WO2007107096A1 - Procédé et système d'émission de signal dans une communication par antennes multiples - Google Patents

Procédé et système d'émission de signal dans une communication par antennes multiples Download PDF

Info

Publication number
WO2007107096A1
WO2007107096A1 PCT/CN2007/000864 CN2007000864W WO2007107096A1 WO 2007107096 A1 WO2007107096 A1 WO 2007107096A1 CN 2007000864 W CN2007000864 W CN 2007000864W WO 2007107096 A1 WO2007107096 A1 WO 2007107096A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmit
combination
antenna
antennas
signal
Prior art date
Application number
PCT/CN2007/000864
Other languages
English (en)
French (fr)
Inventor
Yinggang Du
Hufei Zhu
Bin Li
Original Assignee
Huawei Technologies Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co., Ltd. filed Critical Huawei Technologies Co., Ltd.
Publication of WO2007107096A1 publication Critical patent/WO2007107096A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0691Hybrid systems, i.e. switching and simultaneous transmission using subgroups of transmit antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0667Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of delayed versions of same signal
    • H04B7/0669Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of delayed versions of same signal using different channel coding between antennas

Definitions

  • the present invention relates to the field of communications, and in particular, to a method and system for transmitting signals in multi-antenna communication. Background technique
  • Multi-input and multi-output (MIMO) technology refers to the use of multiple transmit and receive antennas at the transmitting end and the receiving end respectively.
  • the signal is transmitted and received through multiple antennas at the transmitting end and the receiving end, thereby improving each The number of service shields (bit error rate or data rate) for each user.
  • the traditional communication system is a Single-Input Single-Output (SISO) system.
  • SISO Single-Input Single-Output
  • MI2SO Multiple-Input Single-Output
  • SIMO Single-Input Multiple-Output
  • Space-Time Coding (STC), referred to as space-time code.
  • STC Space-Time Coding
  • One type of space-time code takes advantage of the spatial diversity gain provided by the MIMO channel, which exhibits a steeper slope in the commonly used BER-SN curve.
  • STC can be divided into STTC (Space TimeTrellisCoding) space time grid code, ST Turbo Code (Space Time Turbo Code), space time block code, STBC (Space Time Block Coding) space time block code, difference Space Time Block Code (DSTBC) and so on.
  • STTC Space TimeTrellisCoding
  • ST Turbo Code Space Time Turbo Code
  • space time block code space time block code
  • STBC Space Time Block Coding space time block code
  • DTBC difference Space Time Block Code
  • the Alamouti space-time block code is used to transmit signals to obtain diversity gain.
  • two transmit antennas are used simultaneously, and signals are transmitted in the manner shown in FIG.
  • One or more receive antennas can be used at the receiving end.
  • Two transmit antennas are used simultaneously at the transmit end, and the diversity gain of the two transmit antennas is obtained for the receive end.
  • Space-time codes can also be used to obtain larger MIMO channel capacity using spatial multiplexing, such as Layered Space-Time Coding (LST) proposed by Foschini.
  • LST Layered Space-Time Coding
  • the transmitting end divides the data to be transmitted into multiple data packets (Block), channel coding and interleaving the information bits in the same data packet, and then modulating Multiple symbols are transmitted over the channel, and the length of time required to transmit such a packet determines the length of a Transmission Time Interval (TTI).
  • TTI Transmission Time Interval
  • the receiving end first receives all the symbols contained in the same data packet, and then deinterleaves and decodes.
  • the signal received by the receiving end can be expressed as follows:
  • the definitions of r, ⁇ and are both spanning 2 symbol periods. That is, in the first symbol period, two transmit antennas respectively emit ⁇ ⁇ and ⁇ , and the second period transmits 2 and ⁇ , respectively, and the respective components of ⁇ remain unchanged for 2 symbol periods.
  • the Alamouti scheme has another attraction in that its decoding is very simple. Without joint detection, maximum likelihood estimation can be performed for each symbol separately.
  • the receiving signal on the jth receiving antenna be:
  • the first line of the formula is only related to the second line, and the second line is only related to 2 , so it can be detected separately, which makes it possible to use maximum likelihood estimation. Further classification can also be obtained, and the discriminant of ⁇ 2 can be obtained.
  • the signal-to-noise ratio corresponding to each symbol can also be obtained separately:
  • the above matrix has 4 rows and 4 columns, and the 4 columns correspond to 4 transmitting antennas, and each column corresponds to 1 no. Same transmitting antenna.
  • the four rows of the above matrix correspond to four consecutive points in the time domain, or in the frequency domain, or in the time and frequency domains.
  • the transmitting antennas are numbered as transmitting antennas 1, 2, 3, 4, it can be seen that in this scheme, two symbol vectors h ] and [ ⁇ are then transmitted on the transmitting antennas 1 and 2, 4 emits two symbol vectors and [ ⁇ 3 2 ].
  • the two symbol (symbol) vectors [ ⁇ '"] and [ ⁇ ⁇ emitted on the transmitting antennas 1, 2 form a set of Alamouti space-time block codes
  • the two symbol vectors transmitted on the transmitting antennas 3, 4 [ ⁇ 2 ⁇ ] and [1 + 3 ⁇ ] form another set of Alamouti space-time block codes.
  • the Alamouti space-time block code is usually used in an Open Loo MIMO system.
  • the transmitting end In an Open Loop MIMO system, the transmitting end only knows the long-term statistical characteristics of the channel, and does not know the channel conditions at the current time, so that adaptive modulation and coding schemes cannot be used according to the current channel conditions.
  • the modulation and channel coding scheme is chosen, and only fixed modulation and channel coding schemes can be used.
  • the modulation and channel coding scheme is fixed, usually a data block using the modulation and channel coding scheme is transmitted in a TTI (Transmission Time Interval).
  • TTI Transmission Time Interval
  • the channel conditions corresponding to each data packet are different, and the corresponding receiving end receives different signal-to-noise ratios, so that the packet error rate of each transmitted data packet will also change.
  • the goal of the system design is to reduce the average packet error rate, which is the average of the packet error rates of multiple packets.
  • the 3GPP proposal Rl-030777, "Link Error Prediction for E-DCH” also states that When the average signal-to-noise ratio of the frame is the same, the channel with less fluctuation has better frame error rate performance than the channel with larger fluctuation. Therefore, the proposal indicates that the additive white Gaussian noise (AWGN) channel and the slow-changing channel have better frame error rate performance than the fast-changing channel.
  • AWGN additive white Gaussian noise
  • the frame error rate is equivalent to the packet error rate we discussed, and the frame mentioned in the proposal is usually transmitted in a TTI, similar to the data packet mentioned in this application.
  • the received signal-to-noise ratio of multiple data packets fluctuates greatly, resulting in a large average value of packet error rates of multiple data packets, and also causes a flashlight effect.
  • the fluctuation of the received signal-to-noise ratio can be reduced to make the mean value of the packet error rate of a plurality of data packets small.
  • Embodiments of the present invention provide a method for transmitting a signal in multi-antenna communication, which is used to solve the problem of large fluctuation of a signal-to-noise ratio of a data packet received in the prior art.
  • a method for transmitting signals in multi-antenna communication, using N transmit antennas to transmit signals in a TTI including:
  • the transmit signal, the MN is transmitted using at least three different M transmit antenna combinations.
  • a system for transmitting signals in multi-antenna communication comprising a plurality of transmit antennas, further comprising: a transmit antenna combination selecting unit, configured to select a transmit antenna combination, select at least three different M transmit antenna combinations, and The selected transmit antenna combination transmits the transmit signal.
  • the solution provided by the embodiment of the invention can eliminate the fluctuation of the value of the effective signal to noise ratio caused by the change of the arrangement of the channel matrix, thereby reducing the fluctuation of the effective signal to noise ratio of each data packet, and achieving a better error rate. performance.
  • FIG. 1 is a schematic diagram of transmitting an Alamouti space-time block code using two transmit antennas in the prior art; 2 is a schematic flowchart of Embodiment 1 of the present invention;
  • FIG. 3 is a schematic structural diagram of a system according to Embodiment 2 of the present invention. detailed description
  • a set of Alamouti space-time packets is transmitted by two transmitting antennas as a group of transmitting signals in two adjacent symbol periods in one TTI. code.
  • Alamouti space-time block code period two adjacent two symbol periods in one Alamouti space-time block code period, It may be adjacent in the time domain, or it may be adjacent in the frequency domain.
  • the prior art can be expressed as: when the transmitting end uses multiple transmitting antennas, in one Alamouti space-time block code period, two transmitting antennas transmit signals as a group; and in the next Alamouti space-time block code period, The other two transmitting antennas which are different from each other transmit signals as a group, so that the two transmitting antennas which are actually used as a set of transmitting signals are fixed, and the embodiment of the present invention changes the above scheme.
  • FIG. 2 it is a schematic flowchart of Embodiment 1 of the present invention, which includes the following steps:
  • a combination of a certain M antennas is selected to transmit a first group of Alamouti space-time block codes
  • Alamouti space-time block code periods according to the requirements of the transmitted signal, a combination of one M transmit antennas is selected, and the first set of Alamouti space-time block codes are transmitted, and the V antennas are numbered according to the number (antenna 1. . Antenna M), where MN. M can take a value of 2 in a general multi-antenna transmission scheme.
  • the above Alamouti space-time block code period may be a time domain period or a frequency domain period.
  • step S12 in the combination of the M transmit antennas of the N transmit antennas, the combination in step S11 is removed, that is, after a combination of numbers (transmit antenna 1 ... transmit antenna M) is removed, a combination of M transmit antennas, the transmit antenna used in the combination may include one or more of the transmit antennas selected in step S11 (transmit antenna 1 ... transmit antenna M), but not It's exactly the same.
  • step S12 ensures that each of the combinations of C N M -1 transmit antennas is subjected to signal transmission.
  • the C N M combinations of all transmit antennas can be involved in the transmission, so that the fluctuation of the value of the effective signal-to-noise ratio can be eliminated, thereby reducing the fluctuation of the effective signal-to-noise ratio of each data packet. Better packet error rate performance.
  • all the different combinations of the transmitting antennas are traversed in each symbol period in one TTI, so that the interference to other users, that is, the flashlight effect can be reduced.
  • the transmitting antenna according to Embodiment 1 of the present invention may be a physical antenna or a virtual antenna as described in the above proposal.
  • M antennas are selected among N antennas, and a total of C N M combinations are used.
  • one of the C N M combinations is used to select M antenna transmit signals from the N antennas.
  • the Alamouti space-time block code period uses the first combination, and the next 20 Alamouti space-time block code periods use the second combination.
  • Preferably, in the 120 Alamouti space-time block code periods six combinations are used, and each combination occupies the same Alamouti space-time block code period. However, if only five of these combinations are used, the gain can be obtained. For example, there are 6 combinations in the above scheme, and the combination of the transmitting antennas used is the transmitting antenna combination 1, 2, 1, 2, 1, 2, 3, 4, 5, and only 5 combinations are used, and the combination is also achieved. Get the effect of the gain.
  • the following is an example of four transmit antennas.
  • the embodiment 1 of the present invention describes the transmission signal of the transmitting antenna in a matrix form, and the embodiment 1 of the present invention adopts the MMO mode as:
  • the above matrix has 12 rows and 4 columns, and the 4 columns correspond to 4 transmitting antennas, and each column corresponds to 1 different transmitting antenna, which are sequentially numbered as transmitting antenna 1, transmitting antenna 2, transmitting antenna 3 and transmitting antenna 4.
  • the rows of the above matrix correspond to 12 consecutive points on the time domain, or in the frequency domain, or in the time and frequency domain. Two consecutive points form an Alamouti space-time block code period, then these 12 consecutive The points correspond to Alamouti space-time block code period 1, Alamouti space-time block code period 2... Alamouti space-time block code period 6.
  • the signal in the Alamouti space-time block code period 1, the signal is transmitted using a combination of the transmitting antenna 1 and the transmitting antenna 2; in the Alamouti space-time block code period 2, the signal is transmitted using a combination of the transmitting antenna 3 and the transmitting antenna 4; in Alamouti Space time block code period 3, using transmit antenna 1 and transmit a combination of antennas 4 to transmit a signal; in Alamouti space-time block code period 4, a combination of transmit antenna 2 and transmit antenna 3 is used to transmit the signal; in Alamouti space-time block code period 5, a combination of transmit antenna 2 and transmit antenna 4 is used to transmit the signal; The Alamouti Space Time Block Code Period 6 transmits a signal using a combination of the transmit antenna 1 and the transmit antenna 3.
  • the next Alamouti space-time block code period 2 uses a combination of transmit antenna 3 and transmit antenna 4 to transmit a signal, and then repeats the two-cycle transmit antenna combination to transmit signals Under the combination of transmit antennas, the signal-to-noise ratio corresponding to each symbol is:
  • Alamouti space-time block code period 1 uses the same transmit antenna combination, and then the next Alamouti space-time block code period transmit antenna combination change, and the six types of transmit antenna combinations used in sequence are respectively transmit antennas. 1 and transmit antenna 2, transmit antenna 3 and transmit antenna 4, transmit antenna 1 and transmit antenna 4, transmit antenna 2 and transmit antenna 3, transmit antenna 2 and transmit Antenna 4, transmitting antenna 1 and transmitting antenna 3. Then the corresponding received signal to noise ratios of the six antenna combinations are:
  • Assuming a packet has 120 symbols, then in MIMO mode A', the SINR of 60 symbols is hidden, and the SINR of the other 60 symbols is SjV?34 In the MIMO mode, 120 symbols can be divided into 6 groups of 20 symbols each, and the SINRs of the symbols in each group are S M1 ⁇ 2 ( z ') , i l, 2, ..., 6.
  • the received signal-to-noise ratio of each symbol is not necessarily the same.
  • the effective signal-to-noise ratio (effective SMR) of the data packet needs to be considered.
  • the difference in the received signal-to-noise ratio of each symbol in one of the data packets affects the decoding performance of the turbo decoder, and the method of calculating the effective signal-to-noise ratio must take this into account.
  • One way to calculate the effective signal-to-noise ratio given in this proposal is to use the convex metric. Using a convex scale, the effective signal-to-noise ratio of a packet is obtained as follows:
  • Q is a penalty factor, used to simulate non-Gaussian modulation, actual of Adverse effects due to factors such as coding rate, channel estimation error, and channel variation.
  • the effective signal to noise ratio ff of a data packet is + Q-SINRb(i))
  • the embodiment of the present invention can eliminate the fluctuation of the effective signal-to-noise ratio caused by the arrangement change of the channel matrix, thereby reducing the fluctuation of the effective signal-to-noise ratio of each data packet, and obtaining a better error packet. Rate performance.
  • FIG. 3 it is a schematic structural diagram of a system for transmitting signals in multi-antenna communication according to Embodiment 1 of the present invention. As can be seen from the figure, it includes a plurality of transmitting antennas.
  • a transmit antenna combination selecting unit 101 configured to traverse the transmit antenna combination, and Selecting a combination of transmit antennas to transmit the first signal
  • the transmit antenna combination selection unit further performs:
  • a first symbol period selecting a first combination of M transmit antennas to transmit a set of space time codes; and in a subsequent second symbol period, selecting a combination of M transmit antennas different from those used in the first symbol period to transmit the transmit signals;
  • the M transmit antennas which are different from the combination used in the first symbol period, are repeatedly selected to transmit the transmit signal at least once, such that in the frame, at least three different M transmit antennas are combined to transmit the transmit signal.
  • the transmitting antenna in the system may be a physical transmitting antenna or a virtual transmitting antenna.
  • the virtual antenna (Virtual Antenna) in the embodiment of the present invention may refer to a vector consisting of a transmitted signal first multiplied by a matrix or more than one matrix to obtain a result vector, and then each of the transmitting antennas respectively transmits the result vector.
  • Each of the matrices may be an orthogonal matrix or a non-orthogonal matrix.
  • the solution provided by the embodiment of the invention can eliminate the fluctuation of the value of the effective signal to noise ratio caused by the change of the arrangement of the channel matrix, thereby reducing the fluctuation of the effective signal to noise ratio of each data packet, and achieving a better error rate. performance.
  • the solution provided by the embodiment of the present invention traverses all the different combinations of transmit antennas in each symbol period in one frame, thereby reducing interference to other users, that is, reducing the flashlight effect;

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

一种多天线通信中发射信号的方法及系统 技术领域
本发明涉及通信领域, 尤其涉及一种多天线通信中发射信号的方法及系 统。 背景技术
多输入多输出 (MIMO, Muliti-Input Multi-Output )技术是指在发射端和 接收端分别使用多个发射天线和接收天线,信号通过发射端和接收端的多个天 线传送和接收, 从而改善每个用户的服务盾量(误比特率或数据速率)。 而传 统的通信系统是单进单出 ( Single-InputSingle-Output, SISO ) 系统。 基于发射 分集和接收分集的多进单出 (Multiple-Input Single-Output, MI2SO )方式和单 进多出 ( Single-InputMultiple-Output, SIMO ) 方式也是 MIMO的一部分。
空时编码 (Space-Time Coding, STC), 简称为空时码。 有一类空时码利用 了 MIMO信道提供的空间分集增益 , 在常用的 BER - SN 曲线中, 表现为能 得到较陡的斜率。 STC 中根据编码方式的不同, 又可以分为 STTC ( Space TimeTrellisCoding ) 空时网格码, ST Turbo Code ( Space Time Turbo Code ) 空 时 Turbo码, STBC ( Space Time Block Coding ) 空时分组码, 差分空时分组 码(DSTBC )等等。 Alamouti方案是 STBC的一个简单而经典的例子。
目前在 MIMO技术中, 使用 Alamouti空时分组码传输信号, 以获得分集 增益。在 Alamouti空时分组码技术中, 同时使用两个发射天线, 用图 1所示的 方式发射信号。 在接收端可以使用一个或者多个接收天线。 在发射端同时使用 两个发射天线, 对于接收端而言可以获得这两个发射天线的分集(diversity ) 增益。
空时码还可以用来利用空间复用获得更大的 MIMO 信道容量, 比如 Foschini提出的分层空时编码( Layered Space-Time Coding, LST )。 为了对抗信道衰落, 以及信道的干扰和噪声带来的传输错误, 发射端把需 要传输的数据分成多个数据包 (Block),对同一个数据包中的信息比特进行信道 编码和交织, 再调制成多个符号通过信道传输, 而传输这样一个数据包所需要 的时间的长度决定了一个传输时间间隔( TTI, Transmission Time Interval )的 长度。 接收端先接收同一个数据包内包含的所有符号, 再进行解交织和解码。
而一个 TTI内所传输的一个数据包内的各个符号,可以分布在时域上的不 同区间, 或者分布在频域上的不同区间, 或者分布在时域和频域的二维平面上 的不同区间。 例如, 某个 MMO OFDM通信方案中, 一个数据包使用时域上 的 8个 OFDM符号,每个 OFDM符号占用频域上的 16个子载波,那么一个符 号周期,就是指时域和频域的二维平面上的一个区间,也就是时域上 1个 OFDM 符号上的 1个子载波, 而这个数据包共有 8 X 16=128个符号周期。
这里假设发射天线数目 M = 2, 接收天线数目 N = 2, 则接收端收到的信号 可以表示为如下形式:
Figure imgf000004_0001
这里的 r, Η和 的定义都是跨越 2个符号周期的。 即第一个符号周期, 两个发射天线分別发射 αχ和 α 第二个周期则分別发射 2和 ίΛ , 而 Η的各 个分量在 2个符号周期内保持不变。 Alamouti方案除了提供空间分集增益外, 另一个引人之处在于它的解码非常简单, 无需进行联合检测, 可以对每一个符 号分别进行最大似然估计。 这里简单说明一下, 设第 j个接收天线上的接收信 号为:
r = h a + hJ2a2 + v,
Figure imgf000004_0002
根据最大似然估计的准则, 需要使下式最小:
Figure imgf000004_0003
把其中各项展开合并同类项后, 由于 和 | 2|2与 、 的取值无关, 所 以可以转化为求取 a使下式最小: -∑ (rnhfla* + r jA + rji A + )+ +
Figure imgf000005_0001
lJ2\
不难看出, 该式第一行仅与 有关, 第二行仅与 2有关, 所以可以分别 检测, 这就使采用最大似然估计成为可能, 进一步进行筒化还可以得到 、 α2 的判别式分别为 使
¾: 使
Figure imgf000005_0002
这两个判别式与 、 α2的调制方式无关, 所以可以采用不同方式的调制, 如果是 PSK调制, 由于星座图上各点幅度值一样, 则两个判别式的后一项可 以进一步忽略, 检测将更为简单。
检测到 、 2后, 也可以分别得到每个符号对应的信噪比:
SI肌
Figure imgf000005_0003
可以看出, 得到 、' 2的方法实质上是一种硬判决。
同样的原理, 容易看出, 在接收天线数目 N=l的情况下, 每个符号对应 的信噪比:
+
SINK = - σ
在现有技术中,有一种使用 Alamouti空时分组码传输信号的方案,用于开 环(Open Loop) MO系统中。 该方案同时使用 4个发射天线, 而接收天线 的数目可以是 1, 2或者 4。 该方案所使用的 MMO模式是:
Figure imgf000005_0004
以上的矩阵有 4行 4列, 该 4列与 4个发射天线对应, 每 1列对应 1个不 同的发射天线。 以上矩阵的 4行对应于在时间域上, 或者在频率域上, 或者在 时间和频率域上的 4个连续的点。
如果把发射天线编号为发射天线 1, 2, 3, 4, 可以看到在该方案中, 在发 射天线 1 , 2上发射两个符号 (symbol ) 向量 h ]和 [― 然后在发射天 线 3, 4上发射两个符号向量 和 [― 3 2]。 发射天线 1 , 2上发射的两个 符号(symbol )向量 [^'"]和 [― ^ 组成一组 Alamouti空时分组码, 而发射天 线 3 , 4上发射的两个符号向量 [^2 ^ ]和 [一 +3 ^ ]组成另一组 Alamouti空时分 组码。
上述方案中, Alamouti空时分组码通常用于开环 ( Open Loo ) MIMO系 统中。 在开环 (Open Loop ) MIMO系统中, 发射端只知道信道的长期统计特 性, 不知道当前时刻的信道情况, 从而无法使用自适应调制和编码方案 ( Adaptive modulation and coding schemes )根据当前的信道情况选择较优的调 制和信道编码方案 ( The modulation and channel coding scheme ), 而只能使用固 定的调制和信道编码方案。 而当调制和信道编码方案固定下来以后, 通常一个 采用所述调制和信道编码方案的数据包(data block )在一个 TTI(Transmission Time Interval即传输时间间隔)内传输。 因为信道情况的变化, 各个数据包对应 的信道情况不同, 相应的接收端接收信噪比也不同, 从而所传输的各个数据包 的误包率也将随之变化。 系统设计的目标是降低平均误包率, 即多个数据包的 误包率的均值。
在多个数据包的接收信噪比的均值相同的情况下, 多个数据包的接收信噪 比的方差越小即各个数据包的接收信噪比的波动越小, 则多个数据包的误包率 的均值越小。 2003的会议 "Information, Communications and Signal Processing" 上的论文 "On interference cancellation ordering of V-BLAST detectors"给出了支 持这个结论的仿真结果。
3GPP的提案 Rl-030777, "Link Error Prediction for E-DCH"中也指出,在各 帧 (frame ) 的平均信噪比相同的情况下, 和波动较大的信道相比, 波动较小 的信道有更好的误帧率性能。 从而该提案指出, 和快变信道相比, 加性白高斯 噪声 (AWGN )信道和慢变信道有更好的误帧率性能。 所述的误帧率, 相当于 我们讨论的误包率, 而该提案中提到的帧 (frame ), 通常也是在一个 TTI内传 输, 与本申请提到的数据包类似。
由此可见, 现有技术中, 多个数据包的接收信噪比的波动较大, 从而导致 多个数据包的误包率的均值较大, 同时还会导致闪光灯效应(flashlight effect )。 对接收信噪比的波动可以加以降低, 使多个数据包的误包率的均值变小。 发明内容
本发明实施例提供一种多天线通信中发射信号的方法, 用以解决现有技术 中存在的数据包接收信噪比的波动较大问题。
一种多天线通信中发射信号的方法,在一个 TTI中采用 N个发射天线发射 信号, 包括:
在所述 ΤΉ中, 采用至少 3个不同的 M个发射天线组合发射所述发射信 号, 所述 M N。
一种多天线通信中发射信号的系统, 包括多个发射天线, 还包括: 发射天线组合选取单元, 用于对发射天线组合进行选取, 选取至少 3个不 同的 M个发射天线组合, 并由被选取的发射天线组合将所述发射信号发射出 去。
本发明实施例提供的方案,可以消除信道矩阵各项的排列改变所造成的有 效信噪比的值的波动, 从而减小各个数据包的有效信噪比的波动, 取得更好的 误包率性能。 附图说明
图 1为现有技术中使用两个发射天线发射 Alamouti空时分组码的示意图; 图 2为本发明实施例 1的流程示意图;
图 3为本发明实施例 2的系统结构示意图。 具体实施方式
下面结合说明书附图来说明本发明的具体实施方式。
根据前述现有技术中记载可知, 当在发射端使用多发射天线时, 在一个 TTI中相邻的两个符号周期内, 由两个发射天线作为一组发射信号, 发射一组 Alamouti空时分组码。我们可以把发射一组 Alamouti空时分组码的相邻的两个 符号周期, 称为一个 Alamouti空时分組码周期, 上述一个 Alamouti空时分组 码周期内的两个相邻的两个符号周期, 可以是在时间域上相邻, 或者也可以是 在频率域上相邻。
这样, 现有技术可以表述为, 发射端使用多发射天线时, 在一个 Alamouti 空时分组码周期, 由两个发射天线作为一组发射信号; 而在下一个 Alamouti 空时分组码周期内, 以均不相同的另外两个发射天线再作为一组发射信号, 这 样, 实际上做为一组发射信号的两个发射天线是固定不变的, 本发明实施例对 上述方案有所改变。
当以 N个天线作为发射天线进行信号发射时, 每个 Alamouti空时分组码 周期内要使用一个 M个发射天线的组合发送信号, 这样总共有 CN M个组合方 式可以使用。 本发明实施例对这 CN M个组合方式进行灵活运用。
如图 2所示, 是本发明实施例 1的流程示意图, 包括如下步骤:
Sll、在开始的一些 Alamouti空时分组码周期,选取某一个 M个天线的组 合发射第一组 Alamouti空时分组码;
在这些 Alamouti空时分组码周期内, 根据发射信号需求, 选取某一个 M 个发射天线的组合, 发射第一组 Alamouti空时分组码, 该] V [个发射天线按照 编号可以为 (天线 1......天线 M ), 其中 M N 。 M在一般的多天线发射方案 中, 可以取值为 2。 上述 Alamouti空时分组码周期, 可以是时间域周期或者频率域周期。
512、 在随后的若干个 Alamouti空时分组码周期内, 以步骤 S11中使用的 该 M 个发射天线的组合以外的 CN M-1 个发射天线组合分别发射第一组 Alamouti空时分组码;
步骤 S12中, 在上述 N个发射天线的 M个发射天线的组合中, 去除步骤 S11中组合方式, 即去除编号为 (发射天线 1......发射天线 M ) 的一个组合方 式后任意一个 M个发射天线的组合, 该组合中使用的发射天线可以包括步驟 S11中选取的编号为 (发射天线 1......发射天线 M ) 的发射天线中的一个或者 多个, 但不能完全相同。
513、 遍历所有 CN M-1个发射天线组合后, 返回步驟 Sll。
与步骤 S12相同处理,保证 CN M-1个发射天线組合中的每一个组合都进行 了信号发射。
通过步骤 S11-S13 , 可以使得所有发射天线的 CN M个组合都参与了发射, 这样, 可以消除有效信噪比的值的波动, 从而减小各个数据包的有效信噪比的 波动, 取得更好的误包率性能。
另外, 本发明实施例 1方案, 在一个 TTI内的各个符号周期遍历所有的不 同的各个发射天线组合, 这样可以减少对其它用户的干扰, 即减少闪光灯效应 flashlight effect。
本发明实施例 1所指的发射天线, 可以是物理天线, 也可以是上述提案中 所述的虚拟天线。
上述方案中, 在 N个天线中选取 M个天线, 共有 CN M种组合方式。 在开 始的几个 Alamouti空时分组码周期, 使用这 CN M种组合中的一种, 从 N个天 线中选取 M个天线发射信号。
上述 Alamouti空时分组码周期的分配,可以按照平均分配的方式,也可以 采取其他方式, 比如假设有 120个符号周期, 以 4个发射天线为例, 使用其中 2 个发射天线组合发送空时分組码, 则 C4 2=6种组合, 那么可以设定 20个 Alamouti空时分组码周期使用第一种组合, 接下来的 20个 Alamouti空时分组 码周期使用第二种组合 ......。较佳的情况就是 120个 Alamouti空时分组码周期 中, 6种组合都用到, 而且每一种组合占用的 Alamouti空时分组码周期相同。 但是,如果只用其中的 5种組合,也能获取增益。例如上述方案中有 6种组合, 使用的发射天线组合的依次是发射天线组合 1、 2、 1、 2、 1、 2、 3、 4、 5, 只 是用了其中的 5种组合, 也达到了获取增益的效果。
下面以 4个发射天线为例进行方案说明。
为描述方便,本发明实施例 1对发射天线发射信号采用矩阵形式进行说明, 本发明实施例 1采用 MMO模式为:
Figure imgf000010_0001
以上的矩阵有 12行 4列, 该 4列与 4个发射天线对应, 每 1列对应 1个 不同的发射天线, 依次编号为发射天线 1、 发射天线 2、 发射天线 3和发射天 线 4。 以上矩阵的行对应于在时间域上, 或者在频率域上, 或者在时间和频率 域上的 12个连续的点, 两个连续的点组成一个 Alamouti空时分组码周期, 则 这 12个连续的点分别对应 Alamouti空时分组码周期 1、 Alamouti空时分组码 周期 2...... Alamouti空时分组码周期 6。
上述方案中, 在 Alamouti空时分组码周期 1 , 采用发射天线 1和发射天线 2的组合发送信号; 在 Alamouti空时分組码周期 2, 使用发射天线 3和发射天 线 4的组合发送信号; 在 Alamouti空时分组码周期 3 , 使用发射天线 1和发射 天线 4的组合发送信号;在 Alamouti空时分組码周期 4使用发射天线 2和发射 天线 3的组合发送信号;在 Alamouti空时分组码周期 5使用发射天线 2和发射 天线 4的组合发送信号;在 Alamouti空时分組码周期 6使用发射天线 1和发射 天线 3的组合发送信号。
上述方案中, 假设接收天线数目 N = l 的情况。 则相应的信道矩阵 H = ½i hn Δ , 简写为 Η = [/¾ K \ a
当使用的 ΜΙΜΟ模式是:
、 、
Figure imgf000011_0001
' , 、 、 、 、 、 号,接下来的 Alamouti空时分組码周期 2使用发射天线 3和发射天线 4的组合 发送信号, 然后重复这两个周期的发射天线组合方式发射信号, 则这两种发射 天线组合下, 每个符号对应的信噪比为:
Figure imgf000011_0002
表示常数, 则上式可以筒写为:
Figure imgf000011_0003
当使用的 MIMO模式是 A'l , Alamouti空时分组码周期 1使用同一个发射 天线组合,然后在下一个 Alamouti空时分组码周期发射天线组合变化,依次使 用的 6种发射天线组合分别是发射天线 1和发射天线 2, 发射天线 3和发射天 线 4,发射天线 1和发射天线 4,发射天线 2和发射天线 3,发射天线 2和发射 天线 4, 发射天线 1和发射天线 3。 则这 6种天线组合下对应的接收信噪比分 别为:
SINRbQ = SINRU = β (|¾ |2+|¾| SINRb(2) = S屋 13 = β |2 + 1/¾「、
SINRh(3) = SINRU = 、
Figure imgf000012_0001
SINRb(4) = S扁 23 =/?(| ¾|2+| %| SINRb(5) = SINR24 = (| |2
Figure imgf000012_0002
SINRb(6) = SINRU = (|/¾|2 +| 假设一个数据包共有 120个符号,则在 MIMO模式 A'下, 60个符号的 SINR 隱 , 其它 60个符号的 SINR是 SjV?34。 而在 MIMO模式 Αί下, 120个符 号可以分成每组有 20个符号的 6组,各组内符号的 SINR依次是 S(z') , i=l, 2, …, 6。
在一个数据包内, 各个符号的接收信噪比不一定相同, 计算该数据包的误 包率, 需要考虑这个数据包的有效信噪比 (effective SMR)。 3GPP 的提案 Rl-050912, "MIMO proposal for MIMO-WCDMA evaluation"中给出了考虑到 在一个数据包内的各个符号的接收信噪比的差异的情况下, 计算有效信噪比的 方法。 所述的一个数据包内的各个符号的接收信噪比的差异, 会影响 turbo解 码器的解码性能, 计算有效信噪比的方法必须考虑到这一点。 该提案中给出的 一种计算有效信噪比的方法是使用凸面标尺(the convex metric), 使用凸面标 尺, 则某个数据包的有效信噪比^按照如下方式获得:
Ye =― r = ~∑iog2(i +Q-rn)
Q , 其中的 Ν , 在这里, ^是这个数据包内的每一个符号的接收信噪比, Q是惩罚因子(a penalty factor), 用来模拟因为非高斯调制 ( non-Gaussian modulation )、 实际的 编码率、 信道估计误差和信道变化等因素而带来的不利影响。
根据上面的叙述, 容易看到, 当使用的 MIMO模式是现有技术的时, 一 个数据包的有效信噪比 ^是:
TeS。 {l + Q- SINRa(i))
Figure imgf000013_0001
而当使用的 MIMO模式是本发明实施例 1方案时, 一个数据包的有效信 噪比 ff是 + Q-SINRb(i))
Figure imgf000013_0002
我们仿真了 50万个 ΤΉ内分别传输的 50万个数据包,得到 ^― ')和 ') , i=l,2,...,5<io5。 仿真结果表明, ^-。W和^- 1(0的均值的差别是 0.8%, 可以认 为二者在误差范围内相等, 而 。《的方差比^ u«的方差大 7%。 多次仿真都 证实了这个结论。
理论上也可以说明为什么 ^—。(0的方差总是比^」(0的方差大。 容易看出, 如果交换信道矩阵 H = [/¾ ^ ¾ 的各项, 那么 S/N^(l)和 S/N¾(2)的值都将会改 变, 从而 和有效信噪比^—。的值改变; 但是, 交换信道矩阵 H^ ^ W的 各项, 得到的新的1 ^^ ) (i=l,2,...,6)的 6个值, 与交换信道矩阵各项前的 6 个值相比, 只有排列顺序的改变, 6个值本身没有任何改变, 所以^ ϊ和有效信 噪比^ -1的值不会改变。 总而言之, 本发明实施例可以消除信道矩阵各项的排 列改变所造成的有效信噪比的值的波动,从而减小各个数据包的有效信噪比的 波动, 取得更好的误包率性能。
如图 3所示,是本发明实施例 1多天线通信中发射信号的系统结构示意图, 从图中可见, 其包括多个发射天线, 在上述基石出上, 增加:
发射天线组合选取单元 101, 用于对发射天线组合进行遍历选取, 并由被 选取的发射天线组合将第一信号发射出去;
该发射天线组合选取单元进一步执行:
在第一符号周期, 选取 M个发射天线的第一组合发射一组空时码; 在随后第二符号周期, 选取与第一符号周期所用组合不同的 M个发射天 线组合发射所述发射信号;
重复选取与第一符号周期所用组合不同的 M个发射天线组合发射所述发 射信号至少一次, 使得在所述 ΤΉ中, 采用至少 3个不同的 M个发射天线组 合发射所述发射信号。
该系统中的发射天线, 可以为物理发射天线, 也可以为虚拟发射天线。 本发明实施例中所说的虛拟天线( Virtual Antenna ) , 可以是指发射信号组 成的向量先与一个矩阵或者一个以上矩阵相乘得到一个结果向量后, 由各 个发射天线分别发射所述结果向量的各项, 所述的矩阵, 可以是正交矩阵 或者非正交矩阵。
本发明实施例的上述方案, 既可以通过硬件实现, 也可以通过软件实 现, 具体方案可根据需求而定。
本发明实施例提供的方案, 可以消除信道矩阵各项的排列改变所造成 的有效信噪比的值的波动, 从而减小各个数据包的有效信噪比的波动, 取 得更好的误包率性能。
本发明实施例提供的方案,在一个 ΤΤΙ内的各个符号周期遍历所有的不同 的各个发射天线组合, 这样可以减少对其它用户的干扰, 即减少闪光灯效应 flashlight effect;。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发 明的精神和范围。 这样, 倘若本发明的这些修改和变型属于本发明权利要求及 其等同技术的范围之内, 则本发明也意图包含这些改动和变型在内。

Claims

权 利 要 求
1、 一种多天线通信中发射信号的方法, 在一个 TTI中采用 N个发射天线 发射信号, 其特征在于, 包括:
在所述 ΤΉ中, 采用至少 3个不同的 M个发射天线組合发射所述发射信 号, 所迷 M < N。
2、 如权利要求 1所述的方法, 其特征在于, 所述方法进一步包括: 在第一符号周期, 选取 M个发射天线的第一组合发射所述发射信号; 在随后第二符号周期, 选取与第一符号周期所用组合不同的 M个发射天 线组合发射所迷发射信号;
重复执行选取与第一符号周期和第二符号周期所用组合不同的 M个发射 天线组合发射所述发射信号至少一次, 使得在所述 TTI中, 采用至少 3个不同 的 M个发射天线组合发射所述发射信号。
3、 如权利要求 1所述的方法, 其特征在于, 在所述 TTI中, 采用 CN M个 M个发射天线组合发射所迷发射信号。
4、 如权利要求 3所述的方法, 其特征在于, 所述发射信号为空时码, 所 述方法进一步包括:
在第一符号周期, 选取 M个发射天线的笫一组合发射一组空时码; 在随后的若干个符号周期, 以 M个天线的第一组合以外的 CN M 1个发射 天线组合分别发射多组空时码,直至所迷第― CN M- 1个发射天线组合遍历完毕, 返回上一步骤。
5、 如权利要求 1所述的方法, 其特征在于, 所述的发射天线数量 N=4, 选取 M=2个发射天线进行组合。
6、 如权利要求 2或 4所述的方法, 其特征在于, 所述符号周期, 为频率 域周期或者时间域周期。
7、 如权利要求 1 所述的方法, 其特征在于, 所述的发射天线可以为物理 发射天线, 也可以为虚拟发射天线。
8、 一种多天线通信中发射信号的系统, 包括多个发射天线, 其特征在于, 还包括:
发射天线組合选取单元, 用于对发射天线组合进行选取, 选取至少 3个不 同的 M个发射天线组合, 并由被选取的发射天线组合将发射信号发射出去。
9、 如权利要求 8所述的系统, 其特征在于, 所述发射天线组合选取单元 进一步执行:
在第一符号周期, 选取 M个发射天线的第一组合发射所述发射信号; 在随后第二符号周期, 选取与第一符号周期所用组合不同的 M个发射天 线组合发射所述发射信号;
重复选取与第一符号周期和第二符号周期所用组合不同的 M个发射天线 组合发射所述发射信号至少一次,使得在所述 TTI中, 采用至少 3个不同的 M 个发射天线组合发射所述发射信号。
10、 如权利要求 8所述的系统, 其特征在于, 所述的发射天线可以为物理 发射天线, 也可以为虚拟发射天线。
PCT/CN2007/000864 2006-03-20 2007-03-16 Procédé et système d'émission de signal dans une communication par antennes multiples WO2007107096A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200610067792XA CN101043297B (zh) 2006-03-20 2006-03-20 一种多天线通信中发射信号的方法及系统
CN200610067792.X 2006-03-20

Publications (1)

Publication Number Publication Date
WO2007107096A1 true WO2007107096A1 (fr) 2007-09-27

Family

ID=38522038

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2007/000864 WO2007107096A1 (fr) 2006-03-20 2007-03-16 Procédé et système d'émission de signal dans une communication par antennes multiples

Country Status (2)

Country Link
CN (1) CN101043297B (zh)
WO (1) WO2007107096A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101741772B (zh) * 2008-11-04 2013-06-26 电信科学技术研究院 Tdd系统中上行信道发送方法、信道估计方法及设备
CN107483163A (zh) * 2016-06-08 2017-12-15 工业和信息化部电信研究院 一种公用导频调度方法和装置
MY190950A (en) * 2016-07-20 2022-05-23 Huawei Tech Co Ltd Signal decoding method, apparatus, and device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1736053A (zh) * 2002-12-16 2006-02-15 法国电信公司 信号传输方法和多天线设备

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7002900B2 (en) * 2002-10-25 2006-02-21 Qualcomm Incorporated Transmit diversity processing for a multi-antenna communication system
CN1801665A (zh) * 2005-01-07 2006-07-12 三星电子株式会社 用于无线通信系统的空时频率分组编码装置和方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1736053A (zh) * 2002-12-16 2006-02-15 法国电信公司 信号传输方法和多天线设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LI HAITAO ET AL.: "Antenna Selection Effect On Channel Capacity in MIMO System", JOURNAL OF ELECTRONICS AND INFORMATION TECHNOLOGY, vol. 25, no. 7, 30 July 2003 (2003-07-30), pages 1000 - 1005 *
WANG JUN ET AL.: "Transmit Antenna Selection and Its Impact on the Capacity of Multiple Input Multiple Output Systems", JOURNAL OF XI'AN JIAOTONG UNIVERSITY, vol. 39, no. 12, 30 December 2006 (2006-12-30), pages 1356 - 1361 *

Also Published As

Publication number Publication date
CN101043297A (zh) 2007-09-26
CN101043297B (zh) 2010-08-25

Similar Documents

Publication Publication Date Title
JP4883091B2 (ja) Mimo−ofdm通信システム及びmimo−ofdm通信方法
JP6215241B2 (ja) Ofdmの時間変化する巡回遅延ダイバーシティ
JP4384668B2 (ja) Mimo−ofdmシステムにおける自動再送要求制御システム及び再送信方法
US7194042B2 (en) Data transmission with spatial spreading in a mimo communication system
US7336746B2 (en) Data transmission with spatial spreading in a MIMO communication system
CA2446877C (en) Method and apparatus for allocating resources in a multiple-input multiple output (mimo) communication system
US7397874B2 (en) Method and device for detecting vertical bell laboratories layered space-time codes
JP4861316B2 (ja) 多出力無線通信システムで最尤デコードを行うシステム及び方法
JP5562292B2 (ja) 無線ネットワークの送信機においてシンボルを符号化するための方法
WO2009067920A1 (fr) Procédé et dispositif permettant de transmettre ou de recevoir des données dans un système multi-antenne
WO2007107110A1 (fr) Procédé et système de transmission de signal dans un système à plusieurs antennes
WO2015100620A1 (zh) Ofdm通信系统及信号收发方法与装置
Aniba et al. Adaptive scheduling for MIMO wireless networks: Cross-layer approach and application to HSDPA
Huang et al. Cross-layer multi-packet reception based medium access control and resource allocation for space-time coded MIMO/OFDM
WO2007107096A1 (fr) Procédé et système d&#39;émission de signal dans une communication par antennes multiples
CN1989722B (zh) Ofdm系统的时变循环延迟分集
WO2008028408A1 (fr) Dispositif et procédé de communication dans un système mimo
Wu et al. A novel MU-MIMO-OFDM scheme with the RBD precoding for the next generation WLAN
Thomas et al. Modulation and coding rate selection to improve successive cancellation reception in OFDM and spread OFDM MIMO systems
Lee et al. Fundamental overview and simulation of MIMO systems for Space-Time coding and Spatial Multiplexing
Huang et al. The application of rate adaptation with finite alphabet in MIMO-OFDM
Moldovan et al. Adaptive potential of spatial transmission processing techniques
Moldovan et al. Spatial Multiplexing and Diversity in a MIMO based WLAN System
Chen et al. Orthogonal delay diversity realization and cyclic group codes for MIMO-OFDM
Zhang et al. Integrating Spatial Modulation Into 802.11 n

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07720441

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07720441

Country of ref document: EP

Kind code of ref document: A1