WO2007105640A1 - Contact detector and contact detection method - Google Patents

Contact detector and contact detection method Download PDF

Info

Publication number
WO2007105640A1
WO2007105640A1 PCT/JP2007/054690 JP2007054690W WO2007105640A1 WO 2007105640 A1 WO2007105640 A1 WO 2007105640A1 JP 2007054690 W JP2007054690 W JP 2007054690W WO 2007105640 A1 WO2007105640 A1 WO 2007105640A1
Authority
WO
WIPO (PCT)
Prior art keywords
contact
change amount
series change
time
contact detection
Prior art date
Application number
PCT/JP2007/054690
Other languages
French (fr)
Japanese (ja)
Inventor
Idaku Ishii
Kenkichi Yamamoto
Original Assignee
National University Of Corporation Hiroshima University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University Of Corporation Hiroshima University filed Critical National University Of Corporation Hiroshima University
Publication of WO2007105640A1 publication Critical patent/WO2007105640A1/en

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/94Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated
    • H03K17/96Touch switches
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/038Control and interface arrangements therefor, e.g. drivers or device-embedded control circuitry
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/042Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means
    • G06F3/0425Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means using a single imaging device like a video camera for tracking the absolute position of a single or a plurality of objects with respect to an imaged reference surface, e.g. video camera imaging a display or a projection screen, a table or a wall surface, on which a computer generated image is displayed or projected

Definitions

  • the present invention relates to a contact detection device and a contact detection method for detecting contact between an object and a contact target object.
  • Non-Patent Document 1 describes a device in which a sensor for detecting acceleration is attached to a fingertip. As shown in Non-Patent Document 1, when a sensor is directly attached to a fingertip, there is an advantage that desired information on the fingertip can be easily measured.
  • Non-Patent Document 1 Koji Tsukada, Michiaki Yasumura, Ubi-Finger, Research on Mopile Oriented Giestier Input Device, IPSJ Transactions, Vol 43, No. 12, pp. 3675-3684, 2002 Disclosure of Invention
  • the present invention provides a technique capable of detecting desired information for an object to be detected without attaching a sensor to the object to be detected. Specifically, the present invention provides a contact that can detect whether or not an object can be contacted with the target object without attaching a sensor that detects that the object contacts the target object.
  • An object is to provide a detection device and a contact detection method.
  • the contact detection device is a contact detection device that detects contact between an object and a contact target object, and includes a photographing unit that photographs the object and the contact target object, and a photographing unit that captures images.
  • Distance measuring means for measuring a first time-series change amount, which is a time-series change amount of the distance from the object to the contact target object, based on the positions of the object and the contact target object in the captured image, and a distance measurement means
  • a high-pass filter that extracts a time-series change amount of a frequency component that is equal to or higher than a predetermined cutoff frequency as a second time-series change amount from the first time-series change amount measured by It is characterized by comprising contact detection means for detecting contact between an object and a contact target object when the time-series change amount exceeds a predetermined threshold value.
  • the contact detection method is a contact detection method for detecting contact between an object and a contact target object, wherein a photographing unit photographs the object and the contact target object, and a distance.
  • the measuring means calculates the first time-series change amount, which is the time-series change amount of the distance to the contact target object.
  • the distance measurement step to be measured and the high-pass filter indicate the time-series change amount of the frequency component above the predetermined cutoff frequency in the first time-series change amount measured by the distance measurement means as the second time-series change amount.
  • the high-pass filtering step and the contact detection means extract the object and the contact target when the second time series change amount extracted in the no-pass filtering step exceeds a predetermined threshold! object It is characterized in that it comprises a contact detection step of detect contact with.
  • the distance measuring means measures the first time-series change amount of the distance to the object to be contacted as well as the object force.
  • the high-pass filter removes the low-frequency component below the predetermined cutoff frequency and extracts the second time-series change amount, which is a set of high-frequency components in the first time-series change amount.
  • the high frequency component is found in the time-series change amount with respect to the distance to the object force contact target object at the moment when the present inventors have found that the object and the contact target object are in contact with each other. Focus on the temporary occurrence. That is, when the second time-series change amount of only the high-frequency component exceeds a predetermined threshold value, the contact detection means detects that there is contact between the object and the target object. Can do.
  • a contact detection sensor is attached to the object for the purpose of detecting contact between the object and the object to be contacted. I do not. Therefore, according to the present invention, it is possible to detect contact between an object and a contact target object, and it is possible to prevent, for example, a contact detection sensor attached to the object from hindering the operation of the object. .
  • the contact detection device measures a value proportional to the second time-series change amount extracted by the high-pass filter as a value representing a collision force when the object and the contact target object contact each other. Is further provided.
  • the contact detection method when the collision force measuring means makes a contact between the object and the contact target object, a value proportional to the second time-series change amount extracted in the no-pass filtering step.
  • the method further comprises a collision force measurement step of measuring as a value representing the collision force.
  • the collision force measuring means can detect a predetermined value proportional to the second time-series change amount as a collision force generated when the object and the contact target object come into contact with each other.
  • an arbitrary sign for indicating the position of the object is provided on the object to be photographed by the photographing means, the photographing means photographs the sign, and the distance measuring means includes The first time-series change amount, which is a time-series change amount of the distance from the sign to the object to be touched, is measured based on the position of the sign taken by the photographing means in the photographed image.
  • the object to be imaged in the imaging step is provided with an arbitrary mark for indicating the position of the object, and the imaging unit in the imaging step.
  • the distance measurement means in the distance measurement step is a time-series change amount of the distance from the sign to the contact target object based on the position of the sign captured in the shooting step in the captured image. It is characterized by measuring the first time series change.
  • a sign that is smaller and lighter than the object can be used as the sign indicating the position of the object.
  • the captured image force also reduces the amount of calculation required for image recognition by recognizing the position of the sign instead of recognizing the position of the object. A result equivalent to that of recognition can be obtained.
  • the predetermined cutoff frequency in the high-pass filter is 40 hertz.
  • the predetermined cutoff frequency in the high-nos filtering step is 40 hertz.
  • the contact detection means It is possible to reliably detect whether or not a corresponding part of a human finger or robot is in contact with the object to be contacted.
  • the predetermined threshold value in the contact detection means is 0.5 mm.
  • the predetermined threshold value in the contact detection step is 0.5 mm.
  • the contact detection means can ignore minute high-frequency components that can be generated when the corresponding part of the human finger or robot is not in contact with the object to be touched. It is possible to reliably detect whether or not the part and the contact object are in contact with each other.
  • the invention's effect it is possible to detect whether or not a contact between the object and the contact target object can be detected without mounting a sensor that detects that the object is in contact with the contact target object.
  • FIG. 1 is a schematic configuration diagram of a tapping counter 1 according to a first embodiment of the present invention.
  • FIG. 2 is a diagram for explaining a marker 21 provided on a fingertip 20.
  • FIG. 3 is a diagram for explaining the positional relationship among a fingertip 20, a plate 30, and a photographing unit 11.
  • FIG. 4 is a diagram showing a first time-series change amount of the distance between the fingertip 20 and the board 30.
  • FIG. 5 is an enlarged view of FIG. 4 along the time axis.
  • FIG. 6 is a diagram showing a first time-series change amount of the distance between the fingertip 20 and the board 30.
  • FIG. 7 is an enlarged view of FIG. 6 along the time axis.
  • FIG. 8 is a diagram showing a second time-series change amount of the distance between the fingertip 20 and the board 30.
  • FIG. 9 is a diagram showing a second time-series change amount of the distance between the fingertip 20 and the board 30.
  • FIG. 10 is a flowchart showing the operation of the tapping counter 1.
  • FIG. 11 is a diagram showing a result of an operation performed by the tapping counter 1.
  • FIG. 12 is a diagram showing a result of an operation performed by the tapping counter 1.
  • FIG. 13 is a schematic configuration diagram of a collision force measuring device 2 according to a second embodiment of the present invention.
  • FIG. 14 is a flowchart showing the operation of the collision force measuring apparatus 2.
  • FIG. 15 is a diagram showing a result of an operation performed by the collision force measuring apparatus 2;
  • a tapping counter 1 will be described as a first embodiment of a contact detection device and a contact detection method according to the present invention.
  • the tapping counter 1 counts the number of times the fingertip 20 has tapped the surface of the plate 30 without attaching a contact detection sensor or the like to the fingertip 20.
  • the configuration of the tapping counter 1 will be described with reference to FIGS. 1 to 3 show a fingertip (object) 20 as a contact detection target, a plate (contact target object) 30 as a contact target of the fingertip 20, and an imaging unit (imaging means) 11 and a control unit as a contact detection device.
  • 12 is a diagram for explaining a configuration of a tapping counter 1 including 12.
  • the fingertip 20 that is the target of contact detection in the first embodiment is provided with a marker (marker) 21 for indicating the position of the fingertip 20.
  • This marker 21 is smaller and lighter than a finger and has a higher recognition rate in image recognition.
  • a light ball with a diameter of 5 mm is used.
  • the tapping counter 1 recognizes the position of the marker 21 instead of directly recognizing the image of the position of the fingertip 20 with respect to the captured image power.
  • the plate 30 in the first embodiment is an object to be touched by the fingertip 20, and is basically made of iron with a wall thickness of 2.9mm. It is a flat plate. For this reason, the board 30 becomes a background in the photographed image, and it is not necessary for the tapping counter 1 to recognize up to the board 30 for each photographing frame. That is, in the first embodiment, the coordinates of a predetermined part of the captured image are used as the position information of the plate 30.
  • the imaging unit 11 shown in FIGS. 1 and 3 extracts position information (position coordinates) of the marker 21 in the image obtained by imaging the marker 21 and the plate 30 in real time.
  • the photographing unit 11 outputs the extracted position information of the marker 21 to the control unit 12.
  • the control unit 12 shown in FIG. 1 detects contact between the fingertip 20 and the plate 30 based on the position information of the marker 21 and the plate 30.
  • the control unit 12 includes a storage unit such as a CPU, a memory, a communication interface, and a hard disk as a physical component.
  • the positional relationship among the fingertip 20, the board 30, and the photographing unit 11 will be described in detail with reference to FIG.
  • the imaging unit 11 is disposed 80 mm above the surface of the plate 30 and keeps the optical axis horizontal with respect to the plate 30.
  • the field of view of the shooting unit 11 is set to 288mm X 230mm near the 20 position of the tip, and is set to a spatial resolution of 0.225mm per pixel.
  • the position of the fingertip 20 can be calculated using the conventional image recognition technique by tracking the marker 21 attached to the fingertip 20 by the imaging unit 11 as described above.
  • the imaging unit 11 tracks the marker 21 of the fingertip 20 using, for example, a 64 ⁇ 64 pixel window, and calculates the position of the center of gravity to obtain the position of the fingertip 20. It is preferable to change the measurement rate at the 20 positions of the fingertip according to the number of target fingers, for example, 900 [fps] for one finger, and 470 [fps for two, three, and four fingers, respectively. ], 390 [fps], and 280 [fps]. In the first embodiment, in order to simplify the explanation, the number of target fingers is one and the measurement rate at the fingertip 20 position is 900 [fps]. As described above, the position of the plate 30 is set to the coordinates of a predetermined portion determined in advance in the captured image.
  • control unit 12 of the tapping counter 1 includes a distance measurement unit (distance measurement unit) 13, a high-pass filter 14, and a contact detection unit (contact detection unit) 15.
  • distance measurement unit distance measurement unit
  • high-pass filter 14 high-pass filter
  • contact detection unit contact detection unit
  • the distance measurement unit 13 obtains the distance from the fingertip 20 to the plate 30 based on the position information of the plate 30 and the position information of the marker 21 input from the imaging unit 11, and calculates the time series of the distances. It measures the amount of change in the first time series, which is the amount of change.
  • 4 to 7 are diagrams showing the first time-series change amount of the distance measured by the distance measuring unit 13. In FIGS. 4 to 7, the height of the marker 21 with the height of the upper surface of the plate 30 as Omm (reference height) is expressed as the distance.
  • FIG. 4 shows the first time-series change amount for one second when the fingertip 20 repeats the tapping operation without contact between the fingertip 20 and the plate 30.
  • FIG. 5 is an enlarged view of FIG. 4 on the time axis, and shows the first time-series change amount for 0.2 seconds when there is no contact between the fingertip 20 and the board 30. As shown in Fig. 4 and 5, when there is no contact between fingertip 20 and plate 30 The first time-series change amount appears as a smooth curve without high frequency components.
  • FIG. 6 shows a first time-series change amount for one second when the tapping operation is repeated while the fingertip 20 is in contact with the plate 30.
  • FIG. 7 is an enlarged view of FIG. 6 on the time axis, and shows the first time series change amount in 0.2 seconds when the fingertip 20 and the board 30 are in contact with each other.
  • FIGS. 6 and 7 when the fingertip 20 and the plate 30 are in contact with each other, a temporary distortion occurs around a height of 10 mm corresponding to the thickness of the finger.
  • the distance measurement unit 13 outputs the first time series change amount as shown in FIGS. 4 to 7 to the high pass filter 14.
  • the no-pass filter 14 removes a low frequency component less than a predetermined cutoff frequency from the first time-series variation input from the distance measuring unit 13, and a frequency component equal to or higher than the cutoff frequency. Is extracted as the second time-series change amount. That is, the second time series variation extracted by the no-pass filter 14 is a set of high frequency components equal to or higher than the cutoff frequency extracted from the first time series variation force. In the first embodiment, the cutoff frequency is 40 hertz.
  • FIG. 8 shows the result of the high-pass filter 14 filtering the first time-series variation shown in FIGS. 4 and 5, that is, the second case where there is no contact between the fingertip 20 and the plate 30. It is a figure which shows a time series change amount. Since the high frequency component is not generated in the first time series variation shown in Figs. 4 and 5, almost no high frequency component appears in the second time series variation shown in Fig. 8.
  • FIG. 9 shows the result of the high-pass filter 14 filtering the first time-series variation shown in FIGS. 6 and 7, that is, the second result when the fingertip 20 and the plate 30 are in contact with each other. It is a figure which shows a time series change amount. Along with the time when the high-frequency component (distortion) occurs in the first time-series variation shown in Figs. 6 and 7, a large amount of high-frequency component is also generated in the second time-series variation shown in Fig. 8. The no-pass filter 14 outputs the second time-series change amount as shown in FIGS.
  • the contact detection unit 15 detects the contact between the fingertip 20 and the plate 30 by comparing the second time-series change amount input from the high-pass filter 14 with a predetermined threshold value. Specifically, the contact detector 15 detects the fingertip 20 when the second time-series change amount is equal to or greater than a predetermined threshold. When the second time-series change amount is less than a predetermined threshold value, it is detected that there is no contact between the fingertip 20 and the plate 30.
  • the predetermined threshold is 0.5 mm, and is indicated by a dotted line in FIGS.
  • the contact detection unit 15 does not detect contact between the fingertip 20 and the plate 30.
  • the second time series change amount exceeds the threshold value seven times in one second, and the contact detection unit 15 detects that the contact between the fingertip 20 and the plate 30 has occurred seven times. .
  • FIG. 10 is a flowchart showing the operation of the tapping counter 1.
  • FIG. 11 is a diagram for explaining the result of the operation performed by the tapping counter 1 when the fingertip 20 performs the tapping operation nine times in 2 seconds.
  • Fig. 12 shows the operation performed by tapping counter 1 when performing tapping motion twice and 4 feint motions (blank motion where fingertip 20 and board 30 do not contact) in 20 finger ⁇ seconds. It is a figure for demonstrating the result of.
  • the photographing unit 11 extracts the position information of the marker 21 in the image obtained by photographing the marker 21 and the plate 30 in real time.
  • the imaging unit 11 outputs the extracted position information of the marker 21 to the distance measuring unit 13 (imaging step, step S1 in FIG. 10).
  • the distance measurement unit 13 obtains the distance from the fingertip 20 to the plate 30 based on the position information of the plate 30 and the position information of the marker 21 input from the imaging unit 11, and the distance Measure the first time series change, which is the time series change of.
  • (A) in FIG. 11 and (a) in FIG. 12 show the first time-series change amount measured by the distance measurement unit 13.
  • the distance measurement unit 13 outputs the measured first time-series change amount to the high-pass filter 14 (distance measurement step, step S2 in FIG. 10).
  • the high-pass filter 14 removes a low-frequency component having a cut-off frequency of less than 40 hertz from the middle of the first time-series change amount input from the distance measurement unit 13, and the cut-off frequency 40 Extract the time-series variation of frequency components above hertz as the second time-series variation.
  • FIG. 11 and FIG. 12 show the second time-series variation extracted by the high-pass filter 14.
  • the no-pass filter 14 sends the extracted second time series change amount to the contact detection unit 15. Output (filtering step, step S3 in Fig. 10).
  • the contact detection unit 15 detects contact between the fingertip 20 and the plate 30 by comparing the second time-series change amount input from the high-pass filter 14 with a threshold value of 0.5 mm. Specifically, the contact detection unit 15 detects the contact between the fingertip 20 and the plate 30 when the second time series change amount is a threshold value of 0.5 mm or more, and the second time series change amount. If the threshold is less than 0.5 mm, it is detected that there is no contact between the fingertip 20 and the plate 30 (contact detection step, step S4 in FIG. 10).
  • (c) in FIG. 11 shows that when the fingertip 20 performs nine tapping operations in 2 seconds, the contact detection unit is based on the second time-series change amount shown in (b) in FIG. 15 indicates the number of times counted.
  • the contact detection unit 15 counts the contact at the moment when the second time series change amount exceeds the threshold value 0.5 mm, and counts 9 times in 2 seconds. This result coincides with the number of times the fingertip 20 actually touches the board 30, and it can be said that the tapping counter 1 accurately counted the contact between the fingertip 20 and the board 30.
  • (c) of FIG. 12 shows the second time series shown in (b) of FIG. 12 when the fingertip 20 performs two tapping operations and four feint operations in 2 seconds. Based on the amount of change, indicates the number of times the contact detection unit 15 forces S were counted. The contact detection unit 15 counts the contact at the moment when the second time-series change amount exceeds the threshold value 0.5 mm, and counts twice in 2 seconds according to the moment of contact. This result coincides with the number of times and time when the fingertip 20 actually touches the board 30, and the tabbing counter 1 accurately counts the contact between the fingertip 20 and the board 30 even when the fingertip 20 is in a faint motion. Yes, I get.
  • the tapping counter 1 of the first embodiment for example, even if a contact detection sensor is not attached to the fingertip 20 for the purpose of detecting contact between the fingertip 20 and the plate 30, FIGS. As shown in FIG. 5, the contact between the fingertip 20 and the plate 30 can be accurately detected. For this reason, for example, it is possible to prevent the contact detection sensor attached to the fingertip 20 from hindering the operation of the fingertip 20. Furthermore, for example, it is possible to prevent a contact detection sensor attached to a finger from interfering with the movement of the finger and causing a human to feel uncomfortable.
  • the marker 21 in the first embodiment represents the position of the fingertip 20, and the fingertip Use a smaller and lighter one than 20. For this reason, for example, the photographed image force also recognizes the position of the fingertip 20 while recognizing the position of the sign instead of recognizing the position of the fingertip 20 while reducing the amount of calculation required for image recognition. The result is equivalent to the case of direct recognition.
  • the contact detection unit 15 can reliably detect whether or not the fingertip 20 and the plate 30 are in contact with each other.
  • the contact detection unit 15 can reliably detect whether or not the fingertip 20 and the plate 30 are in contact with each other.
  • a human finger is an object to be contact-detected, but the portion corresponding to a human finger in a robot that is not limited to this is a contact-detection target. It is good also as an object. Even in this case, for example, a contact detection sensor is not attached to the part in order to detect contact between the part corresponding to the human finger in the robot and the plate 30. Therefore, for example, it is possible to prevent a contact detection sensor attached to the part from hindering the operation of the part.
  • the basically non-moving plate 30 is an object to be touched by the fingertip 20, but any moving object is an object to be touched by the fingertip 20. It is also possible.
  • the photographing unit 11 extracts the position information in the photographed image of the object to be touched by the fingertip 20 in real time and outputs it to the distance measuring unit 13. Then, the distance measuring unit 13 obtains the distance from the fingertip 20 to the contact target object based on the position information of the contact target object and the marker 21 input from the imaging unit 11.
  • the collision force measuring device 2 includes all the elements constituting the tapping counter 1 in the first embodiment, and the respective elements are arranged in an equivalent positional relationship (see FIG. 3). Means) 16 is provided.
  • the collision force measuring device 2 is a device that measures not only the possibility of contact between the fingertip 20 and the plate 30, but also the collision force at the moment when the fingertip 20 and the plate 30 contact each other. First, the configuration of the collision force measuring device 2 will be described with reference to FIGS.
  • FIG. 13 is a schematic configuration diagram of the collision force measuring device 2.
  • the collision force measurement device 2 includes an imaging unit 11 and a control unit 12, and the control unit 12 includes a distance measurement unit 13, a high-pass filter 14, a contact detection unit 15, and a collision force measurement unit 16.
  • the no-pass filter 14 outputs the extracted second time-series change amount to the collision force measurement unit 16.
  • the collision force measurement unit 16 measures a value proportional to the peak value of the second time-series change amount input from the high-pass filter 14 as a value representing the collision force when the fingertip 20 and the plate 30 are in contact with each other. Is.
  • the collision force measured by the collision force measurement unit 16 is used for, for example, a virtual instrument including the collision force measurement device 2.
  • the virtual musical instrument or the like can appropriately determine the volume of the sound source generated by the virtual musical instrument or the sound generation time based on the collision force measured by the collision force measurement unit 16.
  • a virtual musical instrument or the like can appropriately determine the time for generating a sound source based on the contact time detected by the contact detection unit 15.
  • FIG. 14 is a flowchart showing the operation of the collision force measuring apparatus 2.
  • Fig. 15 shows that the collision force measurement device 2 performed when the fingertip 20 performed two tapping motions and four feint motions (missing motion in which the fingertip 20 and the plate 30 do not contact) in 2 seconds. It is a figure for demonstrating the result of operation
  • the photographing unit 11 extracts the position information of the marker 21 in the image obtained by photographing the marker 21 and the plate 30 in real time.
  • the imaging unit 11 outputs the extracted position information of the marker 21 to the distance measuring unit 13 (imaging step, step S1 in FIG. 14).
  • the distance measurement unit 13 obtains the distance from the fingertip 20 to the plate 30 based on the position information of the plate 30 and the position information of the marker 21 input from the imaging unit 11, and the distance Measure the first time series change, which is the time series change of.
  • Fig. 15 (a) shows that the distance measurement unit 13 The measured first time series change is shown.
  • the distance measuring unit 13 outputs the measured first time series change amount to the high-pass filter 14 (distance measuring step, step S2 in FIG. 14).
  • the high-pass filter 14 removes a low-frequency component having a cutoff frequency of less than 40 Hz from the middle amount of the first time-series change amount input from the distance measuring unit 13, and the cutoff frequency 40 Extract the time-series variation of frequency components above hertz as the second time-series variation.
  • FIG. 15B shows the second time-series change amount extracted by the high-pass filter 14.
  • the high-pass filter 14 outputs the extracted second time-series change amount to the contact detection unit 15 and the collision force measurement unit 16 (filtering step, step S3 in FIG. 14).
  • the contact detection unit 15 detects the contact between the fingertip 20 and the plate 30 by comparing the second time-series change amount input from the high-pass filter 14 with the threshold value 0.5 mm. Specifically, the contact detection unit 15 detects the contact between the fingertip 20 and the plate 30 when the second time series change amount is a threshold value of 0.5 mm or more, and the second time series change amount. If the threshold is less than 0.5 mm, it is detected that there is no contact between the fingertip 20 and the plate 30 (contact detection step, step S4 in FIG. 14).
  • FIG. 15 (c) shows the second time-series change amount shown in FIG. 15 (b) when the fingertip 20 performs two tapping operations and four feint operations in two seconds. Based on this, the number of times the contact detector 15 has counted is shown.
  • the contact detection unit 15 counts the insects at the moment when the second time series change amount exceeds the threshold value of 0.5 mm, and performs the counting twice in 2 seconds, in accordance with the moment of the insects. . This result coincides with the number of times and time when the fingertip 20 actually contacts the board 30, and it can be said that the collision force measuring device 2 accurately counted the contact between the fingertip 20 and the board 30.
  • the collision force measurement unit 16 represents a collision force when the fingertip 20 and the plate 30 are in contact with a value proportional to the peak value of the second time-series change amount input from the high-pass filter 14. Measured as a value (impact force measurement step, step S5 in Fig. 14).
  • FIG. 15 shows the second time-series change amount shown in (b) of FIG. 15 when the fingertip 20 performs two tapping operations and four feint operations in 2 seconds. Based on this, the collision force measured by the collision force measurement unit 16 is shown. Referring to (b) of Fig. 15, the peak value of the high frequency component generated at about 3.3 seconds is about 4 mm, and the peak value of the high frequency component generated at about 4.7 seconds is about 3mm. Figure 15 (d) shows the impact force measured at about 3.3 seconds. The collision force measured at about 4.7 seconds is 6N. From this result, it is possible that the collision force measurement unit 16 measures the collision force in proportion to the peak value of the generated high frequency component.
  • the collision force measurement device 2 of the second embodiment for example, even if a collision force measurement sensor is not attached to the fingertip 20 for the purpose of measuring the collision force at the time of contact between the fingertip 20 and the plate 30, As shown in FIG. 15, the collision force at the time of contact between the fingertip 20 and the plate 30 can be detected. Therefore, for example, it is possible to prevent the collision force measurement sensor attached to the fingertip 20 from hindering the operation of the fingertip 20. Further, for example, it is possible to prevent a collision force measurement sensor attached to a finger from interfering with the movement of the finger and causing a human to feel uncomfortable.
  • a force that makes a human finger an object that is a target of collision force measurement at the time of contact is not limited to this. It is good also as an object used as the object of collision force measurement at the time of contact. Even in this case, for example, a collision force measurement sensor is not attached to the part for the purpose of measuring the collision force between the part corresponding to the human finger and the plate 30 in the mouth bot. For this reason, for example, it is possible to prevent the collision force measurement sensor attached to the part from hindering the operation of the part.
  • the collision force measuring device 2 in the second embodiment is not limited to a virtual musical instrument, and can be applied as appropriate to, for example, a mouse of a personal computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Electronic Switches (AREA)
  • Manipulator (AREA)

Abstract

A tapping counter (1) is a detector for detecting contact of a finger tip (20) with a plate (30), and comprises a photography section (11) for photographing the finger tip (20) and the plate (30), a distance measuring section (13) for measuring a first time series variation in distance from the finger tip (20) to the plate (30) based on the positions thereof in an image photographed at the photography section (11), a high-pass filter (14) for extracting time series variation in frequency components of the cut-off frequency or above among the first time series variation measured at the distance measuring section (13) as second time series variation, and a section (15) for detecting contact of the finger tip (20) with the plate (30) when the second time series variation extracted by the high-pass filter (14) exceeds a threshold.

Description

明 細 書  Specification
接触検出装置及び接触検出方法  Contact detection device and contact detection method
技術分野  Technical field
[0001] 本発明は、物体と接触対象物体との接触を検出する接触検出装置及び接触検出 方法に関する。  The present invention relates to a contact detection device and a contact detection method for detecting contact between an object and a contact target object.
背景技術  Background art
[0002] 昨今、情報機器におけるヒューマンインタフェースの多様ィ匕が進んでおり、人間の 体の様々な部分力インタフェースとして使われている。特に人間の意図に応じて高自 由度かつ高速に動作可能な指をインタフェースとする研究が活発に行われている。 例えば非特許文献 1には、加速度を検出するセンサを指先に装着した装置が記載さ れている。非特許文献 1に示すように、センサを指先に直接に装着すると、指先に対 する所望の情報が計測しやすくなるといった長所がある。  [0002] In recent years, various types of human interfaces in information devices have progressed and are used as various partial force interfaces of the human body. In particular, active research is being carried out using a finger that can move at a high speed and at a high speed according to the human intention as an interface. For example, Non-Patent Document 1 describes a device in which a sensor for detecting acceleration is attached to a fingertip. As shown in Non-Patent Document 1, when a sensor is directly attached to a fingertip, there is an advantage that desired information on the fingertip can be easily measured.
非特許文献 1 :塚田浩二,安村通晃、 Ubi- Finger,モパイル指向ジエスチヤ入力デ ノ イスの研究、情報処理学会論文集、 Vol43、 No. 12、 pp. 3675〜3684、 2002 発明の開示  Non-Patent Document 1: Koji Tsukada, Michiaki Yasumura, Ubi-Finger, Research on Mopile Oriented Giestier Input Device, IPSJ Transactions, Vol 43, No. 12, pp. 3675-3684, 2002 Disclosure of Invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0003] し力しながら、センサを検出対象となる物体に直接に装着するような手法において は、例えば規模が巨大化されたセンサが検出対象となる物体の動作に支障を与えて しまうといった問題点がある。更に、検出対象となる物体が例えば人間の体の一部で ある場合には、そもそもセンサを体に装着すること自体に、人間は違和感を感じると いった問題点がある。 [0003] In the technique of mounting the sensor directly on the object to be detected while applying force, for example, a sensor with a large scale may interfere with the operation of the object to be detected. There is a point. Furthermore, when the object to be detected is, for example, a part of the human body, there is a problem in that the human being feels uncomfortable by attaching the sensor to the body.
[0004] そこで、本発明は、検出対象となる物体にセンサを装着しなくても、検出対象となる 物体に対する所望の情報を検出することが可能な手法を提供する。具体的に、本発 明は、物体が接触対象物体に接触することを検出するセンサを当該物体に装着しな くても、物体と接触対象物体との接触可否を検出することが可能な接触検出装置及 び接触検出方法を提供することを目的とする。  [0004] Therefore, the present invention provides a technique capable of detecting desired information for an object to be detected without attaching a sensor to the object to be detected. Specifically, the present invention provides a contact that can detect whether or not an object can be contacted with the target object without attaching a sensor that detects that the object contacts the target object. An object is to provide a detection device and a contact detection method.
課題を解決するための手段 [0005] 本発明者等は、鋭意検討を重ねた結果、物体と接触対象物体とが接触する瞬間に 、上記物体力 接触対象物体までの距離に対する時系列的な変化量において、高 周波数成分が一時的に発生することを見出した。更に、発生した高周波数成分の大 きさは、物体と接触対象物体とが接触する瞬間の衝突力に比例することを見出した。 本発明は、これらのような新たな知見に基づいて為されたものである。 Means for solving the problem As a result of intensive studies, the present inventors have found that a high-frequency component is present in a time-series change amount with respect to the distance to the object force contact object at the moment when the object and the contact object are in contact with each other. It was found to occur temporarily. Furthermore, we have found that the magnitude of the generated high-frequency component is proportional to the impact force at the moment when the object and the object to be contacted contact each other. The present invention has been made based on these new findings.
[0006] すなわち、本発明に係る接触検出装置は、物体と接触対象物体との接触を検出す る接触検出装置であって、物体及び接触対象物体を撮影する撮影手段と、撮影手 段が撮影した画像内における物体及び接触対象物体の位置に基づき、物体から接 触対象物体までの距離の時系列的な変化量である第 1時系列変化量を測定する距 離測定手段と、距離測定手段が測定した第 1時系列変化量中、所定のカットオフ周 波数以上の周波数成分の時系列的な変化量を、第 2時系列変化量として抽出する ハイパスフィルタと、ハイパスフィルタが抽出した第 2時系列変化量が所定のしき 、値 以上となった場合に、物体と接触対象物体との接触を検出する接触検出手段とを備 えることを特徴としている。  [0006] That is, the contact detection device according to the present invention is a contact detection device that detects contact between an object and a contact target object, and includes a photographing unit that photographs the object and the contact target object, and a photographing unit that captures images. Distance measuring means for measuring a first time-series change amount, which is a time-series change amount of the distance from the object to the contact target object, based on the positions of the object and the contact target object in the captured image, and a distance measurement means A high-pass filter that extracts a time-series change amount of a frequency component that is equal to or higher than a predetermined cutoff frequency as a second time-series change amount from the first time-series change amount measured by It is characterized by comprising contact detection means for detecting contact between an object and a contact target object when the time-series change amount exceeds a predetermined threshold value.
[0007] また、本発明に係る接触検出方法は、物体と接触対象物体との接触を検出する接 触検出方法であって、撮影手段が、物体及び接触対象物体を撮影する撮影ステップ と、距離測定手段が、撮影ステップにて撮影された画像内における物体及び接触対 象物体の位置に基づき、物体力も接触対象物体までの距離の時系列的な変化量で ある第 1時系列変化量を測定する距離測定ステップと、ハイパスフィルタが、距離測 定手段が測定した第 1時系列変化量中、所定のカットオフ周波数以上の周波数成分 の時系列的な変化量を、第 2時系列変化量として抽出するハイパスフィルタリングス テツプと、接触検出手段が、ノ、ィパスフィルタリングステップにて抽出された第 2時系 列変化量が所定のしき!ヽ値以上となった場合に、物体と接触対象物体との接触を検 出する接触検出ステップとを備えることを特徴としている。  [0007] In addition, the contact detection method according to the present invention is a contact detection method for detecting contact between an object and a contact target object, wherein a photographing unit photographs the object and the contact target object, and a distance. Based on the position of the object and the object to be touched in the image captured in the shooting step, the measuring means calculates the first time-series change amount, which is the time-series change amount of the distance to the contact target object. The distance measurement step to be measured and the high-pass filter indicate the time-series change amount of the frequency component above the predetermined cutoff frequency in the first time-series change amount measured by the distance measurement means as the second time-series change amount. The high-pass filtering step and the contact detection means extract the object and the contact target when the second time series change amount extracted in the no-pass filtering step exceeds a predetermined threshold! object It is characterized in that it comprises a contact detection step of detect contact with.
[0008] このような本発明の接触検出装置及び接触検出方法によれば、距離測定手段が、 物体力も接触対象物体までの距離の第 1時系列変化量を測定する。次に、ハイパス フィルタが所定のカットオフ周波数未満の低周波数成分を第 1時系列変化量力 除 去し、第 1時系列変化量における高周波数成分の集合である第 2時系列変化量を抽 出する。ここで、本発明者等が見出したこと、つまり、物体と接触対象物体とが接触す る瞬間に、上記物体力 接触対象物体までの距離に対する時系列的な変化量にお いて高周波数成分が一時的に発生するということに着眼する。すなわち、高周波数 成分のみの第 2時系列変化量が所定のしきい値以上となった場合に、接触検出手段 は、当該物体と接触対象物体との間に接触があったことを検出することができる。 [0008] According to such a contact detection apparatus and contact detection method of the present invention, the distance measuring means measures the first time-series change amount of the distance to the object to be contacted as well as the object force. Next, the high-pass filter removes the low-frequency component below the predetermined cutoff frequency and extracts the second time-series change amount, which is a set of high-frequency components in the first time-series change amount. Put out. Here, the high frequency component is found in the time-series change amount with respect to the distance to the object force contact target object at the moment when the present inventors have found that the object and the contact target object are in contact with each other. Focus on the temporary occurrence. That is, when the second time-series change amount of only the high-frequency component exceeds a predetermined threshold value, the contact detection means detects that there is contact between the object and the target object. Can do.
[0009] このように、本発明の接触検出装置及び接触検出方法においては、物体と接触対 象物体との間の接触を検出することを目的に、例えば接触検出センサを当該物体に 装着することはしない。このため、本発明によれば、物体と接触対象物体との接触を 検出可能にすると共に、例えば物体に装着された接触検出センサが当該物体の動 作に支障を与えることを防止することができる。  Thus, in the contact detection device and the contact detection method of the present invention, for example, a contact detection sensor is attached to the object for the purpose of detecting contact between the object and the object to be contacted. I do not. Therefore, according to the present invention, it is possible to detect contact between an object and a contact target object, and it is possible to prevent, for example, a contact detection sensor attached to the object from hindering the operation of the object. .
[0010] また、接触検出装置は、ハイパスフィルタが抽出した第 2時系列変化量に比例する 値を、物体と接触対象物体とが接触する時の衝突力を表す値として測定する衝突力 測定手段を更に備えることを特徴とする。  [0010] Further, the contact detection device measures a value proportional to the second time-series change amount extracted by the high-pass filter as a value representing a collision force when the object and the contact target object contact each other. Is further provided.
[0011] また、接触検出方法は、衝突力測定手段が、ノ、ィパスフィルタリングステップにて抽 出された第 2時系列変化量に比例する値を、物体と接触対象物体とが接触する時の 衝突力を表す値として測定する衝突力測定ステップを更に備えることを特徴とする。  [0011] Further, in the contact detection method, when the collision force measuring means makes a contact between the object and the contact target object, a value proportional to the second time-series change amount extracted in the no-pass filtering step. The method further comprises a collision force measurement step of measuring as a value representing the collision force.
[0012] ここで、本発明者等が見出したこと、つまり、物体から接触対象物体までの距離に 対する時系列的な変化量において、発生した高周波数成分の大きさは、物体と接触 対象物体とが接触する瞬間の衝突力に比例することに着眼する。すなわち、衝突力 測定手段は、第 2時系列変化量に比例する所定の値を、物体と接触対象物体とが接 触した時に発生した衝突力として検出することができる。  [0012] Here, in the time series change amount with respect to the distance from the object to the contact object, the magnitude of the generated high frequency component was found by the present inventors, that is, the object and the contact object. Focus on the fact that it is proportional to the impact force at the moment of contact. That is, the collision force measuring means can detect a predetermined value proportional to the second time-series change amount as a collision force generated when the object and the contact target object come into contact with each other.
[0013] また、接触検出装置においては、撮影手段の撮影対象となる物体に、当該物体の 位置を表すための任意の標識が設けられ、撮影手段は標識を撮影し、距離測定手 段は、撮影手段が撮影した標識の撮影画像内における位置に基づき、標識から接 触対象物体までの距離の時系列的な変化量である第 1時系列変化量を測定すること を特徴とする。  [0013] Further, in the contact detection device, an arbitrary sign for indicating the position of the object is provided on the object to be photographed by the photographing means, the photographing means photographs the sign, and the distance measuring means includes The first time-series change amount, which is a time-series change amount of the distance from the sign to the object to be touched, is measured based on the position of the sign taken by the photographing means in the photographed image.
[0014] また、接触検出方法にぉ 、ては、撮影ステップにおける撮影対象となる物体に、当 該物体の位置を表すための任意の標識が設けられ、撮影ステップにおける撮影手段 は標識を撮影し、距離測定ステップにおける距離測定手段は、撮影ステップにて撮 影された標識の撮影画像内における位置に基づき、標識から接触対象物体までの 距離の時系列的な変化量である第 1時系列変化量を測定することを特徴とする。 [0014] In addition, according to the contact detection method, the object to be imaged in the imaging step is provided with an arbitrary mark for indicating the position of the object, and the imaging unit in the imaging step. The distance measurement means in the distance measurement step is a time-series change amount of the distance from the sign to the contact target object based on the position of the sign captured in the shooting step in the captured image. It is characterized by measuring the first time series change.
[0015] この場合に、標識は物体の位置を表すものとして、物体に比べて小さくて軽 、もの を用いることができる。このため、例えば撮影画像力も物体の位置を認識する代わり に標識の位置を認識することによって、画像認識にて要求される計算量を減らすと共 に、物体の位置を撮影画像カゝら直接に認識する場合と同等な結果を得ることができ る。 [0015] In this case, a sign that is smaller and lighter than the object can be used as the sign indicating the position of the object. For this reason, for example, the captured image force also reduces the amount of calculation required for image recognition by recognizing the position of the sign instead of recognizing the position of the object. A result equivalent to that of recognition can be obtained.
[0016] また、接触検出装置において、ハイパスフィルタにおける所定のカットオフ周波数は 、 40ヘルツであることを特徴とする。また、接触検出方法において、ハイノ スフィルタ リングステップにおける所定のカットオフ周波数は、 40ヘルツであることを特徴とする  [0016] In the contact detection device, the predetermined cutoff frequency in the high-pass filter is 40 hertz. In the contact detection method, the predetermined cutoff frequency in the high-nos filtering step is 40 hertz.
[0017] このように、カットオフ周波数を 40ヘルツに設定することで、特に、物体が人間の指 またはロボットにおける人間の指に相当する部分である場合に、極めて制度良く接触 を検出することができる。すなわち、人間の指あるいはロボットにおける人間の指に相 当する部分と接触対象物体とが接触した場合に発生した高周波数成分が第 2時系 列変化量において明確に表れるので、接触検出手段は、人間の指あるいはロボット における相当部分と接触対象物体との接触可否を確実に検出することができる。 [0017] In this way, by setting the cut-off frequency to 40 Hertz, it is possible to detect contact extremely efficiently, particularly when the object is a part corresponding to a human finger or a human finger in a robot. it can. In other words, since the high frequency component generated when the human finger or the part corresponding to the human finger in the robot comes into contact with the contact target object appears clearly in the second time series variation, the contact detection means It is possible to reliably detect whether or not a corresponding part of a human finger or robot is in contact with the object to be contacted.
[0018] また、接触検出装置において、接触検出手段における所定のしきい値は、 0. 5mm であることを特徴とする。また、接触検出方法において、接触検出ステップにおける 所定のしきい値は、 0. 5mmであることを特徴とする。  [0018] In the contact detection device, the predetermined threshold value in the contact detection means is 0.5 mm. In the contact detection method, the predetermined threshold value in the contact detection step is 0.5 mm.
[0019] このように、しきい値を 0. 5mmに設定することで、特に、物体が人間の指または口 ボットにおける人間の指に相当する部分である場合に、極めて制度良く接触を検出 することができる。すなわち、接触検出手段は、人間の指あるいはロボットにおける相 当部分と接触対象物体とが接触していないときに発生し得る微細な高周波数成分を 無視することができ、人間の指あるいはロボットにおける相当部分と接触対象物体と の接触可否を確実に検出することができる。  [0019] In this way, by setting the threshold value to 0.5 mm, it is possible to detect contact very efficiently, particularly when the object is a part corresponding to a human finger or a human finger in a mouth bot. be able to. In other words, the contact detection means can ignore minute high-frequency components that can be generated when the corresponding part of the human finger or robot is not in contact with the object to be touched. It is possible to reliably detect whether or not the part and the contact object are in contact with each other.
発明の効果 [0020] 本発明によれば、物体が接触対象物体に接触することを検出するセンサを当該物 体に装着しなくても、物体と接触対象物体との接触可否を検出することが可能となる 図面の簡単な説明 The invention's effect [0020] According to the present invention, it is possible to detect whether or not a contact between the object and the contact target object can be detected without mounting a sensor that detects that the object is in contact with the contact target object. Brief Description of Drawings
[0021] [図 1]本発明の第 1実施形態に係るタッピングカウンタ 1の構成概要図である。 FIG. 1 is a schematic configuration diagram of a tapping counter 1 according to a first embodiment of the present invention.
[図 2]指先 20に設けられたマーカー 21を説明するための図である。  FIG. 2 is a diagram for explaining a marker 21 provided on a fingertip 20.
[図 3]指先 20と板 30と撮影部 11との位置関係を説明するための図である。  FIG. 3 is a diagram for explaining the positional relationship among a fingertip 20, a plate 30, and a photographing unit 11.
[図 4]指先 20と板 30間の距離の第 1時系列変化量を示す図である。  FIG. 4 is a diagram showing a first time-series change amount of the distance between the fingertip 20 and the board 30.
[図 5]図 4を時間軸に拡大した図である。  FIG. 5 is an enlarged view of FIG. 4 along the time axis.
[図 6]指先 20と板 30間の距離の第 1時系列変化量を示す図である。  FIG. 6 is a diagram showing a first time-series change amount of the distance between the fingertip 20 and the board 30.
[図 7]図 6を時間軸に拡大した図である。  FIG. 7 is an enlarged view of FIG. 6 along the time axis.
[図 8]指先 20と板 30間の距離の第 2時系列変化量を示す図である。  FIG. 8 is a diagram showing a second time-series change amount of the distance between the fingertip 20 and the board 30.
[図 9]指先 20と板 30間の距離の第 2時系列変化量を示す図である。  FIG. 9 is a diagram showing a second time-series change amount of the distance between the fingertip 20 and the board 30.
[図 10]タッピングカウンタ 1の動作を示すフローチャートである。  FIG. 10 is a flowchart showing the operation of the tapping counter 1.
[図 11]タッピングカウンタ 1が行った動作の結果を示す図である。  FIG. 11 is a diagram showing a result of an operation performed by the tapping counter 1.
[図 12]タッピングカウンタ 1が行った動作の結果を示す図である。  FIG. 12 is a diagram showing a result of an operation performed by the tapping counter 1.
[図 13]本発明の第 2実施形態に係る衝突力測定装置 2の構成概要図である。  FIG. 13 is a schematic configuration diagram of a collision force measuring device 2 according to a second embodiment of the present invention.
[図 14]衝突力測定装置 2の動作を示すフローチャートである。  FIG. 14 is a flowchart showing the operation of the collision force measuring apparatus 2.
[図 15]衝突力測定装置 2が行った動作の結果を示す図である。  FIG. 15 is a diagram showing a result of an operation performed by the collision force measuring apparatus 2;
符号の説明  Explanation of symbols
[0022] 1…タッピングカウンタ、 2…衝突力測定装置、 20· ··指先、 21…マーカー、 30…板 、 11· ··撮影部、 12· ··制御部、 13· ··距離測定部、 14…ハイパスフィルタ、 15· ··接触 検出部、 16…衝突力測定部。  [0022] 1 ... Tapping counter, 2 ... Collision force measuring device, 20 ... Fingertip, 21 ... Marker, 30 ... Plate, 11 ... Shooting unit, 12 ... Control unit, 13 ... Distance measuring unit 14 ... High-pass filter, 15 ... Contact detector, 16 ... Collision force measuring unit.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0023] 本発明の知見は、例示のみのために示された添付図面を参照して以下の詳細な 記述を考慮することによって容易に理解することができる。引き続いて、添付図面を 参照しながら本発明の実施の形態を説明する。なお、可能な場合には、同一の部分 には同一の符号を付して、重複する説明を省略する。 [0024] [第 1実施形態] [0023] The findings of the present invention can be readily understood by considering the following detailed description with reference to the accompanying drawings shown for illustration only. Subsequently, embodiments of the present invention will be described with reference to the accompanying drawings. Where possible, the same parts are denoted by the same reference numerals, and redundant description is omitted. [0024] [First Embodiment]
本発明に係る接触検出装置及び接触検出方法の第 1実施形態として、タッピング カウンタ(Tapping Counter) 1について説明する。タッピングカウンタ 1は、指先 20 が板 30の表面をタッピングした数を、接触検出センサなどを指先 20に装着せずに、 カウントするものである。まず、タッピングカウンタ 1の構成について、図 1〜3を参照し ながら説明する。図 1〜3は、接触の検出対象としての指先 (物体) 20、当該指先 20 の接触対象としての板 (接触対象物体) 30、及び、接触検出装置として撮影部 (撮影 手段) 11と制御部 12とを備えるタッピングカウンタ 1の構成を説明するための図であ る。  A tapping counter 1 will be described as a first embodiment of a contact detection device and a contact detection method according to the present invention. The tapping counter 1 counts the number of times the fingertip 20 has tapped the surface of the plate 30 without attaching a contact detection sensor or the like to the fingertip 20. First, the configuration of the tapping counter 1 will be described with reference to FIGS. 1 to 3 show a fingertip (object) 20 as a contact detection target, a plate (contact target object) 30 as a contact target of the fingertip 20, and an imaging unit (imaging means) 11 and a control unit as a contact detection device. 12 is a diagram for explaining a configuration of a tapping counter 1 including 12.
[0025] 図 1, 2に示すように、第 1実施形態における接触検出の対象となる指先 20には、 当該指先 20の位置を表すためのマーカー (標識) 21が設けられている。このマーカ 一 21は、指に比べて小さくて軽くて更に画像認識における認識率の高いものとして、 第 1実施形態においては、例えば直径 5mmで光沢のある軽いボールを用いる。そし て、後述するように、タッピングカウンタ 1は、撮影画像力も指先 20の位置を直接に画 像認識する代わりに、マーカー 21の位置を認識する。  As shown in FIGS. 1 and 2, the fingertip 20 that is the target of contact detection in the first embodiment is provided with a marker (marker) 21 for indicating the position of the fingertip 20. This marker 21 is smaller and lighter than a finger and has a higher recognition rate in image recognition. In the first embodiment, for example, a light ball with a diameter of 5 mm is used. As will be described later, the tapping counter 1 recognizes the position of the marker 21 instead of directly recognizing the image of the position of the fingertip 20 with respect to the captured image power.
[0026] 図 1, 3に示すように、第 1実施形態における板 30は、指先 20が接触する対象とな る物体であり、基本的には動かないものとして、肉厚 2. 9mmの鉄製の平面板である 。このため、板 30は撮影画像における背景となり、例えばタッピングカウンタ 1が撮影 フレームごとに板 30までを認識する必要はない。すなわち、第 1実施形態において は、撮影画像にぉ ヽて予め決まった部分の座標を板 30の位置情報をとして用いる。  [0026] As shown in Figs. 1 and 3, the plate 30 in the first embodiment is an object to be touched by the fingertip 20, and is basically made of iron with a wall thickness of 2.9mm. It is a flat plate. For this reason, the board 30 becomes a background in the photographed image, and it is not necessary for the tapping counter 1 to recognize up to the board 30 for each photographing frame. That is, in the first embodiment, the coordinates of a predetermined part of the captured image are used as the position information of the plate 30.
[0027] 図 1, 3に示す撮影部 11は、マーカー 21及び板 30を撮影した画像内における当該 マーカー 21の位置情報 (位置座標)を実時間に抽出するものであり、第 1実施形態 においては、例えば空間解像度 1280 X 1024ピクセルの CMOSイメージセンサを 有する通常の高速ビジョンカメラである。この撮影部 11は、抽出したマーカー 21の位 置情報を制御部 12に出力する。  The imaging unit 11 shown in FIGS. 1 and 3 extracts position information (position coordinates) of the marker 21 in the image obtained by imaging the marker 21 and the plate 30 in real time. Is, for example, a normal high-speed vision camera having a CMOS image sensor with a spatial resolution of 1280 X 1024 pixels. The photographing unit 11 outputs the extracted position information of the marker 21 to the control unit 12.
[0028] 図 1に示す制御部 12は、マーカー 21及び板 30の位置情報をもとに、指先 20と板 3 0との接触を検出するものである。第 1実施形態において、制御部 12は、物理的な構 成要素として CPU、メモリ、通信インタフェイス、ハードディスクといった格納部、モ- ターといった表示部等を備えたコンピュータシステムである。 The control unit 12 shown in FIG. 1 detects contact between the fingertip 20 and the plate 30 based on the position information of the marker 21 and the plate 30. In the first embodiment, the control unit 12 includes a storage unit such as a CPU, a memory, a communication interface, and a hard disk as a physical component. A computer system having a display unit such as a computer.
[0029] 指先 20と板 30と撮影部 11との位置関係について、図 3を参照しながら詳しく説明 する。図 3に示すように、第 1実施形態においては、撮影部 11からみて前方約 400m m前後の平面上で、指先 20が動ごくことを想定する。撮影部 11は、板 30の表面から 80mm上方かつ板 30に対して光軸を水平に保つように配置される。撮影部 11の視 野は、 旨先 20位置付近にお!/、て 288mm X 230mmと設定し、 1画素あたり 0. 225 mmの空間解像度として設定される。指先 20の位置は、上述したように、撮影部 11 が指先 20に装着したマーカー 21を追跡し、従来の画像認識技術を用いて計算する ことができる。第 1実施形態において、撮影部 11は、例えば 64 X 64ピクセルのウィン ドウを用いて指先 20のマーカー 21を追跡し、その重心位置を計算することにより指 先 20の位置を求める。指先 20位置の計測レートは対象とする指の本数により変動さ せることが好適であり、例えば 1本の場合は 900 [fps]とし、 2本、 3本、 4本の場合は それぞれ 470 [fps]、 390 [fps]、 280 [fps]とすることが望ましい。なお、第 1実施形 態においては、説明を簡略にするために、対象とする指の本数を 1本とし、指先 20位 置の計測レートを 900 [fps]とする。なお、板 30の位置は、上述したように、撮影画像 にお 、て予め決まった所定部分の座標とする。  [0029] The positional relationship among the fingertip 20, the board 30, and the photographing unit 11 will be described in detail with reference to FIG. As shown in FIG. 3, in the first embodiment, it is assumed that the fingertip 20 moves on a plane about 400 mm forward as viewed from the photographing unit 11. The imaging unit 11 is disposed 80 mm above the surface of the plate 30 and keeps the optical axis horizontal with respect to the plate 30. The field of view of the shooting unit 11 is set to 288mm X 230mm near the 20 position of the tip, and is set to a spatial resolution of 0.225mm per pixel. The position of the fingertip 20 can be calculated using the conventional image recognition technique by tracking the marker 21 attached to the fingertip 20 by the imaging unit 11 as described above. In the first embodiment, the imaging unit 11 tracks the marker 21 of the fingertip 20 using, for example, a 64 × 64 pixel window, and calculates the position of the center of gravity to obtain the position of the fingertip 20. It is preferable to change the measurement rate at the 20 positions of the fingertip according to the number of target fingers, for example, 900 [fps] for one finger, and 470 [fps for two, three, and four fingers, respectively. ], 390 [fps], and 280 [fps]. In the first embodiment, in order to simplify the explanation, the number of target fingers is one and the measurement rate at the fingertip 20 position is 900 [fps]. As described above, the position of the plate 30 is set to the coordinates of a predetermined portion determined in advance in the captured image.
[0030] 図 1に戻り、タッピングカウンタ 1の制御部 12は、距離測定部 (距離測定手段) 13、 ハイパスフィルタ 14及び接触検出部 (接触検出手段) 15を備える。以下、制御部 12 を構成する各構成要素について、図 4〜9を更に参照しながら詳細に説明する。  Returning to FIG. 1, the control unit 12 of the tapping counter 1 includes a distance measurement unit (distance measurement unit) 13, a high-pass filter 14, and a contact detection unit (contact detection unit) 15. Hereafter, each component which comprises the control part 12 is demonstrated in detail, referring further FIGS. 4-9.
[0031] 距離測定部 13は、板 30の位置情報、及び撮影部 11から入力されたマーカー 21 の位置情報をもとに、指先 20から板 30までの距離を求め、前記距離の時系列的な 変化量である第 1時系列変化量を測定するものである。図 4〜7は、距離測定部 13が 測定した距離の第 1時系列変化量を示す図である。図 4〜7においては、板 30の上 面の高さを Omm (基準となる高さ)とするマーカー 21の高さを、上記距離として表す。  [0031] The distance measurement unit 13 obtains the distance from the fingertip 20 to the plate 30 based on the position information of the plate 30 and the position information of the marker 21 input from the imaging unit 11, and calculates the time series of the distances. It measures the amount of change in the first time series, which is the amount of change. 4 to 7 are diagrams showing the first time-series change amount of the distance measured by the distance measuring unit 13. In FIGS. 4 to 7, the height of the marker 21 with the height of the upper surface of the plate 30 as Omm (reference height) is expressed as the distance.
[0032] 図 4は、指先 20と板 30との間で接触すること無く指先 20がタッピング動作を繰り返 している場合に、 1秒間における第 1時系列変化量を示す。また、図 5は、図 4を時間 軸に拡大した図であり、指先 20と板 30との接触が無い場合の 0. 2秒間における第 1 時系列変化量を示す。図 4, 5で分力るように、指先 20と板 30との接触が無い場合に 、第 1時系列変化量は高周波数成分を含むことなぐ滑らかな曲線として表れる。 [0032] FIG. 4 shows the first time-series change amount for one second when the fingertip 20 repeats the tapping operation without contact between the fingertip 20 and the plate 30. FIG. 5 is an enlarged view of FIG. 4 on the time axis, and shows the first time-series change amount for 0.2 seconds when there is no contact between the fingertip 20 and the board 30. As shown in Fig. 4 and 5, when there is no contact between fingertip 20 and plate 30 The first time-series change amount appears as a smooth curve without high frequency components.
[0033] 図 6は、指先 20が板 30に接触しながらタッピング動作を繰り返している場合に、 1秒 間における第 1時系列変化量を示す。また、図 7は、図 6を時間軸に拡大した図であ り、指先 20と板 30との接触がある場合の 0. 2秒間における第 1時系列変化量を示す 。図 6, 7で分かるように、指先 20と板 30との接触があった場合には、指の厚さの相当 する高さ 10mm付近で一時的な歪みが発生する。これにより、指先 20が板 30に接触 する瞬間に、第 1時系列変化量には高周波数成分が発生することがわかる。距離測 定部 13は、上記図 4〜7に示すような第 1時系列変化量をハイパスフィルタ 14に出力 する。 FIG. 6 shows a first time-series change amount for one second when the tapping operation is repeated while the fingertip 20 is in contact with the plate 30. FIG. 7 is an enlarged view of FIG. 6 on the time axis, and shows the first time series change amount in 0.2 seconds when the fingertip 20 and the board 30 are in contact with each other. As can be seen in FIGS. 6 and 7, when the fingertip 20 and the plate 30 are in contact with each other, a temporary distortion occurs around a height of 10 mm corresponding to the thickness of the finger. Thus, it can be seen that a high frequency component is generated in the first time-series variation at the moment when the fingertip 20 contacts the plate 30. The distance measurement unit 13 outputs the first time series change amount as shown in FIGS. 4 to 7 to the high pass filter 14.
[0034] ノ、ィパスフィルタ 14は、距離測定部 13から入力された第 1時系列変化量の中から 所定のカットオフ周波数未満の低周波数成分を除去し、上記カットオフ周波数以上 の周波数成分の時系列的な変化量を第 2時系列変化量として抽出するものである。 すなわち、ノ、ィパスフィルタ 14により抽出された第 2時系列変化量は、第 1時系列変 化量力 抽出したカットオフ周波数以上の高周波数成分の集合である。第 1実施形 態にお 、て、上記カットオフ周波数は 40ヘルツである。  [0034] The no-pass filter 14 removes a low frequency component less than a predetermined cutoff frequency from the first time-series variation input from the distance measuring unit 13, and a frequency component equal to or higher than the cutoff frequency. Is extracted as the second time-series change amount. That is, the second time series variation extracted by the no-pass filter 14 is a set of high frequency components equal to or higher than the cutoff frequency extracted from the first time series variation force. In the first embodiment, the cutoff frequency is 40 hertz.
[0035] 図 8は、図 4, 5に示す第 1時系列変化量に対してハイパスフィルタ 14がフィルタリン グを行った結果、つまり指先 20と板 30との接触が無 、場合の第 2時系列変化量を示 す図である。図 4, 5に示す第 1時系列変化量に高周波数成分が発生していな力つた ため、図 8に示す第 2時系列変化量にも高周波成分が殆ど表れていない。  [0035] FIG. 8 shows the result of the high-pass filter 14 filtering the first time-series variation shown in FIGS. 4 and 5, that is, the second case where there is no contact between the fingertip 20 and the plate 30. It is a figure which shows a time series change amount. Since the high frequency component is not generated in the first time series variation shown in Figs. 4 and 5, almost no high frequency component appears in the second time series variation shown in Fig. 8.
[0036] 図 9は、図 6, 7に示す第 1時系列変化量に対してハイパスフィルタ 14がフィルタリン グを行った結果、つまり指先 20と板 30との接触があった場合の第 2時系列変化量を 示す図である。図 6, 7に示す第 1時系列変化量に高周波数成分 (歪み)が発生した 時刻に合わせて、図 8に示す第 2時系列変化量にも高周波成分が大きく発生してい る。ノ、ィパスフィルタ 14は、上記図 8, 9に示すような第 2時系列変化量を接触検出部 15に出力する。  FIG. 9 shows the result of the high-pass filter 14 filtering the first time-series variation shown in FIGS. 6 and 7, that is, the second result when the fingertip 20 and the plate 30 are in contact with each other. It is a figure which shows a time series change amount. Along with the time when the high-frequency component (distortion) occurs in the first time-series variation shown in Figs. 6 and 7, a large amount of high-frequency component is also generated in the second time-series variation shown in Fig. 8. The no-pass filter 14 outputs the second time-series change amount as shown in FIGS.
[0037] 接触検出部 15は、ハイパスフィルタ 14から入力された第 2時系列変化量と所定の しきい値とを比較することで、指先 20と板 30との接触を検出するものである。具体的 に、接触検出部 15は、第 2時系列変化量が所定のしきい値以上の場合に、指先 20 と板 30との接触があったことを検出し、第 2時系列変化量が所定のしきい値未満の場 合に、指先 20と板 30との接触がないことを検出する。第 1実施形態において、上記 所定のしきい値は 0. 5mmであり、図 8, 9においては、点線で表示されている。 The contact detection unit 15 detects the contact between the fingertip 20 and the plate 30 by comparing the second time-series change amount input from the high-pass filter 14 with a predetermined threshold value. Specifically, the contact detector 15 detects the fingertip 20 when the second time-series change amount is equal to or greater than a predetermined threshold. When the second time-series change amount is less than a predetermined threshold value, it is detected that there is no contact between the fingertip 20 and the plate 30. In the first embodiment, the predetermined threshold is 0.5 mm, and is indicated by a dotted line in FIGS.
[0038] 図 8において、第 2時系列変化量がしきい値 0. 5mm以上となる場合は無いため、 接触検出部 15は指先 20と板 30との接触を検出しない。一方、図 9においては、第 2 時系列変化量が 1秒の間に 7回しきい値を超えており、接触検出部 15は指先 20と板 30との接触が 7回発生したことを検出する。  In FIG. 8, there is no case where the second time-series change amount is equal to or greater than the threshold value of 0.5 mm, and therefore the contact detection unit 15 does not detect contact between the fingertip 20 and the plate 30. On the other hand, in FIG. 9, the second time series change amount exceeds the threshold value seven times in one second, and the contact detection unit 15 detects that the contact between the fingertip 20 and the plate 30 has occurred seven times. .
[0039] 続いて、第 1実施形態のタッピングカウンタ 1の動作 (接触検出方法)について、図 1 0〜12を参照しながら説明する。図 10は、タッピングカウンタ 1の動作を示すフローチ ヤートである。図 11は、指先 20が 2秒間で 9回のタッピング動作を行った場合に、タツ ビングカウンタ 1が行った動作の結果を説明するための図である。図 12は、指先 20 力^秒間で 2回のタッピング動作と 4回のフェイント動作 (指先 20と板 30とが接触しな い空振り動作)とを行った場合に、タッピングカウンタ 1が行った動作の結果を説明す るための図である。  [0039] Next, the operation (contact detection method) of the tapping counter 1 of the first embodiment will be described with reference to FIGS. FIG. 10 is a flowchart showing the operation of the tapping counter 1. FIG. 11 is a diagram for explaining the result of the operation performed by the tapping counter 1 when the fingertip 20 performs the tapping operation nine times in 2 seconds. Fig. 12 shows the operation performed by tapping counter 1 when performing tapping motion twice and 4 feint motions (blank motion where fingertip 20 and board 30 do not contact) in 20 finger ^ seconds. It is a figure for demonstrating the result of.
[0040] まず、撮影部 11が、マーカー 21及び板 30を撮影した画像内における当該マーカ 一 21の位置情報を実時間に抽出する。撮影部 11は、抽出したマーカー 21の位置 情報を距離測定部 13に出力する (撮影ステップ、図 10のステップ S 1)。  First, the photographing unit 11 extracts the position information of the marker 21 in the image obtained by photographing the marker 21 and the plate 30 in real time. The imaging unit 11 outputs the extracted position information of the marker 21 to the distance measuring unit 13 (imaging step, step S1 in FIG. 10).
[0041] 次に、距離測定部 13は、板 30の位置情報、及び撮影部 11から入力されたマーカ 一 21の位置情報をもとに、指先 20から板 30までの距離を求め、前記距離の時系列 的な変化量である第 1時系列変化量を測定する。図 11の(a)及び図 12の(a)は、距 離測定部 13が測定した第 1時系列変化量を示す。距離測定部 13は、測定した第 1 時系列変化量をハイパスフィルタ 14に出力する(距離測定ステップ、図 10のステップ S2)。  [0041] Next, the distance measurement unit 13 obtains the distance from the fingertip 20 to the plate 30 based on the position information of the plate 30 and the position information of the marker 21 input from the imaging unit 11, and the distance Measure the first time series change, which is the time series change of. (A) in FIG. 11 and (a) in FIG. 12 show the first time-series change amount measured by the distance measurement unit 13. The distance measurement unit 13 outputs the measured first time-series change amount to the high-pass filter 14 (distance measurement step, step S2 in FIG. 10).
[0042] 次に、ハイパスフィルタ 14は、距離測定部 13から入力された第 1時系列変化量の 中カゝらカットオフ周波数 40ヘルツ未満の低周波数成分を除去し、上記カットオフ周 波数 40ヘルツ以上の周波数成分の時系列的な変化量を第 2時系列変化量として抽 出する。図 11の(b)及び図 12の (b)は、ハイパスフィルタ 14が抽出した第 2時系列変 化量を示す。ノ、ィパスフィルタ 14は、抽出した第 2時系列変化量を接触検出部 15に 出力する(フィルタリングステップ、図 10のステップ S3)。 [0042] Next, the high-pass filter 14 removes a low-frequency component having a cut-off frequency of less than 40 hertz from the middle of the first time-series change amount input from the distance measurement unit 13, and the cut-off frequency 40 Extract the time-series variation of frequency components above hertz as the second time-series variation. (B) in FIG. 11 and (b) in FIG. 12 show the second time-series variation extracted by the high-pass filter 14. The no-pass filter 14 sends the extracted second time series change amount to the contact detection unit 15. Output (filtering step, step S3 in Fig. 10).
[0043] 次に、接触検出部 15は、ハイパスフィルタ 14から入力された第 2時系列変化量とし きい値 0. 5mmとを比較することで、指先 20と板 30との接触を検出する。具体的に、 接触検出部 15は、第 2時系列変化量がしきい値 0. 5mm以上の場合に、指先 20と 板 30との接触があったことを検出し、第 2時系列変化量がしきい値 0. 5mm未満の場 合に、指先 20と板 30との接触がないことを検出する(接触検出ステップ、図 10のステ ップ S4)。 Next, the contact detection unit 15 detects contact between the fingertip 20 and the plate 30 by comparing the second time-series change amount input from the high-pass filter 14 with a threshold value of 0.5 mm. Specifically, the contact detection unit 15 detects the contact between the fingertip 20 and the plate 30 when the second time series change amount is a threshold value of 0.5 mm or more, and the second time series change amount. If the threshold is less than 0.5 mm, it is detected that there is no contact between the fingertip 20 and the plate 30 (contact detection step, step S4 in FIG. 10).
[0044] 図 11の(c)は、指先 20が 2秒間で 9回のタッピング動作を行った場合に、図 11の(b )に示す第 2時系列変化量をもとに、接触検出部 15がカウントした回数を示す。接触 検出部 15は、第 2時系列変化量がしきい値 0. 5mmを超えた瞬間に接触をカウント し、 2秒間で 9回のカウントを行っている。この結果は、指先 20が実際に板 30に接触 した回数と一致し、タッピングカウンタ 1は指先 20と板 30との接触を正確にカウントし たといえる。  [0044] (c) in FIG. 11 shows that when the fingertip 20 performs nine tapping operations in 2 seconds, the contact detection unit is based on the second time-series change amount shown in (b) in FIG. 15 indicates the number of times counted. The contact detection unit 15 counts the contact at the moment when the second time series change amount exceeds the threshold value 0.5 mm, and counts 9 times in 2 seconds. This result coincides with the number of times the fingertip 20 actually touches the board 30, and it can be said that the tapping counter 1 accurately counted the contact between the fingertip 20 and the board 30.
[0045] 一方、図 12の(c)は、指先 20が 2秒間で 2回のタッピング動作と 4回のフェイント動 作とを行った場合に、図 12の (b)に示す第 2時系列変化量をもとに、接触検出部 15 力 Sカウントした回数を示す。接触検出部 15は、第 2時系列変化量がしきい値 0. 5mm を超えた瞬間に接触をカウントし、 2秒間で 2回のカウントを接触の瞬間に合わせて行 つている。この結果は、指先 20が実際に板 30に接触した回数及び時刻と一致し、タ ッビングカウンタ 1は指先 20のフェイント動作が入っている場合にも、指先 20と板 30 との接触を正確にカウントしたと 、える。  [0045] On the other hand, (c) of FIG. 12 shows the second time series shown in (b) of FIG. 12 when the fingertip 20 performs two tapping operations and four feint operations in 2 seconds. Based on the amount of change, indicates the number of times the contact detection unit 15 forces S were counted. The contact detection unit 15 counts the contact at the moment when the second time-series change amount exceeds the threshold value 0.5 mm, and counts twice in 2 seconds according to the moment of contact. This result coincides with the number of times and time when the fingertip 20 actually touches the board 30, and the tabbing counter 1 accurately counts the contact between the fingertip 20 and the board 30 even when the fingertip 20 is in a faint motion. Yes, I get.
[0046] 続いて、第 1実施形態の作用及び効果について説明する。第 1実施形態のタツピン グカウンタ 1によれば、指先 20と板 30との間の接触を検出することを目的に例えば接 触検出センサを当該指先 20に装着しなくても、図 11及び図 12に示すように、指先 2 0と板 30との間の接触を正確に検出することができる。このため、例えば、指先 20に 装着された接触検出センサが当該指先 20の動作に支障を与えることを防止すること ができる。更に、例えば指に装着された接触検出センサが指の動きを邪魔させ、人間 に違和感を感じさせることを防止することができる。  Subsequently, the operation and effect of the first embodiment will be described. According to the tapping counter 1 of the first embodiment, for example, even if a contact detection sensor is not attached to the fingertip 20 for the purpose of detecting contact between the fingertip 20 and the plate 30, FIGS. As shown in FIG. 5, the contact between the fingertip 20 and the plate 30 can be accurately detected. For this reason, for example, it is possible to prevent the contact detection sensor attached to the fingertip 20 from hindering the operation of the fingertip 20. Furthermore, for example, it is possible to prevent a contact detection sensor attached to a finger from interfering with the movement of the finger and causing a human to feel uncomfortable.
[0047] また、第 1実施形態におけるマーカー 21は、指先 20の位置を表すものとして、指先 20に比べて小さくて軽いものを用いる。このため、例えば撮影画像力も指先 20の位 置を認識する代わりに標識の位置を認識することによって、画像認識にて要求される 計算量を減らしながらも、指先 20の位置を撮影画像カゝら直接に認識する場合と同等 な結果を得ることができる。 [0047] In addition, the marker 21 in the first embodiment represents the position of the fingertip 20, and the fingertip Use a smaller and lighter one than 20. For this reason, for example, the photographed image force also recognizes the position of the fingertip 20 while recognizing the position of the sign instead of recognizing the position of the fingertip 20 while reducing the amount of calculation required for image recognition. The result is equivalent to the case of direct recognition.
[0048] また、第 1実施形態のタッピングカウンタ 1においては、カットオフ周波数を 40ヘル ッに設定することで、指先 20と板 30とが接触した場合に発生した高周波数成分が、 第 2時系列変化量において明確に表れる。このため、接触検出部 15は、指先 20と板 30との接触可否を確実に検出することができる。  [0048] Further, in the tapping counter 1 of the first embodiment, by setting the cutoff frequency to 40 Hz, the high frequency component generated when the fingertip 20 and the plate 30 are in contact with each other is It appears clearly in the series variation. For this reason, the contact detection unit 15 can reliably detect whether or not the fingertip 20 and the plate 30 are in contact with each other.
[0049] また、第 1実施形態のタッピングカウンタ 1においては、しきい値を 0. 5mmに設定 することで、指先 20と板 30とが接触していないときに発生し得る微細な高周波数成 分を無視することができる。このため、接触検出部 15は、指先 20と板 30との接触可 否を確実に検出することができる。  [0049] In addition, in the tapping counter 1 of the first embodiment, by setting the threshold value to 0.5 mm, a fine high frequency component that can be generated when the fingertip 20 and the plate 30 are not in contact with each other is set. Minutes can be ignored. For this reason, the contact detection unit 15 can reliably detect whether or not the fingertip 20 and the plate 30 are in contact with each other.
[0050] 以上、本発明の好適な第 1実施形態について説明したが、本発明が上記第 1実施 形態に限定されないことは言うまでもない。  [0050] While the preferred first embodiment of the present invention has been described above, it goes without saying that the present invention is not limited to the first embodiment.
[0051] 例えば、上記第 1実施形態においては、人間の指を接触検出の対象となる物体とし たが、これに限定されることなぐロボットにおける人間の指に相当する部分を、接触 検出の対象となる物体としてもよい。この場合においても、ロボットにおける人間の指 に相当する部分と板 30との間の接触を検出することを目的に、例えば接触検出セン サを当該部分に装着することはない。このため、例えば当該部分に装着された接触 検出センサが当該部分の動作に支障を与えることを防止することができる。  [0051] For example, in the first embodiment described above, a human finger is an object to be contact-detected, but the portion corresponding to a human finger in a robot that is not limited to this is a contact-detection target. It is good also as an object. Even in this case, for example, a contact detection sensor is not attached to the part in order to detect contact between the part corresponding to the human finger in the robot and the plate 30. Therefore, for example, it is possible to prevent a contact detection sensor attached to the part from hindering the operation of the part.
[0052] 更に、上記第 1実施形態においては、基本的には動かない板 30を、指先 20の接 触対象となる物体としているが、任意の動くものを、指先 20の接触対象となる物体と しても良い。この場合には、撮影部 11は、指先 20の接触対象となる物体の撮影画像 内における位置情報を実時間に抽出して距離測定部 13に出力する。そして、距離 測定部 13は、撮影部 11から入力された接触対象物体及びマーカー 21の位置情報 をもとに、指先 20から接触対象物体までの距離を求める。  [0052] Furthermore, in the first embodiment, the basically non-moving plate 30 is an object to be touched by the fingertip 20, but any moving object is an object to be touched by the fingertip 20. It is also possible. In this case, the photographing unit 11 extracts the position information in the photographed image of the object to be touched by the fingertip 20 in real time and outputs it to the distance measuring unit 13. Then, the distance measuring unit 13 obtains the distance from the fingertip 20 to the contact target object based on the position information of the contact target object and the marker 21 input from the imaging unit 11.
[0053] [第 2実施形態]  [0053] [Second Embodiment]
本発明に係る接触検出装置及び接触検出方法の第 2実施形態として、衝突力測 定装置 2について説明する。衝突力測定装置 2は、第 1実施形態におけるタッピング カウンタ 1を構成する要素を全て含み、各構成要素は同等な位置関係(図 3を参照) に配置され、更に衝突力測定部 (衝突力測定手段) 16を備える。この衝突力測定装 置 2は、指先 20と板 30との接触可否のみならず、指先 20と板 30とが接触した瞬間の 衝突力をも測定する装置である。まず、衝突力測定装置 2の構成について、図 13〜 15を参照しながら説明する。 As a second embodiment of the contact detection device and the contact detection method according to the present invention, a collision force measurement is performed. The fixed device 2 will be described. The collision force measuring device 2 includes all the elements constituting the tapping counter 1 in the first embodiment, and the respective elements are arranged in an equivalent positional relationship (see FIG. 3). Means) 16 is provided. The collision force measuring device 2 is a device that measures not only the possibility of contact between the fingertip 20 and the plate 30, but also the collision force at the moment when the fingertip 20 and the plate 30 contact each other. First, the configuration of the collision force measuring device 2 will be described with reference to FIGS.
[0054] 図 13は、衝突力測定装置 2の構成概略図である。図 13に示すように、衝突力測定 装置 2は、撮影部 11及び制御部 12を備え、制御部 12は距離測定部 13、ハイパスフ ィルタ 14、接触検出部 15及び衝突力測定部 16を含む。ノ、ィパスフィルタ 14は、抽 出した第 2時系列変化量を衝突力測定部 16に出力する。衝突力測定部 16は、ハイ パスフィルタ 14から入力された第 2時系列変化量のピーク値に比例する値を、指先 2 0と板 30とが接触する時の衝突力を表す値として測定するものである。  FIG. 13 is a schematic configuration diagram of the collision force measuring device 2. As shown in FIG. 13, the collision force measurement device 2 includes an imaging unit 11 and a control unit 12, and the control unit 12 includes a distance measurement unit 13, a high-pass filter 14, a contact detection unit 15, and a collision force measurement unit 16. The no-pass filter 14 outputs the extracted second time-series change amount to the collision force measurement unit 16. The collision force measurement unit 16 measures a value proportional to the peak value of the second time-series change amount input from the high-pass filter 14 as a value representing the collision force when the fingertip 20 and the plate 30 are in contact with each other. Is.
[0055] 衝突力測定部 16が測定した衝突力は、例えば、衝突力測定装置 2を含むバーチヤ ル楽器等に用いられる。この場合、バーチャル楽器等は、衝突力測定部 16が測定し た衝突力をもとに、バーチャル楽器が発生する音源の音量または発音時間などを適 宜に決めることができる。更に、バーチャル楽器等は、接触検出部 15が検出した接 触時間をもとに、音源を発生するべき時間を適宜に決めることができる。  The collision force measured by the collision force measurement unit 16 is used for, for example, a virtual instrument including the collision force measurement device 2. In this case, the virtual musical instrument or the like can appropriately determine the volume of the sound source generated by the virtual musical instrument or the sound generation time based on the collision force measured by the collision force measurement unit 16. Furthermore, a virtual musical instrument or the like can appropriately determine the time for generating a sound source based on the contact time detected by the contact detection unit 15.
[0056] 第 2実施形態の衝突力測定装置 2の動作について、図 14, 15を参照しながら説明 する。図 14は、衝突力測定装置 2の動作を示すフローチャートである。図 15は、指先 20が 2秒間で 2回のタッピング動作と 4回のフェイント動作 (指先 20と板 30とが接触し ない空振り動作)とを行った場合に、衝突力測定装置 2が行った動作の結果を説明 するための図である。  [0056] The operation of the collision force measuring apparatus 2 of the second embodiment will be described with reference to Figs. FIG. 14 is a flowchart showing the operation of the collision force measuring apparatus 2. Fig. 15 shows that the collision force measurement device 2 performed when the fingertip 20 performed two tapping motions and four feint motions (missing motion in which the fingertip 20 and the plate 30 do not contact) in 2 seconds. It is a figure for demonstrating the result of operation | movement.
[0057] まず、撮影部 11が、マーカー 21及び板 30を撮影した画像内における当該マーカ 一 21の位置情報を実時間に抽出する。撮影部 11は、抽出したマーカー 21の位置 情報を距離測定部 13に出力する (撮影ステップ、図 14のステップ S 1)。  First, the photographing unit 11 extracts the position information of the marker 21 in the image obtained by photographing the marker 21 and the plate 30 in real time. The imaging unit 11 outputs the extracted position information of the marker 21 to the distance measuring unit 13 (imaging step, step S1 in FIG. 14).
[0058] 次に、距離測定部 13は、板 30の位置情報、及び撮影部 11から入力されたマーカ 一 21の位置情報をもとに、指先 20から板 30までの距離を求め、前記距離の時系列 的な変化量である第 1時系列変化量を測定する。図 15の (a)は、距離測定部 13が 測定した第 1時系列変化量を示す。距離測定部 13は、測定した第 1時系列変化量を ハイパスフィルタ 14に出力する(距離測定ステップ、図 14のステップ S2)。 [0058] Next, the distance measurement unit 13 obtains the distance from the fingertip 20 to the plate 30 based on the position information of the plate 30 and the position information of the marker 21 input from the imaging unit 11, and the distance Measure the first time series change, which is the time series change of. Fig. 15 (a) shows that the distance measurement unit 13 The measured first time series change is shown. The distance measuring unit 13 outputs the measured first time series change amount to the high-pass filter 14 (distance measuring step, step S2 in FIG. 14).
[0059] 次に、ハイパスフィルタ 14は、距離測定部 13から入力された第 1時系列変化量の 中カゝらカットオフ周波数 40ヘルツ未満の低周波数成分を除去し、上記カットオフ周 波数 40ヘルツ以上の周波数成分の時系列的な変化量を第 2時系列変化量として抽 出する。図 15の(b)は、ハイパスフィルタ 14が抽出した第 2時系列変化量を示す。ハ ィパスフィルタ 14は、抽出した第 2時系列変化量を接触検出部 15及び衝突力測定 部 16に出力する(フィルタリングステップ、図 14のステップ S3)。  [0059] Next, the high-pass filter 14 removes a low-frequency component having a cutoff frequency of less than 40 Hz from the middle amount of the first time-series change amount input from the distance measuring unit 13, and the cutoff frequency 40 Extract the time-series variation of frequency components above hertz as the second time-series variation. FIG. 15B shows the second time-series change amount extracted by the high-pass filter 14. The high-pass filter 14 outputs the extracted second time-series change amount to the contact detection unit 15 and the collision force measurement unit 16 (filtering step, step S3 in FIG. 14).
[0060] 次に、接触検出部 15は、ハイパスフィルタ 14から入力された第 2時系列変化量とし きい値 0. 5mmとを比較することで、指先 20と板 30との接触を検出する。具体的に、 接触検出部 15は、第 2時系列変化量がしきい値 0. 5mm以上の場合に、指先 20と 板 30との接触があったことを検出し、第 2時系列変化量がしきい値 0. 5mm未満の場 合に、指先 20と板 30との接触がないことを検出する(接触検出ステップ、図 14のステ ップ S4)。  Next, the contact detection unit 15 detects the contact between the fingertip 20 and the plate 30 by comparing the second time-series change amount input from the high-pass filter 14 with the threshold value 0.5 mm. Specifically, the contact detection unit 15 detects the contact between the fingertip 20 and the plate 30 when the second time series change amount is a threshold value of 0.5 mm or more, and the second time series change amount. If the threshold is less than 0.5 mm, it is detected that there is no contact between the fingertip 20 and the plate 30 (contact detection step, step S4 in FIG. 14).
[0061] 図 15の(c)は、指先 20が 2秒間で 2回のタッピング動作と 4回のフェイント動作とを 行った場合に、図 15の (b)に示す第 2時系列変化量をもとに、接触検出部 15がカウ ントした回数を示す。接触検出部 15は、第 2時系列変化量がしきい値 0. 5mmを超 えた瞬間に接虫をカウントし、 2秒、間で 2回のカウントを接虫の瞬間に合わせて行って いる。この結果は、指先 20が実際に板 30に接触した回数及び時間と一致し、衝突力 測定装置 2は指先 20と板 30との接触を正確にカウントしたといえる。  [0061] FIG. 15 (c) shows the second time-series change amount shown in FIG. 15 (b) when the fingertip 20 performs two tapping operations and four feint operations in two seconds. Based on this, the number of times the contact detector 15 has counted is shown. The contact detection unit 15 counts the insects at the moment when the second time series change amount exceeds the threshold value of 0.5 mm, and performs the counting twice in 2 seconds, in accordance with the moment of the insects. . This result coincides with the number of times and time when the fingertip 20 actually contacts the board 30, and it can be said that the collision force measuring device 2 accurately counted the contact between the fingertip 20 and the board 30.
[0062] 次に、衝突力測定部 16は、ハイパスフィルタ 14から入力された第 2時系列変化量 のピーク値に比例する値を、指先 20と板 30とが接触する時の衝突力を表す値として 測定する(衝突力測定ステップ、図 14のステップ S5)。  Next, the collision force measurement unit 16 represents a collision force when the fingertip 20 and the plate 30 are in contact with a value proportional to the peak value of the second time-series change amount input from the high-pass filter 14. Measured as a value (impact force measurement step, step S5 in Fig. 14).
[0063] 図 15の(d)は、指先 20が 2秒間で 2回のタッピング動作と 4回のフェイント動作とを 行った場合に、図 15の (b)に示す第 2時系列変化量をもとに、衝突力測定部 16が測 定した衝突力を示す。 15の (b)を参照すると、時刻約 3. 3秒で発生した高周波数成 分のピークの値が約 4mmであり、時刻約 4. 7秒で発生した高周波数成分のピークの 値が約 3mmである。そして、図 15の(d)には、時刻約 3. 3秒で測定された衝突力が 8Nであり、時刻約 4. 7秒で測定された衝突力が 6Nである。この結果から、衝突力測 定部 16が、発生した高周波数成分のピークの値に比例して衝突力を測定することが ゎカゝる。 [0063] (d) of FIG. 15 shows the second time-series change amount shown in (b) of FIG. 15 when the fingertip 20 performs two tapping operations and four feint operations in 2 seconds. Based on this, the collision force measured by the collision force measurement unit 16 is shown. Referring to (b) of Fig. 15, the peak value of the high frequency component generated at about 3.3 seconds is about 4 mm, and the peak value of the high frequency component generated at about 4.7 seconds is about 3mm. Figure 15 (d) shows the impact force measured at about 3.3 seconds. The collision force measured at about 4.7 seconds is 6N. From this result, it is possible that the collision force measurement unit 16 measures the collision force in proportion to the peak value of the generated high frequency component.
[0064] 続、て、第 2実施形態の作用及び効果につ 、て説明する。第 2実施形態の衝突力 測定装置 2によれば、指先 20と板 30間の接触時の衝突力を測定することを目的に、 例えば衝突力測定センサを当該指先 20に装着しなくても、図 15に示すように、指先 20と板 30間の接触時の衝突力を検出することができる。このため、例えば、指先 20 に装着された衝突力測定センサが当該指先 20の動作に支障を与えることを防止す ることができる。更に、例えば指に装着された衝突力測定センサが指の動きを邪魔さ せ、人間に違和感を感じさせることを防止することができる。  [0064] Next, operations and effects of the second embodiment will be described. According to the collision force measurement device 2 of the second embodiment, for example, even if a collision force measurement sensor is not attached to the fingertip 20 for the purpose of measuring the collision force at the time of contact between the fingertip 20 and the plate 30, As shown in FIG. 15, the collision force at the time of contact between the fingertip 20 and the plate 30 can be detected. Therefore, for example, it is possible to prevent the collision force measurement sensor attached to the fingertip 20 from hindering the operation of the fingertip 20. Further, for example, it is possible to prevent a collision force measurement sensor attached to a finger from interfering with the movement of the finger and causing a human to feel uncomfortable.
[0065] 以上、本発明の好適な第 2実施形態について説明したが、本発明は上記第 2実施 形態に限定されないことは言うまでもない。  [0065] While the preferred second embodiment of the present invention has been described above, it goes without saying that the present invention is not limited to the second embodiment.
[0066] 例えば、上記第 2実施形態においては、人間の指を接触時の衝突力測定の対象と なる物体とした力 これに限定されることなぐロボットにおける人間の指に相当する部 分を、接触時の衝突力測定の対象となる物体としてもよい。この場合においても、口 ボットにおける人間の指に相当する部分と板 30間の接触時の衝突力を測定すること を目的に、例えば衝突力測定センサを当該部分に装着することはない。このため、例 えば当該部分に装着された衝突力測定センサが当該部分の動作に支障を与えるこ とを防止することがでさる。  [0066] For example, in the second embodiment described above, a force that makes a human finger an object that is a target of collision force measurement at the time of contact is not limited to this. It is good also as an object used as the object of collision force measurement at the time of contact. Even in this case, for example, a collision force measurement sensor is not attached to the part for the purpose of measuring the collision force between the part corresponding to the human finger and the plate 30 in the mouth bot. For this reason, for example, it is possible to prevent the collision force measurement sensor attached to the part from hindering the operation of the part.
[0067] 更に、上記第 2実施形態における衝突力測定装置 2は、バーチャル楽器に限定さ れることなぐ例えばパソコンのマウスにも適宜に適用することができる。  Furthermore, the collision force measuring device 2 in the second embodiment is not limited to a virtual musical instrument, and can be applied as appropriate to, for example, a mouse of a personal computer.

Claims

請求の範囲 The scope of the claims
[1] 物体と接触対象物体との接触を検出する接触検出装置であって、  [1] A contact detection device for detecting contact between an object and a contact target object,
前記物体及び前記接触対象物体を撮影する撮影手段と、  Imaging means for imaging the object and the contact target object;
前記撮影手段が撮影した画像内における前記物体及び前記接触対象物体の位置 に基づき、前記物体力も前記接触対象物体までの距離の時系列的な変化量である 第 1時系列変化量を測定する距離測定手段と、  Based on the positions of the object and the contact target object in the image captured by the photographing means, the object force is also measured with a first time series change amount that is a time series change amount of the distance to the contact target object. A distance measuring means;
前記距離測定手段が測定した前記第 1時系列変化量中、所定のカットオフ周波数 以上の周波数成分の時系列的な変化量を、第 2時系列変化量として抽出するハイパ スフイノレタと、  A high pass filter that extracts a time series change amount of a frequency component equal to or higher than a predetermined cut-off frequency among the first time series change amount measured by the distance measuring means; and a second time series change amount;
前記ハイパスフィルタが抽出した前記第 2時系列変化量が所定のしきい値以上とな つた場合に、前記物体と前記接触対象物体との接触を検出する接触検出手段と を備えることを特徴とする接触検出装置。  Contact detection means for detecting contact between the object and the contact target object when the second time-series change amount extracted by the high-pass filter is equal to or greater than a predetermined threshold value. Contact detection device.
[2] 前記ハイパスフィルタが抽出した前記第 2時系列変化量に比例する値を、前記物 体と前記接触対象物体とが接触する時の衝突力を表す値として測定する衝突力測 定手段を更に備えることを特徴とする請求項 1に記載の接触検出装置。 [2] A collision force measurement unit that measures a value proportional to the second time-series change amount extracted by the high-pass filter as a value representing a collision force when the object and the contact target object are in contact with each other. The contact detection device according to claim 1, further comprising:
[3] 前記撮影手段の撮影対象となる前記物体に、当該物体の位置を表すための任意 の標識が設けられ、 [3] The object to be imaged by the imaging means is provided with an arbitrary sign for indicating the position of the object,
前記撮影手段は前記標識を撮影し、  The photographing means photographs the sign,
前記距離測定手段は、前記撮影手段が撮影した前記標識の撮影画像内における 位置に基づき、前記標識から前記接触対象物体までの距離の時系列的な変化量で ある第 1時系列変化量を測定することを特徴とする請求項 1または請求項 2に記載の 接触検出装置。  The distance measuring unit measures a first time series change amount that is a time series change amount of a distance from the sign to the contact target object based on a position of the sign taken by the photographing means in a photographed image. The contact detection device according to claim 1, wherein the contact detection device is a contact detection device.
[4] 前記ノ、ィパスフィルタにおける前記所定のカットオフ周波数は、 40ヘルツであること を特徴とする請求項 1〜3のいずれか 1項に記載の接触検出装置。  [4] The contact detection device according to any one of claims 1 to 3, wherein the predetermined cutoff frequency in the no-pass filter is 40 hertz.
[5] 前記接触検出手段における前記所定のしきい値は、 0. 5mmであることを特徴とす る請求項 1〜3のいずれ力 1項に記載の接触検出装置。  [5] The contact detection device according to any one of [1] to [3], wherein the predetermined threshold value in the contact detection means is 0.5 mm.
[6] 物体と接触対象物体との接触を検出する接触検出方法であって、  [6] A contact detection method for detecting contact between an object and a contact target object,
撮影手段が、前記物体及び前記接触対象物体を撮影する撮影ステップと、 距離測定手段が、前記撮影ステップにて撮影された画像内における前記物体及び 前記接触対象物体の位置に基づき、前記物体から前記接触対象物体までの距離の 時系列的な変化量である第 1時系列変化量を測定する距離測定ステップと、 ハイパスフィルタが、前記距離測定手段が測定した前記第 1時系列変化量中、所 定のカットオフ周波数以上の周波数成分の時系列的な変化量を、第 2時系列変化量 として抽出するハイパスフィルタリングステップと、 An imaging step in which the imaging means images the object and the contact target object; The distance measurement means is a first time that is a time-series change amount of the distance from the object to the contact target object based on the position of the object and the contact target object in the image captured in the capturing step. A distance measurement step for measuring a series change amount, and a high-pass filter, for the first time series change amount measured by the distance measurement means, represents a time series change amount of a frequency component equal to or higher than a predetermined cutoff frequency. A high-pass filtering step to extract as the second time series change amount;
接触検出手段が、前記ハイパスフィルタリングステップにて抽出された前記第 2時 系列変化量が所定のしき 、値以上となった場合に、前記物体と前記接触対象物体と の接触を検出する接触検出ステップと  A contact detection step of detecting contact between the object and the contact target object when the second time-series change amount extracted in the high-pass filtering step is equal to or greater than a predetermined threshold value. When
を備えることを特徴とする接触検出方法。  A contact detection method comprising:
[7] 衝突力測定手段が、前記ハイパスフィルタリングステップにて抽出された前記第 2 時系列変化量に比例する値を、前記物体と前記接触対象物体とが接触する時の衝 突力を表す値として測定する衝突力測定ステップを更に備えることを特徴とする請求 項 6に記載の接触検出方法。 [7] A value representing a collision force when the object and the contact target object are in contact with a value proportional to the second time-series change amount extracted by the high-pass filtering step. The contact detection method according to claim 6, further comprising a collision force measurement step of measuring as follows.
[8] 前記撮影ステップにおける撮影対象となる前記物体に、当該物体の位置を表すた めの任意の標識が設けられ、 [8] The object to be imaged in the imaging step is provided with an arbitrary sign for indicating the position of the object,
前記撮影ステップにおける前記撮影手段は前記標識を撮影し、  The photographing means in the photographing step photographs the sign,
前記距離測定ステップにおける前記距離測定手段は、前記撮影ステップにて撮影 された前記標識の撮影画像内における位置に基づき、前記標識力 前記接触対象 物体までの距離の時系列的な変化量である第 1時系列変化量を測定することを特徴 とする請求項 6または請求項 7に記載の接触検出方法。  The distance measuring means in the distance measuring step is a time-series change amount of the marker force and the distance to the contact target object based on the position of the marker imaged in the imaging step in the captured image. 8. The contact detection method according to claim 6, wherein a time series change amount is measured.
[9] 前記ノ、ィパスフィルタリングステップにおける前記所定のカットオフ周波数は、 40へ ルツであることを特徴とする請求項 6〜8のいずれ力 1項に記載の接触検出方法。 9. The contact detection method according to any one of claims 6 to 8, wherein the predetermined cutoff frequency in the no-pass filtering step is 40 hertz.
[10] 前記接触検出ステップにおける前記所定のしきい値は、 0. 5mmであることを特徴 とする請求項 6〜8のいずれ力 1項に記載の接触検出方法。 10. The contact detection method according to any one of claims 6 to 8, wherein the predetermined threshold value in the contact detection step is 0.5 mm.
PCT/JP2007/054690 2006-03-10 2007-03-09 Contact detector and contact detection method WO2007105640A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-066507 2006-03-10
JP2006066507A JP4810658B2 (en) 2006-03-10 2006-03-10 Contact detection device and contact detection method

Publications (1)

Publication Number Publication Date
WO2007105640A1 true WO2007105640A1 (en) 2007-09-20

Family

ID=38509463

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/054690 WO2007105640A1 (en) 2006-03-10 2007-03-09 Contact detector and contact detection method

Country Status (2)

Country Link
JP (1) JP4810658B2 (en)
WO (1) WO2007105640A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013214308A (en) * 2008-07-17 2013-10-17 Nec Corp Information processing apparatus, program, and information processing method

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
IKEDA S. ET AL.: "Kosoku Shikaku o Mochiita Yubisaki Tapping Interface", JAPAN SOCIETY OF MECHANICAL ENGINEERS CONFERENCE ON ROBOTICS AND MECHATRONICS KOEN RONBUNSHU, 26 May 2006 (2006-05-26), pages 1P1-D18(1) - 1P1-D18(3), XP003017785 *
TSUKADA K. AND YASUMURA M.: "Ubi-Finger Mobile Shiko Gesture Nyuryoku Device no Kenkyu", TRANSACTIONS OF INFORMATION PROCESSING SOCIETY OF JAPAN, vol. 43, no. 12, 15 December 2002 (2002-12-15), pages 3675 - 3684, XP003017787 *
YAMAMOTO K. ET AL.: "Kosoku Vision o Mochiita Jitsujikan Yubisaki Tapping Interface", THE TRANSACTIONS OF THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS D, vol. J90-D, no. 2, 1 February 2007 (2007-02-01), pages 544 - 555, XP003017786 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013214308A (en) * 2008-07-17 2013-10-17 Nec Corp Information processing apparatus, program, and information processing method
US9933932B2 (en) 2008-07-17 2018-04-03 Nec Corporation Information processing apparatus having a contact detection unit capable of detecting a plurality of contact points, storage medium having program recorded thereon, and object movement method
US10656824B2 (en) 2008-07-17 2020-05-19 Nec Corporation Information processing apparatus having a contact detection unit capable of detecting a plurality of contact points, storage medium having program recorded thereon, and object movement method

Also Published As

Publication number Publication date
JP4810658B2 (en) 2011-11-09
JP2007240455A (en) 2007-09-20

Similar Documents

Publication Publication Date Title
US8477099B2 (en) Portable data processing appartatus
US9538147B2 (en) Method and system for determining proper positioning of an object
EP2660686B1 (en) Gesture operation input system and gesture operation input method
TW201510771A (en) Pointing direction detecting device and its method, program and computer readable-medium
CN112926423B (en) Pinch gesture detection and recognition method, device and system
US20090296991A1 (en) Human interface electronic device
CN108027656B (en) Input device, input method, and program
CN101308400A (en) Novel human-machine interaction device based on eye-motion and head motion detection
JP2012073830A (en) Interface device
KR20120068253A (en) Method and apparatus for providing response of user interface
KR20120046973A (en) Method and apparatus for generating motion information
JP2017129904A (en) Information processor, information processing method, and record medium
EP3528024B1 (en) Information processing device, information processing method, and program
KR101365083B1 (en) Interface device using motion recognition and control method thereof
JP2005056059A (en) Input device and method using head mounting type display equipped with image pickup part
WO2020054760A1 (en) Image display control device and program for controlling image display
JP2011028573A (en) Operation device
US20030184520A1 (en) Mouse with optical buttons
WO2007105640A1 (en) Contact detector and contact detection method
WO2015064991A2 (en) Smart device enabling non-contact operation control and non-contact operation control method using same
JP2010086367A (en) Positional information inputting device, positional information inputting method, program, information processing system, and electronic equipment
TW201419087A (en) Micro-somatic detection module and micro-somatic detection method
CN103543882B (en) Optical touch system and touch point calculation method thereof
JP5852928B2 (en) Operation input device, operation input method and program
WO2020195271A1 (en) Walk analysis device, walk analysis method, and computer-readable recording medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07738175

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07738175

Country of ref document: EP

Kind code of ref document: A1