monitoring street lighting
DE102004042093B3 (en) * 2004-08-30 2006-03-02 Pfeiffer, Ulrich, Dipl.-Ing.(FH) lamp

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018117779A1 (en) * 2016-12-19 2018-06-28 Universite Internationale De Rabat Electronic system for telemetry and corrective maintenance for intelligent lighting

Also Published As

Publication number Publication date
EP1997355A2 (en) 2008-12-03
DE602007002995D1 (en) 2009-12-10
FR2899035B1 (en) 2009-06-12
ATE447315T1 (en) 2009-11-15
WO2007107678A3 (en) 2007-11-08
EP1997355B1 (en) 2009-10-28
FR2899035A1 (en) 2007-09-28

Similar Documents

Publication Publication Date Title
EP1201010B1 (en) Network for remote administration of street lighting inter alia and methods to carry out said administration
US20130038358A1 (en) Wireless sensor node and method
US10582463B2 (en) Time beacons
CA2592164A1 (en) Wireless communication synchronization
FR3050602B1 (en) METHOD FOR ESTABLISHING COMMUNICATION BETWEEN A GATEWAY AND A COMMUNICATION MODULE
WO2011151609A1 (en) Network of synchronous self-contained light beacons
FR3064442A1 (en) UWB LOCATION METHOD WITH AUXILIARY CHANNEL SYNCHRONIZATION
EP3253139B1 (en) Method for synchronising nodes in a wireless sensor network
EP2260269B1 (en) System for transmitting data from a measurement sensor for remote logging with time stamping
EP0390666B1 (en) Monitoring system for industrial installations
WO2015097406A1 (en) Remote-distribution of a software update to remote-reading terminals
EP1997355B1 (en) Autonomous unit for a network of measuring sensors, network comprising said autonomous unit, and communication protocol of said network
EP2393342B1 (en) Network of synchronous standalone ground lights
BE1023429B1 (en) Long range low power network gateway
CA2840239A1 (en) Method for remotely reading fluid meters, and meter and server associated with said method
FR2899057A1 (en) METHOD FOR MANAGING A LIGHTING NETWORK AND DEVICE THEREFOR
EP3087789B1 (en) Communication synchronisation in a remote-reading apparatus
FR2928479A1 (en) METHOD OF COMMUNICATING BETWEEN A FIRST NODE AND A SECOND NODE OF A DOMOTIC INSTALLATION
WO2013057081A1 (en) Method and device for synchronizing an apparatus connected to a communication network
FR3043467A1 (en) METHOD AND SYSTEM FOR GEOLOCATION OF A BEACON BY TIMING
FR2893197A1 (en) Lampposts monitoring method for e.g. external public lighting installation, involves recording actual power consumption of lampposts based on time to establish load learning curve, and defining alarm thresholds for different time slots
FR3043468B1 (en) METHOD AND SYSTEM FOR GEOLOCATION OF A BEACON BY TIMING
EP0840185B1 (en) Communication means and method allowing a precise timing of an event
FR3083935A1 (en) SWITCHING SYSTEM FOR POWER SUPPLY BETWEEN TWO ELECTRIC BATTERIES
CA3128730A1 (en) Low-consumption hub and detector configured to communicate with this hub

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07731798

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2007731798

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE