WO2007105739A1 - Backlight device and liquid crystal display device - Google Patents

Backlight device and liquid crystal display device Download PDF

Info

Publication number
WO2007105739A1
WO2007105739A1 PCT/JP2007/055005 JP2007055005W WO2007105739A1 WO 2007105739 A1 WO2007105739 A1 WO 2007105739A1 JP 2007055005 W JP2007055005 W JP 2007055005W WO 2007105739 A1 WO2007105739 A1 WO 2007105739A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
liquid crystal
ultraviolet
backlight device
backlight
Prior art date
Application number
PCT/JP2007/055005
Other languages
French (fr)
Japanese (ja)
Inventor
Kazuhiko Kasano
Tomoko Akai
Original Assignee
Display Tech 21, Corporation
National Institute Of Advanced Industrial Science And Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Display Tech 21, Corporation, National Institute Of Advanced Industrial Science And Technology filed Critical Display Tech 21, Corporation
Priority to JP2008505172A priority Critical patent/JP5051853B2/en
Publication of WO2007105739A1 publication Critical patent/WO2007105739A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133617Illumination with ultraviolet light; Luminescent elements or materials associated to the cell
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/004Scattering dots or dot-like elements, e.g. microbeads, scattering particles, nanoparticles
    • G02B6/0041Scattering dots or dot-like elements, e.g. microbeads, scattering particles, nanoparticles provided in the bulk of the light guide

Definitions

  • the present invention relates to a backlight device used for a non-light emitting display such as a liquid crystal and a liquid crystal display device using the same, and in particular, emits red, green, and blue as three primary colors of light as a backlight.
  • the present invention relates to a backlight device on which fluorescent light emitting glass is mounted and a liquid crystal display device using the backlight device.
  • LCD Liquid Crystal Display
  • LCD Liquid Crystal Display
  • backlight device on the back, and the three primary colors of the first polarizing plate, liquid crystal cell, and light are arranged independently in a plane.
  • the most common method is visualization through a Luller filter and a second polarizing plate.
  • white light including the three primary colors of light is most suitable. Although it is important to increase the brightness of the light source for a bright screen, it is important to increase the brightness of the light source. At present, only 2 to 3% of the light emitted by the knock light device with a large light transmission loss in the filter reaches the eyes of the observer, and the potential issue of low light utilization efficiency was there.
  • Patent Document 1 describes a liquid crystal display device of the type called “liquid crystal display device” in which a phosphor is disposed on the back surface or the surface of a liquid crystal display element and an ultraviolet light source is used as a light source.
  • An invention is disclosed in which a visible reflector for reflecting visible light, which is scattered light in all directions emitted from phosphor power, is arranged.
  • the light utilization efficiency from the phosphor can be improved, and the luminance of the liquid crystal display device can be improved without increasing the power consumption.
  • Patent Document 2 discloses a “liquid crystal display device” filed at substantially the same time as the same applicant as Patent Document 1.
  • the present invention improves the light utilization efficiency of the backlight device, and further provides a high-definition, high-contrast liquid crystal display device.
  • the structure is that a phosphor that emits light of the same color as that of the color filter is dispersed in the color filter and excited and emitted by ultraviolet and blue light emitted from a fluorescent tube, and the phosphor color filter is liquid crystal. It arrange
  • Patent Document 3 has the name "color liquid crystal display device", a transflective liquid crystal display panel, a front light disposed on the front surface side of the liquid crystal display panel, and a rear surface side of the liquid crystal display panel.
  • An invention with a positioned backlight is disclosed.
  • the front light has red, green, and blue LEDs (light emitting diodes) that can emit the three primary colors of light, and red and green as the back light source that can emit the three primary colors of light in the backlight.
  • a blue LED is provided, a controller that controls the front-side light source and back-side light source to irradiate the liquid crystal panel side with light from each light source as alternating light, and a liquid crystal synchronized with the alternating light.
  • a control circuit for controlling display on the display panel is provided.
  • display in a reflective field sequential method can be performed in a bright place
  • display in a transmissive field sequential chanel method can be performed in a dark place
  • this field sequential method is such that red light, green light, and blue light are sequentially turned on at a high speed, and a TN (twisted nematic) type according to them.
  • a liquid crystal display panel displays monochrome images.
  • three colors are one frame time (one set screen display time for three colors), ie about lZ60s. That is, the color is switched at about 1 / I80s per color, that is, about 6ms.
  • the light source of the backlight unit is named red as “liquid crystal display device”. Consists of color light emitting diodes, green light emitting diodes, and blue light emitting diodes. The number of each light emitting diode used is equal to or greater than the number of red light emitting diodes and the number of green light emitting diodes. It is characterized by that.
  • the invention disclosed in Patent Document 4 also adopts a field sequential method as in Patent Document 3, and uses an LED as a light source. Specifically, as disclosed in FIG. 1 of Patent Document 4, as the backlight unit, LEDs of three colors, red, green, and blue, and a light guide that guides the light emitted from these LEDs to the liquid crystal. Department.
  • Patent Document 4 defines the number of use in order to meet the user's needs that each bluish white color is preferred for each LED. By configuring as described above, it is possible to provide a liquid crystal display device that meets the needs of users.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2003-287746
  • Patent Document 2 JP 2003-255320 A
  • Patent Document 3 Japanese Patent Laid-Open No. 2005-338485
  • Patent Document 4 Japanese Patent Laid-Open No. 2002-196323
  • Patent Document 1 and Patent Document 2 can certainly prevent light attenuation in the color filter, but one pixel (as a display unit of a liquid crystal display device) In order to cover the phosphors of each of the three primary colors for a pixel), one cell must be divided into three to control the light emission of a 1/3 size color filter.
  • FIG. 7 is a conceptual diagram schematically showing a light emission state of a conventional liquid crystal display device.
  • the backlight device 51 is provided on the back side of the polarizing plate 52a, and the white light 55 generated by the knocklight device 51 passes through the polarizing plate 52a and is guided to the divided liquid crystal cells 53a to 53c.
  • the divided liquid crystal cells 53a to 53c include a red color filter 54a, a green color filter 54b, and a blue color filter 54a.
  • the color filters 54c are provided to correspond to the color filters 54c, respectively.
  • a voltage is applied to each of the divided liquid crystal cells 53a to 53c, causing the liquid crystal molecules to be twisted or twisted. Whether or not light can pass through the two polarizing plates 52a and 52b sandwiching the divided liquid crystal cells 53a to 53c is determined by the degree of the twist.
  • the white light 56 that is twisted by passing through the divided liquid crystal cells 53a to 53c passes through the color filters 54a to 54c to become red light 57a, green light 57b, and blue light 57c, and further passes through the polarizing plate 52b. To Penetrate.
  • the red, green, and blue intensities are adjusted according to the degree of twist generated in the previous divided liquid crystal cells 53a to 53c, resulting in red light 58a, green light 58b, and blue light 58c. In the eyes, these three primary colors are mixed and appear in various colors.
  • the light is indicated by an arrow and the intensity thereof is indicated by the length of the arrow.
  • three liquid crystals are used for each of the three color filters. A cell is needed.
  • a vertical dotted line is drawn corresponding to one pixel of the display unit. The three cells and filters that exist between the dotted lines exist as a set for these three power pixels.
  • Patent Documents 1 and 2 phosphors are used for these three color filters, which are made to emit light with ultraviolet light or blue light.
  • phosphors are used for these three color filters, which are made to emit light with ultraviolet light or blue light.
  • 1 There was a problem that one cell had to be divided into three and controlled at 1/3 size.
  • both the cell and the color filter have the problem of requiring subpixels with a resolution three times that of the pixels.
  • Patent Documents 3 and 4 solve the problems of control complexity and resolution as in the inventions disclosed in Patent Documents 1 and 2 by adopting the field sequential method.
  • LEDs are used as the light source of the backlight or the front light, and there is a problem in terms of the uniformity of the light source.
  • a backlight device using red (R), green (G), and blue (B) LEDs as a light source is arranged in a number of LEDs that constitute the light source. Is complicated and turn into. In general, there are 4 LED chips even for a small LCD with a size of 0.3mm square, 10 for the medium size, and 1000 for the large size. Many methods have been proposed to distribute the light emitted from the point light source with a clever light guide plate and perform uniform surface illumination.
  • Patent Document 3 discloses the method in FIG. 2
  • Patent Document 4 discloses the method in FIG. Unevenness still remains in the light from multiple point light sources emitted from the side of the cage, and power consumption, heat generation, and cost due to multiple arrays were issues to be solved.
  • the present invention has been made in response to the strong conventional situation, and while improving the light utilization efficiency, it is easy to control and can realize high resolution and high contrast without uneven brightness. And a liquid crystal display device.
  • a backlight device includes an ultraviolet ray generator, a visible light converter that converts ultraviolet rays emitted by the ultraviolet ray generator into visible light, and A backlight device having a transparent flat plate medium portion that propagates visible light emitted by the visible light conversion portion, wherein the visible light conversion portion is provided in three independent systems, each of which converts ultraviolet light into red light.
  • the green plate is converted into green light and blue light
  • the flat medium portion is provided with three layers of gaps independently or in layers with no gap corresponding to the three visible light conversion units provided independently. Is.
  • the backlight device having the above-described configuration has an effect that an ultraviolet ray generator is provided to generate ultraviolet rays, and the visible light converter is independently converted into visible light of the three primary colors of red, green, and blue.
  • each light converted into red, green, and blue visible light has the effect of independently propagating through the flat plate medium portion.
  • the backlight device according to the invention described in claim 2 is the invention according to claim 1, wherein the surface of each of the flat plate media portions provided with three independent layers is provided. A thin film that transmits visible light and blocks ultraviolet rays is formed.
  • the backlight device having the above-described configuration has an effect of preventing mixing of a flat plate medium portion emitting red, green, and blue colors into a flat plate medium portion emitting other colors due to leakage of ultraviolet rays.
  • the backlight device is the invention according to claim 1.
  • the ultraviolet ray generation unit uses an electron emission source as a force sword electrode, an ultraviolet phosphor as an anode electrode, and provides an electron extraction grid to accelerate and accelerate the ultraviolet ray.
  • the ultraviolet light is made to collide with the phosphor, and the ultraviolet phosphor is used as the anode electrode, the electrons generated by the force sword electrode are drawn out by the electron extraction grid, and the ultraviolet light serving as the anode electrode is obtained. It has an effect of generating ultraviolet rays by colliding with a line phosphor.
  • Claim 3 defines that the ultraviolet ray generator contains an ultraviolet phosphor, but the ultraviolet ray generator does not have an ultraviolet phosphor, and does not have an ultraviolet light emitting diode (UV — LED) or cold cathode fluorescent tube. (CCFL) can also be used. That is, the ultraviolet ray generating part is not limited to those described in claim 3 of the present invention, and any ultraviolet ray source can be used as long as it generates ultraviolet rays.
  • the backlight device is the invention according to claim 1 or claim 2, wherein the flat medium portion is an independent three-layer glass.
  • the visible light conversion units provided independently in three systems are fluorescent materials or fluorescent elements that are introduced into the glass and generate red light, green light, and blue light, respectively.
  • the fluorescent material or fluorescent element that generates red light, green light, and blue light introduced into each of the independent three layers of glass absorbs ultraviolet rays, and each of the three primary colors of light. Has the effect of generating. Note that once converted to visible light, the excitation energy differs even when irradiated on other glass surfaces. In other words, a single color of red, blue, or green is always incident on the LCD panel.
  • the backlight device according to claim 5 is the backlight device according to any one of claims 1 to 4, wherein the fluorescent material or the fluorescent element is used. Is doped so as to have a fluorescence intensity distribution opposite to the distribution of the ultraviolet intensity irradiated from the ultraviolet ray generator. Similarly, a reverse fluorescence intensity distribution can be obtained using a technique such as inkjet.
  • the fluorescent material or the fluorescent element generates ultraviolet rays. Since it is doped so as to have a fluorescence intensity distribution opposite to the distribution of the UV intensity irradiated from the part, the fluorescent material or the fluorescent element is low in the part where the UV intensity is high, and the fluorescent material is low in the part where the UV intensity is low Alternatively, it has the effect of being doped so that many fluorescent elements are distributed.
  • the backlight device according to claim 6 is the backlight device according to any one of claims 1 to 5, wherein the flat surface of the flat plate medium portion is flat. Any one of the planes forms a slope, and as the force away from the vicinity of the ultraviolet ray generator, the area of the cross section formed perpendicular to the one side surface is reduced. Is.
  • the backlight device having the above-described structure has an effect that ultraviolet rays incident from the end surface of the flat plate medium portion in the vicinity of the ultraviolet ray generating portion are uniformly reflected and scattered by the inclined surface.
  • the slope is formed so that the area of the cross section perpendicular to the plane of the flat plate media portion becomes narrower as it moves away from the ultraviolet ray generator, so the ultraviolet waveguide becomes narrower as it moves away from the ultraviolet ray generator and reflects off the slope. UV light is generated uniformly.
  • the backlight device according to claim 7 is the backlight device according to claim 6, wherein the backlight device according to claim 6 emits ultraviolet rays in the vicinity of a slope formed on one flat surface of the flat plate medium portion.
  • the nanoparticles to be reflected are doped, for example titania.
  • ultraviolet-reflecting nanoparticles such as titania are doped in the vicinity of the inclined surface formed on one plane of the flat plate medium portion, so that the ultraviolet light reflected on the inclined surface is converted into a fluorescent material or a fluorescent material. It has the effect of promoting scattering before colliding with elements. Titania means titanium dioxide (TiO 2). In addition,
  • Nanoparticles in the present invention refer to nanosized particles in the range of lnm to lOOnm.
  • the backlight device according to the invention described in claim 8 is the backlight device according to any one of claims 1 to 7, wherein the liquid crystal portion constituting the display device is red. Receives a control signal synchronized with a control signal for driving light, green light, and blue light so that each color light is transmitted with a time difference, and the above three independent visible lights are provided.
  • the conversion unit includes a backlight light emitting circuit unit that drives the ultraviolet ray generation unit so as to generate the red light, the green light, and the blue light, respectively.
  • the backlight light emitting circuit unit receives the control signal synchronized with the control signal for driving the liquid crystal constituting the display device and the ultraviolet ray generating unit is driven,
  • the liquid crystal optical shutter and the UV light generator are controlled to synchronize with each of the three primary colors of light.
  • a liquid crystal display device is an optical shirt comprising the backlight device described in claim 8, a liquid crystal section, and an electrode for applying a voltage to the liquid crystal section.
  • a control unit that transmits a control signal synchronized with each of the liquid crystal driving circuit unit and the backlight light emitting circuit unit.
  • the control unit having the synchronization circuit unit transmits a control signal synchronized with each of the three primary colors of light to the liquid crystal drive circuit unit and the backlight light emitting circuit unit, respectively, so that the three primary colors of light are independent.
  • the field sequential method is realized by synchronizing the backlight device that emits light with the optical shutter layer, it has a reflexive action.
  • visible light that is the three primary colors of light is independently generated at the same time by an independently configured visible light conversion unit, and simultaneously formed.
  • an independently configured visible light conversion unit By propagating through the flat plate media, it is possible to control independently the three colors of red, green and blue as the backlight.
  • the flat plate medium portion that emits red, green, and blue colors and propagates Therefore, it is possible to prevent the mixture from entering into a flat plate medium portion that emits other colors due to leakage of ultraviolet rays, and the independence of each color can be maintained high.
  • claim 1 or In addition to the effects described in claim 2, can employ the electron emission source for the force sword electrode to generate many electrons. Furthermore, by adopting an electron extraction grid, electrons generated from the force sword can be extracted and accelerated. In addition, by using an ultraviolet phosphor that generates ultraviolet rays by irradiating electrons as an anode electrode, the electrons collide directly and efficiently generate ultraviolet rays, and more efficiently transmit ultraviolet rays to the visible light conversion unit. Can be supplied.
  • the flat plate medium part is an independent three-layer glass
  • the three-system independent visible light conversion part is a fluorescent material or fluorescent element introduced into the glass.
  • the distribution in the flat plate medium portion of the ultraviolet intensity irradiated from the ultraviolet ray generating portion and the distribution force of the fluorescent material or fluorescent element in the flat plate medium portion cancel each other.
  • a backlight device having a light emitting surface that generates visible light that is uniform and has no uneven brightness can be provided.
  • ultraviolet rays incident from the end surface of the flat plate medium portion in the vicinity of the ultraviolet ray generating portion are uniformly reflected and scattered by the inclined surface. It is possible to guarantee a uniform UV scattering distribution in the flat plate medium part where the UV light intensity distribution does not occur with respect to the distance from the part, and thus the visible light generated from the fluorescent material and the fluorescent element becomes uniform, A backlight device including a light emitting surface that generates uniform visible light without uneven brightness can be provided.
  • ultraviolet reflection nanoparticles for example, titania, promotes scattering of ultraviolet rays reflected by the inclined surface, so that more fluorescent materials and fluorescent elements can be obtained. Since more visible light is generated by collision, not only is it uniform, but a backlight device with high brightness can be realized.
  • the liquid crystal optical shutter and the ultraviolet ray generator can be synchronized.
  • the three visible light converters which are independent for each of the three primary colors of light, are also synchronized to synchronize the generation of visible light, which is the three primary colors of light, with the driving of the liquid crystal, so that a color liquid crystal display device can be used without a color filter.
  • a configurable backlight device can be realized.
  • the three primary colors of light are emitted independently by synchronizing the liquid crystal driving circuit unit and the backlight light emitting circuit unit for each of the three primary colors of light.
  • FIG. 1 is a cross-sectional view of a backlight device according to an embodiment of the present invention.
  • FIG. 2 is a conceptual diagram showing an addition of an optical shutter layer of a liquid crystal display device to the backlight device according to the present embodiment.
  • FIG. 3 (a) is a conceptual diagram schematically showing the structure of a fluorescent glass used in the backlight device according to the present embodiment, and (b) is an enlarged view of a portion indicated by symbol C in the figure.
  • FIG. 3 (a) is a conceptual diagram schematically showing the structure of a fluorescent glass used in the backlight device according to the present embodiment, and (b) is an enlarged view of a portion indicated by symbol C in the figure.
  • FIG. 4 (a) is a conceptual diagram showing an irradiation distribution of ultraviolet rays when a spot-like ultraviolet light source 28 is used, and (b) is an irradiation distribution in the case of the ultraviolet irradiation distribution shown in (a). It is a conceptual diagram showing a state in which a mask pattern opposite to the distribution is formed. (C) is a conceptual diagram schematically showing the impregnation concentration by impregnating the phosphor solution during the mask pattern shown in (b). is there. Similar effects can be obtained by programming the ink jet apparatus.
  • FIG. 5 is a conceptual diagram showing a liquid crystal display device according to the present embodiment.
  • FIG. 6 is a conceptual diagram for explaining light emission control and liquid crystal drive control of the fluorescent glass according to the present embodiment.
  • FIG. 7 is a conceptual diagram schematically showing a light emission state of a conventional liquid crystal display device.
  • FIG. 1 is a cross-sectional view of a backlight device according to an embodiment of the present invention
  • FIG. FIG. 6 is a conceptual diagram showing an addition of an optical shutter layer of a liquid crystal display device to the backlight device according to the embodiment.
  • the knocklight device la is roughly divided into a fluorescent glass 2a, an ultraviolet ray generator 3a, and a backlight light emitting circuit section 14.
  • the fluorescent glass 2a is obtained by introducing a fluorescent material or a fluorescent element 16 into a porous glass that propagates light, and an end of the fluorescent glass 2a is inserted into the ultraviolet ray generator 3a through the sealing flange 4. It is composed.
  • the fluorescent material is a concept including a fluorescent compound
  • the fluorescent element is a concept including a fluorescent ion. Examples of the fluorescent material include particulate fluorescent particles.
  • the fluorescent glass 2a has a flat plate shape as shown in FIG. 2, and the end of the fluorescent glass 2a inserted into the ultraviolet ray generator 3a is made of ITO (indium tin oxide) using a method such as sputtering.
  • an ultraviolet phosphor 5 is formed.
  • an electrodeposition method, a printing method, an ink jet method, a dispensing method, or the like may be used if the ultraviolet phosphor 5 is in the form of particles.
  • it can be pasted with a conductive inorganic adhesive. An appropriate heat treatment is performed after the formation.
  • the fluorescent glass 2a is reinforced and fixed by a sealing material 8 to a glass or ceramic sealing flange 4 having an opening that penetrates without gaps.
  • the vacuum vessel 18 constituting the sealing flange 4 and the ultraviolet ray generator 3a is hermetically sealed with a low melting point alloy or frit glass.
  • a particulate fluorescent material or fluorescent element 16 that emits red light when it absorbs ultraviolet rays emitted from the ultraviolet phosphor 5 is introduced. That is, the fluorescent material or fluorescent element 16 functions as a visible light conversion unit.
  • the ultraviolet ray generator 3a includes a sealing flange 4 and a vacuum vessel 18 in which an electron extraction grid 6 and a carbon nanotube 7 are provided.
  • a carbon nanotube 7 as an electron emission source is provided as a cathode electrode at the lower end of the inside of the vacuum vessel 18, and generates electrons at a zero potential via the force sword cable 11.
  • an electron extraction grid 6 is provided as a Dard electrode. Electrons are effectively extracted by applying a voltage via the power supply 9. As for the voltage, it is considered that a voltage of 50V to 100V is appropriate in the case of the interval of 100 / im.
  • the electrons are accelerated and collided with the ultraviolet phosphor 5 to generate ultraviolet rays.
  • This positive voltage should be 3 to 5 times the grid voltage.
  • the electronic lead grid 6 receives the light emission control signal 15 and the switch 19 is operated, and the backlight light emitting circuit unit 14 is controlled so as to apply a voltage via the lid cable 12, and receives the light emission control signal 15. If not, electrons generated in the carbon nanotubes 7 will not pass through the electron extraction grid 6 and reach the ultraviolet phosphor 5.
  • the generated ultraviolet light travels through the fluorescent glass 2a and collides with the fluorescent material or fluorescent element 16 to generate red light.
  • the fluorescent material or fluorescent element 16 is uniformly distributed in the fluorescent glass 2a, and can emit uniform and uneven red light.
  • the generated red light propagates in the fluorescent glass 2a. That is, the fluorescent glass 2a functions as a flat plate medium portion.
  • the ultraviolet ray generator 3a is provided only at one end with respect to the fluorescent glass 2a, but this is also provided at the other end of the fluorescent glass 2a in the same manner. According to this, twice the luminance can be obtained.
  • the fluorescent glass 2a is a backlight device la for generating red light among the three primary colors of light.
  • the normal backlight device 1 is not only red light but also green light as shown in FIG.
  • Fluorescent glasses 2b and 2c that generate colored light and blue light are provided with the same configuration as that shown in FIG. 1, and these three independent systems are provided in three layers. Therefore, ultraviolet rays leak from each fluorescent glass 2a to 2c and enter the other fluorescent glass, and only the ultraviolet rays are transmitted to the surface of the fluorescent glass while transmitting visible light so as not to emit light of other colors.
  • An ultraviolet shielding film 17 is provided without transmission.
  • FIG. 2 shows a backlight device 1 in which three fluorescent layers 2a to 2c that emit light of three primary colors of light are provided with three layers stacked at intervals, and further, polarizing plates 21a and 21b And an optical shutter layer 22 configured to be sandwiched between them.
  • Each fluorescent glass 2a ⁇ 2c The red light, green light, and blue light emitted by the light are controlled by the knock light emitting circuit unit 14, and the backlight light emitting circuit unit 14 is a liquid crystal control signal that drives the liquid crystal unit of the optical shutter layer 22. It is controlled by the synchronized light emission control signal 15.
  • the backlight light emitting circuit section 14 and the ultraviolet ray generator 3 are supplied with electric power through independent electrode cables 25a to 25c in order to cause the fluorescent glasses 2a to 2c to emit light.
  • a force sword cable 11, a grid cable 12, and an anode cable 13 are shown as cables for supplying power to the ultraviolet ray generator 3a.
  • the electrode cable 25a in FIG. Cables are shown generically. The same applies to FIG.
  • the fluorescent glasses 2a to 2c are caused to emit light independently by electric power supplied independently via the electrode cables 25a to 25c. It is provided independently for each of the fluorescent glasses 2a to 2c.
  • the fluorescent glasses 2a to 2c are provided in three layers with an interval, but this interval is set in terms of the diffusion and attenuation of light emission and the strength of securing the space including the ultraviolet ray generator 3. The force that should be done
  • the three layers may be constructed so as to be in close contact with each other without any gaps.
  • the optical shutter layer 22 is configured by sandwiching a liquid crystal part with substrate glass or the like, and its driving is controlled by a liquid crystal drive circuit part 24.
  • the liquid crystal drive circuit unit 24 is also controlled by a liquid crystal control signal synchronized with the light emission control signal 15.
  • the power cables 26a and 26b connected from the liquid crystal drive circuit unit 24 to the optical shutter layer 22 are respectively connected to two wiring electrodes (not shown in the figure) provided on both surfaces of the liquid crystal unit.
  • the liquid crystal control signal that controls the liquid crystal drive circuit unit 24 is synchronized with the time difference emission of the fluorescent glass 2a to 2c provided in three layers, and the liquid crystal unit controls each of red light, green light, and blue light with a time difference.
  • the drive is controlled so as to transmit light, and the liquid crystal unit is operated in a field sequential manner.
  • a fluorescent material or a fluorescent element 16 capable of emitting three primary colors of light that is not emitted from a white backlight used in the past is used.
  • fluorescent glasses 2a to 2c that can independently emit the three primary colors of light. Therefore, when a non-light emitting device is used, a color display device can be configured without providing a color filter, and a color display device with high light utilization efficiency can be provided.
  • the visible light conversion part is uniformly dispersed in the flat plate medium part itself that emits light in the backlight device, so there is no uneven brightness. If the light is emitted uniformly, the distance from the light emitted from the surface to the fluorescent glass 2a-2c is short, so the attenuation of light is reduced, and here again the light loss is reduced and the light utilization efficiency is improved. Can be made.
  • the backlight device 1 emits light from the fluorescent glasses 2a to 2c, and drives the liquid crystal unit and emits light.
  • Each of the three primary colors can be synchronized, and a color display device employing a field sequential method can be configured. Since this field sequential method is adopted, it is not necessary to divide one cell into three etc. and control it to 1/3 etc. for one pixel of the display unit. It is possible to provide a backlight device that can achieve a high resolution at the same time as making the resolution fine. Also, by forming the ultraviolet shielding film 17 on the surface of each fluorescent glass 2a to 2c, other ultraviolet rays can be provided.
  • Fig. 3 (a) is a conceptual diagram schematically showing the structure of the fluorescent glass used in the backlight device according to the present example, and (b) is a concept showing an enlarged portion indicated by symbol C in the figure. It is a figure.
  • the ultraviolet light source side end face 45 of the fluorescent glass 2d is changed to the ultraviolet light source opposite side end face 46.
  • one side of the fluorescent glass 2d is a slope 44. This slope 44 is preferably polished.
  • the ultraviolet ray 43 radiated from the ultraviolet light source 28 enters from the ultraviolet light source side end face 45, and as shown in FIG.
  • the ultraviolet incident light 39 is reflected on the inclined surface 44, and the ultraviolet light guide 29 It collides with the reflective particles 30, for example, titanium, to form ultraviolet scattered light 40, and when the ultraviolet scattered light 40 collides with the phosphor 27, visible light 42 is emitted.
  • the ultraviolet reflective particles 30 are a concept including ultraviolet reflective nanoparticles.
  • the inclined surface 44 is formed from the ultraviolet light source side end face 45 to the ultraviolet light source reverse side end face 46, the ultraviolet light waveguide 29 gradually narrows, and the inclined surface 44 causes the ultraviolet light 43 (ultraviolet light incident light 39) to In a direction away from 28, that is, in a direction from the ultraviolet light source side end face 45 to the ultraviolet light source reverse side end face 46, it is reflected with a constant amount of light, and uniform ultraviolet scattered light 40 and visible light 42 can be obtained. Therefore, it is possible to provide the fluorescent glass 2d as a uniform surface light emitter.
  • the fluorescent glass 2d as shown in FIG. 3 (a) is produced as follows.
  • the shading can be applied by applying a phosphor solution by inkjet or by applying a mask pattern on glass with a photoresist or the like. Then, the glass is heated to 1120 ° C and densified. After that, polishing is performed so as to have an inclination as shown in Fig. 3 (a). It is also possible to form a slope by pouring into a mold in advance.
  • the ultraviolet light 43 is introduced from the ultraviolet light source side end face 45 by the ultraviolet light source 28, the ultraviolet light 43 is guided as shown in Fig. 3 (a), and the ultraviolet light guide 29 is coated with a pattern of ultraviolet reflective particles 30, for example, titania, and a titania solution is applied.
  • titania 30 can be used as a scattering accelerator for ultraviolet rays 43. Since titania 30 needs to be doped on the side of the inclined surface 44 in the fluorescent glass 2d and scatter the ultraviolet rays 43 reflected by the inclined surface 44, the arrow indicated by the symbol B in the figure is used. Dope from the direction of the mark.
  • Tb 3+ is used as the phosphor 27 that emits green
  • Eu 2+ is used as the phosphor 27 that emits blue
  • Eu 3+ is used as the phosphor 27 that emits red.
  • the fluorescent material 27 is not limited to those shown in the present embodiment, and other fluorescent materials and fluorescent elements may be used.
  • FIG. 4 (a) is a conceptual diagram showing the irradiation distribution of ultraviolet rays when a spot-like ultraviolet light source 28 is used, and (b) shows this irradiation distribution in the case of the ultraviolet irradiation distribution shown in (a).
  • FIG. 4 is a conceptual diagram showing a state in which a reverse mask pattern is formed, and FIG.
  • 3C is a conceptual diagram schematically showing the impregnation concentration when the phosphor solution is impregnated at the time of the mask pattern shown in FIG.
  • a linear ultraviolet light source 28 such as a light emitting diode (LED) or a linear cathode light source such as a cold cathode fluorescent tube (CCFL)
  • the brightness near the ultraviolet light source 28 is improved and the distance from the light source increases.
  • Luminance decreases in inverse proportion to the square.
  • the vicinity of the ultraviolet light source 28 is irradiated with strong ultraviolet light. End up.
  • the portion indicated by the symbol E forms a low luminance portion because the ultraviolet ray is weak in the middle of the ultraviolet light source 28.
  • the portion indicated by the symbol F is the farthest portion from the ultraviolet light source 28, it becomes the lowest luminance portion.
  • the fluorescent glass 2d forms a luminance distribution as a light emitter in this way, it is unsuitable for use in an apparatus that requires a uniform light emitting surface such as a backlight. Therefore, when the phosphor is impregnated, the mask pattern opposite to the pattern shown in Fig. 4 (a) is used to impregnate the phosphor to promote uniform phosphor emission. It was. Specifically, for example, a mask pattern as shown in FIG. 4 (b) is previously formed on the surface of the glass and impregnated with phosphor. In the mask pattern shown in FIG. 4 (b), a mask pattern having a density opposite to the irradiation distribution of the ultraviolet light source 28 shown in FIG. 4 (a) is formed. ing.
  • the ultraviolet light source 28 can irradiate the ultraviolet rays uniformly as compared with the spot shape or the line shape. Introducing ultraviolet rays from a certain glass end face inevitably produces a contrast in luminance that is inversely proportional to the distance. Furthermore, in order to guide the ultraviolet light from the end to the opposite side, as described with reference to FIG. 3, by forming the slope 44 from the ultraviolet light source side end face 45 to the ultraviolet light source reverse side end face 46, the ultraviolet light source This is useful because the distribution of the scattering of ultraviolet rays 43 irradiated from 28 can be made uniform.
  • FIG. 5 is a conceptual diagram showing the liquid crystal display device according to the present embodiment
  • FIG. 6 is a conceptual diagram for explaining the control of light emission of the fluorescent glass and the drive of the liquid crystal.
  • a liquid crystal display device 31 includes an optical shutter layer 22 sandwiched between a backlight device 1 and polarizing plates 21a and 21b, and driving thereof is performed by a backlight light emitting circuit unit 14 and a liquid crystal driving circuit unit 24, respectively. Yes.
  • a control unit 38 incorporating a synchronizing circuit unit 23 is provided in order to control the backlight light emitting circuit unit 14 and the liquid crystal driving circuit unit 24, a control unit 38 incorporating a synchronizing circuit unit 23 is provided.
  • the backlight device 1 has already been described with reference to FIG. 1 and FIG. 2, but three independent fluorescent glasses 2a to 2c are provided, and light of red light, green light, and blue light 3 respectively. Emits primary colors.
  • These fluorescent glasses 2a to 2c are connected to independent ultraviolet ray generators 3a to 3c, respectively, in which a voltage is applied to the carbon nanotubes to cause the electrons to collide with the ultraviolet phosphor to generate ultraviolet rays, thereby producing fluorescent glass.
  • the fluorescent material or fluorescent element that generates visible light of each color introduced in 2a to 2c is absorbed.
  • the backlight light emitting circuit unit 14 that supplies power to the ultraviolet ray generators 3a to 3c, and the drive of the backlight light emitting circuit unit 14 is also controlled by the control unit 38 including the synchronization circuit unit 23. is there.
  • the backlight light emitting circuit unit 14 is controlled by the light emission control signal synchronized with the liquid crystal control signal by the synchronizing circuit unit 23.
  • the fluorescent glasses 2a to 2c are in the order of blue light, green light, and red light from the side closer to the optical shutter layer 22.
  • the order is not limited to this order, and the order may be changed as appropriate. Les. Further, although gaps are formed between the respective fluorescent glasses, the gaps may be eliminated and adhered as described above.
  • the optical shutter layer 22 is sandwiched between two polarizing plates 21a and 21b arranged on the light incident side and the light emitting side. By combining these polarizing plates, the backlight device 1 Transmission is controlled by the polarization direction of the emitted light. Further, the two glass substrates 32a and 32b are configured so as to sandwich the wiring electrodes 37a and 37b, thereby preventing leakage from these electrodes.
  • the liquid crystal part 34 is sealed so as not to leak by the sealing materials 35a and 35b, and is configured to be sandwiched between alignment films 33a and 33b for arranging the liquid crystal molecules 36 in a certain direction.
  • These alignment films 33a and 33b are generally films made of polyimide resin, and have the role of aligning the direction of the liquid crystal molecules 36 in a state suitable for the operation mode, and are important for the liquid crystal section 34.
  • the glass substrates 32a and 32b are made of soda-free glass or ordinary glass whose surface is covered with a protective film to prevent the soda from flowing out, and the sealing materials 35a and 35b are made of UV or thermosetting epoxy resin. Used.
  • the wiring electrodes 37a and 37b are connected to the liquid crystal drive circuit unit 24, and the liquid crystal is driven by the liquid crystal control signal synchronized with the light emission control signal of the backlight device 1 by the synchronization circuit unit 23. Power is supplied by power cables 26a and 26b.
  • the liquid crystal drive method includes static drive, matrix drive, active drive, etc., and any drive method may be used.
  • the liquid crystal An active drive method is suitable in which a thin film transistor (TFT) and an additional capacitor are connected to each pixel of the cell, and each pixel is controlled via these.
  • the control unit 38 includes the synchronization circuit unit 23.
  • the synchronization circuit unit 23 may be provided separately from the control unit 38 and connected thereto.
  • FIG. 6 shows the state of emission control of the fluorescent glass 2a.
  • the numbers shown with white circles indicate pixels.
  • the fluorescent glasses 2b and 2c other than the fluorescent glass 2a are not emitting light.
  • the light emitted from the fluorescent glass 2a is determined to be transmitted or not per pixel by the polarizing plates 21a and 21b and the optical shutter layer 22.
  • the backlight light emitting circuit unit 14 for driving the fluorescent glass 2c and the liquid crystal driving circuit unit 24 for driving the optical shutter layer 22 are controlled by the light emission control signal and the liquid crystal control signal, respectively.
  • control is performed so that the red light 41a is transmitted through the pixels 1, 2, 4, and 8.
  • the optical shutter layer 22 is driven in synchronization with the red light emitted by the fluorescent glass 2a.
  • the duration of this state is about 3 to 5 ms.
  • the fluorescent glass 2b emits light, and green light 41b is emitted through the polarizing plates 21a and 21b and the optical shutter layer 22.
  • the green light 41b emitted from the fluorescent glass 2b is controlled and emitted so that only the pixels 1, 3, 4, 6, and 8 are transmitted by the optical shutter layer 22 driven in synchronization. This state also takes about 3 to 5 ms.
  • the fluorescent glass 2c emits light, and blue light 41c is emitted through the polarizing plates 21a and 21b and the optical shutter layer 22.
  • the light emission of the fluorescent glass 2b is controlled by the backlight light emitting circuit unit 14, but the light emission control signal is synchronized with the liquid crystal control signal that drives the optical shutter layer 22, and only the pixels 1, 2, 3, and 7 are used.
  • the light is transmitted through the light shirter layer 22 and released. This is also about 3 to 5 ms.
  • each color light emitted from the backlight device 1 composed of these three independent fluorescent glasses 2a to 2c is controlled for each pixel of the liquid crystal display device with a slight time difference, As shown in Fig. 6 (d), red light 41a, green light 41b, and blue light 4 lc are emitted to the retina between them, and they appear as mixed afterimages, which can be perceived as various colors. It is. For example, in pixel 1, all three primary colors of light are emitted and transmitted, so it looks white, in pixel 2, only red light and blue light appear mixed and appear pink, and in pixel 3, green light Only blue light appears mixed and appears light blue, and in pixel 5, all three primary colors of light are opaque and appear black.
  • FIG. 6 Although it is clear when FIG. 6 is compared with FIG. 7 when the background art is described, in the liquid crystal display device according to the present embodiment, although color development can be controlled for each pixel, FIG. In the case of the conventional technology shown, the pixel can be controlled only for each fine cell divided into three parts. Therefore, when considered at the pixel level, the liquid crystal display device according to this embodiment has higher definition and higher control. It is possible to demonstrate trust. In other words, while the conventional technology spatially controls the three primary colors, in this embodiment, in order to control temporally, it is possible to express a precise image or video with high resolution and contrast. It became possible.
  • the fluorescent glasses 2a to 2c are employed without using a color filter, high light utilization efficiency can be realized with little light loss. Furthermore, as described above, by introducing a fluorescent material or a fluorescent element into the porous glass in particular, the visible light conversion unit is uniformly dispersed in the flat plate medium unit that emits light in the backlight device. Light is emitted uniformly so that there is no unevenness, and since the distance from emission to emission from the surface of the fluorescent glass 2a to 2c is short, the attenuation of light is reduced, and the power loss can be reduced here. Industrial applicability
  • the invention described in claims 1 to 9 of the present invention includes liquid crystal televisions and monitor devices, mobile phones, digital cameras, digital audio players, telephones, It can be used in various liquid crystal display devices such as facsimiles.

Abstract

[PROBLEMS] To provide a backlight device, which improves light use efficiency, can be easily controlled and achieves high resolution and high contrast without luminance nonuniformity, and to provide a liquid crystal display device. [MEANS FOR SOLVING PROBLEMS] A backlight device (1a) is provided with an ultraviolet generating section (3a); a visible light conversion section (16) for converting ultraviolet emitted from the ultraviolet generating section (3a) into visible light; and a transparent flat plate medium section (2a) for propagating the visible light emitted from the visible light conversion section (16). The visible light conversion section (16) is provided in independent three systems, the systems convert ultraviolet into red light, green light and blue light, respectively. The flat plate medium section (2a) is independently arranged over the visible light conversion section (16) with spaces among the three layers or without a space, corresponding to the visible light conversion section independently arranged in the three systems.

Description

明 細 書  Specification
バックライト装置と液晶表示装置  Backlight device and liquid crystal display device
技術分野  Technical field
[0001] 本発明は、液晶などの非発光のディスプレイに用いられるバックライト装置及びそれ を用いた液晶表示装置に係り、特に、バックライトとして光の 3原色である赤色、緑色 、青色を発光する蛍光発光ガラスを搭載するバックライト装置とそれを用いた液晶表 示装置に関する。  TECHNICAL FIELD [0001] The present invention relates to a backlight device used for a non-light emitting display such as a liquid crystal and a liquid crystal display device using the same, and in particular, emits red, green, and blue as three primary colors of light as a backlight. The present invention relates to a backlight device on which fluorescent light emitting glass is mounted and a liquid crystal display device using the backlight device.
背景技術  Background art
[0002] 非発光タイプのディスプレイである LCD (液晶表示装置)は、背面にバックライト装 置を配して、第 1の偏光板、液晶セル、光の 3原色が独立して平面的に配置された力 ラーフィルタ、第 2の偏光板を通して可視化する方式が最も一般的である。  [0002] LCD (Liquid Crystal Display), which is a non-luminous display, has a backlight device on the back, and the three primary colors of the first polarizing plate, liquid crystal cell, and light are arranged independently in a plane. The most common method is visualization through a Luller filter and a second polarizing plate.
このバックライト装置には、光の 3原色を含む白色光が最も適しており、明るい画面 のためには、光源の輝度を高めることが重要であるものの、偏光板や液晶セル、ある いはカラーフィルタにおける光の透過損失が大きぐノくックライト装置が発する光のわ ずか 2, 3%が観察者の目に届いているのが現状であり、光利用効率が低いという潜 在的な課題があった。  For this backlight device, white light including the three primary colors of light is most suitable. Although it is important to increase the brightness of the light source for a bright screen, it is important to increase the brightness of the light source. At present, only 2 to 3% of the light emitted by the knock light device with a large light transmission loss in the filter reaches the eyes of the observer, and the potential issue of low light utilization efficiency was there.
このような課題に対しては、これまでも様々な改良がなされてきた。  Various improvements have been made for such problems.
[0003] 例えば、特許文献 1には「液晶表示装置」という名称で、液晶表示素子の背面又は 表面に蛍光体を配置して、光源に紫外線源を用レ、るタイプの液晶表示装置において 、蛍光体力 発せられる全方位への散乱光である可視光を反射するための可視反射 板を配置する発明が開示されている。 [0003] For example, Patent Document 1 describes a liquid crystal display device of the type called “liquid crystal display device” in which a phosphor is disposed on the back surface or the surface of a liquid crystal display element and an ultraviolet light source is used as a light source. An invention is disclosed in which a visible reflector for reflecting visible light, which is scattered light in all directions emitted from phosphor power, is arranged.
このように構成される液晶表示装置においては、蛍光体からの光利用効率を向上さ せて、消費電力の増大なしに液晶表示装置の輝度を向上することができる。  In the liquid crystal display device configured as described above, the light utilization efficiency from the phosphor can be improved, and the luminance of the liquid crystal display device can be improved without increasing the power consumption.
[0004] また、特許文献 2においては、特許文献 1と同一の出願人からほぼ同時期に出願さ れた「液晶表示装置」が開示されている。 In addition, Patent Document 2 discloses a “liquid crystal display device” filed at substantially the same time as the same applicant as Patent Document 1.
本発明も特許文献 1に開示される発明と同様に、バックライト装置の光利用効率を 向上させるものであり、さらに、高精細、高コントラストな液晶表示装置を提供するもの であり、その構成は、カラーフィルタ中にそのカラーフィルタと同系色の光を発光する 蛍光体を分散し、蛍光管より発せられた紫外線及び青色光により励起発光させ、この 蛍光体カラーフィルタを液晶層に対して偏光板より外側に配置する。 The present invention, like the invention disclosed in Patent Document 1, improves the light utilization efficiency of the backlight device, and further provides a high-definition, high-contrast liquid crystal display device. The structure is that a phosphor that emits light of the same color as that of the color filter is dispersed in the color filter and excited and emitted by ultraviolet and blue light emitted from a fluorescent tube, and the phosphor color filter is liquid crystal. It arrange | positions outside a polarizing plate with respect to a layer.
このようにカラーフィルタに蛍光体を含ませて、しかも偏光板よりも外側に配置する ことでカラーフィルタにおいて低下する透過率を改善することができ、高コントラストを 実現すること力 Sできる。  Thus, by including the phosphor in the color filter and disposing it outside of the polarizing plate, it is possible to improve the transmittance that decreases in the color filter, and to achieve high contrast.
[0005] 特許文献 3は、「カラー液晶表示装置」という名称で、半透過反射型の液晶表示パ ネルと、液晶表示パネルの表面側に配置されたフロントライトと、液晶表示パネルの 裏面側に配置されたバックライトを備えた発明が開示されている。フロントライトには 光の 3原色を発光可能なフロント側光源として赤色、緑色、青色の LED (発光ダイォ ード)が、バックライトにも光の 3原色を発光可能なバック側光源として赤色、緑色、青 色の LEDが備えられており、これらのフロント側光源とバック側光源を制御して各光 源からの光を交番光として液晶パネル側に照射させるコントローラと、交番光に同期 して液晶表示パネルの表示を制御する制御回路を有している。  [0005] Patent Document 3 has the name "color liquid crystal display device", a transflective liquid crystal display panel, a front light disposed on the front surface side of the liquid crystal display panel, and a rear surface side of the liquid crystal display panel. An invention with a positioned backlight is disclosed. The front light has red, green, and blue LEDs (light emitting diodes) that can emit the three primary colors of light, and red and green as the back light source that can emit the three primary colors of light in the backlight. A blue LED is provided, a controller that controls the front-side light source and back-side light source to irradiate the liquid crystal panel side with light from each light source as alternating light, and a liquid crystal synchronized with the alternating light. A control circuit for controlling display on the display panel is provided.
このような構成とすることで、明るい場所では反射型のフィールドシーケンシャル方 式による表示が可能であり、また、暗い場所では透過型のフィールドシーケンシャノレ 方式による表示が可能となる。  By adopting such a configuration, display in a reflective field sequential method can be performed in a bright place, and display in a transmissive field sequential chanel method can be performed in a dark place.
このフィールドシーケンシャル方式というのは、特開平 11— 14988号公報に記載さ れるとおり、赤色光、緑色光、青色光を高速で順次点灯させて、それらに合わせて T N (ツイステツドネマティック)型の液晶表示パネルではモノクロ画像表示を行なうもの である。この方式にぉレ、て色の切り替えによる目のちらつき(フリツ力)を防止するため には、 3色を 1フレーム時間(3色で 1セットの画面表示時間)である約 lZ60s、すな わち 1色あたり約 1/I80s、すなわち約 6msで切り替えるようにしている。また、各色 の画像の切り替え、すなわち画像の電気的書込みと液晶の応答に、例えば、この時 間の 2Z3を割り当て、残りの 1/3の時間でバックライトを点灯させるようにすると、画 面の電気的書込みに lmsを割り当てれば液晶の応答時間を概ね 3ms以内にする必 要があると記載されている。  As described in Japanese Patent Application Laid-Open No. 11-14988, this field sequential method is such that red light, green light, and blue light are sequentially turned on at a high speed, and a TN (twisted nematic) type according to them. A liquid crystal display panel displays monochrome images. In order to prevent eye flickering (flickering force) due to color switching by this method, three colors are one frame time (one set screen display time for three colors), ie about lZ60s. That is, the color is switched at about 1 / I80s per color, that is, about 6ms. Also, for example, if 2Z3 is assigned to the switching of each color image, that is, the electrical writing of the image and the response of the liquid crystal, and the backlight is turned on for the remaining 1/3 time, It is stated that if lms is assigned to electrical writing, the response time of the liquid crystal must be within 3 ms.
[0006] 最後に、特許文献 4には「液晶表示装置」という名称で、バックライト部の光源を赤 色系発光ダイオード、緑色系発光ダイオード、青色系発光ダイオードとから構成して 、各発光ダイオードの使用数を青色系発光ダイオードの数をそれぞれ赤色系発光ダ ィオードの数、緑色系発光ダイオードの数以上にすることを特徴とするものである。 この特許文献 4に開示される発明も特許文献 3と同じくフィールドシーケンシャル方 式を採用し、光源として LEDを用レ、るものである。具体的な構成は特許文献 4の図 1 に開示されるように、バックライト部として、赤色、緑色、青色の 3色の LEDと、これら の LEDから発せられる光を液晶に導光する導光部を備えている。 [0006] Finally, in Patent Document 4, the light source of the backlight unit is named red as “liquid crystal display device”. Consists of color light emitting diodes, green light emitting diodes, and blue light emitting diodes. The number of each light emitting diode used is equal to or greater than the number of red light emitting diodes and the number of green light emitting diodes. It is characterized by that. The invention disclosed in Patent Document 4 also adopts a field sequential method as in Patent Document 3, and uses an LED as a light source. Specifically, as disclosed in FIG. 1 of Patent Document 4, as the backlight unit, LEDs of three colors, red, green, and blue, and a light guide that guides the light emitted from these LEDs to the liquid crystal. Department.
ただ、特許文献 4に開示される発明は、それぞれの LEDについて青みがかった白 色が好まれるという利用者のニーズに合わせるためにその使用数を規定するもので ある。上記のように構成することで、利用者のニーズに適合した液晶表示装置を提供 すること力 Sできる。  However, the invention disclosed in Patent Document 4 defines the number of use in order to meet the user's needs that each bluish white color is preferred for each LED. By configuring as described above, it is possible to provide a liquid crystal display device that meets the needs of users.
特許文献 1 :特開 2003— 287746号公報  Patent Document 1: Japanese Unexamined Patent Publication No. 2003-287746
特許文献 2 :特開 2003— 255320号公報  Patent Document 2: JP 2003-255320 A
特許文献 3:特開 2005— 338485号公報  Patent Document 3: Japanese Patent Laid-Open No. 2005-338485
特許文献 4 :特開 2002— 196323号公報  Patent Document 4: Japanese Patent Laid-Open No. 2002-196323
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0007] しかしながら、特許文献 1及び特許文献 2に記載された従来の技術では、確かに、 カラーフィルタにおける光の減衰を防止することができるが、液晶表示装置の表示単 位としての 1画素(ピクセル)に対して、 3原色それぞれの蛍光体をカバーするには 1 つのセルを 3つに分割して 1/3の大きさのカラーフィルタの発光を制御しなければな らない。 [0007] However, the conventional techniques described in Patent Document 1 and Patent Document 2 can certainly prevent light attenuation in the color filter, but one pixel (as a display unit of a liquid crystal display device) In order to cover the phosphors of each of the three primary colors for a pixel), one cell must be divided into three to control the light emission of a 1/3 size color filter.
この 1/3の蛍光体の発光の制御について、従来から行なわれているカラー液晶表 示装置の制御方法を基に図 7を参照しながら説明する。  The control of the light emission of this 1/3 phosphor will be described with reference to FIG. 7 based on the conventional control method of the color liquid crystal display device.
[0008] 図 7は、従来の液晶表示装置の発光状態を模式的に示す概念図である。図 7にお いて、バックライト装置 51は偏光板 52aの背面側に設けられ、ノくックライト装置 51で 発生する白色光 55は偏光板 52aを透過して、分割液晶セル 53a〜53cへ導かれる。 この分割液晶セル 53a〜53cは、赤色カラーフィルタ 54a、緑カラーフィルタ 54b、青 色カラーフィルタ 54cにそれぞれ対応するように設けられている。 FIG. 7 is a conceptual diagram schematically showing a light emission state of a conventional liquid crystal display device. In FIG. 7, the backlight device 51 is provided on the back side of the polarizing plate 52a, and the white light 55 generated by the knocklight device 51 passes through the polarizing plate 52a and is guided to the divided liquid crystal cells 53a to 53c. . The divided liquid crystal cells 53a to 53c include a red color filter 54a, a green color filter 54b, and a blue color filter 54a. The color filters 54c are provided to correspond to the color filters 54c, respectively.
分割液晶セル 53a〜53cにはそれぞれ電圧が印加され、液晶分子にねじれを生じ させたりねじれを取ったりする。このねじれの度合いによって、分割液晶セル 53a〜5 3cを挟む 2つの偏光板 52a, 52bを光が透過できるか否かが決定される。分割液晶 セル 53a〜53cを透過することでねじれを生じた白色光 56は、それぞれのカラーフィ ルタ 54a〜54cを透過して、赤色光 57a、緑色光 57b、青色光 57cとなり、さらに偏光 板 52bを透過する。この偏光板 52bを透過する際に、先の分割液晶セル 53a〜53c で生じたねじれの度合いによって赤色、緑色、青色の強度が調整され、赤色光 58a、 緑色光 58b、青色光 58cとなり、人間の目にはこれらの 3原色が混ざった状態で様々 な色に見えるのである。  A voltage is applied to each of the divided liquid crystal cells 53a to 53c, causing the liquid crystal molecules to be twisted or twisted. Whether or not light can pass through the two polarizing plates 52a and 52b sandwiching the divided liquid crystal cells 53a to 53c is determined by the degree of the twist. The white light 56 that is twisted by passing through the divided liquid crystal cells 53a to 53c passes through the color filters 54a to 54c to become red light 57a, green light 57b, and blue light 57c, and further passes through the polarizing plate 52b. To Penetrate. When passing through the polarizing plate 52b, the red, green, and blue intensities are adjusted according to the degree of twist generated in the previous divided liquid crystal cells 53a to 53c, resulting in red light 58a, green light 58b, and blue light 58c. In the eyes, these three primary colors are mixed and appear in various colors.
[0009] この図 7においては、光を矢印で、その強度を矢印の長さで示しているが、 3原色を それぞれ独立に発色させるために、 3つのカラーフィルタに対してそれぞれ 3つの液 晶セルが必要となっている。なお、図 7においては、表示単位の 1画素に対応させて 縦方向の点線を引いている。点線間に存在する 3つのセルやフィルタは、これら 3つ 力 つの画素のためにセットとして存在するものである。  In FIG. 7, the light is indicated by an arrow and the intensity thereof is indicated by the length of the arrow. In order to develop the three primary colors independently, three liquid crystals are used for each of the three color filters. A cell is needed. In FIG. 7, a vertical dotted line is drawn corresponding to one pixel of the display unit. The three cells and filters that exist between the dotted lines exist as a set for these three power pixels.
特許文献 1及び 2の開示される発明においては、この 3色のカラーフィルタに蛍光体 を用いて、これを紫外線や青色光で発光させるというもので、表示単位の 1画素に対 して、 1つのセルを 3つに分割して 1/3の大きさで制御しなければならないという課 題があった。  In the inventions disclosed in Patent Documents 1 and 2, phosphors are used for these three color filters, which are made to emit light with ultraviolet light or blue light. For each pixel of a display unit, 1 There was a problem that one cell had to be divided into three and controlled at 1/3 size.
すなわち、セルもカラーフィルタも画素の 3倍の解像度を持つサブピクセルが必要と なる課題があつたのである。  In other words, both the cell and the color filter have the problem of requiring subpixels with a resolution three times that of the pixels.
[0010] 一方、特許文献 3及び 4では、フィールドシーケンシャル方式を採用することによつ て、特許文献 1や 2に開示された発明のような制御の複雑さや解像度の課題は解決 されている。 [0010] On the other hand, Patent Documents 3 and 4 solve the problems of control complexity and resolution as in the inventions disclosed in Patent Documents 1 and 2 by adopting the field sequential method.
し力 ながら、これらの文献に開示される発明においては、バックライトあるいはフロ ントライトの光源として LEDを採用するものであり、光源の均一性という点で課題があ つた。特許文献 4に開示されるとおり、赤色 (R)、緑色 (G)、青色(B)の LEDを光源と するバックライト装置にぉレ、ては、光源を構成する LEDの数が複数で配列が複雑と なってしまう。一般的には LEDチップは 0. 3mm角と極めて小さぐ小型の LCDの場 合でも 4個、中型で 10個、大型では 100個力ら 1000個の複数個配列がなされる。 巧妙な導光板で点光源から出た光を分散させて均一な面照明を行なう方式が多く 提案されているが、特許文献 3では図 2に、特許文献 4においては図 1に開示されると おり側方から発せられる複数の点光源からの光ではムラは依然として残り、複数個配 列による消費電力や熱発生、コストは解決されるべき課題であった。 However, in the inventions disclosed in these documents, LEDs are used as the light source of the backlight or the front light, and there is a problem in terms of the uniformity of the light source. As disclosed in Patent Document 4, a backlight device using red (R), green (G), and blue (B) LEDs as a light source is arranged in a number of LEDs that constitute the light source. Is complicated and turn into. In general, there are 4 LED chips even for a small LCD with a size of 0.3mm square, 10 for the medium size, and 1000 for the large size. Many methods have been proposed to distribute the light emitted from the point light source with a clever light guide plate and perform uniform surface illumination. However, Patent Document 3 discloses the method in FIG. 2, and Patent Document 4 discloses the method in FIG. Unevenness still remains in the light from multiple point light sources emitted from the side of the cage, and power consumption, heat generation, and cost due to multiple arrays were issues to be solved.
[0011] 本発明は力かる従来の事情に対処してなされたものであり、光利用効率を高めると 同時に、制御が容易で、輝度ムラのない高解像度かつ高コントラストを実現可能なバ ックライト装置と液晶表示装置を提供することを目的とする。 [0011] The present invention has been made in response to the strong conventional situation, and while improving the light utilization efficiency, it is easy to control and can realize high resolution and high contrast without uneven brightness. And a liquid crystal display device.
課題を解決するための手段  Means for solving the problem
[0012] 上記目的を達成するため、請求の範囲 1項記載の発明であるバックライト装置は、 紫外線発生部と、この紫外線発生部によって発光された紫外線を可視光に変換する 可視光変換部と、この可視光変換部によって発光された可視光を伝播する透明の平 板媒体部とを有するバックライト装置であって、前記可視光変換部は、独立に 3系統 設けられ、紫外線をそれぞれ赤色光、緑色光、青色光に変換し、前記平板媒体部は 、独立に 3系統設けられた前記可視光変換部に対応して、独立に 3層間隙を有して あるいは間隙なしに重ねて設けられるものである。  In order to achieve the above object, a backlight device according to claim 1 includes an ultraviolet ray generator, a visible light converter that converts ultraviolet rays emitted by the ultraviolet ray generator into visible light, and A backlight device having a transparent flat plate medium portion that propagates visible light emitted by the visible light conversion portion, wherein the visible light conversion portion is provided in three independent systems, each of which converts ultraviolet light into red light. The green plate is converted into green light and blue light, and the flat medium portion is provided with three layers of gaps independently or in layers with no gap corresponding to the three visible light conversion units provided independently. Is.
上記構成のバックライト装置では、紫外線発生部を備えて紫外線を発生させて、可 視光変換部で、赤、緑、青という光の 3原色の可視光に独立に変換するという作用を 有する。また、赤、緑、青という可視光に変換されたそれぞれの光は独立に平板媒体 部を伝播するという作用を有する。  The backlight device having the above-described configuration has an effect that an ultraviolet ray generator is provided to generate ultraviolet rays, and the visible light converter is independently converted into visible light of the three primary colors of red, green, and blue. In addition, each light converted into red, green, and blue visible light has the effect of independently propagating through the flat plate medium portion.
[0013] また、請求の範囲 2項に記載の発明であるバックライト装置は、請求の範囲 1項に記 載の発明において、前記独立に 3層設けられたそれぞれの平板媒体部の表面には 可視光を透過し、紫外線を遮断する薄膜が形成されるものである。  [0013] Further, the backlight device according to the invention described in claim 2 is the invention according to claim 1, wherein the surface of each of the flat plate media portions provided with three independent layers is provided. A thin film that transmits visible light and blocks ultraviolet rays is formed.
上記構成のバックライト装置では、赤色、緑色、青色の各色を発して伝播する平板 媒体部から、紫外線が漏れて他の色を発する平板媒体部への混入を防止するという 作用を有する。  The backlight device having the above-described configuration has an effect of preventing mixing of a flat plate medium portion emitting red, green, and blue colors into a flat plate medium portion emitting other colors due to leakage of ultraviolet rays.
[0014] さらに、請求の範囲 3項に記載の発明であるバックライト装置は、請求の範囲 1項又 は請求の範囲 2項に記載の発明において、前記紫外線発生部は、電子放出源を力 ソード電極とし、紫外線蛍光体をアノード電極とし、電子引出グリッドを設けて電子を 引き出して加速して前記紫外線蛍光体に衝突させて紫外線を発生させるものである 上記構成のバックライト装置では、紫外線蛍光体をアノード電極として、力ソード電 極で発生する電子を電子引出グリッドによって引き出して、アノード電極である紫外 線蛍光体に衝突させて紫外線を発生させるという作用を有する。 [0014] Further, the backlight device according to claim 3 is the invention according to claim 1. In the invention according to claim 2, the ultraviolet ray generation unit uses an electron emission source as a force sword electrode, an ultraviolet phosphor as an anode electrode, and provides an electron extraction grid to accelerate and accelerate the ultraviolet ray. In the backlight device configured as described above, the ultraviolet light is made to collide with the phosphor, and the ultraviolet phosphor is used as the anode electrode, the electrons generated by the force sword electrode are drawn out by the electron extraction grid, and the ultraviolet light serving as the anode electrode is obtained. It has an effect of generating ultraviolet rays by colliding with a line phosphor.
本請求の範囲 3項では、紫外線発生部に紫外線蛍光体を含むものが規定されてい るが、紫外線発生部として、紫外線蛍光体を持たない、紫外線発光ダイオード (UV — LED)や冷陰極蛍光管(CCFL)を用いることも可能である。すなわち、紫外線発 生部としては、本請求の範囲 3項に記載されるもののみに限定するものではなぐ紫 外線を発生するものであれば、どのような紫外線源を用いてもょレ、。  Claim 3 defines that the ultraviolet ray generator contains an ultraviolet phosphor, but the ultraviolet ray generator does not have an ultraviolet phosphor, and does not have an ultraviolet light emitting diode (UV — LED) or cold cathode fluorescent tube. (CCFL) can also be used. That is, the ultraviolet ray generating part is not limited to those described in claim 3 of the present invention, and any ultraviolet ray source can be used as long as it generates ultraviolet rays.
[0015] 請求の範囲 4項に記載の発明であるバックライト装置は、請求の範囲 1項又は請求 の範囲 2項に記載の発明において、前記平板媒体部は、独立の 3層のガラスであり、 独立に 3系統設けられた前記可視光変換部は、このガラスの内部に導入されそれぞ れ赤色光、緑色光、青色光を発生させる蛍光材料又は蛍光元素であるものである。 上記構成のバックライト装置においては、独立 3層のガラス内部にそれぞれ導入さ れた赤色光、緑色光、青色光を発生させる蛍光材料又は蛍光元素が、紫外線を吸 収してそれぞれ光の 3原色を発生させるという作用を有する。なお、いったん可視光 に変換された光は、他のガラス面を照射しても励起エネルギーが異なるため、発光す ることはなレ、。すなわち、 LCDパネルには常に赤、青、緑のうち単色が入射すること になる。 [0015] The backlight device according to claim 4 is the invention according to claim 1 or claim 2, wherein the flat medium portion is an independent three-layer glass. The visible light conversion units provided independently in three systems are fluorescent materials or fluorescent elements that are introduced into the glass and generate red light, green light, and blue light, respectively. In the backlight device having the above-described configuration, the fluorescent material or fluorescent element that generates red light, green light, and blue light introduced into each of the independent three layers of glass absorbs ultraviolet rays, and each of the three primary colors of light. Has the effect of generating. Note that once converted to visible light, the excitation energy differs even when irradiated on other glass surfaces. In other words, a single color of red, blue, or green is always incident on the LCD panel.
[0016] 請求の範囲 5項に記載の発明であるバックライト装置は、請求の範囲 1項乃至請求 の範囲 4項のいずれ力 4項に記載のバックライト装置において、前記蛍光材料又は蛍 光元素は、前記紫外線発生部から照射される紫外線強度の分布とは逆の蛍光強度 分布となるように、ドープされるものである。また、インクジェットなどの手法を用いて同 様に逆の蛍光強度分布とすることも可能である。  [0016] The backlight device according to claim 5 is the backlight device according to any one of claims 1 to 4, wherein the fluorescent material or the fluorescent element is used. Is doped so as to have a fluorescence intensity distribution opposite to the distribution of the ultraviolet intensity irradiated from the ultraviolet ray generator. Similarly, a reverse fluorescence intensity distribution can be obtained using a technique such as inkjet.
上記構成のバックライト装置においては、蛍光材料又は蛍光元素が、紫外線発生 部から照射される紫外線強度の分布とは逆の蛍光強度分布となるようにドープされる ので、紫外線強度が強い部分では蛍光材料又は蛍光元素が少なぐ逆に紫外線強 度が弱い部分では蛍光材料又は蛍光元素が多く分布するようにドープされるという 作用を有する。 In the backlight device having the above configuration, the fluorescent material or the fluorescent element generates ultraviolet rays. Since it is doped so as to have a fluorescence intensity distribution opposite to the distribution of the UV intensity irradiated from the part, the fluorescent material or the fluorescent element is low in the part where the UV intensity is high, and the fluorescent material is low in the part where the UV intensity is low Alternatively, it has the effect of being doped so that many fluorescent elements are distributed.
[0017] 請求の範囲 6項に記載の発明であるバックライト装置は、請求の範囲 1項乃至請求 の範囲 5項のいずれ力 4項に記載のバックライト装置において、前記平板媒体部の平 面のうち、いずれか一方の平面は斜面を形成し、前記紫外線発生部の近傍から遠ざ 力、るにつれて、その一方の側面に垂直に形成される断面の面積が狭くなるように形 成されるものである。  [0017] The backlight device according to claim 6 is the backlight device according to any one of claims 1 to 5, wherein the flat surface of the flat plate medium portion is flat. Any one of the planes forms a slope, and as the force away from the vicinity of the ultraviolet ray generator, the area of the cross section formed perpendicular to the one side surface is reduced. Is.
上記構成のバックライト装置にぉレ、ては、紫外線発生部の近傍の平板媒体部の端 面から入射する紫外線が、均一に前記斜面で反射されて散乱するという作用を有す る。紫外線発生部から遠ざかるにつれて、平板媒体部の平面に垂直な断面の面積 が狭くなるように斜面が形成されるため、紫外線の導波路が紫外線発生部から遠ざ 力るにつれて狭くなり、斜面で反射される紫外線が均一に発生するという作用を有す る。  The backlight device having the above-described structure has an effect that ultraviolet rays incident from the end surface of the flat plate medium portion in the vicinity of the ultraviolet ray generating portion are uniformly reflected and scattered by the inclined surface. The slope is formed so that the area of the cross section perpendicular to the plane of the flat plate media portion becomes narrower as it moves away from the ultraviolet ray generator, so the ultraviolet waveguide becomes narrower as it moves away from the ultraviolet ray generator and reflects off the slope. UV light is generated uniformly.
[0018] 請求の範囲 7項に記載の発明であるバックライト装置は、請求の範囲 6項に記載の バックライト装置において、前記平板媒体部の一方の平面に形成された斜面近傍に 、紫外線を反射させるナノ粒子、例えばチタニアがドープされるものである。  [0018] The backlight device according to claim 7 is the backlight device according to claim 6, wherein the backlight device according to claim 6 emits ultraviolet rays in the vicinity of a slope formed on one flat surface of the flat plate medium portion. The nanoparticles to be reflected are doped, for example titania.
上記構成のバックライト装置においては、紫外線反射ナノ粒子、例えばチタニアが 前記平板媒体部の一方の平面に形成された斜面近傍にドープされることで、斜面で 反射された紫外線が、蛍光材料や蛍光元素に衝突する前に、散乱を促進する作用 を有する。なお、チタニアとは、二酸化チタン (TiO )を意味するものである。さらに、  In the backlight device having the above configuration, ultraviolet-reflecting nanoparticles such as titania are doped in the vicinity of the inclined surface formed on one plane of the flat plate medium portion, so that the ultraviolet light reflected on the inclined surface is converted into a fluorescent material or a fluorescent material. It has the effect of promoting scattering before colliding with elements. Titania means titanium dioxide (TiO 2). In addition,
2  2
ナノ粒子とは本発明においては lnmから lOOnmの範囲にあるナノサイズの粒子を 指す。  Nanoparticles in the present invention refer to nanosized particles in the range of lnm to lOOnm.
[0019] 請求の範囲 8項に記載の発明であるバックライト装置は、請求の範囲 1項乃至請求 の範囲 7項のいずれ力 4項に記載の発明において、表示装置を構成する液晶部が 赤色光、緑色光、青色光の各色光を時間差をもって透過させるように駆動するため の制御信号と同期した制御信号を受信して、前記独立して 3系統設けられた可視光 変換部がそれぞれ前記赤色光、緑色光、青色光を発生させるように前記紫外線発生 部を駆動するバックライト発光回路部を有するものである。 [0019] The backlight device according to the invention described in claim 8 is the backlight device according to any one of claims 1 to 7, wherein the liquid crystal portion constituting the display device is red. Receives a control signal synchronized with a control signal for driving light, green light, and blue light so that each color light is transmitted with a time difference, and the above three independent visible lights are provided. The conversion unit includes a backlight light emitting circuit unit that drives the ultraviolet ray generation unit so as to generate the red light, the green light, and the blue light, respectively.
上記構成のバックライト装置にぉレ、ては、表示装置を構成する液晶を駆動するため の制御信号と同期した制御信号をバックライト発光回路部が受信して紫外線発生部 が駆動されるので、液晶による光シャッターと紫外線発生部が、光の 3原色のそれぞ れで同期するように制御されるという作用を有する。  Since the backlight light emitting circuit unit receives the control signal synchronized with the control signal for driving the liquid crystal constituting the display device and the ultraviolet ray generating unit is driven, The liquid crystal optical shutter and the UV light generator are controlled to synchronize with each of the three primary colors of light.
[0020] 請求の範囲 9項に記載の発明である液晶表示装置は、請求の範囲 8項に記載され たバックライト装置と、液晶部とこの液晶部に電圧を印加する電極を備えた光シャツタ 一層と、前記液晶部に印加される電圧を発生する液晶駆動回路部と、同期回路部を 備えて前記赤色光、緑色光、青色光毎に光シャッター層を透過及びバックライトを発 光させるために同期した制御信号を前記液晶駆動回路部及び前記バックライト発光 回路部にそれぞれ送信する制御部とを有するものである。 [0020] A liquid crystal display device according to the invention described in claim 9 is an optical shirt comprising the backlight device described in claim 8, a liquid crystal section, and an electrode for applying a voltage to the liquid crystal section. A single layer, a liquid crystal driving circuit unit for generating a voltage applied to the liquid crystal unit, and a synchronizing circuit unit for transmitting a light shutter layer and emitting a backlight for each of the red light, green light, and blue light. And a control unit that transmits a control signal synchronized with each of the liquid crystal driving circuit unit and the backlight light emitting circuit unit.
上記構成の液晶表示装置では、同期回路部を備えた制御部から光の 3原色毎に 同期した制御信号を液晶駆動回路部及びバックライト発光回路部にそれぞれ送信し て、光の 3原色を独立に発光させるバックライト装置を光シャッター層と同期させてフ ィールドシーケンシャル方式を実現するとレ、う作用を有する。  In the liquid crystal display device having the above configuration, the control unit having the synchronization circuit unit transmits a control signal synchronized with each of the three primary colors of light to the liquid crystal drive circuit unit and the backlight light emitting circuit unit, respectively, so that the three primary colors of light are independent. When the field sequential method is realized by synchronizing the backlight device that emits light with the optical shutter layer, it has a reflexive action.
発明の効果  The invention's effect
[0021] 本発明の請求の範囲 1項記載のバックライト装置では、独立に構成される可視光変 換部で光の 3原色である可視光を独立に発生させると同時に、独立に形成される平 板媒体部内を伝播させることで、バックライトとして赤、緑、青の 3色を独立に制御する ことが可能である。このようにバックライト装置において光の 3原色を発生させることで 、このバックライト装置を利用すれば、カラーフィルタを用いることなくカラーディスプレ ィを実現することが可能である。  In the backlight device according to claim 1 of the present invention, visible light that is the three primary colors of light is independently generated at the same time by an independently configured visible light conversion unit, and simultaneously formed. By propagating through the flat plate media, it is possible to control independently the three colors of red, green and blue as the backlight. In this way, by generating the three primary colors of light in the backlight device, it is possible to realize a color display without using a color filter by using this backlight device.
[0022] また、本発明の請求の範囲 2項に記載のバックライト装置では、請求の範囲 1項に 記載の発明の効果に加えて赤色、緑色、青色の各色を発して伝播する平板媒体部 から紫外線が漏洩して他の色を発する平板媒体部への混入を防止することが可能で 、各色の独立性を高く維持することができる。  [0022] Further, in the backlight device according to claim 2 of the present invention, in addition to the effect of the invention according to claim 1, the flat plate medium portion that emits red, green, and blue colors and propagates Therefore, it is possible to prevent the mixture from entering into a flat plate medium portion that emits other colors due to leakage of ultraviolet rays, and the independence of each color can be maintained high.
[0023] 本発明の請求の範囲 3項に記載のバックライト装置においては、請求の範囲 1項又 は請求の範囲 2項に記載の効果に加えて、力ソード電極に電子放出源を採用するこ とによって多くの電子を生成することができる。さらに、電子引出グリッドを採用するこ とによって力ソードから発生する電子を引き出して加速することができる。また、ァノー ド電極として電子を照射することで紫外線を発生させる紫外線蛍光体を用いることで 、電子が直接衝突して効率的に紫外線を発生させて、可視光変換部へより効率的に 紫外線を供給することができる。 [0023] In the backlight device according to claim 3 of the present invention, claim 1 or In addition to the effects described in claim 2, can employ the electron emission source for the force sword electrode to generate many electrons. Furthermore, by adopting an electron extraction grid, electrons generated from the force sword can be extracted and accelerated. In addition, by using an ultraviolet phosphor that generates ultraviolet rays by irradiating electrons as an anode electrode, the electrons collide directly and efficiently generate ultraviolet rays, and more efficiently transmit ultraviolet rays to the visible light conversion unit. Can be supplied.
[0024] 本発明の請求の範囲 4項に記載のバックライト装置では、平板媒体部を独立 3層の ガラス、 3系統独立の可視光変換部をガラスの内部に導入された蛍光材料又は蛍光 元素とすることで、均一に発光させると同時に、その光を伝播させることができる。また 、ガラスに導入する蛍光材料又は蛍光元素の密度を変化させることで発光強度を自 由に変更することができる。また、この密度の変化は点状光源に比較すると配置や配 線を考慮する必要もなく自由度が大きぐバックライト装置の小型化に対するスペース 確保とレ、う観点から優位性がある。  [0024] In the backlight device according to claim 4 of the present invention, the flat plate medium part is an independent three-layer glass, and the three-system independent visible light conversion part is a fluorescent material or fluorescent element introduced into the glass. By doing so, the light can be propagated at the same time as the light is emitted uniformly. In addition, the emission intensity can be freely changed by changing the density of the fluorescent material or fluorescent element introduced into the glass. In addition, this change in density is superior to a point light source in terms of securing space and reducing the size of the backlight device, which has a high degree of freedom and does not require consideration of arrangement and wiring.
[0025] 本発明の請求の範囲 5項に記載のバックライト装置では、紫外線発生部から照射さ れる紫外線強度の平板媒体部における分布と、蛍光材料又は蛍光元素の平板媒体 部における分布力 互いに相殺し合うことで、均一で輝度ムラのない可視光を発生す る発光面を備えたバックライト装置を提供することができる。  In the backlight device according to claim 5 of the present invention, the distribution in the flat plate medium portion of the ultraviolet intensity irradiated from the ultraviolet ray generating portion and the distribution force of the fluorescent material or fluorescent element in the flat plate medium portion cancel each other. As a result, a backlight device having a light emitting surface that generates visible light that is uniform and has no uneven brightness can be provided.
[0026] 本発明の請求の範囲 6項に記載のバックライト装置では、紫外線発生部の近傍の 平板媒体部の端面から入射する紫外線が、均一に前記斜面で反射されて散乱する ので、紫外線発生部からの距離に対して紫外線の強度分布が生じることがなぐ平板 媒体部内における均一な紫外線散乱分布を担保可能であり、よって蛍光材料や蛍 光元素から発生される可視光が均一となり、もって、輝度ムラのない均一な可視光を 発生する発光面を備えたバックライト装置を提供することができる。  [0026] In the backlight device according to claim 6 of the present invention, ultraviolet rays incident from the end surface of the flat plate medium portion in the vicinity of the ultraviolet ray generating portion are uniformly reflected and scattered by the inclined surface. It is possible to guarantee a uniform UV scattering distribution in the flat plate medium part where the UV light intensity distribution does not occur with respect to the distance from the part, and thus the visible light generated from the fluorescent material and the fluorescent element becomes uniform, A backlight device including a light emitting surface that generates uniform visible light without uneven brightness can be provided.
[0027] 本発明の請求の範囲 7項に記載のバックライト装置では、紫外線反射ナノ粒子、例 えばチタニアが斜面で反射された紫外線の散乱を促進して、より多くの蛍光材料や 蛍光元素に衝突して可視光をより多く発生させるので、均一であるのみならず、輝度 の高レ、バックライト装置を実現することができる。  [0027] In the backlight device according to claim 7 of the present invention, ultraviolet reflection nanoparticles, for example, titania, promotes scattering of ultraviolet rays reflected by the inclined surface, so that more fluorescent materials and fluorescent elements can be obtained. Since more visible light is generated by collision, not only is it uniform, but a backlight device with high brightness can be realized.
[0028] 本発明の請求の範囲 8項に記載のバックライト装置においては、光の 3原色毎に、 表示装置を構成する液晶を駆動するための制御信号と同期した制御信号を受信し て紫外線発生部が駆動されるので、液晶による光シャッターと紫外線発生部を同期 させることができ、これによつて光の 3原色毎に独立した 3系統の可視光変換部も同 期発光させて、光の 3原色である可視光の発生を液晶の駆動と同期させて、カラーフ ィルタなしでもカラー液晶表示装置を構成可能なバックライト装置を実現することがで きる。 [0028] In the backlight device according to claim 8 of the present invention, for each of the three primary colors of light, Since the ultraviolet ray generator is driven by receiving a control signal synchronized with the control signal for driving the liquid crystal constituting the display device, the liquid crystal optical shutter and the ultraviolet ray generator can be synchronized. The three visible light converters, which are independent for each of the three primary colors of light, are also synchronized to synchronize the generation of visible light, which is the three primary colors of light, with the driving of the liquid crystal, so that a color liquid crystal display device can be used without a color filter. A configurable backlight device can be realized.
[0029] 本発明の請求の範囲 9項に記載の液晶表示装置では、液晶駆動回路部とバックラ イト発光回路部を光の 3原色毎に同期させることで、光の 3原色を独立に発光させる バックライト装置を光シャッター層と同期させてフィールドシーケンシャル方式を採用 して、カラーフィルタを用いることなぐ光利用効率が高ぐ高精細で高コントラストを 備えたカラー液晶表示装置を実現することができる。  In the liquid crystal display device according to claim 9 of the present invention, the three primary colors of light are emitted independently by synchronizing the liquid crystal driving circuit unit and the backlight light emitting circuit unit for each of the three primary colors of light. By adopting a field sequential method by synchronizing the backlight device with the optical shutter layer, it is possible to realize a color liquid crystal display device having high definition and high contrast with high light use efficiency without using a color filter.
図面の簡単な説明  Brief Description of Drawings
[0030] [図 1]本発明の実施の形態に係るバックライト装置の断面図である。  FIG. 1 is a cross-sectional view of a backlight device according to an embodiment of the present invention.
[図 2]本実施の形態に係るバックライト装置に液晶表示装置の光シャッター層などを 加えて示す概念図である。  FIG. 2 is a conceptual diagram showing an addition of an optical shutter layer of a liquid crystal display device to the backlight device according to the present embodiment.
[図 3] (a)は、本実施例に係るバックライト装置に用いられる蛍光ガラスの構造を模式 的に示す概念図であり、 (b)は図中符号 Cで示される箇所を拡大して示す概念図で ある。  [FIG. 3] (a) is a conceptual diagram schematically showing the structure of a fluorescent glass used in the backlight device according to the present embodiment, and (b) is an enlarged view of a portion indicated by symbol C in the figure. FIG.
[図 4] (a)は、スポット状の紫外線光源 28を用いた場合の紫外線の照射分布を示す 概念図であり、(b)は(a)で示される紫外線照射分布の場合に、この照射分布とは逆 様のマスクパターンを形成した状態を示す概念図であり、(c)は (b)で示されるマスク パターン時に蛍光体溶液を含浸させ、その含浸濃度を模式的に示す概念図である。 同様の効果はインクジェット装置をプログラムすることでも得られる。  [Fig. 4] (a) is a conceptual diagram showing an irradiation distribution of ultraviolet rays when a spot-like ultraviolet light source 28 is used, and (b) is an irradiation distribution in the case of the ultraviolet irradiation distribution shown in (a). It is a conceptual diagram showing a state in which a mask pattern opposite to the distribution is formed. (C) is a conceptual diagram schematically showing the impregnation concentration by impregnating the phosphor solution during the mask pattern shown in (b). is there. Similar effects can be obtained by programming the ink jet apparatus.
[図 5]本実施の形態に係る液晶表示装置を示す概念図である。  FIG. 5 is a conceptual diagram showing a liquid crystal display device according to the present embodiment.
[図 6]本実施の形態に係る蛍光ガラスの発光の制御と液晶の駆動の制御を説明する ための概念図である。  FIG. 6 is a conceptual diagram for explaining light emission control and liquid crystal drive control of the fluorescent glass according to the present embodiment.
[図 7]従来の液晶表示装置の発光状態を模式的に示す概念図である。  FIG. 7 is a conceptual diagram schematically showing a light emission state of a conventional liquid crystal display device.
符号の説明 1··•ノ ックライ卜装置 la- ··ノくックライト装置Explanation of symbols 1 ···· Knock light device la- · Knock light device
2·· '蛍光ガラス2 ... 'Fluorescent glass
2a- ■·蛍光ガラス2a- ■ Fluorescent glass
2b- '■·蛍光ガラス2b- '■ · Fluorescent glass
2c- ■·蛍光ガラス2c- ■ Fluorescent glass
2d- …蛍光ガラス2d-… Fluorescent glass
3-· -紫外線発生装置3- · -UV generator
3a- ··紫外線発生装置3a -... UV generator
3b- …紫外線発生装置3b-… UV generator
3c- --紫外線発生装置3c- --UV generator
-· '封止フランジ -· 'Sealing flange
5·· •紫外線蛍光体5 •• UV phosphor
·· •電子引出グリッド ··· 'カーボンナノチューブ ··' •封着材 ··· Electronic extraction grid ··· 'Carbon nanotubes ··' • Sealing material
··' 'グリッド電源  ... '' Grid Power
10· "アノード電源 10 "Anode power supply
1· ··力ソードケープノレ 2· ··グリッドケーブル 3· ··アノードケープノレ 4· ··バックライト発光回路部 5- 発光制御信号 1 ··· Sword Cape Nore 2 ··· Grid cable 3 ··· Anode Cape Nore 4 ··· Backlight light emitting circuit section
6- ··蛍光材料又は蛍光元素 7- ·■紫外線遮蔽フィルム 8· ··真空容器 6- ··· Fluorescent material or fluorescent element 7- · UV shielding film 8 ··· Vacuum container
9- ·-スィッチ la…偏光板 b…偏光板 …光シャッター層· · ·同期回路部 …液晶駆動回路部a…電極ケーブルb…電極ケーブルc…電極ケープノレa…電源ケーブルb…電源ケーブル …蛍光体 …紫外線光源 …紫外線光導波路 …紫外線反射粒子 …液晶表示装置a…ガラス基板b…ガラス基板a…配向膜b…配向膜· · ·液晶部a…シール材b…シーノレ材 …液晶分子a…配線電極b…配線電極 …制御部 …紫外線入射光 …紫外線散乱光a…赤色光 41b…緑色光 9- ·-switch la ... Polarizing plate b ... Polarizing plate ... Optical shutter layer ... Synchronous circuit part ... Liquid crystal drive circuit part a ... Electrode cable b ... Electrode cable c ... Electrode cap nore a ... Power cable b ... Power cable ... Phosphor ... UV light source ... UV light waveguide ... Ultraviolet reflective particles ... Liquid crystal display device a ... Glass substrate b ... Glass substrate a ... Alignment film b ... Alignment film ... Liquid crystal part a ... Sealing material b ... Scenery material ... Liquid crystal molecule a ... Wiring electrode b ... Wiring electrode ... Control part ... UV incident light ... UV scattered light a ... Red light 41b ... Green light
41c…青色光 41c ... Blue light
42…可視光 42… Visible light
43…紫外線 43 ... UV
44…斜面 44 ... Slope
45···紫外線光源側端面  45 ··· UV light source side end face
46···紫外線光源逆側端面  46 ··· UV light source reverse side end face
51…バックライト装置  51 ... Backlight device
52a…偏光板  52a ... Polarizing plate
52b…偏光板  52b ... Polarizing plate
53a…分割液晶セル  53a… Liquid crystal cell
53b…分割液晶セル  53b ... Split liquid crystal cell
53c…分割液晶セル  53c ... Split liquid crystal cell
54a- ··赤色カラーフィルタ  54a -... Red color filter
54b…緑カラーフィルタ  54b… Green color filter
54c---青色カラーフィルタ  54c --- Blue color filter
55…白色光  55 ... White light
56…白色光  56 ... White light
57a…赤色光  57a ... Red light
57b…緑色光  57b ... Green light
57c…青色光  57c ... Blue light
58a…赤色光  58a ... Red light
58b…緑色光  58b ... Green light
58c…青色光  58c ... Blue light
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
以下に、本発明の最良の実施の形態に係るバックライト装置を図 1及び図 2を参照 しながら説明する。  Hereinafter, a backlight device according to the best embodiment of the present invention will be described with reference to FIG. 1 and FIG.
図 1は、本発明の実施の形態に係るバックライト装置の断面図であり、図 2は本実施 の形態に係るバックライト装置に液晶表示装置の光シャッター層などを加えて示す概 念図である。 FIG. 1 is a cross-sectional view of a backlight device according to an embodiment of the present invention, and FIG. FIG. 6 is a conceptual diagram showing an addition of an optical shutter layer of a liquid crystal display device to the backlight device according to the embodiment.
図 1において、ノくックライト装置 laは大きく分けて、蛍光ガラス 2aと紫外線発生装置 3aとバックライト発光回路部 14から構成されている。  In FIG. 1, the knocklight device la is roughly divided into a fluorescent glass 2a, an ultraviolet ray generator 3a, and a backlight light emitting circuit section 14.
蛍光ガラス 2aは、光を伝播する多孔質のガラスに蛍光材料又は蛍光元素 16を導 入したものであり、その端部を、封止フランジ 4を介して紫外線発生装置 3aに挿入す るように構成されてレ、る。蛍光材料は、蛍光化合物を含む概念であり、蛍光元素は蛍 光イオンを含む概念である。また、蛍光材料としては、例えば粒子状の蛍光体粒子も 含まれる。  The fluorescent glass 2a is obtained by introducing a fluorescent material or a fluorescent element 16 into a porous glass that propagates light, and an end of the fluorescent glass 2a is inserted into the ultraviolet ray generator 3a through the sealing flange 4. It is composed. The fluorescent material is a concept including a fluorescent compound, and the fluorescent element is a concept including a fluorescent ion. Examples of the fluorescent material include particulate fluorescent particles.
また、蛍光ガラス 2aは図 2に示されるように平板状であり、紫外線発生装置 3aに揷 入された側の端部は、スパッターなどの方法を用いて ITO (インジウム錫酸化物)がコ 一ティングされ、さらに紫外線蛍光体 5が形成されている。この形成の方法は、紫外 線蛍光体 5が粒子状なら電着法、印刷法、インクジェット法、デイスペンシング法など を用いるとよい。また、フレーク状、薄板状なら、導電性を有する無機系の接着剤で 貼付けることも可能である。形成後には適当な熱処理を施しておく。  In addition, the fluorescent glass 2a has a flat plate shape as shown in FIG. 2, and the end of the fluorescent glass 2a inserted into the ultraviolet ray generator 3a is made of ITO (indium tin oxide) using a method such as sputtering. In addition, an ultraviolet phosphor 5 is formed. As the formation method, an electrodeposition method, a printing method, an ink jet method, a dispensing method, or the like may be used if the ultraviolet phosphor 5 is in the form of particles. In the case of a flake shape or a thin plate shape, it can be pasted with a conductive inorganic adhesive. An appropriate heat treatment is performed after the formation.
蛍光ガラス 2aは、隙間なく貫通する開口部を備えたガラス又はセラミック製の封止 フランジ 4に対して封着材 8によって補強、固定されている。また、封止フランジ 4と紫 外線発生装置 3aを構成する真空容器 18は、低融点合金あるいはフリットガラスによ つてハーメチックシールされてレ、る。  The fluorescent glass 2a is reinforced and fixed by a sealing material 8 to a glass or ceramic sealing flange 4 having an opening that penetrates without gaps. The vacuum vessel 18 constituting the sealing flange 4 and the ultraviolet ray generator 3a is hermetically sealed with a low melting point alloy or frit glass.
図 1に示される蛍光ガラス 2aには、紫外線蛍光体 5から発せられる紫外線を吸収す ると赤色光を発する粒子状の蛍光材料又は蛍光元素 16が導入されている。すなわ ち、蛍光材料又は蛍光元素 16は可視光変換部として機能するものである。  In the fluorescent glass 2a shown in FIG. 1, a particulate fluorescent material or fluorescent element 16 that emits red light when it absorbs ultraviolet rays emitted from the ultraviolet phosphor 5 is introduced. That is, the fluorescent material or fluorescent element 16 functions as a visible light conversion unit.
紫外線発生装置 3aは、封止フランジ 4と、内部に電子引出グリッド 6及びカーボンナ ノチューブ 7を設けた真空容器 18から構成されている。  The ultraviolet ray generator 3a includes a sealing flange 4 and a vacuum vessel 18 in which an electron extraction grid 6 and a carbon nanotube 7 are provided.
真空容器 18内部の下方端部には電子放出源であるカーボンナノチューブ 7がカソ ード電極として設けられており、力ソードケーブル 11を介して 0電位にして電子を発 生させる。このカーボンナノチューブ 7の表面から約 100 z mほど離れた上部に、ダリ ッド電極としての電子引出グリッド 6が設けられており、この電子引出グリッド 6にグリツ ド電源 9を介して電圧をかけることで、効果的に電子が引き出される。電圧は、先の 1 00 /i mの間隔の場合であれば 50V〜: 100Vの電圧が適当と考えられる。 A carbon nanotube 7 as an electron emission source is provided as a cathode electrode at the lower end of the inside of the vacuum vessel 18, and generates electrons at a zero potential via the force sword cable 11. On the upper part of the carbon nanotube 7 at a distance of about 100 zm, an electron extraction grid 6 is provided as a Dard electrode. Electrons are effectively extracted by applying a voltage via the power supply 9. As for the voltage, it is considered that a voltage of 50V to 100V is appropriate in the case of the interval of 100 / im.
さらに、アノード電源 10によってアノードケーブル 13を介して正電圧をアノード電極 としての紫外線蛍光体 5にかけることで電子を加速しながら紫外線蛍光体 5に衝突さ せて紫外線を発生させる。この正電圧は、グリッド電圧の 3乃至 5倍程度の電圧をか けるとよレ、。電子引出グリッド 6は発光制御信号 15を受けてスィッチ 19が作動し、ダリ ッドケーブル 12を介して電圧を印加するようにバックライト発光回路部 14において制 御されており、発光制御信号 15を受信していない場合にはカーボンナノチューブ 7 で発生する電子が電子引出グリッド 6を通過して紫外線蛍光体 5に到達することはな レ、。  Further, by applying a positive voltage to the ultraviolet phosphor 5 as the anode electrode by the anode power source 10 via the anode cable 13, the electrons are accelerated and collided with the ultraviolet phosphor 5 to generate ultraviolet rays. This positive voltage should be 3 to 5 times the grid voltage. The electronic lead grid 6 receives the light emission control signal 15 and the switch 19 is operated, and the backlight light emitting circuit unit 14 is controlled so as to apply a voltage via the lid cable 12, and receives the light emission control signal 15. If not, electrons generated in the carbon nanotubes 7 will not pass through the electron extraction grid 6 and reach the ultraviolet phosphor 5.
発生した紫外線は蛍光ガラス 2aを進行し、蛍光材料又は蛍光元素 16に衝突する ことで赤色光を発生させる。蛍光材料又は蛍光元素 16は蛍光ガラス 2a内に均一に 分布させており均一でムラのなレ、赤色光を放出することができる。発生した赤色光は 蛍光ガラス 2a内を伝播する。すなわち、蛍光ガラス 2aは平板媒体部として機能するも のである。  The generated ultraviolet light travels through the fluorescent glass 2a and collides with the fluorescent material or fluorescent element 16 to generate red light. The fluorescent material or fluorescent element 16 is uniformly distributed in the fluorescent glass 2a, and can emit uniform and uneven red light. The generated red light propagates in the fluorescent glass 2a. That is, the fluorescent glass 2a functions as a flat plate medium portion.
[0034] なお、本実施の形態においては、紫外線発生装置 3aを蛍光ガラス 2aに対して一方 の端部にしか設けていないが、これを蛍光ガラス 2aの他の端部にも同様に設けること によれば、 2倍の輝度を得ることができる。  [0034] In the present embodiment, the ultraviolet ray generator 3a is provided only at one end with respect to the fluorescent glass 2a, but this is also provided at the other end of the fluorescent glass 2a in the same manner. According to this, twice the luminance can be obtained.
また、この蛍光ガラス 2aは光の 3原色のうち、赤色光を発生させるためのバックライト 装置 laであり、通常のバックライト装置 1は、図 2に示されるように赤色光の他に、緑 色光及び青色光を発生させるそれぞれ蛍光ガラス 2b, 2cが図 1に示される構成と同 様の構成を具備して設けられ、これらの独立 3系統が重ねて 3層で備えられている。 従って、それぞれの蛍光ガラス 2a〜2cから紫外線が漏洩して他の蛍光ガラスに混入 して、他の色の光を発光しないように蛍光ガラスの表面には可視光を透過しつつ紫 外線のみを透過させなレ、紫外線遮蔽フィルム 17が設けられてレ、る。  The fluorescent glass 2a is a backlight device la for generating red light among the three primary colors of light. The normal backlight device 1 is not only red light but also green light as shown in FIG. Fluorescent glasses 2b and 2c that generate colored light and blue light are provided with the same configuration as that shown in FIG. 1, and these three independent systems are provided in three layers. Therefore, ultraviolet rays leak from each fluorescent glass 2a to 2c and enter the other fluorescent glass, and only the ultraviolet rays are transmitted to the surface of the fluorescent glass while transmitting visible light so as not to emit light of other colors. An ultraviolet shielding film 17 is provided without transmission.
[0035] 図 2は、光の 3原色の光をそれぞれ発光する蛍光ガラス 2a〜2cが間隔を持って 3層 重ねて設けられたバックライト装置 1を示しており、さらに、偏光板 21a, 21bとこれに 挟まれるようにして構成される光シャッター層 22を示している。各蛍光ガラス 2a〜2c で発光される赤色光、緑色光、青色光は、ノ ックライト発光回路部 14によって制御さ れており、このバックライト発光回路部 14は光シャッター層 22の液晶部を駆動する液 晶制御信号と同期を取った発光制御信号 15によって制御される。バックライト発光回 路部 14と紫外線発生装置 3は、それぞれの蛍光ガラス 2a〜2cを発光させるために 独立の電極ケーブル 25a〜25cをもって電力が供給されている。なお、図 1において は、紫外線発生装置 3aに電力を供給するケーブルとして力ソードケーブル 11、グリツ ドケーブル 12、アノードケーブル 13が示されている力 図 2の電極ケーブル 25aは、 これらの 3本のケーブルを総称して示しているものである。以下、図 5においても同様 である。 [0035] FIG. 2 shows a backlight device 1 in which three fluorescent layers 2a to 2c that emit light of three primary colors of light are provided with three layers stacked at intervals, and further, polarizing plates 21a and 21b And an optical shutter layer 22 configured to be sandwiched between them. Each fluorescent glass 2a ~ 2c The red light, green light, and blue light emitted by the light are controlled by the knock light emitting circuit unit 14, and the backlight light emitting circuit unit 14 is a liquid crystal control signal that drives the liquid crystal unit of the optical shutter layer 22. It is controlled by the synchronized light emission control signal 15. The backlight light emitting circuit section 14 and the ultraviolet ray generator 3 are supplied with electric power through independent electrode cables 25a to 25c in order to cause the fluorescent glasses 2a to 2c to emit light. In FIG. 1, a force sword cable 11, a grid cable 12, and an anode cable 13 are shown as cables for supplying power to the ultraviolet ray generator 3a. The electrode cable 25a in FIG. Cables are shown generically. The same applies to FIG.
[0036] なお、紫外線発生装置 3は、本図では一体に形成されているものの、電極ケーブル 25a〜25cを経て独立に供給される電力によって、蛍光ガラス 2a〜2cをそれぞれ独 立に発光させることができるように内部で、それぞれの蛍光ガラス 2a〜2c用に別個独 立に設けられるものである。また、蛍光ガラス 2a〜2cは間隔を介して 3層重ねて設け られているが、この間隔は発光の拡散や減衰という観点及び紫外線発生装置 3を含 めたそのスペースの確保の観点力ら設定されるべきものである力 特に間隙を設ける ことなく密着させるようにして 3層を構成してもよい。  [0036] Although the ultraviolet ray generator 3 is integrally formed in this figure, the fluorescent glasses 2a to 2c are caused to emit light independently by electric power supplied independently via the electrode cables 25a to 25c. It is provided independently for each of the fluorescent glasses 2a to 2c. The fluorescent glasses 2a to 2c are provided in three layers with an interval, but this interval is set in terms of the diffusion and attenuation of light emission and the strength of securing the space including the ultraviolet ray generator 3. The force that should be done The three layers may be constructed so as to be in close contact with each other without any gaps.
[0037] 光シャッター層 22は、詳細には図 5において示されるように液晶部を基板ガラス等 で挟んで構成され、液晶駆動回路部 24によってその駆動を制御されるものである。 液晶駆動回路部 24もまた発光制御信号 15と同期を取った液晶制御信号によって制 御されるものである。液晶駆動回路部 24から光シャッター層 22に接続されている電 源ケーブル 26a, 26bは、液晶部の両面に設けられる 2つの配線電極(本図では図 示せず)にそれぞれ接続されている。  [0037] As shown in detail in FIG. 5, the optical shutter layer 22 is configured by sandwiching a liquid crystal part with substrate glass or the like, and its driving is controlled by a liquid crystal drive circuit part 24. The liquid crystal drive circuit unit 24 is also controlled by a liquid crystal control signal synchronized with the light emission control signal 15. The power cables 26a and 26b connected from the liquid crystal drive circuit unit 24 to the optical shutter layer 22 are respectively connected to two wiring electrodes (not shown in the figure) provided on both surfaces of the liquid crystal unit.
液晶駆動回路部 24を制御する液晶制御信号は、重ねて 3層に設けられた蛍光ガラ ス 2a〜2cの時差発光に同期しながら液晶部が赤色光、緑色光、青色光のそれぞれ を時間差をもって透過させるように駆動を制御して、液晶部がフィールドシーケンシャ ル方式で動作するように供する。  The liquid crystal control signal that controls the liquid crystal drive circuit unit 24 is synchronized with the time difference emission of the fluorescent glass 2a to 2c provided in three layers, and the liquid crystal unit controls each of red light, green light, and blue light with a time difference. The drive is controlled so as to transmit light, and the liquid crystal unit is operated in a field sequential manner.
[0038] このように構成されるバックライト装置 1においては、従来用いられていた白色のバ ックライトではなぐ光の 3原色をそれぞれ発光可能な蛍光材料又は蛍光元素 16をガ ラス内に導入することで、独立に光の 3原色を発光可能な蛍光ガラス 2a〜2cを構成 すること力 Sできる。従って、非発光のデバイスを用いた場合にカラーフィルタを備えな くともカラー表示装置を構成することが可能となり、光利用効率が高いカラー表示装 置を提供することができる。 [0038] In the backlight device 1 configured as described above, a fluorescent material or a fluorescent element 16 capable of emitting three primary colors of light that is not emitted from a white backlight used in the past is used. By introducing it into the glass, it is possible to construct fluorescent glasses 2a to 2c that can independently emit the three primary colors of light. Therefore, when a non-light emitting device is used, a color display device can be configured without providing a color filter, and a color display device with high light utilization efficiency can be provided.
さらに、ガラス、特に多孔質のガラスに蛍光材料又は蛍光元素を導入することで、 バックライト装置において光を放出する平板の媒体部自身に可視光変換部を均一に 分散させたので、輝度ムラなく均一に発光するば力、りでなぐ発光してから蛍光ガラス 2a〜2c表面から放出されるまでの距離が短いため光の減衰が少なくなり、ここでも光 損失を低減して光利用効率を向上させることができる。  Furthermore, by introducing a fluorescent material or a fluorescent element into glass, particularly porous glass, the visible light conversion part is uniformly dispersed in the flat plate medium part itself that emits light in the backlight device, so there is no uneven brightness. If the light is emitted uniformly, the distance from the light emitted from the surface to the fluorescent glass 2a-2c is short, so the attenuation of light is reduced, and here again the light loss is reduced and the light utilization efficiency is improved. Can be made.
また、液晶部を備えたような光シャッター層を有する液晶表示装置に対しては、本 実施の形態に係るバックライト装置 1は、蛍光ガラス 2a〜2cの発光を、液晶部の駆動 と光の 3原色の色毎に同期させることができ、フィールドシーケンシャル方式を採用す るカラー表示装置を構成させることが可能である。このようなフィールドシーケンシャ ル方式を採用するので、表示単位の 1画素に対して、 1つのセルを 3つ等に分割して 1/3等の大きさで制御しなければならないということはなぐ解像度を精細にすること ができると同時に高コントラストを実現可能なバックライト装置を提供することができる また、紫外線遮蔽フィルム 17をそれぞれの蛍光ガラス 2a〜2cの表面に形成させる ことで、紫外線を他の蛍光ガラス内に漏洩させることなぐ混色を防止することができ る。蛍光材料又は蛍光元素 16を蛍光ガラス内に導入する密度を容易に調整可能で あり、蛍光ガラス 2a〜2cの発光強度をそれぞれ独立に調整することが可能である。 次に、図 3及び図 4を参照しながら、可視光変換部として図 2に示される蛍光ガラス 2a〜2cを、より均一な面発光体とする、本発明の最良の実施の形態に係るバックライ ト装置の他の実施例について説明を追加する。  Further, for a liquid crystal display device having an optical shutter layer having a liquid crystal unit, the backlight device 1 according to the present embodiment emits light from the fluorescent glasses 2a to 2c, and drives the liquid crystal unit and emits light. Each of the three primary colors can be synchronized, and a color display device employing a field sequential method can be configured. Since this field sequential method is adopted, it is not necessary to divide one cell into three etc. and control it to 1/3 etc. for one pixel of the display unit. It is possible to provide a backlight device that can achieve a high resolution at the same time as making the resolution fine. Also, by forming the ultraviolet shielding film 17 on the surface of each fluorescent glass 2a to 2c, other ultraviolet rays can be provided. Color mixing without leaking into the fluorescent glass can be prevented. The density at which the fluorescent material or the fluorescent element 16 is introduced into the fluorescent glass can be easily adjusted, and the emission intensities of the fluorescent glasses 2a to 2c can be adjusted independently. Next, referring to FIG. 3 and FIG. 4, the backlight according to the preferred embodiment of the present invention, in which the fluorescent glasses 2a to 2c shown in FIG. A description will be added to another embodiment of the image processing apparatus.
図 3 (a)は、本実施例に係るバックライト装置に用いられる蛍光ガラスの構造を模式 的に示す概念図であり、 (b)は図中符号 Cで示される箇所を拡大して示す概念図で ある。図 3 (a)において、蛍光ガラス 2dの中を透過する紫外線 43の散乱分布を均一 にするために、蛍光ガラス 2dの紫外線光源側端面 45を紫外線光源逆側端面 46に 比較して大きくとり、蛍光ガラス 2dの一方の平面を斜面 44としている。この斜面 44は 、研磨されることが望ましい。紫外線光源 28から照射される紫外線 43は、紫外線光 源側端面 45から入射し、図 3 (b)に示されるように、この斜面 44において紫外線入射 光 39が反射され、紫外線光導波路 29において紫外線反射粒子 30、例えばチタ二 ァに衝突して紫外線散乱光 40となり、この紫外線散乱光 40が蛍光体 27に衝突する ことで可視光 42が放出される。なお、紫外線反射粒子 30は、紫外線反射ナノ粒子も 含む概念である。 Fig. 3 (a) is a conceptual diagram schematically showing the structure of the fluorescent glass used in the backlight device according to the present example, and (b) is a concept showing an enlarged portion indicated by symbol C in the figure. It is a figure. In Fig. 3 (a), in order to make the scattering distribution of the ultraviolet ray 43 transmitted through the fluorescent glass 2d uniform, the ultraviolet light source side end face 45 of the fluorescent glass 2d is changed to the ultraviolet light source opposite side end face 46. In comparison, one side of the fluorescent glass 2d is a slope 44. This slope 44 is preferably polished. The ultraviolet ray 43 radiated from the ultraviolet light source 28 enters from the ultraviolet light source side end face 45, and as shown in FIG. 3 (b), the ultraviolet incident light 39 is reflected on the inclined surface 44, and the ultraviolet light guide 29 It collides with the reflective particles 30, for example, titanium, to form ultraviolet scattered light 40, and when the ultraviolet scattered light 40 collides with the phosphor 27, visible light 42 is emitted. The ultraviolet reflective particles 30 are a concept including ultraviolet reflective nanoparticles.
紫外線光源側端面 45から紫外線光源逆側端面 46にかけて、斜面 44を形成して いるため、徐々に紫外線光導波路 29が狭くなり、斜面 44によって、紫外線 43 (紫外 線入射光 39)は、紫外線光源 28から離れる方向、すなわち紫外線光源側端面 45か ら紫外線光源逆側端面 46へ向かう方向で、一定の光量で反射され、均一な紫外線 散乱光 40及び可視光 42を得ることができる。よって、均一な面発光体としての蛍光 ガラス 2dを提供することができるのである。  Since the inclined surface 44 is formed from the ultraviolet light source side end face 45 to the ultraviolet light source reverse side end face 46, the ultraviolet light waveguide 29 gradually narrows, and the inclined surface 44 causes the ultraviolet light 43 (ultraviolet light incident light 39) to In a direction away from 28, that is, in a direction from the ultraviolet light source side end face 45 to the ultraviolet light source reverse side end face 46, it is reflected with a constant amount of light, and uniform ultraviolet scattered light 40 and visible light 42 can be obtained. Therefore, it is possible to provide the fluorescent glass 2d as a uniform surface light emitter.
図 3 (a)に示されるような蛍光ガラス 2dは、以下のように作製される。  The fluorescent glass 2d as shown in FIG. 3 (a) is produced as follows.
まず、厚さ 1 · 5mm程度の 9Na 0-23B O _65SiO -3A1〇 のガラスを作製し、 First, make a glass of 9Na 0-23B O _65SiO -3A10 with a thickness of about 1.5mm,
2 2 3 2 2 3  2 2 3 2 2 3
酸処理することで多孔化する。そのガラスの片面に蛍光体溶液(緑: Tb3+,青: Eu2+, 赤: Eu3+ 0. 3M程度)を、紫外線光源 28の紫外強度と相殺するように濃淡をつけて ドープする。その際には、図中符号 Aで示される矢印の方向からドープする。 It becomes porous by acid treatment. Dope the phosphor solution (green: Tb 3+ , blue: Eu 2+ , red: Eu 3+ 0.3M) on one side of the glass with light and shade to offset the ultraviolet intensity of the UV light source 28 . In this case, doping is performed from the direction of the arrow indicated by the symbol A in the figure.
濃淡は、蛍光体溶液をインクジェットで塗布するか、または、マスクパターンをフォト レジストなどによってガラス上に塗布することでつけることができる。その後、そのガラ スを 1120°Cまで昇温し、緻密化する。その後、図 3 (a)に示すような傾きをつけるよう に研磨を行う。予め型に流し込んで斜面を形成することも可能である。  The shading can be applied by applying a phosphor solution by inkjet or by applying a mask pattern on glass with a photoresist or the like. Then, the glass is heated to 1120 ° C and densified. After that, polishing is performed so as to have an inclination as shown in Fig. 3 (a). It is also possible to form a slope by pouring into a mold in advance.
紫外線光源側端面 45から紫外線光源 28で紫外線 43を導入すると紫外線 43は図 3 (a)のように導波され、紫外線光導波路 29に紫外線反射粒子 30、例えばチタニア のパターンを、チタニア溶液を塗布することで作製したところ、散乱能の増加が見ら れ、輝度が向上する。すなわち、チタニア 30は、紫外線 43の散乱促進材として用い ること力 Sできる。なお、チタニア 30は蛍光ガラス 2dにおいて斜面 44側にドープして、 斜面 44で反射した紫外線 43を散乱する必要があるため、図中符号 Bで示される矢 印の方向からドープする。 When ultraviolet light 43 is introduced from the ultraviolet light source side end face 45 by the ultraviolet light source 28, the ultraviolet light 43 is guided as shown in Fig. 3 (a), and the ultraviolet light guide 29 is coated with a pattern of ultraviolet reflective particles 30, for example, titania, and a titania solution is applied. As a result, the scattering power is increased and the luminance is improved. That is, titania 30 can be used as a scattering accelerator for ultraviolet rays 43. Since titania 30 needs to be doped on the side of the inclined surface 44 in the fluorescent glass 2d and scatter the ultraviolet rays 43 reflected by the inclined surface 44, the arrow indicated by the symbol B in the figure is used. Dope from the direction of the mark.
なお、本実施例では、緑色を発光する蛍光体 27として Tb3+、青色を発光する蛍光 体 27として Eu2+、赤色を発光する蛍光体 27として Eu3+を用いた力 これらは図 2に 示されるように、独立別個の蛍光ガラス 2dにドープされる。また、蛍光体 27として本 実施例にて示されるものに限定されるものではなぐ他の蛍光材料や蛍光元素を用 いてもよい。 In this example, Tb 3+ is used as the phosphor 27 that emits green, Eu 2+ is used as the phosphor 27 that emits blue, and Eu 3+ is used as the phosphor 27 that emits red. As shown, it is doped into an independent separate fluorescent glass 2d. Further, the fluorescent material 27 is not limited to those shown in the present embodiment, and other fluorescent materials and fluorescent elements may be used.
[0041] 次に、図 4 (a)乃至(c)を参照しながら、蛍光ガラス 2dを作製する際に、材料となる ガラス上に施されるマスクパターン例を説明する。マスクパターンを用いることで、輝 度ムラを抑制して均一な面発光体としての蛍光ガラス 2dを提供するものである。 図 4 (a)は、スポット状の紫外線光源 28を用いた場合の紫外線の照射分布を示す 概念図であり、(b)は(a)で示される紫外線照射分布の場合に、この照射分布とは逆 様のマスクパターンを形成した状態を示す概念図であり、(c)は (b)で示されるマスク パターン時に蛍光体溶液を含浸させ、その含浸濃度を模式的に示す概念図である。 発光ダイオード (LED)などのスポット状あるいは冷陰極蛍光管(CCFL)などの線 状の紫外線光源 28を用いた場合には、紫外線光源 28に近い部分の輝度が向上し 、光源から離れるほど距離の二乗に反比例して輝度が低下する。  [0041] Next, an example of a mask pattern applied on the glass as a material when the fluorescent glass 2d is manufactured will be described with reference to FIGS. 4 (a) to (c). By using the mask pattern, it is possible to suppress the brightness unevenness and provide the fluorescent glass 2d as a uniform surface light emitter. Fig. 4 (a) is a conceptual diagram showing the irradiation distribution of ultraviolet rays when a spot-like ultraviolet light source 28 is used, and (b) shows this irradiation distribution in the case of the ultraviolet irradiation distribution shown in (a). FIG. 4 is a conceptual diagram showing a state in which a reverse mask pattern is formed, and FIG. 3C is a conceptual diagram schematically showing the impregnation concentration when the phosphor solution is impregnated at the time of the mask pattern shown in FIG. When a linear ultraviolet light source 28 such as a light emitting diode (LED) or a linear cathode light source such as a cold cathode fluorescent tube (CCFL) is used, the brightness near the ultraviolet light source 28 is improved and the distance from the light source increases. Luminance decreases in inverse proportion to the square.
例えば、図 4 (a)において、符号 Dで示されるように、紫外線光源 28の近傍は強い 紫外線が照射されるため、均一の紫外線発光体がドープされていると、高輝度発光 部となってしまう。また、符号 Eで示される部分は、紫外線光源 28の中間では、紫外 線が弱くなつているため、低輝度部を形成することになる。さらに、符号 Fで示される 部分は、紫外線光源 28から最遠部となるため、最低輝度部となってしまう。  For example, in FIG. 4 (a), as indicated by the symbol D, the vicinity of the ultraviolet light source 28 is irradiated with strong ultraviolet light. End up. In addition, the portion indicated by the symbol E forms a low luminance portion because the ultraviolet ray is weak in the middle of the ultraviolet light source 28. Furthermore, since the portion indicated by the symbol F is the farthest portion from the ultraviolet light source 28, it becomes the lowest luminance portion.
[0042] 蛍光ガラス 2dが、このように発光体として輝度分布を形成してしまうと、例えばバック ライトなど均一な発光面が必要な装置に用いるには不適である。そこで、蛍光体を含 浸させる場合に、図 4 (a)に示されるパターンとは逆様のマスクパターンを用いて、蛍 光体を含浸させることで、均一な蛍光体の発光を促すようにしたのである。具体的に は、例えば、図 4 (b)に示されるようなマスクパターンを予めガラスの表面に形成させ ておいて蛍光体を含浸させる。この図 4 (b)に示されるマスクパターンでは、図 4 (a) に示される紫外線光源 28の照射分布とは逆の濃淡を示すマスクパターンが形成され ている。図 4 (b)では、黒色部ほど蛍光体の含浸が妨げられる。このようなマスクパタ ーンを用いて蛍光体を含浸させると、紫外線光源 28の近傍ほど濃度の薄い蛍光体 の分布を得ることができる。図 4 (c)では、このような蛍光体の分布を示している。色の 濃いところほど蛍光体濃度が高くなつている。図 4 (a)で示した符号 Dの箇所では蛍 光体はほとんど含浸されておらず、逆に、符号 Fで示される箇所では、蛍光体はかな り多く含浸されていることがわかる。マスクパターンで濃度差を設けると同様の効果を インクジェットで溶液を図 4 (c)のごとく噴射して形成することも可能である。 [0042] If the fluorescent glass 2d forms a luminance distribution as a light emitter in this way, it is unsuitable for use in an apparatus that requires a uniform light emitting surface such as a backlight. Therefore, when the phosphor is impregnated, the mask pattern opposite to the pattern shown in Fig. 4 (a) is used to impregnate the phosphor to promote uniform phosphor emission. It was. Specifically, for example, a mask pattern as shown in FIG. 4 (b) is previously formed on the surface of the glass and impregnated with phosphor. In the mask pattern shown in FIG. 4 (b), a mask pattern having a density opposite to the irradiation distribution of the ultraviolet light source 28 shown in FIG. 4 (a) is formed. ing. In Fig. 4 (b), impregnation of the phosphor is prevented in the black part. When such a mask pattern is used to impregnate the phosphor, it is possible to obtain a phosphor distribution with a lower concentration near the ultraviolet light source 28. Figure 4 (c) shows such a phosphor distribution. The darker the color, the higher the phosphor concentration. It can be seen that almost no phosphor is impregnated at the position D shown in Fig. 4 (a), and on the contrary, at the position indicated by the sign F, a considerable amount of the phosphor is impregnated. It is also possible to form the same effect by providing the mask pattern with a difference in density as shown in Fig. 4 (c).
紫外線光源 28がスポット状あるいは線状ではなぐ均一に紫外線を照射可能であ れば、このような蛍光体の含浸濃度に分布を持たせる必要はないことは言うまでもな レ、が、本発明の主旨であるガラス端面からの紫外線導入では必然的に距離に反比 例して輝度の濃淡が生じる。さらに、端部から反対側まで紫外線を導波するには、図 3を参照しながら説明したとおり、紫外線光源側端面 45から紫外線光源逆側端面 46 にかけての斜面 44を形成することで、紫外線光源 28から照射される紫外線 43の散 乱の分布を均一にすることができるので有用である。  It is needless to say that the distribution of the impregnation concentration of the phosphor is not necessary if the ultraviolet light source 28 can irradiate the ultraviolet rays uniformly as compared with the spot shape or the line shape. Introducing ultraviolet rays from a certain glass end face inevitably produces a contrast in luminance that is inversely proportional to the distance. Furthermore, in order to guide the ultraviolet light from the end to the opposite side, as described with reference to FIG. 3, by forming the slope 44 from the ultraviolet light source side end face 45 to the ultraviolet light source reverse side end face 46, the ultraviolet light source This is useful because the distribution of the scattering of ultraviolet rays 43 irradiated from 28 can be made uniform.
次に、図 5及び図 6を参照しながら本発明の実施の形態に係る液晶表示装置につ いて説明する。図 5は、本実施の形態に係る液晶表示装置を示す概念図であり、図 6 は蛍光ガラスの発光の制御と液晶の駆動の制御を説明するための概念図である。 図 5において、液晶表示装置 31はバックライト装置 1と偏光板 21a, 21bに挟まれた 光シャッター層 22を備え、その駆動はそれぞれバックライト発光回路部 14と液晶駆 動回路部 24によってなされている。また、これらバックライト発光回路部 14と液晶駆 動回路部 24を制御するために同期回路部 23を内蔵する制御部 38を備えている。 バックライト装置 1については、図 1及び図 2を参照しながら既に説明したが、 3系統 の独立した蛍光ガラス 2a〜2cが設けられており、それぞれ赤色光、緑色光、青色光 という光の 3原色を発する。これらの蛍光ガラス 2a〜2cは、それぞれ独立した紫外線 発生装置 3a〜3cに接続されており、この中でカーボンナノチューブに電圧をかけて 電子を紫外線蛍光体に衝突させて紫外線を発生させ、蛍光ガラス 2a〜2c内に導入 されているそれぞれの色の可視光を発生させる蛍光材料又は蛍光元素に吸収させ るものである。 [0044] 紫外線発生装置 3a〜3cに電力を供給するのはバックライト発光回路部 14であり、 このバックライト発光回路部 14の駆動を制御するのも同期回路部 23を内蔵する制御 部 38である。バックライト発光回路部 14の制御は、同期回路部 23によって液晶制御 信号と同期をとつた発光制御信号によって行なわれる。 Next, a liquid crystal display device according to an embodiment of the present invention will be described with reference to FIG. 5 and FIG. FIG. 5 is a conceptual diagram showing the liquid crystal display device according to the present embodiment, and FIG. 6 is a conceptual diagram for explaining the control of light emission of the fluorescent glass and the drive of the liquid crystal. In FIG. 5, a liquid crystal display device 31 includes an optical shutter layer 22 sandwiched between a backlight device 1 and polarizing plates 21a and 21b, and driving thereof is performed by a backlight light emitting circuit unit 14 and a liquid crystal driving circuit unit 24, respectively. Yes. Further, in order to control the backlight light emitting circuit unit 14 and the liquid crystal driving circuit unit 24, a control unit 38 incorporating a synchronizing circuit unit 23 is provided. The backlight device 1 has already been described with reference to FIG. 1 and FIG. 2, but three independent fluorescent glasses 2a to 2c are provided, and light of red light, green light, and blue light 3 respectively. Emits primary colors. These fluorescent glasses 2a to 2c are connected to independent ultraviolet ray generators 3a to 3c, respectively, in which a voltage is applied to the carbon nanotubes to cause the electrons to collide with the ultraviolet phosphor to generate ultraviolet rays, thereby producing fluorescent glass. The fluorescent material or fluorescent element that generates visible light of each color introduced in 2a to 2c is absorbed. [0044] It is the backlight light emitting circuit unit 14 that supplies power to the ultraviolet ray generators 3a to 3c, and the drive of the backlight light emitting circuit unit 14 is also controlled by the control unit 38 including the synchronization circuit unit 23. is there. The backlight light emitting circuit unit 14 is controlled by the light emission control signal synchronized with the liquid crystal control signal by the synchronizing circuit unit 23.
なお、蛍光ガラス 2a〜2cは、光シャッター層 22に近い方から青色光、緑色光、赤 色光という順序となっているが、この順序に限定されるものではなぐ適宜順序を変更 してもよレ、。また、各蛍光ガラス間には隙間が形成されているが、前述のとおり隙間を なくして密着させるようにしてもよい。  The fluorescent glasses 2a to 2c are in the order of blue light, green light, and red light from the side closer to the optical shutter layer 22. However, the order is not limited to this order, and the order may be changed as appropriate. Les. Further, although gaps are formed between the respective fluorescent glasses, the gaps may be eliminated and adhered as described above.
[0045] 光シャッター層 22は、光の入射側と出射側に配された 2枚の偏光板 21a, 21bによ つて挟まれており、これらの偏光板を組み合わせることで、バックライト装置 1から放出 される光の偏光方向によって透過を制御するものである。また、 2枚のガラス基板 32a , 32bは、配線電極 37a, 37bを挟むように構成されており、これらの電極からの漏電 を防止する。液晶部 34は、シール材 35a, 35bによって漏出しないように封止され、 液晶分子 36を一定方向に並べるための配向膜 33a, 33bに挟まれるように構成され ている。この配向膜 33a, 33bは、一般にポリイミド樹脂製の膜であり、液晶分子 36の 方向を動作モードに適した状態に揃える役割を備えており、液晶部 34にとつて重要 なものである。  [0045] The optical shutter layer 22 is sandwiched between two polarizing plates 21a and 21b arranged on the light incident side and the light emitting side. By combining these polarizing plates, the backlight device 1 Transmission is controlled by the polarization direction of the emitted light. Further, the two glass substrates 32a and 32b are configured so as to sandwich the wiring electrodes 37a and 37b, thereby preventing leakage from these electrodes. The liquid crystal part 34 is sealed so as not to leak by the sealing materials 35a and 35b, and is configured to be sandwiched between alignment films 33a and 33b for arranging the liquid crystal molecules 36 in a certain direction. These alignment films 33a and 33b are generally films made of polyimide resin, and have the role of aligning the direction of the liquid crystal molecules 36 in a state suitable for the operation mode, and are important for the liquid crystal section 34.
ガラス基板 32a, 32bには、無ソーダガラスあるいは表面をソーダの流出を防ぐため の保護膜で覆った普通ガラスが用いられ、シール材 35a, 35bには、紫外線又は熱 硬化形のエポキシ樹脂などが用いられる。  The glass substrates 32a and 32b are made of soda-free glass or ordinary glass whose surface is covered with a protective film to prevent the soda from flowing out, and the sealing materials 35a and 35b are made of UV or thermosetting epoxy resin. Used.
[0046] 配線電極 37a, 37bは、液晶駆動回路部 24に接続されており、同期回路部 23によ つてバックライト装置 1の発光制御信号と同期を取った液晶制御信号によって、液晶 を駆動するための電力が電源ケーブル 26a, 26bによって供給される。 [0046] The wiring electrodes 37a and 37b are connected to the liquid crystal drive circuit unit 24, and the liquid crystal is driven by the liquid crystal control signal synchronized with the light emission control signal of the backlight device 1 by the synchronization circuit unit 23. Power is supplied by power cables 26a and 26b.
液晶の駆動方式にはスタティック駆動、マトリックス駆動、アクティブ駆動などがあり 、いずれの駆動方式においてもよいが、特に、本実施の形態に係る液晶表示装置の ようにカラーで表示する場合には、液晶セルの個々の画素に薄膜トランジスタ (TFT) と付加容量を接続し、これらを介して各画素を制御するようにしたアクティブ駆動方式 が適している。 なお、制御部 38は同期回路部 23を内蔵しているが、この同期回路部 23を制御部 38とは別に設けて、接続するようにしてもよい。 The liquid crystal drive method includes static drive, matrix drive, active drive, etc., and any drive method may be used. In particular, when displaying in color as in the liquid crystal display device according to the present embodiment, the liquid crystal An active drive method is suitable in which a thin film transistor (TFT) and an additional capacitor are connected to each pixel of the cell, and each pixel is controlled via these. The control unit 38 includes the synchronization circuit unit 23. However, the synchronization circuit unit 23 may be provided separately from the control unit 38 and connected thereto.
[0047] 次に、図 6を参照しながら本実施の形態に係る液晶表示装置の制御方法について 説明を加える。図 6において、 (a)は蛍光ガラス 2aの発光の制御の状態を示している 。 白丸でしめされた数字は、画素を示している。 Next, a method for controlling the liquid crystal display device according to the present embodiment will be described with reference to FIG. In FIG. 6, (a) shows the state of emission control of the fluorescent glass 2a. The numbers shown with white circles indicate pixels.
図 6 (a)において、蛍光ガラス 2a以外の蛍光ガラス 2b, 2cは発光していない状態で ある。蛍光ガラス 2aで発光された光は、偏光板 21a, 21b及び光シャッター層 22によ つて画素毎に透過あるいは不透過が決定される。前述のとおり、蛍光ガラス 2cを駆動 するバックライト発光回路部 14と光シャッター層 22を駆動する液晶駆動回路部 24は 、それぞれ発光制御信号及び液晶制御信号で制御されており、この 2つの制御信号 は同期回路部 23によって同期が取られている。従って、これらの制御信号によって、 液晶表示装置を構成する多数の画素毎に、蛍光ガラスからの発光の透過を制御す ること力 Sできる。  In FIG. 6 (a), the fluorescent glasses 2b and 2c other than the fluorescent glass 2a are not emitting light. The light emitted from the fluorescent glass 2a is determined to be transmitted or not per pixel by the polarizing plates 21a and 21b and the optical shutter layer 22. As described above, the backlight light emitting circuit unit 14 for driving the fluorescent glass 2c and the liquid crystal driving circuit unit 24 for driving the optical shutter layer 22 are controlled by the light emission control signal and the liquid crystal control signal, respectively. Are synchronized by the synchronization circuit 23. Therefore, it is possible to control transmission of light emitted from the fluorescent glass for each of a large number of pixels constituting the liquid crystal display device by using these control signals.
[0048] 例えば、図 6 (a)では、画素 1 , 2, 4, 8において赤色光 41aが透過されるように制御 されている。蛍光ガラス 2aによって発光される赤色光に同期して光シャッター層 22は 駆動されているのである。また、この状態の時間は約 3乃至 5msである。  For example, in FIG. 6 (a), control is performed so that the red light 41a is transmitted through the pixels 1, 2, 4, and 8. The optical shutter layer 22 is driven in synchronization with the red light emitted by the fluorescent glass 2a. The duration of this state is about 3 to 5 ms.
その後、今度は図 6 (b)で示されるように蛍光ガラス 2bが発光し、偏光板 21a, 21b 及び光シャッター層 22を介して緑色光 41bが放出される。この蛍光ガラス 2bで発光 された緑色光 41bは、同期して駆動された光シャッター層 22によって、画素 1 , 3, 4, 6, 8のみが透過するように制御され放出されているのである。この状態の時間も約 3 乃至 5msである。  Thereafter, as shown in FIG. 6B, the fluorescent glass 2b emits light, and green light 41b is emitted through the polarizing plates 21a and 21b and the optical shutter layer 22. The green light 41b emitted from the fluorescent glass 2b is controlled and emitted so that only the pixels 1, 3, 4, 6, and 8 are transmitted by the optical shutter layer 22 driven in synchronization. This state also takes about 3 to 5 ms.
そして、最後に図 6 (c)に示されるように蛍光ガラス 2cが発光し、偏光板 21a, 21b 及び光シャッター層 22を介して青色光 41cが放出される。蛍光ガラス 2bの発光はバ ックライト発光回路部 14によって制御されるが、その発光制御信号は光シャッター層 22を駆動する液晶制御信号と同期が取られており、画素 1, 2, 3, 7のみが光シャツ ター層 22を透過して放出されているのである。この間も約 3乃至 5msである。  Finally, as shown in FIG. 6 (c), the fluorescent glass 2c emits light, and blue light 41c is emitted through the polarizing plates 21a and 21b and the optical shutter layer 22. The light emission of the fluorescent glass 2b is controlled by the backlight light emitting circuit unit 14, but the light emission control signal is synchronized with the liquid crystal control signal that drives the optical shutter layer 22, and only the pixels 1, 2, 3, and 7 are used. The light is transmitted through the light shirter layer 22 and released. This is also about 3 to 5 ms.
[0049] これらの独立した 3系統の蛍光ガラス 2a〜2cで構成されたバックライト装置 1から発 光される各色光は、わずかな時間差で液晶表示装置の画素毎に制御されるため、人 間の網膜には、図 6 (d)に示されるようにそれぞれ赤色光 41a、緑色光 41b、青色光 4 lcが放出されて残像としてそれらが混ざって見え、様々な色として感じ取ることが可 能である。例えば、画素 1では、光の 3原色すべてが発光、透過されているので白く 見え、画素 2では、赤色光と青色光のみが混ざって見えてピンク色に見え、画素 3で は、緑色光と青色光のみが混ざって見えて水色に見え、画素 5では、光の 3原色すベ てが不透過となって黒く見えることになる。 [0049] Since each color light emitted from the backlight device 1 composed of these three independent fluorescent glasses 2a to 2c is controlled for each pixel of the liquid crystal display device with a slight time difference, As shown in Fig. 6 (d), red light 41a, green light 41b, and blue light 4 lc are emitted to the retina between them, and they appear as mixed afterimages, which can be perceived as various colors. It is. For example, in pixel 1, all three primary colors of light are emitted and transmitted, so it looks white, in pixel 2, only red light and blue light appear mixed and appear pink, and in pixel 3, green light Only blue light appears mixed and appears light blue, and in pixel 5, all three primary colors of light are opaque and appear black.
[0050] この図 6と背景技術を説明した際の図 7を比較すると明確であるが、本実施の形態 に係る液晶表示装置においては、画素毎に発色を制御できているものの、図 7に示 される従来技術の場合では、画素を 3分割した細かなセル毎にしか制御できなレ、た め、画素レベルで考えると本実施の形態に係る液晶表示装置の方が高精細と高コン トラストを発揮することが可能である。すなわち、従来技術が空間的に 3原色に関する 制御を行なっていたのに対して、本実施の形態においては時間的に制御するために 、解像度とコントラストの高い緻密な画像や映像を表現することが可能となったのであ る。 [0050] Although it is clear when FIG. 6 is compared with FIG. 7 when the background art is described, in the liquid crystal display device according to the present embodiment, although color development can be controlled for each pixel, FIG. In the case of the conventional technology shown, the pixel can be controlled only for each fine cell divided into three parts. Therefore, when considered at the pixel level, the liquid crystal display device according to this embodiment has higher definition and higher control. It is possible to demonstrate trust. In other words, while the conventional technology spatially controls the three primary colors, in this embodiment, in order to control temporally, it is possible to express a precise image or video with high resolution and contrast. It became possible.
また、カラーフィルタを用いることなく蛍光ガラス 2a〜2cを採用しているので光損失 が少なく高い光利用効率を実現することができる。さらに、前述のとおり、特に多孔質 のガラスに蛍光材料又は蛍光元素を導入することで、バックライト装置において光を 放出する平板の媒体部自身に可視光変換部を均一に分散させたので、輝度ムラが ないように均一に発光し、発光してから蛍光ガラス 2a〜2c表面から放出されるまでの 距離が短いため光の減衰が少なくなり、ここでも光損失を低減させること力 Sできる。 産業上の利用可能性  Further, since the fluorescent glasses 2a to 2c are employed without using a color filter, high light utilization efficiency can be realized with little light loss. Furthermore, as described above, by introducing a fluorescent material or a fluorescent element into the porous glass in particular, the visible light conversion unit is uniformly dispersed in the flat plate medium unit that emits light in the backlight device. Light is emitted uniformly so that there is no unevenness, and since the distance from emission to emission from the surface of the fluorescent glass 2a to 2c is short, the attenuation of light is reduced, and the power loss can be reduced here. Industrial applicability
[0051] 以上説明したように、本発明の請求の範囲 1項乃至請求の範囲 9項に記載された 発明は、液晶テレビやモニター装置をはじめ、携帯電話、デジタルカメラ、デジタル オーディオプレーヤー、電話、ファクシミリなど様々な液晶表示装置に採用可能であ る。 [0051] As described above, the invention described in claims 1 to 9 of the present invention includes liquid crystal televisions and monitor devices, mobile phones, digital cameras, digital audio players, telephones, It can be used in various liquid crystal display devices such as facsimiles.

Claims

請求の範囲 The scope of the claims
[1] 紫外線発生部(3)と、この紫外線発生部(3)によって発光された紫外線を可視光( 41a, 41b, 41c)に変換する可視光変換部(16)と、この可視光変換部(16)によつ て発光された可視光(41a, 41b, 41c)を伝播する透明の平板媒体部(2a, 2b, 2c) とを有するバックライト装置(1)であって、前記可視光変換部(16)は、独立に 3系統 設けられ、紫外線をそれぞれ赤色光 (41a)、緑色光 (41b)、青色光 (41c)に変換し 、前記平板媒体部(2a, 2b, 2c)は、独立に 3系統設けられた前記可視光変換部(1 6)に対応して、独立に 3層間隙を有してあるいは間隙なしに重ねて設けられることを 特徴とするバックライト装置(1)。  [1] An ultraviolet ray generator (3), a visible light converter (16) that converts ultraviolet rays emitted by the ultraviolet ray generator (3) into visible light (41a, 41b, 41c), and the visible light converter A backlight device (1) having a transparent flat plate medium portion (2a, 2b, 2c) for propagating visible light (41a, 41b, 41c) emitted by (16), The converter (16) is provided with three independent systems, converting ultraviolet light into red light (41a), green light (41b), and blue light (41c), respectively, and the flat plate media part (2a, 2b, 2c) The backlight device (1), wherein the backlight device (1) is provided with three layers of gaps or without any gaps corresponding to the visible light conversion units (16) provided independently of three systems. .
[2] 前記独立に 3層設けられたそれぞれの平板媒体部(2a, 2b, 2c)の表面には可視 光 (41a, 41b, 41c)を透過し、紫外線を遮断する薄膜(17)が形成されることを特徴 とする請求の範囲 1項記載のバックライト装置(1)。  [2] A thin film (17) that transmits visible light (41a, 41b, 41c) and blocks ultraviolet rays is formed on the surface of each of the three flat media sections (2a, 2b, 2c) provided independently. The backlight device (1) according to claim 1, wherein the backlight device (1) is provided.
[3] 前記紫外線発生部(3)は、電子放出源を力ソード電極(7)とし、紫外線蛍光体(5) をアノード電極とし、電子引出グリッドを設けて電子を引き出して加速して前記紫外線 蛍光体(5)に衝突させて紫外線を発生させるものであることを特徴とする請求の範囲 1項又は請求の範囲 2項に記載のバックライト装置(1)。  [3] The ultraviolet ray generator (3) has an electron emission source as a force sword electrode (7), an ultraviolet phosphor (5) as an anode electrode, and an electron extraction grid is provided to extract and accelerate the ultraviolet rays. The backlight device (1) according to claim 1 or claim 2, wherein the backlight device (1) is made to collide with the phosphor (5) to generate ultraviolet rays.
[4] 前記平板媒体部(2a, 2b, 2c)は、独立の 3層のガラスであり、独立に 3系統設けら れた前記可視光変換部(16)は、このガラスの内部に導入されそれぞれ赤色光(41a )、緑色光(41b)、青色光(41c)を発生させる蛍光材料又は蛍光元素(16)であるこ とを特徴とする請求の範囲 1項又は請求の範囲 2項に記載のバックライト装置(1)。  [4] The flat plate media portions (2a, 2b, 2c) are independent three-layer glass, and the visible light conversion portions (16) provided in three independent systems are introduced into the glass. The fluorescent material or the fluorescent element (16) generating red light (41a), green light (41b), and blue light (41c), respectively. Backlight device (1).
[5] 前記蛍光材料又は蛍光元素(16)は、前記紫外線発生部(3)から照射される紫外 線強度の分布とは逆の蛍光強度分布となるように、ドープされることを特徴とする請 求の範囲 1項乃至請求の範囲 4項のいずれ力、 1項に記載のバックライト装置(1)。  [5] The fluorescent material or the fluorescent element (16) is doped so as to have a fluorescence intensity distribution opposite to the distribution of the ultraviolet ray intensity irradiated from the ultraviolet ray generator (3). Claim range 1 to claim 4. The backlight device (1) according to claim 1.
[6] 前記平板媒体部(2d)の平面のうち、いずれか一方の側面は斜面 (44)を形成し、 前記紫外線発生部(28)の近傍から遠ざかるにつれて、その一方の平面に垂直に形 成される断面の面積が狭くなるように形成されることを特徴とする請求の範囲 1項乃 至請求の範囲 5項のいずれ力 1項に記載のバックライト装置(1)。  [6] Either one of the flat surfaces of the flat plate medium portion (2d) forms a slope (44), and as the distance from the vicinity of the ultraviolet ray generating portion (28) increases, The backlight device (1) according to any one of claims 1 to 5, wherein the cross-sectional area formed is formed to be narrow.
[7] 前記平板媒体部(2d)の一方の平面に形成された斜面 (44)近傍に、紫外線 (43) を反射する粒子(30)がドープされることを特徴とする請求の範囲 6項記載のバックラ イト装置(1)。 [7] In the vicinity of the slope (44) formed on one plane of the flat plate medium portion (2d), ultraviolet rays (43) The backlight device (1) according to claim 6, wherein the particles (30) reflecting the light are doped.
[8] 表示装置を構成する液晶部(34)が赤色光(41a)、緑色光(41b)、青色光 (41c) の各色光を時間差をもって透過させるように駆動するための制御信号と同期した制 御信号を受信して、前記独立して 3系統設けられた可視光変換部がそれぞれ前記赤 色光(41a)、緑色光 (41b)、青色光 (41c)を発生させるように前記紫外線発生部(3 )を駆動するバックライト発光回路部(14)を有することを特徴とする請求の範囲 1項 乃至請求の範囲 7項のいずれか 1項に記載のバックライト装置(1)。  [8] The liquid crystal unit (34) constituting the display device is synchronized with a control signal for driving the red light (41a), the green light (41b), and the blue light (41c) to transmit each color light with a time difference. The ultraviolet light generating unit receives the control signal and generates the red light (41a), the green light (41b), and the blue light (41c), respectively, by the three independent visible light conversion units. The backlight device (1) according to any one of claims 1 to 7, further comprising a backlight light emitting circuit unit (14) for driving (3).
[9] 請求の範囲 8項に記載されたバックライト装置(1)と、液晶部(34)とこの液晶部(34 )に電圧を印加する電極を備えた光シャッター層(22)と、前記液晶部(34)に印加さ れる電圧を発生する液晶駆動回路部(24)と、同期回路部(23)を備えて前記赤色光 (41a)、緑色光 (41b)、青色光 (41c)毎に光シャッター層(22)を透過及びバックライ トを発光させるために同期した制御信号を前記液晶駆動回路部(24)及び前記バッ クライト発光回路部(14)にそれぞれ送信する制御部(38)とを有することを特徴とす る液晶表示装置 (31)。  [9] The backlight device (1) according to claim 8, a liquid crystal unit (34), an optical shutter layer (22) including an electrode for applying a voltage to the liquid crystal unit (34), A liquid crystal driving circuit section (24) for generating a voltage applied to the liquid crystal section (34) and a synchronizing circuit section (23) are provided for each of the red light (41a), green light (41b), and blue light (41c). A control unit (38) for transmitting a control signal synchronized with the liquid crystal drive circuit unit (24) and the backlight light emitting circuit unit (14) to transmit the light through the optical shutter layer (22) and emit the backlight, respectively. A liquid crystal display device (31) characterized by comprising:
PCT/JP2007/055005 2006-03-14 2007-03-13 Backlight device and liquid crystal display device WO2007105739A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008505172A JP5051853B2 (en) 2006-03-14 2007-03-13 Backlight device and liquid crystal display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006070037 2006-03-14
JP2006-070037 2006-03-14

Publications (1)

Publication Number Publication Date
WO2007105739A1 true WO2007105739A1 (en) 2007-09-20

Family

ID=38509558

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/055005 WO2007105739A1 (en) 2006-03-14 2007-03-13 Backlight device and liquid crystal display device

Country Status (2)

Country Link
JP (1) JP5051853B2 (en)
WO (1) WO2007105739A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009156347A1 (en) * 2008-06-24 2009-12-30 Light In Light S.R.L Illumination device
CN102473702A (en) * 2009-07-14 2012-05-23 皇家飞利浦电子股份有限公司 Color temperature variable light emitter
US8425837B2 (en) 2009-02-23 2013-04-23 Noxilizer, Inc. Device and method for gas sterilization

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7473918B2 (en) 2020-11-09 2024-04-24 日本電信電話株式会社 Mesh structure and method for manufacturing same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03110418U (en) * 1990-02-27 1991-11-13
JPH05341129A (en) * 1992-06-10 1993-12-24 Toray Ind Inc Surface light source
JP2001068011A (en) * 1999-08-25 2001-03-16 Japan Science & Technology Corp n-TYPE DIAMOND ELECTRON EMISSIVE ELEMENT AND ELECTRONIC DEVICE
JP2005019049A (en) * 2003-06-24 2005-01-20 Matsushita Electric Ind Co Ltd Lighting system
JP3117789U (en) * 2005-10-20 2006-01-12 岡谷電機産業株式会社 Surface light source device
JP2006059723A (en) * 2004-08-20 2006-03-02 Kuriotekku:Kk Light emitting element, light emitting device equipped with the same, and display device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03110418A (en) * 1989-09-26 1991-05-10 Toshiba Corp Depressor bar type recorder
JPH03117789U (en) * 1990-03-19 1991-12-05
JP3472446B2 (en) * 1997-06-11 2003-12-02 ミヨタ株式会社 Color liquid crystal display

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03110418U (en) * 1990-02-27 1991-11-13
JPH05341129A (en) * 1992-06-10 1993-12-24 Toray Ind Inc Surface light source
JP2001068011A (en) * 1999-08-25 2001-03-16 Japan Science & Technology Corp n-TYPE DIAMOND ELECTRON EMISSIVE ELEMENT AND ELECTRONIC DEVICE
JP2005019049A (en) * 2003-06-24 2005-01-20 Matsushita Electric Ind Co Ltd Lighting system
JP2006059723A (en) * 2004-08-20 2006-03-02 Kuriotekku:Kk Light emitting element, light emitting device equipped with the same, and display device
JP3117789U (en) * 2005-10-20 2006-01-12 岡谷電機産業株式会社 Surface light source device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9416940B2 (en) 2008-06-24 2016-08-16 Light In Light S.R.L. Illumination device
WO2009156347A1 (en) * 2008-06-24 2009-12-30 Light In Light S.R.L Illumination device
US11067251B2 (en) 2008-06-24 2021-07-20 Coelux S.R.L. Illumination device
US8469550B2 (en) 2008-06-24 2013-06-25 Light In Light S.R.L. Optical sky-sun diffuser
US8622560B2 (en) 2008-06-24 2014-01-07 Light In Light S.R.L. Illumination device
USRE48601E1 (en) 2008-06-24 2021-06-22 Coelux S.R.L. Optical sky-sun diffuser
EP3181999B1 (en) 2008-06-24 2020-08-26 CoeLux S.r.l. Illumination device
USRE46418E1 (en) 2008-06-24 2017-05-30 Coelux S.R.L. Optical sky-sun diffuser
US10371354B2 (en) 2008-06-24 2019-08-06 Coelux S.R.L. Illumination device
USRE47363E1 (en) 2008-06-24 2019-04-23 Coelux S.R.L. Optical sky-sun diffuser
US8425837B2 (en) 2009-02-23 2013-04-23 Noxilizer, Inc. Device and method for gas sterilization
US9547119B2 (en) 2009-07-14 2017-01-17 Philips Lighting Holding B.V. Color temperature variable light emitter
CN102473702A (en) * 2009-07-14 2012-05-23 皇家飞利浦电子股份有限公司 Color temperature variable light emitter
CN102473702B (en) * 2009-07-14 2016-02-10 皇家飞利浦电子股份有限公司 Color temperature variable light emitter

Also Published As

Publication number Publication date
JPWO2007105739A1 (en) 2009-07-30
JP5051853B2 (en) 2012-10-17

Similar Documents

Publication Publication Date Title
US10234725B2 (en) Photoluminescence color display
KR102105132B1 (en) Photoluminescence color display
JP2738535B2 (en) Display device
US20080074583A1 (en) Photo-luminescence color liquid crystal display
KR101924997B1 (en) Display device and the method thereof
WO2014132726A1 (en) Liquid crystal display device
KR20140021258A (en) Display device
CN108681133B (en) Display panel, display method and vehicle-mounted head-up display system
US20100283717A1 (en) Illuminating device and display device
KR20120075317A (en) Display apparatus
JP5051853B2 (en) Backlight device and liquid crystal display device
KR20080001504A (en) Liquid crystal display device and the fabrication method thereof
KR20100064862A (en) Liquid crystal display device
JP3416056B2 (en) Liquid crystal display
US7764336B2 (en) Liquid crystal display module with scattering material coating on upper surface portion of lamp
JP2002277870A (en) Liquid crystal display and display device
EP0369730B1 (en) Color liquid crystal display
JP2673348B2 (en) Planar light emitting device
KR101877463B1 (en) Display device
JP5444919B2 (en) Illumination device and liquid crystal display device
CN101149527A (en) Surface light source, method of driving the same, and backlight unit having the same
KR101037088B1 (en) Backlight Unit
JP3734375B2 (en) Plasma addressed liquid crystal display
JP2002277875A (en) Liquid crystal display and display device
KR20230137692A (en) Display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07738476

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008505172

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07738476

Country of ref document: EP

Kind code of ref document: A1