WO2007107152A2 - Deposition of nanoscale metals, semimetals and compounds of said metals and/or semimetals on the boundary surface between a low temperature discharge and an ionic liquid - Google Patents

Deposition of nanoscale metals, semimetals and compounds of said metals and/or semimetals on the boundary surface between a low temperature discharge and an ionic liquid Download PDF

Info

Publication number
WO2007107152A2
WO2007107152A2 PCT/DE2007/000524 DE2007000524W WO2007107152A2 WO 2007107152 A2 WO2007107152 A2 WO 2007107152A2 DE 2007000524 W DE2007000524 W DE 2007000524W WO 2007107152 A2 WO2007107152 A2 WO 2007107152A2
Authority
WO
WIPO (PCT)
Prior art keywords
particles
metals
preparation
ionic liquid
derivatives
Prior art date
Application number
PCT/DE2007/000524
Other languages
German (de)
French (fr)
Other versions
WO2007107152A3 (en
Inventor
Jürgen Janek
Frank Endres
Marcus Rohnke
Sebastian A. Meiss
Original Assignee
Justus-Liebig-Universität Giessen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Justus-Liebig-Universität Giessen filed Critical Justus-Liebig-Universität Giessen
Publication of WO2007107152A2 publication Critical patent/WO2007107152A2/en
Publication of WO2007107152A3 publication Critical patent/WO2007107152A3/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/087Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J19/088Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/122Incoherent waves
    • B01J19/126Microwaves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/122Incoherent waves
    • B01J19/129Radiofrequency
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/14Making metallic powder or suspensions thereof using physical processes using electric discharge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00002Chemical plants
    • B01J2219/00042Features relating to reactants and process fluids
    • B01J2219/00047Ionic liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/0805Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • B01J2219/0807Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes
    • B01J2219/0809Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes employing two or more electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/0805Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • B01J2219/0807Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes
    • B01J2219/0822The electrode being consumed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/0805Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • B01J2219/0807Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes
    • B01J2219/0824Details relating to the shape of the electrodes
    • B01J2219/0826Details relating to the shape of the electrodes essentially linear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/0805Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • B01J2219/0807Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes
    • B01J2219/0824Details relating to the shape of the electrodes
    • B01J2219/0835Details relating to the shape of the electrodes substantially flat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/0805Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • B01J2219/0807Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes
    • B01J2219/0837Details relating to the material of the electrodes
    • B01J2219/0841Metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0869Feeding or evacuating the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0873Materials to be treated
    • B01J2219/0877Liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0873Materials to be treated
    • B01J2219/0881Two or more materials
    • B01J2219/0884Gas-liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0894Processes carried out in the presence of a plasma
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Definitions

  • the present invention relates to a method for the production of particles with diameters in the nanometer range, which consist of metals, semi-metals, metal compounds or semi-metal compounds.
  • the nanoscale particles are obtained in the case of metals and semimetals by the reduction of a suitable precursor substance with free electrons from a plasma phase (gas discharge), in the case of metal and semimetal compounds by reaction of a suitable precursor substance with particles from the plasma phase.
  • the precursor substance is dissolved for this purpose in a stable ionic liquid (low-melting organic salt) and is reduced under electric current flow on the free surface of the liquid in contact with the plasma.
  • the present invention relates to the fields of physical solid state chemistry, redox chemistry, plasma chemistry, interfacial chemistry, and material sciences.
  • Nanoparticles are used both as free particles which change their properties by admixture with another material, as well as bound to a substrate.
  • Particles with sizes in the nanometer range which consist of metals, semi-metals, metal compounds or semi-metal compounds, are used, inter alia, for the manufacture of medical instruments, microelectronic and nanoelectronic components as well as catalysts.
  • Free silver ions have an antimicrobial effect as they both block the transmembrane energy metabolism and deliver a stop code to the DNA that prevents the reproduction of the microbes.
  • instruments are partially coated with polymers to which silver nanoparticles have been added as additives.
  • Noble metal nanoparticles e.g., platinum nanoparticles
  • electrochemical catalysts examples include hydrogen oxidation, methanol oxidation and oxygen reduction.
  • the particles are bound as electrode material on a substrate or electrolyte.
  • HIT heterojunction solar cell
  • nanoparticles can also be prepared by ablation of material by a plasma and subsequent deposition on a substrate. The production of nanoparticles by deposition from the plasma phase is described, for example, in:
  • EP 1 514 845 A1 describes the plasma synthesis of metal oxide particles in the nanometer range.
  • WO 2003/096774 A1 describes catalysts and WO 2003/096382 A2 methods and devices for plasma processes.
  • a disadvantage of all mentioned processes is that they are discontinuous processes.
  • nanoparticles which are produced with the aid of the abovementioned processes are deposited on a carrier material (substrate) and are usually firmly bonded to the carrier material.
  • the present invention provides methods that can be operated continuously.
  • the reaction products are also not fixed on a carrier material. They are present as free particles in the solution and separate with time as sediment at the bottom of the reaction vessel.
  • the nanoparticles produced can be bound, if necessary, by embedding in a matrix, by adhesion or sintering processes on or on a substrate.
  • the object of the present invention is to provide alternative processes for the production of particles comprising metals, semimetals, metal compounds or semi-metal compounds with diameters in the nanometer range, which can also be operated continuously.
  • This object is achieved in accordance with the invention by dissolving at least one precursor substance in at least one ionic liquid and subsequently reducing it in a plasma phase either by free electrons or reacting with particles from the plasma phase, precursor substance meaning a salt of a metal or a metalloid and Plasma phase is generated by a homogeneous gas discharge of an inert or reactive process gas at a pressure of 1 Pa to 2000 Pa.
  • the precursor substances are salts of metals or semimetals on the one hand and inorganic or organic acids on the other hand, which have a sufficient solubility in the respective ionic liquid.
  • the solubility is sufficient if solutions of the precursor substance can be prepared in the ionic liquid at concentrations of at least 0.0001 mol / l.
  • the salts to be used are, for example, but not exhaustive, oxides, hydroxides, fluorides, chlorides, bromides, iodides, hypochlorous te, chlorites, chlorates, perchlorates, hypobromites, bromites, bromates, perbromates, hypoiodites, iodates, iodates, periodates nitrites, nitrates, sulphides, sulphites, sulphates, phosphites, phosphates, formates, acetates, oxalates, maleates, fumarates, benzoates , Bis (trifluoromethylsulfonyl) imides, tris (trifluoromethylsulfonyl) methanes, bis (trifluoromethylsulfonyl) amides and trifluoromethanesulfonates of the following metals or semimetals, if these salts exist at room temperature.
  • Alkali metals Li, Na, K, Rb,
  • - alkaline earth metals Be, Mg, Ca, Sr, Ba,
  • - earth metals Al, Ga, In, Tl
  • - metals of the 4th main group Sn, Pb
  • - metals of the 3rd subgroup Sc, Y, - metals of the 4th subgroup: Ti, Zr, Hf,
  • - Metals of the 8th subgroup Fe, Co, Ni, Ru, Rh, Pd, Os, Ir, Pt, - Lanthanides: La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, He, Tm, Yb, Lu
  • electrochemically reducible salts of the corresponding metals or semimetals are selected as precursor substances and reduced to metal or semimetal by free electrons from a plasma phase (gas discharge).
  • a plasma must be ignited with a chemically inert gas.
  • the precursor substance is dissolved for this purpose in an ionic liquid and reduced under current flow at the free surface of the liquid in contact with the plasma.
  • the free surface of the liquid is understood to be that layer of a liquid in which the pressure which is applied to this layer is just as great as the ambient atmospheric pressure Pressure, provided that the ambient atmospheric pressure is substantially constant.
  • metal compounds or semimetal compounds are produced by means of the process described, a plasma with a chemically reactive gas is produced.
  • the metal or semimetallic cations of the at least one precursor substance react with particles from the plasma to form the desired metal or semimetal compound.
  • the gas used to generate the gas discharge is an inert gas if elemental metals or elemental semimetals are to be produced, and a reactive gas if a metal compound or metalloid compound is to be produced.
  • Inert gases are selected according to the invention from the group of noble gases (helium, neon, argon, krypton, xenon) or mixtures thereof.
  • reactive gases are selected from the group oxygen, nitrogen, nitrogen monoxide, nitrogen dioxide, nitrous oxide, carbon monoxide, carbon dioxide, hydrogen, methane, ethane, fluorine, chlorine, bromine, air or mixtures thereof.
  • the gas discharge is generated according to the invention by radio waves, microwaves, direct current or alternating current.
  • a highly concentrated solution of the at least one precursor substance in the at least one ionic liquid is used.
  • the at least one precursor substance is selected such that the at least one anion of this substance is identical to at least one anion of the at least one ionic liquid.
  • a precursor substance with a chemically similar selected anion is not possible because there is no precursor substance whose anion is identical to the anion of the ionic liquid.
  • saturated solutions are used to prepare nanoparticles in a particularly efficient and economical manner.
  • ionic liquids are to be understood as meaning those ionic compounds whose melting point is less than or equal to 100 ° C. These are exemplary, but not exhaustive:
  • monosubstituted imidazolium derivatives such as, for example, 1-methylimidazolium tosylate, 1-methylimidazolium tetrafluoroborate;
  • disubstituted imidazolium derivatives such as, for example, 1,3-dimethylimidazolium methylsulfate, 1,3-dimethylimidazolium trifluoromethanesulfonate, i-ethyl-3-methylimidazolium hydrogensulfate, 1-ethyl-3-methylimidazolium octylsulfate, 1-ethyl-3- methylimidazolium thiocyanate, 1-ethyl-3-methylimidazolium p-toluenesulfonate, 1-ethyl-3-methylimidazolium chloride, 1-ethyl-3-methylimidazolium bromide, 1-ethyl-3-methylimidazolium methylsulfate, 1-ethyl-3-methylimidazolium trifluoromethanesulfonate, 1-ethyl-3-methylimidazolium hexafluorophosphate, 1-
  • Pyridinium derivative ⁇ such as, for example, N-ethylpyridinium chloride, N-ethylpyridinium bromide, N-butylpyridinium chloride, N-butylpyridinium bromide,
  • - Phosphonium derivatives such as tetrabutylphosphonium tris (pentafluoroethyl) trifluorophosphate, trihexyl (tetradecyl) phosphonium chloride, trihexyl (tetradecyl) phosphonium tetrafluoroborate, trihexyl (tetradecyl) phosphonium bis (trifluoromethylsulfonyl) imide, trihexyl (tetradecyl) phosphonium tris (pentafluoroethyl) trifluorophosphate, trihexyltetradecylphosphonium hexafluorophosphate, trihexyl (tetradecyl) phosphonium bis [oxalato (2 -)] borate, trihexyl (tetradecyl) phosphonium bis [1,2-ben2oldiolata (2 -) - O, O '
  • Ammonium derivatives such as, for example, tetramethylammonium tris (pentafluoroethyl) trifluorophosphate, tetramethylammonium bis [oxaIato (2-)] borate, tetraethylammonium tris-c pentafluoroethyldifluorophosphate, tetraethylammonium bis [1,2-benzenediolato (2-) O , O '] borate, tetraethylammonium bis [salicylato (2 -)] borate, tetraethylammonium bis [2,2'-biphenyldiolato (2-) O, O'] borate, tetraethylammonium bis [malonato (2 )] borate, tetrabutylammonium bis (trifluoromethylsulfonyl) imide,
  • Guanidinium derivatives such as, for example, guanidinium p-toluenesulfonate, guanidinium tris (pentafluoroethyl) trifluorophosphate, guanidinium trifluoromethanesulfonate, N, N, N ', N'-tetramethyl-N'-ethylguanidinium tris (pentafluoroethyl) trifluorophosphate, N, N, N ( , N'-tetramethyl-N "-ethylguanidinium trifluoromethanesulfonate, N, N, N ', N'-pentamethyl-N'-propylguanidinium trifluoromethanesulfonate, N, N, N'-N, N'-pentamethyl-N'-isopropylguanidinium trifluoromethanesulfonate, hexamethylguanidinium tris (pent
  • Isouronium derivatives such as O-methyl-N, N, N ', N'-tetramethylisouronium trifluoromethanesulfonate, O-ethyl-N, N, N', N'-tetramethylisouronium tris (pentafluoroethyl) trifluorophosphate, O-ethyl - NNN'.N'-tetramethylisouronium trifluoromethanesulfonate, S-ethyl-N, N, N ', N'-tetramethylisouronium tris (pentafluoroethyl) trifluorophosphate, S-ethyl-NNN'.N'-tetramethylisothiouronium trifluoromethanesulfonate
  • a purity level "for synthesis” is essentially sufficient for both the precursor substance and the ionic liquid, and for the removal of pure substances it is necessary to avoid contamination of the ionic liquid or the precursor substance with other reducible substances, both the precursor substance and the ionic substance Liquid is preferably anhydrous.
  • the present invention provides methods for making particles comprising metals, semi-metals, metal compounds or nanometer-sized metalloid compounds.
  • the method according to the invention comprises the following steps:
  • Preparation of a solution comprising at least one precursor substance in at least one ionic liquid, precursor substance being understood as meaning an electrochemically reducible compound of a metal or a semimetal, and the solution being produced in an evacuable device containing two electrodes or the solution after its production into an evacuable device containing two electrodes, adjusting the pressure in the evacuatable device to a value between 1 Pa and 2000 Pa,
  • the pressure in the evacuable apparatus being kept between 1 Pa and 2000 Pa,
  • ionic liquids are suitable for the processes according to the invention.
  • Conventional solvents unlike ionic liquids at room temperature, usually already have a high vapor pressure, which can not produce a sufficiently good vacuum. The latter, however, is essential for the ignition of a homogeneous gas discharge.
  • a homogeneous gas discharge is characterized by the fact that with the exception of the space charge zones, which form the walls adjacent to the plasma, on the one hand substantially equal particle concentrations prevail and on the other hand, the plasma temperatures (electron, ion and neutral particle temperature) substantially are the same size in the plasma phase.
  • the gas discharge is considered to be homogeneous as soon as the luminous appearance of the plasma appears uniformly intense and evenly colored to the human eye.
  • the plasma is homogeneous in the immediate vicinity of the ionic liquid.
  • electrochemical window is meant that region of the applied electrical voltage in which anions and cations of the ionic liquid are inert to oxidation and reduction. Depending on the substances used, the electrochemical window is up to 7 V.
  • the deposition of the nanoparticles takes place at the interface of liquid and plasma.
  • This interface thus has the function of a gaseous electrode and is thus mechanically contact-free.
  • the amount of product formed i. the amount of particles formed depends directly on the amount of electric charges that have flowed (product of current and time). The amount of product formed is so
  • the process according to the invention is operated continuously.
  • anode and cathode space are separated.
  • the educts are fed continuously; at the same time, the liquid is removed together with the sedimented products.
  • the size of the resulting particles depends on various parameters that influence the growth process of the particles. Consequently, the particle size can be controlled both by process control and by substance selection. The skilled person can adjust the particle size by appropriate optimization experiments.
  • the reaction of the metal or semimetallic cations and thus the growth of the product particles takes place exclusively in the phase boundary region between ionic liquid and plasma.
  • the downward movement of the product particles is determined only by the viscosity of the liquid, the density of the particles and the surface tension of the liquid.
  • An additional stirring action leads to a higher convection in the solution, whereby the particles are transported away from the reactive phase boundary more quickly.
  • the diameters of the product particles are correspondingly smaller.
  • the ionic liquid used as a solvent substantially does not participate in the reaction and is therefore usable for a long time, provided that no significant decomposition phenomena occur.
  • particles with diameters of 1 nm to 1000 nm can be formed.
  • the size of the particles depends as described on the process control and the selection of the substances used.
  • the size distribution of the particles in each individual implementation of the method according to the invention is essentially monodisperse and reproducible.
  • the separation of the particles formed can optionally be carried out continuously or batchwise.
  • the particles according to the invention can be used, for example, for applications in medicine, energy technology and the chemical industry. If necessary, the particles can be bound by embedding in a matrix, by adhesion or sintering processes on or on a substrate.
  • silver nanoparticles can be added to polymers used to coat medical instruments.
  • Noble metal nanoparticles are further useful as catalysts for electrochemical reactions, e.g. for the oxidation of hydrogen and methanol as well as the reduction of oxygen.
  • FIG. 1 shows the reduction of a metal or semimetal with the aid of an argon charge.
  • a metal anode (6) is in contact with the ionic liquid.
  • the anode material used is platinum.
  • an anode made of the metal to be deposited can also be used. This then dissolves gradually during the experiment.
  • the cathode (1) projecting into the plasma (2) consists of platinum.
  • argon plasma argon cations are moved by the electric field to the cathode (1) and reduced there.
  • metal cations (3) migrate in the electric field to the phase boundary with the plasma, where they are reduced by electrons originating from the plasma to the elemental metal or semimetal.
  • FIG. 2 shows the sketch of an apparatus for the discontinuous production of nanoparticles. It consists in the core of a glass vessel (16) with two
  • apply gas supply can be introduced through the valves (7, 8, 9) individual gases or gas mixtures in the experimental setup controlled.
  • the pressure- Messers (10) is also linked to the gas control unit, which allows the setting of predetermined pressures in the apparatus.
  • the precursor substance (12) dissolved in the ionic liquid is located in the lower part of the glass apparatus, the lower electrode (13) being covered by the liquid (12).
  • the high voltage source (17) serves to supply power to the electrodes.
  • Electrode (13) is anodic and the upper electrode (14) connected cathodically.
  • the reaction product is separated from the liquid after completion of the experiment outside the apparatus.
  • Figure 3 shows a structure for a continuous reaction by continuous addition of starting material and sedimentation of the product with simultaneous separation of anode and cathode space.
  • the apparatus also has an automatically controlled gas supply (18, 19, 20, 21) and a
  • the reaction vessel has a separate anode (30) and cathode (25) each.
  • the valve (26) In order to bring the liquid level in anode and cathode space to the desired level, located in the gas phase region of the apparatus, the valve (26). If required, this valve can be used to establish a connection between the gas phases of the anode and cathode compartments. Via the valve (32) are continuously the educts
  • FIG. 4 shows an apparatus for depositing nanoscale particles in a radio-frequency discharge.
  • the high voltage source is replaced by a commercially available DC voltage source (40), and around the glass body there is a copper coil (38) to which a radio frequency is applied.
  • This structure has the advantage that the introduced electrodes (37) and (43) are used exclusively for the deposition of the nanoparticles and not for the generation of the gas discharge.
  • the lower electrode consists of a platinum sheet of 1 cm 2
  • the upper electrode consists of a one-sided closed platinum hollow cathode (height 1, 5 cm, diameter 0.75 cm), with the open side facing the counter electrode in the ionic liquid see , Both electrodes are connected to a high voltage source from Heinzinger (model HNC10.000-10).
  • the lower electrode is anodically connected in the experiment, the upper electrode is cathodically connected.
  • argon purity 99.996%
  • argon purity 99.996%
  • the control is adjusted so that the apparatus has a constant pressure of 100 Pa (+/- 1%).
  • a DC discharge between the ionic liquid and the cathode is ignited by applying a voltage between the electrodes.
  • a voltage of approx. 0.5 kV is applied between the electrodes.
  • the current density at the phase boundary between plasma and ionic liquid is of the order of 1 mA / cm 2 .
  • the gas phase discharge is switched off and the resulting silver is separated in a centrifuge. Examination of the particles in the transmission electron microscope shows that they are pure silver particles, with more than 95% having a diameter in the range of 5-50 nm.
  • copper can be deposited from a solution of copper (II) trifluoromethanesulfonic dissolved in 1-butyl-3-methylimidazolium trifluoromethanesulfonate.
  • the experimental conditions are the same as those of Embodiment 1. LIST OF REFERENCE NUMBERS
  • Adjustable valve 8 Adjustable valve
  • Adjustable valve 34 Adjustable valve

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Catalysts (AREA)

Abstract

The invention relates to methods for producing particles comprising metals, semiconductors, metallic compounds or semiconductor compounds with diameters in the nanometer range. According to said methods, an electrochemically reducible precursor substance is dissolved in an ionic liquid, and is either reduced by free electrons in a plasma phase or is reacted with particles from the plasma phase. The particles obtained by the inventive method can be used, for example, as additives for polymers for coating medical instruments or as electrochemical catalysts. The particles can optionally be bound to or onto a substrate.

Description

Patentanmeldung Patent application
Abscheidung von nanoskaligen Metallen, Halbmetallen und Verbindungen dieser Metalle und/oder Halbmetalle an der Grenzfläche zwischen einer Nie-Deposition of nanoscale metals, semimetals and compounds of these metals and / or semimetals at the interface between a
dertemperaturentladung und einer ionischen Flüssigkeitdertemperaturentladung and an ionic liquid
Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von Partikeln mit Durchmessern im Nanometerbereich, die aus Metallen, Halbmetallen, Metallverbindungen oder Halbmetallverbindungen bestehen. Die nanoskaligen Partikel werden im Fall von Metallen und Halbmetallen durch die Reduktion einer geeigneten Vorläufersubstanz mit freien Elektronen aus einer Plasmaphase (Gasentladung) erhalten, im Fall von Metall- und Halbmetallverbindungen durch Reaktion einer geeigneten Vorläufersubstanz mit Teilchen aus der Plasmaphase. Die Vorläufersubstanz ist zu diesem Zweck in einer stabilen ionischen Flüssigkeit (niedrig schmelzendes organisches Salz) gelöst und wird unter elektrischem Stromfluss an der freien Oberfläche der Flüssigkeit im Kontakt mit dem Plasma reduziert. The present invention relates to a method for the production of particles with diameters in the nanometer range, which consist of metals, semi-metals, metal compounds or semi-metal compounds. The nanoscale particles are obtained in the case of metals and semimetals by the reduction of a suitable precursor substance with free electrons from a plasma phase (gas discharge), in the case of metal and semimetal compounds by reaction of a suitable precursor substance with particles from the plasma phase. The precursor substance is dissolved for this purpose in a stable ionic liquid (low-melting organic salt) and is reduced under electric current flow on the free surface of the liquid in contact with the plasma.
Beschreibung und Einleitung des allgemeinen Gebietes der ErfindungDescription and introduction of the general field of the invention
Die vorliegende Erfindung betrifft die Gebiete physikalische Festkörperchemie, Redoxchemie, Plasmachemie, Grenzflächenchemie und Material Wissenschaften.The present invention relates to the fields of physical solid state chemistry, redox chemistry, plasma chemistry, interfacial chemistry, and material sciences.
Stand der TechnikState of the art
Eine wichtige chemische Aufgabenstellung ist heute die gezielte Herstellung von Stoffen mit einer Größe im Nanometerbereich. Das generelle Interesse an na- nokristallinen Materialien beruht darauf, dass sie durch den hohen Oberflächenanteil im Verhältnis zum Volumen teilweise andere physikalische und chemische Ei- genschaften besitzen als deutlich größere Partikel aus den gleichen Materialien. Nanopartikel finden sowohl Verwendung als freie Teilchen, die durch Zumischung zu einem anderen Material dessen Eigenschaften verändern, als auch gebunden an einem Substrat.An important chemical task today is the targeted production of substances with a size in the nanometer range. The general interest in nanocrystalline materials is based on the fact that they have partly different physical and chemical properties in relation to the volume due to the high surface proportion than significantly larger particles of the same materials. Nanoparticles are used both as free particles which change their properties by admixture with another material, as well as bound to a substrate.
Es gibt eine Reihe von Anwendungen, bei denen die Nanopartikel anwendungsbedingt auf einem Substrat fixiert sein müssen. Ein Beispiel ist die Aufbringung von nanokristallinen Stoffen auf Glasscheiben. Die Oberflächeneigenschaften werden dadurch derart verändert, dass auftreffende Wassertropfen von der Scheibe abperlen und dabei anhaftende Verunreinigungspartikel ablösen. Man spricht in diesem Fall von einem Selbstreinigungseffekt (Lotus-Effekt).There are a number of applications in which the nanoparticles have to be fixed on a substrate by application. One example is the application of nanocrystalline substances to glass panes. As a result, the surface properties are changed in such a way that impinging drops of water roll off the pane, thereby detaching adhering impurity particles. One speaks in this case of a self-cleaning effect (lotus effect).
Partikel mit Größen im Nanometerbereich, die aus Metallen, Halbmetallen, Metallverbindungen oder Halbmetallverbindungen bestehen, werden u.a. für die Herstellung medizinischer Instrumente, mikro- und nanoelektronischer Bauteile sowie von Katalysatoren verwendet. Freie Silberionen besitzen eine antimikrobielle Wirkung, da sie sowohl den trans- membranösen Energiestoffwechsel blockieren als auch einen Stoppcode an die DNA absetzen, der die Reproduktion der Mikroben verhindert. In der Medizin wer- den daher Instrumente teilweise mit Polymeren beschichtet, denen Silbernanopar- tikel als Additive zugesetzt sind.Particles with sizes in the nanometer range, which consist of metals, semi-metals, metal compounds or semi-metal compounds, are used, inter alia, for the manufacture of medical instruments, microelectronic and nanoelectronic components as well as catalysts. Free silver ions have an antimicrobial effect as they both block the transmembrane energy metabolism and deliver a stop code to the DNA that prevents the reproduction of the microbes. In medicine, therefore, instruments are partially coated with polymers to which silver nanoparticles have been added as additives.
Edelmetall-Nanopartikel (z.B. Platin-Nanopartikel) finden als elektrochemische Katalysatoren in einer Reihe von elektrochemischen Umsetzungen Verwendung. Als Beispiele seien hier die Wasserstoffoxidation, die Methanoloxidation und die Sauerstoffreduktion genannt. Bei diesen Verfahren werden die Partikel als Elektrodenmaterial auf einem Substrat bzw. Elektrolyt gebunden.Noble metal nanoparticles (e.g., platinum nanoparticles) are used as electrochemical catalysts in a variety of electrochemical reactions. Examples include hydrogen oxidation, methanol oxidation and oxygen reduction. In these methods, the particles are bound as electrode material on a substrate or electrolyte.
Auf dem Gebiet der Photovoltaik gibt es verschiedene Solarzellentypen. Ein Typ, die sogenannte Heterojunction-Solarzelle (HIT)1 findet z.Zt. international große Beachtung. Bisher wird dieser Solarzellentyp mit monokristallinem Silicium hergestellt. In W. R. Fahrner, Nanotechnologie und Nanoprozesse, Springer Verlag, Berlin 2003, Seite 132 wird beschrieben, dass sich der Wirkungsgrad durch die Verwendung von nanokristallinem Silicium deutlich steigern lässt.In the field of photovoltaics, there are different solar cell types. One type, the so-called heterojunction solar cell (HIT) 1 is currently in use. great international attention. So far, this solar cell type is made with monocrystalline silicon. In WR Fahrner, Nanotechnology and Nanoprocesses, Springer Verlag, Berlin 2003, page 132 is described that the efficiency can be significantly increased by the use of nanocrystalline silicon.
Bisherige Verfahren zur Herstellung nanoskaliger Partikel beruhen auf speziellen chemischen Reduktions-, Fällungs- oder Templatverfahren bzw. auf der Zersetzung von gasförmigen oder flüssigen Ausgangsstoffen in einer Gas- oder Plasmaphase. Alternativ hierzu können Nanopartikel auch durch Abtragung von Mate- rial durch ein Plasma und anschließender Deposition auf einem Substrat hergestellt werden. Die Herstellung von Nanopartikeln durch Abscheidung aus der Plasmaphase ist beispielsweise beschrieben in:Previous methods for producing nanoscale particles are based on special chemical reduction, precipitation or template methods or on the decomposition of gaseous or liquid starting materials in a gas or plasma phase. Alternatively, nanoparticles can also be prepared by ablation of material by a plasma and subsequent deposition on a substrate. The production of nanoparticles by deposition from the plasma phase is described, for example, in:
- G. H. Popov et al.: „Nanoparticle production line with in situ control of the chemical composition, size and morphology of nanoscale particles", Proceed- ings of SPIE - The International Society for Optical Engineering (2005), 5592, 406-412;- G.H. Popov et al .: "Nanoparticle production line with in situ control of the chemical composition, size and morphology of nanoscale particles", Proceedings of SPIE - The International Society for Optical Engineering (2005), 5592, 406-412;
- loan Bica: "Plasma installation for nanoparticle production", Analele Universita- tii de Vest din Timisoara, Seria Stiinte Fizice (2002), 43, 6-11 ; - A Bapat et al.: „Plasma synthesis of single-crystal Silicon nanoparticles for novel electronic device applications", Plasma Physics and Controlled Fusion (2004), 46, B97-B109;- Loan Bica: "Plasma installation for nanoparticle production", Analele Universiteitie de Vest din Timisoara, Seria Stiinte Fizice (2002), 43, 6-11; A Bapat et al., Plasma Physics and Controlled Fusion (2004), 46, B97-B109;
- G Vissokov et al.: "On the plasma-chemical synthesis of nanopowders", Plasma Science & Technology (Beijing, China) (2003), 5(6), 2039-2050; - X Li et al.: "Synthesis and characterization of nanoparticles of Alnico alloys", Acta Materialia (2003), 51 (18), 5593-5600- G Vissokov et al .: "On the plasma-chemical synthesis of nanopowders", Plasma Science & Technology (Beijing, China) (2003), 5 (6), 2039-2050; X Li et al .: "Synthesis and characterization of nanoparticles of Alnico alloys", Acta Materialia (2003), 51 (18), 5593-5600
Die EP 1 514 845 A1 beschreibt die Plasmasynthese von Metalloxidpartikeln im Nanometerbereich. Die WO 2003/096774 A1 beschreibt Katalysatoren und die WO 2003/096382 A2 Methoden und Vorrichtungen für Plasmaverfahren. Nachteilig bei allen genannten Verfahren ist, dass es sich um diskontinuierliche Verfahren handelt. Außerdem werden Nanopartikel, die mit Hilfe der genannten Verfahren hergestellt werden, auf einem Trägermaterial (Substrat) abgeschieden und sind meist fest mit dem Trägermaterial verbunden.EP 1 514 845 A1 describes the plasma synthesis of metal oxide particles in the nanometer range. WO 2003/096774 A1 describes catalysts and WO 2003/096382 A2 methods and devices for plasma processes. A disadvantage of all mentioned processes is that they are discontinuous processes. In addition, nanoparticles which are produced with the aid of the abovementioned processes are deposited on a carrier material (substrate) and are usually firmly bonded to the carrier material.
Die vorliegende Erfindung stellt dagegen Verfahren bereit, die sich kontinuierlich betreiben lassen. Die Reaktionsprodukte sind zudem nicht auf einem Trägermaterial fixiert. Sie befinden sich als freie Partikel in der Lösung und scheiden sich mit der Zeit als Sediment am Boden des Reaktionsgefäßes ab. Die mit dieser Erfin- dung erzeugten Nanopartikel können, falls erforderlich, durch Einbettung in eine Matrix, durch Adhäsion oder Sinterprozesse auf bzw. an einem Substrat gebunden werden.By contrast, the present invention provides methods that can be operated continuously. The reaction products are also not fixed on a carrier material. They are present as free particles in the solution and separate with time as sediment at the bottom of the reaction vessel. Those with this invention The nanoparticles produced can be bound, if necessary, by embedding in a matrix, by adhesion or sintering processes on or on a substrate.
Aufgabetask
Aufgabe der vorliegenden Erfindung ist es, alternative Verfahren zur Herstellung von Partikeln umfassend Metalle, Halbmetalle, Metallverbindungen oder Halbmetallverbindungen mit Durchmessern im Nanometerbereich bereitzustellen, die auch kontinuierlich betrieben werden können.The object of the present invention is to provide alternative processes for the production of particles comprising metals, semimetals, metal compounds or semi-metal compounds with diameters in the nanometer range, which can also be operated continuously.
Lösung der AufgabeSolution of the task
Diese Aufgabe wird erfindungsgemäß gelöst, indem mindestens eine Vorläufersubstanz in mindestens einer ionischen Flüssigkeit gelöst wird und anschließend in einer Plasmaphase entweder durch freie Elektronen reduziert wird oder mit Teilchen aus der Plasmaphase reagiert, wobei unter Vorläufersubstanz ein Salz eines Metalls oder eines Halbmetalls verstanden wird und die Plasmaphase durch eine homogene Gasentladung eines inerten oder reaktiven Prozessgases bei einem Druck von 1 Pa bis 2000 Pa erzeugt wird.This object is achieved in accordance with the invention by dissolving at least one precursor substance in at least one ionic liquid and subsequently reducing it in a plasma phase either by free electrons or reacting with particles from the plasma phase, precursor substance meaning a salt of a metal or a metalloid and Plasma phase is generated by a homogeneous gas discharge of an inert or reactive process gas at a pressure of 1 Pa to 2000 Pa.
Bei den Vorläufersubstanzen handelt es sich um Salze aus Metallen oder Halbmetallen einerseits und anorganischen oder organischen Säuren andererseits, die eine hinreichende Löslichkeit in der jeweiligen ionischen Flüssigkeit besitzen. Die Löslichkeit ist hinreichend, wenn Lösungen der Vorläufersubstanz in der ionischen Flüssigkeit mit Konzentrationen von mindestens 0,0001 mol/l hergestellt werden können.The precursor substances are salts of metals or semimetals on the one hand and inorganic or organic acids on the other hand, which have a sufficient solubility in the respective ionic liquid. The solubility is sufficient if solutions of the precursor substance can be prepared in the ionic liquid at concentrations of at least 0.0001 mol / l.
Bei den zu verwendenden Salzen handelt es sich beispielsweise, aber nicht erschöpfend, um Oxide, Hydroxide, Fluoride, Chloride, Bromide, lodide, Hypochlori- te, Chlorite, Chlorate, Perchlorate, Hypobromite, Bromite, Bromate, Perbromate, Hypoiodite, lodite, lodate, Periodate Nitrite, Nitrate, Sulfide, Sulfite, Sulfate, Phos- phite, Phosphate, Formiate, Acetate, Oxalate, Maleate, Fumarate, Benzoate, Bis(trifluormethylsulfonyl)imide, Tris(trifluormethylsulfonyl)methane, Bis(trifluormethylsulfonyl)amide und Trifluormethansulfonate der folgenden Metalle oder Halbmetalle, sofern diese Salze bei Raumtemperatur existent sind.The salts to be used are, for example, but not exhaustive, oxides, hydroxides, fluorides, chlorides, bromides, iodides, hypochlorous te, chlorites, chlorates, perchlorates, hypobromites, bromites, bromates, perbromates, hypoiodites, iodates, iodates, periodates nitrites, nitrates, sulphides, sulphites, sulphates, phosphites, phosphates, formates, acetates, oxalates, maleates, fumarates, benzoates , Bis (trifluoromethylsulfonyl) imides, tris (trifluoromethylsulfonyl) methanes, bis (trifluoromethylsulfonyl) amides and trifluoromethanesulfonates of the following metals or semimetals, if these salts exist at room temperature.
- Alkalimetalle: Li, Na, K, Rb,Alkali metals: Li, Na, K, Rb,
- Erdalkalimetalle: Be, Mg, Ca, Sr, Ba,- alkaline earth metals: Be, Mg, Ca, Sr, Ba,
- Erdmetalle: AI, Ga, In, Tl, - Metalle der 4. Hauptgruppe: Sn, Pb,- earth metals: Al, Ga, In, Tl, - metals of the 4th main group: Sn, Pb,
- Metalle der 5. Hauptgruppe: Bi,- Metals of the 5th main group: Bi,
- Metalle der 1. Nebengruppe: Cu, Ag, Au,- Metals of the 1st subgroup: Cu, Ag, Au,
- Metalle der 2. Nebengruppe: Zn, Cd- Metals of the 2nd subgroup: Zn, Cd
- Metalle der 3. Nebengruppe: Sc, Y, - Metalle der 4. Nebengruppe: Ti, Zr, Hf,- metals of the 3rd subgroup: Sc, Y, - metals of the 4th subgroup: Ti, Zr, Hf,
- Metalle der 5. Nebengruppe: V, Nb, Ta,Metals of the 5th subgroup: V, Nb, Ta,
- Metalle der 6. Nebengruppe: Cr, Mo, W,- Metals of the 6th subgroup: Cr, Mo, W,
- Metalle der 7. Nebengruppe: Mn, Re,- Metals of the 7th subgroup: Mn, Re,
- Metalle der 8. Nebengruppe: Fe, Co, Ni, Ru, Rh, Pd, Os, Ir, Pt, - Lanthaniden: La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu- Metals of the 8th subgroup: Fe, Co, Ni, Ru, Rh, Pd, Os, Ir, Pt, - Lanthanides: La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, He, Tm, Yb, Lu
- Halbmetalle: B, Si, Ge, As, Sb, Se, TeSemi-metals: B, Si, Ge, As, Sb, Se, Te
Um mit Hilfe des erfindungsgemäßen Verfahrens Partikel aus Metallen oder Halbmetallen herzustellen, werden als Vorläufersubstanzen elektrochemisch re- duzierbare Salze der entsprechenden Metalle oder Halbmetalle gewählt und durch freie Elektronen aus einer Plasmaphase (Gasentladung) zum Metall oder Halbmetall reduziert. In diesem Fall muss ein Plasma mit einem chemisch inerten Gas gezündet werden. Die Vorläufersubstanz wird zu diesem Zweck in einer ionischen Flüssigkeit gelöst und unter Stromfluss an der freien Oberfläche der Flüssigkeit im Kontakt mit dem Plasma reduziert. Unter freier Oberfläche der Flüssigkeit wird dabei diejenige Schicht einer Flüssigkeit verstanden, bei der der Druck, welcher auf dieser Schicht lastet, ebenso groß ist wie der umgebende atmosphärische Druck, unter der Voraussetzung, dass der umgebende atmosphärische Druck im Wesentlichen konstant ist.In order to produce particles of metals or semimetals with the aid of the method according to the invention, electrochemically reducible salts of the corresponding metals or semimetals are selected as precursor substances and reduced to metal or semimetal by free electrons from a plasma phase (gas discharge). In this case, a plasma must be ignited with a chemically inert gas. The precursor substance is dissolved for this purpose in an ionic liquid and reduced under current flow at the free surface of the liquid in contact with the plasma. The free surface of the liquid is understood to be that layer of a liquid in which the pressure which is applied to this layer is just as great as the ambient atmospheric pressure Pressure, provided that the ambient atmospheric pressure is substantially constant.
Werden mittels des beschriebenen Verfahrens Metallverbindungen oder Halbme- tallverbindungen hergestellt, so wird ein Plasma mit einem chemisch reaktiven Gas erzeugt. An der Phasengrenze zwischen der Flüssigkeit und dem Plasma reagieren die Metall- bzw. Halbmetallkationen der mindestens einen Vorläufersubstanz mit Teilchen aus dem Plasma zu der gewünschten Metall- bzw. Halbmetallverbindung.If metal compounds or semimetal compounds are produced by means of the process described, a plasma with a chemically reactive gas is produced. At the phase boundary between the liquid and the plasma, the metal or semimetallic cations of the at least one precursor substance react with particles from the plasma to form the desired metal or semimetal compound.
Bei dem Gas, welches für die Erzeugung der Gasentladung verwendet wird, handelt es sich um ein inertes Gas, falls elementare Metalle oder elementare Halbmetalle erzeugt werden sollen, und um ein reaktives Gas, falls eine Metallverbindung oder eine Halbmetallverbindung erzeugt werden soll. Inerte Gase werden erfindungsgemäß ausgewählt aus der Gruppe der Edelgase (Helium, Neon, Argon, Krypton, Xenon) oder Gemischen davon. Reaktive Gase werden erfindungsgemäß ausgewählt aus der Gruppe Sauerstoff, Stickstoff, Stickstoffmonoxid, Stickstoffdioxid, Distickstoffoxid, Kohlenmonoxid, Kohlendioxid, Wasserstoff, Methan, Ethan, Fluor, Chlor, Brom, Luft oder Gemi- sehen davon.The gas used to generate the gas discharge is an inert gas if elemental metals or elemental semimetals are to be produced, and a reactive gas if a metal compound or metalloid compound is to be produced. Inert gases are selected according to the invention from the group of noble gases (helium, neon, argon, krypton, xenon) or mixtures thereof. According to the invention, reactive gases are selected from the group oxygen, nitrogen, nitrogen monoxide, nitrogen dioxide, nitrous oxide, carbon monoxide, carbon dioxide, hydrogen, methane, ethane, fluorine, chlorine, bromine, air or mixtures thereof.
Die Gasentladung wird erfindungsgemäß erzeugt durch Radiowellen, Mikrowellen, Gleichstrom oder Wechselstrom.The gas discharge is generated according to the invention by radio waves, microwaves, direct current or alternating current.
Bevorzugt wird eine möglichst hoch konzentrierte Lösung der mindestens einen Vorläufersubstanz in der mindestens einen ionischen Flüssigkeit verwendet. Hierfür wird die mindestens eine Vorläufersubstanz so ausgewählt, dass das mindestens eine Anion dieser Substanz identisch ist mit mindestens einem Anion der mindestens einen ionischen Flüssigkeit. In Fällen, in denen dies nicht möglich ist, weil keine Vorläufersubstanz existiert, deren Anion mit dem Anion der ionischen Flüssigkeit identisch ist, wird eine Vorläufersubstanz mit einem chemisch ähnli- chen Anion ausgewählt. Dem Fachmann ist bekannt, welche Anionen sich chemisch ähneln, und er kann geeignete Anionen auswählen, ohne den Schutzbereich der Patentansprüche zu verlassen.Preferably, a highly concentrated solution of the at least one precursor substance in the at least one ionic liquid is used. For this purpose, the at least one precursor substance is selected such that the at least one anion of this substance is identical to at least one anion of the at least one ionic liquid. In cases where this is not possible because there is no precursor substance whose anion is identical to the anion of the ionic liquid, a precursor substance with a chemically similar selected anion. Those skilled in the art will know which anions are chemically similar and may select suitable anions without departing from the scope of the claims.
In einer besonders bevorzugten Ausführungsform werden gesättigte Lösungen verwendet, um Nanopartikel in einer besonders effizienten und ökonomischen Weise herzustellen.In a particularly preferred embodiment, saturated solutions are used to prepare nanoparticles in a particularly efficient and economical manner.
Unter ionischen Flüssigkeiten sind im Sinne der vorliegenden Erfindung solche ionischen Verbindungen zu verstehen, deren Schmelzpunkt kleiner oder gleich 100 0C ist. Hierzu gehören beispielhaft, aber nicht erschöpfend:For the purposes of the present invention, ionic liquids are to be understood as meaning those ionic compounds whose melting point is less than or equal to 100 ° C. These are exemplary, but not exhaustive:
- monosubstituierte Imidazolium-Derivate, wie beispielsweise 1- Methylimidazolium-tosylat, 1-Methylimidazolium-tetrafluoroborat;monosubstituted imidazolium derivatives such as, for example, 1-methylimidazolium tosylate, 1-methylimidazolium tetrafluoroborate;
- disubstituierte Imidazolium-Derivate, wie beispielsweise 1 ,3- Dimethylimidazolium-methylsulfat, 1 ,3-Dimethylimidazolium- trifluoromethansulfonat, i-Ethyl-3-methylimidazolium-hydrogensulfat, 1-Ethyl- 3-methylimidazolium-octylsulfat, 1 -Ethyl-3-methylimidazolium-thiocyanat, 1 - Ethyl-3-methylimidazolium-p-toluolsulfonat, 1 -Ethyl-3- methylimidazoliumchlorid, 1 -Ethyl-3-methylimidazoliumbromid, 1 -Ethyl-3- methylimidazolium-methylsulfat, 1 -Ethyl-3-methylimidazolium- trifluormethansulfonat, 1-Ethyl-3-methylimidazolium-hexafluorophosphat, 1- Ethyl-3-methylimidazolium-bis-(pentafluoroethyl)-phosphinat, 1-Ethyl- 3metyhlimidazolium-bis-[oxalato(2)-]borat, 1 -Ethyl-3-methylimidazolium-bis- [1 ,2-benzoldiolato(2-)]-borat, 1-Ethyl-3-methylimidazolium-trifluoroacetat, 1- Butyl3-methylimidazolium-dicyanamid, 1 -Butyl-3-methylimidazolium-iodid, 1 - Butyl-3-methylimidazolium-octylsulfat, 1-Butyl-3-methylimidazolium-chlorid, 1 - Butyl-3-methylimidazolium-bromid, 1 -Propyl-3-methylimidazolium-iodid, 1 - Butyl-3-methylimidazolium-tetrafluoroborat, 1 -Butyl-3-methylimidazolium- tosylat, 1 -Butyl-3-methylimidazolium-trifluormethansulfonat, 1 -Butyl-3- methylimidazolium-methylsulfat, 1 -Butyl-3-methylimidazolium- hexafluorophosphat, 1 -Butyl-3-methylimidazolium-trifluoroacetat, 1-Butyl-3- ethylimidazolium-trifluoromethansulfonat, 1 -Hexyl-3-methylimidazolium- tris(trifluoromethylsulfonyl)methid, 1 -Hexyl-S-methylimidazolium-chlorid, 1 - Hexyl-3-methylimidazolium-tθtrafluoroborat, 1 -Hexyl-3-methylimidazolium- hexafluorophosphat, 1 -Hexyl-3-methylimidazolium-trifluoromethansulfonat, 1 - Hexyl-3-methyiimidazolium-bis(trifluoromethylsulfonyl)imid, 1 -Hexyl-3- methylimidazolium-tris(pentafluoroethyl)trifluorophosphat, 3-Methyl-disubstituted imidazolium derivatives, such as, for example, 1,3-dimethylimidazolium methylsulfate, 1,3-dimethylimidazolium trifluoromethanesulfonate, i-ethyl-3-methylimidazolium hydrogensulfate, 1-ethyl-3-methylimidazolium octylsulfate, 1-ethyl-3- methylimidazolium thiocyanate, 1-ethyl-3-methylimidazolium p-toluenesulfonate, 1-ethyl-3-methylimidazolium chloride, 1-ethyl-3-methylimidazolium bromide, 1-ethyl-3-methylimidazolium methylsulfate, 1-ethyl-3-methylimidazolium trifluoromethanesulfonate, 1-ethyl-3-methylimidazolium hexafluorophosphate, 1-ethyl-3-methylimidazolium bis (pentafluoroethyl) phosphinate, 1-ethyl-3-methylimidazolium bis [oxalato (2) -] borate, 1-ethyl-3 -methylimidazolium bis [1,2-benzenediolato (2 -)] borate, 1-ethyl-3-methylimidazolium trifluoroacetate, 1-butyl-3-methylimidazolium dicyanamide, 1-butyl-3-methylimidazolium iodide, 1-butyl 3-methylimidazolium octylsulfate, 1-butyl-3-methylimidazolium chloride, 1-butyl-3-methylimidazolium bromide, 1-propyl-3-methylimidazolium iodine d, 1-butyl-3-methylimidazolium tetrafluoroborate, 1-butyl-3-methylimidazolium tosylate, 1-butyl-3-methylimidazolium trifluoromethanesulfonate, 1-butyl-3-methylimidazolium methylsulfate, 1-butyl-3-methylimidazolium hexafluorophosphate, 1-butyl-3-methylimidazolium trifluoroacetate, 1-butyl-3-ethylimidazolium trifluoromethanesulfonate, 1-hexyl-3-methylimidazolium tris (trifluoromethylsulfonyl) methide, 1-hexyl-S-methylimidazolium chloride, 1-hexyl-3-methylimidazolium-t-trifluoroborate, 1-hexyl-3-methylimidazolium hexafluorophosphate, 1-hexyl-3-methylimidazolium trifluoromethanesulfonate, 1-hexyl- 3-methylimidazolium bis (trifluoromethylsulfonyl) imide, 1-hexyl-3-methylimidazolium tris (pentafluoroethyl) trifluorophosphate, 3-methyl
1 octylimidazolium-chlorid, 3-Methyl-1 -octylimidazolium-octylsulfat, 3-Methyl-1 - octylimidazolium-trifluoromethylsulfonat, 3-Methyl-1-octylimidazolium- tetrafluoroborat, 3-Methyl-1 -octylimidazolium-hexafluorophosphat, 3-Methyl-1 - octylimidazolium-bis(trifluoromethylsulfonyl)imid, 1 -Decyl-3-methylimidazolium- chlorid, 1-Decyl-3-methyIimidazolium-bromid, 1 -Decyl-3-methylimidazolium- tetrafluoroborat, 1 -Dodecyl-3-methylimidazolium-tetrafluoroborat, 3-Methyi-1 - tetradecylimidazolium-chlorid^-Methyl-i-tetradecylimidazolium- tetrafluoroborat, 1 -Hexadecyl-S-methylimidazolium-chlorid, 1 -Octadecyl-3- methylimidazolium-chlorid, 1 -Octadecyl-3-methylimidazolium- hexafluorophosphat, 1 -Octadecyl-3-methylimidazolium- bis(trifluoromethylsulfonyl)imid, 1-Octadecyl-3-methylimidazolium- tris(pentafluoroethyl)trifluorophosphat, i -Benzyl-3-methylimidazolium-chlorid, 1 -Benzyl-3-methylimidazolium-trifluoromethylsulfonat, 1 -Benzyl-3- methylimidazolium-tetrafluoroborat, 1-Benzyl-3-methylimidazolium- hexafluorophosphat, 1-Phenylpropyl-3-methylimidazolium-bromid, 1- Phenylpropyl-3-methylimidazolium-hexafluorophosphat, 1-Propyl-3- methylimidazolium-iodid, 1-Butyl-3-methyl-pyrrolidinium-trifluormetansulfonat trisubstituierte Imidazolium-Derivate, wie beispielsweise 1 ,2,3- Trimethylimidazoliumiodid, 1 -Ethyl-2,3-dimethylimidazolium- trifluoromethylsulfonat, 1-Ethyl-2,3-dimethylimidazolium-chlorid, 1 -Ethyl-2,3- dimethylimidazolium-bromid, 1 -Ethyl-2,3-dimethylimidazolium-methylsulfat, 1 - Ethyl-2,3-dimethylimidazolium-p-toluolsulfonat, 1 -Ethyl-2,3- dimethylimidazolium-hexafluorophosphat, 1 -Ethyl-2,3-dimethylimidazolium- tetrafluoroborat, 1 -Ethyl-2,3-dimethylimidazolium-trifluoromethansulfonat, 1 - Butyl-2,3-dimethylimidazolium-iodid, 1 -Butyl-2,3-dimethylimidazolium- octylsulfat, 1 -Butyl-2,3-dimethyl-chlorid, 1 -Butyl-2,3-dimethylimidazolium- tetrafluoroborat, 1 -Butyl-2,3-dimethylimidazolium-hexafluorophosphat, 1 -Butyl- 2,3-dimethylimidazolium-trifluoromethansulfonat, 1 -Propyl-2,3- dimethylimidazolium-chlorid, 1-Hexyl-2,3-dimethylimidazolium-tetrafluoroborat, i-Hexyl^.S-dimethylimidazoliurn-chlorid, 1 -Hexadecyi-2,3- dimethylimidazolium-chlorid, 1 -Hexyl-2,3-dimethylimidazolium- tris(pentafluoroethyl)trifluorophosphat1 octylimidazolium chloride, 3-methyl-1-octylimidazolium octylsulfate, 3-methyl-1-octylimidazolium trifluoromethylsulfonate, 3-methyl-1-octylimidazolium tetrafluoroborate, 3-methyl-1-octylimidazolium hexafluorophosphate, 3-methyl-1 - octylimidazolium bis (trifluoromethylsulfonyl) imide, 1-decyl-3-methylimidazolium chloride, 1-decyl-3-methylimidazolium bromide, 1-decyl-3-methylimidazolium tetrafluoroborate, 1-dodecyl-3-methylimidazolium tetrafluoroborate, 3 -Methyi-1 - tetradecylimidazolium chloride ^ -methyl-i-tetradecylimidazolium tetrafluoroborate, 1 -hexadecyl-S-methylimidazolium chloride, 1-octadecyl-3-methylimidazolium chloride, 1-octadecyl-3-methylimidazolium hexafluorophosphate, 1 - Octadecyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide, 1-octadecyl-3-methylimidazolium tris (pentafluoroethyl) trifluorophosphate, i -benzyl-3-methylimidazolium chloride, 1-benzyl-3-methylimidazolium trifluoromethylsulfonate, 1-benzyl- 3-methylimidazolium tetrafluoroborate, 1-benzyl-3-methylimidazole ium-hexafluorophosphate, 1-phenylpropyl-3-methylimidazolium bromide, 1-phenylpropyl-3-methylimidazolium hexafluorophosphate, 1-propyl-3-methylimidazolium iodide, 1-butyl-3-methylpyrrolidinium trifluoromethanesulfonate, trisubstituted imidazolium derivatives, such as 1, 2,3-trimethylimidazolium iodide, 1-ethyl-2,3-dimethylimidazolium trifluoromethylsulfonate, 1-ethyl-2,3-dimethylimidazolium chloride, 1-ethyl-2,3-dimethylimidazolium bromide, 1-ethyl 2,3-dimethylimidazolium methylsulfate, 1-ethyl-2,3-dimethylimidazolium p-toluenesulfonate, 1-ethyl-2,3-dimethylimidazolium hexafluorophosphate, 1-ethyl-2,3-dimethylimidazolium tetrafluoroborate, 1-ethyl 2,3-dimethylimidazolium trifluoromethanesulfonate, 1-butyl-2,3-dimethylimidazolium iodide, 1-butyl-2,3-dimethylimidazolium octylsulfate, 1-butyl-2,3-dimethyl-chloride, 1-butyl-2, 3-dimethylimidazolium tetrafluoroborate, 1-butyl-2,3-dimethylimidazolium hexafluorophosphate, 1-butyl-2,3-dimethylimidazolium trifluoromethanesulfonate, 1-Pr opyl-2,3-dimethylimidazolium chloride, 1-hexyl-2,3-dimethylimidazolium tetrafluoroborate, i-Hexyl ^ .S-dimethylimidazolium chloride, 1-hexadecyl-2,3-dimethylimidazolium chloride, 1-hexyl-2,3-dimethylimidazolium tris (pentafluoroethyl) trifluorophosphate
- Pyridinium-Derivatθ, wie beispielsweise N-Ethylpyridinium-chlorid, N- Ethylpyridinium-bromid, N-Butylpyridinium-chlorid, N-Butylpyridinium-bromid,Pyridinium derivative θ, such as, for example, N-ethylpyridinium chloride, N-ethylpyridinium bromide, N-butylpyridinium chloride, N-butylpyridinium bromide,
N-Butylpyridinium-methylsulfat, N-Butylpyridinium-tetrafluoroborat, N- Butylpyridinium-hexafluorophosphat, N-Butyl-3,4-dimethylpyridinium-chlorid, N-Butyl-3,5~dimethylpyridinium-chlorid, N-Butyl-3-methylpyridinium- hexafluorophosphat, N-Butyl-3-methylpyridinium-chlorid, N-Butyl-3- methylpyridinium-bromid, N-Butyl-3-methylpyridinium-methylsulfat, N-Butyl-3- methylpyridinium-tetrafluoroborat, N-Butyl-3-methylpyridinium- trifluoromethansulfonat, N-Butyl-4-methylpyridinium-chiorid, N-Butyl-4- methylpyridinium-bromid, N-Butyl-4-methylpyridinium-tetrafluoroborat, N-Butyl- 4-methylpyridinium-hexafluorophosphat, N-Hexylpyridinium-chlorid, N- Hexylpyridinium-bromid, N-Hexylpyridinium-tetrafluoroborat, N-N-butylpyridinium methylsulfate, N-butylpyridinium tetrafluoroborate, N-butylpyridinium hexafluorophosphate, N-butyl-3,4-dimethylpyridinium chloride, N-butyl-3,5-dimethylpyridinium chloride, N-butyl-3-methylpyridinium chloride hexafluorophosphate, N-butyl-3-methylpyridinium chloride, N-butyl-3-methylpyridinium bromide, N-butyl-3-methylpyridinium methylsulfate, N-butyl-3-methylpyridinium tetrafluoroborate, N-butyl-3-methylpyridinium trifluoromethanesulfonate, N-butyl-4-methylpyridinium chloride, N-butyl-4-methylpyridinium bromide, N-butyl-4-methylpyridinium tetrafluoroborate, N-butyl-4-methylpyridinium hexafluorophosphate, N-hexylpyridinium chloride, N- Hexylpyridinium bromide, N-hexylpyridinium tetrafluoroborate, N-
Hexylpyridinium-hexafluorophosphat, N-Hexylpyridinium- trifluoromethansulfonat, N-Hexylpyridinium-bis(trifluormethylsulfonyl)imid, N- Octylpyridinium-chlorid, N-Octylpyridinium-bis(trifluoromethylsulfonyl)imid, A- Methyl-N-octylpyridinium-chlorid - Pyrrolidinium-Derivate, wie beispielsweise1 ,1 ,-Dimethyl-pyrrolidinium-iodid, 1 ,1 -Dimethylpyrrolidinium-tris(pentafluoroethyl)trifluorophosphat, 1 -Ethyl-1 - methylpyrrolidinium-bromid, 1 -Ethyl-1 -methylpyrrolidinium-hexafluorophosphat, 1 -Ethyl-1 -methylpyrrolidinium-tetrafluoroborat, 1 -Ethyl-1 -methylpyrrolidinium- methylsulfat, 1 ,1 -Dipropylpyrrolidinium-bis(trifluoromethylsulfonyl)imid, 1 ,1- Dibutylpyrrolidinium-bis(trifluorosulfonyl)imid, 1 -Butyl-1 -methylpyrrolidinium- bis[oxalato(2-)]borat, 1 -Butyl-1 -methylpyrrolidinium-dicyanamid, 1 -Butyl-1 - methylpyrrolidinium-chlorid, 1 -Butyl-1 -methylpyrrolidinium-bromid, 1 -Butyl-1 - methylpyrrolidinium-methylsulfat, 1 -Butyl-1 -methylpyrrolidinium- trifluoromethansulfonat, 1 -Butyl-1 -methylpyrrolidinium-tetrafluoroborat, 1 -Butyl- 1 -methylpyrrolidinium-hexafluorophosphat, 1 -Butyl-methylpyrrolidinium- trifluoroacetat, 1 -Butyl-1 -methylpyrrolidinium- bis(pentafluoroethyl)trifluorophosphat, 1 ,1 -Dihexylpyrrolidinium- bis(trifluoromethylsulfonyl)imid, 1 -Hexyl-1 -methylpyrrolidinium-chlorid, 1 -Hexyl- 1 -methylpyrrolidinium-bisCtrifluoromethylsulfonyDimid, 1 -Methyl-1 - octylpyrrolidinium-chlorid, 1 -Octyl-1 -methylpyrrolidinium- bis(trifluoromethylsulfonyl)imidHexylpyridinium hexafluorophosphate, N-hexylpyridinium trifluoromethanesulfonate, N-hexylpyridinium bis (trifluoromethylsulfonyl) imide, N-octylpyridinium chloride, N-octylpyridinium bis (trifluoromethylsulfonyl) imide, A-methyl-N-octylpyridinium chloride - pyrrolidinium derivatives, such as 1,1-dimethylpyrrolidinium iodide, 1,1-dimethylpyrrolidinium tris (pentafluoroethyl) trifluorophosphate, 1-ethyl-1-methylpyrrolidinium bromide, 1-ethyl-1-methylpyrrolidinium hexafluorophosphate, 1-ethyl-1 - methylpyrrolidinium tetrafluoroborate, 1-ethyl-1-methylpyrrolidinium methylsulfate, 1,1-dipropylpyrrolidinium bis (trifluoromethylsulfonyl) imide, 1,1-dibutylpyrrolidinium bis (trifluorosulfonyl) imide, 1-butyl-1-methylpyrrolidinium bis [oxalato ( 2 -)] borate, 1-butyl-1-methylpyrrolidinium dicyanamide, 1-butyl-1-methylpyrrolidinium chloride, 1-butyl-1-methylpyrrolidinium bromide, 1-butyl-1-methylpyrrolidinium methylsulfate, 1-butyl 1-methylpyrrolidinium trifluoromethanesulfonate, 1-butyl 1-methylpyrrolidinium tetrafluoroborate, 1-butyl-1-methylpyrrolidinium hexafluorophosphate, 1-butylmethylpyrrolidinium trifluoroacetate, 1-butyl-1-methylpyrrolidinium bis (pentafluoroethyl) trifluorophosphate, 1, 1-dihexylpyrrolidinium bis (trifluoromethylsulfonyl) imide, 1-hexyl-1-methylpyrrolidinium chloride, 1 -hexyl 1-methylpyrrolidinium bis-trifluoromethylsulfonydimide, 1-methyl-1-octylpyrrolidinium chloride, 1-octyl-1-methylpyrrolidinium bis (trifluoromethylsulfonyl) imide
- Phosphonium-Derivate, wie beispielsweise Tetrabutylphosphonium- tris(pentafluoroethyl)-trifluorophosphat, Trihexyl(tetradecyl)phosphonium- chlorid, Trihexyl(tetradecyl)phosphonium-tetrafluoroborat, Trihe- xyl(tetradecyl)phosphonium-bis(trifluoromethylsulfonyl)-imid, Trihe- xyl(tetradecyl)phosphonium-tris(pentafluoroethyl)trifluorophosphat, Trihe- xyKtetradecyDphosphonium-hexafluorophosphat, Trihe- xyl(tetradecyl)phosphonium-bis[oxalato(2-)]borat, Trihe- xyl(tetradecyl)phosphonium-bis[1 ,2-ben2oldiolata(2-)-O,O']-borat- Phosphonium derivatives such as tetrabutylphosphonium tris (pentafluoroethyl) trifluorophosphate, trihexyl (tetradecyl) phosphonium chloride, trihexyl (tetradecyl) phosphonium tetrafluoroborate, trihexyl (tetradecyl) phosphonium bis (trifluoromethylsulfonyl) imide, trihexyl (tetradecyl) phosphonium tris (pentafluoroethyl) trifluorophosphate, trihexyltetradecylphosphonium hexafluorophosphate, trihexyl (tetradecyl) phosphonium bis [oxalato (2 -)] borate, trihexyl (tetradecyl) phosphonium bis [1,2-ben2oldiolata (2 -) - O, O '] - borate
- Ammonium-Derivate, wie beispielsweise Tetramethylammonium- tris(pentafluoroethyl)trifluorophosphat, Tetramethylammonium-bis[oxaIato-(2- )]borat, Tetraethylammonium-trisCpentafluoroethyD-trifluorophosphat, tetraety- lammonium-bis[1 ,2-benzoldiolato(2-)O,O']borat, Tetraethylammonium- bis[salicylato-(2-)]borat, Tetraethylammonium-bis[2,2'-biphenyldiolato(2-)0,O']- borat, Tetraethylammonium-bis[malonato-(2-)]borat, Tetrabutylammonium- bis(trifluoromethylsulfonyl)imid,Ammonium derivatives, such as, for example, tetramethylammonium tris (pentafluoroethyl) trifluorophosphate, tetramethylammonium bis [oxaIato (2-)] borate, tetraethylammonium tris-c pentafluoroethyldifluorophosphate, tetraethylammonium bis [1,2-benzenediolato (2-) O , O '] borate, tetraethylammonium bis [salicylato (2 -)] borate, tetraethylammonium bis [2,2'-biphenyldiolato (2-) O, O'] borate, tetraethylammonium bis [malonato (2 )] borate, tetrabutylammonium bis (trifluoromethylsulfonyl) imide,
- Tetrabutylammonium-tris(pentafluoroethyl)-trifluorophosphat, Methytrioctyl- ammonium-bis(trifluoromethylsulfonyl)imid, Methyltrioctylammonium- trifluoroacetat, Ethyl-dimethyl-propylammonium-bis(trifluormethylsulfonyl)imid, Methyltrioctylammonium-trifluoromethansulfonat- Tetrabutylammonium tris (pentafluoroethyl) trifluorophosphate, methyltrioctyl ammonium bis (trifluoromethylsulfonyl) imide, methyltrioctylammonium trifluoroacetate, ethyl-dimethyl-propylammonium bis (trifluoromethylsulfonyl) imide, methyltrioctylammonium trifluoromethanesulfonat
- Guanidinium-Derivate, wie beispielsweise Guanidinium-p-toluolsulfonat, Gua- nidinium-tris(pentafluoroethyl)trifluorophosphat, Guanidinium- trifluoromethansulfonat, N,N,N',N'-Tetramethyl-N"-ethylguanidinium- tris(pentafluoroethyl)trifluorophosphat, N,N,N(,N'-Tetramethyl-N"- ethylguanidinium-trifluoromethansulfonat, N,N,N',N'-Pentamethyl-N"- propylguanidinium-trifluoromethansulfonat, N^.NSN'-Pentamethyl-N"- isopropylguanidinium-trifluoromethansulfonat, Hexamethylguanidinium-tris- (pentafluoroethyl)-trifluorophosphatGuanidinium derivatives such as, for example, guanidinium p-toluenesulfonate, guanidinium tris (pentafluoroethyl) trifluorophosphate, guanidinium trifluoromethanesulfonate, N, N, N ', N'-tetramethyl-N'-ethylguanidinium tris (pentafluoroethyl) trifluorophosphate, N, N, N ( , N'-tetramethyl-N "-ethylguanidinium trifluoromethanesulfonate, N, N, N ', N'-pentamethyl-N'-propylguanidinium trifluoromethanesulfonate, N, N, N'-N, N'-pentamethyl-N'-isopropylguanidinium trifluoromethanesulfonate, hexamethylguanidinium tris (pentafluoroethyl) trifluorophosphate
- Isouronium-Derivate, wie beispielsweise O-Methyl-N,N,N',N'- tetramethylisouronium-trifluoromethansulfonat, O-Ethyl-N,N,N',N'- tetramethylisouronium-tris(pentafluoroethyl)trifluorophosphat, O-Ethyl- N.N.N'.N'-tetramethylisouronium-trifluoromethansulfonat, S-Ethyl-N,N,N',N'- tetramethylisouronium-tris(pentafluoroethyl)trifluorophosphat, S-Ethyl- N.N.N'.N'-tetramethylisothiouronium-trifluormethansulfonatIsouronium derivatives such as O-methyl-N, N, N ', N'-tetramethylisouronium trifluoromethanesulfonate, O-ethyl-N, N, N', N'-tetramethylisouronium tris (pentafluoroethyl) trifluorophosphate, O-ethyl - NNN'.N'-tetramethylisouronium trifluoromethanesulfonate, S-ethyl-N, N, N ', N'-tetramethylisouronium tris (pentafluoroethyl) trifluorophosphate, S-ethyl-NNN'.N'-tetramethylisothiouronium trifluoromethanesulfonate
Ein Reinheitsgrad „für Synthese" ist im Wesentlichen sowohl für die Vorläufersubstanz als auch für die ionische Flüssigkeit ausreichend. Zur Abscheidung reiner Stoffe ist es erforderlich, Verunreinigungen der ionischen Flüssigkeit oder der Vorläufersubstanz mit anderen reduzierbaren Stoffen zu vermeiden. Sowohl die Vorläufersubstanz als auch die ionische Flüssigkeit sind bevorzugt wasserfrei.A purity level "for synthesis" is essentially sufficient for both the precursor substance and the ionic liquid, and for the removal of pure substances it is necessary to avoid contamination of the ionic liquid or the precursor substance with other reducible substances, both the precursor substance and the ionic substance Liquid is preferably anhydrous.
Die vorliegende Erfindung stellt Verfahren bereit, um Partikel umfassend Metalle, Halbmetalle, Metallverbindungen oder Halbmetallverbindungen mit Durchmessern im Nanometerbereich herzustellen. The present invention provides methods for making particles comprising metals, semi-metals, metal compounds or nanometer-sized metalloid compounds.
Das erfindungsgemäße Verfahren umfasst die folgenden Schritte:The method according to the invention comprises the following steps:
- Herstellen einer Lösung umfassend mindestens eine Vorläufersubstanz in mindestens einer ionischen Flüssigkeit, wobei unter Vorläufersubstanz eine elektrochemisch reduzierbare Verbindung eines Metalls oder eines Halbmetalls verstanden wird, und wobei die Lösung in einer evakuierbaren Vorrichtung, enthaltend zwei Elektroden, hergestellt wird oder die Lösung nach ihrer Herstellung in eine evakuierbare Vorrichtung, enthaltend zwei Elektroden, ü- berführt wird, - Einstellen des Drucks in der evakuierbaren Vorrichtung auf einem Wert zwischen 1 Pa und 2000 Pa,Preparation of a solution comprising at least one precursor substance in at least one ionic liquid, precursor substance being understood as meaning an electrochemically reducible compound of a metal or a semimetal, and the solution being produced in an evacuable device containing two electrodes or the solution after its production into an evacuable device containing two electrodes, adjusting the pressure in the evacuatable device to a value between 1 Pa and 2000 Pa,
- Einleiten eines inerten oder reaktiven Gases, wobei der Druck in der evakuierbaren Apparatur zwischen 1 Pa und 2000 Pa gehalten wird,Introducing an inert or reactive gas, the pressure in the evacuable apparatus being kept between 1 Pa and 2000 Pa,
- Entfernen von im Lösungsmittel gelöstem Gas und/oder Restfeuchtigkeit, - Erzeugen einer Gasentladung,Removal of gas dissolved in the solvent and / or residual moisture, generation of a gas discharge,
- Abtrennung der gebildeten Partikel.- Separation of the particles formed.
Dem Fachmann ist auf Grund seines Fachwissens bekannt, welche Vorläufersub- stanzen durch Reduktion bzw. Reaktion in die entsprechenden Metalle, Halbmetalle, Metallverbindungen oder Halbmetallverbindungen überführt werden können. Dem Fachmann ist ebenfalls bekannt, wie er ein Plasma mit einem chemisch reaktiven Gas erzeugt, welches mit den Metall- bzw. Halbmetallkationen der mindestens einen Vorläufersubstanz zu den gewünschten Metall- oder Halbmetall- Verbindungen reagiert. Er kann daher geeignete Vorläufersubstanzen und Prozessgase auswählen, ohne den Schutzbereich der Patentansprüche zu verlassen.The person skilled in the art knows, on the basis of his expertise, which precursor substances can be converted by reduction or reaction into the corresponding metals, semimetals, metal compounds or semimetal compounds. The person skilled in the art is also aware of how to generate a plasma with a chemically reactive gas which reacts with the metal or semimetal cations of the at least one precursor substance to give the desired metal or semimetal compounds. He can therefore select suitable precursors and process gases, without departing from the scope of the claims.
Ionische Flüssigkeiten sind auf Grund ihres verschwindend kleinen Dampfdruckes (< 1 Pa) und ihres großen elektrochemischen Fensters geeignet für die erfin- dungsgemäßen Verfahren. Konventionelle Lösungsmittel haben im Gegensatz zu ionischen Flüssigkeiten bei Raumtemperatur in der Regel bereits einen hohen Dampfdruck, wodurch kein ausreichend gutes Vakuum erzeugt werden kann. Letzteres ist jedoch für die Zündung einer homogenen Gasentladung unerlässlich. Eine homogene Gasentladung zeichnet sich dadurch aus, dass mit Ausnahme von den Raumladungszonen, die sich zu den an das Plasma angrenzenden Wänden ausbilden, zum einen im Wesentlichen überall gleiche Teilchenkonzentrationen vorherrschen und zum anderen die Plasmatemperaturen (Elektronen-, lonen- und Neutralteilchentemperatur) im Wesentlichen in der Plasmaphase gleich groß sind. Im Rahmen dieser Erfindung wird die Gasentladung als homogen angesehen, sobald die Leuchterscheinung des Plasmas für das menschliche Auge gleichmäßig intensiv und gleichmäßig gefärbt erscheint. Für die Durchführung des erfindungsgemäßen Verfahrens ist es ausreichend, wenn das Plasma in der un- mittelbaren Nähe zur ionischen Flüssigkeit homogen ist.Due to their vanishingly small vapor pressure (<1 Pa) and their large electrochemical window, ionic liquids are suitable for the processes according to the invention. Conventional solvents, unlike ionic liquids at room temperature, usually already have a high vapor pressure, which can not produce a sufficiently good vacuum. The latter, however, is essential for the ignition of a homogeneous gas discharge. A homogeneous gas discharge is characterized by the fact that with the exception of the space charge zones, which form the walls adjacent to the plasma, on the one hand substantially equal particle concentrations prevail and on the other hand, the plasma temperatures (electron, ion and neutral particle temperature) substantially are the same size in the plasma phase. In the context of this invention, the gas discharge is considered to be homogeneous as soon as the luminous appearance of the plasma appears uniformly intense and evenly colored to the human eye. For carrying out the method according to the invention, it is sufficient if the plasma is homogeneous in the immediate vicinity of the ionic liquid.
Unter elektrochemischem Fenster wird derjenige Bereich der angelegten elektrischen Spannung verstanden, in dem Anionen und Kationen der ionischen Flüssigkeit inert gegenüber Oxidation und Reduktion sind. Das elektrochemische Fenster beträgt je nach verwendeten Substanzen bis zu 7 V.By electrochemical window is meant that region of the applied electrical voltage in which anions and cations of the ionic liquid are inert to oxidation and reduction. Depending on the substances used, the electrochemical window is up to 7 V.
Beim erfindungsgemäßen Verfahren erfolgt die Abscheidung der Nanopartikel an der Grenzfläche von Flüssigkeit und Plasma. Diese Grenzfläche hat somit die Funktion einer gasförmigen Elektrode und ist damit mechanisch kontaktfrei.In the method according to the invention, the deposition of the nanoparticles takes place at the interface of liquid and plasma. This interface thus has the function of a gaseous electrode and is thus mechanically contact-free.
Dem Fachmann ist ohne Weiteres ersichtlich, dass bei der Herstellung von Metallen und Halbmetallen die Menge des gebildeten Produktes, d.h. die Menge der gebildeten Partikel, direkt von der Menge der geflossenen elektrischen Ladungen abhängt (Produkt von Strom und Zeit). Die Menge des gebildeten Produktes ist damitIt will be readily apparent to those skilled in the art that in the production of metals and semi-metals, the amount of product formed, i. the amount of particles formed depends directly on the amount of electric charges that have flowed (product of current and time). The amount of product formed is so
M l' t .M l 't.
mit /77 = Masse der gebildeten Partikel in gwith / 77 = mass of the particles formed in g
M = molare Masse in g/MolM = molar mass in g / mol
/ = Strom in A t = Zeit in s/ = Current in A t = time in s
F = Faraday-Konstante = 96.485 C/mol z = Ladungszahl fMeV+ = Überführungszahl der Kationen der VorläufersubstanzF = Faraday constant = 96.485 C / mol z = charge number f MeV + = transfer number of the cations of the precursor substance
In einer besonders vorteilhaften Ausführungsform wird das erfindungsgemäße Verfahren kontinuierlich betrieben. Hierbei sind Anoden- und Kathodenraum getrennt. Die Edukte werden kontinuierlich zugeführt; gleichzeitig wird die Flüssigkeit zusammen mit den sedimentierten Produkten abgeführt.In a particularly advantageous embodiment, the process according to the invention is operated continuously. Here, anode and cathode space are separated. The educts are fed continuously; at the same time, the liquid is removed together with the sedimented products.
Die Größe der entstehenden Partikel hängt von verschiedenen Parametern ab, die den Wachstumsprozess der Partikel beeinflussen. Folglich kann die Partikelgröße sowohl über die Prozessführung als auch über die Substanzauswahl gesteuert werden. Der Fachmann kann durch entsprechende Optimierungsversuche die Partikelgröße einstellen.The size of the resulting particles depends on various parameters that influence the growth process of the particles. Consequently, the particle size can be controlled both by process control and by substance selection. The skilled person can adjust the particle size by appropriate optimization experiments.
Je größer die Oberflächenspannung der verwendeten Lösung bestehend aus mindestens einer Vorläufersubstanz und mindestens einer ionischen Flüssigkeit ist, desto länger können die Produktpartikel wachsen, bevor sie letztendlich aufgrund der Schwerkraft in die ionische Flüssigkeit eintauchen und absinken. Die Reaktion der Metall- oder Halbmetallkationen und damit das Wachstum der Produktpartikel findet ausschließlich im Phasengrenzbereich zwischen ionischer Flüssigkeit und Plasma statt.The greater the surface tension of the solution used, consisting of at least one precursor substance and at least one ionic liquid, the longer the product particles can grow before they finally submerge and sink by gravity into the ionic liquid. The reaction of the metal or semimetallic cations and thus the growth of the product particles takes place exclusively in the phase boundary region between ionic liquid and plasma.
Je höher die Viskosität der verwendeten Lösung, desto langsamer sinken die an der Phasengrenze zum Plasma gebildeten Produktpartikel in die Flüssigkeit ein. Je langsamer die Produktpartikel einsinken, desto mehr Zeit steht ihnen zum Wachsen zur Verfügung, so dass sich in höher viskosen Lösungen größere Partikel bilden als in niedriger viskosen.The higher the viscosity of the solution used, the slower the product particles formed at the phase boundary to the plasma sink into the liquid. The slower the product particles sink in, the more time is available Grow available, so that form in larger viscous solutions larger particles than in lower viscous.
Je höher die Dichte der Produktpartikel ist, desto schneller bewegen sie sich aufgrund der Schwerkraft von der Phasengrenze nach unten weg. Dieses führt zu kürzeren Wachstumszeiten und folglich kleineren Partikeldurchmessem.The higher the density of the product particles, the faster they move away from the phase boundary due to gravity. This leads to shorter growth times and consequently smaller particle diameters.
Wird die Lösung nicht gerührt, so wird die Abwärtsbewegung der Produktpartikel lediglich durch die Größen Viskosität der Flüssigkeit, Dichte der Partikel und Oberflächenspannung der Flüssigkeit bestimmt. Ein zusätzlicher Rührvorgang führt zu einer höheren Konvektion in der Lösung, wodurch die Partikel schneller von der reaktiven Phasengrenze abtransportiert werden. Die Durchmesser der Produktpartikel werden entsprechend kleiner.If the solution is not stirred, the downward movement of the product particles is determined only by the viscosity of the liquid, the density of the particles and the surface tension of the liquid. An additional stirring action leads to a higher convection in the solution, whereby the particles are transported away from the reactive phase boundary more quickly. The diameters of the product particles are correspondingly smaller.
Die als Lösungsmittel verwendete ionische Flüssigkeit nimmt im Wesentlichen nicht an der Reaktion teil und ist deshalb über längere Zeit verwendbar, sofern keiner wesentlichen Zersetzungserscheinungen auftreten. Mit dem erfindungsgemäßen Verfahren können Partikel mit Durchmessern von 1 nm bis 1.000 nm gebildet werden. Die Größe der Partikel hängt wie beschrieben von der Prozessführung und der Auswahl der verwendeten Substanzen ab. Dabei ist die Größenver- teilung der Partikel bei jeder einzelnen Durchführung des erfindungsgemäßen Verfahrens im Wesentlichen monodispers und reproduzierbar.The ionic liquid used as a solvent substantially does not participate in the reaction and is therefore usable for a long time, provided that no significant decomposition phenomena occur. With the method according to the invention particles with diameters of 1 nm to 1000 nm can be formed. The size of the particles depends as described on the process control and the selection of the substances used. The size distribution of the particles in each individual implementation of the method according to the invention is essentially monodisperse and reproducible.
Die Abtrennung der gebildeten Partikel kann optional kontinuierlich oder diskontinuierlich durchgeführt werden. Die erfindungsgemäßen Partikel können beispielsweise für Anwendungen in der Medizin, Energietechnik und der chemischen Industrie verwendet werden. Dabei können die Partikel, falls erforderlich, durch Einbettung in eine Matrix, durch Ad- häsion oder Sinterprozesse auf bzw. an einem Substrat gebunden werden.The separation of the particles formed can optionally be carried out continuously or batchwise. The particles according to the invention can be used, for example, for applications in medicine, energy technology and the chemical industry. If necessary, the particles can be bound by embedding in a matrix, by adhesion or sintering processes on or on a substrate.
So können beispielsweise Silber-Nanopartikel wegen ihrer antimikrobiellen Wirkung Polymeren zugesetzt werden, mit denen medizinische Instrumente beschichtet werden. Edelmetall-Nanopartikel sind des Weiteren als Katalysatoren für elektrochemische Umsetzungen geeignet, z.B. für die Oxidation von Wasserstoff und Methanol sowie die Reduktion von Sauerstoff.For example, because of their antimicrobial effect, silver nanoparticles can be added to polymers used to coat medical instruments. Noble metal nanoparticles are further useful as catalysts for electrochemical reactions, e.g. for the oxidation of hydrogen and methanol as well as the reduction of oxygen.
Figur 1 zeigt die Reduktion eines Metalls oder Halbmetalls mit Hilfe einer Argonentladung. Eine Metallanode (6) steht im Kontakt mit der ionischen Flüssigkeit. Als Anodenmaterial wird Platin verwendet. Alternativ kann auch eine Anode aus dem abzuscheidenden Metall zum Einsatz kommen. Diese löst sich dann während des Experiments nach und nach auf. Die in das Plasma (2) hineinragende Kathode (1) besteht aus Platin. In dem Argonplasma werden Argonkationen durch das elektrische Feld zur Kathode (1) bewegt und dort reduziert. In der ionischen Flüssigkeit (5) wandern im elektrischen Feld Metallkationen (3) zur Phasengrenze mit dem Plasma und werden dort durch aus dem Plasma stammende Elektronen zum e- lementaren Metall oder Halbmetall reduziert.FIG. 1 shows the reduction of a metal or semimetal with the aid of an argon charge. A metal anode (6) is in contact with the ionic liquid. The anode material used is platinum. Alternatively, an anode made of the metal to be deposited can also be used. This then dissolves gradually during the experiment. The cathode (1) projecting into the plasma (2) consists of platinum. In the argon plasma argon cations are moved by the electric field to the cathode (1) and reduced there. In the ionic liquid (5), metal cations (3) migrate in the electric field to the phase boundary with the plasma, where they are reduced by electrons originating from the plasma to the elemental metal or semimetal.
In Figur 2 ist die Skizze einer Apparatur zur diskontinuierlichen Herstellung von Nanopartikeln gezeigt. Sie besteht im Kern aus einem Glasgefäß (16) mit zweiFIG. 2 shows the sketch of an apparatus for the discontinuous production of nanoparticles. It consists in the core of a glass vessel (16) with two
Metallelektroden (13, 14). Durch eine an die Apparatur angeschlossene PumpeMetal electrodes (13, 14). Through a pump connected to the apparatus
(11) wird ein Vakuum in der Apparatur erzeugt. Mit Hilfe einer automatisch gere¬(11) a vacuum is generated in the apparatus. With the help of an automatically gere¬
gelten Gasversorgung können über die Ventile (7, 8, 9) einzelne Gase oder Gasmischungen in den Versuchsaufbau kontrolliert eingelassen werden. Der Druck- messers (10) ist ebenfalls mit der Gasregeleinheit verknüpft, was die Einstellung vorgegebener Drücke in der Apparatur ermöglicht. Die in der ionischen Flüssigkeit gelöste Vorläufersubstanz (12) befindet sich im unteren Teil der Glasapparatur, wobei die untere Elektrode (13) von der Flüssigkeit (12) bedeckt ist. Die Hoch- Spannungsquelle (17) dient der Spannungsversorgung der Elektroden. Die untereapply gas supply can be introduced through the valves (7, 8, 9) individual gases or gas mixtures in the experimental setup controlled. The pressure- Messers (10) is also linked to the gas control unit, which allows the setting of predetermined pressures in the apparatus. The precursor substance (12) dissolved in the ionic liquid is located in the lower part of the glass apparatus, the lower electrode (13) being covered by the liquid (12). The high voltage source (17) serves to supply power to the electrodes. The lower one
Elektrode (13) ist anodisch und die obere Elektrode (14) kathodisch beschaltet. Das Reaktionsprodukt wird nach Beendigung des Experiments außerhalb der Apparatur von der Flüssigkeit abgetrennt.Electrode (13) is anodic and the upper electrode (14) connected cathodically. The reaction product is separated from the liquid after completion of the experiment outside the apparatus.
Figur 3 zeigt einen Aufbau für eine kontinuierliche Reaktionsführung durch kontinuierliche Zugabe von Ausgangsmaterial und Sedimentation des Produktes bei gleichzeitiger Trennung von Anoden- und Kathodenraum. Die Apparatur besitzt ebenfalls eine automatisch geregelte Gasversorgung (18, 19, 20, 21) und eineFigure 3 shows a structure for a continuous reaction by continuous addition of starting material and sedimentation of the product with simultaneous separation of anode and cathode space. The apparatus also has an automatically controlled gas supply (18, 19, 20, 21) and a
Pumpe zur Vakuumerzeugung (22). Das Reaktionsgefäß hat jedoch jeweils einen separaten Anoden- (30) und Kathodenraum (25). Um den Flüssigkeitsstand in Anoden- und Kathodenraum auf die gewünschte Höhe zu bringen, befindet sich im Gasphasenbereich der Apparatur das Ventil (26). Mit diesem Ventil kann bei Bedarf eine Verbindung zwischen den Gasphasen des Anoden- und Kathodenraums hergestellt werden. Über das Ventil (32) werden kontinuierlich die EduktePump for vacuum generation (22). However, the reaction vessel has a separate anode (30) and cathode (25) each. In order to bring the liquid level in anode and cathode space to the desired level, located in the gas phase region of the apparatus, the valve (26). If required, this valve can be used to establish a connection between the gas phases of the anode and cathode compartments. Via the valve (32) are continuously the educts
zugeführt und über das Ventil (29) die Flüssigkeit zusammen mit den Produkten abgeführt. Die Druckverhältnisse müssen so gewählt werden, dass sich die Flüssigkeitsniveaus während des Betriebs nicht ändern. Dieses schließt den Zu- und Ablaufdruck an den Ventilen (29) und (31) mit ein. Figur 4 zeigt eine Apparatur zur Abscheidung nanoskaliger Partikel in einer Radiofrequenzentladung. Im Gegensatz zu der in Figur 2 gezeigten Skizze ist die Hochspannungsquelle durch eine handelsübliche Gleichspannungsquelle (40) ersetzt, und um den Glaskörper herum befindet sich eine Kupferspule (38), auf die eine Radiofrequenz gegeben wird. Dieser Aufbau hat den Vorteil, dass die eingebrachten Elektroden (37) und (43) ausschließlich für die Abscheidung der Nano- partikel verwendet werden und nicht zur Erzeugung der Gasentladung. supplied and discharged via the valve (29), the liquid together with the products. The pressure conditions must be selected so that the liquid levels do not change during operation. This includes the inlet and outlet pressure at the valves (29) and (31) with a. FIG. 4 shows an apparatus for depositing nanoscale particles in a radio-frequency discharge. In contrast to the sketch shown in Figure 2, the high voltage source is replaced by a commercially available DC voltage source (40), and around the glass body there is a copper coil (38) to which a radio frequency is applied. This structure has the advantage that the introduced electrodes (37) and (43) are used exclusively for the deposition of the nanoparticles and not for the generation of the gas discharge.
Ausführungsbeispiel 1Embodiment 1
Abscheidung von Silber aus einer silberhaltigen 1 -Butyl-3-methylimidazolium- trifluormethansulfonat-LösungDeposition of silver from a silver-containing 1-butyl-3-methylimidazolium trifluoromethanesulfonate solution
In einer Vakuumapparatur aus handelsüblichem Borosilikatglas (siehe Figur 2) befinden sich zwei Platinelektroden in einem Abstand von ca. 10 cm. Die untere Elektrode besteht aus einem Platinblech der Fläche 1 cm2, die obere Elektrode besteht aus einer einseitig geschlossenen Platinhohlkathode (Höhe 1 ,5 cm, Durchmesser 0,75 cm), wobei die offene Seite zur Gegenelektrode in der ioni- sehen Flüssigkeit ausgerichtet ist. Beide Elektroden sind mit einer Hochspannungsquelle der Firma Heinzinger (Modell HNC10.000-10) verbunden. Die untere Elektrode wird im Experiment anodisch, die obere Elektrode kathodisch beschaltet. In das gereinigte Glasgefäß werden ca. 10 ml einer Lösung von Silbertrifluor- methansulfonat in 1 -Butyl-3-methylimidazoliumtrifluormethansulfonat (c = 0,M7 mol/l) gegeben. Die untere Elektrode befindet sich nach dem Einfüllen ca. 2 cm unter der Phasengrenze zwischen ionischer Flüssigkeit und der Gasphase. Mittels einer Drehschieberpumpe wird die Apparatur evakuiert und die Lösung für mindestens 15 Minuten dem Endvakuum der Pumpe ausgesetzt. In der Lösung befindliche Restfeuchtigkeit sowie eventuell in der ionischen Flüssigkeit ge- löste Gase werden dadurch ausgetrieben. Sollte nach 15 Minuten die Bläschenbildung noch nicht beendet sein, muss solange weiter abgepumpt werden, bis keine Blasen mehr aus der Lösung aufsteigen.In a vacuum apparatus made of commercially available borosilicate glass (see FIG. 2), there are two platinum electrodes at a distance of approximately 10 cm. The lower electrode consists of a platinum sheet of 1 cm 2 , the upper electrode consists of a one-sided closed platinum hollow cathode (height 1, 5 cm, diameter 0.75 cm), with the open side facing the counter electrode in the ionic liquid see , Both electrodes are connected to a high voltage source from Heinzinger (model HNC10.000-10). The lower electrode is anodically connected in the experiment, the upper electrode is cathodically connected. About 10 ml of a solution of silver trifluoromethanesulfonate in 1-butyl-3-methylimidazolium trifluoromethanesulfonate (c = 0, M7 mol / l) are added to the cleaned glass vessel. The lower electrode is located after filling about 2 cm below the phase boundary between the ionic liquid and the gas phase. By means of a rotary vane pump, the apparatus is evacuated and exposed to the solution for at least 15 minutes the final vacuum of the pump. Residual moisture in the solution as well as any gases dissolved in the ionic liquid are thereby expelled. If the bubbling does not stop after 15 minutes, you must continue pumping until no more bubbles are released from the solution.
Im Anschluss an das Evakuieren wird über eine automatisierte Gasversorgung kontrolliert Argon (Reinheit 99.996 %) in die Apparatur eingelassen und kontinu- ierlich abgepumpt. Die Regelung wird so eingestellt, dass in der Apparatur ein konstanter Druck von 100 Pa (+/- 1 %) herrscht. Nach Erreichen eines stabilen Drucks wird durch Anlegen einer Spannung zwischen den Elektroden eine Gleichspannungsentladung zwischen der ionischen Flüssigkeit und der Kathode gezün- det. Bei Strömen von 10 mA liegt zwischen den Elektroden eine Spannung von ca. 0,5 kV an. Die Stromdichte an der Phasengrenze zwischen Plasma und ionischer Flüssigkeit ist in der Größenordnung 1 mA / cm2. An der Phasengrenze zwischen der ionischen Flüssigkeit und dem Plasma scheidet sich optisch sichtbar Silber in Form eines schwarzen Produktes ab. Nach 10 Minuten wird die Gaspha- senentladung abgeschaltet und das entstandene Silber wird in einer Zentrifuge abgetrennt. Eine Untersuchung der Partikel im Transmissionselektronenmikroskop ergibt, dass es sich um reine Silberpartikel handelt, wobei mehr als 95 % einen Durchmesser im Bereich von 5-50 nm besitzen.Following evacuation, argon (purity 99.996%) is introduced into the apparatus via an automated gas supply and continuously pumped out. The control is adjusted so that the apparatus has a constant pressure of 100 Pa (+/- 1%). After reaching a stable pressure, a DC discharge between the ionic liquid and the cathode is ignited by applying a voltage between the electrodes. At currents of 10 mA, a voltage of approx. 0.5 kV is applied between the electrodes. The current density at the phase boundary between plasma and ionic liquid is of the order of 1 mA / cm 2 . At the phase boundary between the ionic liquid and the plasma, optically visible silver precipitates in the form of a black product. After 10 minutes, the gas phase discharge is switched off and the resulting silver is separated in a centrifuge. Examination of the particles in the transmission electron microscope shows that they are pure silver particles, with more than 95% having a diameter in the range of 5-50 nm.
Ausführungsbeispiel 2Embodiment 2
Abscheidung von Kupfer aus einer kupferhaltigen 1-Butyl-3-methylimidazolium- trifluormethansulfonat-LösungDeposition of copper from a copper-containing 1-butyl-3-methylimidazolium trifluoromethanesulfonate solution
Auf gleichem Weg, wie im Ausführungsbeispiel 1 Silber abgeschieden wurde, kann Kupfer aus einer Lösung von Kupfer-(ll)-trifluormethansulfonsäure gelöst in 1-Butyl-3-methylimidazolium-trifluormethansulfonat abgeschieden werden. Die experimentellen Bedingungen sind hierbei die gleichen wie im Ausführungsbeispiel 1. BezugszeichenlisteIn the same way as silver was deposited in embodiment 1, copper can be deposited from a solution of copper (II) trifluoromethanesulfonic dissolved in 1-butyl-3-methylimidazolium trifluoromethanesulfonate. The experimental conditions are the same as those of Embodiment 1. LIST OF REFERENCE NUMBERS
1. Kathode1st cathode
2. Gasentladung 3. Metall- bzw. Halbmetallkationen2. Gas discharge 3. Metal or semi-metal cations
4. Anionen der ionischen Flüssigikeit4. Anions of ionic liquidity
5. Ionische Flüssigkeit mit gelöster Vorläufersubstanz5. Ionic liquid with dissolved precursor substance
6. Anode6. anode
7. Regelbares Ventil 8. Regelbares Ventil7. Adjustable valve 8. Adjustable valve
9. Regelbares Ventil9. Adjustable valve
10. Druckmesser10. Pressure gauge
11. Drehschieberpumpe11. Rotary vane pump
12. Ionische Flüssigkeit mit gelöster Vorläufersubstanz 13. Anode12. Ionic liquid with dissolved precursor substance 13. Anode
14. Kathode14th cathode
15. Gasentladung15. Gas discharge
16. Glasgefäß16. Glass vessel
17. Hochspannungsquelle 18. Regelbares Ventil17. High voltage source 18. Adjustable valve
19. Regelbares Ventil19. Adjustable valve
20. Regelbares Ventil20. Adjustable valve
21. Druckmesser21. Pressure gauge
22. Drehschieberpumpe 23. Hochspannungsquelle22. Rotary vane pump 23. High voltage source
24. Kathode 25. Gasphasenentladung im Kathodenraum24. Cathode 25. Gas phase discharge in the cathode compartment
26. Ventil26th valve
27. Ionische Flüssigkeit mit gelöster Vorläufersubstanz27. Ionic liquid with dissolved precursor substance
28. Glasapparatur 29. Auslassventil für ionische Flüssigkeit und Produkt 30. Anodenraum 3 I .Anode28. Glass apparatus 29. Ionic liquid outlet valve and product 30. Anode compartment 3 I.Anode
32. Einlassventil für ionische Flüssigkeit mit Vorläufersubstanz32. inlet valve for ionic liquid with precursor substance
33. Regelbares Ventil 34. Regelbares Ventil33. Adjustable valve 34. Adjustable valve
35. Regelbares Ventil35. Adjustable valve
36. Druckmesser36. Pressure gauge
37. Kathode37. cathode
38. Kupferspule zur Einkopplung der Radiofrequenz 39. Gasphasenentladung38. Copper coil for coupling in the radio frequency 39. Gas phase discharge
40. Gleichspannungsquelle40. DC voltage source
41. Drehschieberpumpe41. Rotary vane pump
42. Ionische Flüssigkeit mit gelöster Vorläufersubstanz 43. Anode 42. Ionic liquid with dissolved precursor substance 43. Anode

Claims

Ansprücheclaims
1. Verfahren zur Herstellung von Partikeln umfassend Metalle, Halbmetalle, Metallverbindungen oder Halbmetallverbindungen mit Durchmessern im Na- nometerbereich, dadurch gekennzeichnet, dass mindestens eine Vorläufersubstanz in mindestens einer ionischen Flüssigkeit gelöst wird und anschließend in einer Plasmaphase entweder durch freie Elektronen reduziert wird oder mit Teilchen aus der Plasmaphase reagiert, wobei unter Vorläufersubstanz ein Salz eines Metalls oder eines Halbmetalls verstanden wird und die Plasmaphase durch eine homogene Gasentladung eines inerten oder reaktiven Prozessgases bei einem Druck von 1 Pa bis 2000 Pa erzeugt wird.1. A process for the preparation of particles comprising metals, semimetals, metal compounds or metalloid compounds with diameters in the nanometer range, characterized in that at least one precursor substance is dissolved in at least one ionic liquid and then reduced in a plasma phase either by free electrons or with particles reacts from the plasma phase, wherein precursor substance is understood to mean a salt of a metal or a metalloid and the plasma phase is generated by a homogeneous gas discharge of an inert or reactive process gas at a pressure of 1 Pa to 2000 Pa.
2. Verfahren zur Herstellung von Partikeln gemäß Anspruch 1 , gekennzeichnet durch die Schritte: a) Herstellen einer Lösung umfassend mindestens eine Vorläufersubstanz in mindestens einer ionischen Flüssigkeit, wobei unter Vorläufersubstanz eine elektrochemisch reduzierbare Verbindung eines Metalls oder eines Halbmetalls verstanden wird, und wobei die Lösung in einer eva- kuierbaren Vorrichtung, enthaltend zwei Elektroden, hergestellt wird oder die Lösung nach ihrer Herstellung in eine evakuierbare Vorrichtung, enthaltend zwei Elektroden, überführt wird, b) Einstellen des Drucks in der evakuierbaren Vorrichtung auf einem Wert zwischen 1 Pa und 2000 Pa, c) Einleiten eines inerten oder reaktiven Gases, wobei der Druck in der evakuierbaren Apparatur zwischen 1 Pa und 2000 Pa gehalten wird, d) Entfernen von im Lösungsmittel gelöstem Gas und/oder Restfeuchtigkeit, e) Erzeugen einer Gasentladung, f) Abtrennung der gebildeten Partikel. 2. A process for the preparation of particles according to claim 1, characterized by the steps: a) preparing a solution comprising at least one precursor substance in at least one ionic liquid, wherein the precursor substance is an electrochemically reducible compound of a metal or a semimetal understood, and wherein the solution in an evacuatable device containing two electrodes, or the solution is transferred after its preparation into an evacuable device containing two electrodes, b) adjusting the pressure in the evacuatable device to a value between 1 Pa and 2000 Pa, c) introducing an inert or reactive gas, the pressure in the evacuable apparatus being kept between 1 Pa and 2000 Pa, d) removing gas dissolved in the solvent and / or residual moisture, e) generating a gas discharge, f) separating off the particles formed ,
3. Verfahren zur Herstellung von Partikeln gemäß Anspruch 2, dadurch gekennzeichnet, dass die ionische Flüssigkeit ausgewählt ist aus der Gruppe mono- substituierte Imidazolium-Derivate, disubstituierte Imidazolium-Derivate, tri- substituierte Imidazolium-Derivate, Pyridinium-Derivate, Pyrrolidinium-Derivate, Phosphonium-Derivate, Ammonium-Derivate, Guanidinium-Derivate, Isouroni- um-Derivate.3. A process for the preparation of particles according to claim 2, characterized in that the ionic liquid is selected from the group monosubstituted imidazolium derivatives, disubstituted imidazolium derivatives, trisubstituted imidazolium derivatives, pyridinium derivatives, pyrrolidinium derivatives, Phosphonium derivatives, ammonium derivatives, guanidinium derivatives, isouronium derivatives.
4. Verfahren zur Herstellung von Partikeln gemäß einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Vorläufersubstanz eine Metallverbindung ist.4. A process for the preparation of particles according to any one of claims 1 to 3, characterized in that the precursor substance is a metal compound.
5. Verfahren zur Herstellung von Partikeln gemäß einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Vorläufersubstanz eine Verbindung eines Halbmetalls ist, ausgewählt aus der Gruppe Bor, Silicium, Germanium, Arsen, Antimon, Selen und Tellur.5. A process for the preparation of particles according to any one of claims 1 to 3, characterized in that the precursor substance is a compound of a semi-metal selected from the group boron, silicon, germanium, arsenic, antimony, selenium and tellurium.
6. Verfahren zur Herstellung von Partikeln gemäß einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die homogene Gasentladung bei einem Druck von 100 Pa ± 1 Pa durchgeführt wird.6. A process for the preparation of particles according to any one of claims 1 to 5, characterized in that the homogeneous gas discharge is carried out at a pressure of 100 Pa ± 1 Pa.
7. Verfahren zur Herstellung von Partikeln gemäß einem der Ansprüche 2 bis 6, dadurch gekennzeichnet, dass ein inertes Gas ausgewählt aus der Gruppe Helium, Neon, Argon, Krypton, Xenon oder Gemischen davon verwendet wird.7. A process for the preparation of particles according to any one of claims 2 to 6, characterized in that an inert gas selected from the group helium, neon, argon, krypton, xenon or mixtures thereof is used.
8. Verfahren zur Herstellung von Partikeln gemäß einem der Ansprüche 2 bis 6, dadurch gekennzeichnet, dass ein reaktives Gas ausgewählt aus der Gruppe8. A process for the preparation of particles according to any one of claims 2 to 6, characterized in that a reactive gas selected from the group
Sauerstoff, Stickstoff, Stickstoffmonoxid, Stickstoffdioxid, Distickstoffoxid, Koh- lenmonoxid, Kohlendioxid, Wasserstoff, Methan, Ethan, Fluor, Chlor, Brom,Oxygen, nitrogen, nitrogen monoxide, nitrogen dioxide, nitrous oxide, carbon monoxide, carbon dioxide, hydrogen, methane, ethane, fluorine, chlorine, bromine,
Luft oder Gemischen davon verwendet wird.Air or mixtures thereof is used.
9. Verfahren zur Herstellung von Partikeln gemäß einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die homogene Gasentladung durch Radiowellen, Mikrowellen, Gleichstrom oder Wechselstrom erzeugt wird. lO.Verfahren zur Herstellung von Partikeln gemäß einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass das Verfahren kontinuierlich betrieben wird.9. A process for the preparation of particles according to any one of claims 1 to 8, characterized in that the homogeneous gas discharge by radio waves, microwaves, direct current or alternating current is generated. 100. Method for producing particles according to one of claims 1 to 9, characterized in that the method is operated continuously.
11. Partikel umfassend Metalle, Halbleiter, Metallverbindungen oder Halbleiter- Verbindungen mit Durchmessern von 1 nm bis 1.000 nm, durch Verfahren gemäß den Ansprüchen 1 bis 10.11. Particles comprising metals, semiconductors, metal compounds or semiconductor compounds with diameters of 1 nm to 1000 nm, by methods according to claims 1 to 10.
12. Partikel nach Anspruch 11 , dadurch gekennzeichnet, dass ein Anteil von größer oder gleich 95 % der Partikel Durchmesser von 5 nm bis 50 nm aufweist, bevorzugt von 15 nm bis 30 nm.12. Particles according to claim 11, characterized in that a proportion of greater than or equal to 95% of the particles has diameters of 5 nm to 50 nm, preferably from 15 nm to 30 nm.
13.Vorrichtung umfassend Partikel gemäß Anspruch 11 oder 12 und ein Substrat, dadurch gekennzeichnet, dass die Partikel durch Einbettung in eine Matrix, durch Adhäsion oder Sinterprozesse auf bzw. an dem Substrat gebunden sind.13.Vorrichtung comprising particles according to claim 11 or 12 and a substrate, characterized in that the particles are bound by embedding in a matrix, by adhesion or sintering processes on or on the substrate.
14.Verwendung von Edelmetall-Nanopartikeln hergestellt nach einem der Ansprüche 1 bis 10 als elektrochemische Katalysatoren.14.Use of noble metal nanoparticles prepared according to one of claims 1 to 10 as electrochemical catalysts.
15.Verwendung von Silber-Nanopartikeln hergestellt nach einem der Ansprüche 1 bis 10 als antimikrobielle Additive für Polymere zur Beschichtung medizinischer Instrumente. 15.Use of silver nanoparticles prepared according to one of claims 1 to 10 as antimicrobial additives for polymers for coating medical instruments.
PCT/DE2007/000524 2006-03-23 2007-03-21 Deposition of nanoscale metals, semimetals and compounds of said metals and/or semimetals on the boundary surface between a low temperature discharge and an ionic liquid WO2007107152A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006013871A DE102006013871A1 (en) 2006-03-23 2006-03-23 Electrochemical process for the deposition of nanoscale metals, semimetals and compounds of these metals and / or semimetals at the interface between a Niedertempereturentladung and an ionic liquid
DE102006013871.6 2006-03-23

Publications (2)

Publication Number Publication Date
WO2007107152A2 true WO2007107152A2 (en) 2007-09-27
WO2007107152A3 WO2007107152A3 (en) 2007-11-29

Family

ID=38330759

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2007/000524 WO2007107152A2 (en) 2006-03-23 2007-03-21 Deposition of nanoscale metals, semimetals and compounds of said metals and/or semimetals on the boundary surface between a low temperature discharge and an ionic liquid

Country Status (2)

Country Link
DE (1) DE102006013871A1 (en)
WO (1) WO2007107152A2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2935382B1 (en) 2008-08-29 2010-10-08 Centre Nat Rech Scient SALT OF PENTACYLIC ANION AND ITS USE AS ELECTROLYTE
WO2010083040A1 (en) * 2009-01-15 2010-07-22 Gr Intellectual Reserve, Llc Continuous semicontinuous and batch methods for treating liquids and manufacturing certain constituents (e.g., nanoparticles) in liquids, apparatuses and nanoparticles and nanoparticle/liquid solution(s) and colloids resulting therefrom
CN104928704A (en) * 2014-11-15 2015-09-23 中国科学院过程工程研究所 Method for preparing monatomic silicon with electrolytic deposition in ionic liquid

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004007357A1 (en) * 2002-07-15 2004-01-22 The Regents Of The University Of California Method for producing metal oxide nanoparticles
US20040234604A1 (en) * 2003-05-19 2004-11-25 Stefan Mecking Medical-technology product, process for its production, and use
EP1514845A1 (en) * 2003-09-11 2005-03-16 E.I. Du Pont De Nemours And Company Plasma synthesis of metal oxide nanoparticles

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4157285A (en) * 1975-05-27 1979-06-05 Universite Libre De Bruxelles Method for preparing manganese chloride and manganese by igneous electrolysis of the manganese chloride obtained
FI87896C (en) * 1990-06-05 1993-03-10 Outokumpu Oy Process for making metal powder
US5516353A (en) * 1994-02-02 1996-05-14 The Ohio State University Separation of metal droplets of aluminum and its alloys from molten salts by application of electrical potential
US7683098B2 (en) * 1996-09-03 2010-03-23 Ppg Industries Ohio, Inc. Manufacturing methods for nanomaterial dispersions and products thereof
US8101061B2 (en) * 2004-03-05 2012-01-24 Board Of Regents, The University Of Texas System Material and device properties modification by electrochemical charge injection in the absence of contacting electrolyte for either local spatial or final states

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004007357A1 (en) * 2002-07-15 2004-01-22 The Regents Of The University Of California Method for producing metal oxide nanoparticles
US20040234604A1 (en) * 2003-05-19 2004-11-25 Stefan Mecking Medical-technology product, process for its production, and use
EP1514845A1 (en) * 2003-09-11 2005-03-16 E.I. Du Pont De Nemours And Company Plasma synthesis of metal oxide nanoparticles

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ENDRES F: "IONIC LIQUIDS: PROMISING SOLVENTS FOR ELECTROCHEMISTRY" ZEITSCHRIFT FUER PHYSIKALISCHE CHEMIE, OLDENBOURG, MUENCHEN,, DE, Bd. 218, Nr. 2, Februar 2004 (2004-02), Seiten 255-284, XP008079478 ISSN: 0044-3336 *
I. G. KOO, M. S. LEE, J. H. SHIM, J. H. AHN, W. M. LEE: "Platinum nanoparticles prepared by a plasma-chemical reduction method" JOURNAL OF MATERIALS CHEMISTRY, Bd. 15, 2005, Seiten 4125-4128, XP002448492 *
S. Y. YEO, S. H. JEONG: "Preparation and characterization of polypropylene/silver nanocomposite fibers" POLY. INT., Bd. 52, 2003, Seiten 1053-1057, XP002448493 *

Also Published As

Publication number Publication date
WO2007107152A3 (en) 2007-11-29
DE102006013871A1 (en) 2007-09-27

Similar Documents

Publication Publication Date Title
DE60217530T2 (en) PROCESS FOR SEMICONDUCTOR PARTICLE SYNTHESIS
Ha et al. Hydrothermal synthesis and characterization of self-assembled h-WO3 nanowires/nanorods using EDTA salts
Xu et al. Preparation and formation mechanism of ZnS semiconductor nanowires made by the electrochemical deposition method
Lu et al. One-step electrodeposition of single-crystal ZnO nanotube arrays and their optical properties
DE60310435T2 (en) METHOD FOR PRODUCING FINE METAL POWDER
DE102010031741B4 (en) Method and device for producing superconducting layers on substrates
EP1360344B1 (en) Electrochemical production of nanoscale metal (mixed) oxides
Luo et al. Formation of aligned ZnO nanotube arrays by chemical etching and coupling with CdSe for photovoltaic application
CN101254541A (en) Preparation of nano aluminum powder for conducting resin and storage method
Gan et al. Investigation on chemical etching process of ZnO nanorods toward nanotubes
DE2845782A1 (en) METHOD FOR PRODUCING A LAYER OF TIN NOXIDE
DE2818971A1 (en) IMPROVED DEVICE AND PROCESS FOR SEPARATING A METAL FROM A SALT
Ahmed et al. Effect of electrodeposition duration on the morphological and structural modification of the flower-like nanostructured ZnO
DE2816234A1 (en) METHOD OF DOPING HIGHLY PURE SILICON IN AN ARC HEATER
WO2007107152A2 (en) Deposition of nanoscale metals, semimetals and compounds of said metals and/or semimetals on the boundary surface between a low temperature discharge and an ionic liquid
DE10393964T5 (en) Diamond coated silicon and manufacturing process therefor
EP3615708B1 (en) Method for producing a semiconductor or conductor material, and use thereof
DE102016202202B4 (en) Apparatus and method for expanding graphite into graphene
DE1667773C3 (en) Method and device for the continuous production of board wires
EP3941879A1 (en) Engineering process for halogen salts, using two identical electrodes
DE10393407T5 (en) A process for producing high surface area niobium and / or tantalum powder
DE112014005697T5 (en) Positive electrode for a lithium-sulfur battery and a method for producing the same
CN110817961B (en) Preparation method of molybdenum disulfide nanosheet material
DE2944352C2 (en) Process and extraction of carbide
CN103447548B (en) Mg is prepared in a kind of ionic liquid displacement-heat treatment 2the method of Cu alloy

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07722084

Country of ref document: EP

Kind code of ref document: A2

122 Ep: pct application non-entry in european phase

Ref document number: 07722084

Country of ref document: EP

Kind code of ref document: A2